
Aggregation and Numerical Techniques for Passage
Time Calculations in Large semi-Markov Models

Marcel Christoph Günther
mcg05@doc.ic.ac.uk

June 18, 2009

Marker: Dr. Jeremy Bradley
Second marker: Dr. William Knottenbelt

Department of Computing
Imperial College London

2

Abstract

First-passage time densities and quantiles are important metrics in performance analysis. They
are used in the analysis of mobile communication systems, web servers, manufacturing systems
as well as for the analysis of the quality of service of hospitals and government organisations.
In this report we look at computational techniques for the first-passage time analysis on high-
level models that translate to Markov and semi-Markov processes. In particular we study exact
first-passage time analysis on semi-Markov processes. Previous studies have shown that it is
possible to analytically determine passage times by solving a large set of linear equations in
Laplace space. The set of linear equations arises from the state transition graph of the Markov
or semi-Markov process, which is usually derived from high-level models such as process algebras
or stochastic Petri nets. The difficulty in passage time analysis is that even simple high-level
models can produce large state transition graphs with several million states and transitions.
These are difficult to analyse on modern hardware, because of limitations in the size of main
memory. Whilst for Markov processes there exist several efficient techniques that allow the
analysis of large chains with more than 100 million states, in the semi-Markov domain such
techniques are still less developed. Consequently parallel passage time analyser tools currently
only work on semi-Markov models with fewer than 50 million states. This study extends existing
techniques and presents new approaches for state space reduction and faster first-passage time
computation on large semi-Markov processes. We show that intelligent state space partitioning
methods can reduce the amount of main memory needed for the evaluation of first-passage time
distributions in large semi-Markov processes by up to 99% and decrease the runtime by a factor
of up to 5 compared to existing semi-Markov passage time analyser tools. Finally we outline a
new passage time analysis tool chain that has the potential to solve semi-Markov processes with
more than 1 billion states on contemporary computer hardware.

3

Acknowledgements

I would like to thank my supervisor Jeremy Bradley for all the support and guidance he has
given me throughout the project as well as for his enthusiasm about my research which always
motivated me to carry on.

I would also like to thank Nicholas Dingle for giving me feedback on my experiments, provid-
ing SMARTA and helping me to overcome various technical problems I encountered during the
project. Likewise I would like to thank William Knottenbelt for his support and his feedback
on my written work.

Finally I would like to thank my friends and family, especially my parents, Netta, Marco, Steve
and Daniel whose birthday I forgot because of the write-up.

4

Computers process what they are being fed. When rubbish goes in, rubbish comes out.

Trans.: EDV-Systeme verarbeiten, womit sie gefüttert werden. Kommt Mist rein, kommt Mist raus.
—

André Kostolany

CONTENTS 5

Contents

1 Introduction 8
1.1 Motivation . 8

1.1.1 Application of passage times in performance analysis 8
1.2 Current state of research . 10
1.3 Project aim . 10
1.4 Contributions . 11
1.5 Publications . 12

2 Background 13
2.1 Semi-Markov Processes (SMPs) . 13
2.2 High-level modelling formalism for SMPs . 14

2.2.1 Petri nets . 14
2.2.2 Generalised stochastic Petri nets . 15
2.2.3 Semi-Markov stochastic Petri nets . 16
2.2.4 SM-SPN models used in this study . 17

2.3 Laplace transforms . 17
2.4 Laplace transform inversion . 19

2.4.1 Numerical Laplace transform inversion . 19
2.5 Measures in SMP analysis . 21

2.5.1 Transient and steady-state distribution 21
2.5.2 Passage time analysis in semi-Markov models 21

2.6 Numerical methods for first-passage time analysis 22
2.6.1 Iterative approach . 22

2.7 Exact state aggregation . 24
2.8 Graph partitioning . 26

2.8.1 Graph Models . 26
2.8.2 Partitioning metrics . 28
2.8.3 Recursive bi-partitioning vs. k-way partitioning 29
2.8.4 Objective functions . 29
2.8.5 Flat vs. Multilevel hypergraph partitioning 29
2.8.6 Multilevel hypergraph partitioning . 29

3 Partitioning the SMP state space 32
3.1 SMP transition matrix partitioners . 33

3.1.1 Row striping . 33
3.1.2 Graph partitioner . 33
3.1.3 Hypergraph partitioner . 34

6 CONTENTS

3.1.4 Next-Best-State-Search (NBSS) partitioner 34
3.2 Aggregation of partitions . 34

3.2.1 Partition sorting strategies . 35
3.2.2 Transition matrix predictor . 36
3.2.3 Quality of partitionings . 36

4 State-by-state aggregation of partitions 41
4.1 State aggregation techniques . 41

4.1.1 Fewest-Paths-First aggregation . 41
4.1.2 Exact-Fewest-Paths-First aggregation . 41

4.2 Transition matrix fill-in during aggregation of partition 43
4.3 Partial aggregation of partitions . 44

4.3.1 Cheap state aggregation . 44
4.4 Implementation of state-by-state aggregation . 46

4.4.1 Data structures . 46
4.4.2 Validation . 47
4.4.3 Performance . 47

4.5 Summary . 47

5 Atomic aggregation of entire partitions 49
5.1 Aggregation techniques . 49

5.1.1 Restricted FPTA aggregator . 50
5.1.2 Discrete event simulation aggregator . 52
5.1.3 RFPTA with extra vanishing state . 52

5.2 Barrier partitioning . 55
5.2.1 Passage time computation on barrier partitionings 57
5.2.2 Balanced barrier partitioner . 58

5.3 K-way barrier partitioning . 60
5.3.1 K-way barrier partitioner . 62

5.4 Implementation of atomic partition aggregation 63
5.4.1 Performance RFPTA . 64
5.4.2 Performance of the barrier strategies . 65

5.5 Summary . 65

6 Applying new techniques for faster FPTA calculation 66
6.1 FPTA techniques . 66

6.1.1 Error analysis . 66
6.1.2 Performance . 67

6.2 Path truncation . 67
6.2.1 Error analysis . 68
6.2.2 Performance . 69

6.3 Parallelisation . 71
6.4 Summary . 72

7 Evaluation, conclusion and further work 73
7.1 Evaluation . 73
7.2 Conclusion . 73
7.3 Further work . 74

7.3.1 Building the billion state semi-Markov response time analyser 74

A Models studied 75
A.1 Voting model . 75
A.2 Web-content authoring (web-server) model . 76
A.3 Courier model . 78

CONTENTS 7

B Additional diagrams for barrier partitioning discussion 79

C Additional diagrams for FPTA performance discussion 80

Bibliography 87

8 1. INTRODUCTION

CHAPTER 1

Introduction

1.1 Motivation

Whenever we time processes we would like to know the worst-case time to complete the job.
This notion of time until completion is captured by response time distributions. In particular
the cumulative density function of response time distributions are of interest since they allow
us to make statements such as: ”In 90% of all cases the job is completed after x seconds”.
Such intervals are also known as response time quantiles or percentiles. This performance
metric is preferable to average response times, as these fail to give an intuition of the worst-
case scenario. Response time quantiles are widely used in the analysis of network latencies, web
servers, manufacturing systems as well as for the analysis of the quality of service of hospitals and
government organisations to name a few areas of application. Response time analysis can also
be performed on models such as Markov and semi-Markov processes. In this case we talk about
first-passage time distributions, as response time analysis in the Markovian domain corresponds
to evaluating the distribution over the time it takes to reach a set of target states from a set of
source states in the transition graph of the chain.

1.1.1 Application of passage times in performance analysis

In this section we give two brief examples of applications of response time quantiles, one real-
world example and one example that illustrates the passage time analysis on a semi-Markov
model that has been generated from a semi-Markov stochastic Petri net (see sect. 2.2.3).

The first example was drawn from a report of the U.S. department of homeland security[31].
The report investigates the performance of the national fire services. The measure of interest is
the distribution of the time it takes from the point a call is received by the emergency call center
until a fire-engine arrives at the scene. The 90th percentile in this case is less than 11 minutes
(see fig. 1.1). The report further investigates regional and seasonal differences in response time.

Clearly such investigations are useful especially when introducing new regulation or procedures
to public services or in industry, as they provide an objective measure on how the quality of
service compares to earlier years.

1. INTRODUCTION 9

Figure 1.1: This diagram shows the general fire emergency response time distribution as de-
scribed in [31]. The data originates from the National Fire Incident Reporting System (NFIRS)
5.0 data for 2001 and 2002.

The second example is a response time estimation for a large semi-Markov model. The voting
model is described in detail in sect. A.1. For our experiment we computed the response time in
the case where we have 60 voters, 25 voting booths and 4 central vote collection servers. The
response time corresponds to the time elapsed from the point the first voter casts their vote
until the last voter has completed the voting process. The 90th response time percentile in this
case is less than 151 seconds.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

F
(t

)

Time

Figure 1.2: Response time cdf of voting model with 60 voters, 25 voting booths and 4 central
vote collection servers. The semi-Markov model generated from the model has 106540 states.

The advantage of having a model such as the voting model is that we can simulate how changes
in the setup of the e-voting system affect the quality of the voting service. Provided that the
voting model approximates the real-world scenario well, studying the model can potentially save
a lot of time and money when it comes to putting the system into practice.

10 1. INTRODUCTION

1.2 Current state of research

As discrete state continuous time Markov and semi-Markov chains representing models of real-
world systems can have several million states, it is infeasible to describe them in terms of their
transition graph (see defn. 2.2). Consequently we use high-level modelling approaches such as
process algebras[22] and Petri nets (see sect. 2.2) in order to describe our models. However,
even though the models may be relatively compact, it is generally hard to infer response time
measures directly from the model. One way of performing passage time analysis on the high-
level model is to use discrete event simulation, which requires us to average the results of various
simulations in order to reduce the variance of the resulting distributions. If a high degree in
accuracy is needed then discrete event simulation may not be feasible. In this study we therefore
concentrate on exact analytical passage time analysis in semi-Markov models using an iterative
passage time algorithm (c.f. sect. 2.6).

To do first-passage time computation in semi-Markov processes (SMPs), we first have to trans-
late the high-level model into a low-level semi-Markov representation (see sect. 2.1 and sect. 2.2).
This mapping yields a graph with each vertex being a state of the semi-Markov model. There is
a directed edge from one vertex to another if the transition is possible in the high-level model.
Each transition encapsulates a transition latency in form of a distribution and each state has a
probability distribution over all outgoing transitions, which is used to determine which transi-
tion is chosen on leaving the state. The HYDRA and SMARTA tool chains described in [22, 33]
each provide a program that generates transition matrices for Markov chains and semi-Markov
chains respectively. Our passage time analyser extends the SMARTA tool chain. [23] also dis-
cusses how the transition matrix generation for extremely large models can be done in parallel.

In [8] Harrison and Knottenbelt introduce an iterative passage time analysis algorithm (see
sect. 2.6) for Markov and semi-Markov chains. Computing passage time densities from the low-
level representation of SMPs with the iterative algorithm involves repeated sparse-matrix vector
multiplication using the transition matrix of the SMP. Recall that the sparse-matrix represents
the transition graph of the SMP and therefore grows with the number of states in the SMP. It
is thus computationally challenging to use the iterative passage time algorithm to compute pas-
sage times for SMPs with large states spaces. Whilst there exist techniques for Markov chains
[8, 22] that make exact passage time calculation on Markov chains with more than 100 million
states technically feasible, similar techniques have not been developed for SMPs yet. Due to
this, current parallel SMP passage time analysers such as SMARTA are limited to semi-Markov
models that have fewer than 50 million states.

In [1] an innovative technique for exact aggregation of states in the low-level representation
of semi-Markov processes is presented. Although exact state-by-state aggregation reduces the
dimension of the transition matrix, the technique suffers from the problem that the aggregation
of states causes a dramatic fill-in of the transition graph as many new transitions (see sect. 2.7)
are generated by state-by-state aggregation. As the pace at which the matrix fills in during
state-by-state aggregation is causing an even greater memory overhead than storing the initial
transition matrix, this aggregation approach is impractical for large semi-Markov models.

1.3 Project aim

The overall aim of the project is to produce an improved first-passage time evaluation method
that allows us to extend existing algorithms used in SMARTA in order to be able to evaluate
semi-Markov processes with more than 50 million states. Based on the results of [1, 8, 9, 11,
15, 22, 23] our main approach for finding an improved evaluation method is to use state space
partitioning strategies for aggregation of states in large semi-Markov models. Partitioning the
state space entails dividing it into a number of non-intersecting subsets. The idea was proposed
by Bradley, in hope that performing exact state-by-state aggregation on a partition of states

1. INTRODUCTION 11

rather than on the entire flat (unpartitioned) state space would limit the explosion in the number
of newly created transitions that was observed in [1]. In this report we also briefly discuss the
application of our techniques for the computation of other performance metrics (see sect. 2.5).
In addition to aggregation techniques based on state space partitioning we also investigate
numerical techniques for faster first-passage time computation as a means to improve the speed
of the passage time computation.

1.4 Contributions

The list below contains the most important results of the research conducted for this project:

1. State space partitioning for state aggregation in SMPs (chapter 3):

(a) We define desirable properties of state space partitionings for state aggregation

(b) We test the application of well established sparse-matrix partitioners for state space
partitioning and show that they are only useful when used on small semi-Markov
models (see sect. 3.2.3)

2. State-by-state aggregation on state space partitionings (chapter 4):

(a) We introduce a state-by-state aggregation algorithm called Exact-Fewest-Paths-First
(see sect. 4.1.2) which improves the Fewest-Paths-First method described in [1]

(b) We show that for SMPs that have a small number of states, the generation of par-
titionings using partitioners such as PaToH and MeTiS (see sect. 3.1) and the con-
sequent partition-by-partition aggregation using exact state aggregation drastically
decreases the amount of memory and computation needed for aggregation

(c) We introduce the concept of cheap state aggregation (see sect. 4.3.1) which is an
exact state aggregation technique that finds and aggregates states in a manner such
that the number of transitions in the transition matrix does not increase and show
that it can be applied efficiently even when the state space becomes large

3. Atomic aggregation of partitionings and Barrier partitioning (chapter 5):

(a) As exact state-by-state aggregation is still an expensive operation compared to the
cost of the actual passage time analysis, we show that entire partitions of states can
be aggregated in one go by performing a restricted passage time analysis from the
predecessor to the successor states of a partition (see sect. 5.1.1)

(b) We show that aggregation of partitions can always be done approximately at low
extra cost by introducing an extra state that separates the predecessor states from
the partition internal states of the partition we are aggregating (see sect. 5.1.3)

(c) We introduce a new partitioning method called k-way barrier partitioning (see sect. 5.3),
which reduces the amount of memory needed to perform passage time analysis on the
large versions of the voting and the web-server model by up to 99%. We also show
that the modified passage time algorithm for k-way barrier partitioned SMP transi-
tion matrices is exact. Furthermore our implementation of the passage time analyser
using the k-way barrier partitioning is faster than the current SMARTA analyser

(d) We describe an algorithm for finding k-way barrier partitionings in large SMPs and
show that in practice the partitioner has linear complexity in the number of transi-
tions in the semi-Markov model

(e) We show that the 2-way barrier is well-suited for parallelisation and subsequently
extend the concept to show we can improve the current parallel passage time anal-
ysis algorithm [15, 22] for the computation of a single s-point using k-way barrier
partitioning

12 1. INTRODUCTION

4. Path truncation (chapter 6):

(a) We show that the iterative passage time algorithm can be improved by regularly set-
ting small complex values in νr, i.e. the vector that we multiply the sparse transition
matrix with, to zero. Our error analysis also shows that truncation does not induce
a significant loss of accuracy

(b) We combine the truncation technique with the k-way barrier technique to obtain a
new exact passage time evaluation algorithm, which in our implementation is up to
5 times faster than the passage time analyser of SMARTA. Moreover it is possible
to implement the algorithm in a manner so that it only requires a fraction of the
memory needed for the same passage time computation by SMARTA (c.f. item 3c)

1.5 Publications

The following publications arose from the research conducted for this project:

• Aggregation Strategies for Large Semi-Markov Processes, III International Sym-
posium on Semi-Markov Models[27]. This conference paper presents new state aggregation
techniques for semi-Markov processes based on state space partitioning strategies. The
paper covers large parts of chapters 3, 4 and 5.

• Truncation of Passage Time Calculations in Large Semi-Markov models, 25th

UK Performance Engineering Workshop[28]. This paper discusses the use of truncation
for faster iterative passage time analysis on semi-Markov models. The paper covers the
truncation section in chapter 6.

2. BACKGROUND 13

CHAPTER 2

Background

This chapter provides background information on semi-Markov processes, high-level modelling
formalisms, Laplace transforms, performance analysis measures, exact state-by-state aggregation
and graph partitioning. We assume that the reader of this report is familiar with basic concepts
of random variables, probability distributions, stochastic processes and Markov processes.

2.1 Semi-Markov Processes (SMPs)

Semi-Markov processes are a generalisation of Markov processes. In contrast to Markov pro- Semi-Markov process
(SMP)cesses, where state holding times are exponentially distributed, semi-Markov processes allow

any type of probability density. In the following we also refer to state holding times as sojourn
times. Each transition from state i to j in a SMP is associated with a sojourn time distribution. Sojourn time

The distribution represents the holding time in state i given that the transition is the next one
to fire. It is possible for the transition from state i to j to have a different state holding time
distribution than say the transition from state i to k if j 6= k. The holding time of state i is
always dependent on the choice of the next outgoing transition. To reflect this in the model each
state has a discrete probability distribution over its outgoing transitions. In a SMP the next
state transition is always a probabilistic choice with respect to this distribution of the current
state i. Having determined the transition that is to fire next, the state holding time can be
sampled from its sojourn time distribution.

Definition 2.1. Let S = {1, 2, . . . , n} be the state space of a SMP. Let {(Xn, Tn) | n ≥ 0}
define a Markov renewal process, where Xn ∈ S is the state after the nth state transition has
occurred and Tn, (T0 = 0) the time at which the nth transition occurred. Suppose Xn = i. We
then denote the weighted cumulative sojourn time density function for state i given that the
(n+ 1)st state is j as the kernel of the SMP:

R(n, i, j, t) = P (Xn+1 = j ∧ Tn+1 − Tn ≤ t | Xn = i)

This is the kernel of a continuous time semi-Markov chain (CTSMC). This study mainly focuses Kernel

on time-homogeneous SMPs which are independent of n as the kernel does not vary with time.
For time-homogeneous SMPs we can rewrite the kernel as

R(i, j, t) = pijHij(t)

where pij = P (Xn+1 = j | Xn = i) for all n ≥ 0 is the transition probability from state i to j
and Hij = P (Tn+1 − Tn ≤ t | Xn = i, Xn+1 = j), the cdf of the sojourn time distribution in
state i given that the next state is j [1, 15, 22].

14 2. BACKGROUND

Definition 2.2. Throughout this report we refer to the reachability graph of SMPs, as the
transition graph of the SMP, where each state is a vertex and each transition between two statesTransition graph

an edge between to vertices. Moreover we do not distinguish between the transition graph of a
SMP and its adjacency matrix which we term transition matrix .Transition matrix

2.2 High-level modelling formalism for SMPs

Despite the fact that semi-Markov processes can be defined by specifying every state and tran-
sition explicitly, this approach becomes very tedious if not impossible to do by hand as the
underlying model of a SMP becomes complex and large. Some of the models that we analyse in
this study for instance have an underlying SMP with more than a million states and transitions.
Hence, instead of describing models in terms of their low-level SMP graph representation we
should rather aim at using high-level modelling formalisms that translate to finite state SMPs.
That way we can specify models in a human readable format and consequently use computers
to do the actual SMP generation. The actual translation from a high-level model to its under-
lying low-level SMP involves generating all possible states, transitions and the kernel from the
high-level description of the model. In this section we introduce a Petri net modelling approach
for SMPs. Information on other high-level modelling formalisms can be found in [22, 23].

2.2.1 Petri nets

Petri nets exist in various forms and are used for a wide range of models, such as models for
parallel processes, queuing networks and communication protocols. The basic idea behind Petri
nets is that we describe a model in terms of tokens which can move between places. We then
analyse the model by observing the likeliness of certain markings. A marking is a vector of
integers that describes how many tokens each place contains. When translating a Petri net
into a SMP, markings become states and there is a transition between any two states i, j if the
corresponding marking j can be reached from marking i via one transition firing. This mapping
produces a SMP reachability graph for the simplest form of Petri nets, the Place-Transition
nets.

Figure 2.1: A Place-Transition net with 2 places, 1 transition and 1 token. In Petri net diagrams
large empty circles represent places, empty rectangles transitions and tokens are represented as
small black dots. The arrows describe the direction of a transition.

Definition 2.3. A Place-Transition net is a 5-tuple PN = (P, T, I−, I+,M0) s.t.Place-Transition net

• P = p1, . . . , pn with n ∈ N+

• T = t1, . . . , tm with m ∈ N+

• P ∩ T = ∅

• I−, I+ : P × T 7→ N0 are describing backward and forward incidence of places and tran-
sitions respectively. I−(p, t) > 0 iff place p can fire tokens through transition t. In other

2. BACKGROUND 15

words I−(p, t) > 0 iff t is an outgoing transition of p. Similarly I+(p, t) > 0 iff place p can
receive tokens through transition t, i.e. t is an incoming transition of p.

• M0 : P 7→ N0 is the initial marking of the model.

Instead of translating every possible marking into a state in the underlying SMP we simply say
that the set of all markings reachable from M0 is the state-space of the underlying SMP. State-space

Definition 2.4. In a Place-Transition net PN = (P, T, I−, I+,M0) we have the following firing
rules

• The marking is a function M : P 7→ N0, such that M(p) is the number of tokens on place Marking

p.

• M [t > implies that transition t ∈ T is enabled in marking M . We have M [t > iff M [t >

M(p) ≥ I−(p, t) for all p ∈ P . A function that takes a marking and a transition and
decides whether the transition is enabled or not on the basis of abundance of tokens on
preceding places is a net-enabling function. Net-enabling function

• If a transition t ∈ T is enabled in marking M and fires we have M ′(p) = M(p)−I−(p, t)+
I+(p, t) for all p ∈ P , where M ′ is the new marking. We say M ′ is directly reachable from
M and write M [t > M ′ or simply M →M ′. M →M ′

For a transition t to be enabled there have to be I−(p, t) tokens on each of its input places p.
When the transition fires, I−(p, t) tokens are removed from each input place p ∈ P and I+(p, t)
tokens are added to every output place p ∈ P . A system represented by a Petri net can deadlock
if there exists a marking which has no enabled outgoing transitions.

2.2.2 Generalised stochastic Petri nets

From a Place-Transition net we can derive the reachability graph of a SMP. However, in order
to use Petri nets as a high-level formalism for SMPs, we also have to define the notion of sojourn
time distribution and transition probability in our Petri net model.

Definition 2.5. A Generalised stochastic Petri net (GSPN) is a 4-tupleGSPN = (PN, T1, T2, C) Generalised stochastic
Petri net (GSPN)where

• PN = (P, T, I−, I+,M0) is the underlying Place-Transition net

• T1 ⊆ T is the set of timed transitions, T1 6= ∅

• T2 ⊆ T is the set of immediate transitions, with T1 ∩ T2 = ∅, T = T1 ∪ T2

• C = (c1, . . . , c|T |) where

ci =

a rate ∈ R+of an exponential probability distribution modelling the firing delay
of transition if ti ∈ T1

a weight ∈ R+specifying the relative firing frequency of transition if ti ∈ T2

where both types of ci may be marking dependent.

In GSPNs the transition probability depends on the marking under which the transition is
enabled as some transitions are more likely to fire when some of the outgoing transitions are not
enabled in a certain place. Timed transitions are dominated by immediate transitions which
fire in time zero, whilst timed transitions in GSPNs have exponentially distributed firing delays
(see [22] for further information). These delays may depend on individual markings. Hence it
is generally hard to reduce or aggregate places in the high-level model or to spot certain sets
of markings in a Petri net that can be simplified in the resulting SMP. It also makes sense to
distinguish between markings in which immediate transitions are enabled and those in which
they are disabled.

