

SKETCHI - FROM SKETCHES TO GUIS

Johnathan Tunnicliffe

Supervisor: Dr Simon Colton

Individual Project Report for MEng Computing, Imperial College London

jdt05@doc.ic.ac.uk

June 2009

 1

ABSTRACT

Despite the dominance of Graphical User Interfaces (GUIs) in both consumer and business
applications, there is still no simple, straightforward way of producing them. Manual coding
requires a programmer to do a designer’s job whilst drag-and-drop tools produce verbose,
difficult-to-read code.

Various tools and techniques have been created over the years to aid developers in
producing GUIs whilst reducing some of the prerequisite knowledge required. However,
there is still a wealth of expertise needed regarding the specific widget toolkit to use these
tools and produce a good quality interface for an end user.

This report discusses a new, more natural tool that developers can use to build GUIs
particularly for Swing in Java. We explore transforming sketches and natural input into the
code for user interfaces. We have implemented a new GUI design tool that removes the
learning curve in creating GUIs, produces concise code and requires minimal user
intervention and prior toolkit knowledge.

The results show that we can produce quality GUIs from natural input with minimal
widget toolkit knowledge. Furthermore, the code created is more concise and of a higher
quality than existing tools. The final finding is that we can abstract the toolkit so a single GUI
sketch can produce code for multiple toolkits and programming languages.

 2

ACKNOWLEDGEMENTS

I would firstly like to thank my supervisor Dr Simon Colton for his excellent project idea as
well as his help throughout the duration of the project. I would also like to thank my family,
girlfriend and friends for helping me through university and pushing me over the finish line
after four long years.

 3

TABLE OF CONTENTS

1 INTRODUCTION ... 6
1.1 MOTIVATION ... 6

1.1.1 Knowledge Barrier ...6
1.1.2 Achieving Good Layout ..7
1.1.3 Quality of Generated Code... 7

1.2 CONTRIBUTIONS ... 8
1.3 REPORT STRUCTURE .. 9

2 BACKGROUND .. 10
2.1 GUI BASICS .. 10

2.1.1 What is a GUI?..10
2.1.2 Human Interface Guidelines .. 11
2.1.3 GUI Toolkits..11

2.2 CURRENT GUI BUILDING METHODS.. 15
2.2.1 Coding by Hand...15
2.2.2 GUI Builders: WYSIWYG ... 15
2.2.3 Using a Markup Language to Specify GUIs... 21

2.3 INPUT RECOGNITION.. 26
2.3.1 Artificial Neural Networks ... 26
2.3.2 Pixel Overlay...30
2.3.3 Receptors ... 31
2.3.4 Case-Based Reasoning...34

2.4 LAYOUT MANAGEMENT .. 36
2.4.1 Basic Layout Techniques... 36
2.4.2 The Dark Art of Java Layout Management ..38
2.4.3 Inferring Correct Layout ... 42

3 DESIGN CONSIDERATIONS... 44
3.1 AIMS... 44
3.2 CRITIQUE OF EXISTING TECHNIQUES ... 44

3.2.1 Problems with Manual Coding ..44
3.2.2 Problems with Current GUI Builders..45
3.2.3 Problems with Specifying in Markup Languages47
3.2.4 Conclusion of Criticisms ... 47

3.3 DESIGN.. 47
3.3.1 High Level Architecture..48
3.3.2 Implementation Choices ... 48
3.3.3 Application Components .. 49
3.3.4 Application States ..51
3.3.5 Component Interaction ...52

 4

3.3.6 Sketchi Flexibility ...53

4 INPUT DETECTION & CLASSIFICATION ... 54
4.1 DETECTION... 54
4.2 CLASSIFICATION ... 55

4.2.1 Case-Based Reasoning...57
4.2.2 Receptor Patterns ...59
4.2.3 Suggesting a Classification ... 61
4.2.4 Enhancing the Receptor Encoding...62
4.2.5 Incorporating Other Features ... 63
4.2.6 Learning From the User ..67

4.3 SUMMARY OF INPUT DETECTION AND CLASSIFICATION 67

5 AUTOMATED LAYOUT GENERATION... 68
5.1 LAYOUT GENERATOR ARCHITECTURE.. 68
5.2 MIGLAYOUT .. 70

5.2.1 Inferring Columns & Rows... 72
5.2.2 Adding Component Constraints ...74

5.3 SUMMARY OF AUTOMATED LAYOUT GENERATION .. 75

6 CODE GENERATION... 76
6.1 MODELLING THE GUI... 76
6.2 ABSTRACT CODE GENERATION ... 77
6.3 SUMMARY OF CODE GENERATION.. 81

7 EXPERIMENTAL DESIGN ... 82

7.1 INPUT RECOGNITION RATES ... 82
7.2 LAYOUT GENERATION FLEXIBILITY ... 83
7.3 QUALITY OF CODE GENERATION ... 83
7.4 PROJECT BRIEF ASSIGNMENT .. 84
7.5 USABILITY TESTING ... 84

7.5.1 End-user Testing ..84
7.5.2 Nielsen’s Usability Heuristics ..86

7.6 PERFORMANCE TESTING.. 86
7.7 ROBUSTNESS & STABILITY ... 87

7.7.1 Monkey Testing..87
7.7.2 Stress Testing ..88

8 RESULTS & ANALYSIS.. 89
8.1 INPUT RECOGNITION RATES ... 89
8.2 LAYOUT GENERATION FLEXIBILITY ... 91
8.3 QUALITY OF CODE GENERATION ... 95
8.4 PROJECT BRIEF ASSIGNMENT .. 97

 5

8.5 USABILITY TESTING ... 99
8.5.1 End-user Testing ..99
8.5.2 Nielsen’s Usability Heuristics ..103

8.6 PERFORMANCE TESTING.. 104
8.7 ROBUSTNESS & STABILITY ... 108

8.7.1 Monkey Testing..108
8.7.2 Stress Testing ..108

8.8 SUMMARY OF THE RESULTS.. 110

9 CONCLUSION & FUTURE WORK .. 111
9.1 CONCLUSION... 111
9.2 FUTURE WORK ... 112
9.3 FINAL REMARKS ... 114

10 BIBLIOGRAPHY .. 115

11 APPENDIX.. 117

11.1 SWING CODE TEMPLATE ... 117
11.2 USER QUESTIONNAIRE .. 118

Introduction 6

1 INTRODUCTION

Despite Graphical User Interfaces (GUIs) being utilised in the majority of modern day
programs, creating them can still be tedious and frustrating. Existing techniques include
coding by hand in a specific toolkit, declaring GUIs in a markup language and using
graphical GUI building tools to drag and drop components onto a screen. Although
programmers are spoilt for choice when deciding how to build their GUI, the existing
techniques all have some form of shortcoming.

1.1 Motivation

1.1.1 Knowledge Barrier

When programming a GUI in Java there is choice to make regarding the toolkit implement in.
Whether we use the Standard Widget Toolkit (SWT) or Swing for coding our GUIs should not
matter for basic forms; a button is a button and a list is a list in any widget toolkit. This same
choice has to be made many languages.

A major hurdle with GUI coding is the toolkit specific knowledge required.
Understanding package structures and toolkit-specific interaction paradigms should not be a
major hurdle in GUI programming but it is. Each toolkit uses its own paradigms and this
introduces an unnecessary learning curve for the programmer. Here are two snippets of code
that compare how to respond to a button click in Java Swing and C# WinForms.

Button btnDemo = new Button();
btnDemo.Click += new EventHandler(this.btnDemo_Click);

. . . // Other code

private void btnDemo_Click(object sender, EventArgs e)
{
 // process button click
}

Figure 1.1: C# WinForms event response example.

JButton btnDemo = new JButton("Demo Button");
btnDemo.addActionListener(new MyActionListner());

. . . // Other code

private class MyActionListener implements ActionListener
{
 public void actionPerformed(ActionEvent e)
 {
 // process button click
 }
}

Figure 1.2: Java Swing event response example.

As you can see, the two look similar in that you register some sort of listener to the
object. In C# WinForms you must register an event handler with a method delegate on an
action of the widget (btnDemo.Click above). In Java Swing, you assign a specific

Introduction 7

implementation of a handler to a widget. The end result is the same, in that you detect the
button click and run code in response, but the paradigms used by the toolkits are different.
For a comparison of various toolkits see section 2.4.

1.1.2 Achieving Good Layout

Poor layout management in a GUI can destroy the quality of an application. Whilst a
developer may be able to position and size widgets pixel perfect using an absolute layout, a
user resizing the application will destroy the layout. This is why layout managers were
created. A layout manager controls the position and size of widgets on the screen given
certain constraints. Unfortunately, creating these constraints is not an easy task. To get the
desired layout involves repeatedly tweaking the constraints, recompiling and rerunning the
GUI. Anyone who’s tried to write a GUI that scales as planned when it’s window is resized
knows this can take as long as writing the application code. The other point to add is that
some layouts just can’t be achieved with the standard layout managers. For instance, .NET
has terrible layout managers and Java supplies a handful of layout managers that need to be
nested in order to achieve anything remotely complex. However, there are two reasons why
nesting layout managers should be avoided:

• Default gaps – Layout managers in Java use different default gap sizes, thus
combining layout managers can lead to unexpected behaviour of GUI components.

• Treatment of components – Different layout managers will treat the components
differently depending on parameters such as preferred size, minimum size and
layout constraints. The same component added to different layout managers will not
behave comparably and this makes visualising layout complicated.

 A single global layout manager is a far better solution but there are not many
available with the versatility to handle complex layouts. Fortunately there exist various third
party layout managers that can handle complex layouts (see section 2.4.2 for details) but of
course these have to be learnt by the programmer.

1.1.3 Quality of Generated Code

Whilst using a tool such as NetBeans helps with the visual aspect of designing a GUI form, it
introduces other problems. NetBeans employs a drag-and-drop system for fast GUI creation,
but the code it produces is verbose. For a simple form with two text fields, two buttons and
two text labels, NetBeans produces 36 lines of layout code. The same form coded with the
popular MigLayout (see section 2.4.2 for an overview of MigLayout) layout manager requires
only 6 lines of layout codei. Even for a simple form, the code produced is complex and would
require a much larger amount of work from a programmer to modify at a later date when
compared to a manually coded version.

i MigLayout only requires one line of layout code per GUI widget.

Introduction 8

1.2 Contributions

This project outlines a new idea for designing GUIs that aims to solve of the above problems.
The end result is an intuitive application written in Java that can be used to visually build
GUIs whilst removing the knowledge barrier and producing clean, concise code for the user.
In particular, we use natural input from a touch screen so a user can draw their GUI on the
screen and have the GUI built for them. The application is composed of three main
components:

• Classification of sketched widgets – The user draws their user interface on screen using
preconfigured symbols that look like the real interface widgets. This removes the
knowledge barrier and helps abstract the toolkit by using natural input. This segment
of the application is aimed at recognising what the user has drawn and classifying it
as a user interface widget. We use a Case-Based Reasoning (CBR) implementation
with multiple features to find a nearest match to a known widget and hence classify
the input as a widget (see section 4.2 for implementation details of the widget
classifier). We show that with clever features and a small number of examples from a
user, recognition rates approaching 100% can be achieved (see section 8.1 for
recognition rate results).

• Automatic generation of layout – This involves taking the sketch with the classification
of the widgets and generating correct layout code. We take the bounds of sketched
widgets and attempt to infer the correct number of rows and columns in the layout,
as well as widget constraints for the layout manager. We generate multiple layouts
and give the user the choice of which layout to proceed with (see section 5 for
implementation details of the layout generator).

• Code generation – We implement an abstract and extensible code generator so that
new code generators can be implemented to generate GUIs for other languages. This
means the same GUI can be deployed across multiple toolkits with no extra work
from the user (see section 6 for implementation details of the code generator).

These three components together remove much of the prerequisite knowledge required to
create a GUI. The sketching element abstracts the widget toolkit and removes the knowledge
barrier. The automated layout generation makes it easy to get well behaved, intelligently
resizing forms and the code generator produces minimal, clean, code.

Introduction 9

1.3 Report Structure

The remainder of this report is structured as follows:

• Background – The background chapter, found in section 2, gives details of some
possible implementations that can be used in achieving our goals. We look at existing
tools and techniques for GUI creation, different approaches for input recognition, a
background on layout management and a detailed view of What You See Is What
You Get (WYSIWYG) GUI designers.

• Design Considerations – The design considerations chapter, found in section 3, states
the aims of the project and formulates a design to fulfil these goals. We give a critique
of the existing tools and use this to design our own solution. We also discuss the
design choices we have made and give an overview of our application, Sketchi.

• Input Detection & Classification – The input detection and classification chapter, found
in section 4, includes details on our input classification and detection systems. We
give implementation details of our CBR system and show how we classify a user’s
sketch. We also outline the algorithm we use for finding the individual widgets in the
user’s sketch.

• Automated Layout Generation – The automated layout generation chapter, found in
section 5, looks at our algorithm for automatically finding layout constraints for
widgets in the sketched GUI. Using these constraints, we can layout the user’s
interface in a window that intelligently resizes with no further interaction from the
user being required.

• Code Generation – The code generation chapter, found in section 6, discusses the
implementation of our abstract code generator. In particular, we show how its
structure allows us to provide multiple implementations for various toolkits and
languages.

• Experimental Design – The experimental design chapter, found in section 7, outlines
the experiments we carried out to evaluate the software. We give reasons for the
experiments we undertook and explain how the experiments were used to evaluate
our software.

• Results & Analysis – The results and analysis chapter, found in section 8, presents the
results of the experiments and explains what they mean in the context of our
application.

• Conclusion & Future Work – The conclusion and future work chapter, found in section
9, highlights the successes and failures of the project and suggests new possible
directions.

Background 10

2 BACKGROUND

2.1 GUI Basics

2.1.1 What is a GUI?

A Graphical User Interface (GUI) is a type of user interface that allows a user to interact with
graphical icons, command buttons and other visual indicators to achieve tasks on an
electronic based system. Regarded as a more intuitive and user friendly method of interacting
with a system than it’s text-based counterpart (Microsoft 2007), the command-line interface
(CLI), the GUI has revolutionized personal computing and made it accessible to the consumer
market. Although GUIs are prevalently found in personal computing, they have since found
themselves shifted on to handheld devices such as phones, MP3 players and gaming devices
as well as other consumer electronics.

 Early GUIs implemented the Windows, Icons, Menu, Pointing device (WIMP) style of
interaction, which was developed at Xerox PARC in 1973 for the Xerox Alto personal
computer that later influenced both Microsoft and Apple’s operating systems. Related
commands are accumulated in menus and accessed with the pointing device. These menus
can be explored without the user committing to a particular command, which can often be
reversed. This encourages exploration by the user and helps them learn. Most applications
share the same form so knowledge can be transformed between them making them more
accessible to first time users whilst also presenting shortcuts for power users.

Figure 2.1: The Mac OS X Interface uses WIMP.

Background 11

2.1.2 Human Interface Guidelines

Human Interface Guidelines (HIGs) are software development guides, put in place by the
creators of the operating system (OS), that help application developers give a consistent
visual and behavioural experience across applications and the OS. The documents outline
fundamental design principles, the interface components available and guidelines on how to
use and implement them on the particular platform. Applications that follow the guidelines
for the particular platform will help their users as well as their applications in a number of
areas such as:

• Speed of learning the application - Interface elements will be consistent between
applications and common shortcuts will behave in the same way.

• Look that integrates with the desktop - Using the standard interface elements and
guideline look and feel will help the application blend into the platform making the
user’s interaction seamless.

• Users with special needs - HIGs outline the platform specific technologies that help
users with special needs use the system. Employing these technologies in your
applications will make them more accessible to these users.

Guidelines are created for most major platforms and quite often contradict each other
making cross-platform development more difficult. In this situation the developer is left to
make the best decision to make the application as accessible to as many users as possible.
Frequently the backend code at the core of the application will be shared and separate
interfaces will be built for different platforms.

There are HIGs for Mac OS X, Windows Vista, GNOME Desktop, KDE Desktop, Java
and others. Whilst all these platforms share common interface elements such as buttons, text
boxes, scroll bars, tabbed panes, etc. major differences between the guidelines are found in
recommended layout of the elements and in particular dialog box construction.

2.1.3 GUI Toolkits

A GUI toolkit, also known as a widget toolkit, is a set of interface elements with an
Application Programming Interface (API) that allows developers to build GUIs. The toolkits
themselves contain widgets with a consistent look and feel that is transferred to the
developer’s interface. Some of the toolkits can decouple the look and feel of the widgets from
the behaviour of the widgets and so can be skinned with pluggable look and feelsi. The API
provided by the toolkit generally allows handling of user events that cover common
interaction with the widgets. Different platforms have different GUI toolkits with their own
design paradigms and a lot of platforms have multiple toolkits available for them. The
subsequent sections show small descriptions and comparisons of some popular toolkits:

i Discussed later in the descriptions of WinForms, Swing and SWT.

Background 12

.NET WinForms – Microsoft Windows

With the creation of the .NET framework, Microsoft created the WinForms GUI toolkit to
provide access to native Microsoft Windows interface elements. Although WinForms is a
technology built for the Windows platform, a project called Mono provides a multi-platform
implementation of the core .NET framework API that includes WinForms 2.0 (Mono Project
2008). All .NET compatible languages can use the WinForms API including C#, C++ and VB
.NET.

 WinForms uses an event-driven paradigm that uses event emitters and event
consumers. An event is normally triggered by user actions such as a mouse click or a key
press and any assigned consumers can then act in response to the event. WinForms uses the
native Windows widgets which are governed by the theme in the host OS. For that reason it
does not support pluggable look and feel. Figure 2.2 is a standard example of some
WinForms code written in C# to show some features of the toolkit and the code required to
build a simple window.

using System;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace Demo
{
 public partial class Demo : Form
 {
 public static void Main()
 {
 Application.Run(new Demo());
 }
 private Button btnDemo = new Button();

 public Demo()
 {
 btnDemo.Location = new Point(24, 12);
 btnDemo.Size = new Size(98, 23);
 btnDemo.Text = "Demo Button";

 // register method to event handler
 btnDemo.Click += new EventHandler(this.btnDemo_Click);

 this.Text = "Demo";
 this.ClientSize = new Size(147, 50);

 Controls.Add(this.btnDemo);
 }

 private void btnDemo_Click(object sender, EventArgs e)
 {
 Button original = (Button)sender;
 MessageBox.Show("You Clicked the " + original.Text);
 }
 }
}

Figure 2.2: WinForms code example using C#.

Background 13

Swing - Java

Swing is the widget toolkit included as part of the Java Foundation Classes (JFC). This means
that it is included in the Java 2 Platform, Standard Edition (JSE) as of JSE 1.2 (Sun
Microsystems 1998) so that it doesn’t have to be downloaded separately for use in
applications. Swing has a number of key features:

• Platform independence – Swing widgets are implemented in Java and use non-native
universal rendering. Java draws the widgets using the Java2D primitives that are
implemented for all platforms the Java Runtime Environment is available on.

• Pluggable Look and Feel (PLAF) – This allows Swing components to emulate the
appearance of native components on the current platform without sacrificing
platform independence.

• Customizability – Due to Swing implementing a twist of the Model-View-Controller
(MVC) design pattern, sometimes called the separable model architecture, individual
parts of a Swing component can be modified or changed completely without a
rewrite of the entire component such as the model or the view.

The interaction paradigm employed by Swing uses the observer pattern in order to trigger
code from user actions with the widgets. Figure 2.3 is the demo application coded in the
previous section using Java and the Swing toolkit:

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.*;

public class Demo extends JFrame
{
 public static void main(String args[])
 {
 JFrame demoFrame = new Demo();
 }
 public Demo()
 {
 JButton btnDemo = new JButton("Demo Button");

 // add the event handler
 btnDemo.addActionListener(new MyActionListner());

 this.add(btnDemo);
 this.setTitle("Demo");
 this.setSize(147, 50);
 this.setVisible(true);
 }
 private class MyActionListener implements ActionListener
 {
 public void actionPerformed(ActionEvent e) {
 JButton original = (JButton)e.getSource();
 String msg = "You Clicked the " + original.getText();
 JOptionPane.showMessageDialog(null, msg);
 }
 }
}

Figure 2.3: Java Swing code example.

Background 14

SWT – Java

The Standard Widget Toolkit (SWT) is a competing widget toolkit to Swing for the Java
platform developed by IBM for their Eclipse Integrated Development Environment (IDE).
Unlike Swing which provides Java implemented versions of GUI widgets, SWT uses the Java
Native Interface (JNI) to access the host OS’s native widgets just as a native API call would.
This means that applications using SWT have a completely native look and feel with deep
platform integration, which is meant to give high performance. But with the native technique
used by SWT comes certain compromises:

• Customizable Look and Feel – As SWT is merely a thin wrapper around native interface
widgets, customizing the look and feel of the applications is very difficult, especially
when compared to Swing.

• Portability – Running SWT requires an external library, not included in the JSE,
specific to each platform SWT is running on which must be downloaded separately
to the JSE.

Using the SWT also means that Java cannot use automated garbage collection to free up the
memory of the interface widgets since the OS controls them. Instead the dispose() method
has to be explicitly called which is synonymous to free in C.

import org.eclipse.swt.SWT;
import org.eclipse.swt.widgets.*;
public class Demo {
 Display display = new Display();
 Shell shell = new Shell(display);
 Button button = new Button(shell, SWT.PUSH);
 public static void main(String[] args) {
 new Demo();
 }
 public Demo() {
 button.addListener(SWT.Selection, new MyListener());
 button.setText("Demo Button");
 button.setBounds(0, 0, 150, 40);
 shell.pack();
 shell.open();

 // Set up the event loop.
 while (!shell.isDisposed()) {
 if (!display.readAndDispatch()) {
 display.sleep();
 }
 }
 display.dispose();
 }
 private class MyListener implements Listener {
 public void handleEvent(Event event) {
 Button original = (Button)event.widget;
 MessageBox messageBox = new MessageBox(shell, SWT.OK);
 String msg = "You Clicked the " + original.getText();
 messageBox.setMessage(msg);
 messageBox.open();
 }
 }
}

Figure 2.4: Java SWT code example.

Background 15

2.2 Current GUI Building Methods

The rest of this background looks at existing technologies and tools used to develop GUIs and
discusses what’s wrong with these current techniques. After this we can start to explore how
to solve these problems and we look into specific methods for recognising natural input and
inferring correct layout management code.

2.2.1 Coding by Hand

Coding GUIs by hand is the classic technique used to build user interfaces. It involves
creating instances of the widgets and specifying their properties, including size and location
if a layout manger isn’t in use. The design of the GUI is purely code based with no visual
representation of the GUI available until the code has been compiled and run. Most modern
GUI toolkits provide access to image resources such as bitmaps to be incorporated in the
interface through an API. As most GUI toolkits are event driven, the majority of widgets can
have code blocks associated with certain actions performed with the widget. Figure 2.5 shows
the code required to attach an event listener to a component in Swing.

 JTextField textField = new JTextField();
 textField.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e) {
 System.out.println(e.getActionCommand());
 }
 });
 // Add the textfield to the frame and display the frame
 this.getContentPane().add(textField);
 this.pack();
 this.setVisible(true);

Figure 2.5: Adding an event listener to a widget in Swing.

The above figure shows a code block being associated with a Swing text field. When the
default action is performed, which is when the return key is pressed for a text field, the action
command text is printed to the console. Multiple code segments can be associated with each
type of event triggered by the widget and using this, complex interfaces can be built up.

2.2.2 GUI Builders: WYSIWYG

Below we discuss what a GUI builder is, the typical functions provided by GUI builders and
the current GUI builders available to create interfaces in various GUI toolkits.

What is a GUI builder?

GUI builders were invented to simplify the process of creating interfaces. They typically
implement a drag-and-drop style design principle that allows the developer to arrange the
interface widgets in a WYSIWYG editor. This gives the developer a live view of the interface
they are designing without the need to recompile and run the application.

Background 16

Functions Provided by the GUI Builder

Typical functions provided by a GUI builder include:

• Designer Screen – The most important part of a GUI builder is the designer screen.
This is typically designed to look like a window or a panel on which interface
widgets can be dragged onto. Once on the designer screen, the user can often drag
edges of controls to resize them or click and drag the body of the widget to move it.
The user can specify the layout manager to be used in each panel and the user can
often make a composite of containers to achieve complex layouts (although these
days this is discouraged as resizing of the window doesn’t always happen in the
desired way). The designer screen provides a live preview of how the interface will
look once the application is running although some previews don’t act as the
compiled running interface.

Figure 2.6 shows the NetBeans designer screen. The screen looks like a panel and
allows the interface widgets to be dragged around to the desired location. NetBeans
also includes a toolbar to quickly align controls, view the source code and preview
the interface.

• Widget Palette – The palette is the location users can find the set of common controls
from the GUI toolkit. Users can often customize the palette by removing,
reorganizing and adding widgets to the sub-groups of the palette. Users click and
drag the widgets from the palette over onto the designer screen where they can then
position and resize it as necessary.

Figure 2.6: The NetBeans Designer Screen.

Figure 2.7: The NetBeans Widget Palette.

Background 17

• Property Editing – Property editors are available to a developer to change a number of
the attributes a widget can posses. This is often a docked table showing the selected
widget’s attributes with values. These values are editable and the results of changing
these properties are reflected in the designer screen in real-time. Some editors
provide limited inline editing from the designer screen. Simply double-clicking on a
JLabel in NetBeans allows you to inline edit the text it displays, but it is not available
for many widgets.

• Layout Hints – Modern GUI builders provide hints to the user whilst interface
widgets are being moved and resized in the designer screen. They generally appear
as dotted lines in an overlay style that show how the layout will change if the user
were to release the mouse button at that particular point. These overlay hints show
alignment hints and often anchoring hints if the layout manager supports it. Figure 6
shows the layout hints active on the designer screen for the two text fields. It shows
the alignment hints as well as anchor hints for the sides of the panel.

• Code linking – Code linking is an integral part to a GUI builder’s function. This
involves automatically generating boilerplate code for interacting with widgets. Java
Swing follows an event-driven model, as most GUI toolkits do, so the auto-
generation of code will be to link events on a widget to implemented methods. These
events could be anything available for the widget such as a mouse over, focus gained
or a mouse click.

