
Imperial College of London
Department of Computing

JErlang:
Erlang with Joins

Final Report

Hubert Plociniczak

Supervisor
Professor Susan Eisenbach

Second marker
Professor Sophia Drossopoulou

Copyright c©Hubert Plociniczak, 2009. All rights reserved.

Abstract

For the past few years the computing world has been affected by a massive increase in the
popularity of multi-core machines. In order to fully utilise this opportunity, programmers
have to switch their mindset to concurrent thinking. The human nature allows for quick
adaptation to new environment, yet ironically, the tools that we use to program the concur-
rent programs are still in the late 80’s where sequential programming was rampant.

Writing massive concurrent applications is an inherently error prone process due to the
way humans think. Nevertheless popular languages like Java or C# still use locking as a
basic concurrent abstraction. Erlang, a precursor in the world of concurrent languages, offers
message passing instead of shared memory, as a way of avoiding this issue. Yet this idea itself
is also very primitive and the whole burden of managing large amounts of processes that use
the possibilities of multi-core machines, is again left on the shoulders of programmers.

This report investigates the development of JErlang, an extension of Erlang, that in-
troduces simple yet powerful joins constructs. The idea is adapted from the Join-calculus,
a process calculus that has recently been developed by Fournet and Gonthier. The aim of
JErlang is to allow the programmer for easier synchronisation between different processes
in an intuitive way. This will enable Erlang programmers to write concurrent applications
faster, reliably and increase the overall clarity of the programs.

Acknowledgements

This project would not reach this stage without the help of many people, a few of which I will
name below. I would like to thank Professor Susan Eisenbach, for her continuous support
and encouragement not only during this project but during the whole duration of my study.

Secondly, I would like to thank Natalia, for her patience during the nervous times and
smile that helped me to survive each day.

Many thanks also go to Professor Sophia Drossopoulou who helped me in thinking for-
mally about languages and her persistance to make things succint. Dr Matthias Radestock
who taught me how to write to proper programs and provided invaluable knowledge about
Erlang. Thanks to Anton Stefanek for inspiring debates about programming languages,
computing in general and hints for LATEX.

Finally, I would like to thank my parents who always approved my, sometimes irrespon-
sible and strange, decisions and allowed me to pursue my dreams. Special thanks go to my
brother, Lukasz, his wife, Gosia and little Emilka for they never stopped believing in my
abilities.

To Natalia

Contents

Contents i

1 Introduction 1
1.1 Contributions . 3

2 Background 5
2.1 Join-calculus . 5

2.1.1 Historical overview . 6
2.1.2 Reflexive CHAM . 7
2.1.3 Formal definition . 8

2.2 Join-calculus implementations . 10
2.2.1 JoCaml . 10
2.2.2 Polyphonic C# . 14
2.2.3 SCHOOL and fSCHOOL . 19
2.2.4 Join Java . 20
2.2.5 JoinHs and HaskellJoinRules . 21
2.2.6 Joins Concurrency Library . 24
2.2.7 Conclusion . 25

2.3 Erlang . 26
2.3.1 Process . 27
2.3.2 Inter-process communication . 28
2.3.3 Expression and Functions . 30
2.3.4 Exception handling . 30
2.3.5 Open Telecom Platform . 32
2.3.6 Conclusion . 34

2.4 Solving pattern-matching problems . 36
2.4.1 Production Rule System . 36
2.4.2 RETE algorithm . 36
2.4.3 Optimisations . 38

2.5 Data Flow Analysis . 39
2.5.1 Reaching Definitions Analysis . 39

i

ii CONTENTS

2.5.2 Live Variable Analysis . 39
2.6 Summary . 40

3 JErlang: Formal Definition 41
3.1 Syntax . 41

3.1.1 Differences between Erlang and JErlang 44
3.2 Semantics . 44

3.2.1 Operational Semantics . 47
3.2.2 Pattern-matching algorithms . 50

3.3 Conclusion . 53

4 The language 55
4.1 Joins for Mailboxes . 55

4.1.1 Joins for Multiple Mailboxes . 55
4.1.2 Joins for a Single Mailbox . 58

4.2 Language features . 61
4.2.1 Getting started . 61
4.2.2 Joins . 61
4.2.3 Order preservation in mailbox and First-Match execution 62
4.2.4 Guards . 63
4.2.5 Timeouts . 64
4.2.6 Non-linear patterns . 65
4.2.7 Propagation . 66
4.2.8 Synchronous calls . 67
4.2.9 OTP platform support in JErlang . 68

4.3 Conclusions . 70

5 Implementation 71
5.1 JErlang Compiler and VM . 72

5.1.1 Compiler . 72
5.1.2 Built-in functions (BIFs) . 73
5.1.3 Erlang ’s Virtual Machine . 73

5.2 JErlang ’s VM . 75
5.2.1 Search mechanism . 75
5.2.2 Mailbox and Map . 78
5.2.3 Locking . 78

5.3 Parse transform . 78
5.3.1 Abstract Syntax Tree . 79
5.3.2 Unbounded and Bounded Variables in parse transform 80
5.3.3 Reaching Definitions Analysis . 81
5.3.4 Live Variable Analysis . 82

5.4 Algorithms . 84
5.4.1 Standard . 85
5.4.2 State space explosion . 89

iii

5.4.3 Lazy evaluation . 90
5.4.4 RETE implementation . 90
5.4.5 Pruning search space . 92
5.4.6 Patterns ordering optimisation . 93

6 Evaluation 95
6.1 Correctness . 95

6.1.1 Dialyzer . 98
6.2 Language and expressiveness . 98

6.2.1 Santa Claus problem . 98
6.2.2 Dining philosophers problem . 99

6.3 Scalability . 102
6.4 Performance . 104

6.4.1 Small mailboxes with quick synchronisation 104
6.4.2 Queue size factor in joins synchronisation 105
6.4.3 Influence of joins ordering on the performance 107
6.4.4 Standard queues vs hash-map accelerated queues 110

6.5 Applications . 110
6.5.1 Message routing system with synchronisation on messages 111
6.5.2 Chat system . 112

6.6 Conclusion . 113

7 Conclusion 115
7.1 Further work . 117

7.1.1 Formal definition . 117
7.1.2 Performance . 117
7.1.3 New Erlang release . 118
7.1.4 Benchmarks . 118

7.2 Closing remarks . 118

Bibliography 119

A Erlang Compiler Result 125
A.1 Original code . 125
A.2 Abstract syntax tree for the first program . 126
A.3 First program expressed in Core Erlang . 126
A.4 Assembler code (Kernel Erlang) corresponding to the first program 128

B Parse transform result 131
B.1 Original code . 131
B.2 JErlang ’s code resulting from running parse transform on the first program . 131
B.3 Abstract Syntax Tree representing the first program 133
B.4 Abstract Syntax Tree resulting from running parse transform 134

C gen joins OTP’s behaviour 139

iv CONTENTS

C.1 Calculator . 139
C.2 Chat system . 140

D Variations of the Santa Claus problem 145
D.1 Santa Claus in Erlang . 145
D.2 JErlang solution to Santa Claus using popular style 147
D.3 Sad Santa Claus problem . 149
D.4 Santa Claus in gen joins . 151

E Benchmarks 153
E.1 Multiple producers test-suite . 153

F NataMQ 155
F.1 Nata Exchange . 155
F.2 Nata Channel . 158
F.3 Nata Publish and Subscribe . 160

Chapter 1

Introduction

Writing concurrent applications in today’s world has become not only the domain of a few
programmers who produce superb, massively used systems. It has become the very nature
of any kind of software development since it directly corresponds to the way our world is
functioning on its own. The widespread popularity of efficient multi-threaded and multi-core
architectures has further increased the interest in the subject of concurrency. Desktops with
dual- or quad- cores at homes are no longer a domain of geeks or professionals. Laptops
offering CPU-power once reserved for massive mainframes are easily accessible in every com-
puter shop. This constant decrease in costs and increase in popularity and efficiency is a
consequence of the continuous development of technology over the past 20 years.

Yet, ironically, the way most of the software is currently developed doesn’t reflect this
significant change. The industry still uses the good old synchronization patterns that are
prone to errors, popular programming languages like Java, C# or C++ which don’t present
any efficient way to correctly handle concurrency problems. Modern languages do try to
catch up by adding new libraries, extending the languages, but their main fault is their
history - they were designed with different ideas in mind, in a world of different technology.
Their basic level of communication remains shared memory. At that time this did seem like a
perfectly reasonable idea - speed of memory wasn’t so dramatically different from the speed
of CPU’s, also multiple processors weren’t so popular. But as we said at the beginning, the
world is different now and “the free lunch is over”[38], i.e. simple, sequential programming
is not enough anymore. Hardware designers try to overcome the gap between memory and
CPU speed by introducing caches, then caches of caches but then they also need a way of
synchronizing the state of the memory, like the nowadays popular Cache Coherency Protocol,
just to ensure that cores accessing the same address of memory get consistent results. This
proves to be a much harder process to overcome in comparison to “just” increasing the clock
speed of CPU’s. With constantly increasing performance of the hardware and comparably
slow increase in the efficiency of the software systems it becomes apparent that maybe the
former is not the culprit in this relationship.

Reasoning about all aspects of concurrent systems is tremendously difficult, and the

1

2 CHAPTER 1. INTRODUCTION

efficiency losses which result from not doing this thoroughly are often too easily accepted.
For accessing a shared piece of memory the most popular way still is to lock the region so that
all operations are made atomic. This, in consequence, often leads to the creation of sequential
processes which brings down all the advantage of having multi-core architectures. Although
locking is the right way of programming in C, it shouldn’t be right in a high-level language
like C# or Java. We all known that it sometimes causes (very dramatic) deadlocks or race
conditions. Greater experience always reduces the frequency of such errors, the question is to
what extent and why the programming languages aren’t so much of a help in this situation?

Concurrency has been the subject of theoretical research for many years. There are
concepts of process calculi, like CCS or π-calculus which again at the very low, elementary
level state the idea of a process. These were extensively analysed in terms of concurrent
computation, communication and have raised many interesting concepts into the world of
concurrency. Yet again, there is a kind of gap between process calculi and programming
languages for distributed programming. There have been number of attempts to implement
original process calculi directly into languages, like Acute1 or Pict2, but their awkward se-
mantics seemed against the natural instinct of the programmers. Also, a low number of
synchronisation concepts used in those process calculi means that their usefulness is under-
estimated. It is disappointing that the amount of research that goes into this field, rarely is
introduced and accepted by the wider audience.

So why not to use a language which was designed to meet the reality of the present time?
One that is distributed, fault-tolerant, with support for concurrent constructs and better
memory concepts. Additionally we could move to a more a natural programming paradigm
rather than another typical Object Oriented language which seems increasingly awkward
as it doesn’t reflect the reasoning about multiple threads or, more accurately, processes.
An increasingly popular language, Erlang, fits in this description perfectly. Although it
is typically categorized as a functional language, the concept of Actors, the life-cycle of
processes plays a crucial role in its programming model and reasoning. It also throws away
the shared memory idea and uses a message-passing concept.

Recently, a bridge between process calculi and programming languages for distributed,
concurrent environments was introduced, called the Join-calculus [15]. Join-calculus shares
many concepts with its predecessor, π-calculus, yet it was immediately defined in a way
that is compatible with the current programming languages. This new process calculi shares
with Erlang the concept of process as a main concurrency and computation unit. Its ideas
also fill up the hole in the Erlang design, which misses the multiple addressing space for
communication channels of a single process, and also synchronisation on multiple messages
retrieval. Both of these can currently can only be done using very awkward, non-natural
constructs. Erlang was designed to strictly mimic the current, asynchronous world, yet it
feels that it lacks tools to express the synchronous nature that is also common. The aim of
this project is to define an efficient extension of the original Erlang that implements the Join-
calculus constructs. This way we would be able to produce better concurrent applications in
a less error prone environment.

1see http://www.cl.cam.ac.uk/~pes20/acute/
2see http://www.cis.upenn.edu/~bcpierce/papers/pict/Html/Pict.html

http://www.cl.cam.ac.uk/~pes20/acute/
http://www.cis.upenn.edu/~bcpierce/papers/pict/Html/Pict.html

1.1. CONTRIBUTIONS 3

1.1 Contributions

The main contribution of the project is an extension of the existing Erlang language that
I called JErlang. The end result is available in a form of a library as well as a backward-
compatible patched Erlang compiler and Virtual Machine. I decided to support both of
the approaches since each has its own advantages and disadvantages and I did not want to
be limited by any choice. The new language provides joins constructs borrowed from Join-
calculus that efficiently use Erlang ’s pattern-matching mechanism in order to synchronise on
multiple messages. Therefore the original language does not loose in its functionality and
gains powerful, yet simple construct, that fits into the overall Erlang architecture model. I
decided to provide greater expressiveness at the expense of performance. This was necessary
in order to create a language which a typical Erlang programmer would find acceptable. I
believe that having a language with more powerful constructs already at the beginning is
much better for comparison with the standard Erlang. This way it is easier to decide to drop
some features in order improve the efficiency instead of adding some and observing how they
affect the performance.

In chapter 2 I give a brief overview of the inspiration behind Join-calculus and present
most popular implementations. Although the languages support the same idea taken from
Join-calculus, the range of expressiveness differs in each implementation. I continue with a
short definition of the Erlang ’s programming model and how it fits in the world of concurrent
programming. I also examine efficient pattern matching algorithms as well as techniques for
static analysis of the code that were crucial for implementing correct language extension.

Chapter 3 presents a formal syntax and semantics of the mini JErlang language. This
gives a firm base for the establishment of concrete language features that I explain in chapter
4. The latter can serve as JErlang ’s reference guide. Chapter 4 also considers two possible
join definitions and their applicability in the context of Erlang language.

In order to provide JErlang ’s support in the run-time I needed to modify the existing
Erlang ’s Virtual Machine and compiler what is discussed in chapter 5. Similarly I present
the challenges involved during the development of concise JErlang ’s library without the need
for changing the original compiler. I examine possible algorithms used for the efficient imple-
mentation of a non-trivial joins solver as well as optimisations for improving the performance
in selected scenarios.

Chapter 6 evaluates the design decisions made in the previous chapter in the context of
language expressiveness and performance. I present any trade-offs between those two using
numerous applications and analyse to what extent JErlang is a better language than the
original Erlang and other Join-calculus implementations.

Chapter 7 concludes the result of the project and suggests numerous research areas which
could be further expanded or were missing in the current JErlang ’s implementation.

Figure 1.1 presents a simiplified diagram of the JErlang architecture. In case VM-
supported JErlang I use modified Erlang ’s compiler and VM, but also different version
of the JErlang module.

4 CHAPTER 1. INTRODUCTION

CODE COMPILER

JErlang LI-
BRARY

VIRTUAL
MACHINE

Figure 1.1: Simplified architecture used in JErlang language. The VM-supported JErlang
uses modified compiler and VM instead of the standard Erlang one.

Chapter 2

Background

In this chapter we investigate the origins of Join-calculus, compare it with other calculi
and describe in detail various existing implementations in modern programming languages
to investigate their usefulness in programming concurrent systems by typical developers.We
present the Erlang programming language that promotes novel, and often more natural,
reasoning about concurrency issues and analyse its effectiveness in building fault-tolerant,
distributed and highly concurrent systems. Finally we outline the efficient pattern-matching
algorithms for solving large Production Rule Systems and variants of data flow analysis that
statically analyse the code.

2.1 Join-calculus

Join-calculus came to the existence as a result of work done on extending a Chemical Machine
(CHAM) of Berry and Boundol. The original CHAM raised an important fact - modelling
chemical reactions could be very similar to modelling concurrent execution of processes. Un-
fortunately CHAM had a few design flaws, like the inability of adding new chemical rules
to the solution and hence enforcing constraints on chemical reactions. The reflexive CHAM
(RCHAM) developed in INRIA addresses these points by introducing two fundamental con-
cepts: locality and reflexivity. Join-calculus was developed alongside as a way of formalizing
the concurrency model and introduces an interesting construct called multi-way join pat-
terns that enables synchronisation of multiple message patterns on different communication
channels. This powerful, yet simple process calculus, was shown to be computationally equiv-
alent to the π-calculus that addresses the question of mobility and communication between
processes. This simplicity attracted many language architects as in theory it offers new
concurrency constructs at a low cost of implementation.

5

6 CHAPTER 2. BACKGROUND

2.1.1 Historical overview

A process calculus relates to the family of concepts for modelling concurrent systems. The
aim of process calculi (also known as process algebras) was to provide frameworks for con-
structs of interaction, synchronisation and communication between sets of independent pro-
cesses.

Tony Hoare, the inventor of the Quicksort algorithm and Hoare logic, started a new
chapter in the analysis of mathematical theories of concurrency by publishing his pioneer
book Communicating Sequential Processes[17]. Communicating Sequential Processes (CSP)
presented a fresh look on interaction between processes and highly influenced the popular
language Caml1. CSP as presented in the original paper wasn’t fully a process algebra as
was we understand it now, it was more of a language for writing concurrent models. Nor did
it posses any proper mathematical syntax definition. Instead, CSP defined how processes
which exist independently should communicate using only message-passing. In Calculus
of Communicating Systems [28] (CCS), which based on CSP, Robert Milner presented a
formal language for modelling concurrent interactions. His definitions of parallel composition,
replication and scope restriction were widely studied and serve as concurrency primitives for
building more complex interactions between processes nowadays.

The result of further work on CCS lead to the creation of π-calculus[29] by Milner, Parrow
and Walker. The fundamental difference between the two is the introduction of the concept
of mobility of processes in the latter, i.e. we take into consideration the situation when the
execution location of the code might have changed.

The π-calculus relies on the concept of names which serve as identifiers for variables as
well as for communication channels. Hence we gain the possibility of sending the channel
names through other channels. This feature also enabled the achievement of computational
completeness of the π-calculus because it introduces the possibility of recursive definitions.
The constructs in the calculus are so primitive that π-calculus is often used as a basis for
extension for other, more specialized ones and rarely exists in its pure form2. Implementation
of π-calculus is complicated and constructs presented in the programming languages (Pict3,
Acute4 or occam-π5), although powerful and perfectly valid, are hardly usable for day-to-day
software development.

The radically different approach to the formalisation of the concurrency model was ap-
proached by the creators of the Γ-calculus. They claimed that “parallel programming with
control threads is more difficult to manage than sequential programming, a fact that contrasts
with the common expectation that parallelism should ease program design” [6]. Instead of
having complete control over how concurrency was established between each of the entities,
they allowed entities to “move freely”. This way of thinking is similar to reactions that hap-
pens between molecules in biological terms. The biological solution in which the molecules
lived enabled free interaction between molecules (processes, entities, values). The biological

1http://caml.inria.fr/
2see [1] and http://research.microsoft.com/en-us/um/people/aphillip/spim/
3http://www.cis.upenn.edu/~bcpierce/papers/pict/Html/Pict.html
4http://www.cl.cam.ac.uk/~pes20/acute/
5http://occam-pi.org/

http://caml.inria.fr/
http://research.microsoft.com/en-us/um/people/aphillip/spim/
http://www.cis.upenn.edu/~bcpierce/papers/pict/Html/Pict.html
http://www.cl.cam.ac.uk/~pes20/acute/
http://occam-pi.org/

2.1. JOIN-CALCULUS 7

solution was typically represented as a mathematical multiset, the rules that defined how
molecules reacted with each other on contact were defined by tuples of conditions and actions
which were later used during the execution step. The result was considered to be achieved
when the solution is in a well-balanced state, i.e. no more conditions can be satisfied. Parallel
programming represented in biological terms more naturally expressed the way concurrent
execution happens since there can be numerous reactions happening at the same time. One
drawback of the Γ was the much harder representation of sequential processes.

To simplify the implementation of the Γ-calculus concepts, G. Berry and G. Boudol
extended the language using the Abstract Chemical Machine (CHAM). It provided structural
meaning to molecules of the solution, so that they can be given meaningful syntax and
semantics. CHAM can be therefore considered as a proper formalisation of the Γ-calculus.
The reaction site can then be represented using normal operational semantics and typically
molecules “move” to the proper reaction where they are sorted and catalysed to form actions
defined in rules. The concept of a membrane is crucial for understanding CHAM. With
membrane it is possible to create local solutions, containing one or more molecules, that only
interact with the global solution whenever a restriction is available and matches with other
molecules or membranes. This way the authors present some equivalence to the standard
CCS and π-calculus, which uses the concept of channels. Unfortunately CHAM, had two
significant drawbacks - recursion wasn’t available due to the fact that no new solutions could
be added to the solution and a single molecule needed to interact (in strict reaction locations)
with all the other ones which makes its implementation unfeasible.

In 1995 C. Fournet and G. Gonthier came up with the so called reflexive Abstract Chemi-
cal Machine (RCHAM)[15] that fixed two of the original problems and raised a bridge between
the two main concurrency models, process calculi represented by π-calculus and Chemical
Abstract Machine. They designed Join-calculus which was a direct correspondence of the
reflexive CHAM in the process algebra world. Reflexive CHAM enforces locality, meaning
that molecules can be associated with a single reaction site instead of being mixed at many
locations with all other molecules. The reflexivity of CHAM ensures that new reduction rules
can be introduced by combining single molecules into more complex ones.

2.1.2 Reflexive CHAM

Similarly as in π-calculus, crucial for the relfexive CHAM is the concept of names that are
used as values. We write x〈y〉 for sending name y on the name x. The minimal grammar of
the RCHAM as defined in [15] is:

P = x〈ν〉 J = x〈ν〉 D = J . P
defDinP J | J D ∧D

P | P

This way process P can be either an asynchronous message sending, a definition of new names
(channels) or parallel composition of two processes. The join operation is either a retrieval of
asynchronous name or a composition of two joins. Finally, the definition specifies the actions
to be taken when all required join molecules are satisfied, i.e. whenever the reaction rule

8 CHAPTER 2. BACKGROUND

matched molecules of which it is composed of, the process transforms into another process,
as defined in the configuration.

For specification of the scoping rules it is helpful to clearly define the three types of
variables that occur in the RCHAM as well as in Join-calculus: received, defined and free
ones. When given an asynchronous polyadic message x〈ν〉 the only received variable would be
the formal parameter ν since the value of ν will depend on the message name. Additionally
this variable gets bounded only in the scope of the defined process (process Q in listing 2.1).
Name x would be categorized as a defined variable and bound in the whole defining process
- in listing 2.1 it would be bound in P.

def x〈ν〉 . Q in P

Listing 2.1: Example of join definition in reflexive CHAM

The operational semantics of the reflexive CHAM as defined in [15] uses higher-order
solutions R `M , where the left hand side represents the rules of the reactions and the right
side the molecules of the solution:

(str − join) ` P | Q � ` P,Q
(str − and) D ∧ E ` � D,E `
(str − def) ` def D in P � Dσdv ` Pσdv

(red) J . P ` Jσrv −→ J . P ` Pσrv

(2.1)

The dv and rv refer to defined and received variables, respectively. Additionally we tend
to define free variables with the usual meaning6. The first two rules express the commuta-
tivity and associativity of the molecules and definitions, respectively.

The σrv in (red) rule substitutes any received variables in the signature of the join oper-
ation with the ones in the body of the join. In the Join-calculus we will give more detailed
explanation of the working of the reflexive CHAM.

2.1.3 Formal definition

Join-calculus was invented along with the reflexive CHAM as its complementary represen-
tation in process calculi. For implementation purposes it is much simpler to reason about.
Additionally using this representation it is possible to show the structural equivalence with
the π-calculus [15]. The grammar of Join-calculus is almost identical to the one represented
by reflexive CHAM in definition 2.1. Apart from the different meanings of the constructs,
we add an inert processes denoted by 0 and also a void definition:

6see [15] for detailed information

2.1. JOIN-CALCULUS 9

P,Q,R ::= (processes)
x〈u〉 (asynchronous message)

| def D in P (local definition)
| P | Q (parallel composition)
| 0 (inert process)

D ::= (definitions)
J . P (reaction rule)

| D ∧D′ (composition)
| V (void definition)

J ::= (join patterns)
x〈u〉 (message pattern)

| J ∧ J ′ (synchronisation on two patterns)

We take as an example a simple definition in Join-calculus terms:

def D in P

where D ≡ J ∧ J ′,
J ≡ x〈µ〉 | y〈ν〉 . Q,
J ′ ≡ s〈σ〉 . Q′,
P ≡ ... | x〈s〉 | y〈t〉

Exactly as in reflexive CHAM, at least one of the join patterns needs to be satisfied in order
for the whole join definition to become satisfied and eventually be replaced by the appropriate
process. In our example, we can be sure that join pattern J will become satisfied, since two of
the required messages are actually sent in parallel with the process P. Obviously there is the
possibility that join pattern J’ would also have become satisfied in the underspecified part
of the process P. When more than one join pattern is satisfied, we have a classical example
of non-determinism of execution, i.e.

a process P ≡ ... | Q or P ≡ ... | Q′ |

Whenever a join pattern is satisfied the substitution for received variables takes place in
the process defined in the reaction rule. Hence our example would actually resolve into
P ≡ ... | Q{s, t/µ, ν}.

We provide a couple of examples of a Join-calculus programs representing typical process
calculi and concurrency problems:

• Channel forwarding - def x〈ν〉 . y〈ν〉 in P . Any message sent to x is transferred to y.

• Non-deterministic choice - def c〈〉 . Q ∧ c〈〉 . Q′ in P | s〈〉. As we explained in the
Join-calculus definition, whenever more than one join pattern is satisfied, the actual
choice on which one will be fired is actually non-deterministic. We make use of that
property and the end result might be either P | Q or P | Q′.

10 CHAPTER 2. BACKGROUND

• Continuation - def x〈ν, µ〉 . µ〈τ〉 in P . Send the result of computation (here for
simplicity arbitrary τ) to the explicit continuation. Here we assume the existence of
polyadic channels. This can be easily encoded by having for example a join definition
consisting of at least two patterns: def x〈ν〉 | y〈µ〉 . µ〈τ〉 in P .

• Single-cell queue with initial state - def get〈µ〉 | s〈ν〉 . empty〈〉 | µ〈ν〉 ∧ set〈t〉 |
empty〈〉 . s〈t〉 in P | empty〈〉. Channel (port name) s stores the internal value of
the queue. It is not possible to overwrite the cell, while it is not empty, since empty
message needs to be sent first and this happens only at the initialization point and
after consuming the message.

2.2 Join-calculus implementations

Join-calculus, due to its simplicity and power, has recently become a very popular calculus
to implement in existing languages (either as a language extension or a separate library). We
used some of the ideas implemented in the presented languages to come up with a consistent
view of what features JErlang has to posses.

2.2.1 JoCaml

JoCaml7 is an extension of a well-known general-purpose language, Objective Caml8 (OCaml)
defined for easiness of expression. Similarly as Join-calculus and reflexive CHAM it was
invented at INRIA, the French national research institute for computer science. OCaml is a
mature object-oriented language with a powerful type system (based on ML). The reason for
the development of JoCaml was to add new primitive constructs for the efficient development
of concurrent and distributed systems. The original language was written by F. Le Fessant
and later re-implemented by C. Fournet to provide a more suitable syntax for Join-calculus
parts as well as to provide better compatibility with the standard OCaml language. For
better understanding of the language we present numerous examples, basing on the official
JoCaml reference manual [20].

JoCaml has two main entities in which programs are written: processes and expressions.
The former are executed asynchronously and produce no end result, whereas the expressions
are executed synchronously and have return values. The main new construct of JoCaml (in
comparison to OCaml) is the port name used for inter-process communication, in JoCaml
called Channel. The creation of the Channel entity naturally refers to the Join-calculus
syntax.

1 #de f foo (x) = p r i n t i n t x ; 0
2 #; ;
3 val foo : int Join . chan = <abstr>

Listing 2.2: Creation of simple Channel in JoCaml

7http://jocaml.inria.fr/
8http://caml.inria.fr/ocaml/

http://jocaml.inria.fr/
http://caml.inria.fr/ocaml/

2.2. JOIN-CALCULUS IMPLEMENTATIONS 11

Listing 2.2 defines a new channel foo of type int Join.chan, i.e. of type channel that
accepts ’int’ values (carries the ’int; value). The 0 process is the empty process, and is
necessary in this case since our channel is asynchronous. Hence the above definition leads
to the creation of the non-blocking channel, since whenever a message is sent on it, it gets
executed as all the join patterns, in this case only foo(x), get satisfied immediately (more
about join patterns will be explained later).

Another crucial entity of JoCaml are processes. Since only definitions and expressions
are normally allowed to exist in the top-level systems code, we transform the processes into
expressions through the usage of the spawn construct. This leads to the concurrent execution
and the exact sequence of steps is implementation dependent.

1 # spawn foo (1)
2 # ; ;
3 − : unit = ()
4 # spawn foo (2)
5 # ; ;
6 − : unit = ()
7 12

Listing 2.3: Spawning processes in JoCaml

Listing 2.3 will, as shown, print “12”, but a perfectly valid expectation is that it could also
print “21”. Synchronous channels can be represented in JoCaml by means of a continuation,
as given in listing 2.4.

1 # de f succ (x , k) = p r i n t i n t x ; k (x+1)
2 # ; ;
3 val succ : (int ∗ Join . chan) Join . chan = <abstr>

Listing 2.4: Synchronous channels using continuation in JoCaml

In this case the parameters for the succ channel are represented in the implementation
as a tuple consisting of an integer and another channel. When all the necessary operations
are finished, we simply send the message on the continuation channel. Writing channels with
continuations is a perfectly valid operation in JoCaml but in terms of productivity, clarity and
effectiveness it can become a very tedious and error prone process. Therefore, the language
provides a syntactic sugar, which allows treating synchronous channels as functions. The
exact equivalence of the example 2.4 would be presented as in 2.5.

1 # de f succ (x) = p r i n t i n t x ; r ep ly x + 1 to succ
2 # ; ;
3 val succ : int −> int = <func>

Listing 2.5: Synchronous channels using build-in continuation-reply in JoCaml

The result of succ can be then used in other expression and one can easily see that the type
of the expression is no longer a Channel but a function.

Writing join synchronisation patterns is done in JoCaml by declaring definitions with
the names of the ports (channels) and they are all blocked until they become satisfied, i.e.
receive an appropriate message (listing 2.6). Patterns of the join are combined using the

12 CHAPTER 2. BACKGROUND

ampersand sign, so both channels in listing 2.6 need to receive at least one message on each
of them to spawn the process defined in the body of the join definition. JoCamlallows also
for composition of the processes in the expressions using, again, the ampersand sign, as in
example 2.7

1 # de f f r u i t (x) & cake (y) = p r i n t e n d l i n e (x ˆ ” ” ˆ y) ; 0
2 # ; ;
3 val fruit : string Join . chan = <abstr>
4 val cake : string Join . chan = <abstr>

Listing 2.6: Simple join patterns in JoCaml

1 # spawn f r u i t (” apple ”) & f r u i t (” raspber ry ”)
2 # & cake (” p i e ”) & cake (” crumble”)
3 # ; ;
4 − : unit = ()
5 apple pie
6 raspberry crumble

Listing 2.7: Join pattern composining of many channels in JoCaml

Depending on the implementation, a perfectly valid solution would again be “apple crum-
ble”, followed by “raspberry pie”. This way we can see how the action defined in the join
definition is only fired when all the patterns are synchronised. One restriction on the chan-
nels of the JoCaml join pattern is that the definition cannot contain channels of the same
name. This resolves a potential non-determinism in synchronised channels where one would
have to decide to which channel the value should be returned.

It is also possible to declare multiple join patterns in a single definition construct. This is
done using a special keyword construct named or and creates possibilities for more interesting
synchronisation patterns, as presented in listing 2.8.

1 # de f apple () & p ie () = p r i n t s t r i n g (” apple p i e ”) ; 0
2 # or s t rawberry () & p ie () = p r i n t s t r i n g (” strawberry p i e) ; 0
3 # ; ;
4 val apple : unit Join . chan = <abstr>
5 val strawberry : unit Join . chan = <abstr>
6 val pie : unit Join . chan = <abstr>

Listing 2.8: Multiple join definitions in JoCaml

1 # spawn apple () & spawn strawberry & spawn p ie
2 − : unit = ()

Listing 2.9: Spawning multiple processes in JoCaml

This way we define the “pie” channel only once, also in this definition making the pie, a
synchronous channel would be a valid JoCaml syntax. Sending messages on all port names
creates a likely non-determinism in what process will actually be spawned, because listing
2.9 will either produce an output “apple pie” or “strawberry pie” and is implementation
dependent.

2.2. JOIN-CALCULUS IMPLEMENTATIONS 13

JoCaml contains an efficient pattern matching typical for ML9. It is possible to define
join patterns that await on synchronisation on channels of specific pattern. This way one
can create many interesting concurrency models like the one presented in 2.10.

1 # type f r u i t = Apple | Raspberry | Cheese
2 # and d e s e r t = Pie | Cake
3 # ; ;
4 type fruit = Apple | Raspberry | Cheese
5 and desert = Pie | Cake
6 # de f f (Apple) & d(Pie) = e c h o s t r i n g (” apple p i e ”)
7 # or f (Raspberry) & d(Pie) = e c h o s t r i n g (” raspber ry p i e ”)
8 # or f (Raspberry) & d(Cake) = e c h o s t r i n g (” raspber ry cake ”)
9 # or f (Cheese) & d(Cake) = e c h o s t r i n g (” cheese cake ”)

10 # ; ;
11 val f : f ru it Join . chan = <abstr>
12 val d : desert Join . chan = <abstr>

Listing 2.10: Usage of pattern matching for identification of join patterns in JoCaml

1 # spawn f (Raspberry) & d(Pie) & d(Cake)
2 # ; ;
3 − : unit = ()
4 raspberry pie

Listing 2.11: Sending messages to channels defined in previous example in JoCaml

The result of sending the messages in listing 2.11 could be either “raspberry pie” or
“raspberry cake”, depending on the implementation and timing issues.

Apart from the concurrency constructs as defined before, JoCaml has support for dis-
tributed programming. The execution of processes in JoCaml is location-independent, i.e.
running two processes P and Q on two separate machines will be equivalent to running a
compound (P | Q) process on a single machine. The are some limitations to this model,
because the output/error port is different when run on different machines and the latency of
the network has to be taken into account in the execution. However, the scope of the defined
values and names will remain the same - port name might serve now as a channel address
(possibly to another machine) and the locality issues will still remain transparent. Since the
local instances of JoCaml aren’t aware of any other ones, JoCaml needs the name-server for
initiation of the exchanges of channels. This is primarily needed to establish the connection
between the machines that do not know each other. Obviously, after the initial shake-up one
can use normal channels since the instances are aware of each other.

9Pattern Matching is common in functional languages like Haskell or Erlang

14 CHAPTER 2. BACKGROUND

1 # spawn begin
2 # de f f (x) = rep ly x∗x to f in
3 # Join . Ns . r e g i s t e r Join . Ns . here ” square ” (f : i n t −> i n t) ;
4 # 0
5 # end
6 # ; ;
7 − : unit = ()
8
9 # spawn begin

10 # let sqr = (Join . Ns . lookup Join . Ns . here ” square ” : i n t −> i n t) in
11 # p r i n t i n t (sqr 2) ;
12 # 0
13 # end
14 # ; ;
15 − : unit = ()
16 4

Listing 2.12: Distributed channels support in JoCaml

Listing 2.12 presents an example of the usage of the name server for the initial setup
for the two machines running two different process, in which one is dependent on the other.
The first process uses the register function to store its location and available function
in the central name-server, whereas the latter process uses the function lookup to search
for the square function (synchronous channel) in the JoCaml world and assigns it a local
name. Hence, after setting the configuration, the execution can be easily continued as if all
the processes were local. Depending on the type of the messages content, its value will be
either copied or referenced. In case of a function, all code and values are replicated on the
destination machine, however in case of synchronous channels only the name of the port is
given and sending on the port name results in a typical remote procedure call, where all the
execution takes place where the channel was defined and the result is returned to the caller.

2.2.2 Polyphonic C#

C# is a modern, type-safe, object-oriented programming language running on the .Net
platform developed by Microsoft R©. The language itself belongs to the closed-source category,
but there are attempts to create an open-source version of C# on a platform called Mono.
The language in its nature is very similar to the popular Java programming language. Both
compile to their respective bytecodes, which then, in the case of C# , is run on the .Net
runtime. Standard C# has quite a few concurrency constructs, starting from primitive (and
most common) lock mechanisms where each object can be set as a target, through mutexes
to complicated semaphores. Since C# 2.0 it is also possible to construct asynchronous-like
methods called delegates, but they are not exactly equivalent to Join-calculus asynchronous
channels. Even though C# has a few concurrency constructs, the complexity of writing
concurrent and distributed programs is often high.

Therefore in [5] N. Benton, L. Cardelli and C. Fournet define the extension of C# with
Join-calculus which they call Polyphonic C#. In comparison to JoCaml Polyphonic C#
doesn’t provide Join-calculus primitives like channels or processes, nor any way for paral-
lelising these. Instead the authors took two useful elements and implemented them in an

2.2. JOIN-CALCULUS IMPLEMENTATIONS 15

1 public class Buffer {
2 public Object Get () & public async Put(Object s) {
3 return s ;
4 }
5 }

Listing 2.13: Unlimited buffer in Polyphonic C#

extension of C# : asynchronous methods and chords.

Asynchronous methods

In a standard C# expressions are executed sequentially. Any called methods execute until
completion, before other instruction in the code can be executed (even when they do not
have to have a return value). There is a way to introduce the asynchronous methods through
the complex use of threads or delegates but they are hard to understand and reason about,
since it builds unnecessary code around a single problem (especially problematic for complex
problems) and is an error prone activity. Running asynchronous methods doesn’t wait for
their finish, nor returned value or exception. The methods are run in a separate thread in
parallel with the currently executed thread. Asynchronous methods in Polyphonic C# are
introduced with the keyword async instead of method return type (which internally type
system recognizes as void):

Definition 2.1 (Chords in Polyphonic C#).
async method name (method parameters) { method body }

From the implementation point of view, whenever an asynchronous method is called, the
method body is executed in a separate thread (by an expensive creation of a fresh thread or
through usage of the possible thread pools). The method has to be packed in a new thread,
queued and then dispatched by the appropriate process responsible for scheduling of the
threads.