16 2. BACKGROUND

Definition 2.6. A vanishing marking is a marking in which an immediate transition is enabled.Vanishing marking

Clearly the sojourn time in such a marking is zero. A tangible marking is one where no immediateTangible marking
transition but at least one timed transition is enabled. We denote the set of vanishing markings
by V and the set of tangible markings by T .

Note. In later sections we also refer to vanishing and tangible states in SMPs, which are seman-
tically equivalent to vanishing and tangible markings as markings in a Petri net are interpreted
as states in the low-level reachability graph of a SMP.

Figure 2.2: Immediate transitions have black rectangles. Note that the timed transitions have
exponential sojourn time distributions with rates dependent on some values v and r.

GSPNs are far more expressive than their Place-Transform counterparts. In fact it can be shown
that the reachability graph of a GSPN which has V = ∅ is isomorphic to some continuous time
Markov-Chain. These special GSPNs are called stochastic Petri nets. Furthermore it is possibleStochastic Petri nets

to transform a GSPN with V 6= ∅ to one with V = ∅ without corrupting measures such as
steady-state probabilities or passage times in the underlying model[22].

2.2.3 Semi-Markov stochastic Petri nets

The final generalisation of Petri nets that we introduce in this section is the semi-Markov
stochastic Petri net (SM-SPN). In a SM-SPN we can choose any probability distribution for
the firing delay of timed transitions. Furthermore timed transitions in this model have weights
and priorities, such that we can sample transitions according to a probability distribution over
all enabled transition with high priorities when more than one transition is enabled in a given
marking. This is in accordance with the semi-Markov definition in sect. 2.1.

Definition 2.7. A SM-SPN is a 4-tuple (PN,P,W,D) such that

• PN = (P, T, I−, I+,M0) is the underlying Place-Transition net

• P : T ×M 7→ N0, denoted pt(m) is a marking dependent priority function for a transition.

• W : T ×M 7→ R+, denoted wt(m) is a marking dependent weight function for a transition
that is used to model probabilistic choice.

• D : T×M 7→ [0, 1], denoted dt(m) is a marking dependent cumulative distribution function
for the firing-delay of a transition.

where M is the set of all markings for a given SM-SPN.

Clearly these information allow us to derive the kernel of a semi-Markov process (see defn. 2.1).
Finally we need to redefine the transition enabling function to take the priority levels of transi-
tions into account.

2. BACKGROUND 17

Definition 2.8. In a SM-SPN (PN,P,W,D) we have the following functions

• EN :M 7→ P (T) is a net-enabling function with the same properties as M [t > in defn. 2.4.

• EP : M 7→ P (T) is a function which specifies priority-enabled transitions from a given
marking.

Given a marking m the function EP (m) selects only those net-enabled transitions that have the
highest priority, i.e. the largest value pt(m) among all EN (m) enabled transitions of m. Each
of the priority-enabled transitions is fired with probability

P (t ∈ EP (m) fires) =
wt(m)∑

t′∈EP (m) wt′(m)

just as we described in sect. 2.1. Having made the probabilistic choice of which enabled transition
fires next, the sojourn time, i.e. the delay before the firing occurs, has the cumulative distribution
dt(m).

Figure 2.3: Transitions now take parameters (name, weight, priority, sojourn time distn).

2.2.4 SM-SPN models used in this study

It is generally possible to transform GSPNs and SPNs into SM-SPNs (for details see [22]).
The models we analyse in our study are all generated from GSPNs and SM-SPNs. Therefore
it is feasible to measure their steady-state distribution, transient distribution, passage time
distributions and other common semi-Markov measures (see sect. 2.5). The Petri nets for the
voting, web-server and courier model are explained in detail in appendix A. As the original
courier model is a GSPN we define the smcourier model to be the SM-SPN version of the
courier model.

2.3 Laplace transforms

A Laplace transformation is a mapping from a real-valued function f(t) to a complex-valued
function. The mapping is invertible, hence Laplace functions can be mapped back to a r.v.
function. In the following we define the Laplace transform and show the benefits of representing
the kernel of a SMP in Laplace space rather than in real space.

18 2. BACKGROUND

Definition 2.9. The Laplace transform L{f(t)}(s) with t ∈ R+
0 , s ∈ C of r.v. function f(t) isLaplace transform

defined as

L{f(t)}(s) =
∫ ∞

0

e−stf(t) dt

where f(t) must be of exponential order , i.e. |f(t)| < eαt, α > 0 for each t in the domain ofExponential order

f(t). Furthermore f(t) is only allowed to have a finite number of finite discontinuities.

Note. The most commonly used probability density functions, e.g. uniform, normal, exponen-
tial, etc., are all of exponential order and it can be shown that they all have unique Laplace
transforms. The uniqueness of the Laplace transforms allows us to recover the original r.v.
function f(t) from L{f(t)}(s). The condition t ∈ R+

0 is not overly restrictive in our case as the
probability distributions in the kernel represent time delays.

Theorem 2.1. Let f(t) be a real-valued probability density function on [0,∞] and F (t) be the
corresponding cumulative density function, i.e.

F (t1) =
∫ t1

0

f(t) dt

then
L{F (t)}(s) = L{f(t)}(s)/s

Proof. see [20] �

Note. By thm. 2.1 we can represent the weighted cumulative sojourn time density functions in
the kernel (see defn. 2.1) in terms of their underlying pdf Laplace transforms and later recover the
Laplace transforms of the cumulative density functions by dividing the pdf Laplace transforms
by s. In practice we represent the kernel in terms of its pdf Laplace transforms.

Definition 2.10. Let f(t), g(t) be two r.v. functions with t ∈ R+
0 then

h(t) = f(t) ∗ g(t) =
∫ ∞

0

f(τ) ∗ g(t− τ) dτ

is the convolution of f and g.Convolution

Theorem 2.2. The Laplace transform of the convolution of two r.v. functions f(x), f(y) with
x, y ∈ R+

0 is the product of the Laplace transforms of f(x) and f(y), i.e.

L{f(x) ∗ g(x)}(s) = L{f(x)}(s) L{g(x)}(s)

Proof. see [20] �

Convolutions occur whenever we want to write a random variable Z as the sum of other random
variables. It is not hard to see that in real space these integrals are difficult to compute in
general. When doing passage time analysis (see sect. 2.5.2) on SMPs we need to perform many
convolutions of pdfs of the sojourn time distributions from the kernel. Thus it is hard to do
passage time analysis in real space. In Laplace space on the other hand it is straightforward to
compute the Laplace transform of a convolution of many pdfs, as we merely have to multiply
their individual Laplace transforms.

Theorem 2.3. The Laplace transform is a linear transformation. Let f(t), g(t) be two r.v.
functions with t ∈ R+

0 and a, b ∈ R two constants then

L{af(t) + bg(t)}(s) = aL{f(t)}(s) + bL{g(t)}(s)

Proof. see [20] �

2. BACKGROUND 19

2.4 Laplace transform inversion

As mentioned before it is possible to recover f(t) from its Laplace transform L{f(t)} as the
Laplace transform of f(t) is unique.

Definition 2.11. The inverse of the Laplace transform of f(t) is Inverse Laplace
transform

L−1{L{f(t)}(s)} = f(t) =
1

2πi

∫ a+i∞

a−i∞
estL{f(t)}(s) ds (2.1)

where a is a real number which lies to the right of all singularities of L{f(t)}(s).

Equation 2.1 is known as the Bromwich contour inversion integral. Because of the many convo-
lutions that need to be computed during passage time analysis it is impossible to keep an exact
representation of the Laplace transforms of all distributions in the kernel of a SMP. Instead we
only keep those samples of the transforms L{f(t)}(s) in memory that are required to retrieve
f(t) for the values of t we are interested in. We denote the points for which we want to calculate
f(t) as t-points. Similarly we refer to Laplace transform points of L{f(t)}(s), which we need t-point

to recover f(t) for all required t-points, as s-points. The choice of s-points depends on the type s-point

of numerical Laplace inversion method we use to recover f(t) for a given set of t-points. As a
consequence of thms. 2.2 and 2.3 we can limit passage time analysis to those samples needed for
numerical inversion. This is highly beneficial as it simplifies the way we can represent Laplace
transforms in practice.

2.4.1 Numerical Laplace transform inversion

In [15] Bradley, Dingle, Harrison and Knottenbelt show how selected samples from a Laplace
transform of a pdf f(t) can be used to retrieve f(t) and F (t) using numerical Laplace inversion.
In practice this has the advantage that each Laplace transform of a pdf can be represented as a
set of complex numbers which has constant memory requirements no matter how complex the
underlying functions of the Laplace transforms become. In this section we present the Euler
Laplace inversion and the Laguerre Laplace inversion method, which are two methods that are Euler inversion

Laguerre inversionwell-suited for Laplace inversion after performing passage time analysis on SMPs. The following
description of the two methods is a summary of the description in [22].

2.4.1.1 Euler method

Suppose we want to recover f(t) for a given t-point. First note that we can rewrite eq. 2.1 by
substituting s = a+ iu

f(t) =
1

2πi

∫ ∞
−∞

e(a+iu)tL{f(t)}(a+ iu) du

and since
e(a+ui)t = eat(cos(ut) + i sin(ut))

we have

f(t) =
2eat

π

∫ ∞
0

Re(L{f(t)}(a+ iu)) cos(ut) du (2.2)

which now is a real-valued integral. Equation 2.2 can be approximated by∫ b

a

f(t) dt ≈ h

(
f(a) + f(b)

2
+
n−1∑
k=1

f(a+ kh)

)
(2.3)

with h = (b− a)/n. We set h = π/2t and a = A/2t, where A is an empirical constant of value
19.1. This gives the following alternating series

f(t) ≈ eA/2

2t
Re

(
L{f(t)}

(
A

2t

))
+
eA/2

2t

∞∑
k=1

(−1)kRe
(
L{f(t)}

(
A+ 2kπi

2t

))
(2.4)

20 2. BACKGROUND

To speed up the convergence of the alternating series we deploy Euler summation. Euler summa-
tion works as follows. We first calculate the first n elements of the series explicitly. Subsequently
we calculate the next m elements of the series as follows:

E(t,m, n) =
m∑
k=0

2−k
(
k

m

) n+k∑
j=0

(−1)jRe
(
L{f(t)}

(
A+ 2jπi

2t

))
where the truncation error of E(t,m, n) can be estimated by

|E(t,m, n)− E(t,m, n+ 1)|

Empirical studies have shown that n = 20, m = 12 yields a truncation error of 10−8. In practice
we have to calculate m + n + 1 Laplace transforms for each t-point we are interested in. This
implies that the more t-points we want the more s-points we need to consider when doing passage
time analysis with subsequent Euler Laplace inversion.

2.4.1.2 Laguerre method

The downside of the Euler Laplace inversion is the increasing computational burden that comes
with computing f(t) for a large number of t-points. The Laguerre method allows us to recover
f(t) for an arbitrary number of t-points using a fixed number of s-points that is independent of
the number of t-points. The disadvantage of the Laguerre method is that it is difficult to guess
the number of s-points needed, prior to performing passage time analysis. Also if the kernel of
a SMP contains distributions that have discontinuities, it is advisable to use Euler inversion as
Laguerre inversion works best on Laplace transforms of smooth distributions.

We can represent f(t) in terms of its Laguerre series

f(t) =
∞∑
n=0

qnln(t), t ≥ 0

where

ln(t) =
(

2n− 1− t
n

)
ln−1(t)−

(
n− 1
n

)
ln−2(t)

with l0 = et/2 and l1 = (1− t)et/2 and

qn =
1

2πrn

∫ 2π

0

Q(reiu)e−inu du (2.5)

where r = (0.1)4/n and Q(z) = (1 − z)−1L{f(t)}((1 + z)/(2(1 − z))). Equation 2.5 can be
approximated numerically using the trapezoidal rule

qn ≈
1

2nrn

Q(r) + (−1)nQ(−r) + 2
n=1∑
j=1

(−1)jRe(Q(reπji/n))

 (2.6)

We have |ln(t)| ≤ 1 for all n, hence the convergence of the Laguerre series depends solely
on the decay rate of qn as n becomes large. Convergence of qn can be improved by using
exponential dampening and scaling (see [22] for further information). Assume that by applying
these techniques we need p0 (say p0 = 200) terms until qn is negligible small. This allows us
to compute each qn with a fixed number of 2p0 trapezoids. Since qn is independent of t and
Q(z) only has one occurrence of L{f(t)} it can be seen that we can obtain f(t) for an arbitrary
number of t-points at the constant cost of 2p0 evaluations of L{f(t)}. As we do not know p0

in advance we need to guess p0, calculate the necessary Laplace transforms for the required
s-points and check if qn has already converged. If not we apply further scaling and calculate
Laplace transforms for further s-points until qn converges.

2. BACKGROUND 21

2.5 Measures in SMP analysis

This section introduces common measures in performance analysis research which are used for
studying SMPs and Markov chains originating from different areas of performance analysis such
as network and hardware performance, traffic simulation, simulation of biological processes and
various other fields. In this study we mainly look at the impact of aggregation techniques on
first-passage time analysis in SMPs at equilibrium. Other measures are briefly introduced in
this section for completeness but [22, 23] should be consulted for more detailed information.

2.5.1 Transient and steady-state distribution

Suppose we run a finite SMP with set of states S = {1, . . . , n} for a certain amount of time and
record the amount of time spent in every state. The transient distribution is a probability vector Transient distribution

π(t) = {π1, . . . , πn} for a given time t > 0, where each element πi represents the proportion of
time t that the SMP has spent in state i. Note that π(t) is dependent on the starting state of
the SMP. Informally we can say that the steady-state distribution describes the probability of Steady-state

distributionbeing in a particular state in the SMP, given that the SMP has run for a very long time, i.e.
t → ∞. In contrast to the transient distribution the steady-state distribution is independent
of the starting state provided that every state can reach every other state in the reachability
graph of the SMP. In an empirical experiment we say that an SMP has reached steady-state or
equilibrium state when the transient distribution has converged to the steady-state distribution. Equilibrium state

For a formal definition of the steady-state distribution see pp.19-21 in [22].

2.5.2 Passage time analysis in semi-Markov models

Another common measure in performance analysis is the probability distribution of the time it
takes to get from one system state to another. This distribution is known as the first-passage
time distribution or simply the passage time distribution. In terms of SMPs the first-passage time First-passage time

distributionis a probability distribution of the fastest transition time from any state i ∈~i to any state j ∈ ~j
where~i and ~j are the set of source and target states respectively. Note that we can measure the
transient first-passage time distribution as well as the first-passage time distribution at equilib-
rium. In the following we assume that we deal with the steady-state case unless stated otherwise.

In most semi-Markov models there is an infinite number of paths from each i ∈~i to each j ∈ ~j.
Each of these paths has a probability of being chosen. Also since the firing delay distribution
of all transitions in a particular path are known, we can compute the passage time distribution
of that path, i.e. the probability distribution over the time it takes to walk the entire path, by
convolving the sojourn time distributions of all transitions that form the path. Since the reach-
ability graph may have loops, it is possible that certain transitions contribute multiple times
to this distribution. The passage time distribution from the set of source states ~i to the set of
target states ~j is obtained by branching the passage time distributions of all possible paths from
states in~i to states in ~j. To ensure that more probable paths have a greater impact on the final
passage time, we need to weight each path’s passage time distribution by its path probability
before branching it. In the following we formally describe the calculation of first-passage time
distributions in SMPs at equilibrium.

Definition 2.12. Suppose we have a SMP with state space S and kernel R(i, j, t), 0 < i, j ≤ |S|.
We define the first-passage time from state i to the set of states ~j in a time homogeneous SMP,
i.e. in a SMP with time invariant kernel, as follows

Pi~j = inf{u > 0 | Z(u) ∈ ~j ∧ Z(0) = i}

where Z(u) is the system state at time u. Pi~j has probability density function fi~j(t) and cdf

Fi~j(t1) = P (Pi~j < t1) =
∫ t1

0

fi~j(t) dt

22 2. BACKGROUND

We write the Laplace transform of fi~j(t) as Li~j(s) = L{fi~j(t)}(s). Since the kernel of the SMP
is defined in terms of the cdfs of the sojourn time distributions for all transitions we use the
Laplace-Stieltjes transform to define Li~j(s) in terms of Fi~j [15, 22].

Li~j(s) =
∫ ∞

0

e−st dFi~j(t) =
∫ ∞

0

e−st
(
d

dt
Fi~j(t)

)
dt =

∫ ∞
0

e−st fi~j(t) dt

Analogously we denote the Laplace transform of the weighted sojourn time density function for
the transition from state i to k by

r∗ik(s) =
∫ ∞

0

e−st dR(i, k, t) (2.7)

The Laplace transform of fi~j(t) is

Li~j(s) =
∑
k∈S\~j

r∗ik(s)Lk~j(s) +
∑
k∈~j

r∗ik(s), 1 ≤ i ≤ |S| (2.8)

To solve eq. 2.8 we need to solve a set of |S| linear equations regardless of the number of
states i for which we actually need to know Li~j(s). Although there exists an exact solution to
the system of linear equations, in practice we only approximate the real solution. In order to
calculate L~i~j(s), the Laplace transform of the steady-state first-passage time pdf from the set
of states ~i to the set of states ~j, we calculate

L~i~j(s) =
∑
k∈~i

αkLk~j(s) (2.9)

where weight αk is the conditional probability at equilibrium that the system is in state k given
that the system is in the set of states ~i.

αk =
{
πk/(

∑
j∈~i πj) k ∈~i

0 otherwise
(2.10)

2.6 Numerical methods for first-passage time analysis

The set of |S| = N linear equations needed to compute Li~j(s), for all i ∈ S can be written in
matrix form as follows [9, 15, 22]

1 −r∗12(s) . . . −r∗1N (s)
0 1− r∗22(s) . . . −r∗2N (s)
0 −r∗32(s) . . . −r∗3N (s)
...

...
. . .

...
0 −r∗N2(s) . . . 1− r∗NN (s)

L1~j(s)
L2~j(s)
L3~j(s)

...
LN~j(s)

 =

r∗
1~j

(s)
r∗
2~j

(s)
r∗
3~j

(s)
...

r∗
N~j

(s)

 (2.11)

where r∗
i~j

(s) =
∑
k∈~j r

∗
ik(s) like in eq. 2.8.

2.6.1 Iterative approach

It is possible to solve eq. 2.11 using standard linear equation solvers such as Jacobi, Successive
over relaxation (SOR) or Conjugate gradient square(CGS). Although both Jacobi and CGS can
be parallelised, the iterative approach described in this section has been shown to be the best
algorithm for solving systems of linear equations in passage time analysis[22].

2. BACKGROUND 23

Definition 2.13. Using the same notation as in defn. 2.1 we define the rth transition first-
passage time from state i to the set of states target states ~j as rth transition

first-passage time

P
(r)

i~j
= inf{u > 0 | Z(u) ∈ ~j ∧ 0 < N(u) ≤ r ∧ Z(0) = i} (2.12)

i.e. the time taken to enter a state in ~j for the first time via a path that has at most r state
transitions starting in state i at time 0. Let L(r)

i~j
(s) be the Laplace transform of P (r)

i~j
and

L
(r)
~j

(s) =
(
L

(r)

1~j
(s), L(r)

2~j
(s), . . . , L(r)

N~j
(s)
)

(2.13)

Similar to computing reachability in graphs we can compute L(r)
~j

(s) as

L
(r)
~j

(s) = U
(
I + U ′ + U ′2 + · · ·+ U ′(r−1)

)
e~j (2.14)

where U is a matrix with elements upq = r∗pq(s), U
′ the same matrix as U with all rows j ∈ ~j

being all zero and e~j the column vector that has 1’s in all rows j ∈ ~j and 0’s everywhere else.
The initial multiplication with U is needed in case the set of source states intersects with the
sets of targets states, which happens if we time cycles. Matrix U ′ ensures that paths end as
soon as they have reached the set of target states. It is straightforward to see that

Pi~j = P
(∞)

i~j
and therefore Li~j(s) = L

(∞)

i~j
(s) (2.15)

Having computed L
(r)
~j

(s) we calculate L(r)
~i~j

(s)

L
(r)
~i~j

(s) = αL
(r)
~j

(s) (2.16)

where vector α is as defined in eq. 2.10. In practice we change the calculation of L(r)
~i~j

(s) slightly.
First we calculate vector ν0

ν0 = αU (2.17)

and subsequently
νi = νi−1U

′ , i ≥ 1 (2.18)

We sum all νi in ν

ν =
r∑
i=0

νi (2.19)

and compute
L

(r)
~i~j

(s) = νe~j (2.20)

as soon as ν has converged. We say that ν has converged after the ith iteration if

|Re(νij)| < ε ∧ |Im(νij)| < ε (2.21)

for all vector elements νij of νi for some ε > 0. All our experiments use ε = 10−16 as observations
have shown that ε = 10−8 does not always ensure convergence. This notion of convergence is
sensible as we expect the absolute values of the elements in νi to decrease as i becomes larger
since νi always represents paths of length i, which should have lower path probabilities than
paths of length < i and thus contribute less to the final Laplace transform of the s-point.

It is worth noting that although a single iteration of the passage time analyser requires at
most as many complex multiplications as there are non-zero elements in the matrix, empirical
evidence in [9] shows that the actual actual complexity of a single iteration is O(N logN) when
the matrix multiplication is done in parallel.

24 2. BACKGROUND

2.7 Exact state aggregation

As mentioned in sect. 2.6 the iterative passage time algorithm is preferable to other numerical
linear equation solvers as it is substantially faster in large SMPs. However since the complexity
of the iterative passage time algorithm is O(|S|log(|S|)), the runtime will increase faster than
the size of the state space S[15]. Moreover in large systems, reducing the number of intermediate
states between the set of source states~i and the set of target states ~j, i.e. states that are neither
in ~i nor ~j, could potentially make the first-passage time calculation faster, provided the we do
not increase the number of transitions while aggregating intermediate states. In [1] Bradley,
Dingle and Knottenbelt describe a method which aggregates individual states without changing
the passage time distribution of the SMP. We refer to this technique as exact state aggregation
or exact state-by-state aggregation of the SMP .Exact state-by-state

aggregation

N i

Mi

i

i

Mi

N i

Figure 2.4: On the left hand side the we see the transition diagram of the SMP before the
aggregation of state i. The right hand side shows the transition diagram after state i has been
aggregated.

Suppose we want to aggregate state i. This state has a set of predecessor states Mi (i.e. statesPredecessor states

that have outgoing transitions to state i) and successor states Ni (i.e. states that state i hasSuccessor states

outgoing transitions to). To aggregate this state using the exact state aggregation technique
described in [1] we need to perform the following two steps. Firstly we have to remove any
transition from state i to itself. If state i has no such transition then we can skip this step. If it
does we need to distribute the transition probability and its firing delay among the remaining
outgoing transitions of state i. A state i with a self-cycle is its own predecessor and successor
state, hence Mi ∩ Ni ∩ {i} = {i}. We start by normalising the probabilities of the remaining
outgoing transitions of state i. Let pij denote the probability of a transition from state i to
state j then

p′in =
pin

1− pii
is the new probability of the transition from i to n for all n ∈ Ni\{i} after we have removed
the self-cycle. Next we add the delay of the self-cycle to the sojourn time distributions of the
remaining transitions

L′in(s) =
1− pii

1− piiLii(s)
Lin(s)

Having removed the cycle we delete the transition from i to itself from the transition graph. We
can now assume that Mi ∩Ni ∩{i} = ∅. The next thing we need to do is to cut the connections
between state i and its predecessor and successor states. To do this we first compute the
probability and the Laplace transform of the passage time for each two-step path from m to n
with m ∈ Mi and n ∈ Ni that has state i as its middle state. To calculate these distributions,
we convolve the sojourn time distributions of all two-step transitions of the form m → i and

2. BACKGROUND 25

i → n. Since we represent all sojourn time distribution in terms of their Laplace transform we
simply calculate

L′mn(s) = Lmi(s)Lin(s)

where L′mn(s) is the Laplace transform of the convolution of the two pdfs of the sojourn time
distribution of the two transitions. If there already exists a direct transition from m to n
with sojourn time distribution Lmn(s) then we have to branch it with the two-step transition
to ensure that no information is lost when state i is removed. To branch two transitions we
need to compute their combined probability as well the Laplace transform of the sojourn time
distribution for the new transition. The new transition probability of the transition from m to
n is simply

p′′mn = pmn + pmipin

the sojourn time is a weighted average of the two Laplace transform samples

L′′mn(s) =
pmn
p′′mn

Lmn(s) +
pmipin
p′′mn

L′mn(s)

If there exists no direct transition from m to n then we simply take the two-step transition as the
new transition from m to n. Note that the sum of the probabilities of all outgoing transitions of
state m add up to one once we have computed p′′mn for all n ∈ Ni. Having computed all possible
transitions from a particular m to all n ∈ Ni we can remove the transition from m to i from the
transition graph of the SMP. We repeat the same process for all m ∈Mi. After that we simply
remove state i along with all its outgoing transitions from the transition graph. In [1] it has
been shown that performing state aggregation in this manner does not influence the result of
the final first-passage time calculation as long as none of the source or target states is aggregated.

