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Abstract

Tetris can be formulated as a stochastic control problem. However, the so called
curse of dimensionality gives rise to prohibitive computational requirements that
render infeasible the exact solution of the arising optimization model. In this
project, we investigate a modern approximate dynamic programming technique
called the BRLP method, that has been shown to defeat the curse of dimen-
sionality and provide a near-optimal policy for playing Tetris. The technique
reduces the computational load by intelligently sampling states through simu-
lation, which are then used to formulate a specific linear optimization problem.
The BRLP method is designed to iteratively refine the solution until the optimal
policy is derived. We use the method to derive a near-optimal policy for Tetris.
We experiment with a number of extensions for the method, in order to see if
we can improve the solution. The proposed variations aim to expose why the
method seizes to work after a certain number of iterations. In a second step,
we look at a routing problem. The goal is to transmit a maximum amount of
data through a network whose links have uncertain bandwidths. We are allowed
to measure only a limited number of links per unit time, and the uncertainty
about the bandwidths increases with the time since the last measurement. We
formulate the problem as a stochastic control problem, and we use the BRLP
method to derive a clever policy for choosing which links to measure. We evalu-
ate the policy through simulations of various networks, and we compare it against
a round robin policy.

ii



Acknowledgements

I would like to thank my family for their support, especially my parents. Without
their encouragement and UUU-type funding (Unbounded, Unconditional and Un-
constrained) it would have not been possible to finish this report. I would also like
to thank my supervisor, Dr Daniel Kuhn for his constant support and motivation
throughout the entire year. I would like to acknowledge my second supervisor
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CHAPTER 1

Introduction

Optimal Routing is one of the central problems that computer scientists are called
to solve. This is evident from the vast number of routing problem formulations,
ranging from the Traveling Salesman Problem (TSP) to the Canadian Traveler
problem, the Vehicle Routing Problem (VRP) and the numerous variations of
those, such as the Vehicle Routing Problem with Pickup and Delivery(VRPPD),
the Vehicle Routing Problem with LIFO,and the Traveling Salesman Problem
with Stochastic Customers (TSPSC). The rationale behind the rigorous study of
routing problems is attributable to their application on real life situations. Of
greater interest, are the routing problems that incorporate uncertain parameters,
called stochastic routing problems, due to their capability to capture the nature
of real life problems, such as uncertain demand at a node, or uncertain cost for
traversing an edge.

In its most general form, the stochastic routing problem describes the class
of shortest path problems where the weight of an edge is uncertain. Because
of its structure,this general problem, and in fact most of the stochastic routing
problems, can be formulated as Markov Decision Processes. This in turn implies
that dynamic programming can be used to solve these problems, as demonstrated
in [1][2],[Vol 1. Chap 2][3],[4].

Dynamic programming attempts to calculate the exact cost-to-go function for
each state, i.e. the expected cost for reaching the destination, given that we are
at the current node and we will use the optimal path to reach the destination.
This calculation is done by solving Bellman’s equation. As a result, the stochastic
routing problem reduces to simply choosing as the next edge to traverse, the one
with the lowest cost-to-go value. However, exact Dynamic Programming suffers
from the ’curse of dimensionality’ and thus cannot be used for problems with
large state spaces. This effectively renders DP inapplicable for optimizing real
life problems, where thousands of optimization parameters exist.

To overcome the ’curse of dimensionality’ a separate branch of Dynamic
Programming has been developed, called Approximate Dynamic Programming.

1
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Using techniques such as state augmentation,temporal differences,policy projec-
tions, simulation and sampling, approximate dynamic programming reduces the
stochastic problem into the easier problem of finding a good cost-to-go approx-
imation. Several methods have been designed to come up with good approxi-
mations. They have been used with great success in various situations suffering
from the curse of dimensionality. A popular example is the Tetris game. There
are approximately 1061 states in a game of Tetris. Designing a program that will
play Tetris intelligently has always attracted a lot of attention from the field [4]
[5] [6][7].