• Two-way Design – Two-way design is the ability to have both generated code updated
when the design screen is modified and have the design screen updated if the
developer modifies the underlying source code to the GUI. This involves the GUI
builder having the ability to parse the Java code and not work from an internal
representation or external helper file as NetBeans doesi. The necessity of two-way
design is a debated topic in the GUI design field. Some see two-way design critical to
the design process (Grev 2008) whilst others believe that GUI code should simply
belong to the GUI designer. Whilst one can understand the want to be able to tweak
the GUI code manually, if the tool is good enough the manual tweaking shouldn’t be
necessary.

Next we discuss particular GUI builders that are available for the various GUI toolkits along
with their unique functionality and features.

i NetBeans creates a .form file that is discussed in more detail in the next section.

Figure 2.8: The NetBeans property editor.

Background 18

Visual Studio - .NET

Visual Studio (VS), currently available in a 2008 edition, is a closed source, non-free IDE
developed by Microsoft to help develop on the Microsoft Windows platform and particularly
with .NET technologies.

VS includes a code editor, source debugger and a forms designer to give a WYSIWYG
view of the user interface you are designing. The IDE contains a property editor for the
currently selected widget and double-clicking a widget generates boilerplate code for the
default event fired by the widget. The .NET platform provides a limited number of layout
management widgets by default that includes a panel, split container, flow layout and a table
layout panel. In order to achieve a good layout that scales with the window, the programmer
must visually nest these building-block components and use anchors and docking to get the
desired output.

VS has a designer that employs one-way design, which means it cannot parse source
code back into the designer. The main problem with this method is after creating the interface
with the designer, the generated code cannot be modified without being overwritten when
anything is changed in the designer. Whilst this may seem like a negative side effect, it
follows the principle that the GUI code should belong to the GUI builder, which could be
seen as more desired than two-way design.

As with most GUI builders that automatically generate code, the code generated may
seem bloated compared to code produced from manual coding. Obviously this isn’t a
problem if the GUI code is left completely to the GUI builder but maintaining the GUI code
without the designer at a later date could become more challenging. Figures 2.9 and 2.10
show a comparison of the form initialization of a very simple form created with the
WinForms designer and a manual coding of the same form:

private void InitializeComponent() {
 this.btnClickMe = new System.Windows.Forms.Button();
 this.SuspendLayout();
 //
 // btnClickMe
 //
 this.btnClickMe.Dock = System.Windows.Forms.DockStyle.Fill;
 // Location is irrelevant when the button is docked in line above
 this.btnClickMe.Location = new System.Drawing.Point(0, 0);
 // Size is irrelevant when the button is docked
 this.btnClickMe.Size = new System.Drawing.Size(250, 77);
 // This is the only control in form so tab index is 0 by default
 this.btnClickMe.TabIndex = 0;
 this.btnClickMe.Text = "Click Me!";
 this.btnClickMe.Click += new EventHandler(this.btnClickMe_Click);
 //
 // frmDemo
 //
 this.ClientSize = new System.Drawing.Size(250, 77);
 this.Controls.Add(this.btnClickMe);
 this.Text = "Demo";
 this.ResumeLayout(false);
}

Figure 2.9: VS generated form code with added comments.

Background 19

private void InitializeComponent() {
 btnClickMe = new Button();
 btnClickMe.Dock = DockStyle.Fill;
 btnClickMe.Text = “Click Me!”;
 btnClickMe.Click += new EventHandler(btnClickMe_Click);

 ClientSize = new Size(250, 77);
 Controls.Add(btnClickMe);
 Text = “Demo”;
}

Figure 2.10: Simple form manually coded assuming correct imports.

As can be seen from the code examples above, manual code leads to more concise code that in
turn is easier to read and maintain. With manual coding, imports can be added to the file so
fully qualified class references are not required on each line. Manual coding also allows
redundant lines to be removed. In figure 9, location and size are specified for the button but
are irrelevant to this particular form since the button is docked in the form.

JFormDesigner – Swing

JFormDesigner is a closed source, non-free GUI builder for Java Swing. Karl Tauber, who has
more than 15 years of experience in creating GUIs, created it due to the lack of powerful
visual GUI builders for Java Swing. He started the development of JFormDesigner in 2003
(FormDev Software n.d.) and it is currently at version 4.0.2.

 JFormDesigner, although not free, is in my opinion the best Swing GUI builder
available. Though not a fully-fledged IDE, it is available as a stand-alone application or as a
plugin for the Eclipse, JBuilder and IntelliJ IDEs. What makes JFormDesigner so good is it’s
easy of use, tight integration with various third party layout managers and ability to plugin
into various popular Java IDEs.

 In terms of output, JFormDesigner can generate Java source code in a one-way design
fashion like VS does but developers can also output a JFormDesigner XML file that describes
the designed form. Developers then use an open-source runtime library to load the XML files
into their applications. A major feature that is available in JFormDesigner, and not VS, is the
ability to add boilerplate code for events other than the default event. JFormDesigner uses
JavaBeans technology to find information about the components in the form at runtime that
also permits third party or custom components with BeanInfos to be used. All this combined
with a fast, responsive feedback system for laying out components make JFormDesigner a
great choice for designing Swing forms.

Figure 2.11 shows the main JFormDesigner design
screen with the visual feedback in action. The red lines
are showing alignment of the controls to the grid in the
layout manager. The green boxes are showing where
the dragged controls will be placed in the layout
before you release them.

Figure 2.11: JFormDesigner design view.

Background 20

NetBeans - Swing

NetBeans is an open source IDE sponsored by Sun Microsystems currently at version 6.5. As
of version 5.0 NetBeans included a GUI builder formerly known as Project Matisse to bring
an integrated GUI builder to the IDE. With Project Matisse came a new layout manager,
Group Layout, that is now included in JSE 6.0. The GUI builder along with Group Layout
lets you lay out components freely, providing visual guidelines for optimal spacing between
components and alignment of components. The NetBeans GUI builder infers the appropriate
resizing behaviour and more, freeing the developer from the complexities of Swing layout
managers. You can just use the intuitive visual form builder to produce a professional GUI
easily – in the background, the IDE produces the correct implementation using a layout
manager and other Swing constructs (NetBeans n.d.).

 NetBeans generates a .form file as well as the Java code responsible for the GUI.
Without this .form file the GUI cannot be modified with the GUI builder. This is akin to
JFormDesigner, which relies on a separate file to represent the GUI internally. This all means
one-way design is employed. In fact NetBeans goes one step further in protecting its GUI
code. Whereas in JFormDesigner you can modify the source code it has generated when it’s
integrated in an IDE but not updated in the live view, NetBeans’ IDE protects the GUI code
completely and doesn’t allow you to modify it. In the NetBeans IDE this is known as a blue
guarded block.

 A very good feature that NetBeans does provide is that of inline editing for certain
components in the GUI builder. Instead of having to use the property editor or writing Java
code to perform the same actions, users can click a button to quickly edit text in a label,
button or a menu item amongst other components.

With the current state of other Java GUI builders, NetBeans provides the best open source,
free IDE and GUI builder combination available.

Other GUI Builders

Outlined above are just three of the popular GUI builders available for developing interfaces
but it is by no means an exhaustive list. In fact, there are as many GUI builders as there are
GUI toolkits and in a lot of cases there are multiple GUI builders for each toolkit. Below are
some small descriptions of other GUI builders that are available:

• Jigloo – This is an Eclipse plug-in that allows WYSIWYG design of both Java Swing
and Java SWT interfaces. Jigloo is closed source but is free for non-commercial use. It
provides many unique features such as two-way design, conversion from Swing
interfaces to SWT interfaces and it is one of the only GUI builders to support the
highly popular, free and natural MigLayout layout manager from MiG Infocom.

Figure 2.12: NetBeans anchor guides. Figure 2.13: NetBeans inline editing of a
JLabel's text.

Background 21

• Visual Editor (VE) – This is the original GUI builder plug-in developed for Eclipse to
develop Java Swing and Java SWT GUIs. It is an open source project but support for
the project seems to have died. The last version of Eclipse officially supported by VE
is 3.2 and Eclipse is currently at version 3.4. Some unofficial patches have floated
around the Interneti that allows use of VE in Eclipse 3.4.

• Interface Builder – Interface Builder is part of Apple’s XCode development tools for
Mac OS X and allows simple construction of both Cocoa and Carbon applications. It
differs to other GUI builders in that it doesn’t generate GUI code that is then
compiled and run. Instead it works with live components that the user can
manipulate in Interface Builder that are then encoded to what are called freeze-dried
objects (Anguish, Buck and Yacktman 2002). These objects are live instances of
interface widgets that were once live in memory and have been written out to disk. In
the developer’s OS X application, the archived file is loaded and the freeze-dried
components are restored to the state they were in at the point of encoding.

• Glade – Glade is an interface designer for the GTK+ toolkit, which is a toolkit
primarily used in the GNOME window manager for Linux. Again it differs from
other interface designers in that it doesn’t generate code directly. Glade creates Glade
XML files that represent the interface in an XML file. An external library known as
libglade can then be used to dynamically load up interfaces at runtime in the
multiple languages that are supported by libglade. Specifying GUIs in XML is
something discussed in the next section.

2.2.3 Using a Markup Language to Specify GUIs

Specifying GUIs in a markup language isn’t a new idea but it is one that isn’t well
implemented. There have been lots of different markup language specifications for specifying
user interfaces but none have been widely adapted. Here we will discuss different markup
languages that can be used to describe user interfaces and consider the various
implementations of user interface specifications with their supporting tools.

XML

Extensible Markup Language (XML) is a specification developed by the World Wide Web
Consortium (W3C). XML was particularly designed for web documents and is considered
platform independent. It allows designers to create their own customized tags, enabling the
definition, transmission and validation of data between applications and platforms. It is
hierarchical in nature and has two basic nodes, an element and element attributes.

<?xml version=”1.0” encoding=”UTF-8”?>
<!-- Sample XML file -->
<people>
 <person id=”person1”>
 <name>Johnathan Tunnicliffe</name>
 <gender>male</gender>
 <age units=”years”>21</age>
 </person>
</people>

Figure 2.14: Simple XML example.

The above XML example shows an encoding of a person’s data. The document has the
following form:

i http://wiki.eclipse.org/VE/Installing shows how to install VE in Eclipse 3.4 but nothing
official has been announced.

Background 22

• The XML declaration – This defines the XML version and the encoding used.
• A comment – An example comment.
• XML body – people is the root node that can contain person child elements.

person has an attribute id. name and age are child elements of the root node
person. units is another attribute but this time for the age attribute tag. The data
for the attributes appears between the attribute tags.

This is just a simple example of what XML looks like. It can be used to express a wealth of
constructs and its flexibility allows it to be used in most data representation instances. XML
has been extended to include much more functionality such as the ability to refer to a
particular section of an XML document using XPath or to search and manipulate XML data
using XQuery like SQL can with relational databases.

 The flexibility of XML also allows it to be used to describe GUIs and many
specifications have been proposed with none becoming standard. These are described later in
this section. Although these specifications have been released to the community, GUI
building tools tend to use their own internal specifications that use XML for describing user
interfaces. JFormDesigner uses JFormDesigner XMLi files, Glade uses Glade XML and
CookSwing uses it’s own specification as well. To show a basic example of a user interface
defined in XML, CookSwing’s XML specification to define a simple Swing interface is used:

<frame title=”Demo Frame”>
 <borderlayout>
 <constraint location="Center">
 <panel>
 <borderlayout>
 <constraint location="North">
 <button text="North" />
 </constraint>
 <constraint location="South">
 <button text="South" />
 </constraint>
 <constraint location="East">
 <button text="East" />
 </constraint>
 <constraint location="West">
 <button text="West" />
 </constraint>
 <constraint location="Center">
 <button text="Center" />
 </constraint>
 </borderlayout>
 </panel>
 </constraint>
 </borderlayout>
</frame>

Figure 2.15: CookSwing XML user interface example.

Figure 2.15 shows the use of buttons and a layout manager in CookSwing’s XML
specification.

i JFormDesigner can generate java code as well as use a runtime library to create GUIs from
it’s internal XML files http://www.jformdesigner.com/doc/help/runtime_library.html

Background 23

YAML

YAML™ (rhymes with “camel”) is a human-friendly, cross language, Unicode based data
serialization language designed around the common native data types of agile programming
languages. It is broadly useful for programming needs ranging from configuration files to
Internet messaging to object persistence to data auditing (Ben-Kiki, Evans and Net 2008).
YAML’s key goals are to be human readable and to provide support for serializing arbitrary
native data structures.

 YAML is quite often compared to XML but the two were designed with very
different goals in mind. XML was designed to support structured documentation whereas
YAML was designed to serialize data. Although XML can be used to describe a data’s
structure and represent data, YAML’s definition of the same data is more human readable.
Another key difference between XML and YAML is the lack of a schema system for YAML
and this means it’s not possible to validate YAML documents. Of course a proprietary
validation system could be created for internal use within an application but there is
currently no formal validation mechanism. Figure 2.16 is the example from the XML section
defined in YAMLi:

people:
 Johnathan Tunnicliffe: &person1
 gender: male
 age: 21

Figure 2.16: Simple YAML example.

As can be seen, the YAML version is more succinct and more human readable without the
angle brackets everywhere and doesn’t require quotation marks for strings. YAML doesn’t
contain the notion of attributes so the age element has lost its units attribute. But this is a
separation of meta-data (describing the units) describing the data and the data itself, the
former of which YAML doesn’t attempt to provide.

 From the description provided above it would seem that YAML would be ideal for
the description of user interfaces and there is one current up-to-date project called
javabuilders that looks to do this. The javabuilders projects define user interfaces
declaratively in YAML. Users use the required javabuilders library to load the YAML file that
returns a user interface. There are implementations (or part implementations in progress) for
a number of GUI toolkits for Java with the most mature implementation being for Java
Swing. This implementation has support for all the standard Swing components, support for
adding event handling methods, data binding and multiple layout managers including the
popular third party manager MigLayout (see page *_* for details). In addition to using
standard layout manager constraints, the developers of javabuilders have developed
something called Layout DeScription Language (Layout DSL)ii. Layout DSL provides a more
natural way to layout interface objects in a purely text based manner and from their relative
alignments and number of rows. The Layout DSL in reality is a layer of indirection on top of
the MigLayout constraints albeit a useful one.

i The full YAML version 1.2 specification can be found here: http://yaml.org/spec/1.2/
ii Layout DSL information: http://code.google.com/p/javabuilders/wiki/LayoutDSL

Background 24

 Figure 2.17 shows the CookSwing XML user interface example in YAML code
according to the javabuilders specification:

JFrame(title=Demo Frame):
 content:
 - JButton(name=north,text=North)
 - JButton(name=south,text=South)
 - JButton(name=east,text=East)
 - JButton(name=west,text=West)
 - JButton(name=center,text=Center)
 - MigLayout:
 constraints:
 - north: north
 - south: south
 - east: east
 - west: west
 - center: center

Figure 2.17: javabuilders YAML user interface example.

As can be seen from Figure 2.17, the YAML version of the interface is far less verbose whilst
still producing the required GUI. The code above doesn’t use Layout DSL instead it uses
standard MigLayout constraints, as Layout DSL doesn’t yet have support for docking as
MigLayout manager does (although it can be simulated in a grid using Layout DSL).

XAML

Extensible Application Markup Language (XAML) is a markup language based on XML
created by Microsoft principally to support its Windows Presentation Foundation (WPF)
technology in .NET. WPF is the graphical technology included in the latest .NET 3.5
framework and included with Windows XP SP2 and Windows Vista. WPF puts a clear
emphasis on separation of business logic from the user interface.

 XAML is a user interface markup language that simplifies creating a UI for the .NET
Framework programming model. XAML allows declaration of visible UI elements and then
allows you to separate this UI definition from the runtime logic using code-behind files,
joined to the XAML by partial class definitions.

<Window x:Class="WpfApplication1.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Demo Frame" Height="300" Width="400">
 <Grid>
 <DockPanel>
 <Button Height="35" DockPanel.Dock="Top">North</Button>
 <Button Height="35" DockPanel.Dock="Bottom">South</Button>
 <Button Width="75" DockPanel.Dock="Left">East</Button>
 <Button Width="75" DockPanel.Dock="Right">West</Button>
 <Button>Center</Button>
 </DockPanel>
 </Grid>
</Window>

Figure 2.18: WPF XAML user interface example.

Background 25

Figure 2.18 shows the XAML definition for WPF technology of the simple test interface we
have been using. It is very readable but then again this is a simple test application. Compared
to the YAML example the XAML code above is longwinded and a lack of good layout
managers in the .NET framework means that panels have to be nested in order to create more
complicated layouts. Even in this example the DockPanel component is nested inside a Grid
container.

XAML files themselves can be edited using a standard text editor or Visual Studio,
which offers a live WYSIWYG designer with a drag-and-drop interface or code editor with a
live preview. Another tool produced by Microsoft is Expression Blend that allows graphic
designers to create the user interfaces. Projects can then be linked to Visual Studio so
designers can work on user interfaces and programmers can work on the code-behind files
that provide functionality.

As the XAML specification is available under Microsoft’s Open Specification Promise
(OSP), others can implement uses of it without any legal repercussions. One company to see
the use of XAML in other languages is Soyatec, which has released a product known as
eFacei. eFace is a tool for converting XAML files to Java user interfaces and currently
supports converting XAML to Swing and SWT. eFace describes itself as “a platform-
independent and technology-neutral presentation framework”, much like WPF but with Java
as the backend technology. eFace provides a plug-in for Eclipse that allows modification of
XAML files with a live preview of the interface although it does not allow manipulation of
the preview directly (two-way design). The key advantage to using eFace is having a
common resource of XAML defined interfaces that can be shared between .NET and Java
developers. It also removes the need to learn specifics about Swing and SWT although
knowledge of XAML is required.

Other Markup Language Specifications

XAML isn’t the only specification that has been proposed to specify GUIs using markup
languages. In fact there have been many attempts to standardize a declarative language for
user interfaces but none have made a big impression on the industry. Below is a small list of
other XML based markup languages used to describe user interfaces:

• XUL – XML User Interface Language (XUL) is a markup language developed by the
Mozilla project to help specify cross-platform interfaces such as Firefox and other
web applications. It is based on existing standards such as XML, HTML, CSS, DOM
and JavaScript so for should be easy to learn for existing web developers (Mozilla
2007).

• UIML – User Interface Markup Language (UIML) is an abstract markup language for
specifying GUIs. The look and feel of the application isn’t specified but instead what
interface items need to be shown and how they should behave. The main goal behind
UIML is to provide a markup language that is device-independent and user interface
metaphor independent(UIML.org n.d.).

i More on eFace can be found here: http://www.soyatec.com/eface/

Background 26

2.3 Input Recognition

Here we discuss how input recognition in the application could possibly work. This would
allow the user to directly draw the user interface using a mouse, touchscreen or graphics
tablet onto a canvas that the GUI code can be generated from.

2.3.1 Artificial Neural Networks

An artificial neural network (ANN) is an information-processing paradigm that is inspired by
the way biological nervous systems, such as the brain, process information. ANNs consist of
layers of artificial neurons that can be interconnected to work together to solve the specific
problem they have been trained for. A neuron can be thought of as an individual calculating
unit with multiple possible inputs and often has multiple outputs as well. The inputs into a
neuron are typically real-valued numbers that the neuron can perform it’s own internal
calculation on. This produces a value that can be below or above the neuron’s threshold value
and this decides if the neuron fires or not (produces an output or not). Figure 2.19 shows the
general architecture of an ANN:

 The nodes represent the neurons and the arrows represent connections between
them. Note how highly connected it is, this is to simulate the synapse connections in
biological neural networks (BNN). The input layer contains the neurons attached to the
outside world, the hidden layer performs calculations on the inputs and the output layer
presents the results to the outside world. To increase the complexity of the ANN the number
of hidden layers can be increased.

 Each connection has an associated weight (w) that is applied to the input (x) value
flowing along it into the neuron. Therefore the collective of i inputs into a neuron can be
represented as:

€

z = wixii∑

With this value the neuron can now apply it’s activation function on z, the result of which
will determine the value outputted by the neuron. The values of w are determined through a
process known as learning (or training). Learning is carried out using a set of training data

Input
Layer

Hidden
Layer

Output
Layer

Figure 2.19: Artificial Neural Network architecture.

Background 27

that is a collection of input examples with known desired output values. ANNs use eager
learning as their learning method. This means that a general, explicit description of the target
function based on the provided training examples is constructed. The most popular learning
technique is a method called backpropogation, which is used in Feed Forward Networks
(networks without loops) and can be outlined in the following steps (Colton 2004):

• Training input – One of the training samples is passed into the neural network.
• Output comparison – The output of the neural network is compared to the desired

output for that training sample. The error in the output for each output neuron is
calculated.

• Hidden layer error calculation – These calculated errors are used to calculate the errors
from the neurons in the hidden layer of the network by propagating the errors from
the output back through the network.

• Modify weights – With errors calculated, the weights can be adjusted to match the
desired output for that training example.

• Repeat – This is repeated for all the training data, possibly multiple times, until there
are no misclassifications of input or the error in classification is below a threshold.

So long as training data is available for training, neural networks can often be used to solve
problems for which there is no algorithmic solution.

Artificial Neural Networks for Pattern Recognition

Pattern recognition is the identification of shapes, forms or configurations by some automatic
means. It often involves three stages:

• Observation – This involves collecting the initial information. If using pattern
recognition on an image this would be loading the picture from a camera or, if static
analysis is being used, from a storage medium. If using pattern recognition on
natural input as this project aims to do then it will be collecting the user input
information.

• Feature extraction – This is the process of recognising individual parts of the input to
be classified. This can be computing metrics on the symbolic features of the input.

• Classification – The final step of the pattern recognition process is to classify the object
in the input based on the features discovered.

ANNs are very good at pattern recognition due to their resilience against distortions in the
input data and their capability to learn. Once the ANN has been created and trained
appropriately through training data, it can recognise pre-learnt patterns with minor
distortions. Next we walk through an example of producing an ANN to recognise a small set
of characters for an optical character recognition (OCR) application.

 Imagine a grid with dimensions 5 by 6 to be used for drawing characters onto. Each
grid cell will represent a pixel that can be coloured white or black. In our example we attempt
to recognise the characters ‘A’ and ‘H’.

Figure 2.20: Character recognition example.

Background 28

These character representations can be converted into input data for a neural network by
serializing the pixels. If a pixel is black then the input data will be a 1 and if the pixel is white
then the input data will be a 0. Since we are using a grid with dimensions 5 by 6, we have 30
pixels and thus we have 30 bits of data to represent our input to the ANN. Our ANN will be
constructed of a single layer for input with 30 neurons, a single hidden layer consisting of 30
neurons and a single layer for the output consisting of two neurons.

 For the ANN to recognise the characters, it must be trained. The training data will be
the bit patterns for the characters together with the desired output pattern. In our case the
output pattern could be 0,1 for the letter ‘A’ and 1,0 for the letter ‘H’. The neural network is
then trained with this data so the weights between the neurons are adjusted to give the
desired output. After training the network, the encoded characters can be passed into the
network as input and desired results produced.

 The method described uses pixel locations to determine the input values. It should be
noted that there are other ways of encoding the character data before it is input to a neural
network. One such method is the receptor technique discussed later in the section (see section
2.3.3).

 From the example we can see that training an ANN to recognise a set of characters is
a relatively easy solution to the task of OCR. The only problem with this technique is the
matter of scaling the input to a 5 by 6 grid. The bigger this grid, the more neurons required in
the input layer and this would increase the time to train the network dramatically. It can also
be seen that the problem of recognising a character set can be likened to that of recognising
interface widgets as the set size is similar and the patterns to learn are of comparable
complexity. A rectangle that represents a text field is no more complicated that the letter ‘O’
whilst a grid with two columns and rows is no more complicated than the letter ‘H’. Below
we explore the available frameworks for implementing ANNs in Java.

Joone

Joone is a neural network framework to create, train and test artificial neural networks. The
aim is to create a powerful environment both for enthusiastic and professional users, based
on the newest Java technologies.

 Joone is composed of a central core engine that is at the heart of all applications
developed with Joone. Joone's neural networks can be built on a local machine, be trained on
a distributed environment and run on any device that supports JSE. Included with the Joone
distribution is the ability to create a wealth of ANN architectures including Feed Forward
Networks, Recursive Neural Networks, Modular Neural Networks and Kohonen Self
Organizing Maps (SOM) amongst others. It also includes the capacity for supervised and
unsupervised learning.

Joone is extensible in that new modules can be built to implement new algorithms or
new architectures to include a user’s neural network. These modules are implemented as
code modules and added to the information flow. Like it’s commercial rivalsi, Joone includes
a GUI component that allows ANN to be visually produced in a WYSISYG manner though it
is a very primitive interface that is overshadowed by the framework’s focus on code based
ANNs.

i Commercial rivals include Synapse (http://www.peltarion.com/products/synapse/) and
NeuroSolutions (http://www.neurosolutions.com/).

Background 29

Unfortunately at the time of writing the Joone project seems to have been abandoned with the
last update to the code produced in mid 2007i and finding anyone currently working on the
project is difficult.

Encog

Encog is a relatively new framework used to create neural networks and automated bots
produced by Heaton Research. Encog can be used independently either to create neural
networks or HTTP bot programs. Encog also includes classes that combine these two
advanced features. Encog contains classes for Feedforward Neural Networks, Hopfield
Neural Networks, and self-organizing maps. Training can be accomplished using
backpropogation, simulated annealing, and genetic optimisation. Additional classes are
provided for pruning neural networks (Heaton Research n.d.).

The Encog project (currently version 1.1) provides frameworks for Java and C# and
its latest addition is a GUI builder called the Encog Workbench. The Encog Workbench is a
graphical tool for creating and manipulating .eg files, which is the file format used by Encog
to store exported neural networks. The Workbench allows you to change training data, the
neural network architecture, train the network, modify the weight matrices and visualise the
neural network.

 Since Encog is relatively new there are not too many details or articles documenting
it. This is to be expected and Heaton Research is in the process of producing a series of
tutorials outlining its use.

i Data gathered from the Joone homepage at http://www.jooneworld.com/.

Figure 2.21: The Joone GUI editor.