Figure 2.5: Reducing a complete 4 state graph to a complete 3 state graph [1].

In sect. 4.1.2 we introduce a formula that allows us to compute the exact number of new
transitions created by the exact aggregation of a state i. In essence this is the number of new
transitions between predecessor and successor states after the aggregation minus (|Mi\{i}| +
|Ni\{i}|+ |Mi ∩Ni ∩ {i}|), where a new transition between a predecessor and a successor state
is a transition between a pair of predecessor and successor states that did not exist prior to the
aggregation of state i (see fig. 4.1). It is easy to see that after the aggregation of state i each
predecessor of i is connected to every successor of i (see fig. 2.4). Unless there are many direct
connections between predecessor and successor state it is likely that the aggregation of state

26 2. BACKGROUND

i creates new transitions in the transition graph of the SMP. Experiments in [1] have shown
that exact state-by-state aggregation creates a large number of temporary transitions during
aggregation, even if we choose the order in which we aggregate intermediate states intelligently
using techniques such as the fewest-paths-first state sorting technique (see sect. 4.1.1). Extra
transitions are highly unwanted as they require additional memory and increase the amount of
computation needed to perform aggregation. In practice extra transitions imply a fill-in of the
adjacency matrix that represents the reachability graph of the SMP. In the following we use the
terms transition matrix fill-in and transition explosion interchangeably, as there is a bijectiveTransition matrix

fill-in mapping between the two representations of the SMP. In chapter 4 we present new techniques for
finding a state ordering for state-by-state aggregation which significantly reduces the transition
matrix fill-in compared to existing methods. These techniques are based on sparse graph/matrix
partitioning algorithms which we use to partition the reachability graph/adjacency matrix of
the SMP so that we can subsequently aggregate entire partitions of states using state-by-state
aggregation.

2.8 Graph partitioning

Graphs are widely used models for representing data dependencies. The close relationship be-
tween data and computations performed on sets of data naturally relates to the structure of
graphs [2]. The agility of graph models allows them to be applied to a vast number of compu-
tational challenges, which explains the ubiquity of graph models in computer science. We can
easily map data to vertices and use edges to model computations between the data-vertices,
especially when the data is available in the form of an adjacency matrix. Graph partitioning
techniques can be used on the resulting graph. The partitioning mapping produced by the parti-
tioner can be applied to partition the adjacency matrix. Two main applications that have driven
the development of graph models for efficient partitioning are VLSI circuit design and parallel
computation. In VLSI circuit design [16] common objectives are the minimisation of the wire
length between the components in the circuit, as well as the optimisation of the intercommuni-
cation between the individual components and the minimisation of silicon layers in microchips.
Similarly for parallel algorithms we try to minimise the total volume of communication between
processors, while balancing various other properties between partitions to ensure for instance,
that all processors are equally busy. Further application domains of graph partitioning are neu-
ral net simulation, particle simulation and data mining [2, 7, 9, 10, 18] just to name a few. All
graph partitioning problems lie in NP [2, 4, 7, 9, 10, 16] some problems such as the optimal
k-way hypergraph partitioning are even NP-complete [9]. All graph and hypergraph partitioning
tools therefore use heuristics to find solutions that are close to the optimal partitioning.

Definition 2.14. We say that Π = {Π1,Π2, . . . ,Πk} is a k-way partitioning of the set of verticesk-way partitioning

V of a graph Γ s.t. Πi ∩Πj = ∅, 0 < i < j ≤ k and
⋃k
i=1 Πi = V .

2.8.1 Graph Models

As graph models are used in many different areas of research, several graph models have been
developed over the course of time. The collection of graph representations presented in this
section is by no means exhaustive, but it gives an overview of commonly used models. One
important thing to note is that in most applications we use graphs to represent sparse matrices.Sparse matrix

A matrix is considered sparse if the vast majority of its entries is zero. The sparsity of the
matrix is important for successful application of graph models in practice, as for large dense
matrices the memory requirements of the sparse matrix representation becomes too high. Hence
from now on we assume that all matrices mentioned in this report are sparse unless explicitly
stated otherwise.

2. BACKGROUND 27

2.8.1.1 Standard (undirected) graphs

Definition 2.15. Let Γ(V,E) be an undirected graph with vertex set V and the set of edges
E ⊆ V × V . To represent a n × n matrix A using a standard graph, we assign the rows to be
the vertices of Γ(V,E), i.e. V = {row1, row2, . . . , rown}. For every non-zero element aij in A
the model has two edges eij = (rowi, rowj) ∈ E and eji = (rowj , rowi) ∈ E.

A partitioning algorithm allocates each row to a certain partition Πi while optimising certain
objectives under given balance constraints for all partitions in Π. However, as Hendrickson
notes in [3] this type of graph has some severe shortcomings as it can only be used to represent
square matrices.

2.8.1.2 Bi-partite graphs

To overcome the limitations of the standard undirected graph model, Kolda and Hendrickson
came up with a more expressive model, which uses a bi-partite graph to represent matrices [2].

Definition 2.16. Let Γ(V,E) be a graph with vertex set V = V1 ∪ V2, V1 ∩ V2 = ∅ and the
set of edges E ⊂ V1 × V2. Assume A is a m × n matrix, and let V1 = {row1, . . . , rowm}
and V2 = {col1, . . . , coln}. For each nonzero element aij in A we have a corresponding edge
eij = (rowi, colj) ∈ E.

Despite the fact that the bi-partite model overcomes the limitations mentioned in defn. 2.15,
the model was superceeded by the hypergraph model, which gives a far more intuitive way
of calculating the total communication volume[2, 4], which is an important metric for graph
partitioning algorithms (see sect. 2.8.2.2).

2.8.1.3 Hypergraphs

Recent graph partitioning tools use hypergraph representations for the underlying data. This has Hypergraph

two major reasons. The first one is that hypergraphs are much more flexible than other types of
graphs and can therefore be applied to a vast range of problems. Secondly in [4] U. Catalyurek,
C. Aykanat show an intuitive relationship between hyperedge cuts and the total communication
volume (see sect. 2.8.2) of a partitioning. The hyperedge cut is equivalent to the boundary
cut metric introduced in sect. 2.8.2.2. In experiments they show that partitioners which use the
hyperedge-cut metric produce far better partitionings than partitioners that deploy the edge-cut
(sect. 2.8.2.1) metric.

Definition 2.17. A hypergraph Ψ(V,H) has a vertex set V and a hyperedge set H ⊂ P (V), a
subset of the powerset of V .

In literature hyperedges are sometimes referred to as nets and vertices spanned by a hyperedge
as pins. This has historical reasons because many of the early applications of hypergraphs were
in the field of VLSI circuit partitioning. Various 1D and 2D hypergraph representations have
been developed for different types of matrices to create tailored representations for different
problems [4, 6, 7, 10, 11, 12, 18, 19]. In 1D row-wise hypergraph partitioning rows of the
matrix become the vertices and each column is represented by a hypernet. A vertex lies in
the hypernet of a column if its corresponding row has a non-zero entry in that column. In
1D column-wise hypergraph partitioning the roles of rows and columns are swapped. In 2D
hypergraph partitioning every non-zero element in the matrix becomes a vertex and both rows
and columns are interpreted as hypernets. In most applications 1D hypergraphs are preferred to
2D representations although 2D hypergraphs allow more fine-grained partitioning. This is due
to the fact that 2D representations require more memory and are also more computationally
expensive to partition.

28 2. BACKGROUND

2.8.2 Partitioning metrics

It is computationally infeasible to search for optimal hypergraph partitionings as this problem
is NP-complete. The function and the quality of heuristics used to find good approximations to
the optimal partitioning vary between tools and applications domains. Therefore we will only
introduce the two most commonly used metrics, which approximate/represent the total volume
of communication.Total volume of

communication
Example. When partitioning matrices for parallel computation of a matrix vector product
Ab = v, we need to distribute the data elements of A, b and v between the processors. Assume
processor p1 needs to compute rowi of A. If it has all necessary elements of b and element
vi allocated then it can compute vi without any extra communication. If, however, element
aij is non-zero and bj is allocated to processor p2, then p2 has to send the value of bj to p1

before p1 can calculate vi. This exchange is called pre-communication. Similarly we might
need post-communication when we divide our matrix into columns, or even pre- and post-
communication in case we have a 2-dimensional graph partitioning [4, 6, 10, 14]. The total
amount of communication in this case is the amount of vector elements that need to be exchanged
between processors during pre- and post-communication of each matrix vector multiplication.

2.8.2.1 The edge-cut metric

In a k-way graph partitioning Π = {Π1,Π2, . . . ,Πk} the edge-cut metric represents the numberEdge-cut

of edges whose vertices lie in two different partitions. Formally that is

|{(vi, vj) | (vi, vj) ∈ E ∧ vi ∈ Πr ∧ vj 6∈ Πr}|

There exist many variations of this metric, some algorithms for instance accumulate the weights
of edges that cut(i.e. cross) partition boundaries rather than counting the number of edges that
cut partitions[3]. The edge-cut metric is used in many standard graph partitioning tools such as
MeTiS and Chaco[2], but it came under scrutiny when Hendrickson pointed out in [3] that it was
flawed since it only approximates the total communication volume. Whilst the edge-cut metric
gives good approximations for matrices representing certain differential equation problems, it is
less accurate for matrices originating from other problems.

Example. To illustrate why the edge cut metric does not represent the exact volume of commu-
nication let us assume the following case. Imagine a parallel sparse matrix vector multiplication
algorithm as described above. Assume we have allocated bi to processor p1 and processor p2

needs bi to calculate rowf and rowg. The edge-cut metric will be 2 as we have two edges cut-
ting the boundaries, however the true communication volume is actually 1, as we only have to
transfer bi once.

The example shows that the accuracy of the edge-cut metric heavily depends on the structure
of the underlying matrix, which is not ideal as it restricts the use of the metric to specific types
of problems.

2.8.2.2 The boundary-cut or hyperedge-cut metric

The boundary-cut metric measures the total communication volume of a k-way partitioning ΠBoundary-cut

exactly. Optimising this metric is hard [2, 3, 4, 10, 11, 12, 14, 16, 17], especially as we might
also need to

• balance the amount of communication between partitions, to avoid heavy communication
loads on some partitions.

• take into account that latency costs for setting up an initial communication channel be-
tween partitions (e.g. networks, processors, FPGAs, etc.) are often more expensive than
transferring larger volumes.

• balance the size of partitions

2. BACKGROUND 29

As it is an exact measure of the total volume of communication the boundary-cut metric has
become the standard metric for all algorithms that seek to minimise the partition intercom-
munication. Calculating the boundary-cut metric in hypergraphs is straightforward [4]. All we
need to do is accumulate the number of cuts for every hyperedge in the hypergraph∑

h∈H

λ(h)− 1

where λ(h) is the number of partitions that hyperedge h connects. This formula is also referred
to as the hyperedge-cut metric. Hyperedge-cut

Note. Hypergraph partitioning tools such as PaToH [4], hMetis [18] and Parkway[14] offer a
vast number of configurations, so that users can optimise the partitioner for specific types of
matrices.

2.8.3 Recursive bi-partitioning vs. k-way partitioning

Recursive bi-partitioning algorithms split a graph multiple times. Starting on the flat, i.e. entire
graph, they first create 2 partitions which are further divided into 4, 8, 16, . . . partitions. Recur- Flat graph

sive bi-partitioning is a greedy algorithm, i.e. once two partitions have been split the algorithm
cannot move vertices between them in later stages of the recursion. A k-way partitioner on
the other hand divides a graph into k partitions and consequently moves vertices between all
k partitions until no further improvement can be achieved. In [7] Trifunovic and Knottenbelt
show that k-way partitioning algorithms can create better partitionings for large k than recur-
sive bi-partitioning algorithms. On the other hand recursive bi-partitioning tends to be faster
than k-way partitioning as k-way partitioners need to check more moves when doing iterative
improvement on the partitioning.

2.8.4 Objective functions

Balance constraints and optimisation objectives are needed by hypergraph partitioners to com-
pute gain and balance values for changes made during the iterative refinement phase of the graph Gain

partitioning process. These objectives vary depending on the application of the hypergraph par-
titioner. A typical balance constraint is the the weight of partitions, i.e. the computational load
of a partition. This ensures for instance that processors in a parallel cluster need to perform a
similar amount of computation. Optimisation constraints, for example, are the minimisation of
the total communication volume and the minimisation of the maximum communication volume
per partition. In practice algorithms often use two or more objectives (i.e. multi-constraint
partitioning) to produce better graph partitionings.

2.8.5 Flat vs. Multilevel hypergraph partitioning

There are different paradigms when it comes to hypergraph partitioning. The most intuitive
one is the flat partitioning approach which creates a partition by analysing the entire graph
without preprocessing. Usually these algorithms start building an initial partitioning around
randomly chosen vertices. Subsequently variations of Kernighan-Lin(KL) [16] and Fiduccia-
Mattheyses(FM)[13] iteratively refine the initial partitioning by moving vertices between the
partitions. The downside of flat partitioning algorithms is that their performance and the quality
of their solution decreases rapidly as the problem size increases. Because of these shortcomings,
modern hypergraph partitioning tools such as hMeTiS, Parkway and PaToH implement the
multilevel approach which gives better partitionings in less time for large graphs due to the
graph coarsening phase [7, 12, 18, 19].

2.8.6 Multilevel hypergraph partitioning

The multilevel approach involves the following three consecutive phases

30 2. BACKGROUND

• Coarsening (clustering) phase

• Initial partitioning of the coarsened graph

• An uncoarsening and iterative refinement phase

2.8.6.1 Coarsening phase

The aim of the coarsening phase is to produce a compact version of the graph that has a topol-
ogy similar to the one of the original graph. The more the coarsenend graph resembles the
initial graph the better the initial partitioning will be. Most hypergraph clustering algorithms
create a series of successively coarser graphs {Ψ(V,H),Ψ(V1, H1), . . . ,Ψ(Vcoarse, Hcoarse)} until
a minimal threshold for the number of vertices in the coarsened graph has been reached. There
are many techniques for efficient hypergraph coarsening such as Heavy Connectivity Matching
(HCC), Heavy Connectivity Clustering (HCC) [4], edge-coarsening (EC) [18] and first choice
(FC) [12].

The EC algorithm for instance works as follows. At the beginning of level i of the coarsening
phase all vertices of the hypergraph Ψ(Vi, Hi) are unmarked. A random vertex vr is chosen and
clustered with the unmarked adjacent vertex vs for which the gain(vr, vs) is highest among all
unmarked vertices adjacent to vr. The gain function gives a heuristic that can be used to decide
whether two vertices vr, vs ∈ h are a good match (see [4, 12, 18] for examples of gain functions).
A new cluster vertex is then formed and marked so that it cannot merge with any other vertex
at level i of the coarsening phase. The sets of hyperegdes describing the in-flux and out-flux of
the two vertices are joined, too. All references to vr and vs in existing hyperedges are updated
to point to the newly formed cluster vertex. Singleton hyperedges are dropped altogether. If vr
has no suitable neighbour to cluster with, it becomes a marked singleton cluster. Once there
doesn’t exist any further unmarked vertex that has an unmarked neighbour, a new level starts
and all vertices become unmarked again. The process ends when the graph has been coarsened
to a predefined number of vertices.

The FC clustering is similar to the EC algorithm. The difference being that FC allows unmarked
vertices to merge with marked clusters of vertices. This requires some extra control at each
coarsening level to ensure that the amount of vertices reduces by a fixed ratio at each level.
Additionally the gain function has to penalise large clusters to prevent polarisation towards
particularly large clusters. In either method the mappings from each coarsening level to the
next have to be stored in memory to allow uncoarsening later.

2.8.6.2 Initial partitioning phase

The initial partitioning is usually computed using standard flat graph partitioning. However,
many of the flat partitioners choose their seeds for the partitions in a non-deterministic man-
ner. Thus running the algorithm multiple times on the initial unpartitioned coarsened graph
results in partitionings that vary in quality. Bad choices at this level can lower the quality of
later partitionings significantly as a bad initial partitioning is propagated to later stages of the
uncoarsening phase, where the algorithm does fine grained improvements only. In [18] Karypis
et al. suggest a way to avoid this problem. In their implementation of hMeTiS they create
various initial partitionings, which are uncoarsened concurrently. At each refinement level they
then keep all partitionings that have cut sizes within 10% of the best partitioning at that level.
This technique has been shown to improve the quality of the partitionings at the cost of a small
computational overhead, as the number of alternative partitionings is only high when the graph
is coarse and decreases as the partitionings are uncoarsened since many partitionings are filtered
out by the 10% cut size requirement.

2. BACKGROUND 31

2.8.6.3 Uncoarsening and iterative refinement phase

Once an initial partitioning has been calculated, variations of the KL or the FM algorithms are
used to refine the initial partitioning. In the case where we create multiple initial partitionings
we have to uncoarsen and refine each of them. The KL or the FM algorithm then optimises
partitionings based on given optimisation objectives and balance constraints. Iterative refine-
ment is run at each level of the uncoarsening phase. The iterative refinement algorithm stops
as soon as it converges, i.e. when no legal vertex move brings any more gain. The graph is
then uncoarsened to the next finer level. The algorithm ends as soon as the iterative refinement
algorithm converges on the partitioning of the initial flat graph. As iterative refinement in mul-
tilevel partitioning algorithms is initially performed on coarse graphs and gradually moves more
fine grained clusters as the graph is uncoarsened, the multilevel approach is less likely to be
trapped in a local minima/maxima, which easily happens to flat hypergraph partitioners. By
using the multilevel paradigms for hypergraph partitioners we thus get the hill-climbing feature
for free [18, 19].

2.8.6.4 Multiphase refinement with restricted coarsening

A possible add-on is the multiphase refinement technique. This technique takes the initial
partitioning and repeats the multilevel k-way hypergraph partitioning algorithm. The difference
of the second partitioning run is that the coarsening algorithm only allows clustering of vertices
that lie in the same partition. More information on the multiphase refinement can be found in
[18].

32 3. PARTITIONING THE SMP STATE SPACE

CHAPTER 3

Partitioning the SMP state space

In [1] exact state-by-state aggregation is performed on the unpartitioned state space of SMP
transition graphs. In this chapter we introduce different graph partitioning techniques and
evaluate the effect of aggregating entire partitions of states with respect to the fill-in of the
SMP transition matrix caused by the aggregation. In particular we compare the number of
transitions in the SMP transition matrix before and after the aggregation of each partition. From
now on we refer to these observations as partitionwise observations. Additionally we comparePartitionwise

observations different partition sorting methods, which determine an order in which individual partitions are
aggregated. Our main aim is to find partitionings that are suitable for aggregation techniques
that help us to perform faster passage time calculation.

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

F
ro

m
 s

ta
te

To state

Figure 3.1: Unpartitioned transition matrix of voting model with 10300 states.

3. PARTITIONING THE SMP STATE SPACE 33

3.1 SMP transition matrix partitioners

The following graph partitioners are used to divide the state space into partitions of states.
When doing passage time calculations we cannot aggregate source and target states as this
might affect the result of the passage time calculation. We thus assume that we only partition
intermediate states, i.e. reachable states in the SMP transition graph that are neither source Intermediate state

nor target states. We further assume that we can divide n intermediate states into k partitions,
such that k|n and that the state space is enumerated starting with state 0.

 313

 2001

 3710

 5282

 6994

 8728

 313 2001 3710 5282 6994 8728

F
ro

m
 s

ta
te

To state

Figure 3.2: PaToH2D 6-way partitioned transition matrix of voting model with 10300 states.
Non-zero elements in rows denote outgoing transitions from states. Non-zero elements in diag-
onal blocks represent partition internal transitions. Note that the state numbering is a permu-
tation of the numbering in fig. 3.1.

3.1.1 Row striping

Definition 3.1. Row striping is a simple partitioning technique which splits the n rows of the Row striping
partitionertransitions matrix into k partitions, each containing n/k elements. In terms of partitioning the

state space of a semi-Markov model this implies that the first of the k partitions contains the
first n/k intermediate states, that is the n/k intermediate states with the lowest indices. The
second partition consequently contains the next n/k intermediates states and so on. The kth

partition contains the n/k intermediate states with the highest indices.

3.1.2 Graph partitioner

Definition 3.2. Graph partitioning is a method which partitions an undirected graph. Since Graph partitioner

SMP graphs are usually directed graphs we have to introduce the notion of a weight for each
transition in order to express connectivity more accurately. To represent the SMP transition
matrix as a graph for the purpose of graph partitioning we represent each state as a vertex.
There is an edge between two vertices vi, vj if their underlying states are connected in the SMP
transition graph, i.e. if row i in the transition matrix has a non-zero element aij in column j
or row j has a non-zero element aji in column i. If both states can reach each other in a 1-step

34 3. PARTITIONING THE SMP STATE SPACE

transition, i.e. if both aij and aji are non-zero, then this edge has weight 2, otherwise it has
weight 1.

Graph partitioners are optimised for partitioning sparse matrices for parallel matrix vector
multiplication. They try to minimise the edge-cut metric (see sect. 2.8.2.1) while balancing the
number of non-zero elements in each partition. We use the MeTiS library [24], a sequential k-way
graph partitioning utility library, for our implementation of the graph partitioner. Unfortunately
MeTiS does not support directed graphs, which is why we represent the SMP as an undirected
graph in this case. To keep the computational overhead of the partitioning low, we weight all
edges with 1. Note that this uniweight approach potentially produces worse partitioning results
than the edge weighting approach described in the graph partitioning definition.

3.1.3 Hypergraph partitioner

Definition 3.3. A hypergraph partitioner partitions hypergraphs using the multilevel approachHypergraph
partitioner discussed in sect. 2.8.1.3. To use hypergraph partitioners on the SMP transition matrix we

first translate the underlying directed graph into a hypergraph. As for the graph partitioner we
define the states of the SMP to be the vertices of the hypergraph. We distinguish between 1D
hypergraph partitioning where the hypernets either represent the successor states of each state
(rows) or the predecessor states of each state (columns) and the 2D approach, where we use both
successor and predecessor hypernets. Note that our definition of 2D hypergraph partitioning
differs slightly from the definition commonly found in literature, where each non-zero matrix
element becomes a vertex in the 2D hypergraph. In our case 2D simply implies that we use
information from both rows and columns of the SMP transition matrix to construct hypernets.

Likewise graph partitioners hypergraph partitioners are optimised for parallel sparse matrix vec-
tor multiplication problems. In contrast to graph partitioners, hypergraph partitioners minimise
the boundary-cut metric (see sect. 2.8.2.2). The different hypergraph partitioning methods used
in our experiments are based on the PaToH library [25].

3.1.4 Next-Best-State-Search (NBSS) partitioner

Definition 3.4. The Next-Best-State-Search (NBSS) partitioner attempts to create partitionsNext-Best-State-
Search (NBSS)

partitioner
by naturally extending a partition from an initial seed state. Starting from a random interme-
diate state the NBSS partitioner adds all successor states of that particular state into a priority
queue. The states in the queue are in increasing order with respect to the number of extra suc-
cessor states they would introduce if they were added to the partition. To determine this value
we have to keep track of the successor states of the partition as well as the partition internal
states. Every time a state is added to the partition we have to add all its successor states that
are not partition internal states to the list of successor states of the partition and also add them
to priority queue of states. The priority queue then has to be reordered. Consequently we add
the next best state to the partition. This is done until the partition has exceeded a predefined
number of successor states. Note that although only intermediate states can be added to the
partition, it is possible that some of the predecessor and successor states of the partition are
source and target states.