Chords

Chord is an object-oriented adaptation of the join patterns concept. Chords consists of a
method header and a body. A method signature in Polyphonic C# consists of a list of
method headers joined by the ampersand sign. The body of the chord is executed once all of
the methods defined in the header were called. By default, any chord contains at most one
synchronous method and all the others need to be asynchronous. This simplifies the general
thread scheduling mechanism as well as the overall structure of the return instructions. A
typical example of the chord in the Polyphonic C# is the buffer class presented in 2.13.

Buffer class from 2.13 defines a chord consisting of a synchronous method Get and an
asynchronous Put. Any calls on a method Get of an object of class Buffer will get blocked,
unless there were corresponding calls of a Put method. Whenever a call to the Get has a
corresponding call to the method Put a chord body gets executed in a thread in which Get

16 CHAPTER 2. BACKGROUND

was called. On the other hand, any Put calls with unmatched Gets get queued up until any
call to Get is made. The decision upon which Put should be used is strictly implementation
dependent and one should not depend on the order of the calls. Similarly one can have a
chord consisting only of asynchronous methods(listing 2.14).

1 public class FooBar {
2 public async Foo(String x) & public async Bar(String y) {
3 Console . Write(x + y) ;
4 }
5 }

Listing 2.14: Chords definition in Polyphonic C#

In 2.14 example whenever the methods Foo and Bar are called, a chord is satisfied and the
body gets executed. Since in the asynchronous-only chord there is no indication in which
thread the body of the chord should get executed, a scheduler will either create a new separate
thread or take a free thread from thread pool. The former is a quite an expensive process in
C# .

As we mentioned before, the chords are very powerful constructs but it doesn’t mean that
they don’t have to be used with care. It is quite easy to create a situation of non-determinism
using chords.

1 public class NondetereministicBuffer {
2 public Object Get () & public async Put(Object s) {
3 return s ;
4 }
5
6 public Object Get () & public async Signal () {
7 return null ;
8 }
9 }

Listing 2.15: Non-deterministic buffer in Polyphonic C#

In an example 2.15 whenever a method Get is called one cannot make any assumptions on
which chord is actually going to be called, if we have a common code where both of the
(a)synchronous methods can get called.

Polymorphism

Polyphonic C# is a fully-featured Object-oriented Programming language with the inheri-
tance, overloading and overriding constructs. However, as it was already noted in [27] and
[10] that inheritance and synchronisation constructs are often in conflict. Polyphonic C#
enforces serious restrictions and an example of it is a situation when one wants to override a
method that is part of a chord, one has to re-define the whole chord. Otherwise one would
be left with an inconsistent state of the program.

2.2. JOIN-CALCULUS IMPLEMENTATIONS 17

1 class A {
2 virtual void f () & virtual async g () { . . . }
3 virtual void f () & virtual async h () { . . . }
4 }
5
6 class B : A {
7 override async g () { . . . }
8 }

Listing 2.16: Invalid override of chords in Polyphonic C#

Hence the code presented in 2.16 is an invalid sample of Polyphonic C#. If this wasn’t the
case, then the VM, given the object of class B, would always relate the calls to method g with
the object of class B (with no connection to the chord defined in class A), and calls to method
f would be deadlocked in the first chord. Polyphonic C# allows for simple inheritance, where
the subclasses inherit any chords defined in the super class. In that situation however, the
.Net VM has to consider not only the static type, but also runtime for finding necessary
chords that can be signaled:

1 class A {
2 public int foo () & async bar () { . . . }
3 }
4
5 class B : A {
6 public int foo () & async bar () & async test () { . . . }
7 }

Listing 2.17: Valid overloading pattern in Polyphonic C#

In this example we overloaded the chord defined in class A by adding test asynchronous
method to the chord. Again, the execution of the chords defined in this hierarchy is non-
deterministic when on an object of class B, methods test, bar and finally foo were called.
Adding chords revolutionises quite significantly the polymorphism method, and can some-
times minimize the possibilities of Object Oriented mechanisms, reducing this way the free-
dom of typical constructs to which programmers got used to in standard C# . [5] presents
more examples of the possible Object-oriented constructs and restrictions in Polyphonic C#.

Implementation

The authors of Polyphonic C# encountered numerous issues when defining the scheduling
mechanism for the chords. Internally each chord is represented as a bitmap - a set bit means
that there was at least a single call to the respective method. This efficient data struc-
ture enables to quickly determine the state of the chord by comparing their state bitmaps
with corresponding fixed bitmaps that represent chords ready to execute. As it was already
mentioned, the cost of creating fresh threads is unacceptably high, especially for high per-
formance systems using Polyphonic C#. The authors attempted to skew the scheduling
of chords towards more synchronous chords. In other words, whenever an asynchronous
method was called a check was done first on a synchronous one because then we are simply
re-using the already existing, blocked thread, instead of creating a new one in case of an

18 CHAPTER 2. BACKGROUND

asynchronous-only chord. Additionally an analysis of the paths in the code was made to
minimize the chance of the synchronous method being blocked. The scheduler makes sure
that asynchronous methods of the chord are run before the synchronous one. An effort was
made to improve the performance of the chords, but it also complicated the implementation
as well as made the behaviour of the chords unintuitive and unexpected for programmers.
Because of that, the decision was made to remove priority scheduling from the original version
of the language.

An important aspect of Polyphonic C# is that it is translated directly into valid C#
code. The transformation also ensures the necessary synchronisation around the chords. To
ensure thread-safe access, the implementation uses global locks on objects, but still the locks
are different from the regular ones (on objects) that programmers can use - deadlocks are
therefore avoided. The usage of a global lock creates obvious races for updating the state of
the chord, the time-complexity of locking is small enough to be ignored.

Ignoring the aspect of previous chords performance optimizations the order in which
chords are checked is sequential. Whenever a method on an object is called the scheduler
scans for possible (satisfied) chords. However, as explained in [5] it is quite important to
start the scan process even after the chord is satisfied.

1 class Foo {
2 void m1() & async s () & async t () { . . . }
3 void m2() & async s () { . . . }
4 void m3() & async t () { . . . }
5 }

Listing 2.18: Possible deadlock in chords definition for naitve implementation of scheduler
in Polyphonic C#

The possible sequence of executions in an example 2.18 might involve:

Thread 1. calls m1() and blocks.
Thread 2. calls m2() and blocks.
Thread 0. calls t() then s(), awaking Thread 1.
Thread 3. calls m3() and succeeds, consuming t().
Thread 1. retries m1() and blocks again.

In this particular case Thread 3 is quicker in consuming the remaining t method call (indeed
no atomicity of actions is required) than thread 1. This process of execution however leaves
Thread 2 deadlocked even though the method s was called at least once. The scheduler
takes into account this scenario and runs the necessary scan process that eventually awakens
Thread 2.

The advantage of Polyphonic C# is its compatibility with the original C# language. To
enforce this connection the actual type of the asynchronous methods is void. This allows
for convenient overloading and overriding of the standard methods that have the void return
type, but the actual behaviour is still quite different.

2.2. JOIN-CALCULUS IMPLEMENTATIONS 19

2.2.3 SCHOOL and fSCHOOL

SCHOOL[8], the Small Chorded Object Oriented Programming language, is a feather light
model of a properly built chorded language with a syntax similar to Java. It was devel-
oped by A. Buckley, S. Drossopoulou, S. Eisenbach and A. Petrounias at Imperial College
London. Its role is essentially to model languages rather than providing the programmers
with fundamental libraries or conditional control constructs. It focuses on the design of an
Object-oriented language that captures only the essential features of concurrency constructs
based on the Join-calculus. fSCHOOL, an extension of SCHOOL, that adds the fields to the
objects and focuses on the study of their interaction with the chords. SCHOOL has a well
studied syntax, semantics and formalisation part. It is normally described using the struc-
tural operational semantics defined in the appendix of [8]. The evaluation rules of SCHOOL
determine its usage [32]:

• New: creates a new object of a given class and allocates a previously undefined address
in the heap to this new object.

• Seq: executes the first element of the sequence, discarding its result and later executes
the second one, finally returning its result.

• Async: starts the invocation of an asynchronous method. Method is queued up in the
list of waiting methods, later dispatched and executed. The return value is of type
void.

• Join: selects a chord in which there is a single synchronous method and joins it with
the other asynchronous methods defined with it. The body of the chord gets executed,
using the parameters of the methods defined in the chord.

• Strung: similarly as Join selects a chord, with the only difference that it consists of
only asynchronous methods. The body of the chord is executed concurrently with the
other expressions.

• Run: runs the expression with a given heap state.

• Perm: enables the non-deterministic selection of expressions to evaluate and the re-
ordering of expressions in the execution

SCHOOL shares many features with the Polyphonic C#(2.2.2) and tries to formalize
properly the notion of chords. The authors of the language thoroughly study the well-
formedness of the language, its equivalence to the fSCHOOL as well as the soundness of the
type systems, but at the current state, the language is more suitable for reasoning, rather
than for the development of real systems. Along with the development of the language
a Virtual Machine was created (similar to JVM), called Harp10, that runs the previously
compiled interpretable bytecodes.

10http://slurp.doc.ic.ac.uk/chords/

20 CHAPTER 2. BACKGROUND

2.2.4 Join Java

Surprisingly, for Java, which is a very mature and popular language among developers, one
doesn’t have much choice over the possible concurrency primitives. Typically programmers
use synchronised keyword for locking the regions in the code that will be only available
to a single thread. This method tends to be used too extensively and in more complex and
badly designed systems leads to deadlocks or starvation problems.

In [14] the authors present an experimental extension of the Java language, Join Java,
that provides features similar to those given in Polyphonic C#. Join Java provides asyn-
chronous methods of which the return value is of a special signal type. In reality it is
implemented similarly as in 2.2.4 for async, and signal essentially represents void type and
doesn’t return any value. Calling an asynchronous method immediately returns to the caller
and the execution continuous in a separate thread (after being queued and dispatched).

Join Java provides the way to synchronise on method calls through the usage of chords
(authors also tend to wrongly call them join patterns). However in comparison to Polyphonic
C#, Join Java has several differences:

• Join Java also allows for synchronous methods, but whenever one occurs in a chord it
has to be the first method. Authors claim that it contributes to better coding style,
but we believe that is just an unnecessary burden on programmers who are being
constrained by the language.

• Join Java doesn’t allow for inheritance of classes that contain chords (classes need to
be final). Again the authors claim that this solution is far better then providing a
subset of polymorphism in Polyphonic C# which is restricted at some points. Join
Java does allow (as well as Polyphonic C#) for method overloading in chords.

• Join Java is the first to possess the capability of introducing determinism into the
scheduling of chords. Typically, as it was noted already in Polyphonic C#, when two
chords are satisfied the choice of which one will be run is non-deterministic. In the
Java extension, two new keywords are introduced: ordered and unordered. They
allow the programmer to influence the way chords are scanned and adds control over
how the the language is functioning. The decision to introduce such a feature to the
language (without properly fixing previous ones) is very controversial since it allows
the programmer to change the execution process. Potentially it can also create code
that is much more vulnerable to mistakes and harder to analyze.

Listing 2.19 presents typical code of a Buffer class written in Join Java. It contains
two chords that are evaluated in the order in which they are defined. Hence whenever the
methods put and empty were called on an object, and finally a synchronous method get
was also called, then the first chord will always be fired. A lack of the ordered keyword
would introduce non-determinism as in all other programming languages implementing Join-
calculus.

Join Java maintains an internal data structure that stores all the required method defi-
nitions, as well as all the method calls made on the object. The compiler adds special code

2.2. JOIN-CALCULUS IMPLEMENTATIONS 21

1 class ordered Buffer {
2 Object get () & put (Object s) {
3 return s ;
4 }
5
6 Object get () & empty() {
7 return true ;
8 }
9 }

Listing 2.19: Buffer class with chords scanning sequence in the order of definition in Join
Java

that initializes the chords structure of type join.system.joinPatterns. This way for ev-
ery method definition in the chords we have patterns.addPattern(TYPES, synchroniseD)
where TYPES represents argument identities and synchroniseD determines whether the
method is synchronised or not. Similarly the bodies of the method calls call either the
addCall or addSynchCall methods with appropriate parameters to notify about the calls
made on the object. Each call on those methods initialises the scan for satisfied chords.

In [13] authors analyze different types of the pattern matching algorithm. This is to
avoid the status state explosion problem as defined in the first version of the Join-calculus
language. The authors propose an efficient tree data structure for storing the references
for the pattern methods. For example B() & C() and D() & B() chords would share the
reference to the method B leaf. This reduces the time of scanning when a new method call
is made. Calling D provokes the scan only on the second chord, whereas call on B forces
check on both of the chords (see [13]11 for details).

2.2.5 JoinHs and HaskellJoinRules

Haskell is a popular lazy functional language with a powerful type system. The standard li-
brary doesn’t have much support for concurrent programming, but there exists an extension,
Concurrent Haskell [24], which provides the notion of a process and inter-process communi-
cation. The former is introduced with the use of a new forkIO primitive. Hence whenever
forkIO is called it creates another thread (i.e. a thread inside the Haskell VM, which is dif-
ferent from a UNIX OS thread). The interprocess communication is introduced by the new
type primitive MVar a which is a mutable location with an empty state or value of type a.
This allows for building simple semaphores, monitors etc, but writing concurrent programs
is still unnecessarily hard.

There were two attempts at implementing the Join-calculus mechanism in Haskell. JoinHs12

is an experimental approach to allow creation of asynchronous and synchronous channels,
which can be distributed in a transparent way. It also allows for creation of join patterns
using those channels. Joins are separated by the ’|’ sign (see example 2.20).

11page 11
12http://www.cs.helsinki.fi/u/ekarttun/JoinHs/

http://www.cs.helsinki.fi/u/ekarttun/JoinHs/

22 CHAPTER 2. BACKGROUND

1 join ch1 | ch2 | . . | chn = P1
2 ch1 | . . . | chm = P2

Listing 2.20: Multiple Join definition in JoinHs

The synchronous channels are created in a similar fashion to the JoCaml implementation -
through continuation. JoinHs provides a syntactic sugar (sync) for automatic creation of the
continuation-reply argument, thus simplifying the process for the programmers. Since Haskell
doesn’t allow for sending multiple return values, JoinHs automatically handles conversion
of the continuation-reply into single tuples. A simple counter example with joins (adopted
from JoinHs) is given in listing 2.21.

1 createCounter = do
2 join count n | inc reply = count (n+1) >> reply
3 count n | get reply = count n >> reply n
4 count 0
5 return (inc , get)
6
7 main = do
8 (i1 , g1) <− createCounter
9 let is1 = sync i1

10 gs1 = sync g1
11 is1 >> is1 >> is1 >> is1
12 print =<< gs1

Listing 2.21: Joins used for definition of simple counter and its usage in JoinHs

The createCounter function initialises the join patterns definition for the channels
count, inc and get. At the end of the function we send message 0 on channel count
and return the names for the other channels. This way the caller binds the names to local
variables i1 and g1 and can use them in the scope of the main function. The first join returns
a null reply, since we only introduce synchronisation to inc to provide proper sequencing.

JoinHs re-uses a significant amount of ideas from JoCaml, including the concept of a
name-server to support distributive executions. Nodes register any channels they want to
expose to other nodes through the existence of a central name service. JoinHs implements
basic fault-tolerance by unregistering channels which become inaccessible. However, in com-
parison to JoCaml, the asynchronous and synchronous channels are implemented using the
same mechanism - through channel proxies. The Glasgow Haskell Compiler(GHC) creates
two proxies, one is sent to the remote node and handles necessary initialization, serializa-
tion and communication whereas the local proxy of the channel performs reverse operations
and at the end sends the result to the local channel. Such implementation allows for clear
transparency of the distributed programming. The JoinHs is implemented on top of the
Concurrent Haskell [24] and is converted into valid Haskell syntax through the preprocessor.

In a language HaskellJoinRules13 the authors experiment with a composure of a language
extension and external library to allow for Join-calculus-like chords in Haskell. HaskellJoin-

13http://taichi.ddns.comp.nus.edu.sg/taichiwiki/HaskellJoinRules/

2.2. JOIN-CALCULUS IMPLEMENTATIONS 23

Rules is based on the effort made to define Constraint Handling Rules(CHR), which is a
declarative programming language that was defined formally in [12] (first sketches of the
constraint solving mechanism were already presented in [11]). CHR allows for efficient con-
straint reasoning like simplification and propagation. The former uses common techniques
to create simple constraints that are equivalent to the original ones. The latter refers to
introduction of redundant constraints that eventually lead to simplification. An example
of simplification rule on constraints is: X ≥ Y,X 6= Y which results in X > Y Whereas
propagation is used in: X > Y, Y > Z that results in adding new constraint X > Z.

CHR rules are defined using multi-sets and incremental solving techniques (of which
two main rules were described) to find non-trivial solutions to concurrent logical systems’
problems. The language is especially popular for definition of multi-agent systems - it is
commonly used in Prolog implementations (SICStus and SWI-Prolog), or verification and
type systems. Example14 presented in listing 2.22 focuses on using simple logical laws for
defining constraint solver on A ≤ B, C ≤ A, B ≤ C.

A ≤ B,C ≤ A,B ≤ C.
1 . C ≤ A, A ≤ B propagates C ≤ B (transit ivity) .
2 . C ≤ B, B ≤ C simpli f ies to B = C (antisymmetry)
3 . A ≤ B, C ≤ A simpli f ies to A = B (antisymmetry , B = C) .
4 . A = B, B = C.

Listing 2.22: Simplification and propagation used for finding equivalances in CHR

Because CHR is a concurrent constraint programming language it is interesting to notice
the similarity between CHR and CHAM. The CHR constraints, defined in multiset store,
are a direct parallel to molecules (a chemical soup) in the CHAM world and to Channels
in Join-calculus as well. The presented examples also show similarity between the Join-
calculus join definitions, CHAM reductions and CHR multi-headed guarded rules - that idea
was analysed formally in [21]. The authors also present an extension of Join-calculus join
patterns with guards, which significantly changes the complexity of the implementation.
Guarded conditions allow for setting additional boolean constraints of the join patterns,
which at the same time enables the building of more complex concurrency constructs.

Finally, another extension to the original join definition is proposed - propagation. It
happens very often in Join-calculus constructs that one has to define a single channel that
provides mutual exclusive execution to processes, similar to a lock construct. Since the
programmers ensure that only a single message on a state’s channel exists, only a single
process is executed at a time in the join. The authors propose a construct, that automatically
ensures that message on such a channel is not removed on successful joins scan (see listing
2.23).

auth (Cid) \ ready (P, Pcr) , job (J , Cid , Jcr) ⇐⇒ Pcr ≥ Jcr | send (P, J)

Listing 2.23: The effect of the propagation rule in CHR

Lam and Sulzmann defined HaskellJoinRules in [37], which is a different approach to
Join-calculus implementation than what we have seen before. A typical Buffer example,

14http://www2.cs.kuleuven.be/ dtai/projects/CHR/

24 CHAPTER 2. BACKGROUND

presented already in other implementations, is given in 2.24.

1 Channel Buffer where
2 sync get : : Join Int
3 async put : : Int −> Join ()
4
5 Chord x@get & put (y) where
6 x = return y

Listing 2.24: Unbounded Buffer definition using chords in HaskellJoinRules

Such syntax and programming style is clearly intuitive with regards to Join-calculus, but
HaskellJoinRules is the first implementation offering conditional guards for joins as well as
propagation rules as presented in listing 2.25.

1 Channels CondBuffer where
2 sync cget : : (Int −> STM Bool) −> Join Int
3 async cput : : Int −> Join ()
4
5 Chord x@get(f) & put (y) | f y where
6 x = return y
7
8 Channels AuthBuffer where
9 async auth : : String −> Join ()

10 sync aget : : String −> Join Int
11 async aput : : Int −> Join ()
12
13 Chord auth (id) / x@aget(id) & put (y) where
14 x = return y

Listing 2.25: Conditional and primitively authenticated Buffer in HaskellJoinRules

The CondBuffer channel underlines the fact that conditional join guards can be specified
using first-class Haskell functions, i.e. at run-time, which creates numerous possibilities for
filtering the behaviour. Creating such concurrency constructs without guards is often much
harder. Example 2.26 presents the propagation construct where auth asynchronous message
is never removed.

1 { auth(id1) , aget(id1) , put(m2) , aget (id2) , aget (id1) , put (m1) } →
2 { auth(id1) , aget (id2) , aget(id1) , put(m1) } (simplif ication)→
3 { auth (id1) , aget (id2) } (simplif ication)

Listing 2.26: Reduction of messages of join channels in a schematic representation using
CHR semantics

2.2.6 Joins Concurrency Library

Lately, the Polyphonic C#(2.2.2) was included in the C$ (COmega) research programming
language, which is an official C# extension15. This however enforces from developers the

15http://research.microsoft.com/en-us/um/cambridge/projects/comega/

2.2. JOIN-CALCULUS IMPLEMENTATIONS 25

usage of a concrete language, something that may not necessarily be compatible with the
previous systems written in other languages. The introduction of generics to the C# and,
more generally, the .Net framework, made writing libraries that extend language function-
ality more accessible. In [34] Russo presents a Join Concurrency Library which is a direct
translation of the Polyphonic C# language into a fixed API, that programmers can use.
Because the Joins Concurrency Library is partially language neutral it can be used by any
language written on top of the .Net framework.

Class Joins serves crucial role in the Joins Concurrency Library - it is used for initialising
the Join-calculus environment, defining asynchronous and synchronous Channels using the
.Net 2.0 delegates feature that allows for first-class methods and joining respective channels
into well defined chords. Similarly the body of the chords is defined using delegates. The
library provides thread-safe synchronisation and the delegates of the body allow for accessing
the scope of the class in which they are defined.

1 public class OnePlaceBuffer<S> {
2 private readonly Asynchronous . Channel Empty ;
3 private readonly Asynchronous . Channel<S> Contains ;
4 public readonly Synchronous . Channel<S> Put ;
5 public readonly Synchronous<S>.Channel Get ;
6 public OnePlaceBuffer () {
7 Join j = Join . Create () ;
8 j . In i t i a l i z e (out Empty) ; j . In i t i a l i z e (out Contains) ;
9 j . In i t i a l i z e (out Put) ; j . In i t i a l i z e (out Get) ;

10 j .When(Put) .And(Empty) .Do(delegate (S s) { Contains (s) ; }) ;
11 j .When(Get) .And(Contains) .Do(delegate (S s) { Empty () ; return s ; }) ;
12 Empty () ;
13 }}

Listing 2.27: Single-cell Buffer using the Joins Concurrency Library

Listing 2.27 provides single cell buffer, similar to the one presented in section 2.2.2. The
Joins class needs to be explicitly informed about the number of channels provided, in order
for the channels to be associated with this particular instance of the Join (lines 8 and 9).
Those are easily defined using the classes from the Joins library, and generics allow for
comfortable specification of the return values (synchronous channels) as well as parameters
(synchronous and asynchronous channels). The usage of the encapsulation mechanism allows
for the specification of internal locking mechanism, that ensures mutual exclusion on a single
cell buffer, since outside of the class, channels Empty and Contains cannot be called, but Put
and Get can. Calling Put when a buffer is empty, sets the Contains channels with the value
representing the internal state. Any calls to Put will block, until the value is consumed, since
there is no corresponding join pattern for Put and Contains.

2.2.7 Conclusion

Join-calculus is an interesting approach which raises a bridge between chemical abstractions,
which are very similar to the massively concurrent world, process calculi, like π-calculus, and
programming languages. In comparison to languages that strictly implement π-calculus, like

26 CHAPTER 2. BACKGROUND

Pict or Acute16, and have only a small number of users, since the concurrency primitives
were too low level and too abstract to use, Join-calculus implementations seem like a natural
step for the existing languages to adapt to the ongoing research in the world of concurrency.
Typically, Object-oriented languages are extended with Chords, a function equivalent to
the original join definitions idea. Implementing message passing between channels and the
concept of process was often avoided since it required a different approach to programming.
Fortunately, in functional languages like OCaml and Haskell the architects implemented
the ideas from the original Join-calculus and programmers gained more synchronisation
constructs without loosing expressiveness.

It is important to understand how the features of the language affected the programmers.
Join Java(section 2.2.6) was never really accepted because we believe that their approach
was often simplistic and claimed, without proper background, that their approach was much
better than in for example Polyphonic C#. Still, it is the latter, which had proper evaluation,
is more widely used among programmers. Hence, the importance of the solution to be
conforming with the existing language design.

In terms of functionality, Constraint Handling Rules and HaskellJoinRules offers even
more powerful and still reasonable constructs that have the potential of being widely used
by the programmers when correctly implemented17. Even though Constraint Handling Rules
omit the concept of processes and channels, it is interesting when it comes to defining and
implementing logic behind join patterns. As described in section 2.3 guarded conditionals
are a common construct in Erlang and it would be positive to have it included also for join
constructs in Erlang.

Most of the presented implementations naturally fit into the original programming lan-
guages. Though simple, Join-calculus allows to lower the number of cases when primitive
locking for mutually exclusive access to internal state or any other error-prone and complex
construct, needs to be used. Writing concurrent applications should focus on analysing con-
current behaviour rather than thinking on how to provide safe shared variable. Join patterns
seem very natural, partially due to their correspondence to chemical reactions, in expressing
synchronisation on message based languages as well as equally expressive as π-calculus.

2.3 Erlang

Erlang is general-purpose functional language for concurrent programming. It came into
existence in 1986 at the Ericsson Computer Science Laboratory and was designed for solving
typical telecom problems like building zero-downtime systems, managing millions of concur-
rent operations or transactions. Although the gap between technology of today and that
time is enormous, it is still (or even more) important to provide systems that are easily ex-
tensible, highly concurrent and distributed, fault-tolerant, non-stop-running and yet, simple
in implementation. It is, obviously, possible to design such systems with enough time and
budget, but the result often ends up being so complex that they are close to being unmain-

16http://www.cl.cam.ac.uk/ pes20/acute/
17HaskellJoinRulesis still in the development phase as explained in

http://taichi.ddns.comp.nus.edu.sg/taichiwiki/HaskellJoinRules/

2.3. ERLANG 27

tainable. Erlang went open-source in 1998 and since then is gaining attention for the features
mentioned before.

Erlang programs are normally compiled into interpretable bytecode that can later be run
on the virtual machine. Although running interpreted code may seem as a wrong thing for
systems that are supposed to be fast and concurrent, the VM is quite efficient. In 2001, an
experimental native compiler, High Performance Erlang Project (HiPE), was merged into
stable Erlang branch and it is often possible to run the execution even faster.

Although Erlang was designed for creating massively concurrent telecom applications, in
today’s world it is a remedy to many problems that current systems are struggling with. The
developers of other programming languages are doing whatever they can in order to extend
their languages with new constructs and libraries. We believe that such an approach doesn’t
bring as many benefits as having a language that is from the start designed for developing
concurrent and distributed systems. Erlang in comparison to other modern programming
languages has support in the standard release for managing, analysing and detecting other
nodes(machines) and proper utilisation of multiple cores available in massive applications.

2.3.1 Process

Joe Armstrong, the original creator of Erlang, coined a term Concurrency Oriented Program-
ming (COP)18, which aim is to set general rules for systems which main concerns are the
concurrency design patterns. In a sense Erlang is precursor of the path that other languages
for COP would need to follow. In OPP Object is a basic entity around which all the design
rules are built. In Erlang, the process is the main concept of which systems are built of. It
serves as a container for the execution of the expressions.

In an early stage of the Erlang development, a decision was made to make the variables
in the expressions single assignment, and to use message-passing for inter-process communi-
cation. This was partially influenced by the Concurrent Prolog on top of which the language
was originally built on. Such decision helped in further isolation of the process and removed
any concurrency problems related to shared memory. Therefore there is no notion of locks in
Erlang, and a lot of effort was put in the runtime in implementing efficient message-passing
mechanism, so that the language does not suffer from poor efficiency typical for such systems.

Normally the programming languages allow for the creation of threads and processes,
which involve kernel calls, memory initialisation and other memory- and CPU-intensive re-
sources. Erlang allows for explicit declaration of its own process, inside its Virtual Machine,
provides scheduling appropriate for the Erlang environment rather than being directly de-
pendent upon the operating system.

1 spawn(fun () −> io : format (”Foo bar” , []) , ok end) .

Listing 2.28: Spawning a process from first-class function definition in Erlang

Listing 2.28 presents how simple (and fast) the actual creation of the process is. spawn
function, uses the builtin method for the creation of the process. Erlang allows for much
more fine-grained creation of the processes with many optional arguments, like the name of

18see http://www.sics.se/~joe/talks/ll2_2002.pdf and [2]

http://www.sics.se/~joe/talks/ll2_2002.pdf

28 CHAPTER 2. BACKGROUND

the module, parameters, node on which the process is to run and indication whether the
process is to be monitored by the parent. Processes get identified through the unique PID
value, which is always returned on successful spawning.

Erlang doesn’t just provide the notion of a process, but also allows for connecting dif-
ferent processes and eventually creating hierarchies of processes. Processes’ linking sets the
exception propagation path between two or more processes. This notion will be described
more in sections 2.3.4 and 2.3.5.

2.3.2 Inter-process communication

To enable inter-process communication, Erlang has a single mailbox for each of the existing
processes which internally are to be accessed in a FIFO queue manner. Sending messages to
other processes is fast and easy as presented in listing 2.29.

1 Pid ! {ok , foo , bar}

Listing 2.29: Sending message to the process represented by Pid variable in Erlang

The example sends the tuple to the process represented by variable Pid that stores valid
unique identification value. Behind the scenes this expression results in putting the message
directly in the mailbox of the receiving process. This construct is asynchronous and conforms
to the Erlang thinking that until the sender receives the confirmation, it cannot be stated
whether the message was actually received or processed, since the other side might have
crashed. After all our world mostly works in an asynchronous manner. Obviously Erlang
ensures mutually exclusive access to the queue, but it is much quicker than traditional ’lock
and process’ way of accessing shared memory.

The only possible way for the process to analyse the contents of the mailbox is to use the
Selective Receive construct as presented in listing 2.30.

1 receive
2 {ok , Val1 , Val2} when (Val1 = ok)−>
3 Expr1 ;
4 {ok , Result} −>
5 Expr2 ;
6 {error , Error} −>
7 Error Expr
8 after
9 Timeout −>

10 Timeout Expr
11 end

Listing 2.30: Selective Receive in Erlang

The existence of an internal unmatched queue is meant for improving the efficiency of
pattern matching - there is no need to match the message again against the fixed set of heads
when we know that in the past it wasn’t successful. Selective Receive will only be working
on the mailbox of the process in which it is currently running and is not possible to analyse
the mailbox of the other process. The receive clause allows only for matching a single head

2.3. ERLANG 29

of the pattern at a time, therefore definition of synchronisation constructs requires from the
programmers quite a lot of innovation.

1 receive
2 {ok , res1 , Result1} −>
3 receive
4 {ok , res2 , Result2} −>
5 io : format (” synchron i s a t i on on re s1 and re s2 ” , []) ,
6 {ok , Result1 , Result2 } ;
7 {error , Error} −> Error expr
8 end ;
9 {ok , res3 , Result3} −>

10 io : format (” synchron i s a t i on on re s3 ” , []) ,
11 {ok , Result3}
12 {error , Error} −> Error Expr
13 end

Listing 2.31: Join-like synchronisation using Selective Receive in Erlang

Listing 2.31 presents an example of a typical construct that currently Erlang programmers
would use to wait for completion of computations. In line 2 we make an assumption that
the first computation to finish is res1, and only later we wait for the second one (when
saying computation is finished, we mean that the process received appropriate message).
This normally wouldn’t be a valid concurrent program since we shouldn’t depend on the
ordering of the messages as during waiting for res2 we might get {ok, res3, Result3} and
there is a chance for a deadlock. This can be of course fixed by duplicating the action on
res3 while waiting on res2. Similarly lines 7 and 9 perform the same operation and are
redundant. This is a significant drawback in the powerful Selective Receive construct.

Writing systems that rely on priority messaging is also problematic in Erlang. The usual
pattern is to wrap the true message in a tuple, where first element represents the priority, as
presented in listing 2.32.

1 Pid ! {error , ’Unexpected action ’} ,
2
3 receive
4 { cr i t i ca l , Message} −> . . . ; %% process c r i t i ca l value
5 {error , Message} −> . . . ; %% process error
6 { info , Message} −> . . . %% processs info
7 end .

Listing 2.32: Sending and receiving priority messages

This is the result of the language design, where each process has only a single mailbox.
Ideally, the programmers should be able to dynamically create message queues for the process.
This would also improve the efficiency of scanning the mailbox, because currently when a
single match is found the unmatched and unprocessed queues are merged and the scanning
repeats from the beginning. This problem gains in urgency whenever the size of the mailbox
increases (the size of the mailboxes is only limited by the amount of memory available), which
is not something uncommon and eventually becomes the bottleneck of the system. The only
solution the architects of Erlang have for this problem is to avoid such situations and scan

30 CHAPTER 2. BACKGROUND

1 try
2 Expr , . . .
3 catch
4 exit :Reason −> ; %% handle exit
5 error :Reason −> %% handle error
6 end

Listing 2.34: Catching exceptions in Erlang

the mailbox frequently using a single variable that matches all messages (see listing 2.33).

1 Pid ! {error , ’Unexpected action ’} ,
2
3 receive
4 { foo , Message} −> . . . ; %% process the message
5 {bar , Message} −> . . . ; %% process the message
6 Other −> . . . %% process some other message
7 end .

Listing 2.33: Pattern to keep the size of the mailbox small

Example 2.33 still it isn’t much of a help as it is more of a recommendation rather than an
appropriate solution.

2.3.3 Expression and Functions

In Erlang almost every clause is an expression and returns an expression. The language
provides arithmetic and boolean operations typical for high-level programming language as
well as conditional statements that can lead to building for example loops. Erlang only allows
for single-assignment variables within function scopes. In reality this is neither a limitation
nor it leads to variable count explosion. On the contrary, this enforces more appropriate
usage of variables. The compiler and runtime ensure the appropriate usage of variables and
for example sending unbounded variables in messages is forbidden.

Functions are fundamental constructs in the language and Erlang allows for writing short
and efficient applications using its pattern matching abilities on them. Functions can have the
same names but different arguments and hence define different actions for specific function
calls. All function calls are synchronous and the callers end up waiting for the body of the
function to finish before proceeding.

2.3.4 Exception handling

As most of the modern programming languages, Erlang has a well defined syntax and se-
mantics for handling exceptions and errors. Similarly as in Java it is possible to surround
the region of code using try ... catch semantics (listing 2.34).

Therefore the exception handling code is able to cope with different types of unexpected
behaviour. Since exceptions are represented using tuples it is also possible to add appropriate

2.3. ERLANG 31

case statement or perform variable assignment/matching to the expression that can throw
an exception.

The real power of Erlang exception handling is shown when combined with managing
sets of processes. It is possible to set monitors or link different processes. The main purpose
would be to determine an action to be done on the status change of the process we are
interested in. Whenever a process B is linked to process A, and B dies for some reason, a
message would be sent to the A’s mailbox explaining the reasons for crashing. Depending
on the contents of the result, parent process A may decide to do some action or fail as well.
This corresponds directly to the situation when a critical part of the application crashes and
the rest of the system will not work correctly. Because it is hard to predict how the system
will behave, to prevent this uncertainty it is better to fail quicker, which is one of the core
principles of Erlang.

A reasonable exception hierarchy is critical when it comes to building complex systems.
Since Erlang allows for easy monitoring of processes on different nodes, as well as catching
exit messages from them. Additionally we are able to monitor other nodes’ crashes and
hence getting exit messages of processes of other nodes running on different machines.

Whenever a non-normal exit signal is received, the parent will also die, unless it belongs
to the category of system processes. This is ensured by setting an appropriate trap exit
flag on the builtin process flag method, as shown in listing 2.35.

1 process flag (trap exit , true) ,
2 Pid = spawn link (fun () −>
3 receive
4 Other −> exit ({ error , { invalid , Other}})
5 end
6 end) ,
7
8 Pid ! {die , now} ,
9 receive

10 { ’EXIT’ , Pid , Reason} −>
11 %%process the signal
12 ok
13 end .

Listing 2.35: Exit signal processing in Erlang

The fundamental (and often forgotten) feature of links is that they are symmetric, mean-
ing that in a set of linked processes, whenever any of them dies and the other side doesn’t
belong to system processes, then all of them die. This is not always expected, therefore
Erlang allows for creation of monitors which are basically asynchronous links. [3] defines
numerous scenarios of dependent processes failing and the parent processes crashing as well
and trapping the system messages.

When designing any system or an extension in Erlang is therefore crucial to remember
about exception handling since it often defines the way any proper Erlang system is built.
It can be an extension, library or simple application but in Erlang we always have to be
to answer fundamental question: “What happens when it fails?” Exceptions are crucial in
defining design patterns in Erlang, as it is shown in section 2.3.5.

32 CHAPTER 2. BACKGROUND

2.3.5 Open Telecom Platform

Erlang wouldn’t be much of a help for programmers if they would have to define the fault-
tolerant systems from scratch themselves. After all, any programming language without
additional generic libraries is just a nice addition not suitable for complex systems or rapid
development, since maintaining every aspect of the system is unbearable. Ericsson develop-
ers hit into this problem in the early days of Erlang [2] and came up with an Open Telecom
Platform - a set of design patterns, libraries, documentation and how to’s to increase the
productivity of the developers and provide sufficient guidance on how the real Erlang appli-
cations should be built.