Background 30

2.3.2 Pixel Overlay

The idea used in the pattern recognition example for ANNs can be extracted for use without
the need for a neural network and it can be explained in the following steps:

• Initial storage – An ideal bitmap representation of each object to recognise is stored.
From this the locations of the drawn (black) pixels and the undrawn (white) pixels
are known.

• User input capture – The user draws their representation of their desired object on
screen, which produces a bitmap of the input. The smallest rectangle around the
input is drawn and the pixel coordinates are normalized relative to the top-left corner
of the rectangle.

• User/ideal input scaled – The bitmap produced from the user’s input can be scaled to
the same size as the ideal representation bitmaps or vice versa.

• Percentage overlay calculated – The user input is compared to each ideal representation.
The comparison is the percentage of the number of matching coloured pixels that
overlay each other between the user input and each ideal representation.

• Object classified – Each object now has a percentage representing its match with the
user input. The highest percentage can be selected and placed into the interface.

Figure 2.22 shows the pixel overlay technique. The left image is the ideally encoded
representation of a text field. The middle image is the user’s input; notice how it’s slightly
malformed. The image on the right shows the pixels from the user’s input that match the
ideal representation. The ideal representation has 28 coloured pixels and the user’s input
overlays with 24 of them. This gives a match of 24/28 pixels, which is approximately 86%.

Whilst this technique may seem intuitive and easy to implement, it does have
problems associated with it. The first of which is scaling the user input or object
representation. This technique relies on the input being a bitmap that is merely a collection of
points (or pixels). Although this simplifies the collection method required to implement,
scaling the image will remove characteristics of an image and possibly add distortion. This
technique does not work well with even a minor amount of distortion in the data, as it is not
an intelligent technique. This could be overcome with a more complex method of capturing
the user’s input. The input could be captured as vectors and this would allow the user input
to be easily scaled or the object representations could be stored as vectors to allow simple
scaling.

Even when the problem of scaling object representations is overcome there arises the
matter of how accurate the user needs to be. A small angle on a line can mean that only a few
pixels will overlap the intended object representation that will reduce the accuracy of the
technique.

Figure 2.22: Pixel overlay example.

Background 31

Figure 2.23 shows the malformed input on the left. This is a slightly noisy input that has had
the smallest rectangle drawn around it. The right image shows how many pixels overlay. As
can be seen, from a single pixel of noise the percentage has reduced from 86% to 75%. On a
larger image the accuracy would have to be even greater.

The major advantage of this method other than its simplicity is the learning
requirements of the system. Whereas a neural network will need to be pre-trained, deployed
and have a neural network framework attached to it, the above stated method needs no
training. A single ideal representation of an object can be supplied and software can be used.
It has the capacity for a user to add custom representations of objects on the fly in the
application without any change to the application or need for repetitive training tasks from
the user.

2.3.3 Receptors

The receptor technique (Kirillov 2005) is an adaption of the pixel overlay technique that aims
to permit a higher level of tolerance on the accuracy of the user’s input whilst removing the
problem of scaling. Instead of using the exact pixels found in the bitmap, an ordered set of
receptors is laid over the input. A receptor is simply a short vector line defined within the
bounds of the bitmap. Pixels from the bitmap will intersect with different receptors. In the
case where a black pixel lays on a receptor, the receptor is considered activated. When no
black pixels are found on the receptor line the receptor in considered inactive. Since the
receptors are stored in vector form, they can quickly be scaled to match the size of the user
input and calculating whether these receptors are active or not is simple. Once the state of all
receptors has been calculated we have a pattern of receptors that represents the input (an
active receptor is stored as a 1 and inactive is stored as 0).

The following method can be used to classify the object:

• Receptor set calculation – The set of receptors to be used is calculated (described in the
next section).

• Initial storage – The receptor set is laid over each ideal bitmap representation of each
object to recognise and the receptor pattern is calculated for each. From this we have
a unique pattern of 1’s and 0’s the size of the receptor set to represent each. This
pattern is then stored in a resource file for later comparison.

• User input capture – The user draws their representation of their desired widget on
screen, which produces a bitmap of the input. The size of the input can then be
calculated by looking at the leftmost, topmost, rightmost and bottommost pixel.

• Receptor set scaled – The receptor vectors are scaled to the size of the user input.
• User input pattern calculated – The receptor activity pattern is then calculated from the

user input bitmap by looking at the intersections with the scaled receptor set.
• Percentage overlay calculated – The user input pattern is compared to each ideal

representation. The comparison is the percentage of the number of matching in place

Figure 2.23: Malformed input to pixel overlay
technique.

Background 32

receptors. For example if the user input generates the pattern 1101 then it would have
a 50% match with the pattern 1011.

• Object classified – Each object now has a percentage representing its match with the
user input. The highest percentage can be selected and placed into the interface.

Figure 2.24 shows how the receptor technique’s resilience to distortion in the input image.
The left image shows receptors (blue lines) overlaying the ideal representation. The image on
the right is the user’s input and even though it is reasonably distorted, the receptors cross and
don’t cross in the same places which result in the same object being inferred.

 This method, like the pixel overlay method would require no in-application training
and would also permit users to add custom patterns for third party controls easily without
the need to retrain as a neural network would require. As the receptor technique doesn’t
require an exact pixel for pixel match like the pixel overlay technique, it reduces the accuracy
required by the user. The length of the receptor line determines how accurate the user needs
to be but increasing the receptor length too much will reduce the ability to disambiguate
between similar objects. Some sets of receptors will perform better than others and we discuss
how to find an optimal set in the section.

Finding the Best Set of Receptors

The difficult part of using the receptor method is finding a set of receptors that can
differentiate between the various interface widgets and give the user some margin for error.
When considering what properties a good receptor needs to have, the following can be
concluded:

• Recognising variants – A receptor is a good receptor if it can correctly identify different
variants of the same object. This means that if it is activated for one variant it should
be activated for another and likewise if it is meant to be inactive.

• Differentiating objects – The other goal of the receptor is to differentiate between
different types of objects. Although a receptor may be able to identify different
variants of the same object, it is no good if it active or inactive for every object. Ideally
the receptor should be active for 50% of the objects and inactive for the other 50% of
objects.

Figure 2.24: Receptor recognition example.

Background 33

To find these properties of receptors, entropy from information theory can be used. Entropy
is a quantitative measure of the randomness of an event. The more random the event, the
higher the entropy. Entropy is defined by the following formula (Shum 2006):

€

entropy = − p(x)logb p(x)
x∈X
∑

•

€

X = finite set of discrete random variables
•

€

p(x) = probability distribution function

A large set of random receptors can be generated, tested against some training data and then
the best receptors can be picked using entropy.

 Receptor 1 Receptor 2 Receptor 3
Text Field

111 000 000

Button

001 000 010

Grid

110 010 111

Table 2.1: Example of receptor pattern encodings.

Table 2.1 shows the three interface objects drawn with three variants with three test receptors.
Using this example, we show how entropy calculations can be used to pick the best receptors.
We will only check the first receptor, the others can be calculated similarly. Each column
represents a different receptor and the receptor patterns in the cells show if the receptor is
activated for the corresponding variant of that interface element. For example the first cell
shows 111 for receptor 1 with the text field. This means the receptor is active (a 1 in the cell)
for all three variants of the text field. Two entropy calculations need to be carried out:

• Entropy for variance – Trivially the pattern 111 is good as it shows the receptor
recognises every variant of the element. Here is the general form of calculation for the
variant entropy

p1 = # of 1’s in pattern / # of variants per object

p2 = # of 0’s in pattern / # of variants per object

Entropy = - ((p1 * log2(p1)) + ((p2 * log2(p2)))

Solving this equation for the first column gives us 0, 0.276 and 0.276. Here a low
number is best.

• Entropy for differentiation – This will tell us how good the receptor is at differentiating
the different objects. The general formula for this entropy calculation is this:

 p1 = # of 1’s in column / (# of variants per object * # of objects)

p2 = # of 0’s in column / (# of variants per object * # of objects)

Entropy = - ((p1 * log2(p1)) + ((p2 * log2(p2)))

BBB

Background 34

Solving this equation for the first column collectively gives the entropy for
differentiation of 0.276. In this situation, a value close to 1 is preferred because this
means the receptor can differentiate well.

Now, the entropies for variance and the entropy for differentiation of the first column have
been calculated, the usefulness of the receptor can be calculated. The usability of the receptor
can be found by combining the various entropies and is defined by:

Usability = Entropy for difference * (1 – Average entropy for variance)

The receptors with the highest usability should be kept and those with poor usability can be
thrown away, leaving us with a set of good receptors that are tolerable to variance and good
at differentiating objectsi.

2.3.4 Case-Based Reasoning

A Case-Based Reasoning (CBR) system is an instance base learning technique that solves new
problems based on solutions to similar past problems. This mirrors an idea from how
humans solve new problems. A CBR contains a case base of past problems together with the
solution and in some cases annotations of how to achieve the solution.

 When a new problem is encountered that is not found in the case base, the CBR
searches for the closest known problem. The solution to the known problem is proposed as
the solution to the new problem. This can be accepted or modified by a user of the system.
Once a solution is accepted, a link between the problem and the solution is added to the case
base. This provides the CBR with new cases that can be matched against in the future. This is
an example of lazy learning. Lazy learning is a learning method in which generalization
beyond the training data is delayed until a query is made to the system. This means the
system can adapt to a changing problem domain. Figure 2.25 visualises the mapping from the
problem space to the solution space:

Figure 2.25: Problem solving using CBR.

i Method adapted from Andrew Kirillov, “CodeProject: Neural Network OCR,” CodeProject,
11 04 2005, http://www.codeproject.com/KB/cs/neural_network_ocr.aspx (accessed 01 12,
2009).

Problem Space Solution Space

Background 35

The newly learned cases can be used in finding solutions to new problems. This process is
called a work cycle and Aamodt and Plaza classify it as the following four steps which is
visualised in Figure 2.26 (Aamodt and Plaza 1994):

• Retrieve – Given a problem to solve, retrieve the most similar cases from the case base.
• Reuse – Take these similar cases and use their known solutions in an attempt to find a

solution for the new problem.
• Revise – Allow the proposed solution to be changed or tweaked if necessary.
• Retain – Add the new problem with the solution as a new case to the CBR.

Figure 2.26: CBR work cycle.

These notes on CBR have been adapted from Maja Pantic’s course notes titled ‘Instance Based
Learning‘ (Pantic n.d.).

Case-Based Reasoning for Pattern Recognition

Pattern recognition, as described on in section 2.3.1, can be achieved with a CBR system. We
can use the following steps to achieve pattern recognition with a CBR system:

• Encode known cases – We choose an encoding such as the pixel overlay (see section
2.3.2) or receptor (see page 2.3.3) technique to represent our cases. We take each
pattern we want to recognise and encode them with one of these techniques. We add
this encoding as the problem to our case base and set the solution to be the name of
the pattern.

• Encode unknown case – Given a pattern as input, we apply the same encoding
technique as we did to our known patterns.

• Look for similar cases – Now we have the encoding for the input pattern we can look
for k-Nearest Neighbours in the case base.

• Propose a solution – The nearest neighbour can be proposed as a classification of the
pattern but we allow the user to possibly change the classification if need be.

• Learn the new pattern – The new pattern can now be added to the case base and
proposed as a solution in future problems.

Problem

Retrieve

Revise

Retain

Reuse

Confirmed

Solution

Proposed

Solution

Background 36

2.4 Layout Management

"The ultimate metric that I would like to propose for user friendliness is
quite simple: if this system was a person, how long would it take before

you punched it in the nose?"

Tom Carey

With improper layout management code, things don’t work the way users expect and this is
frustrating for them. Unfortunately for developers, writing layout code that displays the
intended layout of widgets and scales intelligently as the window is resized is not an easy
task to accomplish. Here we discuss the importance of layout management code, what can
happen if it goes wrong and overview the available layout managers to help get it right.

2.4.1 Basic Layout Techniques

In application development there a few paradigms that developers can employ to layout
interface widgets irrespective of the GUI toolkit being used. Here we explore the layout
concepts available to developers.

Absolute layout

Absolute layout is the simplest layout formalism by a mile although it requires pixel perfect
placement. Using an absolute layout, the developer must specify the size and location of the
widget to the pixel. The advantage of this is that you have complete control of where the
widgets are placed but the downside is automatic resizing is not available when the window
is resized. If using a GUI builder then layout hints can be given to the user at design time to
help align widgets but in pure code based form, sizes and locations have to be specified
explicitly. Figure 2.27 shows an example of Java Swing using absolute layout (sometimes
called null layout):

import javax.swing.*;
public class Demo extends JFrame {
 public Demo() {
 JButton btnOk = new JButton("OK");
 JButton btnCancel = new JButton("Cancel");

 btnOk.setLocation(5, 5);
 btnOk.setSize(100, 30);
 btnCancel.setLocation(115, 5);
 btnCancel.setSize(100, 30);

 this.setLayout(null);
 this.add(btnOk);
 this.add(btnCancel);
 this.setSize(220, 60);
 this.setResizable(false);
 this.setVisible(true);
 }
 public static void main(String[] args) {
 new Demo();
 }
}

Figure 2.27: Java Swing absolute layout.

Background 37

Grid layout

Grid-based designs provide systematic structure to an interface. By structuring each window
or view along similar lines, a grid ensures that as users gain more experience with the system,
they learn to predict where a particular piece of information will be found (Mullet and Sano
1995). This is why grid-based systems are so good; they help the users. Luckily most modern
day GUI toolkits provide a grid based layout manager and there are plenty of third party
layout managers that support the grid-based design paradigm. Grid-based layout managers
involve a developer adding controls to particular cells in a predefined grid. As the frame is
resized, so too do the cells defined in the grid. Figure 2.28 is an example of a grid-based
layout in Java Swing:

import java.awt.GridLayout;
import javax.swing.*;

public class Demo extends JFrame {
 public Demo() {
 JButton btnOk = new JButton("OK");
 JButton btnCancel = new JButton("Cancel");
 getContentPane().setLayout(new GridLayout(1,0,10,10));
 this.add(btnOk);
 this.add(btnCancel);
 this.setSize(220, 60);
 this.setResizable(false);
 this.setVisible(true);
 }
 public static void main(String[] args) {
 new Demo();
 }
}

Figure 2.28: Java Swing GridLayout.

Docking

Docking layouts involve fixing interface widgets on the sides of the frame. Typically the
toolkit API offers the user ability to dock a widget north, east, south, west and centre and
some layout managers offer the power to do multiple dockings per side. This means widgets
can be docked to other widgets. Figure 2.29 is an example of Java Swing’s BorderLayout,
which gives docking abilities to the developer:

import java.awt.BorderLayout;
import javax.swing.*;
public class Demo extends JFrame {
 public Demo() {
 getContentPane().setLayout(new BorderLayout());
 this.add(new JButton("north"), BorderLayout.PAGE_START);
 this.add(new JButton("south"), BorderLayout.PAGE_END);
 this.add(new JButton("east"), BorderLayout.LINE_START);
 this.add(new JButton("west"), BorderLayout.LINE_END);
 this.add(new JButton("center"), BorderLayout.CENTER);
 this.setVisible(true);
 }
 public static void main(String[] args) {
 new Demo();
 }
}

Figure 2.29: Java Swing BorderLayout.

Background 38

Anchoring

Anchoring is a technique not employed by many layout managers directly in code but is
more of an effect seen by the user in the interface. Widgets can be anchored to each other or
to a side of their containers so they resize as their counterparts do. GroupLayout has the
ability to create these relationships between widgets. Figure 2.30 shows an example of what
happens to a text field when it is anchored to the right-edge of its parent container and the
container is resized:

Springs and Struts

Springs and struts are heavily used in the Mac OS X Interface Builder and in some third party
layout managers for other GUI toolkits. A strut can be seen as an anchor. If a strut is attached
to a child component and it’s parent container then when the parent is resized, the child is
stretched to maintain the child’s size. A spring is exactly the opposite. If the strut were
replaced by a spring then the child would remain the same and the spring would just stretch.
Figure 2.31 shows an example of a spring being used in a toolbar in OS X:

2.4.2 The Dark Art of Java Layout Management

Whilst Java does offer some basic layout managers in the JSE it is by no means complete and
attempting to create a complex user interface is a difficult task. In October 2006, John
O’Conner of the Java community proposed a layout manager showdowni. He proposed a
challenge to the community to use their favourite layout managers to produce an example
complex user interface. There are some delicate intricacies of the interface that require very
fine control over the layout management. Figure 2.32 shows the testing layout.

i John O’Conner’s layout manager showdown can be found on his java.net blog here at
http://weblogs.java.net/blog/joconner/archive/2006/10/layout_manager.html

Resized

Figure 2.31: OS X Toolbar spring example.

Figure 2.30: Anchoring example.

Figure 2.32: Layout Manager Showdown interface.

Background 39

Achieving this layout with a single existing JSE layout manager is impossible. Using a
combination of the JSE layout managers, something similar can be created using nested
panels but nesting panels is not recommended. The problem with nesting panels is mixing
the different types of layout managers. Because the layout managers were contributed by
different people and added to the JSE at different points, they all treat margins, insets and
outsets differently between controls and this is where a single powerful layout manager can
help.

Existing Java Layout Managers

Here the JSE layout managers are detailed with small examples to show what is available
with Java out of the box.

• Null layout – Null layout is Java’s version of absolute layout as exampled in figure 26.
It requires the coder to specify the size and location of each interface widget and
provides no automatic relocation or resizing of the widgets.

• BorderLayout – BorderLayout is the docking style layout manager as demonstrated in
figure 28. It allows components to be docked to the inside edge of its container. This
is generally used to dock other panels around a central panel that is used for the main
content.

• BoxLayout – The BoxLayout layout manager (shown in Figure 2.33) allows
components to be stacked vertically on top of each other or aligned in a row
horizontally. In this sense it can be seen as a more advanced version of FlowLayout.
Users add components to the layout manager and can specify springs and strut sizes
between components.

import javax.swing.*;
public class Demo extends JFrame {
 public Demo() {
 setLayout(new BoxLayout(getContentPane(), BoxLayout.LINE_AXIS)); //
LINE_AXIS means layout in a row

 // Spring!
 this.add(Box.createHorizontalGlue());
 this.add(new JButton("OK"));
 // Strut!
 this.add(Box.createHorizontalStrut(5));
 this.add(new JButton("Cancel"));
 this.setSize(250, 60);
 this.setVisible(true);
 }
 public static void main(String[] args) {
 new Demo();
 }
}

Figure 2.33: BoxLayout example.

• CardLayout – The CardLayout can be seen as a tabbed pane without the predefined
GUI. It lets the developer implement an area that contains different components at
different times. It is usually controlled by a combobox that triggers the change of
layout. Multiple panels are coded using whichever layout manager is desired and the
panels are added to the CardLayout. When the attached event is triggered, the
CardLayout switches to the next panel.

• FlowLayout – FlowLayout is the original JSE layout manager and is the default for
every JPanel. Like the BoxLayout, FlowLayout can layout components in a single
row, wrapping onto a new row if the parent container is not of sufficient size.

Background 40

• GridBagLayout – GridBagLayout is the most powerful and flexible layout manager
available with the JSE. It positions items in a grid based system where the
components can span multiple cells and the column and rows can be of varying
widths and heights. Unfortunately compared to some of the third party layout
managers the code is verbose and not as intuitive as could bei.

• GroupLayout – GroupLayout is the layout manager used by the NetBeans GUI
builder. NetBeans creates very verbose code with GroupLayout that is near
impossible to read and very difficult to modify by hand (for an example, see figure
3.1). This is not a problem as it is not designed to be used with manual coding and
was created for operability with GUI builders in mind (Sun Microsystems n.d.).

• SpringLayout – SpringLayout was also designed with GUI builders in mind and as a
result is very low level. It is for this reason that Sun recommends not coding it by
hand (Sun Microsystems n.d.). The SpringLayout works by defining the relationships
(also called constraints) between the component’s edges and the position of each
edge is dependent only on another single edge. These constraints are defined in
pixels and the layout manager uses the minimum, preferred and maximum sizes of
components to calculate positions and sizes of objects. Using these properties of the
component (which must be explicitly defined in code), springs are placed between
the edges that are free to shrink and expand according to the properties.

Obviously not all layout managers are meant to be able to produce all types of layouts. The
old mentality was to nest panels using multiple layout managers to create complex interfaces
but as discussed already there are problems with nesting panels. The other problem with the
standard JSE layout managers (not including the new GroupLayout) is the matter of units.
For all of these layout managers, only pixel references are supported and this doesn’t leave
room for resolution independenceii. Fortunately some powerful third party managers have
resolution independence built in.

Third Party Layout Managers

Here we discuss some of the more powerful Java layout managers. These layout managers
can create complex interfaces without the need of nesting panels. The same example interface
is used in each instance so we can compare the code required.

• MigLayout – MigLayout is probably the most popular third party layout manager
available. Developed by Mikael Grev, it is open source, flexible and works with both
Swing and SWT. MigLayout can replicate the functionality of all the existing JSE
layout managers except for FlowLayout as MigLayout uses a grid-based system. It is
capable of pure grid-based layout with support for baseline alignmentiii, absolute
layouts with relative component constraints and docking all with resolution
independence.

The key strength to MigLayout is the conciseness of the code required for
even complex layouts. Global layout constraints, row/column constraints and
component constraints are all specified in the constructor of the layout manager. All
the component’s constraints are specified in one line, inline with adding the

i For an example see: http://javatechniques.com/blog/gridbaglayout-example-a-simple-
form-layout/
ii Resolution independence is the notion that something can be drawn at sizes independent of
the pixel grid/screen size being used.
iii Baseline alignment was introduced in Java 6 and it aligns the bottom of the text (the
baseline) across widgets.

Background 41

component to the layout. This means only one line is required per widget, which
greatly reduces the code size.

The code is more readable too. MigLayout uses short string-based constraints
that give more meaning to the user and are just as accessible for GUI builders. Figure
2.34 shows an example interface coded up in MigLayout that shows just how concise
and readable the layout code can be:

import java.awt.Color;
import javax.swing.*;
import net.miginfocom.swing.MigLayout;
public class Demo extends JFrame {
 public Demo() {
 // Global constraints
 MigLayout lm = new MigLayout("ins 20",
 "[para]0[][100lp,fill][60lp][95lp, fill]", "");
 this.setLayoutManager(lm);
 // All other controls
 String[] genders = new String[] {"Male", "Female"};
 JLabel label = new JLabel("Details");
 label.setForeground(Color.blue);
 add(label, "split, span");
 add(new JSeparator(JSeparator.HORIZONTAL), "growx, wrap");
 add(new JLabel("First Name"), "skip");
 add(new JTextField(), "span, growx");
 add(new JLabel("Last Name"), "skip");
 add(new JTextField(), "span, growx");
 add(new JLabel("Gender"), "skip");
 add(new JComboBox(genders), "wrap");
 add(new JButton("OK"), "split,right,span");
 add(new JButton("Cancel"), "wrap");
 pack();
 this.setVisible(true);
 this.setTitle("MiGLayout Demo");
 }
 public static void main(String[] args) {
 new Demo();
 }
}

Figure 2.34: MigLayout code example.

• JGoodies FormLayout – The JGoodies FormLayout was one of the first third party
layout managers to achieve a following. It doesn’t have the docking and absolute
positioning capabilities that MigLayout offers but it was never intended to. Where
JGoodies FormLayout proves its worth is creating simple to complex forms interfaces
with a grid-based solution. It is simple to learn as the method for building these
forms is abstracted away from the user. Instead of adding each control to the layout
manager in term and specifying constraints, the developer adds the control to the
builder with the location of a cell in the grid they want the control to be placed.
Optionally, the number of cells to span vertically and horizontally can be specified.
The builder then adds the control to the layout taking care of gaps and precise
alignment to produce a professional looking form. Figure 2.35 shows the same screen
from figure 33 coded using the JGoodies layout manager:

Background 42

import javax.swing.*;
import com.jgoodies.forms.builder.PanelBuilder;
import com.jgoodies.forms.layout.*;
public class Demo extends JFrame {
 public Demo() {
 // Specify the row and column constraints
 FormLayout lm = new FormLayout(
 "right:pref, 3dlu, pref, 7dlu, right:pref, 3dlu, pref",
 "p, 3dlu, p, 3dlu, p, 3dlu, p, 9dlu, p");
 lm.setColumnGroups(new int[][]{{1, 5}, {3, 7}});
 PanelBuilder builder = new PanelBuilder(lm);
 builder.setDefaultDialogBorder();
 // Obtain a reusable constraints object
 CellConstraints cc = new CellConstraints();
 String[] genders = new String[] {"Male", "Female"};
 builder.addSeparator("Details", cc.xyw(1, 1, 7));
 builder.addLabel("First Name:", cc.xy (1, 3));
 builder.add(new JTextField(), cc.xyw(3, 3, 5));
 builder.addLabel("Last Name:", cc.xy (1, 5));
 builder.add(new JTextField(), cc.xyw(3, 5, 5));
 builder.addLabel("Gender:", cc.xy (1, 7));
 builder.add(new JComboBox(genders), cc.xyw(3, 7, 2));
 builder.add(new JButton("OK"), cc.xy (5, 9));
 builder.add(new JButton("Cancel"), cc.xy (7, 9));
 this.add(builder.getPanel());
 this.pack();
 this.setVisible(true);
 this.setTitle("JGoodies Demo");
 }
 public static void main(String[] args) {
 new Demo();
 }
}

Figure 2.35: JGoodies code example.

 These are two of the more popular third party layout managers available and there
are many more with varying features and goals. The aim of this section was to show how
complex layouts could be made with a single layout manager in a single panel without
nesting panelsi.

2.4.3 Inferring Correct Layout

Now we have a clear grounding of the basics of layout management and the type of code that
needs to be generated, we can discuss inferring correct layout management code.

 To start with we can look to how existing GUI builders create their layout code and
why this tool shouldn’t do the same. Current GUI builders integrate tightly with a layout
manager. As the user moves a widget around the design screen, the GUI builder is only
permitting movement to a valid location as specified by the layout manager and this allows
them to generate layout management code on the fly. This restricts where the user can
position the interface widgets and often the GUI builder will resize the widgets to fall inline
with the layout manager. Wouldn’t it be nice if the user could move and size their widgets
exactly how they want?