This partitioning method aims at generating a partition that is well-suited for aggregation
techniques described in chapter 5. Although it is possible to partition the entire state space
using this technique, we only use it to find a single partition. We thus do not compare it to the
other partitioners in this chapter.

3.2 Aggregation of partitions

Ideally aggregating a partition results in a transition matrix with fewer transitions. In the
experiments conducted for the discussion in this section, we aggregated all k partitions, such
that only the source and target states of the SMP remained. When applying aggregation

3. PARTITIONING THE SMP STATE SPACE 35

algorithms in practice this might not be the best approach as the computational costs as well
as the memory costs for complete aggregation can be very high. In sect. 3.2.2 we introduce
techniques that allow us to predict when it is best to stop aggregation.

3.2.1 Partition sorting strategies

Having partitioned the state space we have to decide an order in which to aggregate the par-
titions. We compare three methods with respect to the partitionwise number of transitions in
the transition matrix that each sorting method produces for a given partitioning.

3.2.1.1 Fewest-paths-first (FPF) sort

FPF sort has been inspired by the fewest-paths-first state aggregation technique described in Fewest-Paths-First
(FPF) sort[1]. To choose a partition for aggregation using FPF sort we simply calculate the FPF-value

of all available partitions and choose the one with the lowest FPF-value. Suppose a partition
has m predecessor states, i.e. states that lie outside the partition but have outgoing transitions
to states in the partition and n successor states, i.e. states that lie outside the partition and
have incoming transitions from states in the partition. The number of transitions from the
predecessor to the successor states in the SMP transition matrix after the aggregation of the
partition is mn if all m predecessor states can reach all n successor states via paths through
the partition. In this case we say that the partition is fully connected . The FPF-value of the Fully connected

partition is:
mn− outgoing transitions

where outgoing transitions is the total number of outgoing transitions from states in the par-
tition. FPF sort is very fast as the calculation of mn and outgoing transitions is inexpensive,
provided the transition matrix is represented as a sparse row-matrix.

3.2.1.2 Enhanced-fewest-paths-first sort

Despite a being a good estimator for the total number of new transitions created after the
aggregation of a partition, the FPF-value does not take into account the number of incoming
transitions from the predecessor states of the partition. Further it does not count the existing
transitions between the predecessor and successor states of the partition. The total number of
new transitions after the aggregation can thus be estimated more accurately using enhanced-
fewest-paths-first (EFPF) sort . The EFPF-value is: Enhanced-Fewest-

Paths-First (EFPF)
sortmn− outgoing transitions− incoming transitions− existing transitions

Even though it is more expensive to calculate, our experiments show that EFPF sort usually
gives better results than FPF or choosing the partitions in a random order. Figure 3.3 shows a
situation where EFPF sort produces better results than FPF and Random sort.

The EFPF-value of a partition is only an upper bound for the total number of new transitions
in the transition matrix after the aggregation of a partition. This is because there may not be
a path from every predecessor state to every successor states with all intermediate states of the
path being partition internal states. Even for small values of m and n this may cause significant
differences between the estimated and the actual number of partitionwise transitions. The only
way to determine the exact number of transitions in the transition matrix after the aggregation
of a partition is to do reachability check for each pair of predecessor and successor states, which
is a rather expensive calculation. We discuss this matter further in sect. 3.2.2.

3.2.1.3 Non-greedy sorting techniques

Both FPF and EFPF sort are greedy algorithms. It is therefore worth considering a Look-
Ahead-N-Steps approach, which takes into account the effect on the remaining partitions when Look-Ahead-N-Steps

aggregating a particular partition. This is important if we want to aggregate more than one

36 3. PARTITIONING THE SMP STATE SPACE

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 20 40 60 80 100

E
st

im
at

ed
 n

um
be

r
of

 n
on

-z
er

o
el

em
en

ts
 in

 tr
an

si
tio

n
m

at
rix

Percentage of states aggregated

Partition aggregation with EFPF sort
Partition aggregation with FPF sort

Partition aggregation with Random sort

Figure 3.3: Comparing EFPF sort with FPF sort on a 5-way partitioning of the 10300 states
voting model. The aggregation was done using the transition matrix predictor and is thus not
exact. Clearly both EFPF sort and FPF sort do better than Random sort in this case. In fact
in none of our experiments FPF sort or Random sort outperformed EFPF sort.

partition. The problem with a Look-Ahead-N-Steps approach is that the aggregation of a
partition takes a considerable amount of time, even if done with a fast method such as the
transition matrix predictor (see sect. 3.2.2). Thus Look-Ahead-N-Steps is only feasible for a
small number of partitions, which implies that this sorting technique restricts the freedom of
our partitioning. Therefore we do not further investigate it.

3.2.2 Transition matrix predictor

In most practical cases we do not want to aggregate all k partitions, hence we need a means
to decide when to stop the aggregation process. The fastest way to assess a given partitioning
is a transition matrix predictor. In essence this is just another atomic partition aggregator
(see chapter 5), with the difference that it only connects the m predecessor states with the n
successor states using dummy transitions and discards all partition internal states along with
their incoming and outgoing transitions. Recall that in practice it is possible that a partition
is not fully connected. Thus the transition matrix predictor only gives an upper bound of the
partitionwise number of transitions. Figure 3.4 compares the predicted number of transitions
with the exact number of partitionwise transitions, which we obtained by doing exact state
aggregation on the same partitioning.

3.2.3 Quality of partitionings

Our previous examples illustrate the benefit of the EFPF partition sorting method compared to
other partition sorting methods. Furthermore we have the choice between using an estimator
or exact state aggregation in order to determine the number of transitions in the transition
matrix after the aggregation of a partition. In the following discussion we investigate how the
choice of the partitioner affects the partitionwise number of non-zeros in the transition matrix.
Here we do not assess the quality of the partitionings produced by the partitioners in terms of
their suitability for exact state (see chapter 4) or atomic partition (see chapter 5) aggregation.
These later chapters discuss which partitioners produce the best partitionings for state-by-state

3. PARTITIONING THE SMP STATE SPACE 37

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 20 40 60 80 100

N
on

-z
er

o
el

em
en

ts
 in

 tr
an

si
tio

n
m

at
rix

Percentage of states aggregated

Estimated number of non-zeros
Real number of non-zeros

Figure 3.4: Comparing the estimated number of transitions with the real number of transitions
after the aggregation of each partition. Both aggregators use the same 5-way partitioning of
the 10300 states voting model as in fig. 3.3. The partitions were sorted using EFPF sort.
Surprisingly there are many points where the predictor matches the exact value of transitions in
the transition matrix. This implies that those partitions are fully connected. This behaviour was
observed in various experiments. In some cases the estimator even oscillates between matching
the real number of transitions and giving too large estimates.

and atomic aggregation of partitions respectively. It is important to make this distinction when
thinking about the quality of a partitioning, as merely keeping the number of transitions as low
as possible may not yield the best partitionings for some aggregation techniques. Nevertheless
it is crucial for good partitionings that they can be aggregated in a way that keeps the total
number of transitions in the SMP model low, as the final passage time calculation requires more
computation if the transition matrix becomes dense. Moreover we cannot afford an explosion
in the number of transitions as we only have a limited amount of physical main memory available.

The diagrams in fig. 3.6 show the quality of different partitionings for different models and
partitioners. For the tests we used an Intel P4 with 3 Ghz and 4 Gbyte of RAM. As it is not
feasible to perform state-by-state aggregation on large models, all aggregations were done using
the transition matrix predictor. Having studied many graphs such as the ones in fig. 3.6 we
conclude that PaToH(1D), which only uses the rows of the matrix as hypernets for partitioning,
produces the worst partitionings out of all partitioners we tested. In the smcourier model (see
fig. 3.6(b)) the partitioner yields the highest matrix fill-in and in the larger voting and web-
server models the partitionings produced by PaToH(1D) either took too long to aggregate or
caused the test machine to run out of memory. The näıve row striping yielded good results in
the web-server and smcourier model, but in the slightly more dense voting model it performed a
lot worse than MeTiS and PaToH2D. MeTiS produces the most stable results of all partitioners.
This and the fact that MeTiS is a deterministic partitioner makes it the best partitioner for the
purpose of keeping the partitionwise number of non-zeros in the matrix low. Introducing weights
to our SMP graph might further improve the MeTiS partitioning. However, even though MeTiS
fluctuates less than PaToH2D, which often creates poor partitionings for larger models, we need
to point out that the best partitionings that we found for each model were always produced
using PaToH2D. As PaToH2D is non-deterministic this obviously comes with the overhead
of having to run the partitioner multiple times to find a suitable partitioning. For a single

38 3. PARTITIONING THE SMP STATE SPACE

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100

E
st

im
at

ed
 n

um
be

r
of

 n
on

-z
er

o
el

em
en

ts
 in

 tr
an

si
tio

n
m

at
rix

Percentage of states aggregated

107289 state web-server model

Figure 3.5: This graph shows the result of using the transition matrix predictor on a 7-way
partitioning of the 107289 web-server model created with the PaToH2D partitioner. We used
logscale for the y-axis to emphasize that about 60% of the state space can be aggregated while
halving the original number of transitions in the SMP model. Given this partitioning, our
predictor takes less than a minute to produce this estimation. The example shows that the
predictor is also capable of producing valuable estimates in larger models. Unfortunately most
of the partitionings produced by PaToH2D for this model were of far worse quality.

calculation it is therefore better to use MeTiS. If, however, a partitioning is reused multiple
times then PaToH2D should also be considered. Another interesting observation is that the row
striping method is the only partitioner that allows us to increase the number of partitions in the
partitioning without significantly decreasing the quality of the partitioning. Whilst MeTiS and
PaToH2D perform best on 5-10 partitions, row striping often yields better partitionings when
using a larger number of partitions (see fig. 3.7) though its best partitionings are still much worse
than the best MeTiS and PaToH2D partitionings. It should be noted that except for relaxing
the restrictions on the partition size this study does not thoroughly investigate the effect of
different setups for MeTiS and PaToH. Both partitioners offer a vast variety of configurations,
which can potentially improve the partitioning.

3. PARTITIONING THE SMP STATE SPACE 39

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 20 40 60 80 100

E
st

im
at

ed
 n

um
be

r
of

 n
on

-z
er

o
el

em
en

ts
 in

 tr
an

si
tio

n
m

at
rix

Percentage of states aggregated in 106540 states voting model

Row striping 30 Partitions
MeTiS 7 Partitions

MeTiS 10 Partitions
PaToH2D 7 Partitions

PaToH2D 10 Partitions

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 20 40 60 80 100

E
st

im
at

ed
 n

um
be

r
of

 n
on

-z
er

o
el

em
en

ts
 in

 tr
an

si
tio

n
m

at
rix

Percentage of states aggregated in 29010 states smcourier model

Row striping 20 Partitions
MeTiS 7 Partitions

MeTiS 10 Partitions
PaToH 4 Partitions

PaToH2D 5 Partitions

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 20 40 60 80 100

E
st

im
at

ed
 n

um
be

r
of

 n
on

-z
er

o
el

em
en

ts
 in

 tr
an

si
tio

n
m

at
rix

Percentage of states aggregated in 107289 states web-server model

Row striping 30 Partitions
MeTiS 7 Partitions

MeTiS 10 Partitions
PaToH2D 7 Partitions

Figure 3.6: The diagrams show the predicted number of transitions in the transition matrix of
different models, partitioned with the partitioners we introduced in this chapter.

40 3. PARTITIONING THE SMP STATE SPACE

 0

 1e+
06

 2e+
06

 3e+
06

 4e+
06

 5e+
06

 6e+
06

 7e+
06

 8e+
06

 0
 20

 40
 60

 80
 100

Estimated number of non-zero elements in transition matrix

P
ercentage of states aggregated in 106540 states voting m

odel

R
ow

 striping 20 P
artitions

R
ow

 striping 40 P
artitions

M
eT

iS
 6 P

artitions
M

eT
iS

 12 P
artitions

P
aT

oH
 6 P

artitions
P

aT
oH

2D
 15 P

artitions

F
igure

3.7:
D

ecreasing
quality

of
M

eT
iS

and
P

aT
oH

2D
partitionings

as
w

e
increase

the
num

ber
of

partitions.

4. STATE-BY-STATE AGGREGATION OF PARTITIONS 41

CHAPTER 4

State-by-state aggregation of partitions

In this chapter we discuss the application of the exact state-by-state aggregation technique
described in sect. 2.7 to aggregate partitions of states. These partitions are generated using
partitioners discussed in sect. 3.1. Our main focus in the following investigation lies on the sub-
matrix fill-in during the state-by-state aggregation of a partition, where the sub-matrix is the Sub-matrix

part of the transition matrix that consists of the rows and columns of the partition’s predecessor,
internal and successor states only.

4.1 State aggregation techniques

The time and memory requirements of exact state aggregation vary hugely depending on the
order in which states are aggregated. In [1] various state sorting techniques are introduced and
tested. In this section we introduce a new state ordering method that performs better than
previous techniques.

4.1.1 Fewest-Paths-First aggregation

Out of all exact state aggregation techniques discussed in [1] Fewest-Paths-First(FPF) aggrega- Fewest-Paths-
First(FPF)
aggregation

tion is the one that causes the lowest matrix fill-in. In FPF the next state chosen for aggregation
is the one with the lowest product mn, where m is the number of predecessor states and n the
number of successor states. If more than one such state exists we choose the one with the
lowest index. Intuitively this is a good approach since minimising the FPF-value should keep
the number of newly created transitions low when aggregating a state. The downside of FPF
though is that it does not take into account existing transitions between predecessor and succes-
sor states of the state that we are aggregating. Figure 4.1 illustrates this problem. Even though
this difference is minor when the matrix is sparse, it is not hard to see that once the transition
matrix becomes more dense, FPF aggregation no longer gives accurate predictions of how many
new transitions the aggregation of a state will generate.

4.1.2 Exact-Fewest-Paths-First aggregation

To overcome the inaccuracy of the FPF metric, we introduce Exact-Fewest-Paths-First(EFPF) Exact-Fewest-Paths-
First(EFPF)
aggregation

aggregation. Suppose a state s has m predecessors, n successors and i ∈ {0, 1} self-loops. More-
over assume that there are t existing transitions between the successor and predecessor states,
not including the transitions starting or ending in state s. The latter restriction is important
as a state with a self-loop is its own predecessor and successor state. The EFPF-value of state
s is (m − i)(n − i) −m − n − t. Note that we do not count self-loops, which are created when

42 4. STATE-BY-STATE AGGREGATION OF PARTITIONS

the set of predecessor states intersects with the set of successor states, as new transitions. This
is because all these loops can be removed after each aggregation. Figure 4.2 gives an example
where the EFPF aggregation technique outperforms the FPF technique.

i

Mi

Ni

Figure 4.1: On the left hand side the we see the transition diagram of a SMP before the
aggregation of state i. Mi is the set of predecessor states, Ni the set of successor states of
state i. Note that Mi and Ni have a non-empty intersection in this example. The right hand
side shows the transition diagram after state i has been aggregated. The FPF algorithm would
calculate a cost of 4 · 3 = 12, whilst the actual number of newly created transitions is only
4 ·3−4−3−4 = 1. Note that the self cycle of the state that lies in Mi and Ni has been removed
after the aggregation of state i. [27]

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 n

um
be

r
of

 tr
an

si
tio

ns

Percentage of states aggregated

(a) State aggregation with FPF state sorting

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 n

um
be

r
of

 tr
an

si
tio

ns

Percentage of states aggregated

(b) State aggregation with EFPF state sorting

Figure 4.2: Voting model with 4050 states and 6 partitions. Partitions were sorted using EFPF
partition sort (see sect. 3.2.1.2).

4. STATE-BY-STATE AGGREGATION OF PARTITIONS 43

4.2 Transition matrix fill-in during aggregation of partition

The following experiments where conducted using EFPF partition sorting (see sect. 3.2.1.2) and
EFPF state sorting. To compare the quality of different partitionings of the state space, we
compare both the transition matrix fill-in during the aggregation of the individual partitions as
well as the partitionwise number of non-zero elements in the matrix. Especially the evaluation of
the exact number of transitions during aggregation is of interest when performing state-by-state
aggregation.

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 0 20 40 60 80 100

N
um

be
r

of
 n

on
-z

er
o

el
em

en
ts

 in
 tr

an
si

tio
n

m
at

rix

Percentage of states aggregated

MeTiS 6 Partitions (partitionwise)
MeTiS 6 Partitions (percentagewise)
PaToH2D 6 Partitions (partitionwise)

PaToH2D 6 Partitions (percentagewise)

Figure 4.3: State-by-state partition aggregation on 10300 states voting model. Note that the
sub-matrix of the partition fills in rather quickly during its aggregation causing peaks in the
number of transitions that we need to hold in memory. In terms of the maximum number of
transitions created during aggregation MeTiS does slightly worse than PaToH2D in this example.
Note that percentagewise implies that we are taking continuous measurements of the number
of transitions in the transition matrix.

Figure 4.4 illustrates the benefits of the partition aggregation approach. Instead of having a
single global matrix density peak, each partition as a smaller local peak. This entails that the
aggregation of the entire state space can be done using a lot less memory. Even though the
example in fig. 4.4 proves that the state-by-state aggregation of partitions is more efficient than
exact aggregation on the flat graph, there remains the problem of finding suitable partitionings
for a given graph. Results in sect. 3.2.3 highlight that the quality of partitionings decrease, i.e.
more transitions are generated upon aggregation, for partitionings from MeTiS and PaToH2D
as we increase the number of partitions in the partitioning. This obviously limits the extend to
which exact state aggregation can be used in practice, since we cannot partition large models
into many small partitions without compromising the quality of the resulting partitions. Having
small partition sizes is essential for state-by-state aggregation of partitions as this is the only
way to keep the height of the local matrix density peaks low. The quality of partitionings
produced by the row striping partitioner seems to be less affected by the increase in the number
of partitions, but since the partitioner generally produces poor partitionings it cannot overcome
this problem either. One way to solve this problem might be to use different partitioners for
coarse- and fine-grained partitioning of the state space.

44 4. STATE-BY-STATE AGGREGATION OF PARTITIONS

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 20 40 60 80 100

N
of

 tr
an

si
tio

ns
 in

 tr
an

si
tio

n
m

at
rix

Percentage of states aggregated

Flat
PaToH2D 6 Partitions

Figure 4.4: The above diagram illustrates the effect of partition aggregation compared to flat
aggregation of the 4050 states voting model. The partition aggregation graph has many local
density peaks caused by the local fill-in of the sub-matrices of the partitions during state-by-
state aggregation. As expected, restricting the fill-in to the rows of the predecessor, successor
and internal states of the partition that is being aggregated reduces the maximum number of
transitions created during aggregation. As a consequence partition aggregation is a lot faster
than flat state-by-state aggregation.

4.3 Partial aggregation of partitions

An alternative strategy for state space reduction is the partial aggregation of partitions, which
only performs aggregation on a particular partition until a particular cost level is reached. One
way of doing partial aggregation is to set a sub-matrix fill-in limit for each partition. This might
of course cause us to stop aggregating states of a particular partition just before reaching a peak
point, but since we cannot predict the exact height of the peaks there is no way to avoid this.
If no peak point is overcome then the effect of partial aggregation of partitions is similar to
aggregating states on the flat graph, the only difference being that the partitioning reduces the
search space of the EFPF state sorter. Figure 4.5 shows the effect of aggregating all states that
have an EFPF-value of 10 or less.

4.3.1 Cheap state aggregation

The results in fig. 4.5 inspired us to check whether it is possible to aggregate states and without
increasing the number of transitions in the transition matrix. Note that this type of aggregation
does not require state space partitioning per se, but it can be used in conjunction with aggrega-
tion techniques that do use state space partitioning. We refer to states that can be aggregated
without increasing the number of transitions as cheap states.

Definition 4.1. Cheap states are states with EFPF-value ≤ 0 (see sect. 4.1.2).Cheap states

As the calculation of the EFPF-values is expensive when applied to all states in the state space,
it is sensible to examine whether there is another way of detecting cheap states in a SMP. Since
the initial transition matrix is sparse it is reasonable to assume that the m predecessor states

4. STATE-BY-STATE AGGREGATION OF PARTITIONS 45

 450000

 500000

 550000

 600000

 650000

 700000

 750000

 800000

 0 5 10 15 20 25 30 35 40 45 50

T
ot

al
 n

um
be

r
of

 tr
an

si
tio

ns

Percentage of states aggregated

Figure 4.5: Partial aggregation on 106540 states voting model. In this example we can aggregate
half of the state space at the expense of doubling the number of transitions.

of a particular state are generally not connected to the n successor states. Furthermore we can
remove all self-loops before aggregating a particular state without creating any extra transitions.
Under these assumptions cheap states are states such that mn−m− n ≤ 0. This either forces
m = 2 and n = 2 or m = 1 or n = 1. In practice aggregating a state s with m = 2 and
n = 2 is not feasible. This is because of the case in which the successor states of state s happen
to be cheap states, too. In this situation the successors states may no longer be cheap states
after the aggregation of s as they potentially gain an extra predecessor state. Therefore we only
concentrate on the case when m = 1 or n = 1. When implementing cheap states aggregation
it is best to restrict cheap aggregation to all states that have m = 1 (alternatively to all states
with n = 1). Figure 4.6 illustrates the problem that can occur when aggregating all states that
have either m = 1 or n = 1. Limiting the search space to those states which have m = 1, for
instance is advantageous since aggregating cheap states with m = 1 only, does not change the
cheap state property of other cheap states with m = 1. In our implementation we aggregate all
states with m = 1, since we are working with a row matrix, which makes it easier to find the
successor states of a particular state. When doing cheap state aggregation in an implementation
with a column matrix, aggregating all cheap states with n = 1 is preferable. The table below
presents the number of non-source and non-target states that are cheap states with m = 1 in
different SMP models. Note that in the 3 models we tested, most cheap states satisfied both
n = 1 and m = 1.

Cheap states in transition graph of model
Number of states Voting Web-server SMCourier

30000 - - 42.82%
100000 19.94% 27.63% -
250000 19.98% 27.63% -
500000 19.95% 27.61% -
1000000 - 27.60% -
1100000 16.66% - -

Table 4.1: Percentage of cheap states in the state space.

The table clearly shows that in some models a significant proportion of the state space consists
of cheap states. As these states are neither target nor source states, their aggregation potentially
has a positive effect on the final passage time calculation since the exact aggregation of cheap
states can be done much faster than general state aggregation. We can also save memory by

46 4. STATE-BY-STATE AGGREGATION OF PARTITIONS

aggregating cheap states during the process of reading the transition matrix from a file. We
investigate cheap state aggregation further in chapter 6.

Figure 4.6: State a and state b are both cheap states by defn. 4.1. However, if we aggregate both
of them we connect all predecessor states of a with all successor states of b, which obviously
creates new transitions. To avoid this we would have to do extra checks on cheap states before
aggregating them. Alternatively we can simply use the convention of only aggregating all cheap
states with m = 1. That way we only have to do a single search for cheap states and the
subsequent aggregation can be done without further checks.

4.4 Implementation of state-by-state aggregation

State-by-state aggregation requires regular updates of columns and rows in the transition matrix.
For state aggregation to be efficient we need to ensure that we can quickly manipulate the
transition matrix. On the other hand we also have to keep the memory requirements of the
matrix low, as we potentially want to perform state aggregation on models with large state
spaces.

4.4.1 Data structures

Although intuitively a sparse row and column matrix seems to be the best choice, there is one
problem with this particular data structure. Whenever a state has been aggregated we need to
delete all column and all row entries of that particular state. Since we are working with sparse
data structures, which use set or map data containers, it is more expensive to update a sparse
row and column matrix than updating a sparse row matrix or column matrix. Deleting a row
in a 2D row and column matrix requires us to remove the row from the row matrix as well as
all the entries of the row in the column matrix. Similarly when deleting a column we need to
remove all entries in that column from all the rows in the row matrix. Therefore deleting a state
in a 1D matrix only requires a single expensive deletion whereas in a 2D matrix it needs two.
Furthermore a 1D matrix requires less memory than a 2D row and column matrix. Table 4.2
illustrates the access and manipulation costs for a 1D matrix using an array for storing the
row/columns with rows or columns being map containers. In a row matrix a row contains the
outgoing transitions of a state, in a column matrix a column contains the incoming transitions
of a state. A 2D matrix contains a 1D row and a 1D column matrix. Since the operation of
finding incoming or outgoing transitions of states in a 1D matrix can be made faster through
the means of caching, we decided to use a 1D sparse row matrix instead of a 2D matrix for the
representation of the sparse matrix in order to keep the memory demands of our implementation
low.