One of the fundamental OTP design principles are supervisor trees. As mentioned in
section 2.3.4, proper handling of exceptions allows for creation of fault-tolerant systems.
The Supervisor tree is therefore a tree of processes where it is easy to define an action on
processes’ non-normal or normal exit. It is usually described in terms of a supervisor and
workers, which the former has control over. There are two types of supervisor trees:

• one-for-one - whenever one of the workers fails, only this particular process is restarted.

• all-for-one - failing of a single worker provokes the restart of all the workers of the
supervisor.

Behaviour is a common way in Erlang for introducing general frameworks - including
supervisor trees but also typical client-server models. Typically behaviours are defined in
modules through callbacks. It is natural to define an API for the modules, which is made
public to others, as well as the implementation of the calls (callbacks) in a single module, as
presented in listing 2.36, a simple example of a server-client model implementing gen server
behaviour.

In example 2.36 we present how simple it is to write complex applications using well-
defined behaviours from OTP. In line 2 we define the type of the behaviour that our system
has to implement. In a sense behaviours are similar to abstract classes known from Java,
where only specific methods need to be defined in order to correctly create the implementation
of the behaviour. In gen server we have three types of messages that can be sent to the
server (more about them later): call, cast and info. The only place where we specify the
starting parameters of the server’s process is in start link function (lines 13-14). We can
see how the complexity of setting up appropriate process, registering its name or simply
maintaining the state is hidden from the programmers.

Synchronous Call

gen server:call/2 implements all the complexity related to sending the message and wait-
ing for the reply. In order to be correctly handled we have to implement respective handle call
functions with appropriately matching headers. For instance the call in line 26 matches func-
tion in lines 32-33. The synchronous call is accomplished by returning an appropriate final
value in the handling function as in line 33 for state call. gen server:call/2 for sending
the message requires the name of the destination process as defined in start link.

2.3. ERLANG 33

1 −module(simple counter) .
2 −behaviour (gen server) .
3 %% API
4 −export ([start l ink / 0]) .
5 −export ([inc /1 , dec/1 , state /0 , last / 0]) .
6
7 %% gen server callbacks
8 −export ([in i t /1 , handle call /3 , handle cast /2 , handle info /2 ,
9 terminate /2 , code change / 3]) .

10 −define (SERVER, ?MODULE) .
11 −record (state , {amount=0, last action=none }) .
12
13 start l ink () −>
14 gen server : start l ink ({ local , ?SERVER} , ?MODULE, [] , []) .
15
16 in i t ([]) −>
17 {ok , #state {}} .
18
19 inc (Num) −>
20 gen server : cast (?SERVER, { inc , Num}) .
21
22 dec (Num) −>
23 gen server : cast (?SERVER, {dec , Num}) .
24
25 state () −>
26 gen server : ca l l (?SERVER, state) .
27
28 last () −>
29 gen server : ca l l (?SERVER, last) .
30
31 %% −−−−−−−−−−−−−−−−−−− Callbacks
32 handle call (state , From , #state{amount=Num} = State) −>
33 {reply , {counter , Num} , State } ;
34 handle call (last , From , #state{ last action=Action} = State) −>
35 {reply , {action , Action} , State } ;
36 handle call (Request , From , State) −>
37 Reply = ok ,
38 {reply , Reply , State } .
39
40 handle cast ({ inc , Num} , #state{amount=A} = State) −>
41 {noreply , State#state{amount = (A + Num)}} ;
42 handle cast ({dec , Num} , #state{amount=A} = State) −>
43 {noreply , State#state{amount = (A − Num)}} ;
44 handle cast (Msg , State) −>
45 {noreply , State } .
46
47 handle info (Info , State) −>
48 {noreply , State } .
49
50 terminate (Reason , State) −>
51 ok .
52
53 code change (OldVsn , State , Extra) −>
54 {ok , State } .

Listing 2.36: Client-server model of the counter in Erlang

34 CHAPTER 2. BACKGROUND

Asynchronous call

gen server:cast/2 performs necessary message wrapping and sending to the server to re-
duce the amount of code necessary to be written. It would be perfectly valid, if we used cast
to send the message to some arbitrary name - gen server:cast/2 will catch an exception
in this case and report the error to the caller. Similarly as in a synchronous call, the param-
eters of the cast should match at least a single handle cast function (lines 20 and 40) to
be successful.

All of the callback functions are made public but in reality the only process making calls
to them would be of type gen server. For instance, terminate would be called when we
or the system decides that the server is to be shutdown, for cleanup purposes. Behind the
scenes, the target of the (a)synchronous messages is is the server process started in line 14.
It maintains a inner loop that receives messages, decodes them, dispatches to appropriate
callbacks, returns replies when necessary and, most of all, ensures the appropriate design of
the fault-tolerant system all the way. The beauty of that solution relies on the fact that the
callers only rely on the interface provided by gen server and the implementation can be
freely changed.

Having a synchronisation pattern when using behaviours in Erlang is quite hard as it has
to be encoded explicitly in the logic of the application, hence making the implementation
more complex. For instance in gen server firing an action whenever two functions were
called requires maintaining some field in the internal state of the process. This state then
has to be checked each time we handle the function call and fire the required action when
necessary conditions are satisfied, as presented in listing 2.37.

In example 2.37 it can be easily noted that in order to correctly call the synchr action
one would also have to store the arguments of each function call. Another option of im-
plementing synchronisation is to use functions’ conditional guards but again the code gets
complicated. Having more than two methods on which we have to synchronise increases the
maintainability factor significantly. The best practice for the programmers would be to focus
on the implementation of the applications’ models rather than getting stuck in implementing
correct control flow.

2.3.6 Conclusion

Surprisingly Erlang, a mature Concurrent Oriented Programming language, lacks better
concurrency constructs that would enable it to become a much more expressive language. In
comparison to other modern programming languages it is advantageous because it already
uses processes, messages, mailboxes etc. Erlang currently only allows for having a single
mailbox for each process, but implementing processes that have multiple addressing spaces
through multiple mailboxes (a.k.a. channels) would increase the capabilities of the language.
A lot of discussion on the Erlang ’s mailing list was devoted to this issue increasing the
importance of having something similar to first-class channel entities. It is easy to see a
lot of overhead that needs to be done for synchronisation of only two processes, not saying
anything about more.

We believe that following OTP design rules for any invented extension is crucial for the

2.3. ERLANG 35

1 [. . .]
2 handle call ({ f i r s t , Args} , From , #state{second=Num} = State) −>
3 Val = case Num of
4 0 −> %% continue normally
5 −> synchr action (Args) , Num − 1
6 end ,
7 %% handle ca l l
8 {reply , Reply , State#state{second=Val } ;
9 handle call ({second , Args} , From , #state{second=Num} = State) −>

10 Val = case Num of
11 0 −> %% continue normally
12 −> synchr action (Args) , Num − 1
13 end ,
14 %% handle ca l l
15 {reply , Reply , State#state{ f i r s t=Vall }} ;
16 handle call (Request , From , State) −>
17 Reply = ok ,
18 {reply , Reply , State } .
19
20 synchr action (Args) −>
21 % detai ls of the function
22 [. . .]

Listing 2.37: Pattern for implementing synchronisation on two function calls in gen server
in Erlang

successful acceptance of JErlang. For instance we would need to choose an appropriate
supervisor pattern for handling multiple channels as well as appropriate fail-over strategy
for exceptions encountered. Erlang supports asynchronous message-passing, but with some
syntactic sugar it is quite easy to have synchronous version. Again, appropriate OTP strategy
would enable for the programs to recover from waiting on a synchronous message on a systems
crash, something that other extensions do not support.

36 CHAPTER 2. BACKGROUND

2.4 Solving pattern-matching problems

The process of pattern-matching is important in both Join-calculus and Erlang. We give brief
a description of of a typical system, which aim is to process patterns and present efficient
algorithm for solving them.

2.4.1 Production Rule System

Production Rule System19 is a term often used in the branch of Computer Science, A.I.
Such system is used for the inference of knowledge expressed in terms of goals. We name
the process of creating new knowledge terms simply an action. We use well-defined rules
in order to determine which actions can actually be fired. Testing of the rules is performed
through the process of pattern-matching. The set of states available in the current time is
often known as Working Memory, whereas the possible inference rules are named Production
Memory. The role of the system is to perform efficient pattern matching to achieve new facts
about the current state. Figure 2.1 represents the schematic diagram of the whole process20.

Figure 2.1: Production Rule System

2.4.2 RETE algorithm

RETE21 is a fundamental algorithm used for efficient solving of Production Rule Systems.
Although it was published in 1982 it is still a fundamental approach for all the possible
derivative algorithms.
With RETE, we are able to build efficient structures represented by multiple nodes that
correspond to the patterns used on the left hand side of the rule. In the following example
mom and dad are basic patterns and parents is a possible new term that is created in the
action:

mom(gosia, Child), dad(lukasz, Child) => parents(lukasz, gosia, Child)

19see http://en.wikipedia.org/wiki/Production_system
20see http://www.jbug.jp/trans/jboss-rules3.0.2/ja/html/ch01.html for the source of the figure
21see http://en.wikipedia.org/wiki/Rete_algorithm

http://en.wikipedia.org/wiki/Production_system
http://www.jbug.jp/trans/jboss-rules3.0.2/ja/html/ch01.html
http://en.wikipedia.org/wiki/Rete_algorithm

2.4. SOLVING PATTERN-MATCHING PROBLEMS 37

Algorithm allows for direct linking between the chains of nodes, thus creating dependen-
cies between them. The increased speed efficiency however also increases the memory usage,
which in some unrealistic situations can lead to crash of the system. Some of the other
advantages of using RETE involve22:

• Reduces the amount of redundant operations done on the patterns.

• Partial evaluation of the sets of patterns allows for the steady building of knowledge
necessary to trigger actions. This on the other hand helps in avoidance of complete
re-evaluation of the existing patterns during each iteration of the algorithm.

• Rule and state’s removal does not destroy the integrity of the whole search network,
therefore promoting knowledge distribution among all of the nodes.

Alpha reduction

Alpha reduction is a name given to running simple test functions on the current facts from the
Working Memory. Alpha-functions only check the consistency against independent patterns
in a separate manner. This fast processing allows for filtering states that do not contribute
to the production rules. Tests performed in this stage usually use only single inputs. If the
individual state is succesful in matching the pattern, it is enqueued along other successful
terms to this alpha-memory (pattern). It is latter used as input to the beta reductions.
Whenever rules can be removed or added to the system, it is very easy to identify which
elements of the alpha memory has to be updated.

Beta reduction

Beta reduction is an optional fragment of the rules resolution system, where we attempt to
identify any conflicts existing between the corresponding alpha results. The natural intuition
would typically suggest to test all the combinations for the sequences of alpha-patterns from
the rules, but this approach ends up being relatively inefficient. Instead we perform tests on
an increasing number of patterns, thus steadily filtering sequences of terms from the alpha
reductions that cannot create consistent partial results for the rules.

Each beta reduction takes two inputs for processing - the first is the result of the previous
beta memory that includes some part of the LHS of the rule and the second is the next alpha
memory associated with the rule. This way we no longer work on raw states and we increase
the efficiency of the processing. The first beta reduction is shipped with the dummy beta
memory in order to provide consistency among the algorithm. The result of the action is
then fetched (if necessary) into another beta reduction. The single action is fired whenever
there are no more alpha memories to be joined against thus meaning that we have found a
sequence of terms satisfying the LHS of the rule.

Beta reduction is performed sequentially for all of the possible patterns. When there
are no more rules to be checked the production system arranges the rules that can be fired
according to some key, and the actions are finally fired (commit step). This final part is

22http://en.wikipedia.org/wiki/Rete_algorithm

http://en.wikipedia.org/wiki/Rete_algorithm

38 CHAPTER 2. BACKGROUND

often named conflict resolution.
Typically the new facts that are produced in the last step are pushed onto the separate
Working Memory. We do not allow for mixing them with the old facts, because any alpha
reductions done previously are already valid. This way, the system does not have re-evaluate
existsing solutions, a characteristic that is typical for inefficient pattern-matching solving.
The RETE algorithm stops whenever there are no further facts that be inferred given the
specified rules.

2.4.3 Optimisations

Numerous extensions of the original RETE algorithm were proposed with varying success.
The main focus was directed onto improving the sequential nature of the algorithm. A
typical examples of such improvements include TREAT[30] and LEAPS[4] algorithms. The
former does not store the partial results of the computations and thus is better when the
memory overhead becomes the bottleneck of the computation. The latter relies on the
optimisations that comes with lazy evalutation of the patterns. With the rise of multicore
machines, there is an increasing attempt to create parallelizable versions[25] of all of the
above algorithms. Typically, the (hardware and software) implementation involves splitting
the Working Memory into reasonable chunks that can be analysed by separate processes
independently.

2.5. DATA FLOW ANALYSIS 39

2.5 Data Flow Analysis

One of the main responsibilities of the compiler is to create efficient, optimised code. Data
flow analysis is a technique for gathering information about possible values for the specific
points in the program, like assignments for variables or arguments to the function calls. The
analysis is run on the graph representation of the program, where each program clause is a
node. This allows for creation of clear flow paths within the program and define for instance
propagation of the value among the variables. Typically in order to formally define some
property for each program node, we have to define a set of equations. Solving those, using
the the stabilising property of the programs, allows to reach an equilibrium point, fixpoint,
when we are able to state the minimal/maximum value for the property, depending on its
type.

There are four, so called, classical types of analysis of the program: Available Expression
Analysis, Very Busy Expression, Reaching Definitions Analysis, and Live Variable Expres-
sion. For the purpose of our extension to Erlang we will only adapt two last types, and the
other two follow similar pattern and are described in detail in [31].

2.5.1 Reaching Definitions Analysis

The aim of the Reaching Definitions Analysis is to determine for each program point, which
assignments may have been made and not overwritten, when program execution reaches this
point along some path.
For the purpose of JErlang language, where variables cannot be overwritten, we only deter-
mine which variables were defined along some path when program execution reaches a given
expression.

2.5.2 Live Variable Analysis

The aim of the Live Variable Analysis is to determine for each program point, which variables
may be live at the exit from the point.
For the purpose of JErlang language we define the variable to be live at the exit from the
point (expression) whenever there is another expression among the sequence or in the guards
that uses the variable. We will show that this limited definition is enough for the purpose of
our analysis in JErlang.

40 CHAPTER 2. BACKGROUND

2.6 Summary

Process and expression are basic entities in Erlang, so any Join-calculus extension would
probably be treated by programmers as less experimental. Having Join-calculus-like synchro-
nisation on messages or function calls is sensible when writing highly concurrent, distributed
and complex applications. Therefore Erlang with Joins could increase the programmer base
of Erlang.

We believe that an introduction of new basic entity (apart from process and expression)
might increase the complexity of the language and eventually lead to re-inventing the existing
constructs (like Selective Receive) for multiple versions. Selective Receive, as a main message
passing construct could therefore inherently allow for better synchronisation on messages
with the use of join patterns. Any solution to the problem, should be able to explicitly
create or destroy its channels as well as define join patterns on messages of the same or
different channels.

It seems useful to extend the functionality of gen server behaviour to enable synchroni-
sation on functions level (like in Chords extensions) rather than maintaining an internal state
which is an error prone process. This way JErlang would not only serve as a bridge between
Erlang and Join-calculus, but also between functional and Object-oriented programming.

Chapter 3

JErlang: Formal Definition

In this section we give an overview of JErlang, an extension of the standard Erlang language
definition. Our work is based on [41], which we consider to be the most mature research
on the subject of formal definitions of this language. That thesis focuses on the formal
definition in order to develop a Proof System for the language. It contains a set of syntax
and operational semantics, but note that its style differs from the one presented below. This
is because the aim of our research was to focus on the semantics of pattern matching in
the context of joins, and as a result we omit details about distributed systems as well as
JErlang ’s exception hierarchy and failure propagation, to maintain clarity.

We start by defining the syntax of JErlang, detail the available transitions in the semantics
and connect it with the possible join resolution strategies, which influence the way our
implementation is done.

3.1 Syntax

The grammar given in 3.1 is presented in the Backus-Naur Form (BNF) with additional
extensions to make it more elegant and avoid unnecessary repetitions. We use [e] to imply
an optional construct e but also have a similar terminal symbol [e] for the list construct
(to agree with the original Erlang syntax). For clarity reasons we include overbar notation
for expressions (e) and values (v) to denote the (possibly empty) sequence of elements
separated by comma. We also describe the sequences of values or expressions by using
optional indices (vi) to underline the order of occurrence.

Definition 3.1 (Value). JErlang values represent a subtype of the available JErlang ex- Value
pressions. We distinguish between the basic and complex values, where the latter compose
of themselves of the former ones. To the first group belong:

• atom - name without any whitespace signs, has to start with the lower-case letter.

• number - sequences of integers.

41

42 CHAPTER 3. JERLANG: FORMAL DEFINITION

function ::= functiondef
functiondef | (p) when guard → e
expr(e) ::= e1 ope e2

| e(e)
| case e of match end
| receive join end
| e1 ! e2

| e1 , e
| p =m e2

| basicvalue | varId | { e } | [e]
basicvalue ::= atom | number | pid | funcId
value(v) ::= basicvalue | { v } | [v]
pattern(p) ::= varId | basicvalue | { p } | [p]
match ::= p when g → e
join ::= jpattern [join aux] [when g] → e
join aux ::= and jpattern [join aux]
jpattern ::= propagation p
propagation ::= true | false
guard(g) ::= g1 opg g2 | basicvalue

| varId | g(g) | { g } | [g]

Figure 3.1: JErlang syntax in a BNF-like form. It introduces joins to Erlang by extending
the definition of receive

• pid - feature of JErlang that represents the unique identifier of the process.

• funcId - unique identifier to the definition of the function.

Compounded variables are represented through lists [v1, ... v2] and tuples, { v1, ... v2 }.
The main two differences between the representations are access of the elements and pattern
matching. There is no easy way to expand a tuple, whereas lists are easily expandable. In
the case of lists, the standard notation is the shorthand from the one used in for example
Haskell, where lists are built using nil and cons constructs and drives the way elements can
be accessed.
For instance [1,2] is represented internally as [1 | [2 | []]].

Although JErlang doesn’t have the separate type for boolean values as in other languages,
atoms true and false are commonly used, instead. This doesn’t limit the language’s abil-
ities, as pattern matching is used on the representation of the atoms. It is important to
distinguish the syntactic propagation boolean values from the semantic ones.

Definition 3.2 (Variable). A variable is a sequence of characters that start with an upper-Variable
case letter. We distinguish between two types of variables: unbounded and bounded. The
latter represents a unique mapping from the identifier (name of the variable) to the value.

3.1. SYNTAX 43

Variables in Erlang can only be assigned once through its lifetime. Variables are used for
pattern matching to find the correct sequence of expressions that match. We provide detailed
definition of free variables and substitution in 3.17.

Definition 3.3 (Function). JErlang functions define a frame in which their expressions are Function
executed. We allow for having multiple function definitions associated with the identifier,
and finding the right one is done by comparing the headers of the functions. To sum up
JErlang has the possibility of having:

• (1) functions with the same name and number of arguments but different patterns in
the headers

• (2) functions with the same name and different number of arguments

Case (1) uses efficient pattern matching that analyzes the existing function headers, as in
listing 3.1, whereas the latter case treats the function definitions separately and first finds the
identifier of the function with the required number of arguments (see the different declaration
in listing 3.2).

In further sections, for simplicity, we assume that functions have a fixed arity of one and
arguments are represented in a tuple. This doesn’t decrease the applicability of the language
and allows us to easier present and understand the semantics of the language (see example
3.4).

Example 3.4 (Representation of the function definitions). Function with multiple headers
f (p) when g → e
is internally represented as
f ({p}) when g → e.

1 foo (bar , Value2) −>
2 \%\% function body . . . ;
3 foo (Value1 , bar) −>
4 \%\% function body . . . ;
5 foo (Value1 , Value2) −>
6 \%\% function body

Listing 3.1: Functions with the same number of arguments

1 foo (Value1) −>
2 \%\% function body
3
4 foo (Value1 , Value2) −>
5 \%\% function body

Listing 3.2: Functions with different number of arguments

Definition 3.5 (Guard). Guards allow for additional filtering of messages (in receive) Guard
and appropriate statement executions (in case statements and function definitions). Guards
allow for calls to the built-in functions and standard relational, arithmetic and boolean

44 CHAPTER 3. JERLANG: FORMAL DEFINITION

operations, but without side effects. Hence, the range of functions available in guards is
very limited and one is for example not allowed to bind a value to the fresh variable in this
section. The role of guards is only to assist you in getting more expressiveness, and not in
performing complicated execution.
As a result, we can imagine that the guards section always exists, but is equivalent to “when
true” whenever it is not provided explicitly. In JErlang we only allow for the existence of
bounded variables in guards in the given context. This makes the explanation of further
semantics easier.

3.1.1 Differences between Erlang and JErlang

The main difference between the syntax of minimal Erlang and JErlang is in the definition
of receive statement. In the Erlang we are only allowed to have a single pattern and in
the latter we explore the power of joins by having the possibility of synchronization on more
than a single message. Additionally we have the possibility of propagation on the message
(as explained in 3.2). This change enforces us to use new semantics for receiving the messages
as we explain in the next section.

3.2 Semantics

Definition 3.6 (Partial functions). Notation A → B denotes the set of partial functions→
such that for f ∈ A →, and i ∈ A, f(i) ∈ B or f(i) = Udf otherwise.

Definition 3.7 (Frame). Frame denotes the mapping of variables into values, in the givenF
local context:
F : VardId → value
For obvious reasons, each function has its own environment and inherits only values of
arguments from the caller’s frame.
We also define the notion of the domain of the frame F, such that it is a set of all the validDom(F)
variables in the frame mapping F :
Dom(F) = {k | F(k) 6= Udf}

Definition 3.8 (Queue). Each process in JErlang is associated with a single Queue definedQ
as:
Q : value∗

Messages in this mailbox are stored consecutively from the oldest to the newest. To allow
accessing of the messages not only from the head of the queue we add indices for each message,
and Range(Q) represents the set of indices in the increasing order.. We also introduce theRange(Q)
notion of length on the queue, denoted as |Q|.|Q|

We define the existence of the following operation on the queues as follows:

Q(i) =
{

valuei if i ∈ Range)Q)
Udf otherwise

3.2. SEMANTICS 45

Example 3.9 (Queue length). Consider the queue:

Q = (value1 · value2 · value3)
Q′ = (value1 · value2)

The lengths of the queues are: |Q| = 3 and |Q′| = 2

Definition 3.10 (Sublist operation). Relations <q and ≤q for the queues define that the <q ≤q

former queue is smaller in size or smaller and equal than the latter, respectively. Additionally
all the elements in the first queue are consecutively taken from latter, starting from the first
element, i.e.
Q <q Q′ ⇒ |Q| < |Q′| ∧ ∀(i ∈ Range(Q)) (Q(i) = Q′(i))

Definition 3.11 (Module). The module function maps identifiers to function bodies. The Module
latter are represented through the case choice statements for simplicity, as it helps in un-
derstanding the operational semantics:
Module : FuncId → funtionBody

Example 3.12 (Module access). Given the JErlang program as in listing 3.3:

1 foo (bar , Value2) −>
2 io : format (” Test ing ” , [Value2]) ,
3 ok ;
4 foo (Value1 , bar) −>
5 io : format (”Second cho i c e ” , [Value1]) ,
6 error .

Listing 3.3: Sample function in JErlang

Module(foo) would be represented as:

case e of
{bar, Value2} ->

io:format("Testing", [Value2]),
ok;

{Value2, bar} ->
io:format("Second choice", [Value2]),
error

end

Definition 3.13 (JErlang execution). Executions rewrites tuples of expressions, frames and E

queues into tuples of expressions, frames and queues. Execution takes place in the context
of the module (program) where all the user-defined functions exist.
Thus, the signature of the rewriting relation is:

 E : module → e×F×Q→ e×F×Q

Definition 3.14 (Structural equivalence). Symbol =s is used to denote the syntactic struc- =s

tural equivalence between two expressions as defined in the original BNF syntax in 3.1.

46 CHAPTER 3. JERLANG: FORMAL DEFINITION

Definition 3.15 (Operations on values). To allow the evaluation of the expressions thatôp

contain different operations on values we introduce the evaluation function ôp that performs
execution of the given operation op. For instance 2 + 3, would return the result of +̂(2,3),
similarly 13 > 21 would call function >̂(13, 21). We assume the intuitive existence of those
operations, with the extension that they return error whenever the execution of the operation
is stuck. We assume that operations do not have side-effects.

Definition 3.16 (Process identifier). The helper function self() returns the identifier of theself()
process in which we are currently executing. Standard Erlang provides complex strategies of
linking between processes to provide stable, fault-tolerant systems but we omit those details
and just assume that whenever processes want to communicate between each other they
know their respective pids.

Definition 3.17 (Free variables in the frame context). The set of free variables in JErlangfree
expressions are detected using free function, where, defines the result of running the function
on the expression:

free(e1 ope e2, F) , free(e1, F) ∪ free(e1, F)
free(e1 ! e2, F) , free(e1, F) ∪ free(e1, F)

free(p1 =m e2, F) , free(p1, F) ∪ free(e1, F)
free((e1, e2), F) , free(e1, F) ∪ free(e1, F)

free({ e }, F) , ∪i free(ei, F)
free([e], F) , ∪i free(ei, F)

free(basicvalue, F) , {}
free(case e of match end, F) , ∪ free(e, F) ∪i free(matchi, F)

free(receive join end, F) , ∪i free(joini, F)
free(p when g → e, F) , free(p, F)

free(jpattern1 and ... and jpatternn

when g → e, F)
, ∪i free(jpattern, F)

free(varId, F) ,

{
{varId} ifF(varId) = Udf
{} otherwise

free(g1 opg g2, F) , free(g1, F) ∪ free(g1, F)
free({g }, F) , ∪i free(gi, F)
free([g], F) , ∪i free(gi, F)

Definition 3.18 (Substitution). Substitution is performed using the function apply andapply
whenever there is a value for the variable in the given context, the value is inserted in that
place.

apply({e }, F) , ∀iapply(ei, F)
apply([e], F) , ∀i[apply(ei, F)]

apply(varId, F) ,

{
v ifF(varId) = v 6= Udf
varId otherwise

apply(basicvalue, F) , basicvalue

3.2. SEMANTICS 47

Definition 3.19 (JErlang guards transition). The guards transition relation G translates G

a pair of a guard and a frame into a guard result. Hence, it can be perceived as a very limited
transition on expressions. The signature of rewriting relations is:

 G : guard×F→ guard

Definition 3.20 (Operations on values in guards). To allow the evaluation of the guards ôpg

that contain different operations on values we introduce the evaluation function ôpg that
performs execution of the given operation opg on guards. This operation is defined similarly
as operations on values in 3.15.

3.2.1 Operational Semantics

To provide the succinct version of the Structural Operational Semantics of JErlang we will
base on the Wright/Felleisen style of semantics [40]. This involves the definition of the
Evaluation Contexts.

Definition 3.21 (Evaluation Context). A reduction context E is an expression with a E

hole in it. Any expression e placed in such hole is evaluated irrespective of the context
and the whole expression with the context can be evaluated iff e has be correctly evaluated.
Evaluation contexts are based on the original syntax (as in 3.1):

E ::= E op e | v op E | [..., vi−1, Ei, ei+1, ...] | { ..., vi−1, Ei, ei+1, ... } |
case E of match end | p =m E | E(e) | v(..., vi−1, Ei, ei+1, ...)

Example 3.22 (Execution in the context). Execution of E[Test] might look as follows:

Frame(Test) = {ok, 12}
Context:

E[Test], F, Q E E[{ok, 12}], F, Q

Evaluation in contexts allows for more succinct representation. For instance Seq, for
completeness, would typically involve writing rules:

e,F,Q E e”,F′,Q′
Seq1:

(e, e’), F, Q E (e”, e’), F′, Q′
e,F,Q E error,F′,Q′

Seq2:
(e, e’), F, Q E error, F′, Q′

Definition 3.23 (Evaluation Context for guards). A reduction context Egis a guard with Eg

a hole in it. Any guard can be given for the evaluation context and is resolved irrespective
of the context. This definition follows in a similar fashion to the definition of evaluation
context for expressions in 3.21.

Eg ::= Eg opg g | v opg E | [..., vi−1, Egi, gi+1, ...] | { ..., vi−1, Egi, gi+1, ... } |
| E(e) | v(..., vi−1, Egi, gi+1, ...)

48 CHAPTER 3. JERLANG: FORMAL DEFINITION

e,F,Q E e′,F′,Q′
Context:

E[e], F, Q E E[e′], F′, Q′

F(varId) = v
v 6= Udf

Var0:
varId, F, Q E v, F, Q

F (varId) = Udf
Var1:

varId, F, Q E error, F, Q

Seq:
(v, e), F, Q E e, F, Q

matches(v, p,true,F,F′)
Match1:

p =m v, F, Q E v, F ’, Q

¬∃F′ matches(v, p,true,F,F′)
Match2:

p =m v, F, Q E error, F, Q

ôp(v, v′) = v′′

OP: v op v’, F, Q E v”, F, Q

pid 6= self()
SEND: pid ! v, F, Q E v, F, Q

pid = self()
Q′ = Q � v

SEND:
pid ! v, F, Q E v, F, Q′

∀(i ∈ 1..n)(matchi =s pi when gi → ei)
j ∈ 1..n, matches (v, pj , gj ,F,F′)
∀(1 ≤ k < j).¬∃F′′(matches (v, pk, gk,F,F′′))

Case1:
case v of match1 ... matchn end, F, Q E ej , F′, Q

∀(i ∈ 1..n) (matchi =s pi when gi → ei)
∀(j ∈ 1..n) ¬∃F′′ (matches (v, pj , gj ,F,F′))

Case2:
case v of match1 ... matchn end, F, Q E error, F, Q

Module(f) = case e of match end
Fun1:

f (v), F, Q E case {v} of match end, F, Q

Module(f) = Udf
Fun2:

f (v), F, Q E error, F, Q

Figure 3.2: Structural Operational Semantics for JErlang

Definition 3.24 (Predicate matches). Predicate matches checks whether there is a framematches
that is consistent with the original one, in which the given pattern and value are equal. This
also ensures that pattern contains no free variables in the context of the new frame, and the
guard is satisfied:

3.2. SEMANTICS 49

matches ⊆ (value× pattern× guard× F× F)

matches(value, pattern, guard, F,F′) iff
(Dom(F′) \Dom(F)) = free(pattern,F)
∧ F ⊆ F′

∧ value == apply(pattern,F′)
∧ guard, F′ G true)

Lemma 3.25. If matches(value, pattern, guard, F, F′) and matches(value, pattern, guard,
F, F′′) then F′ = F′′.
The proof follows from the definition of matches. Function free identifies the set of free
variables for the pattern with respect to the frame F, Hence F′ and F′′ to remain consistent
agree on values contained in F.
Let’s assume, that F′ and F′′ differ on the mapping of the variables not contained in F, i.e.
∃k, (F′(k) 6= F′′(k) ∧ k ∈ (Dom(F′) \ Dom(F))). From the definition of the function apply,
which is deterministic, we know that it will return different values for different frames in the
same pattern, i.e.
apply(pattern, F′) = v1, apply(pattern, F′′) = v2 and v1 6= v2.
Therefore either v1 6= v or v2 6= v but this contradicts the assumption, hence v1 = v2 and F′

= F′′.

Definition 3.26 (Function remove). Function remove when given any queue and a set of remove
indices returns a new queue with all the elements from the original one apart from those
specified in the set.

remove : (NS×Q)→ Q:
remove ((i1, ..., in), Q) =

∀k (Q(k)′ = Q(k)←→ k 6∈ (i1, ..., in))
∧ ∀ (k ∈ i1, ..., in) (Q′(k) = Udf)
return Q′

Definition 3.27 (Predicate joinMatches). The role of the predicate joinMatches is to de- joinMatches
termine whether the given join pattern can be satisfied by the messages in the queue. To
do this joinMatches checks if initial queue and frame are consistent with the ones resulting
from the pattern matching. As there can be different strategies related to finding a correct
pattern match, we assume that the algorithm used in joinMatches is independent, i.e. we
check only for the correctness of the solution, not the least solution. In section 3.2.2 we
further explain the different pattern-matching algorithms that our semantics could enforce.
Hence for the general purpose the predicate checkSolution would always be true.

joinMatches ⊆ (join× F×Q×Q× F×Q)

50 CHAPTER 3. JERLANG: FORMAL DEFINITION

Qa ≤q Q
∀(i ∈ 1..n) (joini =s jpatterni,1 and ... jpatterni,n when gi → ei)
k ∈ 1..n, joinMatches (joink, F, Q, Qa, F′, Q′)

Receive1:
receive join1 ... joinn end, F, Q E ek, F′, Q′

∀(Q′′ ≤q Q).∀(1 ≤ l ≤ n).¬∃F′,Q′(joinMatches(joinl, F, Q′′, F′, Q′))
Receive2:

receive join1 ... joinn end, F, Q E error, F, Q

Figure 3.3: Structural Operational Semantics for receive statement. You should note that
this definition doesn’t enforce any specific semantics of pattern matching. The receive1

case ensures that the valid execution is based on a satisfying queue and frame. In JErlang
we assume that whenever we reach the end of the queue in our joins solver, and we are not
successful, then we have an error case.

joinMatches ((prop1 p1 and ... and propn pn when g → e), F, Qinit, Q, F′, Q′) iff
∃Set (joinMatchesAuxiliary((p1, ..., pn), F, Q, ∅, F′, Set)
∧ g,F′ G true
∧ Q′ = remove(Set, Qinit)
∧ checkSolution(Set, (p1, ..., pn), g, F,Q))

joinMatchesAuxiliary ⊆ (pattern∗ × F×Q× NS× F× NS)

joinMatchesAuxiliary ((p1, ..., pn), F, Q, Set, F′, Set′) iff
∃Set′′,F′′ (
{i} = (Set′′ \ Set) ∧ 1 ≤ i ≤ |Q| ∧ i 6∈ Set
∧ matches(Q(i), p1, F, F′′)
∧ joinMatchesAuxiliary ((p2, ..., pn), F′′, Q, Set′′, F′, Set′)

joinMatchesAuxiliary ((p), F, Q, Set, F′, Set′) iff
{i} = (Set′ \ Set) ∧ 1 ≤ i ≤ |Q| ∧ i 6∈ Set
∧ matches(Q(a), p, F, F′)

joinMatchesAuxiliary ((), F, Q, ∅, F, ∅) always

The final predicate case ensures that receive statement without any joins is always sat-
isfied irrespective of the queue, since we allow for such situations in our syntax.

The last fragment of the operational semantics for receive statement is defined in figure
3.2.1.

3.2.2 Pattern-matching algorithms

The standard transformation for the receive operation doesn’t ensure any order in which
pattern matching is resolved. We will give definitions for two intuitive strategies: First-

3.2. SEMANTICS 51

Match and Join Priority-Match.

Definition 3.28 (First-Match). The First-Match strategy ensures that whenever we find First-Match
a Join of patterns, say J, that is satisfied using the subset of the original mailbox then this
subset is the smallest one which is able to satisfy any pattern in the set of joins (from the
syntax in 3.1 we know that there can be many of them). Additionally with First-Match we
ensure that J is the first join from the set that can be satisfied.
In other words, we perform sequential check of the original mailbox and with each extension
we check for possible joins, starting from the first one. The advantage of this approach is
that the implementation of the algorithm gives quite a lot of freedom to the programmers
and can be reasonably efficient for most cases.
The drawback of this approach is that it can sometimes create counter-intuitive situations
(see example 3.32) and we often have to bear in mind that we are dealing with mailboxes,
not just the joins that we have defined. The modified operational semantics that ensures
this strategy is shown in figure 3.2.2.

Qa ≤q Q
∀(i ∈ 1..n) (joini =s jpatterni,1 and ... jpatterni,n when gi → ei)
k ∈ 1..n, joinMatches (joink, F, Q, Qa, F′, Q′)
∀(Qb <q Qa).∀(1 ≤ l ≤ n).¬∃F′′,Q′′

(joinMatches(joinl, F, Q, Qb, F′′, Q′′))
∀(1 ≤ l < k).¬∃F′′,Q′′

(joinMatches(joinl, F, Q, Qa,F′′, Q′′))
ReceiveFirst−Match:

receive join1 ... joinn end, F, Q E ek, F ’, Q ’

Figure 3.4: The transition rule for receive in First-Match semantics for joins solver.

Definition 3.29 (Ordering on the sets of indices). We define ordering between the sets <idx

of indices in a style similar to an alphabetical ordering for words, i.e. we compare indices
starting from the left-most element of the sets and the first element that differs determines
the ordering:
Set <idx Set′ ⇒ Set 6= Set′ ∧
(i1, ..., in) <idx (i′1, ..., in

′) ←→ ∀ (k ∈ 1..n) (ik ≤ i′k ∨ ∃l (1 ≤ l < k ∧ il < i′l))

Example 3.30 (Ordering <idx on the sets of indices). {1, 3, 2} <idx {1, 4, 1} and
{2, 3, 2} ≮idx {1, 4, 1}

Definition 3.31 (Predicate checkSolution). Given a set of indices Set and a join, predicate checkSolution
checkSolution succeeds if the given set of indices is the smallest one (in terms of <idx order-
ing), such that corresponding messages in the queue satisfy the join in the context of frame F.

52 CHAPTER 3. JERLANG: FORMAL DEFINITION

∀(i ∈ 1..n)
(joini =s jpatterni,1 and ... jpatterni,n when gi → ei)

k ∈ 1..n, joinMatches (joink, F, Q, Q, F′, Q′)
∀(1 ≤ l < k).¬∃F′′,Q′′

(joinMatches(joinl, F, Q, Q,F′′, Q′′))
ReceivePriority−Match:

receive join1 ... joinn, F, Q E ek, F ’, Q ’

Figure 3.5: The transition rule for receive in Join Priority-Match semantics for the joins
solver. The subset of the original queue no longer determines the order of execution.

checkSolution ⊆ (NS × pattern∗ × guard× F×Q)

checkSolution (Set, (p1, ..., pn), guard, F, Q) iff
∀Set′(Set′ 6= Set ∧ ∃F′(joinMatchesAuxiliary((p1, ..., pn), F, Q, ∅, F′, Set′)

∧ g,F′ G true) → Set <seq Set
′)

Example 3.32 (First-Match joins matching). For the listing 3.4 and mailbox
Q = (foo · {error, function clause} · {ok, bar})
the First-Match strategy will execute the second join since the queue of size 2 already satisfies
the receive statement. Such a case would be undesirable if we have a high-priority message
sent after the low-priority ones, since it is not possible to get the former first.