 The goal of this project is to provide a more natural and intuitive method to
designing GUIs and this can be achieved by removing the constraints of a layout manager at
design time. This has two major side effects for the application and the user. Firstly, the user

i For a good directory listing of third party layout managers see: http://leepoint.net/notes-
java/GUI/layouts/90independent-managers.html

Background 43

will not get a 100% accurate preview of their application at design-time as they will be
aligning items roughly where they want. Showing layout hints and snapping the components
to an alignment grid at design-time can improve this. This will allow a completely free design
for the user with no restrictions.

The second impact is to how the application generates layout code. An analysis needs
to be carried out in an attempt to infer the layout code from the user’s positioning of widgets.
In a way this is reversing the function of the layout manager. A layout manager takes
constraints and calculates the size and location for the object but we need to do the opposite
and infer the constraints from the locations and sizes. This is no easy task and it doesn’t look
to have been tried before without deep integration to a layout manager. Our aim is to infer
correct layout code with no input from the user except the location of widgets on the screen.

 As interface design is generally grid based and the layout code is grid based we can
use this to our advantage. Using a grid based layout manager; the layout manager code is
generally specified row-by-row adding components from the top-left of the screen down to
the bottom-right. To infer the layout code we can use the following steps:

• Infer number of rows – Using the locations Y coordinates of the components we can
calculate which components belong to which row of the grid.

• Infer number of columns – The same technique can be used with the X coordinates to
understand where the columns lie.

• Infer row/column constraints – Using the sizes together with the locations of the
components we can build an in-memory representation of the layout and build the
constraints as a result.

Certain rules will need to be considered when trying to generate the constraints for
the components. Following good interface guidelines, only particular widgets will want to be
resized in different ways and this will need to be set on a per widget basis. For example,
using intuition we can tell that labels and text fields don’t need to be vertically resized
because they’re single line displays and inputs whereas a text field will want to be expanded
both horizontally and vertically. Using these intuitive rules we can generate constraints that
mimic the desired layout of the user.

Design Considerations 44

3 DESIGN CONSIDERATIONS

3.1 Aims

The core aim of this project is to provide a more intuitive, natural tool for developers to build
GUIs. We can achieve this by accomplishing the following four objectives:

• Capturing natural input – Let the developer create interfaces more naturally. This
involves the developer drawing the interface with a mouse, a graphics tablet or a
touchscreen and turning that drawing into a working GUI.

• Ease layout management – Remove the knowledge barrier of toolkit specific layout
managers from the task of layout management. We aim to automatically generate
correct layout code with little to no user intervention. In the event that the perfect
layout cannot be generated, we need to let the user tweak and correct it.

• Abstract the toolkit – Remove the implementation details of the toolkit from the design
process. A window is a window in any toolkit, so the user shouldn’t need to know
it’s a JFrame in Swing but a Shell in SWT. An intermediate representation can be used
internally to allow code generation into multiple toolkits.

• Generate clean, concise code – Existing GUI building tools generate bloated code for the
programmer. They certainly make it easier for users to create GUIs but generating
excessive code compromises the long-term maintainability of the code. We aim to
solve this using a layout manager that requires minimal layout code and only
generating code that is absolutely necessary.

We will now look at the limitations of existing tools and techniques in order to formulate our
own solution to GUI building.

3.2 Critique of Existing Techniques

3.2.1 Problems with Manual Coding

Coding GUIs by hand in procedural languages is the traditional method used to create user
interfaces but it is not without it’s problems. Ben Galbraith is an experienced member of the
worldwide computing community, has founded several companies and has worked for
companies such as Sun (working on Java) and Mozilla focusing on user interaction with
applications. Here is a comment by Ben about designing GUIs by hand:

“The domain of GUI design is, err, visual, and doing design by writing
code either means you've got to get to the point where you can reliably
visualise what your layout manager does in your head (emphasis on
reliably, folks), or you wind up compiling and executing over and over

again doing minor/major tweaking until you finally get it right.”

Design Considerations 45

Here Ben points out the key problem with creating GUIs by hand. Unless the
developer has a deep level of understanding of the necessary layout manager(s), a cycle of
recompiling and rerunning is required to build the interface. This is because unless an IDE
with a live preview is in usei, the user must visualise the interface layout in their head.

 Another problem with manual coding is the abstraction of the toolkit. When writing
procedural code, the developer needs to understand the paradigms and varying APIs of the
interface widgets used in the toolkit. A button in Swing has particular properties that are
common to a button in SWT but very different code is needed to produce the same interfaces
across the toolkits.

GUI design should be independent of the toolkit in question and this is where
declarative languages have an advantage.

3.2.2 Problems with Current GUI Builders

As mentioned in the above section, the domain of GUI design is visual and this is a very good
reason to use a GUI builder over coding by hand. But GUI builders still have some major
drawbacks that shouldn’t be overlooked.

GUI designers often provide a live WYSIWYG view of what is being designed but
these aren’t necessarily what the compiled interface will look like. For example it is often
difficult to understand how the widgets will resize when the frame is resized in the
application. This still requires recompiling and rerunning of the generated code although it
generally removes the knowledge barrier regarding the GUI toolkit. A user simply drags the
item that looks like a button onto the window and places it where they want.

Although the GUI builder can generally abstract the widget toolkit from the
developer, it doesn’t remove the requirement of layout manager knowledge and this doesn’t
follow the Low Threshold ideology. The Low Threshold ideology is part of the ‘Low
Threshold, High Ceiling and Wide Walls’ design goals (Resnick, et al. 2005). These goals state
an application should be easy for a novice user to start using with little to no training (Low
Threshold); the application should have the capacity to satisfy an experienced user’s
requirements (High Ceilings); and the application should also support and suggest a wide
range of explorations (Wide Walls). In the case of Java layout managers, GUI builders are
generally geared to work with specific layout managers. Dragging a widget around the
window doesn’t necessarily mean it will move as expected. The layout manager will control
the location and size of the widget and override any actions performed by the user. Not
understanding the layout managers can make using most GUI builders a frustrating process.
In the case of the .NET WinForms, there aren’t a wide variety of layout managers available.
This results in the majority of complex layouts being unachievable without nesting multiple
panels, which is a bad idea. Different panels with different layout properties respect widget
insets in different ways and often don’t support resolution independence. The only case
where this doesn’t apply is when no layout manager is used. Widgets are positioned using
absolute coordinates but absolute layouts provide no automated resizing and no automated
widget alignment.

In Java, this problem was resolved with the development of the GroupLayout layout
manager. GroupLayout integrated with NetBeans provides a very intuitive means to create

i Currently only Jigloo (see section 2.2.2 for details) provides a full live preview for Java
through an Eclipse plug-in and the WPF designer provides live preview for XAML.

Design Considerations 46

interfaces that scale correctly when resized. The biggest flaw with GroupLayout and
NetBeans is the code that is produced. Not only is it guarded, as described in section 2.2.2
regarding NetBeans, but the code produced is far from maintainable. Below is an example of
the layout code produced by NetBeans when creating a simple form:

private void initComponents() {
 lblName = new JLabel(“Name:”); txtName = new JTextField();
 btnCancel = new JButton(“Cancel”); btnOk = new JButton(“OK”);

 // Layout code //
 GroupLayout layout = new GroupLayout(getContentPane());
 getContentPane().setLayout(layout);
 layout.setHorizontalGroup(
 layout.createParallelGroup(GroupLayout.LEADING)
 .add(layout.createSequentialGroup()
 .addContainerGap()
 .add(layout.createParallelGroup(GroupLayout.LEADING)
 .add(layout.createSequentialGroup()
 .add(lblName)
 .add(18, 18, 18)
 .add(txtName, GroupLayout.DEFAULT_SIZE, 167,
 Short.MAX_VALUE))
 .add(GroupLayout.TRAILING,
 layout.createSequentialGroup()
 .add(btnOk)
 .addPreferredGap(LayoutStyle.UNRELATED)
 .add(btnCancel)))
 .addContainerGap())
);
 layout.setVerticalGroup(
 layout.createParallelGroup(GroupLayout.LEADING)
 .add(layout.createSequentialGroup()
 .addContainerGap()
 .add(layout.createParallelGroup(GroupLayout.BASELINE)
 .add(lblName)
 .add(txtName, GroupLayout.PREFERRED_SIZE,
 GroupLayout.DEFAULT_SIZE,
 GroupLayout.PREFERRED_SIZE))
 .addPreferredGap(LayoutStyle.RELATED,
 GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
 .add(layout.createParallelGroup(GroupLayout.BASELINE)
 .add(btnCancel)
 .add(btnOk))
 .addContainerGap())
);
 pack();
}

Figure 3.1: NetBeans generated GroupLayout code with the form it represents.

Figure 3.1 shows the auto-generated code from NetBeans to create the simple form with a
label, text field and two buttons. Whilst it may behave as expected by the user (the form
resizes correctly as expected) the code is verbose and there are much more concise ways of
representing the same GUIi.

GUI builder tools are an improvement but problems still exist. Often, the code
produced is bloated (see figure 3.1 for an example of bloated NetBeans code and see figure
2.9 for an example of bloated Visual Studio (VS) .NET code) and an in-depth knowledge of
layout managers is needed to work with them. The code produced may be unreadable, or in

i For a MigLayout implementation if the same GUI, see page *_*.

Design Considerations 47

the case of the NetBeans IDE, even un-editable (NetBeans will overwrite any changes you
make to it’s generated GUI code).

3.2.3 Problems with Specifying in Markup Languages

Attempting to describe user interfaces is not an easy task especially in a toolkit independent
manner. Different toolkits use different interaction paradigms and designing a specification
to suit all toolkits hasn’t been accomplished. XAML is the best-supported user interface
markup language mainly due to Microsoft’s influence in the application development arena.
Other attempts at standardizing a markup language for specifying GUIs have largely gone
unnoticed.

 A key advantage that XAML has over other markup language specifications is good
tool support. VS provides a live drag-and-drop designer that can produce XAML code,
furthermore it is a roundtrip editori. Other GUI markup languages have little or no good tool
support. This still means that designing an interface is purely code based with the recompile
and rerun mentality that comes with it.

The verbosity of XML is also a problem. XML is the method of choice for describing
user interfaces, but one can argue that this isn’t the best choice. Just because XML can be used
to describe user interfaces does not necessarily mean that it should. There are other markup
languages, with far less verbosity, that may provide a better fit such as YAML and JSON (a
subset of YAML).

The last thing to discuss with regard to markup languages is the abstraction of
toolkits. The .NET implementation of XAML for WPF still requires knowledge of the toolkit
and how various layout components act. The Swing javabuilders project (see section 2.2.3 for
details) requires that you know the components available in Swing, but does take two steps
in the right direction by using YAML and providing its Layout DeScription Language
(Layout DSL) to describe the layout of widgets.

3.2.4 Conclusion of Criticisms

There are many problems with existing GUI building methods that we’ve outlined above.
Although there are numerous good ideas being implemented, certain key problems still exist
and a total solution to solve all these problems is missing. Knowing these limitations, we will
now design our solution to the GUI building problem. We will attempt to design a solution
that overcomes the limitations in existing techniques and achieve the aims we stated in 3.1.

3.3 Design

Our idea is a standalone tool, Sketchi, which takes a user through the complete process of
turning a sketch into runnable GUI code. The main aim is to turn a user’s sketch into concise
GUI code as fast as possible whilst requiring minimal intervention along the way.

i Roundtrip means that a change in code will result in a change in the interface and a change
in the interface, through user interaction, results in a change in the code.

Design Considerations 48

3.3.1 High Level Architecture

The process of turning a sketch into code consists of four very well defined steps. Sketchi
takes the user through each of these stages by letting them correct any errors that may have
been made along the way. Figure 3.2 shows the high level design of the flow through the
application.

Figure 3.2: Sketchi design flow.

 The implementations of each component are detailed in the subsequent chapters of
this report. Each module is self-contained with only the inputs and outputs visible to the
other components. We initially defined the interfaces between the modules so we were free to
implement them as and when chosen.

 Such a modular design also provides us with great flexibility for future work. We can
easily replace any module with a different implementation that uses other techniques.

3.3.2 Implementation Choices

There were numerous implementation choices to consider when designing Sketchi. Each
module in our architecture could be implemented in a number of ways. We state below
which we chose and why:

• Implementation language & toolkit – We’ve implemented Sketchi using Java and the
Swing widget toolkit. We chose Java so we can provide a platform independent tool.
We’ve used Swing as opposed to other Java widget toolkits for two reasons. Firstly,
Swing is part of the Java Standard Edition and so ships with the main Java
distribution. Other toolkits need to be downloaded separately. Secondly, Swing is
lightweight. This means the rendering is performed entirely in Java 2D, which allows
us to provide a high level of customization for our application and give our users an
immersive, rich interface.

• Classification Technique – When building the input classification subsystem we used a
Case-Based Reasoning (CBR) system with receptor patterns as the core feature (see
section *_* for details of receptors). We use CBR as opposed to an Artificial Neural
Network (ANN) because CBR is the more intuitive method. If we cannot achieve
satisfactory results using the CBR technique then we will use an ANN system.
Another advantage of CBR over ANN is the ability to instantly learn new data. Since
CBR uses lazy learning, we can instantly add new cases to the case base. Using an
ANN would require us to retrain the entire network every time a new instance needs
to be learnt. We use the receptor pattern as our core feature as it is tolerant to
variations in the user drawing (see discussion on receptors in the background section
2.3.3).

• Layout Manager – When implementing an automatic layout generation system, we
need to base it on a particular layout manager. Unfortunately this isn’t very flexible
but is necessary in order to generate good layouts for the user’s sketch. This is due to
layout managers having subtle differences that have large effects on the layout
produced. We’ve chosen the popular third party layout manager MigLayout. We’ve
chosen MigLayout because the layout code required to use it is very concise and

Input
Classification

Layout
Generation

GUI
Customization

Code
Generation

Design Considerations 49

clean (see section 2.4.2 for a comparison of layout managers). Moreover, its string
based constraint system is easy to read and intuitive to use. The standard layout
managers provided with Java don’t meet our requirements of being able to produce
clean, concise code whilst handling potentially complex layouts. MigLayout also
uses the popular grid-based paradigm that numerous other layout managers use.
This means generating code for a toolkit unsupported by MigLayout will only
require translating our layout constraints to the constraints of another grid-based
layout manager used in the toolkit.

3.3.3 Application Components

Sketchi is written in Java and uses the Swing widget toolkit. We use Swing as opposed to
SWT because it is lightweight, so we can provide a customised, rich interface for our users.
Swing let’s us create custom components so we can tailor the interface to respond well to a
touchscreen and immerse the user in the application. It uses a wizard style with clearly
defined stages to guide the user through the creation of their GUI. After initially sketching
their GUI onscreen, they use the onscreen options to progress through the necessary steps to
full code generation. In figure 3.3, we detail the application components and show the stages
necessary to produce GUI code from a sketch:

Figure 3.3: Sketchi application hierarchy.

 Components can always communicate down through the hierarchy. The only
upward communication allowed is straight to the application HUB.

Application HUB

The application HUB is the starting point of the application. It contains the main method to
run the application. When Sketchi is started, the HUB loads up any external resources (such
as user preferences), sets up the input recognition system with the user’s case base and loads
up the main window.

 Any communication between modules is marshalled through the HUB. It keeps track
of the current state of the application (see application states in section 3.3.4) and is
responsible for progressing between the stages in the wizard. Using the application HUB as a
mediator maintains independence between the various stages, so we can swap new
implementations in and out at a later stage if desired.

Application HUB

Training
Window Main Window

Content
pane

Application
states

Toolbox Breadcrumb
bar Toolbar Side bar

Design Considerations 50

Main Window

The main window is the container for all interaction between the user and Sketchi. It consists
of the following components:

• Toolbar – The toolbar contains access to common functionality such as creation,
loading and saving of sketches. It also contains a button to access preferences where
the user can customise functionality of the application.

Figure 3.4: Sketchi toolbar.

• Floating toolbox – The floating toolbox acts as a single global toolbox for all application
states. The contents of the toolbox are specific to each stage in wizard. When a new
state is loaded, it passes its toolbox contents to the HUB, which propagates the
contents down to the toolbox.

Figure 3.5: Sketchi toolbox.

• Open File sidebar – The sidebar lists the currently open files as well as the most
recently opened files. It is populated with data from the HUB. When an item from the
list is selected, a message is sent up to the application HUB that will switch to a new
state and propagate this down to the content pane.

Figure 3.6: Sketchi sidebar.

Design Considerations 51

• Breadcrumb bar – The breadcrumb bar shows the current state the user is in. It
provides the user with a reminder of the active state in the content pane.

Figure 3.7: Sketchi breadcrumb bar.

• Content pane holder – The main window contains a placeholder for the content pane,
which is the main point of interaction for the user. Whilst the main window knows
the content pane exists, it never knows the current state of the content pane. The
application HUB may provide a new state for the main window to load, but this is
then delegated down for the content pane to handle.

Figure 3.8: Sketchi content pane.

Content pane

The content pane is the main point of interaction between the user and Sketchi. It acts as a
container for various application states (see application states in section 3.3.4).

Training Window

The training window is used to train the input classifier with a user’s particular drawing
style. The user is asked to draw sketches of the GUI widgets one by one to train the classifier.
The sketches they draw are supplied to the HUB, which uses them whilst setting up the input
recognition subsystem.

3.3.4 Application States

We split generating a GUI into six major steps and each one of these steps is a possible state
that can be active in the content pane. The six possible states that can be active in the content
pane are:

• Free Design – The Free Design state is a acts as a virtual paper for the user to draw on.
The user sketches their GUI on the paper that is then processed by the next
application state. The toolbox for the Free Design state contains instructions on what
to do and a button to clear the sketch.

• Widget Detection – The Widget Detection state has a similar appearance to the Free
Design state but doesn’t allow the user to draw on the screen. The Widget Detection

Design Considerations 52

state applies an algorithm to find the widgets in the user’s sketch (see input detection
and classification in section 4). The user’s sketch appears on the page with rectangles
around the widgets in the drawing. If the algorithm doesn’t arrive at the correct
solution, the user can correct it by deleting existing rectangles and selecting the
widgets from the sketch themselves. The toolbox contains instructions for doing this,
as well as a ‘selection’ button and an ‘eraser’ button for activating the two tools.

• Widget Classification – The Widget Classification state attempts to classify the widgets
the user has drawn. It looks very similar to the previous two states but each rectangle
is now labelled with the classification of the widget. If the classifier hasn’t classified a
widget correctly, then the user can correct it. The user changes the classification by
clicking on the object on screen and selecting a new classification from the toolbox.
The toolbox contains the top suggested classifications for the currently selected
widget. When the user progresses to the next state, any corrections the user has made
are learnt by the recognition system (see section 4.2.6 for details of the learning
mechanism).

• Layout Selector – The Layout Selector state takes the classified drawing and attempts
to find a correct layout for the GUI. It is supplied with the widgets’ classifications,
sizes and locations. From these, it generates possible layouts and displays them all to
the user (see the automated layout generation in section 5). The user can live preview
a layout by right clicking iti. The live preview opens a new window with real GUI
controls in it. This allows the user to resize and interact with the layout to see how it
acts and if correct, can select it and proceed to the next state. The toolbox contains
instructions on how to preview and progress with a chosen layout.

• GUI Customizer – The GUI Customizer state allows refinement of the chosen layout
and GUI controls. A live preview of the GUI is shown in an internal frame. The user
can select any widget in the GUI and customize its properties and layout. Two more
floating toolboxes are introduced to allow this. The first toolbox is a component
editor, which is specific to the selected component type, and allows properties of the
widget to be changed. For example, for a label, we can change the displayed text and
foreground colour. When a new component is selected in the preview window, its
specific component editor is loaded into this toolbox. The second toolbox is a layout
editor. When a component is selected, its layout constraints are loaded into the layout
toolbox and the user can tweak them to adjust the component layout. Both the
component and layout editors use live binding, which means any changes to the
properties in the editors are reflected in real time in the preview window.

• Code Generator – The Code Generator state uses a model produced in the GUI
Customizer state to produce code in the selected target language and toolkit. The
Code Generator state presents the user with code generation options such as class
name, file location, target language and target widget toolkit. The user makes their
code generation choices and clicks the generate button. The code generator then uses
the GUI model to create runnable code for the user (see code generation
implementation in section 6).

3.3.5 Component Interaction

The states listed above have a strict order of progression. For example, we can’t go straight
from a sketch to code generation as widget classification might not be correct and we
wouldn’t know the layout code to use. To control the progression through the states, we
introduce the concept of a flow.

i If using a pen the user can use the eraser end or a function button if correctly configured.

Design Considerations 53

 The flow has two important functions to perform. It ensures the output of one state is
passed as input to the next state. It also acts as a history container for the states so we can
trace backwards through the application states. The HUB keeps a reference to the flow
objects. When a user wants to progress to the next state, the HUB is notified. The HUB
retrieves the next state from the current flow. The current flow acquires the output from the
current state and initializes the next state with the output of the previous state. The HUB then
propagates this new state down to the Content Pane to be displayed.

Figure 3.9: Progressing through the flow.

Figure 3.9 shows a visualisation of the Flow object. The current state is at the top of the stack.
When we need to progress, we call Flow.progressState(). This creates the new State
object, puts it on the top of the stack and returns it to the HUB. When we want to revert back
through the states, they are popped off the stack and forwarded to the application HUB.

 Using the concept of flow objects gives us another functionality, namely multiple files
in the application. The HUB keeps a mapping between flow objects and file names, so if the
user wants to switch files, we can immediately load up the state it was last in from its flow
object. This is then propagated to the main window’s Content Pane so the user can resume
where they were with this sketch.

3.3.6 Sketchi Flexibility

Using a HUB as a mediator between application states gives us excellent flexibility. At any
time, we can swap or add new stages into the flow without having to change the existing
application states. All the application states are self-contained in terms of functionality and all
contained within the content pane in terms of interaction with the user. This gives us great
flexibility in integrating Sketchi within an IDE at a later stage. The existing content pane can
be used and we would only need to write a new HUB to interact with the IDE and marshal
the state down to the content pane.

Free Design

Widget Detection

Flow

Customize GUI

Code Generator

Free Design

Widget Detection

Widget Classification

Flow

Code Generator

Layout Chooser

new LayoutChooser(currentState.getOutput());

Widget Classification

Layout Chooser

Customize GUI

Input Detection & Classification 54

4 INPUT DETECTION & CLASSIFICATION

The input detection and classification module takes a user’s sketch as input, detects the
possible widget’s in the sketch and classifies each in turn. We first look at how we detect all
the user drawn widgets in a sketch. Once we’ve identified each widget we can classify them
all and progress to the next state.

4.1 Detection

The first part of the input capture stage involves singling out the widgets from the user’s
sketch. Given a full sketch of a GUI, we need to find the widgets in the drawing so we can
perform classification on each individually. To find the objects in the image, we use the
algorithm outlined in figure 4.1.

proc List<IWidget> findObjects(Set<Point> points) {
 // points is an ordered set of points with the top leftmost at
 // the top of the set
 List<IWidget> result;
 while(!points.isEmpty()) {
 IWidget currentWidget;
 List<Point> workList;

 workList.add(points.first());
 findObject(points, currentWidget, workList);
 removeInsides(points, currentWidget);
 result.add(currentWidget);
 }
 return result;
}

proc void findObject(Set<Point> points, IWidget w, List<Point> wl) {
 if(!wl.isEmpty()) {
 Point cPoint = wl.first();
 wl.remove(cPoint);
 w.add(cPoint);
 // we now test for points within a radius around cPoint
 for(x = cPoint.x – RADIUS; x < cPoint.x + RADIUS; x++) {
 for(y = cPoint.y – RADIUS; y < cPoint.y + RADIUS; y++) {
 if(points.contains(Point(x, y))) {
 wl.add(Point(x, y)); points.remove(Point(x, y));
 findObject(points, w, wl);
 }
 }
 }
 }
}

Figure 4.1: Algorithm for finding widgets in an image.

The set of points passed into the findObjects() method contains a list of the points drawn
in a user’s sketch. This is an ordered set with the top leftmost point appearing at the front of
the set. The algorithm finds a point, looks for points around it within a search radius and
traces around until no more points can be found. As it finds new points, it adds them to a
work list, then adds them to the widget representation and removes them from the original
set of points so that it doesn’t loop forever. We use a search radius to tolerate gaps in a user’s

Input Detection & Classification 55

drawing. Once there are no more points in the work list, we have added them all to the
widget and we can continue.

 Unfortunately, if the drawing is of a widget with details on the inside, such as the ‘b’
on the button, these details will not be added to the widget representation. To solve this, we
call the removeInsides() method. This method, which takes the leftover points from the
original image and the current widget, adds these internal details to the current widget. We
can get the bounds of the current widget from its object and then remove any points from the
original image within these bounds. We add these removed points to the current widget
representation to complete the process. The algorithm returns a list of the widgets found in
the user’s drawing.

 One obvious shortcoming of this algorithm is that it does not handle nested content.
The insides are removed regardless of what they represent. To solve this problem, the
detection and classification stages would need to be merged together. This is outlined in
future work in section 9.2.

4.2 Classification

For classification, we use a list of known representations of the widgets. This means that the
user needs to learn these representations however we make them as close to the real
rendering as possible. Here are the representations we are using:

Component Name Rendered Hand-drawn

Text Field

Button

List

Spinner

Table

b

Input Detection & Classification 56

Slider

Combo Box

Check Box

Radio Button

Label

Text Area

Tree

Progress

Tabbed Pane

Separator

Table 4.1: List of recognisable widgets.

L

Input Detection & Classification 57

Now that we know what we are trying to classify, we can discuss our implementation of the
classifier.

4.2.1 Case-Based Reasoning

To perform our classification of a user’s sketch, we employ a case based system. Our Case-
Based Reasoning (CBR) system includes a case base of known sketches encoded with various
features, which we define below. When a user sketch comes into the system, we encode it
with the same features and then look in the case base for the nearest match.