We further experimented with balanced tree structures for storing the double values of the
sojourn time distributions and the transition probabilities [22, 23]. In the end we decided not

4. STATE-BY-STATE AGGREGATION OF PARTITIONS 47

Operation 1D row 1D column 2D row and column
Find outgoing transitions of state O(1) O(n log n) O(1)
Find incoming transitions of state O(n log n) O(1) O(1)

Add transition O(log n) O(log n) O(2 log n)
Delete transition O(log n) O(log n) O(2 log n)

Delete state O(n log n) O(n log n) O(2n log n)

Table 4.2: Comparison between time complexity of operations on sparse 1D and 2D matrices in
a model with n states.

to use such trees for caching, since their structural overhead can diminish the saving in memory
in some cases. This happens especially in transition systems of models that have marking
dependent sojourn time distributions (c.f. defn. 2.7), which create a great variety of different
Laplace transform samples and thereby limit the extend to which distribution information can
be reused and shared between different transitions.

4.4.2 Validation

To validate our state aggregation algorithm, we did two first-passage time computations on the
4050 states voting model. In the first experiment we partitioned the intermediate states into 6
partitions, then aggregated two of them and subsequently did a first-passage time analysis with
convergence precision of 10−16 to compute 198 Laplace transform samples for subsequent Euler
Laplace inversion. The validation was done by performing the same passage time analysis on
the unpartitioned graph. The results were identical up to an error term of 10−13 (see sect. 6.1.1
for further details on the error evaluation). Finally we checked that our results were similar to
the results produced by discrete event simulation on the same model.

4.4.3 Performance

To assess the performance of state-by-state aggregation of partitions compared to state aggre-
gation on the unpartitioned SMP graph we tested both memory and time requirements of the
two algorithms for a voting model with 4050 states. EFPF aggregation of the unpartitioned
SMP transition matrix took 244 seconds on an Intel P4 3.0 GHz processor with 4 Gbyte of
RAM. In contrast to this the EFPF aggregation only took 11 seconds using a 6-way PaToH2D
partitioning. Note that in either case we did not compute the Laplace transform points for each
transition, so we would not have been able to use the resulting aggregated graph for any mean-
ingful performance analysis. A first-passage time analysis with 693 Laplace transform samples
takes 4 seconds on the original transition matrix using a precision of 10−8 for the convergence
check of the iterative FPTA algorithm. This comparison shows that even though state-by-state
aggregation of partitions performs a lot better than flat state aggregation it is still far too slow
to speed up the actual passage time analysis.

4.5 Summary

Even though we are able to show that partition-by-partition aggregation speeds up the exact
state aggregation introduced in sect. 2.7, state-by-state aggregation on partitions is still slower
than doing the passage time calculation on the initial graph. The main reasons for this are
the computationally expensive operations on the transition matrix as well as the EFPF-value
calculation for individual states. It is therefore reasonable to conclude that exact state aggre-
gation can only speed up SMP passage time analysis if the search cost for states that we want
to aggregate is kept low and if changes made to the transition matrix during state aggregation
are kept simple. One possible way of doing this is to limit state aggregation to cheap states.
We investigate the performance of cheap state aggregation in chapter 6. Another way to speed
up state aggregation would be to find new partitioning methods, which allow to create a higher

48 4. STATE-BY-STATE AGGREGATION OF PARTITIONS

number of partitions while keeping the number of partitionwise transitions as low as MeTiS and
PaToH2D partitionings with a small number of partitions do when being aggregated. Despite
the fact there is a lot of potential for improvement, we doubt that state-by-state aggregation
of state space partitions can actually speed up the computation of the passage time analysis
in large SMP models. In the next chapter we therefore introduce ways of aggregating large
partitions in one go.

5. ATOMIC AGGREGATION OF ENTIRE PARTITIONS 49

CHAPTER 5

Atomic aggregation of entire partitions

Compared to flat state-by-state aggregation the partition-by-partition aggregation approach
reduces the transition matrix fill-in drastically. However, there is still the problem that the
partitionwise number of transitions is generally much lower than the maximum number of tran-
sitions during the aggregation of a partition (see fig. 4.3). Such density peaks are undesirable
because it requires a significant amount of memory to store all temporary transitions. Addi-
tionally the fill-in slows down the aggregation of states as we need to convolve and branch more
transitions when the sub-matrix of a partition becomes dense. This observation inspired us to
investigate whether atomic aggregation of an entire partition can speed up the process of state
aggregation.

5.1 Aggregation techniques

In this section we introduce several techniques for atomic aggregation of entire partitions. Given Atomic partition
aggregationthe transition matrix and a partition of intermediate states, an atomic aggregation algorithm

computes the structure of the graph as it would be after all states in the partition had been
aggregated using exact state aggregation. This implies that we have to compute the new Laplace
transform of the sojourn time distribution and the new probability for each transition from each
of the predecessor states to each of the successor states of the partition that we are aggregating.
Note that the calculation of the path probability is done implicitly by weighting the Laplace
transforms of each transition by their conditional transition probability before convolving them
(c.f. r∗ik(s) in eq. 2.7). Atomic partition aggregation requires two major steps. First we need
to compute the transition from each predecessor state to every successor state by adding the
weighted Laplace transforms of all convolved partition transient paths, i.e. paths of the form Partition transient

pathp−i1−i2−· · ·−ir−s, where p is the predecessor state, s the successor state and ik is a partition
internal state. In a second step we add the Laplace transform of the transition to the existing
one-step transition from p to s if such a transition exists. If it does not exist then the transition
we computed in the first step becomes the new transition from p to s. We term this calculation a
restricted first-passage time analysis (RFPTA). RFPTA has the same computational complexity Restricted

first-passage time
analysis (RFPTA)

as the standard first-passage time computation (see sect. 2.6.1). The main difference between
RFPTA and FPTA is that RFPTA is a FPTA on the sub-matrix of a partition excluding all
direct transitions from the predecessor to states that do not lie in the partition that we are
aggregating. In the following we discuss techniques for atomic partition aggregation. Note that
the aggregators only describe ways to execute the first step. The final branching with existing
one-step transitions from predecessor to successor states is the same for all aggregators.

50 5. ATOMIC AGGREGATION OF ENTIRE PARTITIONS

5.1.1 Restricted FPTA aggregator

Definition 5.1. Our first aggregator is based on the concept of restricted first-passage time
analysis. A restricted FPT aggregator is an aggregator which computes the new transitionsRestricted FPT

aggregator from predecessor to successor states by creating a single new transition for every pair of prede-
cessor and successor states, which encapsulates the information of all partition transient paths
between the two states. Technically this aggregation is done by performing a first-passage time
analysis using the predecessor states of a partition as its start states and the successor states
as its target states. The successor states, however, become absorbing states for the purpose
of this calculation. The actual restriction refers to the outgoing transitions of the predecessor
states. The RFPTA aggregator only considers outgoing transitions from predecessor states of
the partition to partition internal states. All other outgoing transitions of the predecessor states
are ignored as they are not needed for the computation of partition transient paths. Note that
the RFPTA aggregator does not make use of the normalised steady-state vector α that is used
in FPTA (see eq. 2.9), since we only ever aggregate intermediate states.

Figure 5.1: During RFPTA aggregation we first compute new transitions by adding the weighted
Laplace transforms of the convolved partition transient paths, i.e. the ones using transitions
with solid lines. Having computed these transitions we branch them with matching one-step
transitions, if such transitions exist for a given predecessor successor pair (see for example the
bottommost dashed transition).

Note. We do not normalise the transition probabilities of outgoing transitions from the prede-
cessor states as the sum of probabilities of the transitions from a predecessor state to each of
the successor states after the aggregation of the partition is the same as the sum of probabilities
of the transitions from the predecessor state to the partition internal states and successor states
before aggregation. This can be formally justified by the flow conservation law, as we ensure
that there are no final strongly connected components of states within the partition[27].

It is worth mentioning that RFPTA aggregation can be used for partition aggregation prior
to first-passage time analysis, but also potentially prior to transient probability analysis (see
sect. 2.5.1). In the latter case we have to ensure that none of the predecessor states of the par-
tition we are aggregating is a target state, otherwise we might corrupt the reliability function
of that particular state. For further information on transient probability analysis see [22].

Even though RFPTA appears to be an optimal strategy for aggregating an entire partition in
one go, it has one major disadvantage. Suppose we want to compute the first-passage time from

5. ATOMIC AGGREGATION OF ENTIRE PARTITIONS 51

the set of source states ~s = {s1, s2, . . . , sm} to the set of target states ~t = {t1, t2, . . . , tl} of the
SMP. To do this we have to calculate the vector L~s = {L~s1, L~s2, . . . , L~sn}, i.e. the vector of
first-passage time densities from the set of source states to all other states in a SMP. This vector
can only be computed by solving n linear equations. We then compute L~s~t from elements
L~st ∈ L~s with t ∈ ~t to obtain the first-passage time density as in eq. 2.9. If we want to calculate
individual passage time densities from each source state to each target state we need to do more
work as we cannot infer these distributions from L~st. Instead we have to solve m sets of n linear
equations to get Lsk = {Lsk1, Lsk2, . . . , Lskn} for each source state sk.

More generally, suppose we want to aggregate an entire partition using RFPTA. Assume we
have m predecessor, n successor and i partition internal states. In order to calculate the tran-
sition from every predecessor to every successor state using partition internal paths only, we
have to solve m sets of i + n equations. Alternatively we can reverse the computation by
calculating the FPT from every successor state to every predecessor state on the transposed
transition matrix. The reverse RFPTA computation requires us to solve n sets of i+m linear Reverse RFPTA

equations. Note that prior to transposing the transition matrix and swapping the roles of the
source and target states we still have to remove the outgoing transitions from the old target
states to make them absorbing states. Reverse passage time calculation works well in Laplace
space since complex multiplication is an associative operation. The technique can also be used
to do normal passage time calculation without aggregation, in which case the old source states
are still the ones that have to be weighted by their steady state probability (see eq. 2.10) but
the target states, which become the new source states, are not weighted by their steady state
probabilities. The minimum work required to aggregate a partition using RFPTA is to solve
l sets of i + g linear equations, where l = min(m,n) and g = max(m,n) as a single RFPTA
computation can solve one set of linear equations at a time. Hence for RFPTA aggregation
we need to find partitions that do not only keep the number of partitionwise transitions low,
but also minimise either the number of predecessor states or the number of successor states of
the partition. Naturally these metrics are correlated as a small number of predecessor states or
successor states limits the number of transitions that are created when aggregation the partition.

In experiments with PaToH2D we were able to find large partitions with the required properties
for efficient RFPTA aggregation in some cases. The best partitioning we could find for the
web-server model with 107289 states is a PaToH2D partitioning with 4 predecessor states and
1444 successor states spanning about one third of the state space S. Aggregating this partition
decreases the number of transitions by roughly one third. However, for this partitioning we
have to compute 4 sets of 1/3|S| linear equations to aggregate the partition. To perform the
passage time analysis on the resulting aggregated transition matrix we need to solve another
2/3|S| linear equations. Unless aggregation of a large partition makes the final passage time
calculation converge faster, the combined aggregation and passage time analysis approach is
likely to be slower than the computation of the passage time on the unaggregated graph. For
the 106540 voting model we managed to find a partition that spans roughly 50% of the state
space, while only having one predecessor state. To get this partition we had to make the target
states absorbing. Therefore this partitioning is only useful if we want to apply first-passage time
analysis to the aggregated transition matrix of that model. Partitionings we produced for the
voting model with non-absorbing target states did not have the desired properties for RFPTA
aggregation. For the smcourier model with 29010 states we did not find a suitable partition
even when making all target states absorbing.

In general it is difficult to find good partitions for RFPTA aggregation. Most of the partition-
ers introduced in chapter 3 are designed to partition sparse matrices for parallel matrix vector
multiplication. For this kind of problem it is best to balance the number of non-zero elements
per partition as well as the communication load for each processor. RFPTA on the other hand
works best on partitions that have an extremely low number of predecessor or successor states.
In this case it does not matter whether the number of predecessor and successor states is bal-
anced. Therefore standard graph partitioning algorithms might not be ideal for finding suitable

52 5. ATOMIC AGGREGATION OF ENTIRE PARTITIONS

RFPTA partitions. Nevertheless it would be interesting to investigate if graph and hypergraph
partitioners can be modified to produce better partitionings for RFPTA. This could potentially
be done by finding more suitable configurations for the PaToH and MeTiS partitioner. However,
it is likely that there are better algorithms for RFPTA partitioning. One algorithm we tried
is the NBSS partitioner presented in defn. 3.4. Even though building a partition from a single
state seems to be a sensible approach to create partitions with a low number of predecessor
states, NBSS partitioning performed worse than MeTiS and PaToH. Further research into this
matter might produce partitioning strategies that extend the range of semi-Markov models and
performance measures for which RFPTA aggregation can be used in practice. When the mea-
sure of interest is the passage time distribution then barrier partitioning introduced in sect. 5.2
is one such alternative.

5.1.2 Discrete event simulation aggregator

For RFPTA aggregation we do not only compute the restricted first-passage time densities of
the time it takes to get from the set of predecessor states ~s to the set of successor states ~t,
but we also keep track of all the restricted first-passage time densities from each predecessor
to all other states in the partition. This is unavoidable if we want to determine the exact
transitions from states in ~s to states in ~t which encounter all highly probable partition transient
paths. However, we can potentially get reasonably accurate approximations to the required
sojourn time distribution by examining a smaller subset of all paths considered by the RFPTA
aggregator.

Definition 5.2. Suppose we want to aggregate an entire partition in one go. For every prede-
cessor state p of the partition the discrete event simulation (DES) aggregator generates partitionDiscrete event

simulation (DES)
aggregator

transient paths of the form p − i1 − i2 − · · · − ir − s, where s is a successor state and ik are
partition internal states. It then calculates the weighted Laplace transform of the passage time
of such a path and adds it to in Lps. To keep the amount of computation low we only calculate
a fixed amount of paths for each predecessor p.

DES aggregation is an expensive calculation if we simulate the SMP using a sub-matrix of the
initial transition matrix, as we have to sample from the probability distribution over all outgoing
transitions in each state. A better way of doing DES aggregation would be to generate a new
high-level model for the sub-matrix so that we can perform DES without having to look up
outgoing transitions in a transition matrix. For simplicity we perform DES aggregation using
the sub-matrix of the SMP transition matrix. Hence we are only able to compute a small
number of partition transient paths as we need to keep the time requirements of the aggregator
low. It turns out that this particular DES aggregator is not suitable for atomic partition
aggregation. In all our experiments with DES we did not obtain a meaningful probability
distribution when performing first-passage time analysis on the aggregated transition matrix.
This result is not too surprising as our DES aggregator only considers a very small subset
of all partition transient paths that the RFPTA aggregator takes into account and therefore
doesn’t enforce flow conservation. As a consequence we do not recommend our DES aggregation
approach for atomic partition aggregation.

5.1.3 RFPTA with extra vanishing state

The main problem with RFPTA aggregation is that we need to solve several sets of linear
equations if the partition we are aggregating does not either have only one predecessor or
successor state. We now introduce a technique that guarantees that we only need to solve one
set of linear equations in order to do an approximate aggregation of a partition.

Definition 5.3. States, which only have outgoing transitions with immediate sojourn time
distributions are referred to as vanishing states. We define an extra vanishing predecessor stateVaninishing state

to be a vanishing state that we use to separate the predecessor states of a partition from the
partition entry states. A partition entry state is a partition internal state that has at leastPartition entry state

5. ATOMIC AGGREGATION OF ENTIRE PARTITIONS 53

one incoming transition from one of the predecessor states of the partition. We say the extra
vanishing predecessor state separates the predecessor states from the partition entry states
because all transitions from the predecessor state into the partition are channelled through the
extra state (see fig. 5.2(b)). Note that we can define an extra vanishing successor state similarly,
only that in this case the extra state separates the partition exit states from its successor states. Partition exit state

Exit states are partition internal states that have outgoing transitions to successor states. From
now on we refer to either of the two as an extra vanishing state or simply an extra state. Extra vanishing state

(a) Transition graph before adding extra vanishing state (b) Transition graph after adding extra vanishing state

Figure 5.2: These diagrams illustrate the creation of an extra vanishing predecessor state.
Through the extra state all four predecessor states have become connected to all partition entry
states and can thereby reach each of the successor states of the partition. This obviously implies
that the resulting graph no longer represents the initial transition system. Hence measures in
the modified SMP will evaluate to different values, too.

Define Get transition(matrix, predecessor state number, successor state number);1
Define Add extra row(matrix);2
Define Delete transition(transition);3
Define Find all entry states of predecessor states(partition);4
Define Find entry states connected to state(state number, partition);5
Define Add empty outgoing transition(matrix, predecessor state number, successor state number);6
Define Get steady-state probability(state number);7
Define Get sum of predecessor steady state probabilities(partition);8
Define Sum transition probabilities of outgoing transitions to entry states(predecessor state number, set with successor state numbers);9
Define Normalise probabilities of outgoing transitions(state number);10

input: Sparse SMP transition row matrix matrix, partition p

setOfEntryStates = Find all entry states of predecessor states(p);11
extraStateNo = Add extra row(matrix);12
foreach Entry state e in setOfEntryStates do13

Add empty outgoing transition(matrix, extraStateNo, e);14
transitionFromExtraState = Get transition(matrix, extraStateNo, e);15
transitionFromExtraState.laplace = 1 + 0i /*immediate transition*/ ;16

end17

sumOfSteadyStateProbs = Get sum of predecessor steady state probabilities(p);18
foreach Predecessor state ps in p do19

steadyProb = Get steady-state probability(ps)/ sumOfSteadyStateProbs;20
tempSetOfEntryStates = Find entry states connected to state(ps, p);21
sumOfTransProbs = Sum transition probabilities of outgoing transitions to entry states(ps, tempSetOfEntryStates);22
Add empty outgoing transition(matrix, ps, extraStateNo);23
transitionToExtraState = Get transition(matrix, ps, extraStateNo);24
transitionToExtraState.prob = sumOfTransProbs;25

foreach State es in tempSetOfEntryStates do26
transition = Get transition(matrix, ps, es);27
transitionToExtraState.laplace += transition.prob/sumOfTransProbs ∗ transition.laplace;28
transitionFromExtraState = Get transition(matrix, extraStateNo, transition.destination);29
transitionFromExtraState.prob += transition.prob ∗ steadyProb;30
// Disconnect predecessor state from entry state31
Delete transition(transition);32

end33
end34

Normalise probabilities of outgoing transitions(extraStateNo)35

Algorithm 1: Adding an extra vanishing predecessor state

Our algorithm for adding an extra predecessor state (see algo. 1) starts by detecting all entry
states of the partition we are aggregating. Subsequently we create the extra state in the SMP
matrix and add outgoing transitions from the extra state to all entry states. These transitions
are initialised with zero probabilities and the Laplace transform of an immediate transition.
Whilst the Laplace transforms remain unchanged we compute the probabilities of the transi-
tions. Suppose predecessor state p has an outgoing transition to entry state e with transition

54 5. ATOMIC AGGREGATION OF ENTIRE PARTITIONS

probability q. Further assume that t represents the state’s steady-state probability, normalised
by the sum of all predecessor states’ steady-state probabilities (see eq. 2.10). We add qt to the
probability of the transition from the extra state to e. We repeat this for all outgoing transi-
tions from predecessor states to partition entry states. The reason we multiply the transition
probability q by t is that we try to assign more weight to transitions coming from predecessor
states with higher steady state probability. We now need to disconnect each predecessor state
of the partition from the entry states and channel the discarded transitions through the extra
state. Each predecessor has precisely one outgoing transition to the extra state. The transition
probability for each of these transitions is simply s, the sum of the probabilities of outgoing
transitions from a predecessor state to the partition entry states. The Laplace transform of the
sojourn time distribution of the transition is the sum of the weighted Laplace transforms of
the outgoing transitions from the predecessor state to partition entry states divided by s. Note
that by our construction the sum of the outgoing transition probabilities of each predecessor
state still adds up to one. In the final step we normalise the outgoing transition probabilities
of the extra state. An extra successor state can be added in a similar manner. To do this we
use the same procedure as in algo. 1 except that we now channel the outgoing transitions of
the exit states of the partition through an extra successor state. In contrast to DES aggrega-
tion, performing passage time analysis on a SMP graph that has been aggregated using RFPTA
aggregation on a partition with an extra state always yields meaningful probability distributions.

5.1.3.1 Error introduced by extra vanishing state

To determine the error in the first-passage time distribution introduced by adding an extra state
to the transition matrix, we created different partitionings for different models and compared
the results of the FPTA on the unmodified model with results from the FPTA on the same
model with an extra predecessor state. All partitionings used for the test contained partitions
of similar size and we always added the extra state to the partition with the lowest number of
predecessor states.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 10 20 30 40 50 60 70

f(
t)

Time

Real FPT distribution of SMP
FPT distribution of SMP with extra state

(a) PDF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

F
(t

)

Time

Real FPT distribution of SMP
FPT distribution of SMP with extra state

(b) CDF

Figure 5.3: Impact of adding an extra state to the smcourier model with 29010 states. The
partition we use spans about 25% of the state space and has roughly 6000 predecessor states.
The FPT distribution is calculated using the iterative approach with precision 10−16. The largest
error in the distribution data produced by the SMP with the extra state is of the magnitude
10−2. Nevertheless the resulting pdf and cdf are good approximations to the real distribution.

Figure 5.3 shows that we can get decent approximations to the first-passage time distribution
of the original SMP when analysing the modified graph with the extra state. In a second
experiment we tested the impact of adding an extra predecessor state to the beforementioned
partition of the 107289 states web-server model with 4 predecessor states. In this experiment we
achieve a slightly better approximation with the magnitude of the maximum error being 10−3

5. ATOMIC AGGREGATION OF ENTIRE PARTITIONS 55

in the cdf of the FPT distribution (see sect. 6.1.1 for further details on the error evaluation).
Despite encouraging results from our experiments, the biggest problem of the extra state method
remains that the error introduced by the extra state heavily depends on the structure of the SMP
graph. In general the only means to keep the error low is to keep the number of predecessor
states low. Nevertheless the extra state method is a valuable tool as it allows approximate
aggregation of partitions that are unsuited for exact aggregation using normal RFPTA. Adding
the extra state was inspired by the application of hidden nodes in Bayesian inference (for more
information see [26]). It is possible that there are ways of channelling the outgoing transitions
of predecessor states through an extra vanishing state that keep the error term lower than our
algorithm does. One way of doing this might be to introduce multiple extra vanishing states.
This would allow us to refine the connectivity of the graph with the extra states to reflect the
original structure of the network more accurately than a graph with only one extra vanishing
state can.

5.2 Barrier partitioning

Both RFPTA aggregation as well as RFPTA aggregation using an extra vanishing state require
us to find large partitions which have a low number of predecessor or successor states. As par-
titioners such as PaToH and MeTiS are not guaranteed to find such partitions, we need to find
more suitable partitioning methods for transition graphs of large semi-Markov models. In this
section we introduce a new partitioning method called barrier partitioning, a technique which
is well-suited for first-passage time analysis. Strictly speaking it is not a partitioning method
designed to generate partitions for atomic partition aggregation. However, we introduce a mod-
ified first-passage time algorithm that can be applied to barrier partitionings of the transition
graph, which is similar to performing atomic partition aggregation using RFPTA.