1 receive
2 {ok , Test} −>
3 %% . . .
4 Value1 and {error , Reason} −>
5 %% . . .
6 end

Listing 3.4: Example of First-Match joins matching

Standard Erlang semantics uses algorithms consistent with the First-Match and since
only single-pattern joins are allowed in the receive statements, the situation presented in
example 3.32 does not occur.

Definition 3.33 (Join Priority-Match). Join Priority-Match is focused on the syntacticalJoin
Priority-Match definition of the joins and therefore the context of the mailbox doesn’t influence the order in

which pattern-matching is resolved. The main disadvantage of this approach is the efficient
implementation in the concurrent world, where messages can be received independently of
the join-matching procedure.
The difference in semantics for the Join Priority-Match algorithm is presented by the se-
mantics in figure 3.2.2 and example 3.34.

3.3. CONCLUSION 53

Example 3.34 (Priority-Match joins matching). For the same example 3.32 and mailbox Q
= (foo · {error, function clause} · {ok, bar}) the Join Priority-Match strategy will success-
fully match the first join. Even though the message {ok, bar} is the last one, it satisfies the
pattern in the first join and fires the execution.
We can see how typical priority receiving of messages can be implemented with this seman-
tics, therefore being more intuitive for real examples.

The Join Priority-Match semantics in JErlang raises the question about which queue we
should pattern-match against. The introduction of snapshots of the queue invalidates the
semantics presented in figure 3.2.2, whereas for example locking the queue while running the
pattern-match solver defeats the purpose of JErlang as a highly concurrent language.

Definition 3.35 (Structural Operational Semantics for Guards). Semantic rules for the
guards, as presented in 3.35, underline the fact that guards are a limited derivative of ex-
pressions. Nevertheless their existence improves the expressiveness of the language.

g,F G g′,F′
ContextGuard:

E[g], F G E[g′]

F(varId) = v
v 6= Udf

VarGuard0:
varId, F G v

F (varId) = Udf
VarGuard1:

varId, F G error

ôpg(v, v′) = v′′

OPGuard: v opg v’, F G v”

Figure 3.6: The semantic rules for guards are very similar to the rules defined for expressions.
The main difference is the introduction of the new transition relation.

3.3 Conclusion

The contents of this chapter is devoted to the formalisation of the minimal JErlang language.
In our definition we focus on the semantics of pattern-matching in the context of joins, there-
fore omit the details realted to the existencce of processes or fault tolerant systems. The
behaviour of the language is given in terms of Small Step Semantics, due to the concurrent
nature of JErlang. Our work is concluded by the definition of a general joins solving al-
gorithm, which is then extended by the concrete semantics of two popular algorithms that
exhibit different guarantees towards order of the message sequences.

Chapter 4

The language

Given the semantics from chapter 3 we will now present the features that can be used by
JErlang developers. The chapter can be used as a reference guide with many examples il-
lustrating the joins constructs and their variations. We will try to show that the change
from Erlang to JErlang comes very naturally as we were very conservative when it comes
to altering the standard behaviour of the language. The first section explains the possible
advantages of having different types of synchronisation constructs, followed by an enumera-
tion of the language features. We conclude by describing the important new Open Telecom
Platform behaviour.

4.1 Joins for Mailboxes

Depending on the architecture of the original language, we distinguish between two main
streams of Join-calculus, namely concurrent and distributed synchronisation on join patterns.
In the following section we present the differences between the two approaches and the
decision that convinced us to follow the former path.

4.1.1 Joins for Multiple Mailboxes

Erlang is a highly concurrent language which supports communication through the simple
concept of mailboxes. All messages are sent asynchronously and enqueued directly in the
process’ mailbox, so the communication is not dependent upon the current state of the
receiver. Unfortunately each process contains only a single mailbox and it is desireable to
have the possibility of sending different types of messages to the process through different
channels.

Popular Join implementations like Polyphonic C# or JoCaml use the concept of chan-
nels, which in reality work similarly to Erlang ’s mailboxes. In the latter however they server
as independent entities and it is possible to synchronise between the values. This possibility

55

56 CHAPTER 4. THE LANGUAGE

1 2

3

4

5
Master process

Controller

Slave processes

Figure 4.1: Architecture for joins on processes having multiple mailboxes

is clearly prohibited in the current Erlang implementation, so our initial attempt at JErlang
involved developing support for multiple name-space addressing for the processes and dis-
tributed synchronisation on messages. A typical architecture for a single JErlang ’s process
is presented on figure 4.1.

It is easy to see that support for even a small number of channels involves a large number
of new processes, the sole role of which is to serve as buffers (assuming that we do not want
to fundamentally change the internals of Erlang ’s VM). That itself is not a problem because
JErlang processes are very lightweight and the built-in support for fault-tolerant systems
enables to build a net of processes and dependencies between them through the supervision
trees. As a result we ended up with a hierarchy of processes: Master (original process),
Controller and multiple workers. The distinction between the first two allows for a clear
interface to the whole interaction and separation of tasks.

In a typical schema a message will be sent either directly to the specific mailbox, or to the
Controller process that dispatches the messages to the appropriate queue. In the latter case
the Controller is likely to become the bottleneck of the system due to the possible number of
external as well as internal messages. The main joins mechanism that lives in the Controller
process is enabled on the receive construct by the Master process, and communicates with
all the subprocesses in order to:

• Retrieve the messages necessary for pattern-matching.

• Notify the worker process whether pattern-matching is successful or not.

• Ensure the correct synchronization between messages, assuming that determinism is
important.

4.1. JOINS FOR MAILBOXES 57

The first attempt at implementing multiple-channels per process was successful in that
we were able to run a few simple test-cases that synchronised on messages. Nevertheless
building a system based on the above architecture has shown us some of the drawbacks:

• We were unable to use the built-in mailbox Erlang support, since to know the contents
of the message, you have to first read it, and hence remove it from the queue. Erlang
does not provide any way to re-insert the value without destroying the initial ordering,
or even “peeking” at the contents of the queue1.

• Lower network load can be achieved by providing the middleware buffers. Having a way
to identify the messages doesn’t suffice because retrieving multiple messages from the
mailboxes involves multiple synchronous calls. Storing the result in multiple locations
also doesn’t help as we end up creating “God” processes having large number of copies.
We developed an architecture in which the burden of a small number of messages was
unreasonably high and hence would not scale-up to even hundreds of messages per
queue, which is a typical scenario for Erlang systems.

• Since messages can be received independently by multiple workers we are unable to
determine any kind of ordering between the independent channels. Given, for example
three channels as presented in example 4.1, the only way to introduce ordering would
be for the Controller to provide unique timestamps (assuming that messages are passed
through it), and then perform pattern-matching that takes these into account. Given
the complexity that is involved in finding the correct join’s messages (see later in 5.4)
we decided against the introduction of another constraint.

Based on diagram 4.1, a general scenario for the processing of receive construct with
joins would be:

• Notification from the Master to the Controller about the requested joins, represented
through partial patterns in an easy to analyse form.

• The Controller passes those pattern tests to the respective mailboxes (slave processes).

• Channels independently send the partial matching messages to perform global matching
on the whole join (assuming that we want to preserve reasonable semantics as in 4.2).

• The Controller keeps receiving matching messages from channels and runs the joins
solver to find the correct sequence of messages.

• The Controller notifies the required channels that matching is finished (or timeout was
hit), though its message may take some time until it is processed (knowing that the
mailbox may still contain standard messages) and hence introduces an unnecessary
increase in the computation and the load on the network.

1There is in fact a technique for getting a rough look at the queue contents, but this technique becomes
unusable for large systems

58 CHAPTER 4. THE LANGUAGE

A Mailbox C

B

D

Mailbox

Mailbox

Mailbox

A ! {from, B}

A ! {from, C}

A ! {from, D}

Figure 4.2: Sending messages and synchronisation architecture in a single mailbox in JErlang

• The Controller notifies which messages should be removed and returns the result to
the Master

We found the architecture for multiple queues to be a reasonable choice due to its intuitive
meaning, its range of possibilities (having separate messages for system, debug and normal
messages) and similar constructs presented in Polyphonic C#, HaskellJoinRulesor JoCaml.

Nevertheless we made a decision to abandon this idea not only because of the imple-
mentation problems. Erlang ’s nature of a single mailbox is deeply rooted in it by the Er-
langarchitects who, reasonably, proclaim that having multiple queues unnecessary compli-
cates the system in its entirety, which already at the current stage is hard to manage. Some
of the implementations support distributed joins semantics, yet they are not restricted by
the no memory sharing principle of Erlang and can directly access the messages stored inside
local channels. Further discussion is continued in the evaluation section 6.2.2.
1 receive
2 Q1:{message 01 q2 , A} and Q2:{message 02 , B} −>
3 io : format (” F i r s t j o i n ” , []) ;
4 Q1:{message 01 q2 , A} and Q3:{message 02 , B} −>
5 io : format (”Second j o i n with va lue s [˜ p” , [])
6 end .

Listing 4.1: Receiving messages for multiple queues architecture in JErlang

4.1.2 Joins for a Single Mailbox

The second, theoretically more conservative approach for joins support involves synchroni-
sation only on the messages within the single mailbox. Hence from the point of view of the
architecture JErlang remains the same as in the original Erlang (see figure 4.2).

We present an example on why synchronisation on two messages within the same mailbox
is often problematic.
Given the mailbox: ({get, 1} · {set, 4} · {set, 2} · {get, 2})

4.1. JOINS FOR MAILBOXES 59

we would like to synchronize on messages that match the patterns {get, A} and {set, B},
where A and B are equal. Clearly such a combination is possible in our message queue.

An intuitive implementation under Erlang is presented in listing 4.2. Since standard
Erlang follows the First-Match strategy when retrieving messages from the mailbox, the
code will match with the first rule in the first receive and it will get stuck since there is
no value {set, 1}. Even when the order of patterns is reverted, we first match {set, 4}
and fail when trying to find the match for {get, 4}. This example illustrates a common
problem in Erlang, where we are not allowed to rely on the ordering of the messages inside
the queue. This forces the programmers to consider the possible layouts of the mailbox and
how the processes would need to interact. We believe that pressing such constraints on the
programmer is undesirable.

Listing 4.3 presents a refined, working code, where we continuously fetch messages from
the queue and at the stage when no synchronisation can be fulfilled with the first message,
we resend it and run the script until successful. Although this code does perform the ex-
pected behaviour, we no longer can ensure that the ordering of the messages in the queue is
preserved as send2 operation enqueues the value to the end. As we mentioned in 2.3 mes-
sages sent from the same process are guaranteed to be received in the original order. With
the re-send semantics we may have a scenario when an abort message is run only after the
commit instruction, instead of the other way around. Not to mention the fact that solution
represented in listing 4.3 is error prone and hard to understand. Similar ideas are discussed
in [35], but no working Erlang prototype is presented there.

In order to abstract from the current state of the mailbox, JErlang provides synchroni-
sation semantics with receive-like join construct. Using the guards in example 4.4 we end
up with the most intuitive (and correct) solution and reduced number of lines from 19 to
3. Execution of the selective receive matches the necessary messages separately and then
performs a full join test to check whether guards and variables as a complete set are actually
satisfiable. The solution to the problem can be even shorter in JErlang using non-linear
pattern matching (see section 4.2.6).

2In Erlang used by sign!

60 CHAPTER 4. THE LANGUAGE

1 fun () −>
2 receive
3 {get , X} −>
4 receive
5 {set , Y} when (X == Y) −>
6 %% execute expression
7 {found , X}
8 end ;
9 {set , X} −>

10 receive
11 {get , Y} when (X == Y) −>
12 %% execute expression
13 {found , X}
14
15 end
16 end .

Listing 4.2: Error prone synchronisation on two messages in Erlang

1 fun () −>
2 A = fun (ReceiveFunc) −>
3 receive
4 {get , X} −>
5 receive
6 {set , Y} when (X == Y) −>
7 {found , X} %% execute expression
8 after 0 −>
9 s e l f () ! {get , X} ,

10 ReceiveFunc (ReceiveFunc)
11 end
12 {set , X} −>
13 receive
14 {get , Y} when (X == Y) −>
15 {found , X} %% execute expression
16 after 0 −>
17 s e l f () ! {set , X} ,
18 ReceiveFunc (ReceiveFunc)
19 end
20 end
21 end ,
22 A(A)
23 end .

Listing 4.3: Correct synchronisation for two messagesin Erlang

1 fun () −>
2 receive
3 {get , X} and {set , Y} when (X == Y) −>
4 {found , X} %% execute expression
5 end
6 end

Listing 4.4: Synchronisation on two messages with guards in JErlang

4.2. LANGUAGE FEATURES 61

4.2 Language features

4.2.1 Getting started

In order to minimise the amount of effort a programmer has to put in using JErlang we
introduce a transformation module that provides different semantics to Erlang syntax. This
way the programmer focuses on solving the problems rather than reading the complex API
of the library and calling the functions in an awkward way. In order to notify the compiler
about our transformation, we introduce a following single line at the top of the module
definition:

1 −compile ({parse transform , jerlang parse }) .

Obviously the library has to be placed somewhere along the Erlang search path, so that
the compiler and VM can find the necessary modules. We give a detailed description of
the actions performed during transformation in implementation section 5.3. In order to use
JErlang with changed VM, one obviously needs a patched R12B-5 version of Erlang ’s VM
and the transformation module is instead:

1 −compile ({parse transform , jerlang vm parse }) .

Both version are binary incompatible, therefore it is important to stick one version or use
Erlang ’s macro definitions as we present in many provided examples3.

4.2.2 Joins

The most visible feature of JErlang are obviously joins, i.e. the ability to match on more than
a single message in a single simple construct. Listing 4.5 presents a function that retrieves
from the mailbox two numbers, which are then either added, multiplied or subtracted. In an
artificial situation three processes might cooperate in the production of a single value. This
example follows a typical client-server architecture and due to the inherent concurrency, it
is valid for the messages to arrive in any order.

1 operation () −>
2 receive
3 {ok , sum} and {val , X} and {val , Y} −>
4 {sum, X + Y} ;
5 {ok , mult} and {val , X} and {val , Y} −>
6 {mult , X ∗ Y} ;
7 {ok , sub} and {val , X} and {val , Y} −>
8 {sub , X − Y}
9 end

10 end .

Listing 4.5: Sychronisatin in JErlang to perform simple arithmetic operations on messages

3To avoid spurious errors we provide typical Makefile. This will automatically detect the current version
of the run-time. In case of mysterious errors while switching between two modes use make clean; make

62 CHAPTER 4. THE LANGUAGE

1 s e l f () ! { foo , one} , %% Message 1
2 s e l f () ! {error , function clause } , %% Message 2
3 receive
4 { foo , A} and { foo , B} −>
5 {error , inval id join } ;
6 {error , Reason} −>
7 {ok , {error expected , Reason}}
8 end .

Listing 4.6: Joins with pattern that can match on the same messages

Listing 4.6 presents the case where the first message matches both of the patterns in the
first join, namely {foo, A} and {foo, B}. However the implementation of JErlang ensures
that messages satisfying the join have to be unique, i.e. one message cannot satisfy more
than a single pattern in a successful match. Hence, the end result of calling example 4.6
would be the second tuple. Most of the existing implementations forbid the the definition
of channels that share the name in the same join. This is dictated by the implementation
complexity as solving such joins is non-trivial (as we discuss in 5.4). Nevertheless, lack of this
feature in JErlang would be a serious disadvantage since having the possibility of building
complex pattern matches in a simple way in Erlang is one of the fundamental features of the
language. It is common to build matches the variable of which span over more than a single
pattern (for instance matching elements of a list [A, A]).

As expected, the JErlang implementation preserves the notion of bounded variables and
the execution of the example 4.7 would get stuck, provided that only the first two messages
are in the mailbox. This is because the variable C is already mapped to none and matching
of {bar, C} fails when compared with one.

1 s e l f () ! { foo , one} , %% Message 1
2 s e l f () ! {bar , one} , %% Message 2
3 C = none ,
4 receive
5 { foo , A} and {bar , C} −>
6 {error , inval id join }
7 end .

Listing 4.7: Joins matching with bounded variables in JErlang

4.2.3 Order preservation in mailbox and First-Match execution

Implementations of the Join-calculusin languages like JoCaml(2.2.1) or Polyphonic C#(2.2.2)
do not bind themselves to any strictly specified algorithm when it comes to solving the joins’
patterns. In other words when there is more than one join that is satisfiable by the current
state of the channels/queues then the result of the join operation is non-deterministic. The
situation of Polyphonic C# is easier since we are not allowed to have a single channel name in
more than one chord, whereas in JErlang we can easily have a situation (given appropriately
liberal patterns) where a message could match all the patterns.

In the implementation of receive in JErlang we assume that the semantics of First-
Match, as defined formally in 3.2.2, allow for more predictable behaviour when it comes to

4.2. LANGUAGE FEATURES 63

the resolution of the joins. Implementing the semantics of Join Priority-Match is inherently
impractical in JErlang due to the concurrent nature of the language.

Example 4.8 represents a confusing situation where the result of the joins depends on
the ordering of the messages. JErlang ’s priority is to preserve the original sequence of the
messages during each pattern-matching attempt. This idea drives the execution of the join-
solver mechanism that takes into account the order of the messages. Therefore by looking
only at the first two messages of the mailbox presented in the example (assuming no other
messages to the process apart from those specified) we can see that the second join is satisfied
already by the second message, whereas the first join at this stage still misses one more
successful pattern. Programmers do not know the contents of the mailbox (and shouldn’t
know or care about it in any implementation) but the successful firing of the action provides
information that the join was the first to happen given the concurrent environment (affected
by delays in sending the messages for example).
By ensuring this specific behaviour in our implementation we believe that developers have
more control over what scenarios could actually happen. Non-deterministic behaviour hides
all the details but also gives less control in a situation when one would like to have it. Listing
4.9 presents a typical Erlang-like situation where we want to make sure that the second join
will fire if and only if the first join failed to match.

1 s e l f () ! { foo , one} , %% Message 1
2 s e l f () ! {error , function clause } , %% Message 2
3 s e l f () ! {bar , two} , %% Message 3
4 receive
5 { foo , A} and {bar , B} −>
6 {error , {A, B}} ;
7 {error , Reason} −>
8 {ok , {error expected , Reason}}
9 end .

Listing 4.8: Oddity Simple mathematical operations on messages

1 receive
2 { foo , A} and {bar , spec i f ic } −>
3 %% perform specialized action . . .
4 { foo , A} and {bar , B} −>
5 %% perform general action . . .
6 end .

Listing 4.9: Usage of deterministic behaviour for joins resolution in JErlang

4.2.4 Guards

A guard is a feature typical for functional languages, which allows the programmer to include
additional constraints for popular constructs, like function definitions or case statements.
Guards in Erlang ’s receive allow to check the bounded value or compare variables defined
in the message.

The original definition of Join-calculus in [15] does not mention guards at all, but we
believe there are possible advantages to using them, which many other implementations

64 CHAPTER 4. THE LANGUAGE

have not attempted. Lam and Sulzmann in [21] provide successful scenarios where guards
are the most intuitive features to use.

In JErlang guards enable the programmers to filter the incoming messages depending on
the success or failure of the computation. Since developers are familiar with it, it seemed
reasonable to also have guards that would be able to operate on the variables that span over
more than a single pattern. In listing 4.10 we use the construct to perform sanity checks for
the withdrawal transaction that was requested by the external user.

1 withdraw(Transaction) −>
2 receive
3 {amount , Transaction , Money} and { limit , LowerLimit , UpperLimit}
4 when (Money < UpperLimit and Money > LowerLimit) −>
5 commit withdrawal (Money, Limit) ;
6 {abort , Trans} and {amount , Transaction , Money}
7 when (Trans == Transaction) −>
8 abort withdrawal (Transaction , Money)
9 end

10 end .

Listing 4.10: Usage of guards for withdrawal operation on the bank account in JErlang

As the mailbox can be operating on multiple accounts and transactions, guards in joins
allow us to avoid unnecessary removal of the messages from the transaction’s queue. Pro-
grammers do not have to focus on the way to express the problem that is a valid JErlang ’s
syntax and semantics, but rather focus on the problem itself.

4.2.5 Timeouts

In order to avoid potential deadlocks, similarly to example 4.2, where the execution of re-
ceive gets stuck while analysing the mailbox of the process, JErlang introduces timeouts. A
timeout is measured as a period when the Join-solver doesn’t perform any useful procedure,
i.e. it stalls waiting for new messages, since all the previous combinations of pattern match-
ing failed. Therefore time spent on performing the actual matching does not count towards
the timeout value (as in Erlang). None of the existing implementations provide this feature.

1 withdraw using card (Timeout) −>
2 receive
3 {pin , Pin} and {card , Number} −>
4 authenticate (Pin , Number) ;
5 abort and {card , Number} −>
6 abort authentication (Number)
7 after Timeout −>
8 return card (Number, Timeout) ;
9 end

10 end .

Listing 4.11: Timeout execution no response in JErlang

Listing 4.11 presents an example when a person wants to withdraw money using debit card
in a cash-machine and we want to make sure that the card does not in it stay forever. To
specify a timeout, developers have to follow the syntax rules presented in 4.12.

4.2. LANGUAGE FEATURES 65

1 receive
2 Jo ins
3 after Value −>
4 TimeoutAction
5 end

Listing 4.12: Standard schema for constructing timeouts in JErlang

If a new message is sent during the idle period, then new join matching process is started.
The timeout counter is turned off during that time and if matching fails then the counter
continues with its last value. Therefore the standard receive construct without timeout
value is equivalent to the syntax presented in 4.14.

1 receive
2 Jo ins
3 after inf in ity −>
4 TimeoutAction %% Never executed
5 end

Listing 4.13: Full receive syntax with timeouts

A typical usage of timeouts would be to ensure that by the time joins matching is per-
formed, all the necessary components are available. In order to force this semantics, the
programmer defines an action on timeout 0.
It is important to note that timeout should not be used to reliably determine the time pas-
sage, since measuring of the counter can be influenced by the external factors like process
priority, operating system scheduling, internal JErlang scheduling, random execution etc.
The only difference between the timeouts in Erlang and JErlang is the way the counter is
defined - the former is managed inside the Erlang ’s VM and the latter manages them by
cooperating between the Joins library and JErlang ’s VM. JErlang ’s timeouts ensure that
there is no loss of information and any message received at the point when the timeout
alarm triggers would still be available in the mailbox.

4.2.6 Non-linear patterns

Unlike all of the Join-calculus’s implementations JErlang allows for non-linear patterns.
In other words patterns in joins can contain the same unbounded variables and therefore
synchronise on their values as well, since we know that a single variable can have only a
single value associated with it. As a result, the example presented in 4.4 could be even
shorter and more intuitive as we present in listing 4.14.

1 fun () −>
2 receive
3 {get , X} and {set , X} −>
4 %% execute expression
5 end
6 end

Listing 4.14: Synchronisation for two messages in JErlang where they agree on the value of

66 CHAPTER 4. THE LANGUAGE

the unbounded variable

We believe that the ability to express this syntax increases the freedom of the programmers
as they are less constrained by the awkward limitations of the language. The construct
should gain the approval from the Erlang ’s community as it makes the code more readable
and easier to maintain. Example 4.15 presents a more complicated case when synchronisa-
tion on patterns and variables inside them happens more than once. We define a scenario
where two independent entities running in different processes want to establish a mutual
transaction with agreement that both continue if and only if both agree to the transaction.
However if at least one of the entities forbids the transaction, then it is aborted (first join).
The synchronization is made by the the third-party-process that has no knowledge of the
transaction beforehand and therefore runs as a general synchronising entity. This is also a
typical variant of the barrier synchronization pattern.

1 fun () −>
2 receive
3 {transaction , Id , IdA , IdB} and {disagree , Id , IdA} −>
4 noti fy fa i lure (Id , IdB) ,
5 abort transaction (Id , IdA , IdB) ;
6 {transaction , Id , IdA , IdB} and {agree , Id , IdA} and {sth , Id , IdB} −>
7 notify (Id , IdA) ,
8 notify (Id , IdB) ,
9 commit transaction (Id , IdA , IdB)

10 end
11 end

Listing 4.15: Mutual agreement using non-linear join patterns in JErlang

4.2.7 Propagation

Propagation is another feature not known in the Join-calculus world but introduced suc-
cessfully in their Constraint Handling Rules. Lam and Sulzmann in [37] and [35] show its
usefulness in their Haskell prototype.

In JErlang propagation can be treated as an optional attribute that allows the developer
to say that whenever a pattern matches, the value of the message is returned to the user but
the message itself is not removed from the mailbox. This obviously can be implemented by
sending the same message in the body of the join4, however our feature is more readable and
less error prone. In order to mark the pattern to support the propagation schema we wrap
it with the prop closure, as if it was an argument to the function.

Additionally whenever the search is performed on the mailbox again, the message will
not be placed at the end of the queue and as a result will get higher priority and the
implementation will ensure that matching should be performed faster (as we do not have to
reach the end of the queue). This is especially important for applications which allow for
large numbers of messages in the queue and hence for longer response time.

Listing 4.16 presents an authorisation procedure where the usage of propagation is nat-
ural. In order to perform operation on the process, some previous session establishment has

4see section 5.4.4

4.2. LANGUAGE FEATURES 67

to occur because by default the sender has no privileges. Whenever the matching for the
first join is successful, the message satisfying the first pattern remains in the mailbox i.e. the
session remains alive, as one would expect for security reasons. However, for the second join,
we want to end the user session, so the session message is removed along with the logout
message and the user can no longer perform any action (provided that the mailbox does not
contain more matching session messages).

1 authorisation () −>
2 receive
3 prop ({ session , Id}) and {action , Action , Id} −>
4 perform action (Action , Id) ;
5 {session , Id} and { logout , Id} −>
6 logout user (Id)
7 end
8 end

Listing 4.16: Session support using propagation in JErlang

4.2.8 Synchronous calls

JErlang, similarly as the original Erlang, allows for the creation of synchronous calls (sending
is normally asynchronous). This can be achieved by appending a Pid (process identifier) value
to the message, so that the process knows with whom it communicates. Unlike the Polyphonic
C# or Join Java implementations, JErlang does not enforce any kind of ordering or style
of the patterns, nor does it limit the number of possible synchronous calls5. We decided not
to introduce separate syntax construct for synchronous calls, but rather use the possibilities
that JErlang already has using the values provided in the message. The introduction of any
formalised style would rather limit the freedom of the programmers than increase it.

In example 4.17 we present a variant of the typical barrier synchronisation construct. The
listing presents a situation for the two cases of barriers that can occur. Obviously the naming
for the variables and structure of the messages is completely random - the only requirement
is that messages at agreed tuple elements store their process identifier (in this case Pid1,
Pid2...). In Erlang the synchronisation between multiple processes requires additional, in
our view superfluous effort from the programmer as one has to first receive the message,
store its contents and perform any necessary management/matching necessary to identify
correct links between the messages. This is obviously error prone and overcomplicates the
development of this relatively simple operation.

The example provides possible definitions of the processes participating in the syn-
chronisation. In the first join the participating processes are running the function pro-
cess func barrier - they first send the initial (asynchronous) message to the known central
process and await the reply, thus creating a simple and intuitive send-wait pair. Processes
participating in the second join execute the function process func barrier value, with the
exception of the process that sends the middle message. The latter does not participate di-

5Scala by default inserts the Pid of the sender to each message. We believe that such an overhead is not
necessary

68 CHAPTER 4. THE LANGUAGE

rectly in the synchronisation since it is only an asynchronous call. This shows the possibilities
that occur when mixing synchronous and asynchronous calls in JErlang.

1 barrier () −>
2 receive
3 {sync , Name1, Pid1} and {sync , Name2, Pid2} −>
4 notify sync (Name2, Pid1) ,
5 notify sync (Name1, Pid2) ;
6 {accept , Pid1} and {asynchronous , Value} and {accept , Pid2} −>
7 send value (Pid1 , Value) ,
8 send value (Pid2 , Value)
9 end

10 end .
11
12 notify sync (Name, Pid) −>
13 Pid ! {barrier , Name, Pid } .
14
15 send value (Pid , Value) −>
16 Pid ! {barrier , value , Value } .
17
18 process func barrier (Id , MasterPid , Timeout) −>
19 MasterPid ! {sync , Id , s e l f ()} ,
20 receive
21 {barrier , PartnerName , PartnerPid} −>
22 success barrier (PartnerName , PartnerPid)
23 after Timeout −>
24 fa i l barr ier (timeout , MasterPid)
25 end .
26
27 process func barrier value (MasterPid , Timeout) −>
28 MasterPid ! {accept , s e l f ()} ,
29 receive
30 {barrier , value , Value} −>
31 process value (Value)
32 after Timeout −>
33 fa i l barr ier (timeout , MasterPid)
34 end .

Listing 4.17: Variations of the barrier synchronisation pattern in JErlang

4.2.9 OTP platform support in JErlang

We believe that the implementation of JErlang wouldn’t be successful without acceptance of
the standards and practices typical for Erlang users. To provide full conformance with the
Erlang programming world we decided to implement an extension of gen server, a popular
design pattern inter alia used for building complex client-server applications.
gen joins is a natural extension of the OTP’s gen server design pattern that allows for
the definition of joins, i.e. for synchronisation on multiple synchronous and asynchronous
messages. Additionally, features like guards and propagation that are present in receive
construct are also allowed in this implementation. Appendix C gives two examples that

4.2. LANGUAGE FEATURES 69

we believe express the ideas in a more natural way than if they were implemented using
gen server.

Getting started

Different behaviour of the gen joins design pattern enforces us to use different transfor-
mation module from the one given in 4.2.1. This again removes all the burden of creating
required function calls from the end developer, who only has to insert the following line to
us familiar JErlang syntax:

1 −compile ({parse transform , jerlang gen joins parse }) .

This informs the compiler that perform additional stage during the compilation that will
produce a vald Erlang code. Thus again JErlang can be treated as an optional library.

Synchronous and asynchronous calls

gen joins allows for synchronisation on multiple synchronous and asynchronous messages in
a single join, similarly as receive. The difference is that in the former we have to explicitly
determine if the process receiving the message needs to send the reply or not.

1 define (Key, Value) −>
2 jerlang gen joins : cast (?MODULE, {define , s e l f () , Key, Value }) .
3
4 retrieve (Key) −>
5 jerlang gen joins : ca l l (?MODULE, {retrieve , s e l f () , Key}) .
6
7 handle join ({define , PidSource , Key, Value} and {retrieve , PidTarget , Key} ,
8 Status) −>
9 { [noreply , {reply , {ok , Value }}] , [{Key, PidSource , PidTarget} | Status] } .

Listing 4.18: Distributed buffer implemented in gen joins with support for audit

Listing 4.18 defines the JErlang program that has synchronous and asynchronous mes-
sages in the join. We follow the standard set in Erlang, where the former is represented by
execution of the call and the latter by cast. Asynchronous messages should always return
noreply as there is no sender awaiting a reply. The server will throw an error on a different
reply type. Synchronous messages can either return {reply, Message} 6 or noreply. The
latter would cause a timeout exception on the caller’s side or the caller will stall forever if the
timeout is set to infinity. Our implementation conforms with OTP’s design of gen server,
where developers also have to explicitly define the action for the message received by the
process.
In line 9 of the example we return explicitly the value contained in the asynchronous message
sent to the process

6“Message” denotes any value that is to be returned to the sender of the message

70 CHAPTER 4. THE LANGUAGE

4.3 Conclusions

This chapter presented an argument in favor of supporting single mailbox joins in JErlang.
We believe that such implementation that lack of such feature is of primary concern rather
than on focusing on the synchronisation of multiple distributed mailboxes.

We give definition for more powerful receive construct that allows for synchronisation on
messages with First-Match semantics. As a result we gain proper ordering in the execution
of the joins and can build intuitive pattern matching structures that use this features. The
expressiveness is improved through the additional features that come with JErlang ’s joins:
timeouts, guards, propagation and non-linear patterns. In comparison to other implemen-
tations we do not introduce any constraints on the mentioned constructs thus leaving more
freedom to the programmers. To comply with the Erlang standard we provide the extension
of the gen serverbehaviour that allows on the synchronisation on multiple synchronous and
asynchronous calls in a compact design pattern. The latter reminds of the chord concept in
Object Oriented Programming but with more powerful options.

Chapter 5

Implementation

The number of current JoCaml implementations set a high quality mark in terms of us-
ability and performance of joins. Since the set of features that JErlang offers is radically
different (and we believe more demanding) we had to consider numerous possible algorithms,
enhancements rather than just translating the existing solutions into Erlang. In this chapter
we present most of the challenges that we encountered during the implementation stage of
our work. Some of the constraints that had to be taken into account during our research are:

• Consistency with existing Erlang implementations

• Determinism and fairness of the join solver

• Performance

• Degree of expressiveness

• Scalability

• Support for Erlang ’s Open Telecom Platform

• Intuitiveness of the syntax

Typically there are two ways of extending a language: by providing a self-contained li-
brary or changing the compiler/VM to incorporate new constructs. The former allows the
Erlang programmers to experiment with the language without any major changes to the
current setup. The latter, much harder due to the complexity of the implementation and di-
versity of the used tools, gives a better feeling that the new features could be included in the
language. Therefore apart from developing the JErlang as a library we decided to provide
efficient and non-intrusive1 VM and compiler changes. Another motivation for this decision

1We are aware that such a combination of words sounds like an oxymoron, but we believe we managed to
create a reasonable compromise between the two

71

72 CHAPTER 5. IMPLEMENTATION

.erl source
pre- Abstract
Syntax Tree

Abstract
Syntax Tree

Core Erlang
Kernel
Erlang

.beam
bytecode

epp erl scan
erl parse

macro import
parse transform

optimisation
passes

Figure 5.1: Overview of the Erlang ’s compiler architecture

was Erlang ’s lack of an API for manipulating the message-queueing system, apart from the
standard receive construct. Both approaches remained consistent in terms of behaviour and
we explain in detail the disadvantages and advantages of each.

Finally we describe the variations of the algorithm that we used in order to efficiently find
synchronisation matches between patterns. We realise that in most of the implementations
the performance significantly sacrifices the expressiveness of Join-calculus extensions and our
aim is to reduce this effect in JErlang.

5.1 JErlang Compiler and VM

We present a general overview of the standard Erlang architecture, including details on
how the compiler produces the binaries and how the Virtual Machine works. After that
we introduce the changes that were necessary to fully use the possibilities of the mailboxes
inside the JErlang Virtual Machine. Knowledge about both of the components will allow
you to better understand the implementation changes that we introduced in order to support
Erlang-like language.

5.1.1 Compiler

Erlang as a mature high-level language contains a scanner, parser and compiler written them-
selves in Erlang. Figure 5.1 presents a general overview of the path starting at the original
Erlang code and finishing as the bytecode that is executed in the Erlang ’s VM.
The first stage is obviously the preprocessor (epp), scanner (erl scanner) and parser(erl parser).

5.1. JERLANG COMPILER AND VM 73

This creates a first abstract syntax tree, which is later processed through (possibly many)
parse transform functions that manipulate the input according to their definition. At this
stage any macro definitions are also resolved. All of those actions are controlled by the
v3 core module which delivers the human-readable Core Erlang [9] code. It is a simple,
lexically scoped, functional language that still contains some common Erlang features like
try or case. The role of Core Erlang is to have an intermediate language between the source
code and the assembler, which is general enough to perform specialised optimisations and
validation operations. This way we gain another layer of abstraction that discards language
nuances. Core Erlang then becomes transformed into the assembler code Kernel Erlang
and finally ends up as Erlang ’s binary bytecode known as BEAM2. Appendix A contains
an example of structures produced by the Erlang compiler for a simple function with the
receive construct.
The final assembler code is very close to how the BEAM bytecode looks like. The latter are
just word instructions followed by zero or more word operands.

5.1.2 Built-in functions (BIFs)

Function calls from the standard user-defined libraries are directly generating core Erlang
code that is then analysed (if possible) during the compilation and verification procedures.
However, apart from the standard function calls that are treated in a universal way, Erlang
introduces special built-in functions, that are mostly written in C and available from the
core erlang module. This allows for faster computation of critical parts of the execution as
well as access to the internals of the Erlang ’s VM. For instance standard +, - or * operators,
or critical self and send function calls, are implemented using BIFs.

5.1.3 Erlang’s Virtual Machine

The role of Erlang ’s VM is to execute the compiled BEAM bytecodes in a language neutral
emulator, perform necessary process management, garbage collection etc. From the detailed
point of view Erlang ’s emulator is a single function call that is continuously in a loop exe-
cuting the BEAM instructions. The latter are locally translated into internal code (label)
jumps. BEAM is register-based and fetches the necessary addresses of the operands into
specified registers before executing the instruction. The VM maintains a program counter
and stack of frames. It is interesting to note that Erlang ’s support for a large amount of
processors is not implemented by each process having its own thread, but rather the VM
maintains an internal queue of available processes (organised by priorities) and a scheduler
that performs their fine-grained management. Each process has associated with it a stack
frame, a program counter and a heap, which is mainly used for storage of the message queue.
For the receive construct, which is the one that is most relevant to this project, we outline
the execution steps taken in the Erlang ’s VM (we provide listing 5.1 as a simple example):

1. Each process maintains a pointer to the last checked message. When starting the
receive it always points to the beginning of the queue.