 The known examples are represented as bitmap images in a sub directory of the
project. The examples consist of the hand-drawn representations shown in table 4.1 and a
series of drawings gathered from test users. As well as the bitmap representation of the
examples, we need to know what these bitmaps represent. We use a file that uses YAML
syntax to store this extra data. Figure 4.2 shows a small excerpt from the this file:

textfield: !org.sketchi.inputcontroller.util.YamlWidget
 classname: javax.swing.JTextField
 heuristics:
 - enumName: RecEncoding
 - enumName: CrossEncoding
 enumValue: 10
 images:
 - - textfield.bmp
 - textfield2.bmp

Figure 4.2: Known examples YAML file.

 The example above shows the entry for the text field widget. It stores the class name
that represents the text field, the features to encode on this particular widget with their
respective weights (see incorporating other features in section 4.2.5 to understand the use of
the weight) and a list of images to use as a representation for this widget. The case based
system uses this file to load and encode all known widgets to be used as cases in the case
base. Storing the known widgets in this way allows us to easily add new widgets in the
future, as well as new representations of the existing widgets.

 For reading and writing the YAML file we use an open source library called YAML
Beans. YAML Beans makes it simple to serialize and deserialize Java object graphs to and
from YAML. We use YAML instead of XML to ease debugging (see section 2.2.3 for a
comparison of readability) and to allow simple hand tweaking of the files in the development
process. When the CBR is initialized, it loads the YAML file into Java objects and converts
them to its own internal representation so they can be used for classification.

 Figure 4.3 shows the hierarchies of classes used in the input classification system. We
now give a brief overview of the concrete classes in this hierarchy:

• KnownWidget – The KnownWidget represents a known representation of a widget.
It is created from the properties in the YAML file and a series of bitmap images. Once
initialised, it is passed into the WidgetEncoder to have its features encoded on the
object.

• InputWidget – The InputWidget is similar to the KnownWidget, except that the
points added to its model are from the user’s sketch rather than from an external
image.

• WidgetEncoder – The WidgetEncoder takes an IWidget (either KnownWidget
or InputWidget) and encodes the necessary features onto the object.

Input Detection & Classification 58

• Classifier – The Classifier can be seen as the core of the CBR system. It is
initialised with the encoded KnownWidget objects. When the
getWidgetClassification(IInputWidget) method is called with an
InputWidget, it can provide the most likely classification for that particular input.

• Features package – The features package contains the implementations of the features.
There is dependence from the WidgetEncoder because the WidgetEncoder
instantiates the various features and sets them on the IWidget objects. There is
dependence from the Classifier as it uses the encoded features to calculate the
difference between the input widget and the known widget representations to give a
classification (see suggesting a classification in section 4.2.3). There is dependence
from the widgets package as each widget contains a reference to its encoded features.

Widgets

<<interface>>

IWidget

AbstractWidget
<<interface>>

IKnownWidget

<<interface>>

IInputWidget

InputWidget KnownWidget

<<interface>>

IClassifier

Classifier

<<interface>>

IWidgetEncoder

WidgetEncoder

Features

<<interface>>
IFeature

<<interface>>
ISharedFeature

<<interface>>
IUniqueFeature

AbstractCrossEncoding HWRatioAbstractReceptorEncoding

ReceptorEncoding CrossEncoding

<<interface>>
IReceptorEncoding

<<enumeration>>
FeatureSet

Figure 4.3: UML diagram showing the input classification system.

Input Detection & Classification 59

4.2.2 Receptor Patterns

So far, we haven’t discussed the features the CBR encodes on the known examples. The base
feature we use is the receptor pattern (outlined in the section *_* of the background). A
receptor pattern is simply a pattern of 1’s and 0’s that represent whether the receptor in the
pattern was crossed by a pixel in the image or not. A receptor is a line vector defined in a
virtual coordinate space of 100 by 100. Figure 4.4 shows a visualisation of a random set of
receptors. We supply two methods for generating these receptors.

Figure 4.4: Random set of receptors generated in 100 by 100 coordinate space. The blue lines represent the
receptors.

Random Receptor Generation

The random receptor generation method is very fast, but provides no guarantee in terms of
how well the receptors will recognise the known examples. We randomly generate two
points in the virtual coordinate space and check that the receptor isn’t too long or too short.
We do not test for its ability to recognise a particular object.

Entropy Receptor Generation

This method is outlined in the background section 2.3.3. It is an NP algorithm, so the
performance is poor. However, it does guarantee that the receptors generated will be able to
recognise the known examples well. This method involves randomly generating the receptor
as described above and then calculating its usability measure (see the background section
2.3.3 for the usability method). Every generated receptor is added to a list of candidate
receptors and the receptors with a high usability are then used for the encodings. Figure 4.5
shows the pseudo code of the algorithm for generating a entropy-based receptor.

The algorithm generates a list of receptors to be used for classification. The method
calculateUsability() calculates the usability measure detailed in section 2.3.3 of the
background. A performance comparison between the two receptor generation techniques
can be found in section 8.6.

proc Receptor generateRandomReceptor() {
 int x1; int y1; int x2; int y2; int length;
 while(true) {
 x1 = randomNumber() * VIRTUAL_COORDINATE_SIZE;
 y1 = randomNumber() * VIRTUAL_COORDINATE_SIZE;
 x2 = randomNumber() * VIRTUAL_COORDINATE_SIZE;
 y2 = randomNumber() * VIRTUAL_COORDINATE_SIZE;
 length = sqrt((x1 – x2)^2 + (y1 – y2)^2);

 if(length >= MINLENGTH && length <= MAXLENGTH) {
 return new Receptor(x1, y1, x2, y2);
 }
 }
}

Input Detection & Classification 60

proc List<Receptor> generateReceptors(Map<String, List<Widget>> ws) {
 int receptorCounter = 0;
 List<Receptor> rs = new List<Receptor>();

 while(receptorCounter < TOTAL_TO_GENERATE) {
 Receptor r = generateRandomReceptor();

 if(calculateUsability(r, ws) > USABILITY_THRESHOLD) {
 rs.add(r);
 }
 }
 return rs;
}

Figure 4.5: Entropy receptor generator algorithm.

Encoding a Widget with Receptors

Once we have a list of the receptors, we can encode each known example with a receptor
pattern to be used in the classification stage. Each IWidget has a field for a
WidgetDescriptor. These WidgetDescriptor objects contain an EnumMap mapping the
feature name to its encoding. Each feature encoding is an instance of an IFeature and the
hierarchy of ReceptorEncoding can be seen in figure 4.3.

 When creating a receptor pattern encoding of a widget representation, we iterate
over all the receptors to check if the receptor crosses a drawn pixel in the representation’s
image. If it does, then the receptor is active, if not, then the receptor is inactive for this
representation.

 An important point to note is that we must scale the receptor before we do this.
Originally we defined the receptor in a virtual coordinate space but the input representation
may not have the same dimensions as this coordinate space. The receptor is defined as a
vector and the widget representation as a collection of points, which is why we scale the
receptor and not the image. A Point in Java has a fixed size of 1 pixel, and is not something
we can easily scale. We would have to calculate the scaling factors and create new points to
replace the existing point. Scaling a vector is much simpler and computationally cheaper.
Scaling the vectors also means that the size of the user’s drawing doesn’t affect the receptor
pattern. Our implementation of the receptor encoding uses an array of boolean values to
represent whether the receptors are crossed or not. Figure 4.6 shows the pseudo code for the
encoding algorithm for a receptor pattern.

proc void encode(IWidget w, List<Receptor> receptors) {
 for(Receptor r : receptors) {

 for(Point p : w.getPoints()) {
 r.scale(w.getHeight(), w.getWidth()); // important!

 if(r.isIntersection(p)) {
 this.set(r.getIndex(), true);
 break;
 }
 }
 }
}

Figure 4.6: Receptor Encoding algorithm.

The method isIntersection(p) returns true if the point p lies on the receptor line and
false otherwise. Using this algorithm, we can encode the receptor pattern for a given widget.
The getPoints() method on the widget gets a list of pixels that make up the image
representation of the widget.

Input Detection & Classification 61

4.2.3 Suggesting a Classification

The CBR system loads the known widgets from the YAML file and encodes the receptor
patterns for their representations. A user-supplied sketch of a widget enters the system and is
encoded in the same way as a known widget. The classifier then iterates through the known
examples and calculates the distance between the receptor patterns on the known cases to the
receptor pattern on the input widget. These distances are stored against the name of the
known case, and they are normalised to give a value between 0 and 1. The suggestion list is
an ordered list of the classifications for an input widget. Those classifications with a 1 are at
the top of the list and those with a value of 0 are at the bottom of the list. Figure 4.7 shows the
algorithm that produces the classification list (note that the classifier is already initialized
with a map of known widgets).

proc List<WidgetClassification> getTopClassifications(IInputWidget w)
{
 double maxDistance = 0;
 Set<WidgetClassification> cs;
 for(String curWidget : knownWidgets.keySet()) {
 List<IKnownWidget> variations = knownWidgets.get(curWidget);

 // Each k is a variation of the same widget type
 for(IKnownWidget k : variations) {
 IReceptorEncoding re = w.getReceptorEncoding();
 // difference between the two receptor patterns
 double distance =
 re.calcDifference(k.getReceptorEncoding);

 // We use Euclidean distance
 distance = sqrt(distance);
 maxDistance = max(distance, maxDistance);
 cs.add(new WidgetClassification(curWidget, distance));
 }
 }
 return normaliseClassifications(cs, maxDistance);
}

proc List<WidgetClassification> normaliseClassifications
 (Set<WidgetClassification> cs,
 double maxDistance) {
 List<WidgetClassification> result;

 // We are traversing a treeset which is ordered on the distance
 // field of widget classification
 for(WidgetClassification wc : cs) {
 // Normalise the distance here
 wc.setChance(1 – (wc.getChance() / maxDistance));
 result.add(wc);
 }
 return result;
}

Figure 4.7: Calculating feature distance algorithm.

We can see that this returns a list of WidgetClassification objects in the order of their
distance field. This list is an ordered list of classifications for the user’s widget sketch with the
first element being the most likely match. The calcDifference(encoding) method
returns the number of mismatched receptor values between the two encodings.

Input Detection & Classification 62

4.2.4 Enhancing the Receptor Encoding

After some initial testing of the receptor pattern feature, we found certain widgets were
frequently being misclassified. Looking at these misclassifications provided us with some
insight into what was going wrong.

Figure 4.8: Text field to label misclassification.

The blue lines represent receptors used to classify the widget. It can be seen that even if we
draw a sketch that looks similar to a text field, the encoding will be very similar to that of the
label. In certain instances, the classification system could classify a drawing of a text field as a
label as seen in figure 4.8. We would like to increase the distance between the two encodings
to be sure that what the user has drawn is definitely not a text field. To overcome this we
introduce the concept of a receptor weight.

 The idea behind a receptor weight is that certain receptors are more important in the
classification of a particular widget than others. A receptor is classed as being more important
if it takes on the same value (active or inactive) even after the input image has been distorted
by a reasonable amount. This distortion accounts for users drawing wobbly lines instead of
perfectly straight lines in their sketch. The intuition is that certain receptors should never be
crossed, even if the user draws the widget poorly. If these receptors are crossed, then it’s
definitely not a widget of this type, so we return a high score for the difference measure. This
high return value pushes the widget down the suggestion list in the distance calculation. If
the receptor weights for the label in figure 4.8 were set to a value of 15, the calculated distance
between the input encoding and the label encoding would increase from 5 to 65. This is due
to 4 weighted receptors being mismatched and only 1 unweighted receptor. This increased
distance will push the label classification down the suggestion list, so we avoid misclassifying
the drawing.

 The encoding algorithm is now modified to include weighting of certain receptors.
To find the receptors that need to be weighted, we distort the input image and recalculate the
receptor intersections with this new distorted image. If the receptor has the same value with

100

100

Text field

Label

Known representations With receptor overlay User drawing with

receptor overlay

Distance from text field = 6

Distance from label = 5

Receptors in virtual

coordinate space

Input Detection & Classification 63

the distorted image as the normal image, then it’s tolerant to distortion and is given a larger
weight. The modified algorithm is shown in figure 4.9.

proc void encode(IWidget w, List<Receptor> receptors) {
 for(Receptor r : receptors) {
 boolean intersection = false;
 for(Point p : w.getPoints()) {
 r.scale(w.getHeight(), w.getWidth());
 if(r.isIntersection(p)) {
 this.set(r.getIndex(), true);
 intersection = true;
 break;
 }
 }
 for(Point p : w.getDistortedPoints()) {
 if(r.isIntersection(p) == intersection) {
 this.setHeavyReceptor(r.getIndex());
 break;
 }
 }
 }
}

Figure 4.9: Modified receptor encoding algorithm.

When we calculate the difference between the receptor patterns, we no longer just count the
number of mismatches between the two encodings. Where there is a mismatch between two
receptors, we used to increment the number mismatches but now we add the weight of the
receptor to the total distance. We change:

misses++;
Figure 4.10: Old line in calculated difference algorithm.

in the calcDifference(encoding) method call to:

misses = misses + encoding.getReceptorWeight(index);
Figure 4.11: Modified line in calculated difference algorithm.

This change means that a much larger difference is returned where a heavily weighted
receptor is crossed when it shouldn’t be (getReceptorWeight(index) returns 1 if the
receptor is unweighted). We can see this as the widget classification being punished and so
the widget falls down the suggestion list leaving the correct suggestion at the top.

4.2.5 Incorporating Other Features

After initial user testing it became apparent that just using receptor patterns for classifying
wasn’t good enough. Too many of the widgets look too similar and some additions to the
classification system needed to be made. Fortunately, the CBR system is easily extensible and
new features can be added with ease. We just need to provide an implementation of an
IUniqueFeature or an ISharedFeature, add the types to the FeatureSet Enum and
state which objects should use these features in the widget YAML file.

Cross Encoding Feature

The cross encoding feature is a simple concept that fine-tunes the recognition. We use the
following steps to generate a cross encoding for a widget.

• Overlay grid – We take the input sketch of the widget and lay virtual grid lines over
the sketch.

Input Detection & Classification 64

• Trace gridlines – We take each gridline and trace along the line from one side of the
grid to the other.

• Count crossings – For each gridline we count the number of pixels that we cross on the
way to the other side.

• Combine into an encoding – Each gridline is given an index in the encoding. Each index
in the encoding is assigned the number of pixels that get crossed when tracing the
gridline.

The cross encoding provides us with a good feature for differentiating the similar objects that
have subtle differences. Where receptor patterns might be close, the cross encoding will act as
a differential factor between the two. To calculate the distance between a known example and
a user drawn image, we count the difference in the number of pixels crossed for each gridline
between the known example and input sketch. Figure 4.12 shows an example of the cross
encoding.

Figure 4.12: Example of cross encoding.

Height to Width Ratio Feature

The height to width ratio is a feature that encodes the height to width ratio of a widget. This
feature is encoded on widgets that have typically fixed height to width ratios such as
checkboxes and radio buttons. When the KnownWidget objects are created, if the feature is
turned on for this widget, its height to width ratio is calculated from the bitmap images.
When comparing the height to width ratio of the InputWidget with a KnownWidget, we
permit a certain level of tolerance for the user. If the feature is within the tolerance, then the
distance between the representations is returned as 0. Otherwise, a large distance is returned
to push the known representation down the suggestion list.

Combining the features

There are issues with using multiple features in the CBR and even more so when the known
representations use different sets of features. When calculating the distance between two
widget encodings, we need to take all features into account, but there is a question mark over
how these should be combined. The most intuitive method is to add them all together.

Standard grid

Known representations With grid overlay

Text field

Label

Distance from text field = 0

Distance from label = 4

User drawing with

grid overlay

Input Detection & Classification 65

Unfortunately, the distance calculated for some features will overpower others. The result of
a cross encoding distance may be small but vital in classifying the widget. But this could
easily be nullified by a single heavy weighted receptor being mismatched. Depending on the
user’s drawing style, this could happen often and result in common misclassifications for the
user.

 One solution is to weight the features when adding them to the total distance
between two widget representations. We change the getTopClassification() method in
figure *_* to include a loop for comparing all the features on a widget. Figure 4.13 shows the
modified code for suggesting the classification of a widget with multiple features.

proc List<WidgetClassification> getTopClassifications(IInputWidget w)
{
 double maxDistance = 0;
 Set<WidgetClassification> cs;
 for(String curWidget : knownWidgets.keySet()) {
 List<IKnownWidget> variations = knownWidgets.get(curWidget);

 // Each k is a variation of the same widget type
 for(IKnownWidget k : variations) {
 double distance = 0;

 // Adding the feature loop //
 for(IFeature f : k.getFeatures()) {
 IFeature inputF = w.getFeature(f.getFeatureName());
 distance += inputF.calcDifference(f);
 }
 // We use Euclidean distance
 distance = sqrt(distance);
 maxDistance = max(distance, maxDistance);
 cs.add(new WidgetClassification(curWidget, distance));
 }
 }
 return normaliseClassifications(cs, maxDistance);
}

Figure 4.13: Combining features whilst calculating widget classifications.

The distance for a feature is weighted inside the calculateDistance() method instead of
in the IFeature loop itself. This may seem strange, but provides us with two key
advantages:

• Different weights for different widgets – Certain features will be more important for
particular widgets than others and storing the weight with the representation allows
us to have varying weights across the known representations.

• Easy loading – Storing the weight with the widget allows us to store the weights
externally in a widget YAML file. The weight is simply loaded into the
KnownWidget from the YAML file when the KnownWidget objects are created. This
means the CBR doesn’t have to keep track of all the varying weights.

A testbed was written to test the performance of the assigned weights. The testbed classifies a
set of test images, acquired from user testing, using the standard set of known widget
representations in the case base. The testbed counts the position in the suggestion list of the
correct classification. It displays the percentage of correct classifications and the percentage of
times the correct classification appeared in the top three suggestions. Using the testbed we
can evaluate different sets of weights. To find these weights, we used two different methods:

• Manual tweaking – Initially we set all the weights to the same value and ran the
testbed. By looking at the common misclassifications and knowing how the

Input Detection & Classification 66

encodings are calculated, we can understand what contributes to the misclassification
and adjust the weights as necessary. It is very difficult to express, in terms of code,
what is causing a misclassification and adjust the weights as necessary. If a text field
is misclassified just below a button, we have a choice of adjusting the receptor weight
or the cross encoding. Whether we decrease the weights of the text field to make the
text field appear above the button or increase the weights of the button to make it
appear below the text field is a choice. Either choice will remove this
misclassification, but adjusting the weights will affect other classifications and may
lead to more misclassifications (a worse global solution).

• Hill climbing – We implemented a hill climbing algorithm was implemented in an
attempt to optimise the weights without having to tweak them by hand. Figure 4.14
outlines the algorithm. We calculate a score for the current weights using the testbed.
We take a collection of training images and classify them. We know which widget the
training image represents, and the classification stage gives us an ordered list of
classifications. The score for a particular training image is the position of the correct
classification in the classification list. All of the training image scores for a particular
widget type (button, text field, etc.) are averaged to give a score for the widget type.
The minimum value is 1 with the maximum value being the total number of widget
types, i.e. a widget is misclassified to the bottom of the list for every training image.
A widget with a high score (high is bad) is selected and the weights for its features
are adjusted. If the score hasn’t improved, then we revert our changes to the weight
and pick a new widget or alter the weight by a new amount. If the score remains
unchanged for more than the set threshold, then we make a large adjustment to the
worst scoring widget by decreasing its weights by a large amount. This will make the
widget correctly classified and forces the other weights to be selected for adjustment.
We do this adjustment to overcome local maxima.

proc void optimiseWeights(Map<String, List<IKnownWidget>> kws) {
 double currentScore = 10000; // any number higher than threshold
 double oldScore = 10000;
 int scoreUnchangedCounter = 0;
 Map<String, Integer> scores;
 radomizeWeights(kws);
 while(currentScore > SCORE_THRESHOLD) {
 scores = calculateScores(kws);
 currentScore = addScores(scores);

 // if we’ve gotten worse then revert and retry
 if(currentScore < oldScore) {
 oldScore = currentScore;
 scoreUnchangedCounter = 0;
 } else {
 currentScore = oldScore;
 revertLastWeightChange(kws);
 scoreUnchangedCounter++;
 }
 adjustWorstWeights(kws);

 if(scoreUnchangedCounter > UNCHANGED_THRESHOLD)
 {
 randomizeWorst(kws);
 oldScore = 10000; // restart our search with new weights
 }
 }
}

Figure 4.14: Hill climbing algorithm for finding optimal weights.

Input Detection & Classification 67

The performance of the different weights obtained from these two methods are compared in
the results and analysis section 8.1.

4.2.6 Learning From the User

A core feature of our classification implementation is the ability to learn the user’s drawing
style. This was a major deciding factor when choosing a CBR system over an ANN system.
Fortunately, CBR makes learning from the users very simple. In Sketchi, if a widget is
misclassified, we give the user the opportunity to correct its classification. At this point, we
can take the encoding of the input sketch and convert it to a KnownWidget in the case base.
The next time a user draws something similar, this new case becomes the closest match and
the correct classification appears at the top of the suggestion list. To see the effects of learning
on the input classification look at the results and analysis section 8.1.

 We use a user preference file to store the learned widgets for a user. When the CBR is
initialized, the user’s learned widgets are loaded up and converted to KnownWidget objects
like any other known representation. This restores the case base to the same state as when the
user last exited the application.

4.3 Summary of Input Detection and Classification

This chapter has outlined the implementation of our detection and classification systems. We
use a CBR based system and encode the widgets with multiple features. We have enhanced
the receptor pattern feature by introducing receptor weights to help distinguish between
similar widgets. Finally, we’ve added the ability to learn from the user in order to adapt to
their specific drawing style and improve recognition rates.

Automated Layout Generation 68

5 AUTOMATED LAYOUT GENERATION

The automatic layout generator takes a classified set of widgets as input and attempts to
generate a layout that resembles the user’s sketch. The aim is to generate layout code that
intelligently resizes the GUI without deviating from what the user has drawn. This section
outlines the algorithms used for inferring the layout code.

5.1 Layout Generator Architecture

We’ve implemented an extensible layout generator, so that concrete implementations for
other layout managers can be incorporated in the future. It is abstracted in such a way that
we could achieve this without changing other components in the overall architecture of the
application. Our implementation concentrates on MigLayout (see background section 2.4.2)
but many of the algorithms described below can be translated for use with other layout
managers.

Architecture

Here we outline the architecture and discuss the classes available in the layout generation
process. Figure 5.1 shows the UML diagram of the layout generation system.

Figure 5.1: UML diagram showing the layout generation system.

raw

<<interface>>

Comparable

raw.comparators

LeftComparator TopComparator

interfaces

<<interface>>

ILayoutController

RawCombinerRawComponent

CombinedComponent

Automated Layout Generation 69

We will now describe the elements from figure 5.1:

• ILayoutController – Concrete layout generators need to implement this
interface to be used with the layout generation component within Sketchi. Its
principal method is getPanel(). This returns a panel containing the input widgets
laid out with the layout manager after analysis has been completed.

• RawComponent – The RawComponent objects represent the widgets from the user’s
sketch. The layout controllers are passed a list of RawComponent objects that they
can analyse to generate a layout. It contains the bounds of the widget and a
JComponent instance of the widget it represents.

• CombinedComponent – The CombinedComponent is an object, which is used in
our MigLayout implementation but could be useful for other implementations of
ILayoutController. The CombinedComponent represents two or more
RawComponent objects being combined. It takes on the bounds spanning all
RawComponents and maintains a reference to the original RawComponent objects.

• RawCombiner – The RawCombiner creates the CombinedComponent objects from
RawComponents. It takes a set of RawComponent objects, a tolerance value and two
strings representing the types of widgets to combine. If any two objects in the
RawComponent set have a matching widget type and if they are close enough
(subject to the tolerance value passed in) they are merged into a
CombinedComponent.

• LeftComparator – The LeftComparator is a comparator for RawComponent
objects. It orders a set of RawComponent objects by their left edge.

• TopComparator – TopComparator is analogous to LeftComparator but objects
are ordered by their top edge.

Layout generator implementations can utilise these classes with their own algorithms to
generate accurate layouts reflecting the user’s sketch.

Visualizer

The visualizer is a small tool created for debugging purposes. It renders the bounds of the
RawComponent objects to a window so the developer can see what the layout generator is
analysing. This window can be generated alongside the output of the layout generator for
comparison and to help debug whilst developing a layout generator implementation. Figure
5.2 shows an example of the visualizer.

Figure 5.2: Example of layout visualizer next to the auto generated layout.

Automated Layout Generation 70

5.2 MigLayout

We’ve based our layout generator on MigLayout for the reasons outlined in section 3.3.2. It
uses a grid-based paradigm to layout components and we base our algorithms on this
concept. Figure 5.3 shows the UML diagram representing our implementation of the layout
generator.

Figure 5.3: UML for MigLayout automatic layout generator implementation.

We now describe the functionality of these classes:

• MigController – This is our implementation of the layout generator. It takes the
set of RawComponent objects in its constructor and controls the layout analysis.
When the getPanel() method is called, it adds the JComponent instances to a new
panel with their layout constraints and returns the panel.

• MigColumn – A MigColumn represents a column in the layout. It has a left and right
field that represent the bounds of the column.

• MigRow – A MigRow is analogous to the MigColumn but it represents a row instead
of a column with a top and bottom field.

• MigComponent – The MigComponent objects model the layout for each widget.
They are created from RawComponents and contain fields representing possible
layout constraints for the component. These include the row and column the widget
can be found in, the alignment of the object within the table cell and many others.

• MigCell – The MigCell represents a cell in the table layout. A cell can contain
multiple components and the MigCell keeps track of these components in the cell.

• MigHeuristics – The MigHeuristics object adds default layout constraints to
widgets. It contains a mapping between the widget type and the layout properties
that need to be applied. Given a MigComponent, it will supplement the layout
constrains with those from the mapping.

Interfaces

<<interface>>

ILayoutController

raw

.

mig

MigController

MigComponentDetailer MigTableGenerator

mig.components

MigColumn

MigRow MigHeuristics

MigComponent

MigCell

1.*

See figure 5.1

Automated Layout Generation 71

• MigTableGenerator – This class generates the rows and columns required for the
layout. It takes a set of RawComponent objects and performs the analysis to find the
minimum number of MigRow and MigColumn objects for the layout.

• MigComponentDetailer – The MigComponentDetailer class adds extra layout
constraints to the MigComponent objects. It finds the alignment of a component
within a cell, matches the size of widgets and calculates any spanning of the table
cells if necessary.