In order to perform first-passage time analysis on a SMP with n states we need to solve n
linear equations to obtain L~s (see sect. 5.1.1). The reason this calculation can be done at a
relatively low cost is because we reduce the entire set of source states and consequently treat it
as one joint state. This implies that we do not calculate the first-passage time for every pair of
source and target states, but from the set of source states to each of the target states. As we
mentioned earlier, first-passage time analysis can be done forward, i.e. from the set of source
states to the individual target states as well as reverse, i.e. from the set of target states to the
individual source states, by transposing the SMP transition matrix and swapping source and
target states. The barrier partitioning method exploits the duality between the forward and
reverse calculation of the first-passage time distribution and allows us to split the first-passage
time calculation into two separate calculations. The combined cost of doing the two separate
calculations is the same as the cost of the original first-passage time calculation.

Definition 5.4. Assume we have an SMP with a set of start states S and a set of target states
T . If any state is a source and a target state at the same time it can be split into a new target
and a new source state. The new source state is assigned all outgoing transitions of the old state,
the new target state all incoming transitions. Finally adding an immediate transition from the
new target state to the new source state gives a modified transition graph that will yield the
same passage time distribution as the original graph. We then divide the state space into two Barrier partitioning

partitions SP and TP . SP contains all source states and a proportion of the intermediate
states such that any outgoing transitions from SP to TP go into a set of barrier states B in TP .
Furthermore the only outgoing transitions from states in TP to states in SP are from target
states T to source states S. The resulting partitioning is a barrier partitioning. See fig. 5.4 for
a graphic representation of the partitioning.

56 5. ATOMIC AGGREGATION OF ENTIRE PARTITIONS

Figure 5.4: The source partition SP contains all states in S as well as the intermediate states
between S and B. The target partition TP contains all barrier states B as well as all states
between B and T and of course the target states in T . Note that B and T may intersect. All
outgoing transitions in SP are either internal or go into B. Similarly all outgoing transitions of
states in TP are either internal or transitions from states in T to states in S. Thus once a path
has entered TP it can only ever go back to SP by going through T .

Proposition 5.1. Assume that we can divide the state space Ω of a connected SMP graph into
two partitions such that the resulting partitioning is a barrier partitioning. Clearly we have
S ∩ T = ∅, SP ∪ TP = Ω. We denote the set S as ~s, the set of barrier states B as ~b and the set
of target states T as ~t. The result of the first-passage time calculation from a source state s to
the set of target states ~t is same as the result obtained by doing a first-passage time calculation
from s to the set of barrier states ~b convoluted with the first-passage time calculation from the
set of barrier states ~b to the set of target states ~t. In the Laplace domain this translates to:

Ls~t =
∑
b∈~b

LRsbLb~t

where LRsb denotes a restricted first-passage time distribution from state s to state b ∈ ~b, where
all states in ~b are made absorbing for the calculation of LRsb. This ensures that we only consider
paths of the form s− i1 − · · · − ik − b, with ij ∈ SP . In other words we do not consider paths
through TP for the calculation of LRsb.

Note. Lb~t is the Laplace transform of the first-passage time distribution from state b to the set
of target states ~t which are absorbing states in first-passage time analysis.

Proof. By eq. 2.8 we have

Ls~t =
∑

k∈(SP∪TP)\~t

r∗skLk~t +
∑
k∈~t

r∗sk

hence
Ls~t =

∑
k∈(SP∪TP)

r∗skLk~t

where Lk~t is equal to 1 if k ∈ ~t ∩~b. We can rewrite k ∈ SP ∪ TP as k ∈ SP ∪~b since there is
no transition from any state in SP to any state in TP\~b by construction of the barrier.

Ls~t =
∑

k∈(SP∪~b)

r∗skLk~t

=
∑
b∈~b

r∗sbLb~t +
∑
k∈SP

r∗skLk~t

also by construction of the barrier partitioning and the fact that target states are absorbing
states we know that once we have entered TP (i.e. reached a state in ~b) we cannot find a path

5. ATOMIC AGGREGATION OF ENTIRE PARTITIONS 57

back to a state in SP . Hence

Ls~t =
∑
b∈~b

r∗sbLb~t +
∑
k∈SP

r∗sk
∑
b∈~b

LRkbLb~t

=
∑
b∈~b

r∗sbLb~t +
∑
b∈~b

∑
k∈SP

r∗skL
R
kbLb~t

=
∑
b∈~b

(
r∗sbLb~t +

∑
k∈SP

r∗skL
R
kbLb~t

)

=
∑
b∈~b

[(∑
k∈SP

r∗skL
R
kb + r∗sb

)
Lb~t

]

by definition
∑
k∈SP r

∗
skL

R
kb+r∗sb is the restricted first-passage time from state s to barrier state

b. Therefore
Ls~t =

∑
b∈~b

LRsbLb~t

�

Corollary 5.1.1.
LR
s~t

=
∑
b∈~b

LRsbL
R
b~t

Proof. We have
LR
b~t

= Lb~t

since target states are absorbing states by assumption and because none of the outgoing tran-
sitions of non-target barrier states go into SP . Furthermore

LR
s~t

= Ls~t

as the restricted first passage time distribution on the entire state space is just the normal
passage time distribution. �

Corollary 5.1.2. Let LR
~s~b

= {LR~sb1 , . . . , L
R
~sbl
}, where LR~sbi = {α1L

R
s1bi

+ · · · + αlL
R
slbi
} and

L~b~t = {Lb1~t, . . . , Lbl~t} then in steady-state we have L~s~t =
∑
b∈~b

LR~sbLb~t = LR
~s~b
. L~b~t

Proof. Let α1, α2, . . . , αl be the normalised steady-state probabilities of the source states ~s =
(s1, s2, . . . , sl) as defined in eq. 2.10. By eq. 2.9 we have

L~s~t = α1Ls1~t + α2Ls2~t + · · ·+ αlLsl~t
=

∑
b∈~b

(
α1(LRs1bLb~t) + · · ·+ αl(LRslbLb~t)

)
=

∑
b∈~b

(
α1L

R
s1b + · · ·+ αlL

R
slb

)
Lb~t

�

5.2.1 Passage time computation on barrier partitionings

In practice there are two ways of computing the steady state first-passage time distribution of
a model whose state space has been split into partitions SP and TP . The first one is purely se-
quential. We start by calculating vector L~s~b using the iterative first-passage time solver. For this
calculation the source states remain unmodified, but the barrier states become absorbing target
states. Also as this calculation is part of the final first-passage time calculation we need to weight
the source states by their normalised steady state probabilities. Having calculated L~s~b we use it

58 5. ATOMIC AGGREGATION OF ENTIRE PARTITIONS

as our ν0 (see eq. 2.17) in the subsequent first-passage time calculation from the set of barrier
states to the set of target states. Note that the calculation of L~s~b = ν0 for the subsequent cal-
culation of L~b~t is in fact an atomic aggregation of the intermediate states in source partition SP .

Another way of doing first passage time analysis on a barrier partitioning is to compute L~s~b and
L~b~t independently. By coroll. 5.1.2 the dot product of the two vectors gives us L~s~t. To calculate
vector L~b~t independently from L~s~b we do a reverse first-passage time calculation from the set of
target states to the barrier states. In order to do this we need to remove all transitions from SP
into the set of barrier states. All incoming transitions from any state in the target partition to
any of the barrier states remain, including transitions from one barrier state to another. Note
that we do not need to weight the target states by α as we have already weighted the source
states during the calculation of L~s~b.

Both techniques can be used to reduce the amount of memory that we need for a first-passage
time calculation as we only have to keep either the sub-matrix of the source partition or the
target partition in memory at any point in time. Moreover the second approach is parallelisable.

5.2.2 Balanced barrier partitioner

Another advantage of barrier partitionings over partitionings produced by graph and hypergraph
partitioners presented in chapter 3 is that we can easily find barrier partitions in large models at
low cost. A barrier partitioning can be found as follows. Firstly since we are doing first-passage
time analysis we can discard the outgoing transitions from all target states. Secondly we explore
the entire state space using breadth-first search, with all source states being at the root level
of the search. We store the resulting order in an array. To find a barrier partitioning we first
add all non-target states among the first m states in the array to our source partition. Note
that m has to be larger or equal to the number of source states in the SMP. We then create a
list of all predecessor states of the resulting partition. In the next step we add all predecessor
states in the list to the source partition and recompute the list of predecessor states. We repeat
this until we have found a source partition with no predecessor states. Since we discarded all
outgoing edges of the target states, this method must give us a barrier partitioning. In the
worst case this partitioning has all source and intermediate states in SP and TP only contains
the set of target states. Fortunately in all models we analysed we were able to find far bet-
ter barrier partitionings. Algorithm 2 describes a general method for finding balanced barrier
partitionings given a transition matrix of a semi-Markov or Markov model. Balanced barrier
partitionings are barrier partitionings where SP and TP contain a similar number of transitions.Balanced barrier

partitioning

In both the voting and the web-server model (see fig. B.1) it is possible to split the state space
such that each partition contains roughly 50% of the total number of transitions. Even more
surprisingly we easily found balanced partitionings for large versions of these two models with
several million transitions. In addition to this our barrier partitioning algorithm is very fast
(see sect. 5.4.1). However, despite the fact that barrier partitioning works well on the first two
models it is not possible to barrier partition the smcourier model such that each partition has
an equal amount of transitions. Figure 5.5 shows the best barrier partitioning for the smcourier
model. The main reason why it is impossible to balance the barrier partitions in this model is
because of the fact that roughly 50% of the state space are source and target states.

5. ATOMIC AGGREGATION OF ENTIRE PARTITIONS 59

Define Make target states absorbing(matrix, target states);1
Define Find breath-first ordering(matrix, source states);2
Define Get number of rows(matrix);3
Define Get first m non-target states(array, stopIndex);4
Define Get predecessor states(matrix, partition, target states);5
Define Merge arrays(array, array);6
Define Count number of transitions(matrix, optional array);7

input : Sparse SMP transition row matrix matrix, source states ~s, target states ~t
output: Barrier source partition

Make target states absorbing(matrix, ~t);8
bforder = Find breath-first ordering(matrix, ~s);9
numSourceStates = |~s|;10
numStates = Get number of rows(matrix);11
m = numStates / 2;12
mStep = numStates / 4;13
partition = ∅;14
foundBalancedBarrierPartitioning = false;15
while foundBalancedBarrierPartitioning == false && mStep > 1 do16

partition = Get first m non-target states(bforder, m);17
predecessors = Get predecessor states(matrix, partition, ~t);18
while predecessors is not empty do19

partition = Merge arrays(partition,predecessors);20
predecessors = Get predecessor states(matrix, partition, ~t);21

end22
SPTPBalance = Count number of transitions(matrix,partition) / Count number of transitions(matrix);23
if SPTPBalance < 0.45 then24

m += mStep;25
end26
else if SPTPBalance > 0.55 then27

m -= mStep;28
end29
else30

foundBalancedBarrierPartitioning = true;31
break;32

end33
mStep = mStep / 2;34
partition = ∅;35

end36
return partition;37

Algorithm 2: Balanced barrier partitioning

 1

 16381

 29010

 1 16381 29010

F
ro

m
 s

ta
te

To state

Figure 5.5: This is the best barrier partitioning for the smcourier model. It was obtained by
choosing m to be the number of source states. The source partition contains 56% of all states
and 64% of all transitions. Note that the diagonal matrix in the upper left corner has no
entries. Thus there is no transition from the target partition to the source partition. Further
note that every state in the target partition is a barrier state in this example. In balanced
barrier partitionings of the voting and web-server model the set of barrier states is only a small
subset of the target partition.

60 5. ATOMIC AGGREGATION OF ENTIRE PARTITIONS

5.3 K-way barrier partitioning

The idea of barrier partitioning described in the previous section is a huge improvement to the
straightforward passage time calculation, as it reduces the amount of memory needed for the
passage time computation while introducing very little overhead. In this section we investigatek-way barrier

partitioning the idea of k-way barrier partitioning. In practice a k-way barrier partitioning is desirable since
it allows us to reduce the amount of memory needed to perform passage time analysis on Markov
and semi-Markov models by even more than 50%.

Definition 5.5.

Figure 5.6: In a k-way barrier partitioning, partition P0 contains the source states, partition T
the target states. There are k− 2 intermediate partitions and k− 1 barriers in total. In general
partition Pj is sandwiched between its predecessor partition Pj−1 and its successor partitions
Pj+1 and T . Note that there are no transitions from partition Pi to Pj if i > j, hence the barrier
property is satisfied in the sense that once we have reached Pj the only way to get back to any
state in Pj−1 is to go through T . T is the only predecessor partition of P0. The barrier states
of partition Pj are the union of T and the states of Pj+1 that have incoming transitions from
states in Pj .

Note. Definition 5.5 generalises defn. 5.4. The latter definition corresponds to a 2-way barrier
partitioning. In defn. 5.4 we did not define the set of barrier states to be the union of states that
separate SP from TP and the set of states in T . However, this generalisation has no impact on
prop. 5.1 as we assumed that B and T may intersect.

The difference between the standard 2-way barrier partitioning and the general k-way barrier
partitioning with k > 2 is the way we compute the passage time on the transition matrix of
a model that has been partitioned into k barrier partitions. Whilst the passage time analysis
on the 2-way partitioning is fully parallelisable by coroll. 5.1.2, the analysis on a k-way barrier
partitioning is generally less parallelisable. The following proposition verifies the correctness of
the passage time analysis on a k-way barrier partitioning.

Proposition 5.2.
Ls~t = LR

s~b1
MR
~b1~b2

· · · MR
~bk−2~bk−1

LR~bk−1~t
(5.1)

where LR
s~b1

is the 1×m1 row vector containing the resulting Laplace transforms of the restricted

passage time analysis from start state s to the states in the first barrier ~b1. LR~bk−1~t
is a mk−1× 1

column vector of the Laplace transforms from the passage time from the states in the k − 1st

5. ATOMIC AGGREGATION OF ENTIRE PARTITIONS 61

barrier to the joint set of target states and

MR
~bi−1~bi

=

LR~bi−1,1~bi

LR~bi−1,2~bi
...

LR~bi−1,mi−1
~bi

 =

LR~bi−1,1~bi,1

. . . LR~bi−1,1~bi,mi
...

...
LR~bi−1,mi−1

~bi,1
. . . LR~bi−1,mi−1

~bi,mi

the mi−1 × mi matrix containing the Laplace transform samples from the restricted passage
time analysis from barrier i− 1 to barrier i for each pair of barrier states, i.e. pairs (a, b) where
a lies in barrier i− 1 and b in barrier i. Note that if state j is a target state then LR~bi−1,j~bi,j

= 1

and LR~bi−1,j~bi,l
= 0, ∀ l 6= j as j must be an absorbing state.

Proof. First we show that
LR
s~b2

= LR
s~b1

MR
~b1~b2

by coroll. 5.1.1 we have

LRsb2,i =
m1∑
j=1

LRsb1,jL
R
b1,jb2,i

then
LR
s,~b2

=
(∑m1

j=1 L
R
sb1,j

LRb1,jb2,1 , . . . ,
∑m1
j=1 L

R
sb1,j

LRb1,jb2,m2

)
= LR

s~b1
MR
~b1~b2

using this argument repeatedly reduces eq. 5.1 to

Ls~t = LR
s~bk−1

LR~bk−1~t

=
∑mk−1
j=1

(
LRsbk−1,j

LR
bk−1,j~t

)
which holds by prop. 5.1 since

LR
bk−1,j~t

= Lbk−1,j~t

as target states are absorbing states during first-passage time analysis. �

Corollary 5.2.1.
L~s~t = LR

~s~b1
MR
~b1~b2

· · · MR
~bk−2~bk−1

LR~bk−1~t

Proof. Similar argument as in coroll. 5.1.2 �

Algorithm 3 describes how sequential passage time analysis can be performed on a k-way barrier
partitioning. The basic idea is to initialise ν(0)

0 (see eq. 2.17) with the α weighted source states,
compute LR

~s~b1
= ν

(1)
0 using ν(0)

0 and subsequently use ν(1)
0 as the new start vector for the calcula-

tion of LR
~s~b2

= ν
(2)
0 . We continue until we obtain ν(k)

0 = L~s (see sect. 5.1.1), the final s-point L~s~t
is computed by summing all Laplace transforms L~st ∈ L~s with t ∈ ~t. We can avoid calculating
the matrices MR explicitly as we treat the source states as one joint state. Intuitively this
approach makes sense because ν(i)

0 always contains the Laplace transform distribution from the
initial set of source states to the states of the ith barrier and when used as the start vector
for the next iterative restricted passage time analysis, we obtain the Laplace transform of the
distribution from the joint set of source states to all states that lie in the ith partition and the
states of the i+1st barrier. Since we are only interested in the Laplace transform of the passage
time distribution from the set of source states to the current barrier states, we can set all other
values in ν(i+1)

0 to zero, as their values will not be used during the next restricted passage time
computation due to the nature of the barrier construction.

62 5. ATOMIC AGGREGATION OF ENTIRE PARTITIONS

Define Set ν
(0)
0 to the α weighted source states(matrix, start states);1

Define Get successor states of partition(partition);2
Define do RFPTA(matrix, start distribution, barrier states);3

input : Sparse SMP transition row matrix matrix, source states ~s, target states ~t, barrier partitioning Π
output: S-point

Set ν
(0)
0 to the α weighted source states(matrix, ~s);4

i = 1;5
foreach Partition P in Π do6

barrierStates = Get successor states of partition(P) ∪ ~t;7

ν
(i)
0 = do RFPTA(matrix, ν

(i−1)
0 , barrierStates);8

set all non-barrier state entries in ν
(i)
0 to 0;9

i + +;10
end11
complex sPoint = 0;12
foreach State t in ~t do13

sPoint += ν
(k)
0 [t];14

end15
return sPoint;16

Algorithm 3: Passage time analysis on k-way barrier partitioning.

In principal k-way passage time computation can be done in parallel, however, the fact that
we need to compute k − 1 passage time matrices means that we have to do a lot more work
than in the sequential algorithm. Recall that we were experiencing the exact same problem
in sect. 5.1.1, when we discussed RFPTA aggregation of partitions with multiple predecessor
and successor states. Due to this problem we prefer the sequential passage time algorithm for
the k-way barrier case. We can still parallelise the k-way barrier passage time analysis using
two groups of machines for the computation of a single s-point. Both groups use the sequential
algorithm, but perform each restricted passage time analysis in parallel. One group does the
forward passage time calculation starting from the start states, the other one does the reverse
passage time calculation starting from the target states. Just like in the 2-way barrier case the
two groups of processors will stop when they have reached the middle barrier. By coroll. 5.1.2
we can then compute the final Laplace transform of the s-point. Note that using k-way barrier
partitioning in order to partition the matrix is useful as graph and hypergraph partitionings
are much more expensive to compute on large matrices than barrier partitionings. However,
it is still advisable to use a hypergraph partitioner to partition each of the resulting barrier
partitions when doing parallel restricted passage time analysis.

5.3.1 K-way barrier partitioner

There are various ways of creating k-way barrier partitionings for SMPs. One way is recursive
bi-partitioning using algo. 2 to split sub-partitions into two balanced barrier partitions at each
step. Alternatively we can modify algo. 2 to get the maximum number of barriers for a given
transition matrix. The modified partitioner works as follows. First we make all target states
absorbing states. We then add the source states and all their predecessor states to the first
partition. Subsequently we add the predecessor states of the predecessor states of the source
states to the partition and so on. Once we have no more predecessor states we have found the
first partition. The non-target successor states, i.e. non-target barrier states, of that partition
are then used to construct the second partition in the same manner. However, we now only
consider those predecessor states of the non-target barrier states that have not been explored
yet, i.e. those that haven’t been assigned to any partition. We continue partitioning the state
space until all states have been assigned to a partition. This partitioning approach yields the
maximum number of barrier partitions for a given transition graph as we only include the mini-
mum number of states in every barrier partition. We term this a kmax-way barrier partitioning,
but we will also refer to it as a max-way barrier partitioning . Note that from this partitioningMax-way barrier

partitioning we can generate any k-way partitioning with k < kmax since joining two neighbouring barrier
partitions creates a new larger barrier partition. The kmax-way barrier partitioning also min-
imises the maximum partition size among the barrier partitionings. Another important thing to
note is that the partitioner is very memory efficient as we never have to hold the entire matrix
in memory during the partitioning process. As we only have to scan every transition twice -

5. ATOMIC AGGREGATION OF ENTIRE PARTITIONS 63

once when we look for the predecessor states of a state and a second time when we look for its
successor states - a disk-based partitioning approach is also feasible. This is a huge advantage
compared to algo. 2, for which a disk based solution is less feasible since we need to scan large
parts of the matrix multiple times in order to create two balanced partitionings.

We tested the new partitioning method on the 1100000 states voting model and the 1000000
states web-server model. In the voting model we found a 349-way barrier partitioning, whose
largest partition contains only 0.6% of the total number of transitions. In the web-server model
a 332-way barrier partitioning exists in which the largest partition contains about 0.5% of the
total number of transitions. For both models it is thus possible to compute the exact first-
passage time while saving 99% of the memory needed by the standard iterative passage time
analysis that works on the unpartitioned transition matrix. This is because of the fact that
algo. 3 only ever has to hold the matrix elements of one single partition in memory. Like algo. 2
the general kmax-way barrier partitioning method is very fast (see sect. 5.4.1). In sect. 6.1.2 we
further show that first-passage time analysis on k-way barrier partitioned transition matrices is
faster than the first-passage time analysis on the unpartitioned graph.

Figure 5.7: 6-way barrier partitioning of 1100000 voting model.

5.4 Implementation of atomic partition aggregation

Atomic partition aggregation requires simpler algorithms than state-by-state aggregation (see
sect. 4.4). The first difference between the two forms of aggregation is that partition sorting
techniques are not needed for atomic partition aggregation. In contrast to state-by-state aggre-
gation of partitions we look for partitionings with one large partition, which has a small number
of predecessor or successor states. Therefore the search space for potential partition orderings
is much lower. When doing barrier partitioning we do not need to determine any aggregation
ordering at all. In addition to this the only time we modify elements in the rows of the tran-
sition matrix during atomic aggregation is when we update the transitions from predecessor

64 5. ATOMIC AGGREGATION OF ENTIRE PARTITIONS

states to successor states of the partition after we have performed RFPTA. FPTA with barrier
partitioning can even be done without any matrix manipulation. Finally atomic aggregation
of partitions does not suffer from the transition matrix fill-in problem during aggregation of a
partition as exact state-by-state aggregation of partitions does.

The access patterns for the row matrix in atomic partition aggregation are far more linear than
in the state-by-state aggregation case as we usually read, write and delete entire rows at once.
It is thus feasible to use arrays or vector containers rather than map containers to store the
rows of the transition matrix. Vector containers are more or less intelligent arrays which keep
a record of how much memory the underlying array has allocated and resizes automatically if
more memory is required. This is beneficial in two ways. Firstly the access times for vectors are
much faster than those for maps. If we sort the destinations of the transitions in each row, which
is a sensible thing to do since we do not modify the rows that often, we can even find a single
element in a row in O(log n). Also as we modify rows seldom we hardly ever need to perform the
expensive vector resizing operation. The second major advantage of vector containers is that
they require far less memory than maps. In the C++-STL maps are balanced binary trees[30],
where each node contains a pointer to its parent and its children. Thus maps require 3 extra
integer pointers per element, whilst vectors do not have this overhead.

5.4.1 Performance RFPTA

In our implementation RFPTA is faster than RFPTA with extra vanishing state as we have not
optimised the algorithm for inserting a new state (see algo. 1). However, it is very likely that
this overhead can be minimised using caching techniques. We only tested RFPTA to explore the
error introduced by adding an extra state prior to calculating the passage time distribution. The
runtime of the passage time analyser for the smcourier model with extra state (see sect. 5.1.3.1)
is twice as long as the runtime of the first-passage time calculation on the unmodified SMP
graph. Even adding an extra state to the 4 predecessor states of the web-server model partition
slows down the passage time computation by a factor of 2.