2BEAM stands for Bogdan/Bjrn’s Erlang Abstract Machine

74 CHAPTER 5. IMPLEMENTATION

2. Take the message which is pointed to by the marker in the queue and put it as the
operand for matching.

3. Take the current BEAM instruction, which would represent the pattern, and execute
the match given the operand from step 2.
If matching is not successful, we go to step 4.
If matching is successful, we go to step 6.

4. If the next instruction is a pattern (BEAMinstruction) then we update the current
program counter to it and again go to step 3.
If that was the last pattern and there are still some messages left then we update the
pointer of the mailbox to the next message, go the first pattern represented by BEAM
instruction and execute step 2.
If there are no further messages we go to step 5.

5. The VM sets up the timeout counter (if it wasn’t already set up), and the process goes
to sleep. It will either be awakened by the timer or by a new message. The former will
force the jump to the BEAM instruction defined in the timeout action and the latter
will store the timeout’s current value, update the mailbox pointer and go to step 2.

6. A successful match frees the memory associated with the currently pointed-to message,
updates the mailbox’s marker to the beginning of the queue and jumps to the BEAM
instruction pointed to by the pattern.

The current version of the Erlang ’s VM supports SMP 3. This results in the existence
of many schedulers (usually one per CPU/core) that have shared access to the queue of the
available processes. We mention this fact here, since some of the changes in our JErlang ’s
VM involved the correct usage of locking mechanism to ensure that our implementation is
correct. SMP is an important feature of Erlang and we wanted our implementation to be
compatible with the mainstream implementation.

1 basic () −>
2 receive
3 {one , One} −>
4 One .
5 {ok , Result} −>
6 Result
7 after 10000 −>
8 {error , timeout}
9 end

10 end

Listing 5.1: Simple receive construct in Erlang

3Symmetric Multiprocessing, see http://en.wikipedia.org/wiki/Symmetric multiprocessing for a brief but
thorough introduction

5.2. JERLANG’S VM 75

5.2 JErlang’s VM

The main problem with implementing Joins inside the Erlang ’s VM or language itself was
lack of necessary operators that would enable us to manipulate and inspect the processes’
mailboxes without the limitations presented in 4.1. Therefore we decided to implement two
approaches:

• The queue is stored on the library level and fetches all the messages from the VM’s
mailbox in the original order. In this approach the only limitation is the semantics so
we can practically can do everything with our new library-queues. The main drawback
lies in the performance of the solution.

• We implement new functions and constructs that enable us to directly manipulate the
mailboxes inside the VM, from the standard JErlang ’s library level.

The subject of this section are the possibilities and challenges involved in both approaches.
The decision to focus on the provision of only a minimal number of operators, instead of
a full implementation of joins inside the JErlang ’s VM, was due to the limited timescale
of the project and the complexity of the VM. Since Erlang architects do not provide any
documentation about internals of the system and we would have been drastically changing
how one of the most critical parts of the product works, we leave it as an interesting project
that could continue our work.
Nevertheless, we made sure that our implementation is fully operational and we remain
backward compatible with the standard Erlang release4 and existing applications.

5.2.1 Search mechanism

The nature of the Joins requires from our algorithm that it should be able to continuously
parse the given mailbox in a similar manner as we have shown in the algorithm in section
5.1.3. Since we perform the synchronisation on multiple messages in the same mailbox we
no longer want to remove the message immediately, but only receive an indication that our
pattern matching was successful and the ability to restart the matching for other patterns
in the join.
Example 5.2 presents a search expression which looks almost identical to the well-known
receive apart from the first keyword.

4We implemented the changes against the most stable R12B-5 release available during our research. At
the time of writing this report the new R13B version is released that was not tested against

76 CHAPTER 5. IMPLEMENTATION

1 search
2 { f i r s t , Choice} −>
3 Choice
4 {valid , special } −>
5 {ok , special case }
6 {valid , Result} −>
7 Result
8 after 10000 −>
9 {error , timeout}

10 end

Listing 5.2: search construct in Erlang

It is important to notice that search does not allow for multiple pattern declarations in a
form of joins (as receive) but is used in the algorithm to achieve this for receive in JErlang.

The set of possible changes in accessing the processes’ mailboxes were constrained by the
need to remain backward compatible with the old behaviour of the receive construct. This
is because we want to keep the standard, optimised semantics inside the JErlang ’s standard
libraries and on other applications that were not written to support join semantics. As a
result we maintain a separate search pointer on the mailbox that influences the behaviour of
the search mechanism and is independent from the original mailbox’s pointer. This ensures
that whenever the system uses the standard receive then pattern matching starts from the
beginning of the queue and continues with usual Erlangsemantics.

The most visible difference between search and receive semantics is that the latter
automatically resets its pointer after a successful match, whereas the former does not. We
use example 5.3 to present a scenario why this restriction had to be introduced.

1 receive
2 {msg , A} and {reply , B} when (A > B) −>
3 %% process message
4 after 10000 −>
5 {error , timeout}
6 end

Listing 5.3: Joins construct in Erlang

1 search
2 {msg , A} −>
3 {msg , A} ;
4 {reply , B} −>
5 {reply , B}
6 after 10000 −>
7 {search , timeout}
8 end

Listing 5.4: Search patterns used for parsing the queue of the example 5.3

Listing 5.4 presents corresponding search patterns used for resolution of the join patterns.
We assume that the content of the mailbox at a given time is:
({msg, 12} · {reply, 21} · {reply, 9})

5.2. JERLANG’S VM 77

Clearly the first message would match successfully against the first pattern. The second
message would similarly match against the second pattern. However this pair would fail the
guard test, hence we have to continue to search further. The third message is also successful
and creates a correct pair that satisfies the guard’s test. We wouldn’t be able to use this
algorithm with receive pointer ’s automatic reset (after successful matching), since we would
always match against the same invalid message.

In the most simple approach, whenever JErlang ’s receive expression is finished we loose
any gathered information since the next receive (if any) usually contains different patterns.
Therefore the matching search has to start from the beginning of the queue. JErlang provides
function search reset/0 to explicitly set the search pointer to the head of the queue.

Listing 5.3 presents another challenge related to mailbox access. Even though we know
that the sequence of messages 1 and 3 satisfies the join, we are unable to get the right
messages using the standard receive construct because listing 5.5 will remove messages 1
and 2, due to the order of messages and semantics of receive.

1 return messages () −>
2 First =
3 receive
4 {msg , A} −>
5 {msg , A}
6 end ,
7 Second =
8 receive
9 {reply , B} −>

10 {reply , B}
11 end ,
12 [First , Second]
13 end .

Listing 5.5: Removing expected messages using standard Erlang ’s receive

We believe that this problem can be most efficiently solved by adding a unique iden-
tifier that enables to distinguish the messages as well as directly access them. Function
last search index/0 returns the identifier of the last message that matched the search
expression, whereas the function receive index/1 removes the message associated with the
identifier given as an argument to the function. The mentioned operators give us enough
freedom to perform necessary mailbox manipulations.

Finally to avoid unnecessary double buffering of the messages, we associate and store their
identifiers inside the pattern’s caches5 and later, when necessary, fetch messages to perform
the tests. Selective receive by identifier is done using another function, search index.

In order to implement the search construct in the VM, we added new jump labels in-
side the main execution loop, so that the BEAM instructions can “jump” to it. This also
required a small number of adjustments inside the Erlang ’s lexer and parser to mimic the
structure of receive. Due to the complexity of the Erlang ’s VM, other function calls were
implemented as BIFs, instead of being completely new BEAM instructions. This enabled us

5Those “caches” store the functional representation of the pattern as well as the partial results

78 CHAPTER 5. IMPLEMENTATION

to write efficient C code that is able to directly access mailboxes of the processes.

5.2.2 Mailbox and Map

For large mailboxes and complicated join combinations, it could be the case that a large
number of calls to the mailbox might need to be made to perform the tests for guards or
non-linear patterns. Our evaluation tests have shown that accessing the mailbox implemented
as a queue leads to the degradation of the performance. Given this bottleneck and unique
identifiers associated with each message it seemed natural to use a better data structure.
We decided to use the uthash6 hash tables implementation because of their simplicity, good
performance and positive opinions from other developers.
Each process in Erlangcontains an additional hash table that maps identifiers to addresses
of the messages. This mechanism is orthogonal to the existing queueing system, because
we wanted to keep the backward compatibility, and the queueing of messages still performs
its role well in the matching algorithm. In 6.4 we evaluate the possible advantages and
disadvantages of the approach.

5.2.3 Locking

JErlang ’s emulator with SMP support introduces many concurrency threats like deadlocks,
lost messages and race conditions. In order to make JErlang thread-safe we had to guarantee
that accessing and removing the messages agrees with the overall locking system. Fortunately,
since all the new functions are BIF s and have a direct link to the processes they are working
on, it was straightforward to extend the locking to those critical sections using the provided
C macros.

5.3 Parse transform

In order to enable synchronisation in JErlang on multiple messages the programmers only
need to use the familiar receive construct (as in listing 4.4). In reality the code that
actually performs necessary join reduction is defined in the module jerlang core. The main
jerlang core:loop/3 function initiates the joins solving action when given correct definitions
of patterns’ tests and configuration parameters. Appendix B gives an example of the code
constructed by the compiler in order to run the joins’ function. It can be easily seen that
even with the simple join definition the number of lines of code increases roughly from 15 to
54. The syntax of JErlang allows programmers’ work to be less error prone, more intuitive
and enables them to focus on the problem instead of the awkward parameters of the library
call.

Typically, to allow for the new syntax of JErlang in receive we would have to change
Erlang ’s grammar rules for the lexer and parser, even for the non-VM’s JErlang implemen-
tation. Since our aim was minimise the amount of effort that a potential user of JErlang
would have to make in order to test the library, we decided to take a different approach.

6http://uthash.sourceforge.net

5.3. PARSE TRANSFORM 79

parse transform is a module available in Erlang ’s standard library that allows the
developers to use Erlang syntax, but with different semantics. In order to facilitate this
feature the following criteria have to be fulfilled:

• The original code has to conform to the syntax Erlang

• The programmer has to define a module that implements a function parse transform
and exports it. The function is given two arguments: the original Abstract Syntax Tree,
and additional compiler options. The developer informs the compiler of the possible
transformation by including the code line:
compile({parse transform, module parser}).

• The abstract syntax tree produced by the transformation process has to have a valid
Erlang structure and semantics.

Appendix B presents an example of a transformation that is done on a standard Ab-
stract Syntax Tree given by the receive with joins construct. parse transform is therefore
capable of constructing completely different programs which allowed us to avoid changing
Erlang ’s compiler in order to accommodate JErlang ’s extended syntax 7.

5.3.1 Abstract Syntax Tree

Erlang, in comparison to other popular languages like Java or Python, doesn’t have to main-
tain a costly visitor design pattern in order to parse the AST. Instead, we use intuitive
pattern matching on the blocks of the tree and hence dismantle it into necessary branches.
Manipulation of the branches follows from the inofficial (and slightly outdated) specification
of the language[19]. Creating new programs is often straightforward (see appendix B) how-
ever in order to analyse general construct transformations we mostly have to parse the entire
tree in search for the required patterns.

Example 5.6 presents a rule (function) for finding the function definitions in the code and
performing specialised transformations on it (not defined in the fragment). It is typical to
use tail recursion algorithms in order to parse the tree, since they are compiled efficiently in
the Erlang language. [19] presents the latest available language reference manual for Erlang,
although the current implementation differs slightly from that specification.

7The only drawback of this approach is the lack of support from the Erlang ’s developers team, however
the approach of changing the internals of Erlang is much harder and less portable

80 CHAPTER 5. IMPLEMENTATION

1
2 parse transform (AST, Options) −>
3 Result = parse tree (AST, []) ,
4 io : format (”Tree : ˜p˜n” , [AST]) ,
5 io : format (” Result : ˜p˜n” , [Result]) ,
6 Result .
7
8 parse tree ([] , Ast) −>
9 l i s t s : reverse (Ast) ;

10 parse tree ([{ function , L , Name, Arity , Clauses} | Rest] , Ast) −>
11 TransformedFunc = parse function (L , Name, Arity , Clauses , []) ,
12 parse tree (Rest , [TransformedFunc | Ast]) ;
13 parse tree ([Node | Rest] , Ast) −>
14 parse tree (Rest , [Node | Ast]) .
15 . . .

Listing 5.6: Extract from parse transform module that searches for functions definitions
in the code

In the case of receive construct we search for the definitions of the receive clause in
the AST, and for gen joins the headers match on the function definitions with name han-
dle join. The former is even more complicated as we can have a receive inside another
receive. Obviously the AST for JErlang ’s programs will mostly be invalid semantically
(when using its language features) and the compiler will return an invalid pattern exception.
The aim of our transformation is to find joins patterns, create necessary tests for patterns
and joins (we discuss the algorithm later) and create the code that calls the main JErlang
library in order to execute the joins correctly. The amount of code produced by the new
representation is linearly dependent on the number of patterns and hence the binary code
produced by the compiler will be larger than what developers would normally expect. We
believe that this doesn’t affect the usability of the code, since the number of receive con-
structs and patterns in them is typically small (i.e. from 2 to 5). Transformation is done
only once during the compile time, hence the overhead of joins during run-time involves only
the time spent on solving the joins.

5.3.2 Unbounded and Bounded Variables in parse transform

One of the challenges of code transformation was the attempt to create output that is ac-
ceptable in Erlang syntax. In other words, warnings, line numbers and errors in JErlang ’s
programs that are reported by the compiler should be possible to identify by the standard
Erlang lint8 and compiler modules.

An example usage of the parse transform involves copying fragments of the AST and
pasting it to a different place, but as we will show this often creates undesired effects. In
the example 5.7 the variable Test in a tuple and variable Result are used to define a func-
tion call which is compared to the original tuple, as presented in listing 5.8. Since Test is
unbounded in the original program, the compiler will result in a single unbounded variable

8The Lint module reports any warnings and errors for fragments that were not desired by the developer

5.3. PARSE TRANSFORM 81

error. However when performing the transformation our compiler will return an unbounded
variable error twice for Test variable. This creates unnecessary confusion to Erlang pro-
grammers as they should not be aware of any transformation going on behind the scenes.
Clearly the output of the compiler in 5.7 doesn’t make any sense, whereas in 5.7 it correctly
identifies the errors, because we know how the function is defined.

For brevity we only give this relatively simple situation, but more confusing constructs are
often written by the programmers resulting for instance in unclear unused variable warnings.
The next two sections describe known techniques used for avoiding generation of “bad” code.

1 wrong warning (Result) −>
2 {ok , Test} = Result ,
3 ok .
4 %% Erlang ’ s compiler output :
5 %% example . erl : 2 : variable ’Test ’ i s unbound
6 %% example . erl : 2 : variable ’Test ’ i s unbound

Listing 5.7: Example of confusing parse transform transformation that disinforms the
developer about the code

1 wrong warning (Result) −>
2 {ok , Test} == any function (Test , Result) ,
3 ok .
4 %% Erlang ’ s compiler output :
5 %% example . erl : 2 : variable ’Test ’ i s unbound
6 %% example . erl : 2 : variable ’Test ’ i s unbound

Listing 5.8: Real Erlang representation after filtering 5.7 through simple parse transform

5.3.3 Reaching Definitions Analysis

By definition of receive whenever a message arrives and it satisfies the pattern it bounds
any unbounded variables in the pattern to their respective values in the message and agrees
with any bounded variables. In JErlang we substitute the definition of receive with the
call to JErlang ’s solver where multiple definitions of anonymous functions that represent
the patterns in the joins are given as arguments. Since in JErlang ’s implementation we
perform isolated tests only for patterns, without taking into consideration the body of the
join (as described in 5.4), the former would create multiple unused variable warnings by
the compiler. To eliminate this problem we substitute each such variable with a neutral
variable9. However this implementation would be wrong for the latter case, when the variable
is already bounded and testing of the message has to take into account this information.

Therefore we perform a variation of Reaching Definitions Analysis which determines the
number of variable definitions that reach any expression. This allows us to deterministically
distinguish between those two cases. For the patterns’ test functions we leave the original
name for the bounded variables and perform the substitution for the unbounded ones. Listing

9Variable describes a fresh variable, and thus is ignored by the compiler

82 CHAPTER 5. IMPLEMENTATION

5.9 presents a simple definition of the joins in JErlang and an example of test functions that
would be created for it. Clearly without this analysis line 13 would create an unused variable
warning for header {A, Rest}.

1 test receive (Input) −>
2 A = 12 ,
3 receive
4 {ok , Input} and [A, Rest] −>
5 valid
6 end .
7
8 %% Sample patterns ’ tests created for above join
9 receive patterns () −>

10 First = fun ({ok , Input}) −> true end ,
11 Second = fun ([A,]) −> true end ,
12 {First , Second } .

Listing 5.9: Simple joins definition in JErlang and schematic tests for joins patterns’

Reaching Definitions Analysis is easier to perform than in procedural languages (as de-
fined in [31]) due to the functional nature of ErlangȦdditionally we are only interested in
the number of variable definitions (in Erlang it can be either none or 1), rather than the
exact program points as in the classical analysis.

5.3.4 Live Variable Analysis

A different form of analysis is needed, in comparison to 5.3.3, when it comes to transfor-
mation of gen joins code. In gen joins behaviour joins are specified in the header of the
function instead of in the body and hence do not require any past knowledge of the variables.
In 5.4.4 we define an efficient algorithm that performs successive matching on partial joins
and also on status and guards. To avoid the situation described in 5.3.2 and execute the
matching tests on non-linear patterns as soon as possible, we perform a variant of static Live
Variable Analysis. This process enables to determine whether the variable in the partial
joins’ test should be substituted with the neutral one or left unchanged because it used
more than once in the join.

Example 5.10 presents a simple schema that illustrates the process of analysing and
building gen joins tests. For simplicity reasons headers of the functions match on the lists
of patterns. In the example we define three auxiliary functions which decompose the original
handle join joins into consecutive stages. Unbinding the variables that are used only once
prevents the occurrence of multiple unused variable warnings. Similarly leaving the bounded
variables allows for early filtering of the messages that have to agree on the values of the
variables with the same name.

5.3. PARSE TRANSFORM 83

1 handle join ({ f i r s t , A} and {second , A, B} and [B, Result] and {ok , f ina l } ,
2 Status) −>
3 . . .
4 %% Execute action and return new state and repl ies
5
6 %% Example tests generated for partial joins that are
7 %% generated by the JErlang ’ s parse transform
8 f i r s t t e s t ([{ f i r s t , A} , {second , A, }] ,) −>
9 true .

10
11 second test ([{ f i r s t , A} , {second , A, B} , [B,]] ,) −>
12 true .
13
14 third test ([{ f i r s t , A} , {second , A, B} , [B,] , {ok , f ina l }] ,) −>
15 true .

Listing 5.10: Extract from the program implementing gen joins behaviour in JErlang and
schematic tests for joins patterns’

84 CHAPTER 5. IMPLEMENTATION

5.4 Algorithms

Finding a solution to the multiple pattern-matching problem has been the subject of many
research works. The main aim of ours is not to define an algorithm that will surpass all of
the existing ones (for obvious reasons), but rather combining their advantages in order to
produce the most efficient and suitable design for solving joins as they are defined in JErlang.

Currently popular joins implementations in languages like Scala[16] or Polyphonic C#[5]
follow the tradition of the first main Join-calculus implementation in JoCaml [26]. Addi-
tionally in Polyphonic C# messages can be uniquely assigned to the channels on which the
synchronisation is done10. Solving joins in such a system naturally corresponds to build-
ing finite state automata with the sequence of channels’ sizes (current number of messages)
uniquely determining the state. Figure 5.2 adapted from [26] presents a full transition image
that is produced for the fragment of the JoCaml application given in listing 5.11.

1 let Set (number) | Get () = reply number to get
2 and Set (number) | Print () = print int x ; 0
3 ; ;

Listing 5.11: Simple joins definition in JoCaml

Similarly as in Maranget’s work we denote none of the messages in the channel by 0
and at least one message by N. The straight lines of the diagram describe the transitions
performed upon retrieval of the new message to the specific channel, dashed lines inform
of a successful pattern-match applied to the joins. The latter simply decreases the number
of messages in the channels that participate in the synchronisation. Clearly the automaton
represents non-deterministic behaviour because at any given time we can receive a message
on any channel, and (if possible) perform joins reduction. It is possible to force deterministic
behaviour by applying a joins transformation as early as possible and this is what most of
the existing implementations do. Thus retrieval of the messages is only done when joins
matching is not possible.

Finite state automata immediately force some limitations on the joins, which then influ-
ence the extended languages. For instance, Polyphonic C#’s chords can be very efficiently
compiled statically but prevent the usage of non-linear arguments and pattern matching on
arguments as well as restrict the number of synchronous calls to maximally one 11. The
Scala library is much more flexible in terms of the available options. Matching on sequences
of events is performed by transforming the joins into series of nested case statements that
check for all the possible variations of the events in order to fire the join. This does not yet
allow for having non-linear pattern matching, yet the authors also introduce guards where
we can perform standard operations (like equality). Unfortunately, the original paper does
not provide any benchmarks with respect to the performance of Scala joins therefore it is
hard to determine the efficiency of this solution.

10In case of Polyphonic C# we consider function calls also known as chords, whereas in Scala synchroni-
sation is performed on events

11see 2.2.2

5.4. ALGORITHMS 85

000start

N000N0 00N

ONN

S
G P

P

G

S

S

G

P

S

S

S

G P

G P

S S

S S

G,P

Figure 5.2: Non-deterministic transition graph representing joins in JoCaml. G, S and P
stand for Get, Set and Print respectively.

Internally, Scala’s extensible pattern matching [16] is implemented using partial functions
and extractors. Each incoming event is associated with the possible join pattern and using
the partial functions it is determined whether it is valid to enqueue it in the internal buffer
associated with the pattern. In order to perform compound join on the patterns, the events
are extracted and applied to the joins.

In the JErlang implementation we borrow some of the ideas from Scala’s algorithm as
it relates partially to how pattern matching exists in Erlang. However our implementation
brings more freedom to the programmers when building complex join definitions.

5.4.1 Standard

In addition to the previous discussion our algorithm borrows ideas from CHR[36]. The latter
is focused on an efficient solving of transformations for multi-set constraints. We believe
that the key to the adoption of joins in JErlang lies in the adoption of the optimized search
engine, so that the gain in developers’ expressiveness outweights the inevitable performance

86 CHAPTER 5. IMPLEMENTATION

drawback in the general implementation12.

It is important to remember that JErlang provides support for different kinds of joins.
The receive construct and gen joins behaviour present different characteristics that can
be used to create efficient solutions. In the following discussion we make a clear distinction
whenever the implementation is applicable to only ony of the approaches, and you can as-
sume that in general features apply to all our types of joins.

In JErlang ’s receive each of the join’s patterns has an associated test function. Any mes-
sage that is sent to the process is checked by the join patterns’ tests. This is the consequence
of JErlang ’s semantics where a message can match more than a single pattern and ensures
the consistency of our implementation. In the case of joins in receive, which are always
executed in some context, some of the variables used in the test can already be bounded
and functions reflect this state, since they are build at compile time in the same context.
Example 5.9 defines two functions necessary to initially test the join’s patterns.

In our algorithm we use an additional data structure that servers as a cache for storage
and retrieval of the results of the matching. We believe that the overhead associated with
it is acceptable, because we store only the message’s unique index and perform the match-
ing operation less frequently. Some of the implementations that do not store this partial
result suffer from repeated (unnecessary) pattern checking. The standard algorithm follows
the First-Match semantics13. In general terms the basic version of the algorithm for joins
resolution can be described as following:

1. Read the incoming message from the head of the queue and take the first join.

2. Take the list of test functions associated with the join and check the message on each of
the patterns. If the test was successful, store its index in the cache of the corresponding
pattern.

3. If none of the patterns’ caches was updated go to step 6, otherwise go to step 4.

4. Take the final test function associated with the join and run it on all possible permu-
tations of the satisfying messages. Go to step 5 if there is at least one successful run,
or step 6 otherwise.

5. Take the first successful run and associated messages for each pattern. Update the
context to include any previously unbounded variables that existed in the patterns and
run the corresponding join’s body in it.

6. Since the execution of the current join was not successful, update it to the next one
and go to step 2. If the current join is the last one and there are still some messages

12By performance drawback we refer to the personalied solution to the synchronisation problem that can
always be written by the programmer

13see 3.32 for the advantages and disadvantages of this approach

5.4. ALGORITHMS 87

in the queue, update the message pointer and go to step 1, otherwise stall until a new
message arrives to the process.

For simplicity, we do not describe the action to be taken when a timeout action is specified.
This is analogical to the algorithm described already in 5.1.3. In the case of JErlang that
uses the modified VM, step 1 actually corresponds to the search construct.
In the non-VM version we use a standard receive construct that matches any message. In
order to prevent data loss we actually maintain two mailboxes for this case: one with messages
already processed that are stored in the “internal” library queue and the other with those
still awaiting in the VM’s standard mailbox. Obviously any new receive join execution first
goes in order through the messages in the former queue to ensure the expected semantics.
For illustration purposes figure 5.3 presents a schema that follows the basic algorithm to
solve simple joins.

In search we used optimisation, where we order the matching patterns such that the
most specific ones are checked first and the most general ones are at the end, as illustrated
on the example 5.13. This also avoids generating spurious compiler warnings as well as uses
VM’s efficient internal matching mechanism to filter out messages that have no possibility
to succeed. This doesn’t affect the original ordering of the messages, because messages are
not removed until the final join’s fire and the cache information is invalid after the execution
of the expression anyway.

In general, the implementation of gen joins behaviour follows the algorithm defined
above, but there are few additional challenges associated with it. In receive once we find
a successful sequence of the messages that satisfies the join, we immediately execute the
body and reject all gathered information about processed messages. This is because any new
receive will have new join definitions and the cost of checking whether it is the same or at
least similar to the previous one outweights any performance gained. gen joins on the other
hand has joins defined only once, during compile time and there is the possibility of reusing
gathered knowledge. The joins’ solver doesn’t have to repeat the tests for the patterns for
the already parsed messages since successful run of the test-function is independent of other
factors. Another challenge introduced by gen joins is the internal status variable14. Since
execution of the join may have side-effects on its value, joins that previously couldn’t be fired
may now have become successful with the new value for the status variable. This operation
has to be performed immediately after firing a join. Our algorithm takes into account the
possibility of a chain of join actions that does not involve analysis of any new packages (this
agrees with the strategy taken by JoCamlto create deterministic automata).

We found that this intuitive algorithm, although it performs the synchronisation correctly,
is not very efficient. It becomes a bottleneck for applications where a large size of mailboxes
is allowed and joins with many patterns are used. In the next section we further discuss
this problem and in sections 5.4.3 and 5.4.4 present a novel and efficient approach to solving
complex joins in JErlang.

14Status variable allows for the server to maintain internal storage (memory),instead of being a pure
action-reaction client-server design pattern

88 CHAPTER 5. IMPLEMENTATION

{get, 2} {get, 17} {put, 21, 3} [] [] []

item(3) {get, C} and {get, A} and {put, X, Y}

[] []

{get, A} and {put, Z}

{get, 17} {put, 21, 3} [4] [4] []

item(3) {get, 2}(4) {get, C} and {get, A} and {put, X, Y}

[4] []

{get, A} and {put, Z}

{put, 21, 3} [4,5] [4] []

item(3) {get, 2}(4) {get, 17}(5) {get, C} and {get, A} and {put, X, Y}

[4] []

{get, A} and {put, Z}

[4,5] [4] []

item(3) {get, 2}(4)
{get, 17}(5) {put, 21, 3}(6) {get, C} and {get, A} and {put, X, Y}

[4] [6]

{get, A} and {put, Z}

fire join 2

VM mailbox
JErlang mailbox

Cache

read message

Figure 5.3: A general architecture for solving simple receive joins in JErlang for listing
5.12. We are given an initial mailbox for VM and library, internal storage for partial tests’
results and corresponding patterns. Messages inside the JErlang ’s queue are assigned unique
indexes (numbers in brackets). Message item is a “leftover” from previous joins execution,
but since it does not match any of the patterns it is later no longer considered in matching.

5.4. ALGORITHMS 89

1 diagram (A=2) −>
2 receive
3 {get , C} and {get , A} and {put , X, Y} −>
4 . . . %% f i r s t join
5 {get , A} and {put , Z} −>
6 . . . %% second join
7 end .

Listing 5.12: Simple definition of joins available in JErlang used in figure 5.3

1 simple joins () −>
2 receive
3 {read , A} and {book , tolkien} −>
4 borrow book (A, tolkien) ;
5 {read , john} and {magazine , B} −>
6 borrow only to john (B)
7 end .
8
9 %% First stage that uses Erlang ’ s internal matching

10 %% to f i l t e r useless messagess
11 f i r st stage () −>
12 search
13 {read , john}=V −>
14 V;
15 {read , A}=V −>
16 V;
17 {book , tolkien}=V −>
18 V;
19 {magazine , B}=V −>
20 V
21 end .

Listing 5.13: Ordering of patterns in search construct used in the first stage of joins resolu-
tion in receive

5.4.2 State space explosion

As a motivating example for showing the challenges related to the standard algorithm used in
JErlang, we will use the program used for solving the Santa Claus problem6.2. The details of
the problem are irrelevant at the moment. The only important thing that the reader should
take note of is the existence of multiple, identical patterns in the joins. This quite usual
situation will take unacceptably long time to perform using JErlang ’s standard algorithm.
It is easy to create similar problems by sending different messages that match many patterns.

Given the message {reindeer, a} it matches all nine patterns in the first join defined by
receive. Having nine such messages we know that the join can be satisfied. Nevertheless,
our (primitive) algorithm will compute and test all the possible permutations which can take
at least 9! = 362880 test operations. Clearly this is an unacceptable number. This situation
does not arise in Polyphonic C# or Scala due to its syntax limitations.

90 CHAPTER 5. IMPLEMENTATION

5.4.3 Lazy evaluation

It can be easily noticed that the basic algorithm performs unnecessary work related to testing
the messages. We use a better one where instead of performing all possible computations,
it finishes immediately once a successful sequence of messages is found. This significantly
reduces the time necessary to find and fire a matching join. We also implemented techniques
that enable us to prune branches of the search tree which cannot be successful. For instance
this can mean exclusion of sequences where the same message appears more than once.

At this stage of the implementation we believed that there was a fair number of opti-
misations that could be introduced during compile- and run-time in order to increase the
efficiency of our algorithm. One of the examples would include detection of the situation pre-
sented in 5.4.2, where multiple patterns could be satisfied as soon as we receive the number
of messages equal to the number of the join’s patterns. Similarly, we could statically analyse
the code in order to detect patterns that are dependent upon each other and only perform
final tests on those. Instead of working on the optimisations for the joins’ solver immediately,
we decided to focus our efforts on finding the framework that addresses the efficiency issues
for more general cases. Only then the application of the improvements mentioned above
made sense. In the next section we present an algorithm relatively similar to our original
work that, we believe satisfies those conditions.

5.4.4 RETE implementation

The problem of finding pattern-matches is a long standing problem that had already been
considered in the early days of computing15. In order to improve the efficiency of our solver
we borrowed ideas from the RETE algorithm16, even though it relates to a slightly different
discipline. Surprisingly only one existing implementation, HaskellJoinRules[22][23], based
its pattern resolution mechanism on the research in the area of Production Rule Systems.

A fundamental decision that we made in JErlang ’s solver was that it will use a sequential
version of the RETE algorithm. Authors of HaskellJoinRules focused on parallelising their
solution by using a combination of the LEASE algorithm (a derivative of RETE) and a
nowadays popular locking mechanism called Software Transactional Memory (STM). The
most important advantage is the speedup that they can gain when using HaskellJoinRules
on the multicore machines. In the case JErlang, we decided to give higher priority to two
main features that couldn’t be easily satisfied in the former solution:

• The ordering of the joins influences the decision to fire the join i.e. given a situation
when two joins can be fired, the first one that is defined is always executed.

• The order of the messages in the mailbox has to be preserved.

• JErlang has to preserve the fundamental architecture of Erlang, where there is no
shared memory between processes.

15see http://drofmij.awardspace.com/snobol/ and http://en.wikipedia.org/wiki/SNOBOL
16see 2.4.2

http://drofmij.awardspace.com/snobol/
http://en.wikipedia.org/wiki/SNOBOL

5.4. ALGORITHMS 91

In order to parallelise the execution of the solver each of the helper processes would have
to posses either a copy of the master’s mailbox or have a possibility of directly accessing
messages in it. The latter would clearly violate Erlang ’s no-sharing principle and the former
would involve frequently copying a large number of messages, which we believe outweights
the efficiency of parallelism.

It is important to underline the fact that the RETE algorithm creates a reasonable high
memory burden by creating alpha- and beta-reductions in an iterative way. Therefore, the
main implementation of the RETE algorithm was imposed on the gen joins behaviour,
since it can preserve some knowledge after a successful match. The introduction of this al-
gorithm to receive would be a straightforward work, given what we have learned on joins
in gen joins, and was not finished only due to the time constraints we are subjected to.

Alpha-reduction is performed in a standard way by having local test functions for each
of the joins’ patterns. In comparison to RETE, a new message does not run tests on all
of the patterns, but only on those which belong to the currently tested join. This strategy
agrees with our initial algorithm and allows for lazy evaluation of the joins, thus avoiding
unnecessary computation.

Beta-reduction on the other hand is performed by having multiple test functions that
perform partial checks of the joins. Again, we differ here with RETE by not formulating
partial test for the single pattern check to avoid unnecessary computation.

Checking for consistency is performed through the headers matching, since in gen joins
we do not have to take into account the context of the join. Joins of length 1 would have
a single beta function and for joins with n patterns, we produce n - 1 beta functions.
Listing 5.14 presents a handle join function with 4 patterns and 5.15 the corresponding
beta-functions for RETE algorithm.

1 handle join ({operation , Id , Op} and {num, Id , A} and {num, Id , B} and {num,
2 Id , C} ,
3 Status) when (A > B) −>
4 Result = Op([A,B,C]) ,
5 { [{ reply , {ok , Result }} , noreply , noreply , noreply] , [Result |
6 Status] } .

Listing 5.14: Multipattern join in gen joins

1 BetaFunctions =
2 [fun ([{ operation , Id , } , {num, Id , }] ,) −>
3 true
4 end ,
5 fun ([{ operation , Id , } , {num, Id , } , {num, Id , }] ,) −>
6 true
7 end ,
8 fun ([{ operation , Id , } , {num, Id , A} , {num, Id , B} , {num, Id , }] , Status)
9 when (A > B) −>

10 true
11 end .

Listing 5.15: Beta-reduction tests for listing 5.14

92 CHAPTER 5. IMPLEMENTATION

Each of the test functions (alpha and beta) has a corresponding cache memory that stores
indices of messages that satisfy the tests. In case of beta-reductions we store sequences of
indices. The only exception from this is the last beta-reduction function which is always
empty, since its successful run means we found a correct join.

In a straightforward implementation of RETE in JErlang we have to clean up all of the
beta-caches because of the Status variable available in gen joins. The state can be changed
during the execution of the join’s body and any sequences of patterns that were dependent
on it become invalid. There is some place for improvement by detecting if the state has
changed at all and also checking which of the beta-reductions are actually dependent on it.
Our work does not yet support this kind of optimisation and is an interesting subject for
analysis in the future.

Typically messages are to be removed from the mailbox in the joins execution step and
given as arguments to the synchronisation definition. However, the propagated values are
only copied, thus leaving the ordering preserved. In comparison to HaskellJoinRules we do
not introduce any constraints on the sequence of patterns (in HaskellJoinRulespropagation
messages always have to be defined at the beginning of the chord definition). Additionally
HaskellJoinRules support for propagation is done in a primitive way - the library simply
consumes the message and produces it again inside the join’s body. This was a technically
possible, but unacceptable way in JErlang as it would not introduce anything substantial to
the language.

5.4.5 Pruning search space

In order to improve the efficiency of the algorithm we prune branches of the search space that
cannot be satisfied or that are easily satisfiable by some previous branches and determined in
an efficient way. For the latter case we maintain a separate global cache that gathers in the
groups the indices of equal messages. This way we perform computation for one sequence of
values and all other sequences that only permute messages having equal values are simply
pruned. This for instance radically improves the performance of the Santa Claus problem
solution in the gen joins implementation17.

By doing static analysis of the code we can further improve the pruning of “bad” branches.
In the example 5.15 guards and Status variable are applied only to the last test function.
This approach is used in implementations that support guards or similar features. We believe
that this construction insufficiently uses the knowledge about the patterns, because variables
A and B in line 5 already provide information necessary to use the guard A > B. Therefore
a challenging idea is to check, to which earliest beta-function we can apply guards and
additional variables18, so that the filtering of invalid messages does not produce false partial
results. We found this idea especially interesting for the case when JErlang has to handle
very large mailboxes, a situation that is also the Achilles’ heel of Erlang.

17see Appendix D
18[36] provides theoretical background applicable to the CHRand only brief overview of the possible im-

plementation for Haskell

5.4. ALGORITHMS 93

5.4.6 Patterns ordering optimisation

Our final optimisation attempt also relays on the static analysis of the patterns in JErlang
programs. We decided to investigate the dependency between ordering of the patterns and
efficiency of the joins solver, especially in the context of the RETE algorithm. A similar ap-
proach was taken in [18], where the authors focused on optimizing compilation of Constraint
Handling Rules. Their research also includes other possibilities not applicable to JErlang.
Unfortunately the paper evaluates the impact of all factors and it is hard to determine how
ordering on its own improves the performance. We believed that the order of the patterns
JErlang ’s joins is an important factor that could improve the usability of our language. Es-
pecially appealing is the fact that we perform the analysis during compilation, so we gain a
run-time performance boost.

As a motivating example, we consider listing 5.17 with multiple patterns that could
represent joins defined by a typical programmer. Obviously, the efficiency of the joins solver
must not require from the developer to create patterns in the order that is most efficient, but
rather most convenient. It is important to remember that each partial set of patterns from
the joins increases the time to solve them. The idea behind the optimisation is to abort the
incorrect sequence of messages as soon as it is possible. Example 5.17 gives a transformed
handle join function that, we believe, would perform better in our implementation due
to the non-linear dependencies between the patterns as well as the existence of dependent
variables in the guards and status. This feature is crucial for the matching against larger
number of messages and/or patterns as we store an increasing number of partial results.