A MigController is instantiated with a set of RawComponent objects. It then uses the other
mig classes to produce a layout. Figure 5.4 shows the algorithm that is used to produce the
layout.

proc MigController(Set<RawComponent> input) {
 // combine components for layout analysis
 Set<RawComponent> combined = combineComponents();
 // Generate the necessary columns and rows
 MigTableGenerator mtg = new MigTableGenerator(combined, input);
 this.columns = mtg.getColumns();
 this.rows = mtg.getRows();
 // Assign components to cells in the table
 this.migcells = assignComponentsToCells(input);
 // Add any default layout constraints, add spannings, add alignments...
 MigComponentDetailer mcd = new MigComponentDetailer(this.migcells,
 this.rows,
 this.columns);
 this.components = mcd.getComponents();
}

Figure 5.4: Pseudo-code showing the initialization stages of the MigController.

Combining Widget Representations

To ensure that certain widget types remain together in the layout, we introduce the concept
of combined components. An example of this is a row of buttons at the bottom of a window. If
the buttons are added to different cells then they may not appear together upon resizing of
the window. Figure 5.5 shows this resizing issue.

Figure 5.5: Example showing how layout analysis with un-combined components can cause unwanted gaps in the
layout.

If we treat these buttons as a single component, occupying the area of both buttons in the
layout generation stage, we can avoid this. This is due to the layout generator ensuring that
both components are added to the same cell in the layout table. This results in the desired
behaviour as is shown in figure 5.6.

Figure 5.6: Example showing how layout analysis with combined components resolves unwanted layout gap
issues.

Resize

Resize

Automated Layout Generation 72

We will now walk through the algorithms used in the automatic layout generation. Figure 5.7
is a user sketch with two labels and a text field. We will use this as an example and show how
the layout code is generated.

Figure 5.7: User sketch example for layout generation.

5.2.1 Inferring Columns & Rows

When generating a table-based layout, we first need to decide how many rows and columns
to use. The most intuitive method would be to give every component its own column and
row. In the case where the components are vertically aligned, we merge their rows and if they
are horizontally aligned, we merge their columns. Unfortunately, this method produces
artefacts in the layout. If we take our example drawing from figure 5.7 and use this method
we get the artefacts shown in figure 5.8.

Figure 5.8: Layout example demonstrating layout artefact for simple column generation.

In figure 5.7, the two labels are not left aligned and so each is assigned its own column. The
text field is also assigned its own column. The top label spans the first two columns and the
artefact is produced as a result. The correct solution would be to use two columns for the
entire layout. Both labels would be assigned to the first column and the bottom label would
need to be right aligned. Running the sketch in figure 5.7 through our implementation yields
the result in figure 5.9.

Figure 5.9: Layout example demonstrating no artefact with correct column generation.

The implementations for rows and columns are synonymous, so from here we will only
discuss columns. To overcome the layout artefacts seen in figure 5.8, we perform two passes
over the components. The first pass, outlined in figure 5.10, generates an initial conservative
set of columns. We only add a column in the initial pass if two or more components have a
left aligned edge. This ensures that we do not generate more columns than required.

The second pass, outlined in figure 5.12, adds any missing columns. We iterate
through each component to check if it is contained within a column. If it is not, then we create
a new column that contains the component and we recurse with the new set of columns. This

Automated Layout Generation 73

ensures that we do not generate excess columns since we are retesting with the new columns
included.

proc void findInitialColumns(Set<RawComponent> leftAlignedComps) {
 // note the components are traversed in order of left edge value
 // and they are a set of combined components
 for(RawComponent first : leftAlignedComps) {
 for(RawComponent second : leftAlignedComps) {
 if(first.equals(second)) {
 continue;
 }
 if(approximatelyLeftsideAligned(first, second)) {
 MigColumn mc = new MigColumn();
 mc.setLefT(first.getLeft());
 mc.setRight(first.getRight());
 this.columns.add(mc);
 }
 }
 }
}

Figure 5.10: Algorithm for first pass through column generator.

Figure 5.11: Rows and columns identified after first pass.

Figure 5.11 shows that no columns and only a single row have been generated after the first
pass. This is due to our conservative method of only adding a column or row when there are
aligned components.

proc void addMissingColumns(Set<RawComponent> leftAlignedComps) {
 for(RawComponent rc : leftAlignedComps) {
 // Tests if the left edge of the component lies in a column
 if(! leftEdgeInAColumn(rc)) {
 // finds the index in the column list for the new column
 int index = findIndexForNewColumn(rc);
 MigColumn mc = new MigColumn();
 mc.setLefT(rc.getLeft());
 mc.setRight(rc.getRight());
 this.columns.add(index, mc);
 addMissingColumns(leftAlignedComps);
 }
 }
}

Figure 5.12: Algorithm for second pass through column generator.

Figure 5.13: Rows and columns identified after second pass..

Row 1

Row 1

Row 2

Column 1 Column 2

Automated Layout Generation 74

 After the second pass, figure 5.13 shows we have generated the missing columns and
rows for the components that previously had none. This results in a correct table generation
for our layout and we can now add layout details to the components.

5.2.2 Adding Component Constraints

Once the rows and columns have been defined, we need to allocate the widgets to cells in the
table. The method call assignComponentsToCells(input) from figure 5.4 performs this
step. It iterates through the RawComponent objects and finds the column and row for the
widget. It returns an array of MigCell objects representing the table cells in the layout. Each
MigCell has a list of MigComponent objects that need to be added to the cell.

 After the components have been assigned to a cell, we can annotate each component
with extra layout information. We create an instance of MigComponentDetailer that takes
the MigCells and adds the extra layout information to the MigComponents. Figure 5.14
outlines the steps performed in the initialization stage if the MigComponentDetailer.

proc MigComponentDetailer(MigCell[][] cells, List<MigColumn> cols,
 List<MigRow> rows) {
 applyDefaultHeuristics(cells);
 calculateSizeGroups(cells.getComponents());
 calculateSpanningWidgets(cells, cols, rows);
 calculateAlignments(cells, cols, rows);
}

Figure 5.14: Supplementing widget layouts with a MigComponentDetailer.

 Figure 5.15 shows that the widgets from our sketch have been assigned labels and we
will now walk through the method calls in figure *_* to see how the layout constraints for
each labelled widget change.

Figure 5.15: Example layout generation sketch with added labels.

 The first method loads and applies any default layout constraints to the widgets. The
method applyDefaultHeuristics(cells) instantiates a MigHeuristics object, then
iterates through the components in the MigCells and looks up default layout constraints for
the current component. The MigHeuristics object loads a default set of layout constraints
from file and applies them to a component based on the widget type.

 The next stage is to define any size groups that may exist in the user’s sketch. A size
group is a group of widgets that are bound to the same size. When a user resizes a window, if
two widgets have the same size group, they will maintain the same size. Using size groups
gives a more professional look to the layout and the calculateSizeGroups
(cells.getComponents()) method automatically finds these size groups. The algorithm
for finding size groups is defined in figure 5.16. The algorithm finds components of
approximately the same size and assigns them to the same size group.

a b

c

Automated Layout Generation 75

proc void calculateSizeGroups(Set<MigComponent>components) {
 Set<MigComponent> alreadySeen;
 for(MigComponent first : components) {
 if(alreadySeen.contains(first)) continue;

 Set<MigComponent> sizeGroup;
 for(MigComponent second : components) {
 if(first.equals(second)) continue;

 double widthRatio = max(first.getWidth(), second.getWidth())/
 min(first.getWidth(), second.getWidth());
 double heightRatio = max(first.getHeight(), second.getHeight())/
 min(first.getHeight(), second.getHeight());

 if(widthRatio <= TOLERANCE && heightRatio <= TOLERANCE) {
 sizeGroup.add(second);
 }
 }
 if(! sizeGroup.isEmpty()) {
 sizeGroup.add(first);
 assignUniqueSizeGroup(sizeGroup);
 }
 }
}

Figure 5.16: Algorithm for finding size groups.

 The next step in the component detailer indentifies widgets that span multiple rows
or columns. We check to see if the right or bottom edge of the component lies outside the
right or bottom or edge of the column or row. If it does, then the component spans into the
next column or row respectively.

 The final step of the detailer is to find the component’s alignment within the cell. This
is a straightforward process, since we know the bounds of the cell as well as the bounds and
location of the component. The layout generation is now complete and the end result can be
seen back in figure 5.9. Table 5.1 below shows the layout constraints for each of our
components after each stage of detailing.

Label Initial Heuristics Size groups Spanning Alignments

a cell 0 0 cell 0 0 cell 0 0 cell 0 0 cell 0 0

b cell 1 0 cell 1 0, growx cell 1 0, growx cell 1 0, growx cell 1 0, growx

c cell 0 1 cell 0 1 cell 0 1 cell 0 1 cell 0 1, align right

Table 5.1: Layout constraints for labelled widgets after each component detailing stage.

5.3 Summary of Automated Layout Generation

This chapter has detailed our implementation of an automated layout generator specifically
for the MigLayout layout manager. We use combined components and a two-pass algorithm
to infer the number of columns and rows required by the layout. Additionally, we have
implemented a component detailer to infer component level layout constraints.

Code Generation 76

6 CODE GENERATION

Code generation is the final stage of converting a sketch to a GUI. We define an abstract code
generator that gives us the ability to generate code in multiple languages and toolkits. Our
design is based on a combination of visitor pattern and code templates. This combination
gives us the flexibility to generate code for multiple toolkits and languages.

6.1 Modelling the GUI

Our GUI model uses the same paradigm as the Swing toolkit. We model the GUI as a
container with children. A possible child is a widget component or another container, giving
us a composition hierarchy. Figure 6.1 shows the UML diagram representing our model.

Figure 6.1: UML of our GUI model.

Here is a description of the interfaces and classes from figure 6.1:

• IModel – This is the interface to our GUI model. The code generator uses it to access
the elements from the model.

• Model – This is our implementation of the IModel interface representing our GUI
model.

• IModelElement – These are the elements of our GUI model. They are available to
the code generator implementations and provide access to the JComponent and
ElementLayout objects of the model elements.

• ContainerElement – An implementation of the IModelElement interface that
represents a container in the GUI. Possible containers include tabbed panes and
panels. The container elements can be nested to form deep hierarchies mirroring the
Swing component paradigm.

• ComponentElement – An implementation of the IModelElement interface that
represents a GUI component that is not a container. This can be anything from a
button to a table.

• IElementLayout – IElementLayout is the interface to a component’s layout
model. It allows the code generator to retrieve layout constraints for the component.

<<interface>>

IModelElement

ContainerElement ComponentElement

<<interface>>

IModel
Model

1.*

1.*

<<interface>>

IElementLayout

JComponent

ElementLayout1

1

Code Generation 77

• ElementLayout – This is our implementation of the IElementLayout interface. It
models the layout of our component. It also contains getter and setter methods for
the possible layout constraints. These methods are used in the GUI customization
stage so the user can fine-tune the layout of a component.

• JComponent – The JComponent is a reference to the actual instance of the widget
we are modelling. Instead of directly modelling each GUI widget accurately, we use
an instance of the Swing widget and make any customizations to the object instance
itself. When the code generator accesses the IModelElement, it reads property
values straight from the JComponent instance to generate property change code.

We do not directly keep a model of the widgets the user has customized. Instead we borrow
from the idea of freeze-dried objects (see section 2.2.2 for details). When a user is customizing
the GUI, we do not keep track of the properties that have been changed. In the customization
stage, the user is actually modifying the instantiated JComponent object representing the
widget. This means there is no need to explicitly remember these customizations. The model
element maintains a reference to the JComponent instance. When we need to generate code,
we inspect the instance to get any desired property values. This removes a large amount of
complexity from our model.

 In Swing, the JComponent doesn’t keep track of its layout constraints. We directly
model a component’s layout using the IElementLayout interface. In the customization
stage we model the possible layout constraints in the ElementLayout object of the
IModelElement. The code generators visit these objects to retrieve the layout constraints for
a widget.

6.2 Abstract Code Generation

Our code generator uses a combination of code templates and the visitor pattern to give us a
highly adaptable code generator. The code generation screen asks the user for a class name,
file location and target toolkit for the code generation. When the user clicks the ‘Generate
Code’ button, the code template is loaded and the correct code generator implementation is
initialized. The code generator visits the nodes from the model and injects code into the code
template.

Code Templates

We use code templates to simplify code generation and allow user customization of the code.
The code templates contain boilerplate code and keywords for code insertion. When the code
generator is initialized, the chosen code template is loaded. The keywords in the template are
replaced by GUI code from the code generator. Using this technique, the user can supply
their own code templates or just use the standard templates supplied with the application.
Figure 6.2 shows a simplified flowchart of the code generation system.

Code Generation 78

Figure 6.2: Flowchart of code generation process.

The code template contains the following keywords:

• $classname – The $classname keyword represents the class name entered by the
user in the code generation screen. It is injected as the name of the class in the
template.

• $imports – The $imports keyword is replaced by the imports necessary for the
GUI to compile and run.

• $guicode – The $guicode keyword is replaced by all the widget component code.
This includes initialization, property change and layout code for each component.

To see the supplied Swing code template, see the appendix section 11.1.

Multiple Visitors

The code required to define a GUI component can be split into four distinctive sections. These
include the necessary imports for the component to be used, the code to initialize the
component, the code to change the component properties and the layout code. We implement
four types of visitor. Each visitor is responsible for generating a single section of the code for
every widget. The UML diagram in figure 6.3 shows the classes from our code generator.

Figure 6.3: UML diagram showing the code generator system.

Code

Template

Output

Code
Inject GUI code

Visit nodes in model

Replace $imports keyword

Replace $guicode keyword

Replace $classname keyword

CodeGenerator

<<interface>>

IModel

<<interface>>

IGenerateCode

<<interface>>

IVisitable

<<interface>>

IInitVisitor

<<interface>>

IImportVisitor

<<interface>>

IPropChangeVisitor

<<interface>>

ILayoutVisitor

11

SwingGenerateCode

SwingInitGenerator

SwingImportGenerator

SwingPropChangeGenerator

SwingLayoutGenerator

<<interface>>

IModelElement

Code Generation 79

The elements in figure 6.3 provide the following functionality:

• CodeGenerator – This is the class that controls the code generation. It is
instantiated with an IGenerateCode implementation and an IModel
implementation. A code template is loaded and the CodeGenerator uses both the
IModel and IGenerateCode implementations to generate the code and inject it into
the code template.

• IGenerateCode – The IGenerateCode interface is the interface implemented by
the concrete code generators. It provides methods for accessing the visitor
implementations to generate toolkit specific code.

• IImportVisitor – This is the visitor for generating imports. It visits each node in
the model gathering the necessary imports for the GUI components. It contains a
visit method for accessing the nodes in the model.

• IInitVisitor – This is the visitor for generating component initialization code. It
contains a visit method for accessing the nodes in the model.

• IPropChangeVisitor – This is the visitor for generating any property change code
a GUI component might require. It contains a visit method for accessing the nodes
in the model.

• ILayoutVisitor – This is the visitor for generating layout code for a GUI
component. It contains a visit method for accessing the nodes in the model.

• IVisitable – The IVisitable interface defines accept methods for each of the
visitors. This allows the four visitors to visit each model element in the code
generation stage.

• IModel – This is the same interface as defined in figure 6.1.
• IModelElement – This is the same interface as defined in figure 6.1, but it now

extends the IVisitable interface. This makes the nodes in our model visitable so
that we can generate code from them.

 SwingGenerateCode, SwingImportGenerator, SwingInitGenerator,
SwingPropChangeGenerator and SwingLayoutGenerator are our implementations of
the code generator interfaces for the Swing toolkit. We embed the visitors as inner classes to
keep the code generator implementation in a single file. Using multiple visitors and
separating them into interfaces gives us low coupling and high cohesion. We achieve low
coupling because the individual visitors are completely independent and we achieve high
cohesion by separating the responsibilities of code generation to different classes.

 Separating the visitors also helps produce clean code. Every stage produces a
separate block of code that can be injected into the code template. This gives us a very clear
code structure as a result. Figure 6.5 shows an example of generated code. Figure 6.4 shows
the GUI that the code represents.

Figure 6.4: GUI window represented by the code found in Figure 6.5.

Code Generation 80

import net.miginfocom.swing.MigLayout;
import javax.swing.JPanel;
import javax.swing.JFrame;
import javax.swing.SwingUtilities;
import java.awt.Dimension;
import javax.swing.JButton;
import javax.swing.JTextField;
import javax.swing.JLabel;

public class Sketchi extends JFrame
{
 public Sketchi()
 {
 JPanel p = createGUI();
 this.setContentPane(p);
 this.pack();
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
 this.setLocationRelativeTo(null);
 this.setVisible(true);
 }

 /**
 * Creates the GUI controls and adds the layout code
 */
 private JPanel createGUI()
 {
 // Declarations
 JPanel mainPanel = new JPanel(new MigLayout("fill"));
 JLabel firstName = new JLabel("User Name:");
 JTextField txtFName = new JTextField("");
 JLabel lastName = new JLabel("Password:");
 JTextField txtLName = new JTextField("");
 JButton btnOK = new JButton("OK");
 JButton btnCancel = new JButton("Cancel");

 // Property Changes
 mainPanel.setPreferredSize(new Dimension(352, 120));

 // Layout code
 mainPanel.add(firstName, "cell 0 0");
 mainPanel.add(txtFName, "cell 1 0,sizegroup gr1,growx");
 mainPanel.add(lastName, "cell 0 1,align right");
 mainPanel.add(txtLName, "cell 1 1,align right,sizegroup gr1,growx");
 mainPanel.add(btnOK, "cell 1 2,align right,sizegroup gr2");
 mainPanel.add(btnCancel, "cell 1 2,sizegroup gr2");

 return mainPanel;
 }

 /**
 * Standard static void main that creates the JFrame
 *
 * @param args
 */
 public static void main(String args[])
 {
 SwingUtilities.invokeLater(new Runnable()
 {
 @Override
 public void run()
 {
 JFrame mainFrame = new Sketchi();
 mainFrame.setVisible(true);
 }
 });
 }
}

Figure 6.5: Example of generated code produced by our Swing code generator.

Code Generation 81

We give a description of the code in Figure 6.5 below:

• main method – Uses SwingUtilities to create the GUI on the Swing GUI thread.
• Sketchi() constructor – Creates a new panel using the createGUI() method. It

sets the returned panel as the content pane for the window and sets up the window
to be displayed.

• createGUI() – This is the bulk of the generated code. We can see it is split into
three distinct blocks of code with comments. The first segment represents the
initialization code. We the constructor to set default properties accepted by the
component’s constructor. This reduces the size of the property change code by
combining two functionalities into a single line. The next block of code is the
property change block. This sets any customised properties the user may have chosen
in the customisation stage. The final block of code is the layout code. Each widget in
the GUI only requires a single line of layout code.

6.3 Summary of Code Generation

This chapter has outlined an abstract code generator based on the visitor design pattern that
can be used for generating code into multiple toolkits and languages. Specifically, we use
four types of visitor and delegate different parts of the code generation to each. Furthermore,
we have provided an implementation for the Java Swing toolkit that produces clean, concise
code.

Experimental Design 82

7 EXPERIMENTAL DESIGN

This chapter details how Sketchi was tested from a usability and software engineering
perspective. The results and analysis of these tests can be found in the proceeding chapter.

In the tests outlined below we only use five users unless otherwise stated. This is
firstly due to time constraints and secondly because “the best results come from testing no
more than five users”(Nielson, Why You Only Need to Test With 5 Users 2000). Nielsen states
that after a single test with 5 users, 85% of usability problems will be found.

All tests were carried out using an early 2008 Apple Macbook Pro with a 2.4GHz
Intel Core 2 Duo and 4GB RAM. It was running OS X 10.5.7 with Java SE Runtime
Environment 1.6.0_07. For user input, we connected a Wacom Cintiq 15x touchscreen
monitor.

7.1 Input Recognition Rates

The most important part of turning a sketch into a GUI is the input classification. If the
application cannot correctly classify the widgets, it will generate a GUI an incorrect GUI. To
test the accuracy of the input classifier, we measured the recognition rates for the GUI
widgets. We asked the users to draw each widget 10 times. We recorded the position in the
suggestion list of the correct classification. Appearing at position 1 in the list means the
widget was the first suggestion and hence correctly classified. We want to test four different
modes of operation for the input classifier:

• Single Feature enabled – This testing was carried out after the initial receptor feature
was implemented (see section 4.2.2 for the receptor implementation details). The user
was asked to carry out the test with only the receptor feature enabled in the classifier.

• All Features enabled – This test involved using all the features as described in section
4.2.5. The user was instructed to carry out the same test, but this time all features
were turned on.

• Single Feature enabled with learning – The previous two tests used a default case base
with extra instances from the user. This test involved the user drawing each widget
five times that were added as cases to the classifier. The user then carried out the
standard test of drawing each widget ten times with only the receptor feature turned
on.

• All features enabled with learning – This test is as above but with all features turned on
as well as five instances of learning per widget added to the case base.

To perform the tests, we performed the following steps:

• Select test users – A random selection of five users were chosen to test the software.
All users had programming experience but their level of experience with GUI
creation ranged from complete novice to expert. This concentrates our testing on our
target demographic of programmers that don’t necessarily have GUI building
experience.

Experimental Design 83

• Give the user the widget table – The users were given table 4.1 that shows the widget
representations.

• Give instructions to the users – The users were given instructions on how to carry out
the test. In the case where learning was not undertaken, the user was simply asked to
draw whatever object they liked so long as all widgets were drawn a total of ten
times. In the case of learning, the user was asked to draw each widget five times in
turn, so the learning could be applied. After which they were free to draw the
widgets in whatever way they wished.

• Analyse results – The user drawn images with their widget representations were
recorded and analysed after the tests so the user was unaware of the successes or
failures of the drawing.

We are interested in the ‘top hit’ and ‘top three hit’ percentages. The ‘top hit’ percentage is
the percentage of times the correct classification appears at the top of the suggestion list. The
‘top three hit’ percentage is the number of times the correct classification appears in the top
three items of the suggestion list. We are mainly concerned with the ‘top hit’ percentage as it
represents the recognition rate with no user intervention. We use the ‘top three hit’
percentage as a metric to further compare the four different tests. The input classifier can be
considered usable if the top hit percentage approaches 80%. This would result in only 1 in 5
widgets having to be corrected by the user.

 We also use this testing to accumulate test images to compare the performance of
different feature weights (outlined in section 8.1). We use the collected test images in a
testbed (see section 4.2.5) to compare the recognition rates using the manually tweaked
weights against the weights optimised through hill climbing. The results for all of these tests
can be found in section 8.1.

7.2 Layout Generation Flexibility

Here we are testing the flexibility of the layout generator. We want to test the layout
generator’s ability to generate a variety of layouts. We will select a set of interfaces for our
test users to draw and see if the correct layouts are generated. We will use table 7.1 as a
template for our results.

Attempted
interface

Is there a correctly
generated layout?

Steps needed to correct layout
in Sketchi?

Table 7.1: Blank results table for layout generation flexibility test.

We will show the interface that was being drawn along the user’s sketch, whether the
generated layout is correct and in the case the layout is incorrect, the steps required to
achieve the correct layout in the customization stage. The layout generator can be considered
flexible if it can generate all the examples presented. The results of this test can be found in
section 8.2.

7.3 Quality of Code Generation

This test is concerned with the quality of the code generation. The quality of code is a
qualitative measure as it is an opinion. We will use Sketchi to generate code for a selection of

Experimental Design 84

interfaces. We will also use the NetBeans GUI builder to create the same interfaces. We will
then compare the size of the code over all the interfaces. We will also ask a collection of
twenty programmers which code samples they feel is more readable without labelling the
samples. The code generated can be considered of high quality if the panel of programmers
agree that it is more readable in the majority of cases. The results of this test can be found in
section 8.3.

7.4 Project Brief Assignment

The project brief assignment is a specific type of usability test. We test the system with three
different users whose Swing GUI creation experiences are novice, intermediate and
professional respectively. We use three users as it is easy to define their levels of experience
into three categories. The users are given a GUI to create as a design brief and are asked to
create it using a variety of techniques. We ask the users to create the GUI by manually coding,
using NetBeans and using Sketchi. We record the time taken to arrive at the finished product
and compare the quality of the code produced as detailed in the preceding section. The test
can be considered a success if Sketchi can reduce the time taken to produce a GUI compared
to manually coding whilst maintaining high quality of code generated. The results for this
test can be found in section 8.4.

7.5 Usability Testing

Ensuring Sketchi has high usability is crucial for it to be successful. If the user cannot quickly
and easily create their GUI using Sketchi then it holds no advantages over other methods of
GUI building. We perform end-user testing using a variety of techniques described in 7.5.1
and carry out a more technical assessment using Nielson’s usability heuristics as outlined in
7.5.2.

7.5.1 End-user Testing

In our end-user testing, the users were asked to use Sketchi to create the code of a simple
GUI, which can found in figure 7.2. The users were given Table 4.1 showing the widget
representations to use and asked to use the Sketchi to generate the GUI. This ensures that we
concentrate on the usability of the Sketchi interface rather than any intricacies of the input
classification system. Screen-capture softwarei was used to record the users during the tests,
so the results could be analysed afterwards. We also observed the users to see where they
struggled with particular elements of the interface.

We recorded the time taken to complete the task and number of user clicks during
the test. This does not include the clicks during the drawing of the interface as this is
influenced by the user’s drawing style and would possibly skew the results. Removing these
clicks from our results hones the testing on usability of the application rather than the user’s
drawing style. To evaluate the user’s experience with the software, we use the following two
methods:

i The screen-capture software used was iShowU HD. There website can be found at
http://store.shinywhitebox.com/ishowuhd/main.html.

Experimental Design 85

• Questionnaire – The standard test performed in usability testing is to give the users a
questionnaire. The users were questioned about what extent they agreed or disagreed
with statements regarding the system. When designing a questionnaire, it is
important not to lead the users to a particular answer. This will introduce bias to the
results. To overcome this, half of the statements in the questionnaire were positively
phrased and half were negatively phrased. When designing the scale for the options
the user can choose, we ensure that we have an equal number of positive and
negative options. This helps remove possible acquiescence biasi and allows us to use
a Likert scale, which can be analysed in the results. To see the questionnaire, see
appendix 11.2.