We did further tests for the normal RFPTA without extra states. Unfortunately the only model
that we could test the algorithm on was the voting model, as we could not find large partitions
with only one predecessor or successor state in other models. The RFPTA algorithm was tested
on an Intel Duo Core 1.8 Ghz processor with 1 Gbyte of RAM. For the 106540 states voting
model the total time taken by our program to do RFPTA aggregation on a large partition and
the subsequent passage time analysis for 165 Laplace transform samples with convergence preci-
sion 10−16 was 306 seconds. The total number of complex Laplace transform multiplications was
2,553,489,711. In contrast to that it took 398 seconds and 3,709,928,347 complex multiplications
to do the same passage time calculation on the initial SMP graph without aggregation. The 165
Laplace transform samples were inverted using the Euler inversion technique with m = 20 and
n = 12 (see sect. 2.4.1.1). The maximum error occurred in the 13th decimal place in both pdf
and cdf.

In our last example atomic aggregation actually yields a speed-up on top of its ability to do
first passage time analysis using less memory than the first-passage time calculation on the un-
aggregated SMP. Clearly the reason for this is that FPTA on an aggregated transition matrix
allows us to explore longer paths with fewer iterations, since the transitions between the for-
mer predecessor and successor states of the aggregated partition encapsulate the information of
many paths. Unfortunately further experiments on FPTA using barrier partitioning and cheap
state aggregation revealed that aggregation does not always achieve speed-ups. One reason for
this is the convergence check used by the iterative passage time algorithm (see eq. 2.21). The
iterative algorithm only stops once the largest absolute value of any element in νr becomes less
than the chosen precision ε. If we aggregate partitions whose internal paths have lower proba-
bilities than those going through the states outside the partition then the largest value in νr can
remain unaffected by the aggregation during the final computation of the passage time on the

5. ATOMIC AGGREGATION OF ENTIRE PARTITIONS 65

aggregated matrix. At the same time the average absolute value among all elements in νr after
every iteration is lower than in the unaggregated case. This makes sense because r iterations
with the iterative passage time analyser on the aggregated transition matrix include paths of
length longer than r in the original unaggregated graph, which should make at lot of values in
vector νr tend to zero faster. If aggregation does not speed up the convergence of the passage
time analysis, then first-passage time analysis with atomic aggregation can be more expensive
than standard FPTA as we have the overhead of performing the aggregation.

Another reason for a slow-down is the fill-in behaviour of νr during the iterative passage time
calculation. In our implementation we only multiply elements in νr with the matrix that have
non-zero values. In some experiments we found that aggregation slows down passage time anal-
ysis as νr fills in faster with non-zero values when passage time analysis is done on aggregated
SMP models. Hence even if aggregation speeds up the convergence of the passage time algo-
rithm in these cases, it can happen that we need more complex multiplications to aggregate the
matrix and do the final passage time calculation than we need for the analysis of the unaggre-
gated transition matrix. In chapter 6 we therefore discuss techniques that allow us to reduce
the number of complex multiplications without introducing significant numerical errors.

5.4.2 Performance of the barrier strategies

The computation of a balanced barrier partitioning for the 1.1 million state voting model takes
less than 10 seconds on an Intel Duo Core 1.8 Ghz processor and 1 Gbyte of RAM. The compu-
tation of a 2-way partitioning with PaToH2D takes about 60 seconds on the same machine, but
the resulting partitioning is not even suitable for RFPTA. For the 1100000 states voting model
the max-way barrier partitioner needs 72 seconds on an Intel P4 3 Ghz with 4 Gbyte of RAM
to find the barrier partitioning with the maximum number of partitions. In the 1000000 states
web-server model the partitioner takes 35 seconds to find the max-way barrier partitioning.
Given the fact that the voting model has about twice as many transitions as the web-server
model (see tables A.1 and A.2), it is reasonable to assume that the complexity of finding a
partitioning grows linearly with the size of the problem. This assumption is realistic as the
partitioning algorithm looks at the incoming transitions of every state exactly once. This result
is promising as it suggests that the partitioning algorithm is likely to perform well on larger
models, too. Hence barrier partitioning does not only allow us to save an enormous amount of
memory during passage time analysis but also the partitioning method itself has a much lower
complexity than for instance graph and hypergraph partitioners.

5.5 Summary

Provided we find a suitable partition, atomic partition aggregation is a lot more feasible than
state-by-state aggregation of partitions, as we can use the efficient iterative passage time al-
gorithm for RFPTA aggregation. Aggregation should be considered as a tool for reducing the
amount of memory needed for extracting measures from SMPs, but we should not necessarily
expect speed-ups. When performing first-passage time analysis in semi-Markov and Markov
models, k-way barrier partitioning certainly is the method of choice, provided we can find such
a partitioning. We have shown that first-passage times in models that qualify for k-way bar-
rier partitioning can be computed using significantly less memory, which should enable us to
massively increase the size of models for which first-passage time analysis is feasible on modern
computer hardware. The smcourier model example (see fig. 5.5), however, suggests that barrier
partitioning is only feasible if the proportion of source and targets states in the transition graph
is low. Further research is needed to explore if Markov and semi-Markov models, which satisfy
this requirement, generally have suitable k-way barrier partitionings for passage time analysis.

66 6. APPLYING NEW TECHNIQUES FOR FASTER FPTA CALCULATION

CHAPTER 6

Applying new techniques for faster FPTA calculation

In this chapter we investigate how well techniques discussed in chapters 3, 4 and 5 perform
with respect to first-passage time analysis on semi-Markov processes. First we compare the
effect of 2-way barrier partitioning and cheap state aggregation with regard to the number of
complex multiplications needed for aggregation and subsequent first-passage time analysis of
semi-Markov models. We then introduce and test a new numerical truncation technique, which
enables us to reduce the cost of computing the first-passage time distribution in large semi-
Markov models up to 75% without introducing significant errors. Finally we discuss the k-way
barrier method and briefly investigate how our truncation technique for the iterative passage
time analysis can be parallelised.

6.1 FPTA techniques

In the following we distinguish between doing first-passage time analysis with a 2-way barrier
partitioning and without. Furthermore we test the effect of cheap state aggregation. In fig. 6.1
the relevant measurements for this discussion are labelled NoBarrier, NoBarrierCheap, Barrier
and BarrierCheap, where NoBarrier is the standard application of the iterative passage time
algorithm on the initial transition matrix as described in sect. 2.6.1. See fig. C.1 for the results
of the same experiment on the web-server model.

6.1.1 Error analysis

The largest error term introduced by 2-way barrier partitioning and cheap state aggregation is
of magnitude 10−12 for the cdf in all our experiments on the voting model and the web-server
model. Since we only used a convergence precision of 10−16 for the convergence test of the
iterative passage time solver the error is acceptable. This validates our theoretical results about
the exactness of first-passage time analysis on aggregated matrices and on barrier partitionings.
Note that the error we describe here is the Kolmogorov–Smirnov statistic[29]. In our case theKolmogorov–Smirnov

(K–S) K–S statistic measures the absolute difference between the cdfs of the NoBarrier method and
the cdfs of the other FPTA techniques.

It is hard to say which of the four techniques yields the results that are closest to the theoretical
distribution. In general we would expect cheap state aggregation to yield the most accurate
results, but due to the nature of the convergence check of the iterative passage time algorithm,
which we discussed in sect. 5.4.1 it could also be the case that the normal FPT computation
without aggregation yields more accurate results. In the 1100000 states voting model it certainly

6. APPLYING NEW TECHNIQUES FOR FASTER FPTA CALCULATION 67

is the NoBarrierCheap method as it does as many iterations as the NoBarrier method, but on
an aggregated graph, which implies that more paths are taken into account. In any case it is
reassuring to know that the difference between the results of all four techniques is small. This
allows us to freely choose between any of these techniques for passage time computation.

6.1.2 Performance

The graph of the NoBarrierCheap method in fig. 6.1 proves our earlier conjecture that aggre-
gation does not necessarily reduce the amount of computation needed for first-passage time
analysis. It is interesting to see such a sudden increase in the number of complex multiplica-
tions needed by the NoBarrierCheap method between the 500000 states voting model and the
one with 1100000 states. Further investigation revealed that in this case the increase in the
number of transitions is caused by the faster fill-in of the νr vector (see sect. 5.4.1). This can be
deduced from the fact that the actual number of iterations needed by the iterative passage time
algorithm for the NoBarrier method is precisely the same as for the NoBarrierCheap method in
the 1100000 states voting model. Since we only count multiplications with non-zero element in
νr this implies that νr must fill-in faster when using the NoBarrierCheap method in this case.
In the web-server model (see fig. C.1) this phenomenon does not occur. The reason for this
behaviour can be explained by figs. C.2 and C.3. The νr vector in the large voting model fills in
more slowly than in the 1000000 states web-server model. Aggregation of states in the voting
model may speed-up the vector fill-in and thus cause the increase in the number of multiplica-
tions needed for the NoBarrierCheap method.

Another observation we made is that the 2-way Barrier method generally seems to do better than
the NoBarrier method. However, the steep increase in the number of complex multiplications
needed by the Barrier method between the 500000 and the 1100000 states voting model might
highlight a trend that the 2-way Barrier method needs more complex multiplications than the
NoBarrier method in large SMPs. Further investigation on larger models is necessary to see if
this is a general trend or if it is simply due to the nature of the voting model.

6.2 Path truncation

Recall that the convergence criteria of the iterative passage time analyser as well as the fill-in
behaviour of the νr vector can cause state and partition aggregation with subsequent passage
time analysis on the aggregated graph to be more computationally expensive than the initial
passage time analysis. This effect is clearly visible in the graph of the NoBarrierCheap in fig. 6.1.
A larger number of complex multiplications obviously yields a higher accuracy when doing the
Laplace inversion, however we may not need this extra precision, especially if it only affects
the least significant decimal places of our distribution samples. During our analysis of the νr
vector fill-in we observed that the νr vector often contains a high proportion of elements with
very small complex values. In the following we study the impact of truncating these elements
(i.e. setting them to zero during the iterative passage time analysis) on the accuracy and the
performance of our four first-passage time calculation methods introduced in sect. 6.1. Note
that this truncation technique can also be used for iterative passage time analysis in Markov
models.

Definition 6.1. We define a negligibly small Laplace transform sample L to be a complex Negligibly small
Laplace transform

sample
number L for which |Re(L)| < ε2 and |Im(L)| < ε2 where ε > 0 is the precision of the iterative
passage time solver in eq. 2.21.

Note. Setting an element in νr to zero can create an error that is larger than the absolute
value of the truncated element. This is because of the cascading effect of the matrix vector
multiplication. Any non-zero element in a non-target column of νr contributes to the value of
at least one other column in νr during the next iteration. As many states have more than one

68 6. APPLYING NEW TECHNIQUES FOR FASTER FPTA CALCULATION

 0

 0.5

 1

 1.5

 2

 200000 400000 600000 800000 1e+06

R
el

at
iv

e
nu

m
be

r
of

 c
om

pl
ex

 m
ul

tip
lic

at
io

ns

Number of states in voting model (FPTA with precision 1e-16)

NoBarrier FPTA
NoBarrierCheap FPTA

NoBarrierTruncated FPTA
NoBarrierCheapTruncated FPTA

Barrier FPTA
BarrierCheap FPTA

BarrierTruncated FPTA
BarrierCheapTruncated FPTA

Figure 6.1: The diagram shows how different combinations of aggregation and first-passage time
analysis techniques perform relative to the standard iterative first-passage time technique on the
voting model. For each model size we divide the number of complex multiplications needed for
the first-passage time calculation for a given technique by the number of complex multiplications
needed by the standard technique on the unaggregated SMP transition matrix. The first-passage
time calculates 165 Laplace transform samples that allow us to estimate a t-point near the mode
of the distribution and 2 t-points to either side of that point. See table C.1 for the exact data
used to plot this diagram

outgoing transition the value of one element in the νr vector usually contributes to the sums of a
large percentage of the elements in νr since the number of states a single state can reach in k state
transitions can be exponentially high. It is thus important to restrict truncation to elements
whose absolute values are much smaller than our required precision, otherwise truncation might
have a negative impact on the accuracy of the results of the passage time calculation.

6.2.1 Error analysis

The graphs labelled NoBarrierTruncated, NoBarrierCheapTruncated, BarrierTruncated and
BarrierCheapTruncated in fig. 6.1 and fig. C.1 show the performance of the truncation method
in the first-passage time analysis of the voting and the web-server model. We chose ε = 10−16,
hence ε2 = 10−32. As truncation requires us to test all non-zero values of νr we decided to
remove negligibly small values from νr every 25 iterations of the iterative passage time analyser.
Comparing the samples of the first-passage time distributions produced by the 4 techniques
discussed in sect. 6.1 with those produced by their truncated counterparts we found that they
had matching results up to an error term of 10−25. Hence our truncation technique does not
seem to have a negative impact on the accuracy of first-passage time distribution.

6. APPLYING NEW TECHNIQUES FOR FASTER FPTA CALCULATION 69

6.2.2 Performance

Table 6.1 shows that truncation significantly reduces the amount of complex multiplication
needed for all 4 different passage time computation techniques. Furthermore we can observe
that the saving becomes larger as we increase the size of the model, which suggests that our
truncation technique is scalable.

Voting model
Number of states NoBarrier NoBarrierCheap Barrier BarrierCheap

100000 61% 42% 78% 71%
250000 45% 49% 60% 48%
500000 35% 39% 48% 48%
1100000 30% 27% 38% 38%

Web-server model
Number of states NoBarrier NoBarrierCheap Barrier BarrierCheap

100000 36% 37% 44% 45%
250000 33% 34% 41% 42%
500000 30% 32% 38% 39%
1000000 25% 27% 32% 33%

Table 6.1: Relative number of complex multiplications needed by the truncated versions of the
FPTA methods compared to their untruncated counterparts.

Table 6.2 shows the different timings we obtained running our first-passage time analyser. Al-
though the BarrierCheapTruncated approach has the fastest runtime on the web-server model
with 1100000 states, we recommend to use cheap states aggregation with care, since its effect is
hard to predict (see sect. 6.1.2). The runtime of the 2-way barrier method on the other hand
is always very close to the time needed for the standard calculation. However, at the time we
conducted the experiments the test program was not optimised for barrier FPTA.

On average the NoBarrierTruncated and BarrierTruncated methods yield the highest time sav-
ing. This is not surprising as the overhead for removing negligibly small Laplace transform
samples is quite low but the saving in complex multiplication is reasonably large (see table C.1).
Further improvements on our truncation technique may allow us to reduce its overhead further,
so that our time saving matches the saving in complex multiplications more closely. One way
to speed up the first-passage time calculation might be to relax defn. 6.1 or to increase the
frequency with which we remove negligibly small values from νr. The νr vector fill-in illustrated
in figs. C.2 and C.3 suggests that some models a more suited for truncation than others. As the
νr vector fills in more slowly in the large voting model than in the web-server model the saving
we obtain by truncation is lower than in the web-server model. Consequently the time saving
through truncation is greater in the web-server model, too.

One interesting observation we made is that the relative saving in the number of complex
multiplication needed by the truncated versions of the FPT analysers appears to be s-point
invariant. Further study with rigorous statistical tests is needed to confirm this conjecture,
however, if it holds it would enable us to run a pilot study on a single s-point in order to find
the optimal configuration for the actual passage time analysis of the t-points we are interested
in.

6.2.2.1 FPTA with k-way barrier partitioning

We deliberately postponed the discussion of the k-way barrier partitioning up until now, for the
first-passage time analysis using k-way barrier partitionings combines many of the character-
istics of techniques that we have discussed so far. First of all we emphasise that the iterative

70 6. APPLYING NEW TECHNIQUES FOR FASTER FPTA CALCULATION

Runtime for FPTA in seconds
Method Voting model(1100000) Web-server model(1000000)
NoBarrier 3517 18120
NoBarrierCheap 10319 19762
NoBarrierTruncated 1707 5370
NoBarrierCheapTruncated 4979 7346
Barrier 4218 12820
BarrierCheap 5290 11858
BarrierTruncated 2308 4860
BarrierCheapTruncated 2878 4739

Relative time compared to NoBarrier
Method Voting model(1100000) Web-server model(1000000)
NoBarrier 100% 100%
NoBarrierCheap 290% 109%
NoBarrierTruncated 48% 30%
NoBarrierCheapTruncated 142% 41%
Barrier 120% 71%
BarrierCheap 150% 65%
BarrierTruncated 66% 27%
BarrierCheapTruncated 82% 26%

Table 6.2: The first table shows the time needed to do a FPTA calculation on an Intel P4 3.0
Ghz for 165 Laplace transforms with precision 10−16 and a truncation threshold of 10−32. In the
second table we see the relative time needed by methods compared to the standard NoBarrier
technique.

k-way barrier passage time algorithm (see algo. 3 in sect. 5.3) automatically truncates elements
that are no longer needed, i.e. those elements in ν(i)

r that have no impact on the next restricted
iterative first-passage time computation. The second feature of the algorithm is that the fill-in of
the ν(i)

r vector is reduced to those Laplace transform samples that represent the restricted first-
passage time distribution from the set of source states to those states that lie in the sub-matrix
of the barrier partition on which we perform restricted passage time analysis. As a consequence
we see multiple small density peaks in figs. C.2 and C.3. This observation is similar to the one
made in fig. 4.4, only that in this case the lower peaks correspond to a reduction in the number
of complex multiplications per iteration. Note, however, that we need to compare the total
number of complex multiplication to show that the k-way barrier FPTA needs less complex
multiplications since the k-way barrier method does significantly more iterations than FPTA
methods on the unpartitioned transition graph. Nevertheless the principle of saving memory in
exact state aggregation and reducing the amount of complex multiplications in k-way barrier
FPTA is the same: by limiting the scope of the computation to the sub-matrix of a partition,
the number of new transitions in the case of exact state aggregation as well as the number of
Laplace transforms in ν

(i)
r during passage time analysis is physically bounded. In both cases

state space partitioning enables us to solve the problem using a less computationally expensive
divide and conquer approach.

The results in table 6.3 show that the k-way barrier approach is as least as fast the NoBarri-
erTrunc method. In the web-server model the k-way barrier passage time analyser is even up
to three times faster than the NoBarrierTrunc method. 40-way BarrierTrunc is generally faster
than Max-way BarrierTrunc because of the overhead incurred by managing the extra barriers.
A comparison between the K–S error of Max-way Barrier and Max-way BarrierTrunc gives more
evidence for our earlier conjecture that truncation does not have any significant impact on the
accuracy of the passage time analysis. However, it seems that in the voting model the error
increases with the number of partitions in the barrier partitioning. For the web-server model

6. APPLYING NEW TECHNIQUES FOR FASTER FPTA CALCULATION 71

Voting model(1100000)
Method Complex mults Runtime(secs) K-S error
NoBarrier 91,067,403,088 5317 0
NoBarrierTrunc 27,362,071,935 1707 0
2-way BarrierTrunc 33,038,568,429 2308 8.18789e-13
40-way BarrierTrunc 20,631,960,444 1630 1.25518e-12
Max-way Barrier 14,675,308,020 2110 9.81359e-12
Max-way BarrierTrunc 14,613,972,603 1936 9.81359e-12

Web-server model (1000000)
Method Complex mults Runtime(secs) K-S error
NoBarrier 287,181,545,505 18120 0
NoBarrierTrunc 75,954,719,825 5370 0
2-way BarrierTrunc 52,391,817,571 4860 2.81538e-13
40-way BarrierTrunc 14,826,831,044 1338 1.55187e-12
Max-way Barrier 17,070,767,235 1955 1.48844e-12
Max-way BarrierTrunc 10,733,105,688 1545 1.48844e-12

Table 6.3: Timings were done on a Intel P4 3.0 Ghz with 4 GByte of RAM. Note that the runtime
was not timed on a dedicated machine. This is probably the reason why Max-way Barrier takes
longer than its truncated version despite the number of multiplications being almost identical.
In the voting model the Max-way barrier partitioning corresponds to a 349-way partitioning, in
the web-server model to a 332-way partitioning.

on the other hand this does not hold. If too many barrier partitions were to cause numerical
instability in the iterative passage time analysis, then we would either have to generate a kmax-
way partitioning and subsequently join neighbouring partitions in order to reduce the number
of partitions or impose a stronger convergence criteria for the iterative solver. Given the data
in table 6.3 this is just mere speculation though, especially because the K–S errors are not that
much larger than 10−16, which is the convergence criteria of the iterative solver we use through-
out all experiments in this chapter. Finally note that there might potentially be a correlation
between how efficient truncation can be applied to a model and how fast k-way barrier passage
time analysis is. Such a dependence would explain why k-way barrier passage time analysis is
much faster than the NoBarrierTrunc method in the web-server model than it is in the voting
model, since we already observed in sect. 6.2.2 that truncation works better on the web-server
model than on the voting model.

6.3 Parallelisation

In [15] the parallelisation of the standard iterative passage time analysis is discussed. As we
mentioned in sect. 5.3 the principle could be extended to work for k-way barrier passage time
analysis, too. Parallelisation becomes harder though, when the iterative passage time analyser
is to be used in conjunction with truncation of negligibly small values. Existing load balancing
schemes might perform poorly when applied to parallel iterative FPTA with truncation as they
only consider the sparsity of the transition matrix but not the sparsity of the νr vector. As
the sparsity of the νr vector changes during iterative passage time analysis, load balancing
is potentially more difficult than for general sparse matrix vector multiplication. One way
to address this problem might be to use a probabilistic load balancing scheme, which assigns
weights to states in νr not only dependent on how many outgoing transitions the corresponding
state has, but also dependent on how likely it is to be non-zero during the iterative passage
time analysis. If the beforementioned invariability of the relative effect of truncation held across
all s-points then a pilot study on a single s-point could be used to optimise the load balancing
for different partitions. Another way of determining states that are less likely to be truncated
would be to use the steady state distribution to infer the computational load of a single state

72 6. APPLYING NEW TECHNIQUES FOR FASTER FPTA CALCULATION

during iterative passage time analysis with truncation. Further research might give us a better
understanding of the fill-in behaviour of the νr vector. This knowledge could then be used to
optimise load balancing for parallel iterative FPTA with truncation.

6.4 Summary

All passage time analysis techniques discussed in this chapter were shown to be exact. Moreover
applying truncation and k-way barrier partitioning speeds up the iterative passage time analysis
in the voting and the web-server model significantly. The main questions that are left unan-
swered are whether Max-way BarrierTrunc is numerically stable and how aggressive truncation
can be applied without causing numerical errors. All in all the results in this chapter leave
us with the impression that truncation and k-way barrier partitioning could become enabling
strategies for passage time evaluation of massive Markov and semi-Markov models that are com-
putationally intractable when iterative passage time analysis is performed on the unaggregated
state space.

7. EVALUATION, CONCLUSION AND FURTHER WORK 73

CHAPTER 7

Evaluation, conclusion and further work

7.1 Evaluation

When used in combination with k-way barrier partitioning and truncation our sparse vector im-
plementation of the passage time analyser is a lot faster than SMARTA. On an Intel Core Duo
2.66 Ghz the passage time analysis with 165 s-points on the 1100000 states voting model and the
1000000 states web-server model took 5475, 10024 seconds respectively in SMARTA. With our
new k-way barrier truncation algorithm the same calculations took 2053 seconds on the voting
and 2168 seconds on the web-server model. This evaluates to a speed-up of roughly 2.5 in the
voting model and 5 in the web-server model. We have thus shown that our new partitioning and
passage time analysis techniques are indeed improving existing passage time evaluation methods.

Due to the limited time available for this study we only used the Kolmogorov-Smirnov statistic
for our error analysis. We are, however, confident that results concerning the accuracy of
cheap state aggregation, k-way barrier partitioning and truncation are correct. The conjecture
about the s-point invariability regarding the relative saving in complex multiplications through
truncation (c.f. sect. 6.2) still requires thorough validation. It should also be noted that our
passage time analyser was not implemented using the memory saving feature of k-way barrier
truncation. The reason this was not done is that the k-way barrier method was only developed
towards the end of the project and hence there was no time to rewrite the analyser. However
from algo. 3 it can be seen that for every iteration of the passage time analyser we only have to
hold the states and transitions of the current barrier partition in memory. Thus although the
memory saving has not been shown to work in an actual implementation there is no reason to
believe that it does not work in practice.