1 handle join ({value , B} and [#product{name=A, price=C} |]
2 and {ok , size , D} and {range , C, E} and {value , A} ,
3 {dict , D}) when (A < E) −>
4 %% Perform some computation
5 Reply = . . .
6 NewD = . . .
7 { [noreply , noreply , {reply , Reply} , noreply , noreply] , {dict , NewD}}

Listing 5.16: Multiple-pattern joins in gen serverwith interdependecies using JErlang

1 handle join ([#product{name=A, price=C} |] and {value , A}
2 and {range , C, E} and {ok , size , D} and {value , B} ,
3 {dict , D}) when (A < E) −>
4 %% Perform some computation
5 Reply = . . .
6 NewD = . . .
7 { [noreply , noreply , noreply , {reply , Reply} , noreply] , {dict , NewD}}

Listing 5.17: Improved layout of Multiple-pattern joins in gen serverwith interdependecies
using JErlang of the 5.17 example

The algorithm analyses the structure of each pattern and assigns a rank to each of
them, depending on the number of variables that it shares with other patterns. We also
take into account the existence of variables inside guards and the status parameter. The
optimisation selects the pattern with the highest rank and follows with inclusion of the
dependent patterns in a recursive way. In order to be consistent, the algorithm transforms

94 CHAPTER 5. IMPLEMENTATION

accordingly the order of the (a)synchronous replies to the calls at the end of the handle join
method. The latter introduces only two lines of code that return the new ordering of replies
to the gen joins internals. We cannot perform an exact static transformation on the last
part because programmers might use more complicated constructs like list comprehensions
in order to create the reply, instead of manually creating the list. Our optimisation does not
perform any code transformations once it detects that the original ordering is optimal.

Chapter 6

Evaluation

Introducing new features to the language is often hard as programmers may doubt their
usefulness or complain about the performance. JErlang is no exception to this rule and as
an additional challenge Erlang has a large community of programmers and architects with
a very conservative mindset. In this chapter we present situations where the join semantics
is more natural to express the programming problems than previous approaches.

6.1 Correctness

Before attempting to implement any of the language features presented in 4.2 we designed a
set of test suits that enable us to check the correctness of the joins behaviour. Altough there
can never be, enough test-cases, we do believe that those we provide is extensive enough to
say that it works as expected. Listing 6.1 gives a feeling of the type of functionality tests
that can be run on JErlang(defined in jerlang tests).

1 . . .
2 test timeout () −>
3 io : format (” S ta r t i ng timeout t e s t . . . ˜ n” , []) ,
4 clear mailbox () ,
5 ok = receive
6 −>
7 error
8 after 0 −>
9 ok

10 end ,
11
12 s e l f () ! { foo , 1} ,
13 s e l f () ! { foo , 2} ,
14
15 ok = receive
16 {bar , X , Y} −>

95

96 CHAPTER 6. EVALUATION

17 error ;
18 { foo , 3} −>
19 error
20 after 1000 −>
21 ok
22 end ,
23 B = −100,
24 ok = try
25 receive
26 −>
27 error
28 after B −>
29 error
30 end
31 catch
32 exit :{ error , { invalid timeout , }} −>
33 ok
34 end ,
35
36 Self = s e l f () ,
37 spawn(fun () −>
38 timer : sleep (1000) ,
39 Self ! { foo , bar , 100}
40 end) ,
41 %% TODO: better ranges checking?
42 ok = receive
43 {X, Y, Z} −>
44 X = foo , Y = bar , Z = 100 , ok
45 after 3000 −>
46 error
47 end ,
48
49
50 test guards () −>
51 io : format (” S ta r t i ng guards t e s t . . . ˜ n” , []) ,
52 clear mailbox () ,
53
54 s e l f () ! { foo , 12 , 14} ,
55 s e l f () ! {bar , invalid } ,
56 s e l f () ! f inal ,
57 ok = receive
58 { foo , X1, X2} and {bar , } when (X1 > 20) −>
59 error ;
60 { foo , X1, X2} and {bar , } when (X1 < 20) −>
61 ok
62 end ,
63 . . .

Listing 6.1: Extract from tests module

The usage of the macro in line 3 ensures that non-VM and VM implementations have
to pass the same number of tests, and the only difference to the programmer in the code is
the name of the transformation module (the latter obviously requires the patched version of
R12B-5 Erlang release). This ensures the stability of the extension as a complete package.

6.1. CORRECTNESS 97

Apart from testing the standard receive construct, we provide additional examples for
gen joins Open Telecom Platform. Those are defined in separate modules whose names
start with jerlang gen joins test , and the module jerlang gen joins test main provides
automated execution that creates processes and checks the synchronisation patterns by call-
ing asynchronous and synchronous functions.

Unfortunately, we were not able to get access to the test-suite that could have been
used to extensively check the stability of our VM behaviour. The most likely reason is that
the Ericsson team still pursues the closed-source policy in this matter (we doubt that they
were able to produce this system without a consistent test-suite for the Erlang ’s Virtual
Machine). Nevertheless, compiling the run-time of JErlang from source doesn’t cause any
segmentation faults nor unexpected errors, and any invalid accesses would crash the compiler.
Additionally we ran JErlang on a popular AMQP1 project, RabbitMQ2 entirely written in
Erlang, and the system remained stable for a long period of time, while exchanging messages.

To separately check the functionality of our new BIF s and cooperation between search
and receive constructs we also provide test-suits. Those are located in the module jer-
lang tests vm are defined in a similar style as 6.1.

It can be seen that the examples 6.1 present a more deterministic behaviour where we
know the ordering of the messages. Apart from that in all our tests, we have also scenarios
where we spawn new processes that typically sleep for some normally distributed amount
of time and then send messages, thus creating a non-deterministic environment. Our joins
handle these cases as expected.

A number of small applications were created including:

• Santa Claus problem (numerous variants)

• Dining philosophers problem

• Multiple reader, single writer problem

• Chat-system

• Distributed calculator

• Wide-finder challenge3

Some of those examples are used in the following sections in order to better understand
the applicability of JErlang.

1Advanced Message Queueing Protocol http://www.amqp.com
2http://www.rabbitmq.com
3http://www.tbray.org/ongoing/When/200x/2007/09/20/Wide-Finder

98 CHAPTER 6. EVALUATION

6.1.1 Dialyzer

In our implementation we followed a general practice to define optional type system defi-
nitions called specs. Commonly, Erlang developers do not provide definitions for all of the
functions but only those which are exported from the modules. Dialyzer then is able to per-
form static analysis of the code which in our case helped to remove a few redundant matching
patterns. We believe that our specs have increased the maintainability factor of the whole
library, because the parameters of our JErlangfunctions are often non-trivial4.

6.2 Language and expressiveness

This aim of this section is to analyse the degree to which our extension allows for more
freedom to Erlang programmers.

6.2.1 Santa Claus problem

First defined by Trono in [39], this problem is an extension of a typical semaphore problem
and serves as a good test of how expressive a language is in terms of solving concurrency
- synchronisation problems. Ironically the solution originally provided by Trono along with
the paper proved not to be entirely correct, which shows how the problem actually is.

Definition 6.1 (Santa Claus problem). Santa Claus sleeps at the North pole until awakened
by either all of the nine reindeer, or by a group of three out of ten elves. He performs one of
two indivisible actions:

• If awakened by the group of reindeer, Santa harnesses them to a sleigh, delivers toys,
and finally unharnesses the reindeer who then go on holidays.

• If awakened by a group of elves, Santa shows them into his office, consults with them
on toy R&D, and finally shows them out so they can return to work constructing toys.

A waiting group of reindeer must be served by Santa before a waiting group of elves. Since
Santas time is extremely valuable, marshaling the reindeer or elves into a group must not be
done by Santa.

Many solutions were proposed, typically using constructs like semaphores (or similar),
but since Join-calculus it became obvious that these problems could be more elegant. For
instance [7] shows a Polyphonic C# implementation. We will compare the reasonable solution
provided by Richard A. O’Keefe 5 in Haskell and Erlang with the one written in JErlang.
We provide the former for reference in the Appendix D.

All of the existing joins-inspired solutions seem to treat the Santa Claus problem as
a variation of two unbounded buffers, that can be fired when they acquire necessary size.
We provide a solution in this style in D.2, but we believe that such attempt is against the

4This is obviously not a result of badly designed library, but the complexity of the patterns
5http://www.cs.otago.ac.nz/staffpriv/ok/santa

6.2. LANGUAGE AND EXPRESSIVENESS 99

programmers’ intuition. Listing 6.2 presents a minimised version of the Santa Claus problem,
that wasn’t described by any of the existing implementations - in fact such combination is
prohibited in most of them.

The example 6.2 has a minimally smaller number of lines than the Erlang solution in D.1
and much less than the solution provided in Polyphonic C#. However the main advantage
of our solution is the ability to express joins in lines 13-23 and as such the code is much less
error prone. With JErlang we are simply able to say: ”Synchronise on 9 reindeer or 3 elves,
with the priority given to the former”. The priority is described here in the most obvious
way (lines 14-16 and 20), instead of providing obscure hacks that are hard to maintain (lines
51-58).

The main drawback of this join definition would be a situation when we want to synchro-
nise on a larger number of patterns, say 100 reindeer. Although such an implementation is
possible in JErlang it is obscure. It is important however to remember that Join-calculus
wasn’t designed with such cases in mind, and specialised algorithms will always perform
much better in is such scenarios.

We produced a variation on the Santa Claus problem that we call Sad Santa Claus,
where we want to include orks that destroy the presents. Synchronisation requires 3 orks
to fire but there is a restriction that one of the orks has to be “captain”. We provide a
detailed description and solution in Appendix D.2. Obviously there can be many other
synchronisation patterns that closely relate to real applications. This example shows the
power of JErlang when matching against multiple complicated patterns, which we still found
it hard to express in other Join-calculus implementations.

6.2.2 Dining philosophers problem

Definition 6.2 (Dining philosophers problem6). Five philosophers are sitting at a table and
doing one of two things: eating or thinking. While eating, they are not thinking, and while
thinking, they are not eating. The five philosophers sit at a circular table with a large bowl
of spaghetti in the center. A fork is placed in between each philosopher, so each philosopher
has one fork to his or her left and one fork to his or her right. As spaghetti is difficult to
serve and eat with a single fork, it is assumed that a philosopher must eat with two forks.
The philosopher can only use the fork on his or her immediate left or right.

Philosophers’ problems has been discussed and implemented with so many variants in
many languages so we are not trying to convince ourselves that our solution is better than
others. Our aim was to investigate how intuitive the solution written in JErlang could be.
For evaluation we compare it with a solution written entirely in standard Erlang7. In terms
of lines of code, the core solution has been reduced from around 100 lines to less than 30.
We believe that the JErlangsolution is more readable and provides less possibilities for race
conditions. Example 6.3 uses a strategy where the waiter serves as the synchronisation point
between the philosophers. In order to eat, they first make an order to the waiter and wait for
the forks to be brought. The waiter is able to handle the order whenever the join in line 29 is

6see http://en.wikipedia.org/wiki/Dining_philosopher’s_problem
7see http://rosettacode.org/wiki/Dining_philosophers#Erlang

http://en.wikipedia.org/wiki/Dining_philosopher's_problem
http://rosettacode.org/wiki/Dining_philosophers#Erlang

100 CHAPTER 6. EVALUATION

1 −module(jerlang santa claus minimal) .
2 −export ([start / 0]) .
3
4 −i fde f (use joins vm) .
5 −compile ({parse transform , jerlang vm parse }) .
6 −else .
7 −compile ({parse transform , jerlang parse }) .
8 −endif .
9

10 santa () −>
11 io : format (” I t was a long night . Time to bed˜n”) ,
12 Group =
13 receive
14 {reindeer , Pid1} and {reindeer , Pid2} and {reindeer , Pid3}
15 and {reindeer , Pid4} and {reindeer , Pid5} and {reindeer , Pid6}
16 and {reindeer , Pid7} and {reindeer , Pid8} and {reindeer , Pid9} −>
17 io : format (”Ho , ho , ho ! Let ’ s d e l i v e r p r e s en t s ! ˜ n”) ,
18 [Pid1 , Pid2 , Pid3 , Pid4 ,
19 Pid5 , Pid6 , Pid7 , Pid8 , Pid9] ;
20 { el f , Pid1} and { el f , Pid2} and { el f , Pid3} −>
21 io : format (”Ho , ho , ho ! Let ’ s d i s c u s s R&D p o s s i b i l i t i e s ! ˜ n”) ,
22 [Pid1 , Pid2 , Pid3]
23 end ,
24 [Pid ! ok | | Pid <− Group] ,
25 santa () .
26
27 worker (Santa , Type , Id , Action) −>
28 generate seed (Id) ,
29 worker1 (Santa , Type , Id , Action) .
30
31 worker1 (Santa , Type , Id , Action) −>
32 receive after random : uniform (4000) −> ok end ,
33 Santa ! {Type , s e l f ()} ,
34 io : format (”˜p ˜p : Waiting at the gate ˜n” , [Type , Id]) ,
35 receive ok −> ok end ,
36 io : format (”˜p ˜p : ˜p˜n” , [Type , Id , Action]) ,
37 worker1 (Santa , Type , Id , Action) .
38
39 generate seed (Seed) −>
40 {A1, A2, A3} = now() ,
41 random : seed (A1+Seed , A2∗Seed , A3) .
42
43 start () −>
44 Santa = spawn(fun () −> santa () end) ,
45 [spawn(fun () −> worker (Santa , reindeer , I , ” d e l i v e r i n g toys .\n”) end)
46 | | I <− l i s t s : seq (1 , 9)] ,
47 [spawn(fun () −> worker (Santa , el f , I , ” meeting in the study .\n”) end)
48 | | I <− l i s t s : seq (1 , 1 0)] .

Listing 6.2: Minimal Santa Claus solution in JErlang

6.2. LANGUAGE AND EXPRESSIVENESS 101

satisfied, i.e. at the given time he has the left and right fork (in his “kitchen”). Philosophers
receive the forks, eat and once finished return the forks to the waiter.

1 −module(jerlang philosophers2) .
2 −export ([philosopher /3 , waiter /2 , test / 0]) .
3
4 −compile ({parse transform , jerlang parse }) .
5
6 philosopher (Number, Name, Waiter) −>
7 philosopher think (Name) ,
8 Waiter ! {order , s e l f () , Number} ,
9 {F1 , F2} =

10 receive
11 { forks , Left , Right} −>
12 {Left , Right}
13 end ,
14 philosopher eat (Name) ,
15 Waiter ! { fork , F1} ,
16 Waiter ! { fork , F2} ,
17 philosopher (Number, Name, Waiter) .
18
19 philosopher eat (Name) −>
20 io : format (” Phi losopher ˜p ea t s . . . ˜ n” , [Name]) ,
21 timer : sleep (random : uniform (1 0 0 0)) .
22
23 philosopher think (Name) −>
24 io : format (” Phi losopher ˜p th inks . . . ˜ n” , [Name]) ,
25 timer : sleep (random : uniform (1 0 0 0)) .
26
27 waiter (Name, Size) −>
28 receive
29 {order , Phil , Number} and { fork , Left} and { fork , Right}
30 when ((Left − 1) rem Size) == Right −>
31 Phil ! { forks , Number, (Number −1) rem Size}
32 end ,
33 waiter (Name, Size) .
34
35 test () −>
36 Size = 10 ,
37 W = spawn(?MODULE, waiter , [adam, Size]) ,
38 [spawn(?MODULE, philosopher , [Id , Id , W]) | | Id <− l i s t s : seq (1 , Size)] ,
39 [W ! { fork , Id} | | Id <− l i s t s : seq (1 , Size)] ,
40 receive
41 ok −>
42 nothing
43 end .

Listing 6.3: Minimal solution to dining philosophers’ problem in JErlang

Admittedly, the most beautiful code solving the dining philosophers in JErlang would
involve distributed joins. Each fork could then be a separate channel and the joins would
synchronise the calls to the pairs of left and right forks. A similar idea is presented in a no
longer maintained VODKA[33] programming language that supported distributed joins.

102 CHAPTER 6. EVALUATION

6.3 Scalability

Joe Armstrong defined a challenge that is supposed determine the degree of concurrency of
the language8:

• Put N processes in a ring

• Send a simple message round the ring M times

• Increase N until the system crashes

Clearly, the problem is biased towards Erlang due to its ability to create large number
of lightweight processes. Also in the original form it is more useful for testing the languages
that introduce the concept of actors. The problem is artificially constructed and does not
really reflect the challenges of the real world applications. Nevertheless, we decided to adapt
this challenge to our extension in a following way:

• Put N processes in a ring.

• Associate each process with three consecutive neighbors.

• Send synchronisation messages to the last two neighbors and the main, simple message
to the first neighbor.

• Each process performs join on the main message and the two synchronisation messages
coming from two different processes.

• The main message needs to be sent in M rounds.

• Increase N until the system crashes.

• Increase M to see how long does it take to process the message.

The point that we were trying to investigate was how joins behave under heavy load.
It often happens that libraries that work well for small problems behave completely unex-
pectedly for bigger problems. Our modified problem has to handle an increased number
of messages in the VM (each process sends 2 more messages) as well as run the joins. To
simulate the real situation we introduce random distributed delays (between 1 and 1000
milliseconds) for the processes.

Figure 6.2 presents the result of running the modified Joe Armstrong’s challenge in JEr-
lang without the support from VM changes. As we can see the system remains in a relatively
stable state and there are no sudden peeks in the performance of the test. Although we do
not show on the figure, the system remains stable up to around 45 000 to 50 000 processes
running concurrently with synchronisation, when it eventually crashes9. This result remains

8see http://ll2.ai.mit.edu/talks/armstrong.pdf for the original definition of the problem
9The results vary depending on the version of Erlang, the operating system, the available memory, CPU

etc.

http://ll2.ai.mit.edu/talks/armstrong.pdf

6.3. SCALABILITY 103

2

16

5

4 3

Main message

Process

Figure 6.1: Variation on Joe Armstrong’s challenge. Each process sends two asynchronous
messages to neighbours (dashed lines) and enters join patterns that consist of the main
message (sending represented by solid lines), and two synchronisation patterns received from
neighbours (on its left)

consistent with other experimental Actor implementations like AiR10 or STAGE11. Obvi-
ously the execution time of our solution is larger due to the increased number of messages
and synchronisation.

Figure 6.3 shows the results of running the same set of tests on the same challenge, but
using also the VM changes that we implemented for JErlang. Not surprisingly this version
gives much better results for a large number of processes and rounds of the message circulation
than the previous attempt. We believe that this is also another indicator of usefulness of
implementing VM-accelerated joins. We predict that the increase in the performance would
be even bigger if the joins were fully implemented using BEAM instructions. Since the
join operation is performed in sequence we decided to modify the problem even further, by
introducing deliberate delays between the sending of messages and receiving. Obviously,
the non-determinism of delays excludes measuring the time as a correct metric, but it was
interesting to see whether the system remains stable for large number of processes.

The results reassure that the decision to support joins using the changes inside the VM
was correct, because it keeps the system stable and performs the join calculations in a much
quicker way. It is important to note that our test is biased towards rather small mailboxes
and does not reflect all the situations that can happen12.

10see http://www3.imperial.ac.uk/pls/portallive/docs/1/45405697.PDF
11see http://www.doc.ic.ac.uk/teaching/projects/report-10.pdf
12see 6.4.4 for further discussion

http://www3.imperial.ac.uk/pls/portallive/docs/1/45405697.PDF
http://www.doc.ic.ac.uk/teaching/projects/report-10.pdf

104 CHAPTER 6. EVALUATION

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000 25000 30000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Number of processor participating in the challenge

2 rounds
4 rounds
8 rounds

16 rounds
32 rounds
64 rounds

128 rounds

Figure 6.2: Performance of modified Joe Armstrong’s challenge with synchronisation between
multiple processes in non-VM JErlang

6.4 Performance

In the previous section we have noticed a significant boost in the VM-supported JErlang.
Now we want to focus more on the advantages and disadvantages of both approaches (non-
VM and VM JErlang) by comparing the performance in different scenarios.
We will also outline the impact of our optimisations on the overall state of the implementa-
tion.

6.4.1 Small mailboxes with quick synchronisation

In order to compare the non-VM and VM supported JErlang we developed a new gen joins
version of the Santa Claus problem as given in the Appendix D. The implementation presents
the same possibilities as example 6.2 with an additional synchronisation at the point when
animals finish their work with santa i.e. all elves have discussed R&D possibilities and all
reindeer delivered presents and are free to go on holiday13.

Figure 6.4 presents an average time of execution of the Santa Claus problem in a standard
version of Erlang, JErlangwith and without the VM support. Clearly the time execution of
the simulation increases linearly with the number of required synchronisations. The execution
of the program in the VM-supported JErlang surprisingly performs on average similarly as
the non-VM version. This underlines the fact that the speedup that we would expect in this
situation (as in section 6.3) is not as big. It is interesting that the JErlang implementation

13see D.2 for details

6.4. PERFORMANCE 105

 0

 20

 40

 60

 80

 100

 120

 140

 0 5000 10000 15000 20000 25000 30000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Number of processor participating in the challenge

2 rounds
4 rounds
8 rounds

16 rounds
32 rounds
64 rounds

128 rounds

Figure 6.3: Performance of modified Joe Armstrong’s challenge with synchronisation between
multiple processes in VM-accelerated JErlang. Note different scale in comparison to previous
results

is faster than the one implemented using usual Erlang. This is most probably a result of
some of the optimisations that we do during the code analysis.

6.4.2 Queue size factor in joins synchronisation

One of the main culprits of slow performance in Erlangapplications, apart from possibly bad
design, are large process mailboxes. Scanning the mailbox in search for the message that sat-
isfies a pattern is an expensive operation already with the original language14. Unfortunately,
this also seems a bad case for our implementation of joins, or actually any implementation
that allows for as much freedom as JErlang. In order to check the behaviour of our pat-
terns solving algorithm, which does a reasonably large amount of work behind the scenes,
we designed tests that increasingly build up the mailbox and in which the synchronisation
messages are sent randomly. To get proper results our randomisers use a known seed and we
get consistent and pseudo-random15 numbers.
Appendix E presents a gen joins module used for creating such environment. It is important
to note that we define two main join patterns which share the synchronous message notify.
Our tests measure the number of times the synchronous messages are replied in a limited
amount of time. The number of processes that constantly send asynchronous messages is
relatively large, and the diagrams reflect the effect of increasing this number on the overall

14see for example at http://www.lshift.net/blog/2007/10/01/too-much-mail-is-bad-for-you
15see http://erlang.org/doc/man/random.html for details on random module

http://www.lshift.net/blog/2007/10/01/too-much-mail-is-bad-for-you
http://erlang.org/doc/man/random.html

106 CHAPTER 6. EVALUATION

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

The minimal number of reindeer or elves synchronisations

Erlang solution
JErlang solution non-VM
JErlang solution with VM

Figure 6.4: Execution of the Santa Claus problem in gen joins, implemented on standard
Erlang as well as JErlang with and without VM support. The problem artificially limits the
synchronisation to measure the correct time

performance of the joins solver16.
The benchmark artificially throttles the execution of the processes by putting them into
“sleep” for a randomly distributed amount of time from 0 to 1000. We introduce this delay
for each process after successful send of the message (either synchronous or asynchronous) to
simulate the pseudo-non-deterministic behaviour of the environment. It is therefore impor-
tant to note that this scenario is created artificially, yet we believe that it presents interesting,
close to real, situations.

Figure 6.5 presents rather disappointing performance results, where the number of pro-
cesses sending the synchronous messages is equal to 10 and the number of synchronisation
actions reduces drastically as the number of messages increases (with a larger number of
processes sending asynchronous messages). The sudden peak in the number of synchronisa-
tion actions happens due to the relatively small number of processes creating asynchronous
messages. The joins solver is able to handle quite efficiently the situation when messages
do not hit the mailbox at a lower rate. The performance drops even though the messages
match the correct patterns and pass the partial tests. However notify messages happen less
frequently (in comparison to the size of the mailbox) and many of the final beta reductions,
which are computationally quite expensive operations, will fail.

In figure 6.6 we increased the number of processes creating synchronous notify messages
(necessary to fire any join). It can be seen that sudden peeks in successful joins reduce again

16In an ideal situation an increase in the number of synchronous call would linearly increase the number
of successful joins actions

6.4. PERFORMANCE 107

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40 45 50 55

N
um

be
r

of
 s

yn
ch

ro
ni

sa
tio

n
po

in
ts

 s
ol

ve
d

by
 J

E
rla

ng

Rate of the number of processes sending asynchronous messages that flood the mailbox

10 seconds
20 seconds
40 seconds
60 seconds

120 seconds

Figure 6.5: Effect of increasing the number of processes producing asynchronous messages
on the amount of synchronisation points that the joins solver is able to analyse in a given
amount of time. The number of processes creating the synchronous messages is 10.

later due to the increase in the size of the mailbox and the number of computations that
have to be done each time a message is received.

For comparison we also include figure 6.7 which presents the results of matching in
a benchmark similar to the previous ones, with the exception of processes that used to
create messages solely directed for the second join. This creates a situation where we have
much lower network load and the mailbox remains smaller than in previous scenarios). We
believe that our experiments suitably predict the behaviour of the joins, where patterns are
inherently dependent upon each other.

Our tests were performed on the non VM-accelerated version of JErlang and the one
with VM changes included gives similar results. As we have later found out the fact that the
code is compiled using our optimisation for joins ordering and therefore the real ordering of
patterns in the joins is significantly different, is very important. We discuss this influence on
the drop in the performance of our joins in the next section.

6.4.3 Influence of joins ordering on the performance

Our ordering optimisation was originally focused on improvement of large joins. We have
designed a few evaluation tests where biased, complex joins are hammered by the messages
that match the first patterns. Without the ordering the performance drops quite radically
and contributes to the problem of large numbers of comparisons done for the beta reduc-
tions. With the ordering optimisation on, the memory burden is reduced and joins are

108 CHAPTER 6. EVALUATION

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40 45 50 55

N
um

be
r

of
 s

yn
ch

ro
ni

sa
tio

n
po

in
ts

 s
ol

ve
d

by
 J

E
rla

ng

Rate of the number of processes sending asynchronous messages that flood the mailbox

10 seconds
20 seconds
40 seconds
60 seconds

120 seconds

Figure 6.6: Effect of increasing the number of processes producing asynchronous messages
on the amount of synchronisation points that the joins solver is able to analyse in a given
amount of time. The number of processes creating the synchronous messages is 40.

resolved quicker. We do not produce any numerical results as they represent the predictable
improvement.

Nevertheless we were initially surprised when we ran the benchmark from the previous
section on the code that was compiled with the joins ordering optimisation turned off. For
clarity listing 6.4 presents the definition of the module as stated in the code and listing 6.5
presents the real order of patterns after the compiler’s optimisation.

1 handle join (notify and #packet{value=V1, id=Id} and {buy , Id , , Previous } ,
2 State) −>
3 { [{ reply , {ok , buy , Id}} , noreply , noreply] , State − V1} ;
4 handle join (notify and {deposit , V1} and #packet{value= , id=Id}
5 and {secure , Id , } , State) −>
6 { [{ reply , {ok , se l l , Id}} , noreply , noreply , noreply] ,
7 State + (V1) } ;

Listing 6.4: Joins definition in gen joins from example E.1 as defined by the programmer

6.4. PERFORMANCE 109

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40 45 50 55

N
um

be
r

of
 s

yn
ch

ro
ni

sa
tio

n
po

in
ts

 s
ol

ve
d

by
 J

E
rla

ng

Rate of the number of processes sending asynchronous messages that flood the mailbox

10 seconds
20 seconds
40 seconds
60 seconds

120 seconds

Figure 6.7: Effect of increasing the number of processes producing asynchronous messages
on the amount of synchronisation points that the joins solver is able to analyse in a given
amount of time. The number of processes creating the synchronous messages is 40. In
comparison to 6.6 the test doesn’t produce messages that are strictly related to the second
join. This lowers the network load and the size of the process’ mailbox

1 handle join(#packet{value=V1, id=Id} and {buy , Id , , Previous} and notify ,
2 State) −>
3 { [noreply , noreply , {reply , {ok , buy , Id }}] , State − V1} ;
4 handle join(#packet{value= , id=Id} and {secure , Id , } and {deposit , V1}
5 and notify , State) −>
6 { [noreply , noreply , noreply , {reply , {ok , buy , Id }}] ,
7 State + (V1) } ;

Listing 6.5: Optimised join definition in gen joins from example E.1

Knowing how the beta reductions for joins are built we can better understand the origins
of the low performance presented in the previous section. We consider only the first join, the
situation for the second is the same. The first beta reduction test in the first example checks
two patterns: notify and #packet{value=V1, id=Id}. Since the former is received less
frequently, in almost all cases by the time the notify message is processed we can easily find
a successful sequence of messages.
For the second example however notify pattern is only in the last beta reduction test and
joins solver spends a lot time performing computations that will often fail due to the infre-
quent notify messages.

Figures 6.8 presents results of our benchmark with the joins ordering turned off. There-
fore we managed to show that changing the order of patterns in joins, where joins solver

110 CHAPTER 6. EVALUATION

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35 40 45 50 55

N
um

be
r

of
 s

yn
ch

ro
ni

sa
tio

n
po

in
ts

 s
ol

ve
d

by
 J

E
rla

ng

Rate of the number of processes sending asynchronous messages that flood the mailbox

10 seconds
20 seconds
40 seconds
60 seconds

120 seconds

Figure 6.8: The effect of turning off the joins ordering optimisation on the overall performance
of the 6.5 benchmark. Note the different scale used between the two figures.

implements RETE algorithm, can lead to unsatisfactory performance. Nevertheless it is im-
portant to remember that optimisation is a useful in some scenarios. By default we turned it
off, however JErlang ’s library can be simply recompiled with the ordering on flag in order
to turn it on. We leave it to the programmer to observe the different behaviour and decide
which one is better on a case by case basis.

6.4.4 Standard queues vs hash-map accelerated queues

The empirical results have shown that the difference between using non-VM JErlang and
a hash-map data structure inside VM is negligible for small mailboxes. However the latter
handles larger mailboxes with frequent joins partial tests more efficiently. We have not
managed to produce any reasonable benchmark that would solely test this optimisation
simply because of lack of time. An interesting subject for future research would be to
investigate the effect of other data structures for JErlang ’s mailbox17.

6.5 Applications

The presented examples have shown the advantages and disadvantages of using joins in small
problems. In order to fully evaluate the capabilities of the JErlang extension it is necessary
to look at real examples where it would be useful. Surprisingly, one of the hardest things
in our work was to find bigger problems that could be expressed using JErlang in a more

17Possibly the standard Erlang could also gain from such research

6.5. APPLICATIONS 111

P2

P1

P3

Nata Exchange Queue 3

Queue 2

Queue 1

Queue 4

Queue 5

S2

S1

S3

Producers Consumers

Figure 6.9: Overview of the NataMQ architecture

elegant way. We present two minimised examples that show some of the applicability of joins.

6.5.1 Message routing system with synchronisation on messages

Our main application is inspired by the successful open-source product RabbitMQ18. It is an
implementation of Advanced Message Queuing Protocol(AMQP)19, an emerging standard for
high performance messaging. RabbitMQ is fully written in Erlang and thanks to its stability
and performance has a growing community of users. Our initial attempt was to find a way
to incorporate JErlang semantics into the application, but we decided that it would be hard
to isolate parts of the system.
Therefore we implemented our own, AMQP -inspired implementation with a minimal set of
basic concepts taken from the protocol. Figure 6.9 presents a simplified architecture of our
routing-oriented system, that we called NataMQ.

We base our example on a typical producer-consumer schema, with additional semantics
that are implemented in the Nata Exchange:

• Producers send messages independently to the Nata Exchange. Every message should
contain a routing key, an id and a value.

18http://www.rabbitmq.com
19http://www.amqp.org

112 CHAPTER 6. EVALUATION

• Each Nata Exchange has a set of Nata Queues associated with it.

• Consumers can request the creation of Nata Queues and define routing algorithms to
be used when receiving messages with specific keys.

• Nata exchange, apart from using other JErlangfeatures, defines the synchronisation on
messages that it receives from the consumers.

• The exchange allows for creation of routing rules that synchronise two or three messages
with the same routing key.

• Messages are only passed to the queues when the routing definition on the key is defined
and the join definition is successful.

• Consumers receive messages from the Nata Queues to which they are subscribed.

The critical part of our implementation of NataMQ is the synchronisation on messages,
which are only passed to the queues when the conditions are satisfied. AMQP defines dif-
ferent types of routing for the messages, and we felt that our minimised version nicely fits
into the general protocol image. We only provide two types of routing, but the real power of
our messaging system lies in its extensibility. Programmers using JErlang could easily adapt
the routing strategies to their needs, which makes the system customisable. For instance,
any message can be passed to the queues, when it synchronises with the respective control
message that caries necessary privileges to publish the original one.

In the traditional system it is the programmers’ responsibility to define the logic for re-
trieving the messages, the algorithms for finding matches between the necessary messages
etc. We believe that the JErlang solution helps in the general maintenance of the problem.

Currently, the producers and consumers are only written in Erlangand exchange the mes-
sages using VM infrastructure. Time restrictions didn’t allow us to write Scala or Python
libraries that would subsume their roles and communicate with the NataMQ through stan-
dard TCP/IP sockets (altough this is irrelevant from the perspective of testing the usability
of JErlang).

6.5.2 Chat system

A typical chat system would be written using the client-server model. Thanks to gen joins
behaviour we can implement a minimised chat applications that specifically uses JErlang
features to maintain and manipulate the state of the system. It is important to notice that
our implementation does not introduce any functionality that would not be expressible in the
traditional Erlangbut synchronisation scenarios are much easier to understand. The listing
of the code is given in the Appendix C.

In order for the client to send messages, he has to first log-in to the system. Any mes-
sages sent to the system are routed to all the users currently available. But users have the
opportunity to create private chat rooms for having non-public conversation.

6.6. CONCLUSION 113

The server maintains the list of all users currently available, each action requires authen-
tication check. The creation of private chat rooms is allowed by awaiting for the mutual
agreement between the two users. These are expressed in terms of synchronous call to func-
tion private channel and we use the barrier pattern in order to wait for the corresponding
message (line 50). The state of the private channel is persisted through the propagation that
needs synchronisation with any message sent to the private channel. When any of the users
requests to close the room, we synchronise on the message as well as the room number. This
uses a typical style of propagation, where messages can be treated as session indicators.

We can see here the advantage of having a sequential joins execution property in order to
avoid writing spurious join definitions (lines 66 and 80). Whenever a “close” message is sent
in relation to a private channel it is given a special meaning i.e. it does not just route the
value to the other user, but treats it as a system message. Such an assertion cannot be made
in the case of non-deterministic execution that is made by most of the current Join-calculus
implementations. This results in a more maintainable code.

6.6 Conclusion

In this chapter we have evaluated JErlang from different points of view. The language allows
for the creation of complex constructs using intuitive (for Erlang programmers) semantics.
We presented many examples where the solution provided in our extension is more elegant
than in many of the existing implementations. This helps in performing rapid software
development without losing clarity in the code. We critically assessed the applicability of
JErlang ’s features and can say that it offers features that are useful in some applications,
but not in all.

In our tests we also focused on an important issue of performance. We managed to build
benchmarks that reliably check the efficiency of the new construct. The performance of the
solver when put under a heavy stress is still a serious issue, but some of the techniques
that we used helped to reduce this effect. Additionally, one of the optimisations results in
awkward behaviour when tested in different scenarios.

We believe we managed to show the usefulness of the language in real applications. The
most valuable feedback on JErlang as a language would be that of other developers that
would like to use it in their current or future applications.

Chapter 7

Conclusion

This report presents our work done on extending the Erlang language with Joins constructs.
The visible results of the project are a formalised syntax and semantics of minimal JErlang,
a stand-alone JErlang library and a JErlang library that uses modified a Erlangcompiler and
Virtual Machine.

Chapter 2 introduces the paradigm of Join-calculus and explains its relation to current
concurrency problems. I explore several available languages, each of which adapts the Join-
calculus theory to its existing infrastructure. Nevertheless I do not limit myself to only
joins-like languages but also explore the concept of Constraint Handling Ruleswhich also
influenced JErlang. This work enabled me to explore the possible usage scenarios for the
joins construct. Therefore the initial scepticism about joins being “just another simple
feature” was quickly turned down.

When I started the project I had minor experience with Erlang, having worked on small
pieces of the RabbitMQ project. This project enabled me to fully explore the possibilities of
the language and investigate to what extent it helps in the development of concurrent appli-
cations. Finally I managed to lose myself in the internals of Erlang ’s compiler and Virtual
Machine, while searching for a possibility of manipulating processes’ internal mailboxes. All
of the Erlang and JErlang programs were developed using emacs and thanks to the com-
patible syntax of the latter and minor tweaks in the editor I did not have to use the “plain
old” notepad.

The work in the chapter 3 that formally defines the syntax and semantics of the minimal
JErlang allowed me to precisely formulate the behaviour that I later wanted to convert into
a usable language. I decided to investigate the formal approach in order to create a complete
language. None of the current Join-calculus implementations provide formalism of their
joins1. My intent was to provide enough basis for the future work on, for example, language
verification tools. The two approaches to solving the joins serve as a starting point for the

1HaskellJoinRules is an exception to this statement but its main focus is on Constraint Handling Rules,
rather than Join-calculus

115

116 CHAPTER 7. CONCLUSION

implementation of JErlang ’s joins. Although the existence of a formalism in my extension
does not increase the chances of it being adopted by the community, I believe it makes harder
to reject immediately by the usual programmers and theoretical-oriented academics.