• Word List – David Travis from User Focusii says, “Experience shows that participants
are reluctant to be critical of a system, no matter how difficult they found the tasks”.
The word list technique(Travis 2008) is an adaption of the ‘Product Reaction Card’
test developed by Microsoft researchers as part of the Microsoft Desirability
Toolkit(Benedek and Miner 2002). It is used to gauge user satisfaction whilst
minimizing the acquiescence bias. The word list technique involves giving your users
a large list, typically over 100, of adjectives to describe your system. They contain an
equal number of positive and negative adjectives so not to lead the user on. They are
also randomized for each user to remove order bias. The user selects as many
adjectives as they wish that they felt apply to the interface. They are then asked to
select the five words that best describe their experience with the system. These words
are then used in a post-test guided interview with the user. We use these adjectives to
direct our questions and find out why the users felt this way about the system. Figure
7.1 shows one of the randomized word lists given to a user.

Simple Responsive Familiar Complex Too technical
Easy to use Intuitive Poor quality Credible Entertaining
Time-consuming Stimulating Misleading Engaging Secure
Consistent Dated Slow Comprehensive Attractive
Empowering Approachable Desirable Reliable Incomprehensible
Difficult New Relevant Usable Bright
Friendly Non-standard Frustrating Insecure Inconsistent
Simplistic Awkward Busy Motivating Cluttered
Overwhelming Business-like Unpredictable System-oriented Illogical
Fast Organised Old Straightforward Confusing
Convenient Boring Counter-intuitive Unattractive Fresh
Irrelevant Contradictory Powerful Unrefined Appealing
Unconventional Innovative Ordinary Intimidating Compelling
Patronising Understandable Exciting Satisfying Trustworthy
Flexible Meaningful Annoying Inadequate Predictable
Effortless Accessible Rigid Advanced Obscure
Distracting Vague Impressive Ineffective Effective
Time-saving Sophisticated Dull Energetic Fun
Controllable Hard to Use High quality Professional Clear
Stressful Stable Cutting edge Efficient Expected
Faulty Ambiguous Creative Useful Clean

Figure 7.1: Example word list given to users.

i Acquiescence bias is the fact that people are more likely to agree with a statement than
disagree with it - Lee J Cronbach, “Response sets and test validity,” Educational and
Psychological Measurements 6, 1946: 475-494.
ii User Focus is a London-based usability consulting and usability training company. Their
website can be found at http://www.userfocus.co.uk/.

Experimental Design 86

The results of these two tests will be used to improve and refine the interface after which
another round of usability testing can be carried out. The results of the end-user testing can
be found in section 8.5.1.

Figure 7.2: Simple user interface that the users were asked to create in the end-user testing.

7.5.2 Nielsen’s Usability Heuristics

Another measure of usability is how well a system adheres to Nielsen’s Ten Usability
Heuristicsi(Nielsen 1994). Sketchi will be assessed in accordance with each of these heuristics
to ensure that are met. The results of this test can be found in section 8.5.2.

7.6 Performance Testing

It is important that Sketchi is fast and responsive. In such a user centric application,
unnecessary waiting for calculations can frustrate users and degrade the quality of the
software. To acquire accurate performance measurements, we used the JProfilerii profiling
software. The tests we made to measure the performance of Sketchi, were as follows:

Receptor Generation

In section 3.2.2, two methods for generating receptors were proposed. To compare the two
methods, we record the time taken to generate a range of sets of receptors. We then use the
test images, acquired from our input recognition rate testing, to compare the quality of the
receptor sets at detecting the test images.

Widget Classification

The time taken to classify a user sketch of a widget is an important measure for us to find.
Performance bottlenecks in the classification widget will quickly multiply when the user
draws multiple widgets in a GUI design. We will measure the time taken to classify sketches
containing different numbers of points. For example, an unfilled square of dimension 10 will
contain 36 drawn pixels. We will input widgets with varying numbers of drawn pixels and

i Jakob Nielsen is a usability engineering expert and has written many papers in the area of
usability. His website can be found at http://www.useit.com/.
ii JProfiler is a GUI based profiler for finding performance bottlenecks, pin down memory
leaks and resolve threading issues. More information can be at http://www.ej-
technologies.com/products/jprofiler/overview.html.

Experimental Design 87

measure the time taken to suggest a classification. Ideally we hope to achieve a classification
in under 0.1 seconds. This is the limit for having the user feel that the system is reacting
instantaneously (Miller 1968) (Card, Robertson and Mackinlay 1991).

Layout Generation

The layout generation performance test times how long it takes a layout to be generated for a
variety of inputs. We measure the time taken as we increase the number of widgets that need
to be laid out.

Code Generation

To test the performance of the code generation, we need to time how long it takes to generate
code for various size input models. We will use input models containing of a range of
numbers of widgets and record the time taken to generate the code for our Swing
implementation.

The results of all performance tests can be found in section 8.6.

7.7 Robustness & Stability

7.7.1 Monkey Testing

A good way of testing any software system is to use monkey testing. This involves subjecting
the software system to random input wherever input is possible and observing the results. To
ensure the system is robust, we check that random input does not cause the system to crash
and that it is handled in an appropriate manner. Table 7.2 shows the test plan. The results of
the monkey testing can be found in section 8.7.1.

Test No. Test

1 Draw random input onto the drawing pane in Free Design stage
2 Make random selections that do not necessarily contain any part of a drawn

widget in the Widget Detection stage
3 Entering a file name that doesn’t exist to load a sketch
4 Running with no preference file present
5 Running with no resource files present
6 Classifying no drawing
7 Generating an interface with no widgets
8 Generating code with no widgets
9 Entering non-numerical data in a field expecting only numbers

10 Entering large numbers in number fields
11 Entering random text into the Class Name field of the code generator
12 Entering a non existent folder in the target folder of the code generator
13 Attempt to generate code when the code template is missing

Table 7.2: Monkey testing test plan.

Experimental Design 88

7.7.2 Stress Testing

We will also run very specific tests in an attempt to put the system under excess load. We will
perform the following tests:

• Load large images into Sketchi. Users can load bitmap images into the drawing pane
of Sketchi. We will attempt to overload the system by loading abnormally large
bitmaps.

• Drawing a high number of widgets (50+) in the Free Design stage of Sketchi will
result in a stress test of the widget detector and classifier.

• Generating a layout with a large number of widgets will result in a stress test of the
layout generator.

• Generating code for an interface that contains a large number of widgets will stress
test the code generator. We will attempt to overload the code generator by passing it
an interface with over 50 widgets.

The results of the stress testing can be found in section 8.7.2.

Results & Analysis 89

8 RESULTS & ANALYSIS

This chapter details and explains the results from the experiments described in the previous
chapter.

8.1 Input Recognition Rates

The recognition rates results showed increases for every user as more advanced modes of
operation were enabled. Figure 8.1 shows the top hit percentagesi for our five test users
across all four modes of operation.

We can see that using the extra heuristics gives an improvement in the recognition rates for
all users. Whilst the recognition rates are not high enough using only the single feature or all
features, the results show that adding a small number of user-specific training examples to
the case base improves the recognition rates dramatically. When all the features are enabled,
every user was able to achieve a recognition rate of 95% or more.

 Figure 8.2 shows the top three percentages for our five test users across all four
modes of operation. The results show that with no learning the correct classification is placed
in the top three suggestions over 88% of the time. As learning examples are added to the case
base and all features are enabled, this percentage reaches 100%. This is a useful fact for
designing the suggestion list in the Sketchi application. If it can be assumed that the correct

i Top hit percentage is the percentage of times the correct classification was given as the top
suggestion to the user.

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

,-./01"2134561" 700"21345618" ,-./01"2134561"9":136.-./" 700"21345618"9":136.-./"

!
"
#$
"
%
&'
(
"
)*
+)
,*
-
).
/&
0)

1*2")*+)3-"#'4*%)

;816"3"

;816"<"

;816"="

;816">"

;816"1"

Figure 8.1: The recognition rates for the widget classifier show that, with a small amount of learning, every user
can achieve a recognition rate approaching 100%.

Results & Analysis 90

classification will appear in the top three suggestions, we only need to display these
suggestions to the user in the classification stage. This will reduce unnecessary information
onscreen and keep the interface clean.

Once recognition rate testing was completed we used the images recorded from our users to
test the feature weights. Figure 8.3 shows the results of the tests for our manually tweaked
weights and weights generated through our hill climbing algorithm (see section 4.2.2).

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

,-./01"2134561" 700"21345618" ,-./01"2134561"9":136.-./" 700"21345618"9":136.-./"

!
"
#$
"
%
&'
(
"
)*
+)
,*
-
),
.
#"
"
)/
0&
1)

2*3")*+)4-"#'5*%)

;816"3"

;816"<"

;816"="

;816">"

;816"1"

Figure 8.2: The top three hit percentage from recognition rate testing shows we can almost guarantee a top three
hit for every user.

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

,-./"0123" -./"-4566"0123"

!
"
#$
%
&
'(
$
&
)!
*
+"
),
-
.)

789:8;"<61=423"

01;;">;1?@19="<61=423"

Figure 8.3: Manually tweaked weights performed better than the weights obtained through our hill climbing
algorithm.

Results & Analysis 91

There are two possible causes for the poor performance of the hill climbing compared to the
manually adjusted weights:

• Overfitting data – A common problem with machine learning is the possibility of
overfitting the training data. Overfitting can occur when learning is undertaken for
too long or when the examples in the training set rarely appear in the testing set. To
overcome the potential overfitting problem we can shorten the length of our learning
process or acquire more example images to learn with. These are suggested in the
future work in section 9.2.

• Poor algorithm – As described in 4.2.2, adjusting the weights to achieve good results
requires intuition. The algorithm outlined in section 4.2.2 is not very advanced and is
not sophisticated in how it adjusts its weights. It uses the intuition that if a widget is
misclassified then lowering its weights will move it nearer to the top of the
suggestion list. Whilst this is true, it does not guarantee an improvement in the global
solution only an improvement in the local solution. A better solution may be to
increase the weight of the misclassification. This will move the misclassification
down the suggestion list, leaving the correct classification as the top of the list. A
more advanced technique can be used to achieve better weights and we leave this to
the future work in section 9.2.

8.2 Layout Generation Flexibility

In the layout generation flexibility test we take a series of example interfaces and attempt to
generate them from user drawings of the respective interface. The interfaces we are
attempting to generate with their counterpart user drawing are displayed in figures 8.4 to
8.13.

Figure 8.4: Rendered address book window for layout generation testing.

Figure 8.5: User drawn address book window for layout generation testing.

Results & Analysis 92

Figure 8.6: Rendered search window for layout generation testing.

Figure 8.7: User drawn search window for layout generation.

Figure 8.8: Rendered login window for layout generation testing.

Figure 8.9: User drawn login window for layout generation testing.

Results & Analysis 93

Figure 8.10: Rendered user details window for layout generation testing.

Figure 8.11: User drawn user details window for layout generation testing.

Figure 8.12: Rendered save dialog for layout generation testing.

Figure 8.13: User drawn save dialog for layout generation testing.

Results & Analysis 94

Table 8.1 shows the results of attempting to generate these layouts.

Attempted
interface

Is there a correctly
generated layout?

Steps needed to correct layout in
Sketchi?

Figure 8.4 No. There is a similar layout
that suffers from inconsistent
gaps.

To correct the layout, the user must
select the ‘push gap’ option in the
layout editor.

Figure 8.6 Yes. N/A

Figure 8.8 Yes. N/A

Figure 8.10 Yes. N/A

Figure 8.12 Yes. N/A

Table 8.1: Results of layout generation flexibility testing how the majority of interfaces could be generated with
no layout alterations by the user.

The results show that Sketchi is able to produce a variety of layouts with minimal user
interaction. Figure 8.4 is the interface from the layout manager challenge described in section
2.4.2. This is regarded as the benchmark for how powerful a layout manager is and is
expected to be undertaken with manual coding. Figure 8.14 shows the solution generated by
Sketchi.

Figure 8.14: Address book generated by Sketchi. Shows the unwanted gap artefact in the layout.

We can see that there is unwanted space above and below the first row. The layout
generation code for the top row can be seen in figure 8.15.

mainPanel.add(list, "cell 0 0 1 8, growy");
mainPanel.add(lstName, "cell 1 0,align right,");
mainPanel.add(lname, "cell 2 0,growx,");
mainPanel.add(fstName, "cell 3 0,");
mainPanel.add(fname, "cell 3 0,growx,");

Figure 8.15: Generated layout code for address book example.

The list is being added to the top row and is being told to grow in the vertical direction. Since
the list appears in the first row, it is trying to expand the row, which contains other elements.
To overcome this problem we need to add a ‘wrap push’ layout constraint to an item in the
bottom row. This is labelled in the layout editor of the customization stage as ‘push gap’. The
‘wrap push’ constraint pushes the gap below the row of the component it is added to. This
will resolve the gap issue. Unfortunately the current layout manager implementation cannot
detect this type of issue. The enhancement is left for future work and is detailed in section 9.2.

Results & Analysis 95

8.3 Quality of Code Generation

To test the quality of the code generation, we created several interfaces using Sketchi and
NetBeans. The code produced by both tools was analysed for code size and layout code size.
Figure 8.16 compares the size of code produced by Sketchi and NetBeans as more widgets are
added to the interface. To ensure a fair a comparison was made, we removed any blank lines,
comments and styled the code identically in terms of brackets. This means the code left was
just the application code.

The results show that Sketchi produces much less code than NetBeans. It also shows
that as the number of widgets in the interface increases, the size of the generated code
increases as expected. This increase occurs at a constant rate and is contributed to the
following:

• Import code – At most, one extra line of code will be required if the widget’s class has
not already been imported by another declaration.

• Initialization code – One more line of initialization code will be required for any
widget added to the interface.

• Property change code – The property change code could contribute zero or more lines
of code to the generated code depending on how much it is customized by the user in
the customization stage of Sketchi.

• Layout code – This is the main area where Sketchi will generate less code than
NetBeans. An extra widget will require exactly one extra line of layout code whereas
this will likely be multiple lines of code in NetBeans. This is due to the verbose nature
of the GroupLayout layout manager NetBeans uses in its GUI builder.

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)!!"

!" #!" $!" %!" &!" '!" (!"

!"
#
$
%&
'
(&
)
'
*
$
&

+,-.$/&'(&0"*1$2%&"#&"#2$/(34$&

*+,-./0"

1,-2,345"

Figure 8.16: Graph showing the total code generated by NetBeans and Sketchi as more widgets are added to the
interface.

Results & Analysis 96

Figure 8.17 compares the size of code generated without the layout code included in the total.
This still shows the Sketchi generated code increasing at a lower rate than NetBeans. To
explain the unchanged rate of NetBeans we inspect the generated code. NetBeans declares
every widget as a private field. It also uses separate lines of code to initialize these fields and
declares properties such as the text for a widget in another line. In contrast, Sketchi declares
all of its widgets method local and the variables intelligently by combining property changes
into the constructor where possible.

To acquire an unbiased opinion on the quality of the code, we used a panel of
programmers. The panel members were each given an unlabelled copy of each file of
generated code. In every case, the panel was unanimous in saying Sketchi’s code was more
readable and subsequently of higher quality. This can be attributed to the verbosity of the
GroupLayout layout manager NetBeans uses (see section 2.4.2 for details on the
GroupLayout manager). Ideally, other GUI builders would be included in the test but this
was not possible due to time constraints and we leave this to the future work in section 9.2.

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

!" $!" %!" &!" '!" #!" (!"

!"
#
$
%&
'
(&
)
'
*
$
&

+,-.$/&'(&0"*1$2%&"#&"#2$/(34$&

)*+,-./"

0+,1+234"

Figure 8.17: Graph showing the code generated by NetBeans and Sketchi without the layout code included in the
total.

Results & Analysis 97

8.4 Project Brief Assignment

The project brief assignment was undertaken with three users whose Swing knowledge can
be considered as novice, intermediate and professional respectively. Figure 8.18 shows a
comparison of the times taken to complete the exercise using the three techniques as
described in section 7.4.

Figure 8.18 shows that using either GUI builder significantly speeds up the process of
producing the design compared to manual coding. It is also interesting to see that using a
GUI builder reduces the time differences between varying expertise levels. In the case of the
novice user, using a GUI building tool showed at least a 7 times speed up in the time taken to
complete the task. Comparing the times for Sketchi and NetBeans reveals a negligible
difference for the professional and intermediate users with NetBeans edging out Sketchi in
both cases. This can be explained by both users’ prior experience with the NetBeans tool.
However, the novice user was able to produce the desired GUI 40% faster with Sketchi than
with NetBeans. When observing the user complete the task with NetBeans, it was noticed that
the user was initially confused by the interface and found the necessary tools difficult to find.
Once the user has familiarized themselves with GUI building tools, the time to completion
was comparable to Sketchi. This shows that the Sketchi interface is more intuitive and simpler
to use than that of NetBeans.

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

()*+),"-./0*1" 23453)*6" 7834-90"

!
"#

$
%&
'
(
$
)
%&
*
%'
+,
"$
-
$
%+
*
.
$
%/
#
")
01
%

234%56"7.")8%&$+,)"96$%60$.%

:;.<3660.*),"

=*43;>3/0)43"

2.?0-3"

Figure 8.18: Using either Sketchi or NetBeans significantly reduces the time to create a GUI.

Results & Analysis 98

Figure 8.19 shows the size of the code produced by the users across all three techniques. The
code produced by both GUI tools was constant across all three users. This is to be expected,
as the code generation is deterministic so the same code will be produced for the same
interface. The results reiterate the findings from figure 8.16 that Sketchi produces significantly
less code than NetBeans for the same interface. The data shows that code generated by
Sketchi was not as concise as the manually coded equivalent.

When analysing all of the code samples produced, it was found that the biggest
differences were in the layout management code. Figure 8.20 shows a comparison of the size
of layout management code extracted from all the code samples. We can see that Sketchi
produces significantly less layout management code than both NetBeans and manually
coding. For the intermediate and novice users the generated layout code was 6 times and 7.5
times smaller than the manually coded counterparts respectively. This can be explained by
the choice of layout manager used when manually coding as well as the users’ experience.
Both the intermediate and novice users used the GridBagLayout layout manager (see section
2.4.2 for details). This requires significantly more code than MigLayout for the same user
interface. The professional user was able to produce the same number of lines of layout code
as Sketchi as the user utilised MigLayout in their manually coded solution.

 Overall the results show that using a GUI building tool significantly reduces the time
required to build a GUI. They show that the tools reduce the differences in times between the
three levels of expertise of users. The times for Sketchi and NetBeans are comparable
although for a novice user, the simple interface for Sketchi resulted in a quicker time to
complete the task. Finally, although the times are comparable, the quality of code produced
by Sketchi is far smaller in size when compared to NetBeans. This is a result of the layout
manager it is based on as well as other factors outlined in the analysis of the results of quality
of generated code in section 8.3.

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

()*+),"-./0*1" 23453)*6" 7834-90"

!"
#
$
%&
'
(&
)'
*
$
&"
#
&%
'
+,
-
'
#
&

./0&1,"+*"#2&3$)4#"5,$&,%$*&

:;.<3660.*),"

=*43;>3/0)43"

2.?0-3"

Figure 8.19: Comparison of the size of code produced by manually coding, using Sketchi and using NetBeans.

Results & Analysis 99

8.5 Usability Testing

8.5.1 End-user Testing

The user testing revealed several flaws with the Sketchi interface. The time taken to produce
the correct interface ranged from 2 minutes 18 seconds to 3 minutes 32 seconds. The number
of clicks required to complete the task ranged from 7 clicks to 18 clicks. The higher number of
clicks and the higher times correspond with the number of corrections each user had to make
at the widget detection and widget classification stage of the software. Figure 8.21 shows the
relationship between the number of corrections required by the user and the time taken to
complete the task.

Observations made during testing

We observed the users during the testing and discovered key usability flaws experienced by
the majority of our users. These problems are outlined below:

• Navigation issues – The key cause of confusion in the GUI generation process was
navigating through the stages of the system. Users felt there was not enough
instruction on how to proceed through the software. This can be contributed to the
navigation controls being found in the application toolbar. It was suggested that
these should be brought into the content pane area, possibly into a floating panel like
the toolbox. The other navigational issue was when a stage required confirmation
form the user. A notification panel is displayed to ask the user for confirmation
before proceeding to the next stage. Users were attempting to click the navigation
buttons whilst the notification panel was active which results in nothing happening.
This confused the users.

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

#!"

()*+),"-./0*1" 23453)*6" 7834-90"

!"
#
$
%&
'
(&
)*
+
'
,
-&
.'
/
$
&"
#
&%
'
),
0
'
#
&

123&4,")/"#5&-$.6#"7,$&,%$/&

:;.<3660.*),"

=*43;>3/0)43"

2.?0-3"

Figure 8.20: Comparison of the layout code produced across all code examples in the project brief test shows
Sketchi significantly reduces the amount of layout code when compared to both NetBeans and manual coding.

Results & Analysis 100

• Toolbox usefulness – The toolbox displays information and tools for the current stage.
Users tended not to notice its importance and hence had trouble using the software.
After the users realised the toolbox was displaying useful information they showed
few further issues. The importance of the toolbox needs to be made more obvious to
the users perhaps through subtle animations to draw the users attention.

• Reclassifying widgets – The users struggled to understand how to change a widget
classification. This is due to a lack of instructions in the toolbox for the classification
stage. Once the users understood how to change a classification, some could not find
the classification on the panel. The toolbox displays the top six classifications as radio
buttons in the window and displays the others in a combo box to maintain a clean
interface. Unfortunately, users did not understand the other classifications could be
found in the combo box. To resolve this, the combo box needs to be labelled.

• Interaction issues in the customization stage – Users did not understand immediately
how to use the customization stage of Sketchi. This was caused by a lack of
instructions in the toolbox. Multiple users commented on an annoyance they found
with having to perform multiple clicks in order to change the properties of a widget.
The users suggested that when a widget was clicked, the default field in the property
editor should be selected to reduce the need for having to click on it.

!"#$

!%#$

!&#$

!'#$

!(#$

!)#$

!*#$

+##$

+!#$

++#$

#$!$ +$ "$ %$ &$ '$

!
"#

$
%&
'
(
$
)
%&
*
%+
$
)
$
,'
&$
%"
)
&$
,-
'
.$
%/
01
%

2*,,$.3*)0%,$45",$6%78%&9$%50$,%

Figure 8.21: Relationship between time taken to complete the task and number of corrections required by the
user.

Results & Analysis 101

Questionnaire results

The users were asked to complete the questionnaire after they had finished their user test.
Table 8.2 shows the average Likert scale ratings for the usability questionnaire.

+/- Questions Average
Rating

+ I would use this system again 4.8
- The system was difficult to use 4.4
+ The stages were easy to navigate 4.2
- I was not in control of the system 4.4
+ The toolbox was useful and informative 3
- The toolbox got in the way and didn't provide enough

information
3.6

+ Sketchi produces comparable results to good manual coding 4.8
- I feel Sketchi is harder to use than manually coding 4.8
+ The system was fast 4.6
- The system was slow and unresponsive 5
+ Mistakes were easy to rectify 3.8
- Mistakes I made were not easy to fix and I wasn't told about them 4.4
+ I feel Sketchi is easier to use than other GUI builders 3.8
- I think that drag and drop is more intuitive than drawing on a

screen
3.4

+ I could easily tweak the layout when I wanted to 4.2
- I didn't have enough options when customizing the GUIs 4.2
+ Sketchi classified my sketch correctly 4.8
- I could not produce the GUI I wanted 4.6
+ The code generated was clean and readable 5
- The code generated was unusable in an application 4.4

Table 8.2: Average Likert scale ratings acquired from user questionnaires.

The average Likert rating for the questionnaire was 86.2 out of a possible score of 100. The
Likert rating gives an indication of the usability of a system in the context of that system.
Unfortunately it cannot be compared to other Likert ratings from other software unless the
same questionnaire is used. Nonetheless, a high Likert rating indicates that users found the
system usable in the context of the questions posed.

 Analyzing the results from the questionnaires shows that users do not necessarily
feel that sketching on a screen is more intuitive than dragging and dropping controls onto a
screen with the average rating only achieving 3.4 out of 5. This is most likely due to the user-
base used to test the system as 4 out of 5 users rated themselves intermediate to advanced
computer users. More savvy users would be more accustomed to using a mouse and the
short time they spent with the software would mean they would not have time to adapt to
using a touchscreen over a mouse.

 The other low rating is regarding the usefulness of the toolbox with a rating of 3 out
of a possible 5. This confirms the observation that users did not notice the toolbox during
their use of the tool and this should be made a priority when streamlining the interface. Other
comments made by the users reaffirmed our initial observations. An extra comment made
was regarding the breadcrumb bar that they felt should have been clickable to navigate
through the software. This should be incorporated in the next iteration of the interface.

Results & Analysis 102

Word list results

To analyse the data we use a word cloud as suggested in the study by Travis(Travis 2008).
We count up the number of occurrences of an adjective and display them in a word cloud.
The font size of each word is directly proportional to the number of occurrences of the
adjective. The most frequently selected adjectives appear the largest to help understand our
users sentiments towards the application. Any negative words can be used in the post-test
interview to understand why the users felt as they did. Figure 8.22 shows the word cloud
obtained from analysing the results.

Figure 8.22: Word cloud produced from results of the word list test. The larger the font size, the more frequently
users selected that adjective. Bracketed numbers show the frequency count.

The word cloud shows that users felt very positively about their experience with Sketchi
although two words appear that should be followed up with an interview. The one user who
used the word ‘frustrating’ highlighted the navigation issues already observed. The user was
upset with unnecessary clicking and confirmations required to achieve the correct interface.
The word ‘non-standard’ also needs to be clarified as it has both negative and positive
connotations. When asked, the user clarified that they intended the word in positive manner.
They selected ‘non-standard’ to describe the new way in which you can create GUIs with
Sketchi. They had not seen software like this before and so selected the adjective non-
standard.

 The outlined user interface suggestions are left as future work and the details can be
found in section 9.2.