7.2 Conclusion

Atomic partition aggregation is a lot more feasible than exact state-by-state aggregation, even
if the latter is done on partitions of the transition matrix rather than on the flat transition
matrix as in [1]. Moreover our study shows that state space partitioning of the transition graph
of semi-Markov processes significantly decreases the amount of memory and time needed for the
computation of passage time distributions. To find suitable partitions for atomic aggregation in
larger SMPs, graph and hypergraph partitioners do not seem to be a good choice. The barrier
partitioning example, however, illustrates that the structure of the semi-Markov chains can be
exploited to develop better partitioning methods tailored for the partitioning of the transition
matrix prior to passage time analysis. There are potentially further partitioning concepts,

74 7. EVALUATION, CONCLUSION AND FURTHER WORK

which can be used for state aggregation prior to the calculation of other performance metrics
(see sect. 2.5).

7.3 Further work

The first list depicts research projects whose results would consolidate the theoretical and prac-
tical results of this study. It would be especially useful to

1. show that the theoretical memory reductions in passage-time analysis with k-way barrier
partitioning can be achieved in practice

2. test the new passage time analysis techniques and the barrier partitioning algorithm on
larger SMP models with several million states

3. investigate the numerical stability of Max-way Barrier partitioning for passage time anal-
ysis

4. show that the relative saving in the number of complex multiplications is s-point invariable

5. investigate different models to determine characteristics of models that gain most from
the application of the truncation technique

Further interesting research could also be done to investigate

1. the use of cheap state aggregation in combination with k-way barrier partitioning and
truncation

2. how parallel passage time analysis can be optimised for the new partitioning and truncation
techniques

3. partitioning and aggregation techniques for improved computation of other performance
metrics

4. how techniques developed in this study can be used for the analysis of Markov models

7.3.1 Building the billion state semi-Markov response time analyser

In view of the new techniques for exact first-passage time analysis it is worth considering to create
a new semi-Markov response time analyser tool chain. Although barrier partitioning and passage
time analysis seem to be scalable, there are various other challenges when computing passage
times in extremely large SMPs, i.e. chains with more than 100 million states. Provided that
extremely large transition matrices can be generated using parallel breadth first search, there still
remains the problem of doing functional analysis and steady-state probability computation on
such huge state spaces. Especially with regard to the steady-state vector computation, which is
needed in order to compute the α vector (c.f. eq. 2.10), the development of new partitioning and
aggregation techniques might improve existing evaluation techniques described in [22, 23, 35].
The construction of the tool chain is desirable as current solvers can only approximate passage
time distributions in extremely large semi-Markov chains.

A. MODELS STUDIED 75

APPENDIX A

Models studied

This appendix detailly specifies the 3 Petri net models that we use to test and verify our
aggregation and passage time computation methods. The first model is a SM-SNP for an
electronic voting model, the second one a SM-SNP for a parallel web-server and the third model
is a GSPN of the courier communication protocol. For information on Petri nets see sect. 2.2.

A.1 Voting model

The SM-SPN described in sect. A.1 shows a model of a distributed voting system[9, 22]. The
model has CC voters, MM polling units and NN central voting units that gather the votes
from the polling units. Voters vote asynchronously, moving from p1 to p2 as they cast their

76 A. MODELS STUDIED

vote. To ensure that each voter can only cast one vote, transition t9 is only enabled when all
CC voters have casted their vote. Voting can only occur in abundance of a free polling unit
in p3. Having been used by a voter the polling unit sends the vote to one of the NN central
voting units. If there is no such voting unit the polling unit waits in p4. Once it has submitted
its vote to the server the voting unit becomes operational again. When polling units fail they
enter p7 via transition t3 where they remain until they have been repaired. Similarly broken
central voting units wait in p6. The passage time analysis conducted on this model in our study
investigates the distribution of time needed for CC voters to cast their vote in a system with
MM polling units and NN central servers.

CC MM NN States Transitions
22 7 4 4050 16128
22 12 4 10300 43608
60 25 4 106540 480000
100 30 4 249760 1140000
125 40 4 541280 2500000
175 45 5 1140050 5512500

Table A.1: Size of SMP generated by different configurations of the voting model.

A.2 Web-content authoring (web-server) model

A. MODELS STUDIED 77

The SM-SPN described in sect. A.2 shows a model of a web-server with RR clients (readers),
WW web content authors (writers), SS parallel web-servers and a write-buffer of size BB[9, 22].
Readers that request web-pages from one of the web-servers move from p8 to p7 and from p7 to
p9 as they receive the requested content. Writers who have completed a new web-page submit
it to the write buffer. This is represented by a token movement from p1 to p3 via p4, which
also requires them to use one of the servers in p6. Write requests are granted if there is no read
request in p7. Once a write request has been processed it moves to place p2. The web-servers
in p6 are liable to fail. If they do, they move to p5 where they remain until they have been
fixed. For this model the passage time analysis we measured in our experiments represents the
probability distribution of the time needed until all RR read and WW write requests have been
processed in a system with SS web-servers and a write buffer of size BB.

RR WW SS BB States Transitions
45 22 4 8 107289 319164
66 33 4 8 249357 743272
94 45 4 8 498433 1487432
130 64 4 8 1002752 2994732

Table A.2: Size of SMP generated by different configurations of the web-server model.

78 A. MODELS STUDIED

A.3 Courier model

n

courier1

network
delay

sender
application

task

sender
session

task

sender
transport

task

receiver
application

task

receiver
session

task

receiver
transport

task

m

p2

t2

p4p3

p5

p6

p8

t5

p10 p9

p11

p13p12

p16p15

p14

p17

p20 p18 p19

t14t13

p22p21t15

p23

p24 p25

p26

p27 p28 p29

t23 t24

p31p30

p32

t22

p33 p34

t27

p35

p36 p37

t29

p38 p39

p40

p41

p42

t32

p44p43

p45 p46p1

courier3courier2

courier4

network delay

t1 (r7)

t3 (r1)

t4 (r2)

t6 (r1)

t7 (r8)

t12 (r3)

t8 (q1) t9 (q2)

t11 (r5)t10 (r5)

t18 (r4)

t16 (r6) t17 (r6)

t34 (r10)

t33 (r1)

t31 (r2)

t30 (r1)

t28 (r9)

t25 (r5) t26 (r5)

t19 (r3) t20 (r4) t21 (r4)

The GSPN model described in sect. A.3 represents the ISO Application, Session and Transport
layers of the Courier sliding-window communication protocol. It was originally presented in [32].
For a detailed explanation see [22]. The model has 29010 states and 65640 transitions.

B. ADDITIONAL DIAGRAMS FOR BARRIER PARTITIONING DISCUSSION 79

APPENDIX B

Additional diagrams for barrier partitioning discussion

 1

 52993

 107289

 1 52993 107289

F
ro

m
 s

ta
te

To state

Figure B.1: Balanced barrier partitioning of 107289 states web-server model.

80 C. ADDITIONAL DIAGRAMS FOR FPTA PERFORMANCE DISCUSSION

APPENDIX C

Additional diagrams for FPTA performance discussion

 0

 0.5

 1

 1.5

 2

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
el

at
iv

e
nu

m
be

r
of

 c
om

pl
ex

 m
ul

tip
lic

at
io

ns

Number of states in web-server model (FPTA with precision 1e-16)

NoBarrier FPTA
NoBarrierCheap FPTA

NoBarrierTruncated FPTA
NoBarrierCheapTruncated FPTA

Barrier FPTA
BarrierCheap FPTA

BarrierTruncated FPTA
BarrierCheapTruncated FPTA

Figure C.1: The diagram shows how different combinations of aggregation and first-passage
time analysis techniques perform relative to the standard iterative first-passage time technique
on the web-server model. For each model size we divide the number of complex multiplications
needed for the first-passage time calculation for a given technique by the number of complex
multiplications needed by the standard technique on the unaggregated SMP transition matrix.
The first-passage time calculates 165 Laplace transform samples that allow us to estimate a
t-point near the mode of the distribution and 2 t-points to either side of that point.

C. ADDITIONAL DIAGRAMS FOR FPTA PERFORMANCE DISCUSSION 81

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 n

on
-z

er
o

el
em

en
ts

 in
 v

ec
to

r

Percentage of iterations performed

40-way BarrierTrunc
NoBarrierTrunc

NoBarrier

Figure C.2: Sparsity of νr vector during the iterative passage time analysis of the 1100000 state
voting model. The data is based on the vector fill-in observed during the iterative passage time
computation of a single s-point. Although the exact pattern differs slightly between different
s-points, the general trends were the same. Therefore the data is representative of the behaviour
of the νr vector in the large voting model.

82 C. ADDITIONAL DIAGRAMS FOR FPTA PERFORMANCE DISCUSSION

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 n

on
-z

er
o

el
em

en
ts

 in
 v

ec
to

r

Percentage of iterations performed

40-way BarrierTrunc
NoBarrierTrunc

NoBarrier

Figure C.3: Sparsity of νr vector during the iterative passage time analysis of the 1000000
state web-server model. The data is based on the vector fill-in observed during the iterative
passage time computation of a single s-point. Although the exact pattern differs slightly between
different s-points, the general trends were the same. Therefore the data is representative of the
behaviour of the νr vector in the large web-server model.

C. ADDITIONAL DIAGRAMS FOR FPTA PERFORMANCE DISCUSSION 83

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

A
bs

ol
ut

e
nu

m
be

r
of

 c
om

pl
ex

 m
ul

tip
lic

at
io

ns
 fo

r
F

P
T

A

Number of states in web-server model (FPTA with precision 1e-16)

NoBarrier FPTA
NoBarrierCheap FPTA

NoBarrierTruncated FPTA
NoBarrierCheapTruncated FPTA

Barrier FPTA
BarrierCheap FPTA

BarrierTruncated FPTA
BarrierCheapTruncated FPTA

Figure C.4:

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

 200000 400000 600000 800000 1e+06

A
bs

ol
ut

e
nu

m
be

r
of

 c
om

pl
ex

 m
ul

tip
lic

at
io

ns
 fo

r
F

P
T

A

Number of states in voting model (FPTA with precision 1e-16)

NoBarrier FPTA
NoBarrierCheap FPTA

NoBarrierTruncated FPTA
NoBarrierCheapTruncated FPTA

Barrier FPTA
BarrierCheap FPTA

BarrierTruncated FPTA
BarrierCheapTruncated FPTA

Figure C.5:

84 C. ADDITIONAL DIAGRAMS FOR FPTA PERFORMANCE DISCUSSION

V
oting

m
odel

U
ntruncated

T
runcated

N
um

ber
of

states
N

oB
arrier

N
oB

arrierC
heap

B
arrier

B
arrierC

heap
N

oB
arrier

N
oB

arrierC
heap

B
arrier

B
arrierC

heap
100000

100%
84%

70%
61%

61%
35%

54%
44%

250000
100%

49%
64%

49%
45%

24%
39%

30%
500000

100%
49%

63%
49%

35%
19%

30%
24%

1100000
100%

190%
95%

113%
30%

51%
36%

43%

W
eb-server

m
odel

U
ntruncated

T
runcated

N
um

ber
of

states
N

oB
arrier

N
oB

arrierC
heap

B
arrier

B
arrierC

heap
N

oB
arrier

N
oB

arrierC
heap

B
arrier

B
arrierC

heap
100000

100%
83%

58%
49%

36%
30%

26%
22%

250000
100%

84%
57%

48%
33%

28%
24%

20%
500000

100%
84%

56%
48%

31%
26%

22%
19%

1000000
100%

84%
56%

48%
26%

23%
18%

16%

T
able

C
.1:

T
able

contains
num

erical
data

used
to

plot
figs.

6.1
and

C
.1.

T
o

get
this

data
w

e
sim

ply
divided

the
num

ber
of

of
com

plex
m

ultiplication
needed

for
the

F
P

T
A

w
ith

a
particular

technique
by

the
num

ber
of

com
plex

m
ultiplications

needed
for

the
N

oB
arrier

m
ethod.

BIBLIOGRAPHY 85

Bibliography

[1] J. T. Bradley, N. J. Dingle, W. J. Knottenbelt: Exact Aggregation Strategies for Semi-
Markov Performance Models, SPECTS 2003, International Symposium on Performance
Evaluation of Computer and Telecommunication Systems, Montreal, Canada, July 20-24
2003

[2] B. Hendrickson, T. G. Kolda: Graph partitioning models for parallel computing, Parallel
Computing, v.26 n.12, p.1519-1534, Nov. 2000

[3] B. Hendrickson: Graph Partitioning and Parallel Solvers: Has the Emperor No Clothes?
(Extended Abstract), Proceedings of the 5th International Symposium on Solving Irregu-
larly Structured Problems in Parallel, p.218-225, August 09-11, 1998

[4] U. Catalyurek, C. Aykanat: Hypergraph-Partitioning-Based Decomposition for Parallel
Sparse-Matrix Vector Multiplication, IEEE Transactions on Parallel and Distributed Sys-
tems, v.10 n.7, p.673-693, July 1999

[5] B. Ucar, C. Aykanat: Revisiting Hypergraph Models for Sparse Matrix Partitioning, SIAM
Rev. Volume 49, Issue 4, pp. 595-603, Nov. 2007

[6] U. Catalyurek, C. Aykanat: A Fine-Grain Hypergraph Model for 2D Decomposition of
Sparse Matrices, Proceedings of the 15th International Parallel & Distributed Processing
Symposium, p.118, April 23-27, 2001

[7] A. Trifunovic, W. J. Knottenbelt: Parallel multilevel algorithms for hypergraph parti-
tioning, May 2008, Journal of Parallel and Distributed Computing, Volume 68 Issue 5,
Publisher: Academic Press, Inc.

[8] P. G. Harrison, W. J. Knottenbelt: Passage time distributions in large Markov chains,
Proceedings of the 2002 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems, June 15-19, 2002, Marina Del Rey, California

[9] J. T. Bradley, N. J. Dingle, W. J. Knottenbelt, H. J. Wilson: Hypergraph-based parallel
computation of passage time densities in large semi-Markov models, J. Linear Algebra Appl.
386 (2004) 311-334.

[10] B. Vastenhouw, R. H. Bisseling: A Two-Dimensional Data Distribution Method for Parallel
Sparse Matrix-Vector Multiplication, SIAM Review, v.47 n.1, p.67-95, 2005

[11] J. T. Bradley, D. V. de Jager, W. J. Knottenbelt, A. Trifunovic: Hypergraph partitioning
for faster parallel PageRank computation, LECT NOTES COMPUT SC, 2005, Vol: 3670,
Pages: 155 - 171, ISSN: 0302-9743

86 BIBLIOGRAPHY

[12] G. Karypis , V. Kumar: Multilevel k-way hypergraph partitioning, Proceedings of the 36th
ACM/IEEE conference on Design automation, p.343-348, June 21-25, 1999, New Orleans,
Louisiana, United States

[13] C. M. Fiduccia, R. M. Mattheyses: A linear-time heuristic for improving network partitions,
Proceedings of the 19th conference on Design automation, p.175-181, January 1982

[14] A. Trifunovic, W. J. Knottenbelt: Parkway 2.0: a parallel multilevel hypergraph par-
titioning tool. In: Proceedings of the 19th International Symposium on Computer and
Information Sciences, Lecture Notes in Computer Science, vol. 3280. Springer, Berlin. pp.
789-800.

[15] J. T. Bradley, N. J. Dingle, P. G. Harrison, W. J. Knottenbelt: Distributed Computation of
Passage Time Quantiles and Transient State Distributions in Large Semi-Markov Models,
Proceedings of the 17th International Symposium on Parallel and Distributed Processing,
p.281.1, April 22-26, 2003

[16] C. J. Alpert, A. B. Kahng: Recent directions in netlist partitioning: a survey, Integration,
the VLSI Journal, v.19 n.1-2, p.1-81, Aug. 1995

[17] C. J. Alpert, A. B. Kahng: Multi-way partitioning via spacefilling curves and dynamic
programming, Proceedings of the 31st annual conference on Design automation, p.652-657,
June 06-10, 1994, San Diego, California, United States

[18] G. Karypis, R. Aggarwal, V. Kumar, S. Shekhar: Multilevel hypergraph partitioning: ap-
plication in VLSI domain, Proceedings of the 34th annual conference on Design automation,
p.526-529, June 09-13, 1997, Anaheim, California, United States

[19] C. J. Alpert, J. Huang, A. B. Kahng: Multilevel circuit partitioning, Proceedings of the 34th
annual conference on Design automation, p.530-533, June 09-13, 1997, Anaheim, California,
United States

[20] P. P. G. Dyke: An introduction to Laplace transforms and Fourier series, Springer Verlag
London Limited 2001, 2nd printing 2001

[21] DNAMaca: http://www.doc.ic.ac.uk/ipc/, accessed on the 3rd of November 2008

[22] N. J. Dingle: Parallel Computation of Response Time Densities and Quantiles in Large
Markov and Semi-Markov Models, PhD thesis, Imperial College, London, United Kingdom,
February 2004.

[23] W. J. Knottenbelt: Parallel Performance Analysis of Large Markov Models, PhD thesis,
Imperial College, London, United Kingdom, February 2000.

[24] MeTiS/ParMeTiS graph partitioners and hMeTiS hypergraph partitioner http://www.cs.
umn.edu/~karypis/metis, accessed on the 7th of January 2009

[25] PaToH hypergraph partitioning software http://bmi.osu.edu/~umit/software.html, ac-
cessed on the 28th of December 2008

[26] R. Neapolitan: Probabilistic Reasoning in Expert Systems, John Wiley 1990

[27] M. C. Guenther, N. J. Dingle, J. T. Bradley, W. J. Knottenbelt: Aggregation Strategies
for Large Semi-Markov Processes, III International Symposium on Semi-Markov Models:
Theory & applications, June 2009

[28] M. C. Guenther, N. J. Dingle, J. T. Bradley, W. J. Knottenbelt: Truncation of Passage Time
Calculations in Large Semi-Markov models, 25th UK Performance Engineering Workshop,
to appear in July 2009

http://www.cs.umn.edu/~karypis/metis
http://www.cs.umn.edu/~karypis/metis
http://bmi.osu.edu/~umit/software.html

BIBLIOGRAPHY 87

[29] http://en.wikipedia.org/wiki/Kolmogorov-Smirnov, accessed on 04/06/2009 at
4.30pm

[30] http://www.sgi.com/tech/stl/, accessed on 05/06/2009 at 12pm

[31] U.S. Fire Administration/National Fire Data Center: Structure Fire Response Times,
Topical Fire Research Series, Volume 5 Issue 7 January 2006 / Revised August 2006,
http://www.usfa.dhs.gov/downloads/pdf/tfrs/v5i7.pdf, accessed on 06/06/2009 at
11pm

[32] C. M. Woodside, Y. Li: Performance Petri net analysis of communcation protocol software
by delay-equivalent aggregation. In Proceedings of the 4th International Workshop on Petri
nets and Performance Models(PnPM’91), pages 64-73, Melbourne, Australia, 2-5 December
1991, IEEE Computer Society Press

[33] N. J. Dingle, P. G. Harrison, W. J. Knottenbelt: HYDRA: HYpergraph-based Distributed
Response-time Analyser. In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA’03), pages 215-219, Las Vegas
NV, USA, June 23rd-26th 2003

[34] J. T. Bradley, H. J. Wilson: Iterative convergence of passage-time densities in semi-Markov
performance models, Performance Evaluation, Volume 60, Issues 1-4, Performance Mod-
eling and Evaluation of High-Performance Parallel and Distributed Systems, May 2005,
Pages 237-254,

[35] R. Mehmood: Disk-based techniques for efficient solution of large Markov chains, Ph.D.
thesis, University of Birmingham., October 2004

http://en.wikipedia.org/wiki/Kolmogorov-Smirnov
http://www.sgi.com/tech/stl/
http://www.usfa.dhs.gov/downloads/pdf/tfrs/v5i7.pdf

88 INDEX

Index

M [t >, 15
M →M ′, 15
s-point, 19
t-point, 19

Atomic partition aggregation, 49

Balanced barrier partitioning, 58
Barrier partitioning, 55
Boundary-cut, 28

Cheap states, 44
Convolution, 18

Discrete event simulation (DES) aggregator, 52

Edge-cut, 28
Enhanced-Fewest-Paths-First (EFPF) sort, 35
Equilibrium state, 21
Euler inversion, 19
Exact state-by-state aggregation, 24
Exact-Fewest-Paths-First(EFPF) aggregation,

41
Exponential order, 18
Extra vanishing state, 53

Fewest-Paths-First (FPF) sort, 35
Fewest-Paths-First(FPF) aggregation, 41
First-passage time distribution, 21
Flat graph, 29
Fully connected, 35

Gain, 29
Generalised stochastic Petri net (GSPN), 15
Graph partitioner, 33

Hyperedge-cut, 29
Hypergraph, 27
Hypergraph partitioner, 34

Intermediate state, 33
Inverse Laplace transform, 19

k-way barrier partitioning, 60
k-way partitioning, 26
Kernel, 13
Kolmogorov–Smirnov (K–S), 66

Laguerre inversion, 19
Laplace transform, 18
Look-Ahead-N-Steps, 35

Marking, 15
Max-way barrier partitioning, 62

Negligibly small Laplace transform sample, 67
Net-enabling function, 15
Next-Best-State-Search (NBSS) partitioner, 34

Partition entry state, 52
Partition exit state, 53
Partition transient path, 49
Partitionwise observations, 32
Place-Transition net, 14
Predecessor states, 24

rth transition first-passage time, 23
Restricted first-passage time analysis (RFPTA),

49
Restricted FPT aggregator, 50
Reverse RFPTA, 51
Row striping partitioner, 33

Semi-Markov process (SMP), 13
Sojourn time, 13
Sparse matrix, 26
State-space, 15
Steady-state distribution, 21
Stochastic Petri nets, 16
Sub-matrix, 41
Successor states, 24

Tangible marking, 16
Total volume of communication, 28
Transient distribution, 21

INDEX 89

Transition graph, 14
Transition matrix, 14
Transition matrix fill-in, 26

Vaninishing state, 52
Vanishing marking, 16

	Introduction
	Motivation
	Application of passage times in performance analysis

	Current state of research
	Project aim
	Contributions
	Publications

	Background
	Semi-Markov Processes (SMPs)
	High-level modelling formalism for SMPs
	Petri nets
	Generalised stochastic Petri nets
	Semi-Markov stochastic Petri nets
	SM-SPN models used in this study

	Laplace transforms
	Laplace transform inversion
	Numerical Laplace transform inversion

	Measures in SMP analysis
	Transient and steady-state distribution
	Passage time analysis in semi-Markov models

	Numerical methods for first-passage time analysis
	Iterative approach

	Exact state aggregation
	Graph partitioning
	Graph Models
	Partitioning metrics
	Recursive bi-partitioning vs. k-way partitioning
	Objective functions
	Flat vs. Multilevel hypergraph partitioning
	Multilevel hypergraph partitioning

	Partitioning the SMP state space
	SMP transition matrix partitioners
	Row striping
	Graph partitioner
	Hypergraph partitioner
	Next-Best-State-Search (NBSS) partitioner

	Aggregation of partitions
	Partition sorting strategies
	Transition matrix predictor
	Quality of partitionings

	State-by-state aggregation of partitions
	State aggregation techniques
	Fewest-Paths-First aggregation
	Exact-Fewest-Paths-First aggregation

	Transition matrix fill-in during aggregation of partition
	Partial aggregation of partitions
	Cheap state aggregation

	Implementation of state-by-state aggregation
	Data structures
	Validation
	Performance

	Summary

	Atomic aggregation of entire partitions
	Aggregation techniques
	Restricted FPTA aggregator
	Discrete event simulation aggregator
	RFPTA with extra vanishing state

	Barrier partitioning
	Passage time computation on barrier partitionings
	Balanced barrier partitioner

	K-way barrier partitioning
	K-way barrier partitioner

	Implementation of atomic partition aggregation
	Performance RFPTA
	Performance of the barrier strategies

	Summary

	Applying new techniques for faster FPTA calculation
	FPTA techniques
	Error analysis
	Performance

	Path truncation
	Error analysis
	Performance

	Parallelisation
	Summary

	Evaluation, conclusion and further work
	Evaluation
	Conclusion
	Further work
	Building the billion state semi-Markov response time analyser

	Models studied
	Voting model
	Web-content authoring (web-server) model
	Courier model

	Additional diagrams for barrier partitioning discussion
	Additional diagrams for FPTA performance discussion
	Bibliography