The pure Actor-Oriented approach for building sophisticated synchronisation constructs
is often inadequate, therefore it seemed natural to provide better support for such features
in Erlang. Chapter 4 provides detailed information about all the constructs available with
the introduction of joins.
Erlang programmers find themselves repeatedly constructing algorithms that try to match
against multiple patterns. The introduction of familiar receive feature but with more pow-
erful semantics was better than creating something completely new. It was surprising that
given the increased interest in Join-calculus no one from the Erlang community implemented
it before. I decided to support a range of new features, unlike what was done with chords in
Polyphonic C#, because timeouts or guards are an integral part of the standard language.
This not original, but definitely a useful idea, which I later improved by the novel approach
of non-linear patterns available during synchronisation. The latter is commonly used in Er-
lang standard expressions, therefore it did not make sense to artificially limit the language,
like in for example JoCaml. With the design of new Open Telecom Platform design pattern,
programmers are able build client-server applications in a familiar environment.
I turned down the initial idea of supporting distributed joins due to the inefficiency of the
implementation in the Erlang ’s message passing architecture. I believe that there was no
point in developing an extension that would contain theoretically interesting properties but
would be disastrous in terms of efficiency.

The increased expressiveness presents challenging performance problems. This was one of
the main subjects discussed in chapters 5 and 6, where I attempt to define joins algorithm that
would perform well in most of the scenarios. The decision to use the RETE implementation
came partially from the fact that OTP behaviour presents the possibility of maintaining some
information about past matching results. As the actual performance impact was undecided I
deferred the decision to support this algorithm in the standard receive construct. This gave
me opportunity to experiment with the implementation. Especially interesting was the Santa
Claus problem from chapter 7 that has influenced the design of joins since the beginning of
the project.
Some performance drawbacks in the joins solving algorithm that I describe in chapter 6,
were inevitable but I believe that these (initial) costs had to be taken in order to better
understand the nature of the problem. The possibility of working on Abstract Syntax Trees
through the powerful parse transform module instead of directly changing the compiler,
created many interesting opportunities for optimising the code and allowed for the existence
of a stand-alone JErlang library. I expect that static code analysis performed using this
technique has even more potential than what I have already done. The novel changes, from
the perspective of the Erlang architecture, that I decided to implement within the Virtual
Machine allow not only for the combined VM/library JErlang implementation but also for
direct manipulation of the mailboxes available to the programmers. Many Erlangdevelopers
have complained in the past about lack of this feature from the level of the language.

It is important to remember that JErlang is not a remedy for the all the concurrency
problems programmers are having nowadays. It can be often misused, like any other typical

7.1. FURTHER WORK 117

language feature. However when used properly JErlang solves non-trivial synchronisation
problems in two or three lines.

7.1 Further work

I believe that development of JErlang presents many interesting and challenging opportuni-
ties which I have not been able to accomplish due to the time constraints.

7.1.1 Formal definition

One of the important features that I have not maneged to do, was to formally define a
mapping between the standard Erlang and JErlang. In other words, we would like to show
the theoretical equivalence of both languages. Although intuitively we can say that this
mapping exists, because I have just implemented the extension of Erlang, it is non trivial to
prove it formally. This would require the definition of Erlang similar to what I have done in
chapter 3.

7.1.2 Performance

The biggest drawback of the current implementation is the unpredictability of joins solver
under heavy load. Although the scenario of large mailbox is often a result of bad design we
would like to make sure that the general performance is much better. Some of the possible
research work includes:

• Further optimisations of the current sequential algorithm by searching for the regular
patterns inside the joins. Unfortunately we risk here to get into the infinite loop of
minimal optimisations.

• In the current JErlang implementation we lose quite a lot of information after a suc-
cessful execution of a join. In the RETE algorithm for joins we only leave the alpha
memory. It would be very useful to extend the algorithm for checking whether the
internal state of the joins has actually changed and which beta memory needs to be
rebuilt (if any).

• Identification of the impact of different data structures on the implementation of JEr-
lang ’s mailboxes (inside the VM and library). For instance usage of trees instead of
having the orthogonal concepts of hash map and queue.

• Introduction of a parallel joins solver at the cost of losing some of the expressiveness,
like out-of-order execution of joins. An interesting research is done in this area by Sulz-
mann and Lam in [23] and [22] who implement parallel algorithm for solving Constrain
Handling Rules. Unfortunately they immediately lose many features used in JErlang.

• Implementation of the joins solver inside the Virtual Machine - a possible, but unlikely
proposition since it would require the redesign of a large part of Erlang ’s compiler/VM.

118 CHAPTER 7. CONCLUSION

An interesting investigation could be performed to find out a reasonable trade-off between
JErlang ’s performance and expressiveness. Unfortunately setting restrictions on the language
features is a controversial action once programmers get used to its powerful constructs.

7.1.3 New Erlang release

At the time of writing, a new version of Erlang was released. Erlang R13B-0 contains many
improvements in the region of mailboxes and general concurrency issues. The current JErlang
was only designed to work with R12B-5 so it would be interesting to examine any differences
between the two in the context of our extension.

7.1.4 Benchmarks

The final proposition relates to the general problem of testing not only in the context of
JErlang but in terms of all implementations. I believe that it is possible to define a complete
or partial set of benchmarks that compare performance of different approaches. The tests
could be used for measuring the effectiveness of the optimisations used in the algorithms.
The harder part is to create benchmarks that are close to real applications in behaviour.

7.2 Closing remarks

JErlang presents interesting and powerful semantics for the programmers. Judging from its
ability to perform elegant solutions for complex concurrency problems, acceptable perfor-
mance and simplicity, it can be a successful extension of Erlang. All in all the end result of
the development of any language is to help programmers to build more reliable, stable and
efficient applications. I believe that this project achieved this goal.

Bibliography

[1] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The
spi calculus. In Fourth ACM Conference on Computer and Communications Security,
pages 36–47. ACM Press, 1997. [cited at p. 6]

[2] Joe Armstrong. A history of erlang. In HOPL III: Proceedings of the third ACM
SIGPLAN conference on History of programming languages, pages 6–1–6–26, New York,
NY, USA, 2007. ACM. [cited at p. 27, 32]

[3] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, July 2007. [cited at p. 31]

[4] Don Batory. The leaps algorithm. Technical report, Austin, TX, USA, 1994. [cited at p. 38]

[5] Nick Benton, Luca Cardelli, and Polyphonic C. Modern concurrency abstractions for c.
In ACM Trans. Program. Lang. Syst, pages 415–440. Springer, 2002. [cited at p. 14, 17, 18,

84]

[6] Gerard Berry and Gerard Boudol. The chemical abstract machine. In POPL ’90: Pro-
ceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 81–94, New York, NY, USA, 1990. ACM. [cited at p. 6]

[7] Polyphonic C and Nick Benton. Jingle bells: Solving the santa claus problem. In in
Polyphonic C. [cited at p. 98, 147, 148]

[8] Sophia Drossopoulou, Alexis Petrounias, Alex Buckley, and Susan Eisenbach. SCHOOL:
a Small Chorded Object-Oriented Language. Electronic Notes in Theoretical Computer
Science, 135(3):37–47, March 2006. [cited at p. 19]

[9] Erlang. Core erlang, 2000-2009. [cited at p. 73]

[10] Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Réy. Inheritance in the join-
calculus (extended abstract). In In FST TCS 2000: Foundations of Software Technology
and Theoretical Computer Science. Lecture Notes in Computer Science, pages 397–408.
Springer-Verlag, 2000. [cited at p. 16]

119

120 BIBLIOGRAPHY

[11] Thom Frühwirth. Introducing simplification rules. Technical Report ECRC-LP-63, Eu-
ropean Computer-Industry Research Centre, Munchen, Germany, October 1991. Pre-
sented at the Workshop Logisches Programmieren, Goosen/Berlin, Germany, October
1991 and the Workshop on Rewriting and Constraints, Dagstuhl, Germany, October
1991. [cited at p. 23]

[12] Thom Frühwirth. Theory and practice of Constraint Handling Rules. J. Logic Program-
ming, Special Issue on Constraint Logic Programming, 37(1–3):95–138, 1998. [cited at p. 23]

[13] David Kearney G. von Itzstein. Join java: An alternative concurrency semantic for java.
Technical report, University of South Australia, 2001. [cited at p. 21]

[14] M. Jasiunas G. von Itzstein. On implementing high level concurrency in java. Advances
in Computer Systems Architecture, Springer Verlag, 2003. [cited at p. 20]

[15] Georges Gonthier and Inria Rocquencourt. The reflexive cham and the join-calculus. In
In Proceedings of the 23rd ACM Symposium on Principles of Programming Languages,
pages 372–385. ACM Press, 1996. [cited at p. 2, 7, 8, 63]

[16] Philipp Haller and Tom Van Cutsem. Implementing Joins using Extensible Pattern
Matching. In 10th International Conference on Coordination Models and Languages,
Lecture Notes in Computer Science, pages 135–152. Springer, 2008. [cited at p. 84, 85]

[17] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677,
1978. [cited at p. 6]

[18] Christian Holzbaur, Mara Garca de la Banda, David Jeffery, Peter J. Stuckey, and Peter
J. Optimizing compilation of constraint handling rules, 2001. [cited at p. 93]

[19] S. R. Virding J. Barklund. Erlang 4.7.3, Reference Manual (Draft 0.7). Ericsson AB,
1999. [cited at p. 79]

[20] L. Maranger L. Mandel. JoCaml Documentation and Manual (Release 3.11). INRA,
2008. [cited at p. 10]

[21] Edmund Lam and Martin Sulzmann. Finally, a comparison between constraint handling
rules and join-calculus. In Fifth Workshop on Constraint Handling Rules, CHR 2008.
[cited at p. 23, 64]

[22] Edmund S.L. Lam and Martin Sulzmann. Concurrent goal-based execution of Constriant
Handling Rules. submitted to Journal of Theory and Practice of Logic Programming,
2009. [cited at p. 90, 117]

[23] Edmund S.L. Lam and Martin Sulzmann. Parallel join patterns with guards and prop-
agation. 2009. [cited at p. 90, 117]

[24] John Launchbury and Simon L Peyton Jones. Concurrent haskell. pages 295–308. ACM
Press, 1996. [cited at p. 21, 22]

121

[25] Milind Mahajan and V. K. Prasanna Kumar. Efficient parallel implementation of rete
pattern matching. Comput. Syst. Sci. Eng., 5(3):187–192, 1990. [cited at p. 38]

[26] Luc Maranget and Fabrice Le Fessant. Compiling join-patterns. In Electronic Notes in
Computer Science. Elsevier Science Publishers, 1998. [cited at p. 84]

[27] Satoshi Matsuoka and Akinori Yonezawa. Analysis of inheritance anomaly in object-
oriented concurrent programming languages. In G. Agha, P. Wegner, and A. Yonezawa,
editors, Research Directions in Concurrent Object-Oriented Programming, pages 107–
150. MIT Press, 1993. [cited at p. 16]

[28] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1982. [cited at p. 6]

[29] Robin Milner. A calculus of mobile processes, parts. I and II. Information and Com-
putation, 100:1–77, 1992. [cited at p. 6]

[30] Daniel P. Miranker. TREAT: a new and efficient match algorithm for AI production
systems. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990. [cited at p. 38]

[31] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999. [cited at p. 39, 82]

[32] Alexis Petrounias. On The Design Of Chorded Languages. PhD thesis, Imperial College
London, 2008. [cited at p. 19]

[33] Tiark Rompf. Design and Implementation of a Programming Language for Concur-
rent Interactive Systems. PhD thesis, University of Lbeck, http://vodka.nachtlicht-
media.de/index.html, 2007. [cited at p. 101]

[34] Claudio V. Russo. Join patterns for visual basic. In OOPSLA ’08: Proceedings of the
23rd ACM SIGPLAN conference on Object oriented programming systems languages
and applications, pages 53–72, New York, NY, USA, 2008. ACM. [cited at p. 25]

[35] Martin Sulzmann, Edmund S. L. Lam, and Peter Van Weert. Actors with multi-headed
message receive patterns. In Doug Lea and Gianluigi Zavattaro, editors, COORDINA-
TION, volume 5052 of Lecture Notes in Computer Science, pages 315–330. Springer,
2008. [cited at p. 59, 66]

[36] Martin Sulzmann and Edmund S.L. Lam. Compiling Constraint Handling Rules with
lazy and concurrent search techniques. pages 139–149, 2007. [cited at p. 85, 92]

[37] Martin Sulzmann and Edmund S.L. Lam. Haskell - join - rules. In Olaf Chitil, editor,
IFL ’07: 19th Intl. Symp. Implementation and Application of Functional Languages,
pages 195–210, Freiburg, Germany, sep 2007. [cited at p. 23, 66]

[38] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in software.
Dr. Dobb’s Journal, 30(3), 2005. [cited at p. 1]

122 BIBLIOGRAPHY

[39] John A. Trono. A new exercise in concurrency. SIGCSE Bull., 26(3):8–10, 1994.
[cited at p. 98]

[40] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115:38–94, 1992. [cited at p. 47]

[41] Lars ke Fredlund. A framework for reasoning about Erlang code. PhD thesis, 2001.
Trita-IT. AVH ; 01:04, URI: urn:nbn:se:kth:diva-3210, SICS dissertation: SICS-D-29.
[cited at p. 41]

Appendices

123

Appendix A

Erlang Compiler Result

A.1 Original code

1 −module(simple receive) .
2
3 −compile ({parse transform , simple parse }) .
4
5 −export ([start / 0]) .
6
7 start () −>
8 receive
9 {atomic , Value} −>

10 {ok , Value } ;
11 {commit , TransId} −>
12 {ok , {trans , TransId }} ;
13 −>
14 {error , unexpected}
15 end .

Listing A.1: Session support using propagation in JErlang

125

126 APPENDIX A. ERLANG COMPILER RESULT

A.2 Abstract syntax tree for the first program

[{attribute,1,file,{"./simple_receive.erl",1}},
{attribute,1,module,simple_receive},
{attribute,5,export,[{start,0}]},
{function,7,start,0,

[{clause,7,[],[],
[{’receive’,8,

[{clause,9,
[{tuple,9,[{atom,9,atomic},{var,9,’Value’}]}],
[],
[{tuple,10,[{atom,10,ok},{var,10,’Value’}]}]},

{clause,11,
[{tuple,11,[{atom,11,commit},{var,11,’TransId’}]}],
[],
[{tuple,12,

[{atom,12,ok},
{tuple,12,[{atom,12,trans},{var,12,’TransId’}]}]}]},

{clause,13,
[{var,13,’_’}],
[],
[{tuple,14,[{atom,14,error},{atom,14,unexpected}]}]}]}]}]},

{eof,16}]

A.3 First program expressed in Core Erlang

module ’simple_receive’ [’module_info’/0,
’module_info’/1,
’start’/0]

attributes []
’start’/0 =

%% Line 7
fun () ->

let <_cor20> =
%% Line 9
(fun (_cor18) ->

case _cor18 of
<{’atomic’,_X_Value}> when ’true’ ->

’true’
<_cor29> when ’true’ ->

’false’
end

-| [{’id’,{0,41589281,’-start/0-fun-0-’}}])
in let <_cor24> =
%% Line 9
(fun (_cor22) ->

case _cor22 of
<{’test’,_X_Value}> when ’true’ ->

’true’

A.3. FIRST PROGRAM EXPRESSED IN CORE ERLANG 127

<_cor30> when ’true’ ->
’false’
end

-| [{’id’,{1,116202316,’-start/0-fun-1-’}}])
in let <_cor28> =
%% Line 11
(fun (_cor26) ->

case _cor26 of
<{’commit’,_X_TransId}> when ’true’ ->

’true’
<_cor31> when ’true’ ->

’false’
end

-| [{’id’,{2,59711518,’-start/0-fun-2-’}}])
in let <_cor8> =
%% Line 8
(fun (_cor5,_cor4) ->

case _cor5 of
<%% Line 9
[{’atomic’,Value}|[{’test’,_cor32}|[]]]>

when call ’erlang’:’=:=’
(_cor32,
%% Line 9
Value) ->
case _cor4 of
<’test_entry’> when ’true’ ->

’true’
<’run_all’> when ’true’ ->

%% Line 10
{’ok’,Value}

(<_cor3> when ’true’ ->
primop ’match_fail’

({’case_clause’,_cor3})
-| [’compiler_generated’])

end
(<_cor1> when ’true’ ->

primop ’match_fail’
({’badmatch’,_cor1})
-| [’compiler_generated’])

end
-| [{’id’,{3,26522577,’-start/0-fun-3-’}}])
in let <_cor16> =
%% Line 8
(fun (_cor13,_cor12) ->

case _cor13 of
<%% Line 11
[{’commit’,TransId}|[]]> when ’true’ ->

let <Guard1244312501970288> =
%% Line 11

128 APPENDIX A. ERLANG COMPILER RESULT

call ’erlang’:’>’
(TransId, 0)
in case _cor12 of

<’test_entry’> when ’true’ ->
Guard1244312501970288

<’run_all’> when ’true’ ->
%% Line 12
{’ok’,{’trans’,TransId}}

(<_cor11> when ’true’ ->
primop ’match_fail’

({’case_clause’,_cor11})
-| [’compiler_generated’])

end
(<_cor9> when ’true’ ->

primop ’match_fail’
({’badmatch’,_cor9})
-| [’compiler_generated’])

end
-| [{’id’,{4,94909485,’-start/0-fun-4-’}}])

in let <_cor0> =
%% Line 13
(fun () ->

%% Line 14
{’error’,’timeout’}

-| [{’id’,{5,92030033,’-start/0-fun-5-’}}])
in %% Line 8

call ’jerlang_core’:’loop’
([%% Line 9
[{1,{’pattern_joins’,_cor20,[],’no’}}|[{2,{’pattern_joins’,_cor24,[],’no’}}|[]]]|[%% Line 11

[{3,{’pattern_joins’,_cor28,[],’no’}}|[]]|[]]], [_cor8|[_cor16|[]]], %% Line 13
[{’timeout’,10000,_cor0}|[]])

’module_info’/0 =
fun () ->

call ’erlang’:’get_module_info’
(’simple_receive’)

’module_info’/1 =
fun (_cor0) ->

call ’erlang’:’get_module_info’
(’simple_receive’, _cor0)

end

A.4 Assembler code (Kernel Erlang) corresponding to the first
program

{module, simple_receive}. %% version = 0

{exports, [{module_info,0},{module_info,1},{start,0}]}.

A.4. ASSEMBLER CODE (KERNEL ERLANG) CORRESPONDING TO THE FIRST
PROGRAM 129

{attributes, []}.

{labels, 11}.

{function, start, 0, 2}.
{label,1}.
{func_info,{atom,simple_receive},{atom,start},0}.

{label,2}.
{loop_rec,{f,6},{x,0}}.
{test,is_tuple,{f,5},[{x,0}]}.
{test,test_arity,{f,5},[{x,0},2]}.
{get_tuple_element,{x,0},0,{x,1}}.
{get_tuple_element,{x,0},1,{x,2}}.
{test,is_atom,{f,5},[{x,1}]}.
{select_val,{x,1},{f,5},{list,[{atom,atomic},{f,3},{atom,commit},{f,4}]}}.

{label,3}.
remove_message.
{test_heap,6,3}.
{put_tuple,2,{x,1}}.
{put,{atom,value}}.
{put,{x,2}}.
{put_tuple,2,{x,0}}.
{put,{atom,ok}}.
{put,{x,1}}.
{’%live’,1}.
return.

{label,4}.
remove_message.
{test_heap,6,3}.
{put_tuple,2,{x,1}}.
{put,{atom,trans}}.
{put,{x,2}}.
{put_tuple,2,{x,0}}.
{put,{atom,ok}}.
{put,{x,1}}.
{’%live’,1}.
return.

{label,5}.
remove_message.
{move,{literal,{error,unexpected}},{x,0}}.
return.

{label,6}.
{wait,{f,2}}.

{function, module_info, 0, 8}.
{label,7}.
{func_info,{atom,simple_receive},{atom,module_info},0}.

{label,8}.

130 APPENDIX A. ERLANG COMPILER RESULT

{move,{atom,simple_receive},{x,0}}.
{call_ext_only,1,{extfunc,erlang,get_module_info,1}}.

{function, module_info, 1, 10}.
{label,9}.
{func_info,{atom,simple_receive},{atom,module_info},1}.

{label,10}.
{move,{x,0},{x,1}}.
{move,{atom,simple_receive},{x,0}}.
{call_ext_only,2,{extfunc,erlang,get_module_info,2}}.

Appendix B

Parse transform result

B.1 Original code

1 −module(simple receive) .
2
3 −compile ({parse transform , jerlang parse }) .
4
5 −export ([start / 0]) .
6
7 start () −>
8 receive
9 {atomic , Value} and { test , Value} −>

10 {ok , Value } ;
11 {commit , TransId} when (TransId > 0) −>
12 {ok , {trans , TransId}}
13 after 10000 −>
14 {error , timeout}
15 end .

Listing B.1: Selective receive expression in JErlang

B.2 JErlang’s code resulting from running parse transform on the
first program

1 −module(simple receive parsed) .
2
3 −include (” j e r l a n g . h r l ”) .
4
5 −export ([start / 0]) .
6
7 start () −>

131

132 APPENDIX B. PARSE TRANSFORM RESULT

8 jerlang : loop (
9 [

10 [{1 , #pattern joins{ test=
11 fun (Value1) −>
12 case Value1 of
13 {atomic , Value} −> true ;
14 −> fa l se
15 end
16 end , msgs=[]}} ,
17 {2 , #pattern joins{ test=
18 fun (Value2) −>
19 case Value2 of
20 { test , Value} −> true ;
21 −> fa l se
22 end
23 end}}] ,
24 [{3 , #pattern joins{ test=
25 fun (Value3) −>
26 case Value3 of
27 {commit , TransId} −> true ;
28 −> fa l se
29 end
30 end , msgs= [] } }]] ,
31 [fun (Res1 , Case1) −>
32 [{ atomic , Value} , { test , Value }] = Res1 ,
33 Ret = true ,
34 case Case1 of
35 test entry −>
36 Ret ;
37 run all −>
38 {ok , Value}
39 end
40 end ,
41 fun (Res2 , Case2) −>
42 [{commit , TransId }] = Res2 ,
43 Ret = (TransId > 0) ,
44 case Case2 of
45 test entry −>
46 Ret ;
47 run all −>
48 {ok , {trans , TransId}}
49 end
50 end] ,
51 [{ timeout , 10000 ,
52 fun () −>
53 {error , timeout}
54 end }]) .

Listing B.2: Selective receive expression in JErlang

B.3. ABSTRACT SYNTAX TREE REPRESENTING THE FIRST PROGRAM 133

B.3 Abstract Syntax Tree representing the first program

[{attribute,1,file,{"src/simple_receive.erl",1}},
{attribute,1,module,simple_receive},
{attribute,5,export,[{start,0}]},
{function,7,start,0,

[{clause,7,[],[],
[{’receive’,8,

[{clause,9,
[{op,9,’and’,

{tuple,9,[{atom,9,atomic},{var,9,’Value’}]},
{tuple,9,[{atom,9,test},{var,9,’Value’}]}}],

[],
[{tuple,10,[{atom,10,ok},{var,10,’Value’}]}]},

{clause,11,
[{tuple,11,

[{atom,11,commit},{var,11,’TransId’}]}],
[[{op,11,’>’,{var,11,’TransId’},{integer,11,0}}]],
[{tuple,12,

[{atom,12,ok},
{tuple,12,

[{atom,12,trans},
{var,12,’TransId’}]}]}]}],

{integer,13,10000},
[{tuple,14,[{atom,14,error},{atom,14,timeout}]}]}]}]},

{eof,17}]

134 APPENDIX B. PARSE TRANSFORM RESULT

B.4 Abstract Syntax Tree resulting from running parse transform

[{attribute,1,file,{"src/simple_receive.erl",1}},
{attribute,1,module,simple_receive},
{attribute,1,record,
{pattern_joins,
[{record_field,1,{atom,1,test}},
{record_field,1,{atom,1,msgs},{nil,1}},
{record_field,1,{atom,1,prop},{atom,1,no}}]}},

{attribute,5,export,[{start,0}]},
{function,7,start,0,
[{clause,7,[],[],
[{call,8,
{remote,8,{atom,8,jerlang_core},{atom,8,loop}},
[{cons,8,
{cons,9,
{tuple,9,
[{integer,9,1},
{record,9,pattern_joins,
[{record_field,9,
{atom,9,test},
{’fun’,9,
{clauses,
[{clause,9,
[{var,9,’Value1243560520536039’}],
[],
[{’case’,9,
{var,9,’Value1243560520536039’},
[{clause,9,
[{tuple,9,[{atom,9,atomic},{var,9,’_Value’}]}],
[],
[{atom,9,true}]},
{clause,9,
[{var,9,’_’}],
[],
[{atom,9,false}]}]}]}]}}},

{record_field,9,{atom,9,msgs},{nil,9}},
{record_field,9,{atom,9,prop},{atom,9,no}}]}]},

{cons,9,
{tuple,9,
[{integer,9,2},
{record,9,pattern_joins,
[{record_field,9,
{atom,9,test},
{’fun’,9,
{clauses,
[{clause,9,
[{var,9,’Value1243560520536058’}],
[],

B.4. ABSTRACT SYNTAX TREE RESULTING FROM RUNNING PARSE TRANSFORM 135

[{’case’,9,
{var,9,’Value1243560520536058’},
[{clause,9,
[{tuple,9,[{atom,9,test},{var,9,’_Value’}]}],
[],
[{atom,9,true}]},

{clause,9,
[{var,9,’_’}],
[],
[{atom,9,false}]}]}]}]}}},

{record_field,9,{atom,9,msgs},{nil,9}},
{record_field,9,{atom,9,prop},{atom,9,no}}]}]},

{nil,9}}},
{cons,8,
{cons,11,
{tuple,11,
[{integer,11,3},
{record,11,pattern_joins,
[{record_field,11,
{atom,11,test},
{’fun’,11,
{clauses,
[{clause,11,
[{var,11,’Value1243560520536123’}],
[],
[{’case’,11,
{var,11,’Value1243560520536123’},
[{clause,11,
[{tuple,11,
[{atom,11,commit},{var,11,’_TransId’}]}],

[],
[{atom,11,true}]},

{clause,11,
[{var,11,’_’}],
[],
[{atom,11,false}]}]}]}]}}},

{record_field,11,{atom,11,msgs},{nil,11}},
{record_field,11,{atom,11,prop},{atom,11,no}}]}]},

{nil,11}},
{nil,8}}},

{cons,8,
{’fun’,8,
{clauses,
[{clause,8,
[{var,8,’ResArgName1243560520536063’},
{var,8,’CaseArg1243560520536066’}],
[],
[{match,8,
{cons,9,

136 APPENDIX B. PARSE TRANSFORM RESULT

{tuple,9,[{atom,9,atomic},{var,9,’Value’}]},
{cons,9,
{tuple,9,[{atom,9,test},{var,9,’Value’}]},
{nil,9}}},

{var,8,’ResArgName1243560520536063’}},
{match,8,{var,25,’Guard1243560520536069’},{atom,8,true}},
{’case’,8,
{var,8,’CaseArg1243560520536066’},
[{clause,8,
[{atom,8,test_entry}],
[],
[{var,8,’Guard1243560520536069’}]},
{clause,8,
[{atom,8,run_all}],
[],
[{tuple,10,[{atom,10,ok},{var,10,’Value’}]}]}]}]}]}},

{cons,8,
{’fun’,8,
{clauses,
[{clause,8,
[{var,8,’ResArgName1243560520536128’},
{var,8,’CaseArg1243560520536130’}],
[],
[{match,8,
{cons,11,
{tuple,11,[{atom,11,commit},{var,11,’TransId’}]},
{nil,11}},
{var,8,’ResArgName1243560520536128’}},

{match,8,
{var,25,’Guard1243560520536132’},
{op,11,’>’,{var,11,’TransId’},{integer,11,0}}},

{’case’,8,
{var,8,’CaseArg1243560520536130’},
[{clause,8,
[{atom,8,test_entry}],
[],
[{var,8,’Guard1243560520536132’}]},
{clause,8,
[{atom,8,run_all}],
[],
[{tuple,12,
[{atom,12,ok},
{tuple,12,
[{atom,12,trans},{var,12,’TransId’}]}]}]}]}]}]}},

{nil,8}}},
{cons,13,
{tuple,13,
[{atom,13,timeout},
{integer,13,10000},

B.4. ABSTRACT SYNTAX TREE RESULTING FROM RUNNING PARSE TRANSFORM 137

{’fun’,13,
{clauses,
[{clause,13,[],[],
[{tuple,14,[{atom,14,error},{atom,14,timeout}]}]}]}}]},

{nil,13}}]}]}]},
{eof,17}]

Appendix C

gen joins OTP’s behaviour

C.1 Calculator

Listing C.1 presents an example of the usage of gen joins. Module jerlang gen joins calculator
implements a simple Remote Procedure Call calculator. Clients are allowed to provide operands for
the operations using the asynchronous operation defined in number/2 function, as well as wait for the
result of the operation using synchronous calls to add/1, multiply/1 and divide/1. Calculator’s
internal state records the number of invalid operations that occured during its lifetime and hence
behaves like a standard gen server application.
Operations are done on the operands that agree on the identification number thanks to the possibility
of non-linear patterns in JErlang. The order of operands is non-deterministic when it comes to pattern
matching. The last handle join will be successful if and only if all the combinations of the available
messages fail for the previous join.
Synchronization on the messages using joins allows for more intuitive description of the problem.
In a standard gen server’s behaviour implementation we would have to explicitly store each of the
messages in the state and perform necessary Id synchronisation ourselves.

1 −module(jerlang gen joins calculator) .
2 −behaviour (jerlang gen joins) .
3
4 −compile ({parse transform , jerlang gen joins parse }) .
5
6 −export ([in i t /1 , handle join /2 , terminate / 0]) .
7 −export ([start /0 , add/1 , multiply /1 , divide /1 , number/ 2]) .
8
9 start () −>

10 jerlang gen joins : start ({ local , ?MODULE} , ?MODULE, [] , []) .
11
12 terminate () −>
13 jerlang gen joins : ca l l (?MODULE, stop) .
14
15 in i t (Args) −>
16 {ok , 0} .

139

140 APPENDIX C. GEN JOINS OTP’S BEHAVIOUR

17
18 number(Number, Id) −>
19 jerlang gen joins : cast (?MODULE, {number , Id , Number}) .
20
21 add(Id) −>
22 jerlang gen joins : ca l l (?MODULE, {add , Id }) .
23
24 multiply (Id) −>
25 jerlang gen joins : ca l l (?MODULE, {multiply , Id }) .
26
27 divide (Id) −>
28 jerlang gen joins : ca l l (?MODULE, {divide , Id }) .
29
30 %% −−−
31 %% −−−−−−−−−−−− CALLBACKS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 %% −−−
33 handle join ({number , Id , First} and {number , Id , Second}
34 and {number , Id , Third} and {add , Id} , Status) −>
35
36 io : format (” [g e n j o i n s] : Ca l cu la te ’ add ’ opera t i on ˜n” , []) ,
37 { [noreply , noreply , {reply , First + Second + Third }] ,
38 Status } ;
39 handle join ({number , Id , First} and {number , Id , Second}
40 and {multiply , Id} , Status) −>
41
42 io : format (” [g e n j o i n s] : Ca l cu la te ’ mult ip ly ’ opera t i on ˜n” , []) ,
43 { [noreply , noreply , {reply , First ∗ Second }] , Status } ;
44 handle join ({number , Id , First} and {number , Id , Second}
45 and {divide , Id} , Status) when (Second =/= 0) −>
46
47 io : format (” [g e n j o i n s] : Ca l cu la te ’ d iv ide ’ opera t i on ˜n” , []) ,
48 { [noreply , noreply , {reply , First / Second }] ,
49 Status } ;
50 handle join ({number , Id , First} and {number , Id , Second}
51 and {divide , Id} , Status) when (Second =/= 0) −>
52
53 io : format (” [g e n j o i n s] : Ca l cu la te ’ d iv ide ’ opera t i on ˜n” , []) ,
54 { [noreply , noreply , {reply , First / Second }] ,
55 Status } ;
56
57 handle join ({number , Id , } and {number , Id , Second}
58 and {divide , Id} , Status) when (Second =:= 0) −>
59 io : format (” [g e n j o i n s] : I n v a l i d d iv id e operat i on ˜n” , []) ,
60 { [noreply , noreply , {reply , {error , division by zero }}] ,
61 Status + 1} .

Listing C.1: Calculator server implemented in JErlangusing gen joins’s behaviour

C.2 Chat system

Listing C.2 presents a fully featured chat system, where messages are normally broadcasted to all
users. Additionally users can agree to go on a private channel. The latter happens when two of the

C.2. CHAT SYSTEM 141

users agree on the creation of the room. We perform message synchronisation using joins in order to
ensure this. Private session is enabled in the system using propagation of the room’s session key. It
is only removed once one of the two users decides to close the room.
Having a session message is much easier to understand since guards cannot actually perform more
complicated executions like checking for the existence of elements in the list.

1 −module(jerlang chat system) .
2 −compile ({parse transform , jerlang gen joins parse }) .
3
4 −behaviour (jerlang gen joins) .
5
6 −export ([in i t /1 , handle join /2 , start /0 , terminate / 0]) .
7 −export ([login /1 , logout /1 , private channel / 2]) .
8 −export ([send/2 , send/3 , close room / 2]) .
9

10 −record (user , { id , pid }) .
11 −record (system , {users , rooms= [] }) .
12
13 −define (SERVER, jerlang gen joins) .
14
15 start () −>
16 ?SERVER: start ({ local , ?MODULE} , ?MODULE, [] , []) .
17
18 terminate () −>
19 ?SERVER: ca l l (?MODULE, stop) .
20
21 in i t () −>
22 {ok , #system{users=dict :new() , rooms=dict :new() } } .
23
24 login (User) −>
25 ?SERVER: ca l l (?MODULE, { login , {User , s e l f () } }) .
26
27 logout (User) −>
28 ?SERVER: ca l l (?MODULE, { logout , {User , s e l f () } }) .
29
30 private channel (User1 , User2) −>
31 ?SERVER: ca l l (?MODULE, {private , {User1 , s e l f ()} , User2 }) .
32
33 send (User , Msg) −>
34 ?SERVER: cast (?MODULE, {msg , {User , s e l f ()} , Msg}) .
35
36 send (User , Room, Msg) −>
37 ?SERVER: cast (?MODULE, {msg , {User , s e l f ()} , Room, Msg}) .
38
39 close room (User , Room) −>
40 ?SERVER: ca l l (?MODULE, {msg , close , {User , s e l f ()} , Room}) .
41
42 %% −−
43
44 handle join ({ login , User} , S) −>
45 {NS, Result} = add login (
46 valid user (User , S) ,
47 User , S) ,

142 APPENDIX C. GEN JOINS OTP’S BEHAVIOUR

48
49 { [{ reply , Result }] , NS} ;
50 handle join ({private , {User1 , Pid1} , User2} and {private ,{User2 , Pid2} , User1} ,
51 #system{rooms=Rs}=S) −>
52 %% Open private channel
53 {Reply , NS} =
54 case valid user ({User1 , Pid1} , S)
55 and valid user ({User2 , Pid2} , S) of
56 true −>
57 %% Assume unique enough
58 Room = make ref () ,
59 ?SERVER: cast (?MODULE, {room , Room}) ,
60 {{room , Room} , S#system{rooms=dict : store (Room,
61 [User1 , User2] , Rs)}} ;
62 fa l se −>
63 {{error , invalid authorization } , S}
64 end ,
65 { [{ reply , Reply} , {reply , Reply }] , NS} ;
66 handle join ({room , Room} and {msg , close , User , Room} , S) −>
67 % Determine whether the user belongs to this room
68 Result =
69 case other user (Room, User , S) of
70 {error , invalid} −>
71 %% Invalid user tr ies to close the room
72 ?SERVER: cast (?MODULE, {room , Room}) ,
73 {error , invalid user } ;
74 {ok , Pid2} −>
75 Pid2 ! {chat , private , Room, User , close room request } ,
76 {ok , closed}
77 end ,
78 NS = remove room(Room, S) ,
79 { [noreply , {reply , Result }] , NS} ;
80 handle join (prop ({room , Room}) and {msg , User , Room, Msg} , S) −>
81 %% Find users of the room
82 case other user (Room, User , S) of
83 {ok , Pid} −>
84 Pid ! {chat , private , Room, User , Msg} ;
85 −>
86 %% Ignore msg
87 ok
88 end ,
89 { [noreply , noreply] , S} ;
90 handle join ({msg , User , Msg} , S) −>
91 case valid user (User , S) of
92 true −>
93 send all (S , User , Msg) ;
94 −>
95 %% Ignore msg
96 ok
97 end ,
98 { [noreply] , S} .
99

100 %% −−
101 add login (true , , S) −>

C.2. CHAT SYSTEM 143

102 {S , {error , invalid user }} ;
103 add login (, {User , Pid} , #system{users=Users}=S) −>
104 {S#system{users=
105 dict : store (User , #user{ id=User , pid=Pid} , Users)} ,
106 valid } .
107
108 valid user ({User , Pid} , #system{users=Users}) −>
109 try
110 #user{pid=Pid} = dict : fetch (User , Users) ,
111 true
112 catch
113 : −>
114 fa l se
115 end .
116
117 send all(#system{users=Us} , User , Msg) −>
118 l i s t s :map(
119 fun ({ , #user{pid=Pid}}) −>
120 Pid ! {chat , public , User , Msg}
121 end , dict : to l i s t (Us)) ,
122 ok .
123
124 other user (Room, {User , } , #system{users=Us , rooms=Rs}) −>
125 case other user0 (dict : fetch (Room, Rs) , User) of
126 {ok , Other} −>
127 #user{pid=Pid} = dict : fetch (Other , Us) ,
128 {ok , Pid } ;
129 Error −>
130 Error
131 end .
132
133 other user0 ([User , Other] , User) −>
134 {ok , Other} ;
135 other user0 ([Other , User] , User) −>
136 {ok , Other} ;
137 other user0 (,) −>
138 {error , invalid } .
139
140 remove room(Room, S) −>
141 dict : erase (Room, S) .