Results & Analysis 103

8.5.2 Nielsen’s Usability Heuristics

Figure 8.23 shows a screen from the Sketchi user interface.

Figure 8.23: The Sketchi user interface complies with Nielsen's 10 Usability Heuristics.

We use to perform a heuristic evaluation using Nielsen’s heuristics the results of which are
given below:

• Visibility of system status – The status of the system is clearly shown at the bottom of
the main window in Figure 8.23. The user can see the current state in the blue
breadcrumb bar at the top of the content pane.

• Match between system and real world – The Sketchi content pane acts as a virtual piece
of paper for the user to draw on and the user’s sketch is instantly shown onscreen.
This mimics a real piece of paper.

• User control and freedom – All of the automated tasks carried out by Sketchi can
reversed with the back button or corrected using tools from the toolbox.

• Consistency and standards – The terminology and style of the application are kept
constant across all states of the application with white text on part transparent black
background used for notifications and the white background used for creative input
from the user.

• Error prevention – Validation occurs in every field that accepts input from the user
and consistent, relevant validation errors are displayed.

• Recognition rather than recall – Information and instructions are clearly visible to the
user in every stage of the application. All available tools are displayed to the user
without overloading the user with information.

• Flexibility and efficiency of use – The nature of the application provides an efficient way
to create GUIs with good, clean code as a final product. The architecture of the

Results & Analysis 104

application (see section 3.3.1) allows new modules to be swapped in to replace
existing modules to provide access to new functionality

• Aesthetic and minimalist design – Sketchi is designed with an aesthetically pleasing and
minimalistic design. No extra information is displayed so that vital information is not
competing for visibility in our dialogs with non-vital information.

• Help users recognise, diagnose and recover from errors – Using the notification panel, we
confirm the user is happy with their results and if not, then we provide the tools
necessary to correct the problems.

• Help and documentation – A user guide is supplied with the application and the users
are guided on how to train the system if they wish.

The heuristic evaluation carried out above suggests that the Sketchi interface was designed in
compliance with Nielsen’s Usability Heuristics. The word cloud in Figure 8.22 would suggest
that this claim is true as the majority of our users used the word ‘usable’ to describe Sketchi.

8.6 Performance Testing

The results of the four performance tests outlined in section 7.6 are discussed below.

Receptor Generation

Figure 8.24 shows a comparison of the times taken to generate various size sets of receptors
using both random receptor generation and entropy receptor generation.

It can be seen that random receptor generation takes a negligible amount of time compared to
entropy receptor generation. This is an expected result since the random technique performs
no checking of the quality of receptors. The random receptor generator can produce over
15000 receptors per second whereas the entropy-based generator can only generate
approximately 70 good receptors per second.

Figure 8.24: Receptor generation comparison. The time to generate sets of receptors using random receptor
generation is negligible when compared to entropy receptor generation.

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

(!!!"

)!!!"

!" '!" #!!" #'!" $!!" $'!" %!!" %'!" &!!" &'!" '!!"

!
"
#
$%
&
#
'(
)
#
'*
+
',
+
)
-
.
*#
'$
#
,#
-
*+
$'
/#
*'
0)

/1
'

234#'+5'$#,#-*+$'/#*'

*+,-./0"12+2-3,.-"

43+5.6"12+2-3,.-"

Results & Analysis 105

 Figure 8.25 compares the quality of the receptors generated by the two techniques
using test images acquired in the recognition rate testing.

The graph shows that the entropy-based receptor generation technique produces consistently
better results than the random receptor method. This is an expected result. The entropy
technique ensures that the generated receptor is good at distinguishing different objects and
good at maintaining the same value across different variants of the same object (see the
background section *_* for theory behind entropy technique). The entropy-based generator
ensures that the receptors are localised around the distinguishing features of the widget
drawing. The converse statement explains the performance for the random receptor
generator. As no constraints are placed on the locations of the receptor there is a chance that
the receptor is generated where it cannot distinguish between objects and therefore perform
misclassifications. Figure *_* visualises this possibility.

Figure 8.26: Random receptor problem distinguishing two objects.

On left side of figure 8.26 shows that the randomly generated receptor will not be able to
distinguish between the two objects. The right side shows the entropy-based receptor is
guaranteed to be able to distinguish the objects. Although the entropy-based method takes far
longer to generate the set of receptors, the higher accuracy is a feature that is most beneficial
in the context of our input classifier. The benefit of the increased classification performance
outweighs the detriment of the increased generation time. However, Sketchi is a user-centric
application and users will not tolerate long waiting periods. To overcome this problem we

Random Receptor Entropy Receptor

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

'!" #!!" #'!" $!!" $'!" %!!" %'!" &!!"

!
"
#$
"
%
&'
(
"
)*
+)
,*
-
).
/&
0)

1/2")*+)#"$"-&*#)0"&)

,-./012"34-4/5.0/"

65-708"34-4/5.0/"

Figure 8.25: Performance comparison between random receptor generation and entropy receptor generation.

Results & Analysis 106

generate a new set of receptors for each new user in the system. These receptors are then
persisted to the user’s preference file. When the application is launched, the user selects their
profile and receptors are instantly loaded into the application with no waiting time
experienced by the user. The receptors are not required until the widget classification stage
so, when the software is first run by a new user, we can generate the receptors in the
background without the user needing to wait.

Widget Classification

Figure 8.27 shows the average time to taken to classify a widget as the number of points in
the widget increase.

The graph shows that the classifier can classify widgets with up to 1400 points within the
desired response time of 0.1 seconds. Analysis of the test images collected in the recognition
rate testing shows the average number of points in a widget is 519 points. This means our
classifier can perform well within the desired response time.

Layout Generation

Figure 8.28 shows the layout generation performance results. The graph shows the time to
generate a layout increases at a constant rate as the number of widgets in the layout increases.
It also shows that the time taken to generate these layouts is very small. This provides an
opportunity to try more advanced techniques to generate layout that may require more time
to compute. So long as the time to generate a layout does not exceed the 0.1 seconds threshold
it will not be noticeable to the user and we may be able to produce a better layout. This is left
to future work and is detailed in section 9.2.

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

!" (!!" '!!!" '(!!" #!!!" #(!!")!!!"

!
"
#
$%
&
#
'(
)
#
'*
+
',
-%
..
/0
1
'2
)
.3
'

45)6#$'+0'7+/8*.'/8'9$%:/8&'

Figure 8.27: Average time to classify a widget as number of points in the input drawing increase. Average time
was taken across 10 runs.

Results & Analysis 107

Code Generation

Figure 8.29 shows the results of the code generation performance test. As the number of
widgets in the input model increases so does the time taken to generate the code for the
interface. This is explained by the visitor pattern used. The number of visits to each node in
the model is constant and this explains the constant rate of increase.

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

!" (" '!" '(" #!" #("

!
"
#
$%
&
#
'(
)
#
'*
+
',
#
$-
+
$)

'.
%
/
+
0
*'
%
1
%
./
23
2'
4)

25
'

60)7#$'+-'839&#*2'31'.%/+0*'

Figure 8.28: Performance graph showing the time taken to generate a layout as more widgets are added to the
input.

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

("

!" $" %!" %$" &!" &$" '!" '$"

!
"#

$
%&
'
%(
$
)
$
*+
&$
%,
'
-
$
%.
#
/0
%

12#3$*%'4%5"-($&/%")%")&$*4+,$%

Figure 8.29: Time to generate code increases at a constant rate as the number of widgets in the input model
increases.

Results & Analysis 108

8.7 Robustness & Stability

8.7.1 Monkey Testing

Table 8.3 shows the results of the monkey testing. The original test plan can be found in table
7.2.

Test No. Test Result

1 Random input was detected as an object and misclassified as expected. No
fix required.

2 Random selections in the detection screen did not lead to any crashes. No fix
required.

3 No exception was thrown when a file name did not exist, the request to load
the sketch is ignored and the user is not notified of the problem. Added
notification of the error for the user.

4 No exception is thrown when running with no preference file. A preference
file is created on application start. No fix required.

5 Exception is thrown since Sketchi cannot initialize the input classifier without
the external resources. Added notification to the user to explain the
error.

6 User is notified in the drawing pane that there is no drawing to classify. No
fix required.

7 A null pointer exception is thrown in the layout analysis stage when no
widgets are present. Exception handled and the layout analysis
returns an empty panel as expected.

8 Test case 7 was fixed before we could test this case. After test case 7 was fixed,
code for an empty window was generated as expected. No fix required.

9 Non-numerical characters cannot be entered in any fields that should not
contain non-numerical characters. An input handler checks the character
being entered and only allows numerical data. No fix required.

10 Excessively large numbers are reverted to the value before editing and a
validation message is displayed to the user. No fix required.

11 Class name is validated and validation errors are displayed to the user. No
fix required.

12 Folder names are validated and validation errors are displayed to the user.
No fix required.

13 Exception is thrown. Sketchi cannot generate code without the code template
being necessary. Added notification to the user to explain the error.

Table 8.3: Results of monkey testing.

8.7.2 Stress Testing

The subsequent sections detail the results of the stress testing.

Loading of large images

Sketchi is able to handle large images with no degradation of performance. This can be
achieved as Sketchi converts any input image to greyscale before converting it to an internal
representation of drawn points. In the case where the image is larger than the drawing pane,
the image is placed in the top left corner and cropped.

Drawing a high number of widgets

Drawing an excessive number of widgets on screen degrades the performance of the widget
classifier minimally whilst the widget detector is unaffected. A small lag occurs when
attempting to classify the widgets on screen. The lag is under 0.4 seconds but it is noticeable

Results & Analysis 109

when compared to the standard classification time of under 0.1 seconds. Figure 8.30 shows
the drawing from the stress test.

Figure 8.30: Stress testing the widget classifier with 50+ widgets on screen degrades performance minimally.

Generating layouts with a large number of widgets

Passing the sketch in Figure 8.30 into the layout generator produces considerable lag when
generating the layout. Upon further investigation, heavy processing occurring on Event
Dispatch Threadi (EDT) in Swing caused the lag. Performing heavy processing on the EDT
makes the user interface unresponsive and the lag issue was solved by delegating the
processing to a background thread. The time taken to perform the layout analysis maintained
its performance following the constant rate of increase seen in Figure 8.28.

Generating code with a large number of widgets

The code generator performed as expected with the large number of widgets example. It
followed the trend seen in Figure 8.29 with no degradation in performance.

i Swing uses a single thread to perform all user interface processing. Any other processing on
this thread will halt the user interface and the user interface will appear to crash.

 110

8.8 Summary of the Results

Analysis of the test results indicates that Sketchi is a viable tool to intuitively produce GUIs.
The CBR based classification system performs well and its predictive ability drastically
improves when even a small number of user training cases are added to the case base.

Furthermore, we can see that it greatly reduces the time taken to produce GUIs when
compared to manually coding and is comparable to existing GUI builders. However, the code
produced by Sketchi is far more readable and concise than code produced by its counterpart
GUI builders.

Conclusion & Future Work 111

9 CONCLUSION & FUTURE WORK

This chapter deals with our conclusion of the project and puts forward possible directions for
future work.

9.1 Conclusion

This project was motivated by a lack of intuitiveness and ease of use in existing GUI building
tools. In response, we’ve created a highly usable, intuitive GUI builder. Below we restate our
original aims, as outlined in section 3.1, and show how our project achieves them:

• Capturing natural input – We aimed to let a user freely sketch an interface onscreen
and have it correctly transformed into a GUI. At the design stage, we chose a Case-
Based Reasoning (CBR) system and combined it with a selection of untested feature
encodings (see section 3.3.2). The architecture of our CBR allowed new feature
encodings to be added easily and after some initial testing it was obvious that more
distinguishing features needed to be encoded (see section 4.2.5). We designed an
experiment to capture the recognition rates being achieved the classifier (see section
7.1). Analysing these results showed that with only small amounts of classifier
training, recognition rates approached 100% for every user tested (see section 8.1).

• Ease layout management – We aimed to fully remove the need of manually adjusting
layout code. We chose to implement our system on top of the MigLayout layout
manager to minimise the amount of layout code generated by Sketchi (see section
3.1). We implemented an algorithm to infer the columns and rows required in the
layout and a component analyser to add detailed layout constraints to each
component (see section 5). We tested the system by attempting to generate various
layouts seen in real applications, including the address book example from John
O’Conner’s layout manager showdown (see section 2.4.2). Analysis of the results
showed that the all except the address book example could be generated with no
other user intervention (see section 8.2).

• Abstract the toolkit – Abstracting the toolkit is achieved in part by all the modules. The
act of drawing an interface rather than writing the code for it completely abstracts the
toolkit. To ensure the end result was as abstract as the idea of drawing the GUI, we
designed and implemented an abstract code generator that can be extended to
generate code in multiple toolkits and languages (see section 6). We provide a Swing
implementation of the code generator and leave other generators to be completed as
further work (see section 9.2).

• Generate clean, concise code – When designing a method of producing concise code, we
looked at the problems with existing GUI builder’s code generation and attempted to
solve their problems. The most obvious problem with the existing tools was the
amount of layout code they produced. To combat this, we ensured that we based our
code on a layout manager that requires a small amount of layout code. Thus
MigLayout was chosen (see section 3.1). To measure the conciseness of the code, we
tested the size of code produced by Sketchi with that of NetBeans over a range of
interfaces (see section 7.3). The results showed the code being produced was far
smaller. We consulted a panel of programmers to investigate which code they felt

Conclusion & Future Work 112

was of higher quality. The results were unanimous as every panel member chose
Sketchi’s code (see section 8.3).

In short, Sketchi was able to satisfy all our initial aims and provide a robust, intuitive solution
to the GUI building problem. Most importantly, Sketchi was built with extensibility and
flexibility in mind to allow further enhancements and additions at a later stage.

9.2 Future Work

Sketchi has shown that a commercial quality tool can be built to easily turn sketches into full
GUI code. Its modular architecture lays the grounds for a wealth of possible future work.
Below we detail our ideas for possible future directions:

• Detecting nested content – Whilst the current input model supports a nested hierarchy
of widgets the application does not utilise it. This is due to the algorithm used by the
input detection system (detailed in section 4.1). Our current implementation is not
very sophisticated and does not look inside a located widget for other widgets. The
problem arises because at the detection stage the type of the widget is unknown.
When a possible widget is found, there is no way for the detector to know if it has
found a button or a tabbed pane and therefore it cannot decide whether or not to
include the points inside the widget’s bounds. Figure 9.1 shows the current algorithm
attempting to detect nested content. Figure 9.2 shows what a future implementation
should hope to achieve. The correct detection method can be achieved by combining
the classifier with the detection process. When searching for a widget in the drawing
we can attempt to classify it. If the classifier suggests it is a container type widget
such as a tabbed pane, we can assume its content will be other widgets and so a
hierarchy can be built up.

Figure 9.1: Incorrect detection of nested content in a tabbed pane.

Figure 9.2: Correct detection of nested content in a tabbed pane.

Conclusion & Future Work 113

• Incorporate user interface enhancements – The test users highlighted several usability
flaws in the usability testing. The most prevalent issue was the difficulty users had in
navigating through the stages in the application. To resolve this issue, we propose
that the navigation functionality be moved from the application toolbar to the
toolbox. The notification panel, that caused navigational issues when asking for
confirmations can be removed and its functionality incorporated into the toolbox
with the navigation. This resolves the other issue of users not recognising the toolbox
as a key component in the application flow. Implementing these enhancements will
force all navigation to happen through a single point in the application, which should
simplify the navigation process. Other small enhancements such as selecting a
default field when a widget is clicked in the customization stage, adding instructions
to the toolbox in the classification stage and adding a ‘Other classifications’ label to
the combo box in the classification toolbox should be included in the enhancements
as well.

• Investigating other classification techniques – We chose to use Case-Based Reasoning
(CBR) for our input classification and did not experiment with other techniques. We
chose CBR as it is the most intuitive method for solving the problem and with
thoughtful feature encodings we were able to achieve very good recognition rates.
However we did not consider other methods such as using an Artificial Neural
Network (ANN). ANNs are used in the field of Optical Character Recognition which
is a similar problem to our input classification so could be well suited. Other
techniques should be looked at, implemented and compared with our CBR
implementation to fully quantify the quality of the current implementation.

• Comparing with the current state of the art – The performance of Sketchi was only
compared with the GUI builder included in NetBeans due to time constraints.
NetBeans was chosen because it is the Swing GUI building solution provided by Sun
Microsystems and therefore a good candidate for comparison. However, a better
comparison should be made between Sketchi and other GUI builders to truly see
where our solution fits into the state of the art.

• Further code generator implementations – To enhance the functionality of Sketchi further
code generators can be implemented. We provide a Java Swing implementation of
the code generator however, using the extensible code generator architecture, it
would be simple to provide implementations for other languages and toolkits.

• Optimising weights in the classifier – In section 8.1 we analysed the performance of the
optimised weights generated by our hill climbing algorithm. Unfortunately, it
performed poorly compared to the manually tweaked weights. To achieve good
performance with the manual weights, we looked at how the widgets were being
misclassified and used our knowledge of how the features were encoded to adjust the
weights accordingly. This process is difficult to formalise into code because we
cannot represent the intuition required to judge which weight to change and by how
much it should be changed. Other optimisation techniques should be looked at in an
attempt to achieve better results.

• IDE integration – Although Sketchi provides a highly intuitive interface that is ideal
for novice users it does not provide any project management control or ability to
integrate with existing code bases. A tighter integration with an IDE would let
Sketchi integrate with existing code bases and use more advanced code generation
techniques provided by modern IDEs. Sketchi’s application architecture allows this
task to be carried out with minimal modification to core components. The existing
content pane can be easily integrated to an IDE and then a new HUB needs to be
written to interact with the content pane and its states.

Conclusion & Future Work 114

• More customization options – In the GUI customization we currently only allow editing
of properties on the widgets. To compete with other GUI building tools we should
add more functionality such as the ability to add event handlers to widgets. To
accomplish this we can add a new editor toolbox to the customization screen to
control event handlers. As well as modifying the customization screen, we need to
model the event handling in our GUI model and create a new type of visitor to
generate the event handler code. The new visitor would visit the new event handling
data in the model and generate event-handling code as necessary.

• Handling input from a scanner or camera – The current input sketch must be a clean
sketch with minimal noise in the image. The Free Design state (see architecture in
section 3.3.4) can easily be replaced to allow input from a camera or scanner. An
image-processing module would need to be implemented to clean the image or
detect the lines in the sketch for further processing by the input detector and
classifier.

• Layout generator enhancement – To achieve extra accuracy in our generated layouts, a
more advanced analysis can be carried out in the layout generator. An issue
discovered in section 8.2 shows gap artefacts appearing in the generated layout that
are currently unhandled. One possible enhancement is to visualise the generated
layout off-screen and compare the generated layout to the drawn image. However,
this would be far more computationally expensive and may even lead to a noticeable
wait for the user. Other techniques for generating layouts should be explored and
experimented with to improve the performance of the layout generator.

9.3 Final Remarks

We have seen how Sketchi can streamline the process of creating GUI code, not just in time
taken to produce the GUI but in code size as well. Our receptor pattern implementation
combined with our case-based reasoning system, performs excellently in practice and can
achieve near perfect recognition with just a small amount of training from the user. Further
experimentation and investigation into other classification techniques would provide us with
a good benchmark for comparison and it would be interesting to see if our classifier holds up
against the competition.

<Bibliography 115

10 BIBLIOGRAPHY

Aamodt, Agnar, and Enric Plaza. “Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches.” AI Communications 7 (1994): 39-59.

Anguish, Scott, Erik M Buck, and Donald A Yacktman. Cocoa Programming. Sams Publishing,
2002.

Benedek, Joey, and Trish Miner. “Measuring Desirability: New Methods for evaluating
desirability in a usability lab setting.” Microsoft Usability. Microsoft Corporation. 2002.
http://www.microsoft.com/usability/UEPostings/DesirabilityToolkit.doc.

Ben-Kiki, Oren, Clark Evans, and Ingy döt Net. “YAML Ain't Markup Language Version 1.2.”
YAML.org. 11 05 2008. http://yaml.org/spec/1.2/.

Card, Stuart K, George G Robertson, and Jock D Mackinlay. “The information visualizer, an
information workspace.” Conference on Human Factors in Computing Systems. New York: ACM,
1991. 181-188.

Colton, Simon. “Multi-Layer Artificial Neural Networks.” Simon Colton - Department of
Computing. 2004. http://www.doc.ic.ac.uk/~sgc/teaching/v231/lecture13.html (accessed 01
15, 2009).

Cronbach, Lee J. “Response sets and test validity.” Educational and Psychological Measurements
6, 1946: 475-494.

Evans Data Corporation. “North American Technology Trends.” 2005.

FormDev Software. JFormDesigner - Company. http://www.jformdesigner.com/company/
(accessed 01 11, 2009).

Grev, Mikael. “Personal Communication.” 17 12 2008.

Heaton Research. “About Encog.” Heaton Research. http://www.heatonresearch.com/encog
(accessed 01 13, 2009).

Kirillov, Andrew. “CodeProject: Neural Network OCR.” CodeProject. 11 04 2005.
http://www.codeproject.com/KB/cs/neural_network_ocr.aspx (accessed 01 12, 2009).

Microsoft. “The GUI versus the Command Line: Which is better?” Technet.com. 12 03 2007.
http://blogs.technet.com/mscom/archive/2007/03/12/the-gui-versus-the-command-line-
which-is-better-part-1.aspx.

Miller, Robert B. “Response time in man-computer conversational transactions.” AFIPS Joint
Computer Conferences. New York: ACM, 1968. 267-277.

<Bibliography 116

Mono Project. “Mono 2.0 Release Details.” The Mono Project. 06 10 2008. http://www.mono-
project.com/Release_Notes_Mono_2.0.

Mozilla. “The Joy of XUL.” XUL Development. 09 09 2007.
https://developer.mozilla.org/en/The_Joy_of_XUL.

Mullet, Kevin, and Darrell Sano. Designing Visual Interfaces: Communication Oriented
Techniques. Prentice Hall PTR, 1995.

NetBeans. NetBeans 5.0 GUI Building Resources.
http://www.netbeans.org/kb/articles/matisse.html (accessed 01 11, 2009).

Nielsen, Jakob. “Heuristic Evaluation.” In Usability Inspection Methods, by Jakob Nielsen and
Robert L Mack. New York: John Wiley & Sons, 1994.

Nielson, Jakob. Usability Engineering. Engineering Press, 1994.

—. “Why You Only Need to Test With 5 Users.” useit.com: usable information technology. 19
March 2000. http://www.useit.com/alertbox/20000319.html.

Nielson, Jakob, and Thomas K Landauer. “A mathematical model of the finding of usability
problems.” Proceedings of the INTERACT '93 and CHI '93 conference on Human factors in
computing systems. New York: ACM, 1993. 206-213.

Pantic, Maja. “Introduction to Machine Learning & Case-Based Reasoning.” Department of
Computing - Home page of Maja Pantic. https://www.doc.ic.ac.uk/~maja/syllabus-CBR.pdf
(accessed 06 10, 2009).

Resnick, Mitchel, et al. “Design Principles for Tools to Support Creative Thinking.” 10 2005: 3.

Shum, Kenneth. “PlanetMath - Shannon's Entropy.” PlanetMath. 28 06 2006.
http://planetmath.org/?op=getobj&from=objects&id=968 (accessed 01 15, 2009).

Sun Microsystems. “How to use GroupLayout.” The Java Tutorials.
http://java.sun.com/docs/books/tutorial/uiswing/layout/group.html (accessed 01 14,
2009).

—. “How to use SpringLayout.” The Java Tutorials.
http://java.sun.com/docs/books/tutorial/uiswing/layout/spring.html (accessed 01 14,
2009).

—. “J2SE 1.2 Press Release.” Sun delivers next version of the java platform. 8 12 1998.
http://web.archive.org/web/20070816170028/http://www.sun.com/smi/Press/sunflash/1
998-12/sunflash.981208.9.xml.

Travis, David. “Measuring satisfaction: Beyond the usability questionnaire.” User Focus. 3
March 2008. http://www.userfocus.co.uk/articles/satisfaction.html (accessed June 12, 2009).

UIML.org. UIML.org - Home. http://www.uiml.org/ (accessed 01 12, 2009).

Appendix 117

11 APPENDIX

11.1 Swing Code Template

Figure 11.1 shows the code template used by the Swing code generator.

import net.miginfocom.swing.MigLayout;
import javax.swing.JPanel;
import javax.swing.JFrame;
import javax.swing.SwingUtilities;

$imports

public class $filename extends JFrame
{
 public $filename()
 {
 JPanel p = createGUI();

 this.setContentPane(p);
 this.pack();
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
 this.setLocationRelativeTo(null);
 this.setVisible(true);
 }

 /**
 * Creates the GUI controls and adds the layout code
 */
 private JPanel createGUI()
 {
 $guicode
 }

 /**
 * Standard static void main that creates the JFrame
 *
 * @param args
 */
 public static void main(String args[])
 {
 SwingUtilities.invokeLater(new Runnable()
 {
 @Override
 public void run()
 {
 JFrame mainFrame = new $filename();
 mainFrame.setVisible(true);
 }
 });
 }
}

Figure 11.1: Code template for Swing code generator.

Appendix 118

11.2 User Questionnaire

 Questions

1 I would use this system again
2 The system was difficult to use
3 The stages were easy to navigate
4 I was not in control of the system
5 The toolbox was useful and informative
6 The toolbox got in the way and didn't provide enough information
7 Sketchi produces comparable results to good manual coding
8 I feel Sketchi is harder to use than manually coding
9 The system was fast

10 The system was slow and unresponsive
11 Mistakes were easy to rectify
12 Mistakes I made were not easy to fix and I wasn't told about them
13 I feel Sketchi is easier to use than other GUI builders
14 I think that drag and drop is more intuitive than drawing on a screen
15 I could easily tweak the layout when I wanted to
16 I didn't have enough options when customizing the GUIs
17 Sketchi classified my sketch correctly
18 I could not produce the GUI I wanted
19 The code generated was clean and readable
20 The code generated was unusable in an application

Table 11.1: Likert scale questionnaire give to test users.

 Strongly Agree Agree Neither Disagree Strongly Disagree

Positive 5 4 3 2 1

Negative 1 2 3 4 5
Table 11.2: Likert scale ratings.