Listing C.2: Calculator server implemented in JErlang using gen joins’s behaviour

Appendix D

Variations of the Santa Claus problem

D.1 Santa Claus in Erlang

1 −module(santa) .
2 −author (’ok@cs . otago . ac . nz ’) . % Richard A. O’ Keefe
3 −export ([start / 0]) .
4
5 % This i s an Erlang solution to ”The Santa Claus problem” ,
6 % as discussed by Simon Peyton Jones (with a Haskell solution using
7 % Software Transactional Memory) in ” Be aut i f u l code ” .
8 % He quotes J .A.Trono ”A new e x e r c i s e in concurrency ” , SIGCSE 26:8−10 , 1994 .
9 %

10 % Santa repeatedly sleeps until wakened by either a l l of his
11 % nine reindeer , back from their holidays , or by a group of three
12 % of his ten elves . I f awakened by the reindeer , he harnesses
13 % each of them to his sleight , delivers toys with them , and f ina l ly
14 % unharnesses them (allowing them to go of f on holiday) . I f
15 % awakened by a group of elves , he shows each of the group into
16 % his study , consults with them on toy R&D, and f ina l ly shows them
17 % each out (allowing them to go back to work) . Santa should give
18 % priority to the reindeer in the case that there i s both a group
19 % of elves and a group of reindeer waiting .
20 %
21 % Inspired by an old example of Dijkstra ’ s , I solve this problem by
22 % introducing two secretaries : Robin and Edna . The reindeer ask Robin
23 % for appointments . As soon as she has nine waiting reindeer she sends
24 % them as a group to Santa . The elves as Edna for appointments . As
25 % soon as she has three waiting elves she sends them as a group to Santa .
26 %
27 % The Haskell version i s 77 SLOC of complex code .
28 % The Erlang version i s 43 SLOC of straightforward code .
29
30 worker (Secretary , Message) −>

145

146 APPENDIX D. VARIATIONS OF THE SANTA CLAUS PROBLEM

31 receive after random : uniform (1000) −> ok end , % random delay
32 Secretary ! s e l f () , % send my PID to the secretary
33 Gate Keeper = receive X −> X end , % await permission to enter
34 io : put chars (Message) , % do my action
35 Gate Keeper ! { leave , s e l f ()} , % t e l l the gate−keeper I ’m done
36 worker (Secretary , Message) . % do i t a l l again
37
38 secretary (Santa , Species , Count) −>
39 secretary loop (Count , [] , {Santa , Species ,Count}) .
40
41 secretary loop (0 , Group , {Santa , Species ,Count}) −>
42 Santa ! {Species ,Group} ,
43 secretary (Santa , Species , Count) ;
44 secretary loop (N, Group , State) −>
45 receive PID −>
46 secretary loop (N−1, [PID |Group] , State)
47 end .
48
49 santa () −>
50 {Species ,Group} =
51 receive % f i r s t pick up a reindeer group
52 {reindeer ,G} −> {reindeer ,G}% i f there i s one , otherwise
53 after 0 −>
54 receive % wait for reindeer or elves ,
55 {reindeer ,G} −> {reindeer ,G}
56 ; {elves ,G} −> {elves ,G}
57 end % whichever turns up f i r s t .
58 end ,
59 case Species
60 of reindeer −> io : put chars (”Ho , ho , ho ! Let ’ s d e l i v e r toys !\n”)
61 ; elves −> io : put chars (”Ho , ho , ho ! Let ’ s meet in the study !\n”)
62 end ,
63 [PID ! s e l f () | | PID <− Group] , % t e l l them a l l to enter
64 [receive { leave ,PID} −> ok end % wait for each of them to leave
65 | | PID <− Group] ,
66 santa () .
67
68 spawn worker (Secretary , Before , I , After) −>
69 Message = Before ++ integer to l i s t (I) ++ After ,
70 spawn(fun () −> worker (Secretary , Message) end) .
71
72 start () −>
73 Santa = spawn(fun () −> santa () end) ,
74 Robin = spawn(fun () −> secretary (Santa , reindeer , 9) end) ,
75 Edna = spawn(fun () −> secretary (Santa , elves , 3) end) ,
76 [spawn worker (Robin , ” Reindeer ” , I , ” d e l i v e r i n g toys .\n”)
77 | | I <− l i s t s : seq (1 , 9)] ,
78 [spawn worker (Edna , ” E l f ” , I , ” meeting in the study .\n”)
79 | | I <− l i s t s : seq (1 , 1 0)] .

Listing D.1: Santa claus problem solution as defined in
http://www.cs.otago.ac.nz/staffpriv/ok/santa/santa.erl

D.2. JERLANG SOLUTION TO SANTA CLAUS USING POPULAR STYLE 147

D.2 JErlang solution to Santa Claus using popular style

Listing D.2 presents a solution that is inspired by typically cited work when using Join-calculus for
solving the Santa Claus problem. Clearly it is a minimal solution, where the synchronisation joins
itself takes 14 lines of plain old patterns and actions on successful matches. The positive approach
is that due to the properties of JErlang ’s joins we do not have to perform any management for
prioritising reindeers as it is done for example in [7]. We believe however that the solution discussed
in 6.2.1 is still much more intuitive than this one. The advantage of the latter is that it can be easily
adapted to the situation where we need more reindeers or elves to synchronise. The disadvantage is
that in a hypothetical, yet very possible situation when each reindeer or elf is distinct and requires
different action, the codebase and complexity increases dramatically in example D.2. But we believe
that all the other existing Join-calculus implementations would have problems with that as well due
to the language limitations.

The solution uses a secretary for finding necessary synchronisation. Initially the secretary sends
two messages that describe the initial number of required reindeers and elves (lines 13 and 14). There
are decremented each time

1 −module(jerlang santa claus common) .
2 −export ([santa /0 , worker/4 , secretary0 / 1]) .
3 −export ([start / 0]) .
4 −i fde f (use joins vm) .
5 −compile ({parse transform , jerlang vm parse }) .
6 −else .
7 −compile ({parse transform , jerlang parse }) .
8 −endif .
9

10 secretary0 (SantaPid) −>
11 s e l f () ! {reindeers , 9} ,
12 s e l f () ! {elves , 3} ,
13 secretary ({ [] , [] } , SantaPid) .
14
15 secretary ({Elves , Reindeers} , SantaPid) −>
16 {Res , Wait} =
17 receive
18 {reindeer , Pid} and {reindeers , 1} −>
19 s e l f () ! {reindeers , 9} ,
20 notify santa (reindeers , SantaPid , [Pid | Reindeers]) ,
21 {{Elves , [] } , true } ;
22 {reindeer , Pid} and {reindeers , N} −>
23 s e l f () ! {reindeers , N − 1} ,
24 {{Elves , [Pid | Reindeers]} , fa l se } ;
25 { el f , Pid} and {elves , 1} −>
26 s e l f () ! {elves , 3} ,
27 notify santa (elves , SantaPid , [Pid | Elves]) ,
28 { { [] , Reindeers} , true } ;
29 { el f , Pid} and {elves , N} −>
30 s e l f () ! {elves , N − 1} ,
31 {{ [Pid | Elves] , Reindeers} , fa l se }
32 end ,
33 ok = wait for santa (Wait) ,
34 secretary (Res , SantaPid) .
35

148 APPENDIX D. VARIATIONS OF THE SANTA CLAUS PROBLEM

36 wait for santa (true) −>
37 receive {santa , back} −> ok end ;
38 wait for santa () −>
39 ok .
40
41 notify santa (Animal , Santa , Pids) −>
42 Santa ! {wakeup , s e l f () , Animal , Pids } .
43
44 notify (Pids) −>
45 l i s t s : foreach (fun (Pid) −> Pid ! continue end , Pids) .
46
47 santa () −>
48 Pid =
49 receive
50 {wakeup , Secretary , Animal , Pids} −>
51 santa says (Animal) ,
52 notify (Pids) ,
53 Secretary
54 end ,
55 timer : sleep (random : uniform (1000)) ,
56 io : format (”Santa i s back . Going to s l e e p ˜n” , []) ,
57 Pid ! {santa , back} ,
58 santa () .
59
60 worker (Type , Secretary , Id , String) −>
61 timer : sleep (random : uniform (1000)) ,
62 Secretary ! {Type , s e l f ()} ,
63 receive continue −> ok end ,
64 worker (Type , Secretary , Id , String) .
65
66 santa says (reindeers) −>
67 io : format (”Ho , ho , ho ! Let ’ s d e l i v e r p r e s en t s ! ˜ n” , []) ;
68 santa says (elves) −>
69 io : format (”Ho , ho , ho ! Let ’ s d i s c u s s R&D p o s s i b i l i t i e s ! ˜ n” , []) .
70
71 start () −>
72 Santa = spawn(?MODULE, santa , []) ,
73 Secretary = spawn(?MODULE, secretary0 , [Santa]) ,
74 [spawn(?MODULE, worker ,
75 [el f , Secretary , X, ” E l f ”]) | | X <− [1 , 3]] ,
76 [spawn(?MODULE, worker ,
77 [reindeer , Secretary , X, ” Reindeer ”]) | | X <− [1 , 3 , 4 , 7 , 8 , 9]] ,
78 [spawn(?MODULE, worker ,
79 [el f , Secretary , X, ” E l f ”]) | | X <− [2 , 4 , 5]] ,
80 [spawn(?MODULE, worker ,
81 [reindeer , Secretary , X, ” Reindeer ”]) | | X <− [2 , 5 , 6]] .

Listing D.2: Santa claus problem solved in a similar style as in [7] but with a more intuitive
design

D.3. SAD SANTA CLAUS PROBLEM 149

D.3 Sad Santa Claus problem

In order to complicate things even more we introduce a variation on the Santa Claus problem that
involves the participation of orks. These creatures obviously do not like Christmas, so from time
to time, when they manage to get to Santa’s factory they destroy presents. But orks are usually
primitive so in order to attack the factory, at the same time there have to be two “sergeant” orks and
one “captain” ork, who gives orders. Additionally orks are much faster than elves and slower than
reindeers which determines the order of the execution of actions.

The indentation of the Sad Santa Claus is intended to provoke thinking about how the syn-
chronisation patterns get complicated with more diversity. We have different types of orks, different
priorities. Expressing these in any known Join-calculus implementation certainly involves additional
management of messages etc. The solution for example in standard Erlang will become even more
cumbersome: a new secretary, “hacks” that ensure correct priorities, search for a “captain” in the
team of orks etc.

Listing D.3 presents a solution to the Sad Santa Claus problem in JErlang. In comparison to
the original problem we added 4 lines (20 -24) of which only a single describes the synchronisation.
Additionally we added code that properly manages the new ork processes. ork processes typically
take longer to send messages, since we increased the random distribution of wait from 4000 to 8000
(line 36), but that does not correspond directly to the nature of the problem - we just wanted to
have a bigger chance of getting presents.

1 −module(jerlang santa claus sad) .
2 −export ([start / 0]) .
3
4 −i fde f (use joins vm) .
5 −compile ({parse transform , jerlang vm parse }) .
6 −else .
7 −compile ({parse transform , jerlang parse }) .
8 −endif .
9

10 santa () −>
11 io : format (” I t was a long night . Time to bed˜n”) ,
12 Group =
13 receive
14 {reindeer , Pid1} and {reindeer , Pid2} and {reindeer , Pid3}
15 and {reindeer , Pid4} and {reindeer , Pid5} and {reindeer , Pid6}
16 and {reindeer , Pid7} and {reindeer , Pid8} and {reindeer , Pid9} −>
17 io : format (”Ho , ho , ho ! Let ’ s d e l i v e r p r e s en t s ! ˜ n”) ,
18 [Pid1 , Pid2 , Pid3 , Pid4 ,
19 Pid5 , Pid6 , Pid7 , Pid8 , Pid9] ;
20 {ork , sergeant , Pid1} and {ork , captain , Pid2} and {ork , sergeant , Pid3} −>
21 io : format (”Ho , ho , ho? No pre s en t s t h i s year .
22 Orks destroyed the f a c t o r y ! ˜ n”) ,
23 [Pid1 , Pid2 , Pid3] ;
24 { el f , Pid1} and { el f , Pid2} and { el f , Pid3} −>
25 io : format (”Ho , ho , ho ! Let ’ s d i s c u s s R&D p o s s i b i l i t i e s ! ˜ n”) ,
26 [Pid1 , Pid2 , Pid3]
27 end ,
28 [Pid ! ok | | Pid <− Group] ,
29 santa () .
30
31 worker (Santa , Type , Id , Action) −>

150 APPENDIX D. VARIATIONS OF THE SANTA CLAUS PROBLEM

32 generate seed (Id) ,
33 worker1 (Santa , Type , Id , Action) .
34
35 worker1 (Santa , {ork , Type} , Id , Action) −>
36 receive after random : uniform (8000) −> ok end ,
37 Santa ! {ork , Type , s e l f ()} ,
38 io : format (”˜p ’˜p ’ ˜p : Waiting at the gate ˜n” , [ork , Type , Id]) ,
39 receive ok −> ok end ,
40 io : format (”˜p ’˜p ’ ˜p : ˜p˜n” , [ork , Type , Id , Action]) ,
41 worker1 (Santa , {ork , Type} , Id , Action) ;
42 worker1 (Santa , Type , Id , Action) −>
43 receive after random : uniform (4000) −> ok end ,
44 Santa ! {Type , s e l f ()} ,
45 io : format (”˜p ˜p : Waiting at the gate ˜n” , [Type , Id]) ,
46 receive ok −> ok end ,
47 io : format (”˜p ˜p : ˜p˜n” , [Type , Id , Action]) ,
48 worker1 (Santa , Type , Id , Action) .
49
50 generate seed (Seed) −>
51 {A1, A2, A3} = now() ,
52 random : seed (A1+Seed , A2∗Seed , A3) .
53
54 start () −>
55 Santa = spawn(fun () −> santa () end) ,
56 [spawn(fun () −> worker (Santa , reindeer , I , ” d e l i v e r i n g toys .\n”) end)
57 | | I <− l i s t s : seq (1 , 9)] ,
58 [spawn(fun () −> worker (Santa , el f , I , ” meeting in the study .\n”) end)
59 | | I <− l i s t s : seq (1 , 1 0)] ,
60 [spawn(fun () −> worker (Santa , {ork , sergeant } , I , ” de s t roy ing pr e s en t s .\n”)
61 end) | | I <− l i s t s : seq (1 , 4)] ,
62 spawn(fun () −> worker (Santa , {ork , captain } , 5 , ” making orde r s .\n”) end) .

Listing D.3: Solution to the Sad Santa Claus problem in JErlang

D.4. SANTA CLAUS IN GEN JOINS 151

D.4 Santa Claus in gen joins

The gen joins implementation given in listing D.4 contains all the functionality presented in the orig-
inal JErlang solution of the problem. Additionally we introduce synchronisation on the synchronous
call status that allows for the design of a test-suite that counts the time necessary to perform some
given number of reindeers and elves actions. In other words the synchronous status call stalls until
the correct internal state of the gen joins process is reached.

1
2 −export ([start /0 , stop /0 , e l f /0 , reindeer / 0]) .
3 −export ([elf done /0 , reindeer done /0 , status / 1]) .
4
5 start () −>
6 jerlang gen joins : start ({ local , ?MODULE} , ?MODULE, [] , []) .
7
8 stop () −>
9 jerlang gen joins : ca l l (?MODULE, stop) .

10
11 terminate () −>
12 ok .
13
14 in i t () −>
15 {ok , {{0 ,0} , sleeping }} .
16
17 e l f () −>
18 jerlang gen joins : ca l l (?MODULE, el f , in f in ity) ,
19 ok .
20
21 elf done () −>
22 jerlang gen joins : cast (?MODULE, {done , e l f }) .
23
24 reindeer () −>
25 jerlang gen joins : ca l l (?MODULE, reindeer , in f in ity) .
26
27 reindeer done () −>
28 jerlang gen joins : cast (?MODULE, {done , reindeer }) .
29
30 status (Status) −>
31 jerlang gen joins : ca l l (?MODULE, {status , Status } , in f in ity) .
32
33 handle join ({ status , {A, B}} , {{C, D} , }=S) when ((A =< C) and (B =< D)) −>
34 io : format (” I am done ˜p˜n” , [{C, D}]) ,
35 { [{ reply , ok }] , S} ;
36 handle join (stop ,) −>
37 io : format (” Stopping the s e r v e r ˜n” , []) ,
38 {stop , normal } ;
39 handle join ({done , reindeer} and {done , reindeer} and {done , reindeer} and
40 {done , reindeer} and {done , reindeer} and {done , reindeer} and
41 {done , reindeer} and {done , reindeer} and {done , reindeer } ,
42 {Counter , awake reindeer }) −>
43 io : format (” Al l r e i n d e e r s returned ˜n” , []) ,
44 { [noreply | | <− l i s t s : seq (1 , 9)] , {Counter , sleeping }} ;
45

152 APPENDIX D. VARIATIONS OF THE SANTA CLAUS PROBLEM

46 handle join ({done , e l f } and {done , e l f } and {done , e l f } ,
47 {Counter , awake elf }) −>
48 io : format (” Al l e l v e s returned ˜n” , []) ,
49 { [noreply | | <− l i s t s : seq (1 , 3)] , {Counter , sleeping }} ;
50
51 handle join (reindeer and reindeer and reindeer and
52 reindeer and reindeer and reindeer and
53 reindeer and reindeer and reindeer ,
54 {{Reindeers , Elves } , sleeping }) −>
55 io : format (”Ho , ho , ho ! Let ’ s d e l i v e r p r e s en t s ˜n” , []) ,
56 { [{reply , ok} | | <− l i s t s : seq (1 , 9)] , {{Reindeers+1, Elves } , awake reindeer }} ;
57
58 handle join (e l f and e l f and el f ,
59 {{Reindeers , Elves } , sleeping }) −>
60 io : format (”Ho , ho , ho ! Let ’ s d i s c u s s R&D p o s s i b i l i t i e s ˜n” , []) ,
61 { [{reply , ok} | | <− l i s t s : seq (1 , 3)] , {{Reindeers , Elves+1} , awake elf }} .

Listing D.4: gen joins solution to the Santa Claus problem in JErlang

Appendix E

Benchmarks

E.1 Multiple producers test-suite

Example E.1 presents an artificial situation where the programmer wants to achieve synchronisa-
tion on multiple calls. The run of the test (not included here, but available in module multi-
ple producers test.erl runs multiple “producer” processes that create large amounts of messages
by calling notify, sell, buy, credentials and deposit. All of those functions (apart from notify)
create asynchronous messages as fast they can. For a realistic situation we throttle them using ran-
domly distributed sleep function (from 1 to 1000 miliseconds). Any of the first two joins requires
synchronous call to notify and to create a large backlog of messages and push our joins solver to
the limits, there are only a few (in comparison to functions) processes that try to send synchronous
notify message.

We measure the effectiveness of our rather complex joins solver by the number of joins it is capable
of firing in the given amount of time.

1 −module(multiple producers) .
2 −compile ({parse transform , jerlang gen joins parse }) .
3
4 −behaviour (jerlang gen joins) .
5
6 −export ([in i t /1 , handle join /2 , terminate / 0]) .
7 −export ([start /0 , stop / 0]) .
8 −export ([notify /0 , notify /1 , credentials /2 ,
9 deposit /1 , s e l l /2 , buy / 3]) .

10
11 −record (packet ,{ id , value }) .
12
13 −define (LIMIT, 2 50) .
14 −define (GEN JOINS, jerlang gen joins) .
15
16 start () −>
17 ?GEN JOINS: start ({ local , ?MODULE} , ?MODULE, [] , []) .
18
19 stop () −>

153

154 APPENDIX E. BENCHMARKS

20 ?GEN JOINS: ca l l (?MODULE, stop) .
21
22 terminate () −>
23 ok .
24
25 in i t () −>
26 {ok , 0} .
27
28 notify () −>
29 ?GEN JOINS: ca l l (?MODULE, notify , in f in ity) .
30
31 notify (Timeout) −>
32 ?GEN JOINS: ca l l (?MODULE, notify , Timeout) .
33
34 s e l l (Id , Value) −>
35 ?GEN JOINS: cast (?MODULE, #packet{value=Value , id=Id }) .
36
37 buy(Id , Value , Previous) −>
38 ?GEN JOINS: cast (?MODULE, {buy , Id , Value , Previous }) .
39
40 credentials (Id , Password) −>
41 ?GEN JOINS: cast (?MODULE, {secure , Id , Password }) .
42
43 deposit (V) −>
44 ?GEN JOINS: cast (?MODULE, {deposit , V}) .
45
46 %% JOINS
47
48 handle join (notify and #packet{value=V1, id=Id} and {buy , Id , , Previous } ,
49 State) −>
50 { [{ reply , {ok , buy , Id}} , noreply , noreply] , State − V1} ;
51 handle join (notify and {deposit , V1} and #packet{value= , id=Id}
52 and {secure , Id , } , State) −>
53 { [{ reply , {ok , se l l , Id}} , noreply , noreply , noreply] ,
54 State + (V1) } ;
55 handle join (stop ,) −>
56 {stop , normal } .

Listing E.1: Application with numerous asynchronous calls in complex joins in JErlang

Appendix F

NataMQ

For the detailed description of NataMQ application please refer to section 6.5.1.

F.1 Nata Exchange

Nata Exchange is central to the existence of the NataMQ system. It is the only entity capable of
creating queues to which clients can subscribe. It also stores routing declarations that determine
the action on incoming messages. Two join constructs are used in order to allow for the creation of
synchronisation patterns on the messages’ keys (lines 60-61 and 64-65). The propagation feature is
used in order allow for checking for any key’s rounting information, since such information cannot be
performed inside the guards. A lack of propagation would result in performance drop, since we want
keep the routing information to match as early as possible, especially in a high-load environment for
which NataMQ was designed.

1 −module(nata exchange) .
2
3 −compile ({parse transform , jerlang gen joins parse }) .
4
5 −include (” nata . h r l ”) .
6
7 −behaviour (jerlang gen joins) .
8
9 −export ([in i t /1 , handle join /2 , start /0 , terminate / 0]) .

10 −export ([create route /3 , delete route / 1]) .
11 −export ([publish / 1]) .
12
13 −define (CHMODULE, nata channel) .
14 −define (SERVER, jerlang gen joins) .
15 −define (MAX, 4) .
16
17 in i t () −>
18 {ok , {dict :new() , dict :new() } } .
19

155

156 APPENDIX F. NATAMQ

20 start () −>
21 ?SERVER: start ({ local , ?MODULE} , ?MODULE, [] , []) .
22
23 terminate () −>
24 ?SERVER: ca l l (?MODULE, stop) .
25
26 create route (Key, Synchr , Channels) −>
27 ?SERVER: ca l l (?MODULE, {route , Key, Synchr , Channels }) .
28
29 delete route (Key) −>
30 ?SERVER: ca l l (?MODULE, {remove route , Key}) .
31
32 publish (Msg) −>
33 ?SERVER: cast (?MODULE, Msg) .
34
35 %% −−−−−−−−−−−−−−−−−−−−−−− CALLBACKS −−−−−−−−−−−−−−−−−−−−−−
36
37 handle join ({ route , Key, Synchr , Channels} , Status)
38 when ((Synchr > 0) and (Synchr < ?MAX)) −>
39 %% Whenever rout already exists we only update
40 %% the number of channels
41
42 io : format (” [Ex] Create route ˜p˜n” , [Key]) ,
43 {Reply , NS} =
44 try
45 {Pids , {NewRoute, UpdatedS}} =
46 get route (Key, Synchr , Channels , Status) ,
47 ok = set route (NewRoute, Key, Synchr) ,
48 {{ok , Pids} , UpdatedS}
49 catch
50 throw : −>
51 {{error , { invalid synchr , Synchr}} , Status}
52 end ,
53 { [{ reply , Reply }] , NS} ;
54 handle join ({remove route , Key} and {route , Key, } , Status) −>
55 NS = remove route (Key, Status) ,
56 { [{ reply , ok} , noreply] , NS} ;
57 handle join(#msg{key=none} , Status) −>
58 io : format (” [Ex] I n v a l i d message . Key requ i r ed ˜n” , []) ,
59 { [noreply] , Status } ;
60 handle join(#msg{key=Key, value=V1} and #msg{key=Key, value=V2}
61 and prop ({ route , Key, 2}) , Status) −>
62 route message (Key, [V1, V2] , Status) ,
63 { [noreply | | <− l i s t s : seq (1 , 3)] , Status } ;
64 handle join(#msg{key=Key, value=V1} and #msg{key=Key, value=V2} and
65 #msg{key=Key, value=V3} and prop ({ route , Key, 3}) , Status) −>
66
67 route message (Key, [V1, V2, V3] , Status) ,
68 { [noreply | | <− l i s t s : seq (1 , 4)] , Status } .
69
70 %% −−
71 %% −−−− INTERNAL FUNCTIONS −−−−−−−−−−−−−−−−−−−−−−−−−−
72 %% −−
73

F.1. NATA EXCHANGE 157

74 get route (Key, Synchr , ChNames, {S1 , S2}) −>
75 {Update , NS1} =
76 case dict : find (Key, S1) of
77 {ok , {Synchr , Values}} −>
78 NChNames = (Values ++ (ChNames −− Values)) ,
79 {no , dict : store (Key, {Synchr , NChNames} , S1) } ;
80 {ok , } −>
81 throw(invalid synchr) ;
82 error −>
83 {yes , dict : store (Key, {Synchr , ChNames} , S1)}
84 end ,
85 {ChPids , NS2} =
86 start channels (ChNames, S2) ,
87 {ChPids , {Update , {NS1, NS2}}} .
88
89
90 set route (yes , Key, Synchr) −>
91 ?SERVER: cast (?MODULE, {route , Key, Synchr}) ,
92 ok ;
93 set route (, ,) −>
94 ok .
95
96 route message (Key, Value , {S1 , S2}) −>
97 { , ChNames} = dict : fetch (Key, S1) ,
98 ChPids = l i s t s :map(
99 fun (Name) −>

100 dict : fetch (Name, S2)
101 end , ChNames) ,
102 l i s t s :map(
103 fun (Pid) −>
104 ?CHMODULE: route (Pid , Key, Value)
105 end , ChPids) .
106
107 start channels (Channels , Store) −>
108 start channels (Channels , [] , Store) .
109
110 start channels ([] , Result , Store) −>
111 { l i s t s : reverse (Result) , Store } ;
112 start channels ([Ch | Rest] , Result , Store) −>
113 {Pid , NS} =
114 case dict : find (Ch, Store) of
115 {ok , ChPid} −>
116 {ChPid , Store } ;
117 error −>
118 {ok , ChPid} = ?CHMODULE: start l ink (Ch) ,
119 NStore = dict : store (Ch, ChPid , Store) ,
120 {ChPid , NStore}
121 end ,
122 start channels (Rest , [Pid | Result] , NS) .
123
124 remove route (Key, Status) −>
125 dict : erase (Key, Status) .

Listing F.1: Nata Exchange written in JErlang

158 APPENDIX F. NATAMQ

1 −record (msg , {key=none ,
2 id=none ,
3 value }) .
4 −record (channel msg , {msg}) .

Listing F.2: NataMQ ’s header file

F.2 Nata Channel

Channel is used for storing the messages that were passed by the Nata Exchange. The entity currently
does not perform persistent storage of the messages i.e. whenever there are subscribers to the queue,
then all the messages are immediately passed to them, otherwise we stall. The application could be
designed for more sophisticated purposes like no automatic removal of the message, authentication
requirements etc., but for clarity we omit the details.

Each Nata Channel runs as a separate process in a typical client-server model which increase the
possibility of extending the behaviour to new functionality.

1 −module(nata channel) .
2
3 −behaviour (gen server) .
4
5 %% API
6 −export ([start l ink / 1]) .
7
8 −export ([in i t /1 , handle call /3 , handle cast /2 , handle info /2 ,
9 terminate /2 , code change / 3]) .

10
11 −export ([subscribe /1 , unsubscribe /1 , route / 3]) .
12
13 −record (state , {name, msgs , subs = [] }) .
14 −define (SERVER, gen server) .
15
16
17 start l ink (Name) −>
18 ?SERVER: start l ink (?MODULE, [Name] , []) .
19
20 in i t ([Name]) −>
21 {ok , #state{name=Name, msgs=queue :new() } } .
22
23 subscribe (ChPid) −>
24 ?SERVER: ca l l (ChPid , consume) .
25
26 unsubscribe (ChPid) −>
27 ?SERVER: ca l l (ChPid , not consume) .
28
29 %% −−−
30 route (ChPid , Key, Msg) −>
31 ?SERVER: cast (ChPid , {msg , Key, Msg}) .
32
33 %% −−−−−−−−−−−−−−−−−−−− CALLBACKS −−−−−−−−−−−−−−−−−−−−−−−−
34

F.2. NATA CHANNEL 159

35 handle cast ({msg , Key, Msg} , #state{msgs=Q, subs=[]}=S) −>
36 {noreply , S#state{msgs=queue : in (Q, {Key, Msg})}} ;
37 handle cast ({msg , Key, Msg} , #state{name=N, subs=Subs}=S) −>
38 io : format (” [Channel ˜p] Not i fy o f ˜p˜n” , [N, Msg]) ,
39 notify subscribers (Msg, Key, Subs) ,
40 {noreply , S} ;
41 handle cast (, State) −>
42 {noreply , State } .
43
44 handle call (consume , {From, } , #state{name=N, msgs=Q, subs=[]}=S) −>
45 io : format (” [Channel ˜p] F i r s t consumer ˜p˜n” , [N, From]) ,
46 notify with old messages (Q, From) ,
47 {reply , ok , S#state{msgs=queue :new() , subs=[From] } } ;
48 handle call (consume , {From, } , #state{name=N, subs=Subs} = S) −>
49 io : format (” [Channel ˜p] Consumer ˜p˜n” , [N, From]) ,
50 {reply , ok , S#state{subs=[From | Subs] } } ;
51 handle call (, , State) −>
52 {noreply , State } .
53
54 handle info (Info , State) −>
55 {noreply , State } .
56
57 terminate (Reason , State) −>
58 ok .
59
60 code change (OldVsn , State , Extra) −>
61 {ok , State } .
62
63 %%−−
64 %%% Internal functions
65 %%−−
66
67 notify subscribers (, , []) −>
68 ok ;
69 notify subscribers (Msg, Key, [S | Rest]) −>
70 S ! {channel , Key, Msg} ,
71 notify subscribers (Msg, Key, Rest) .
72
73 notify with old messages (Q, Subs) −>
74 L = queue : to l i s t (Q) ,
75 notify (L , Subs) .
76
77 notify ([] ,) −>
78 ok ;
79 notify ([{Key, M} | Rest] , Subs) −>
80 Subs ! {channel , Key, M} ,
81 notify (Rest , Subs) .

Listing F.3: Nata Channel written in JErlang

160 APPENDIX F. NATAMQ

F.3 Nata Publish and Subscribe

Nata Publish and Nata Subscribe are basic processes provided for completeness. They use the API
provided by the Nata Exchange. The initial configuration parameters are self-explanatory and for
more examples of usage see the module nata test in the source code (not included in the Appendix).

1 −module(nata publish) .
2
3 −include (” nata . h r l ”) .
4
5 −define (DELAY, 5000) .
6
7 −export ([start / 1]) .
8
9 start (State) −>

10 in i t (State) ,
11 publish (State) .
12
13 in i t ({ , Seed , Key , Type}) −>
14 {A1, A2, A3} = now() ,
15 random : seed (A1+Seed , A2∗Seed , A3∗Seed) ,
16 io : format (” [Producer ˜p] : S ta r t ˜n” , [Seed]) ,
17 ok .
18
19 publish ({Exchange , Seed , Key, normal}=State) −>
20 timer : sleep (random : uniform (?DELAY)) ,
21 io : format (” [Producer ˜p] : pub l i sh message [˜ p] ˜ n” , [Seed , Key]) ,
22 Exchange : publish(#msg{key=Key,
23 id=none ,
24 value={test , Seed}}) ,
25 check proceed (State) .
26
27 check proceed ({ , Seed , , } = State) −>
28 receive
29 stop −>
30 io : format (” [Producer ˜p] : stop ˜n” , [Seed])
31 after 0 −>
32 publish (State)
33 end .

Listing F.4: Nata Publish written in JErlang

1 −module(nata subscribe) .
2
3 −include (” nata . h r l ”) .
4
5 −export ([start / 1]) .
6
7 −define (CHANNLE, a) .
8 −define (EXCHANGE, nata exchange) .
9 −define (CHMODULE, nata channel) .

10
11 start (Conf) −>

F.3. NATA PUBLISH AND SUBSCRIBE 161

12 NConf = in i t (Conf) ,
13 consume(NConf) .
14
15 consume({ , Id , , , }=Conf) −>
16 receive
17 {channel , Name, Msg} −>
18 io : format (” [Subsc r ibe r ˜p] : Received ˜p on [˜ p] ˜ n” ,
19 [Id , Msg, Name]) ,
20 ok ;
21 stop −>
22 exit (normal)
23 end ,
24 consume(Conf) .
25
26 in i t ({Exchange , Id , Key, Synchr , Channels}) −>
27 {ok , CHPids} = Exchange : create route (Key, Synchr , Channels) ,
28 l i s t s : foreach (fun (Ch) −> ?CHMODULE: subscribe (Ch) end , CHPids) ,
29 {Exchange , Id , Key, Synchr , CHPids} .

Listing F.5: Nata Subscribe written in JErlang

	Contents
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Join-calculus
	2.1.1 Historical overview
	2.1.2 Reflexive CHAM
	2.1.3 Formal definition

	2.2 Join-calculus implementations
	2.2.1 JoCaml
	2.2.2 Polyphonic C#
	2.2.3 SCHOOL and fSCHOOL
	2.2.4 Join Java
	2.2.5 JoinHs and HaskellJoinRules
	2.2.6 Joins Concurrency Library
	2.2.7 Conclusion

	2.3 Erlang
	2.3.1 Process
	2.3.2 Inter-process communication
	2.3.3 Expression and Functions
	2.3.4 Exception handling
	2.3.5 Open Telecom Platform
	2.3.6 Conclusion

	2.4 Solving pattern-matching problems
	2.4.1 Production Rule System
	2.4.2 RETE algorithm
	2.4.3 Optimisations

	2.5 Data Flow Analysis
	2.5.1 Reaching Definitions Analysis
	2.5.2 Live Variable Analysis

	2.6 Summary

	3 JErlang: Formal Definition
	3.1 Syntax
	3.1.1 Differences between Erlang and JErlang

	3.2 Semantics
	3.2.1 Operational Semantics
	3.2.2 Pattern-matching algorithms

	3.3 Conclusion

	4 The language
	4.1 Joins for Mailboxes
	4.1.1 Joins for Multiple Mailboxes
	4.1.2 Joins for a Single Mailbox

	4.2 Language features
	4.2.1 Getting started
	4.2.2 Joins
	4.2.3 Order preservation in mailbox and First-Match execution
	4.2.4 Guards
	4.2.5 Timeouts
	4.2.6 Non-linear patterns
	4.2.7 Propagation
	4.2.8 Synchronous calls
	4.2.9 OTP platform support in JErlang

	4.3 Conclusions

	5 Implementation
	5.1 JErlang Compiler and VM
	5.1.1 Compiler
	5.1.2 Built-in functions (BIFs)
	5.1.3 Erlang's Virtual Machine

	5.2 JErlang's VM
	5.2.1 Search mechanism
	5.2.2 Mailbox and Map
	5.2.3 Locking

	5.3 Parse_transform
	5.3.1 Abstract Syntax Tree
	5.3.2 Unbounded and Bounded Variables in parse_transform
	5.3.3 Reaching Definitions Analysis
	5.3.4 Live Variable Analysis

	5.4 Algorithms
	5.4.1 Standard
	5.4.2 State space explosion
	5.4.3 Lazy evaluation
	5.4.4 RETE implementation
	5.4.5 Pruning search space
	5.4.6 Patterns ordering optimisation

	6 Evaluation
	6.1 Correctness
	6.1.1 Dialyzer

	6.2 Language and expressiveness
	6.2.1 Santa Claus problem
	6.2.2 Dining philosophers problem

	6.3 Scalability
	6.4 Performance
	6.4.1 Small mailboxes with quick synchronisation
	6.4.2 Queue size factor in joins synchronisation
	6.4.3 Influence of joins ordering on the performance
	6.4.4 Standard queues vs hash-map accelerated queues

	6.5 Applications
	6.5.1 Message routing system with synchronisation on messages
	6.5.2 Chat system

	6.6 Conclusion

	7 Conclusion
	7.1 Further work
	7.1.1 Formal definition
	7.1.2 Performance
	7.1.3 New Erlang release
	7.1.4 Benchmarks

	7.2 Closing remarks

	Bibliography
	A Erlang Compiler Result
	A.1 Original code
	A.2 Abstract syntax tree for the first program
	A.3 First program expressed in Core Erlang
	A.4 Assembler code (Kernel Erlang) corresponding to the first program

	B Parse_transform result
	B.1 Original code
	B.2 JErlang's code resulting from running parse_transform on the first program
	B.3 Abstract Syntax Tree representing the first program
	B.4 Abstract Syntax Tree resulting from running parse_transform

	C gen_joins OTP's behaviour
	C.1 Calculator
	C.2 Chat system

	D Variations of the Santa Claus problem
	D.1 Santa Claus in Erlang
	D.2 JErlang solution to Santa Claus using popular style
	D.3 Sad Santa Claus problem
	D.4 Santa Claus in gen_joins

	E Benchmarks
	E.1 Multiple producers test-suite

	F NataMQ
	F.1 Nata Exchange
	F.2 Nata Channel
	F.3 Nata Publish and Subscribe