Recently, a state of the art technique in Approximate Dynamic Programming
called the BRLP method, was successfully used to solve the Tetris problem with
impressive results. The method resulted in a cost-to-go approximation for the
Tetris game that results in a controller which scores an average of 4300 points(1
point per line) in a game [6]. The method utilizes a set of mechanisms to defeat
the ’curse of dimensionality’. State augmentation , where only a set of impor-
tant features of a state are considered, simplifies the stochastic problem to that
of finding good cost-to-go approximation functions, i.e. functions that assign a
value to different features of a particular state, and then calculating weightings
for summing up these values. The weighted sum serves as an approximation to
the true cost-to-go. For the weight calculation , BRLP employs an ingenious con-
straint sampling mechanism, where large samples of states are collected through
simulation of the Tetris game. The samples are then used to define a Linear
Problem, which is specially designed to calculate the optimal weights for that
sample. The BRLP method iteratively refines the weights, using a process called
Bootstrapping. By using the derived weights, the method improves the sampling
mechanism and generates a new sample set which is then used to derive an even
better set of weights. The method repeats this process several times, until the
performance of the solution no longer improves.

In this project, we aim to use the BRLP method in a specific routing prob-
lem, which also suffers from the ’curse of dimensionality’. Our objective is to
repeatedly transmit a maximum amount of data through a network whose links
have uncertain bandwidths. The transmission must be robust, in that at no point
in time must we transmit through a link at a higher bandwidth that what the
link cope with. Some sort of bandwidth measurement is allowed but only on a
limited number of links per unit time, right before transmission. The uncertainty
about the bandwidths increases with the time since the last measurement. By
measuring the right links each time, we reduce our uncertainty about the links
and establish the links’ present bandwidths. The right measurements and a bit
of luck might result in us being able to transmit at a higher bandwidth. The
problem is in deciding which links to measure, based only on the information
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that is available to us, such as the time when the link was last measured.

1.1 Contributions

• The BRLP method utilizes several techniques to overcome different aspects
of the ’curse of dimensionality’. The method refines the solution iteratively,
and in theory, the method should keep improving the solution until the
optimal cost-to-go approximation is derived. However, the method stops
improving the solution after 4 to 5 iterations. We investigate the method in
more detail, and suggest extensions that might either explain or overcome
this limitation (Chapter 3).

• We create a Tetris simulator and apply the method in the Tetris problem,
in an attempt to reproduce the results reported in [6], where the method
resulted in a policy that scored 4300 points on average (Chapter 4). We
experiment with different settings for the BRLP method and we improve
the performance of the resulting policy by 2000 points, up to a level of
6000 points on average. We investigate the proposed extensions on the
Tetris problem, in order to measure the impact they have on the solution.
From the results, we suggest a reason why the BRLP method fails after a
certain number of iterations. We use a separate method (Least Square) to
solve the Tetris, in order to support our claims. The Least Square method
results in a policy that scores 11000 lines on average(Chapter 6).

• We formulate the routing problem as a Markov Decision Problem so that it
can be solved by the BRLP. We design a set of functions that are used in the
cost-to-go approximation. We devise the performance objectives that we
want the solution of the problem to achieve. We modify the BRLP method
so that it can optimize the problem. We implement a network simulator
that we use for the BRLP method, as well as a controller that can control
the network (Chapter 5).

• We experiment with the routing problem using the BRLP method. We
identify the best settings for the BRLP method, in order to apply it on the
routing problem. Through various simulations, we demonstrate that the
BRLP method can be successfully used to solve the routing problem, and
that an intelligent controller can be designed to operate it(Chapter 6).



CHAPTER 2

Background

This chapter aims to introduce the notions that are necessary for understand-
ing approximate dynamic programming, as well as the kind of problems it was
designed to solve.

2.1 Markov Decision Processes

Named after Russian Mathematician Andrey Markov, Markov Decision Processes
(MDPs) provide a mathematical framework for modeling decision-making in sit-
uations where outcomes are partially random and partially under the control of
the decision maker.

A Markov Decision Process is a discrete time stochastic control process. The
process is characterized by a set of states S. At each time step the system is in
a particular state, say x ∈ S. For that state there is a set of admissible actions
that the decision maker may choose from , denoted by the set Ax. The outcome
of any action and thus the next state of the system, is not fully predictable but
can be anticipated according to the choice of action. That is, if action a is chosen
to act on state x ∈ S, where a ∈ Ax, then the probability that the next state
is y ∈ S is given by Pa(x, y). Finally , with each action there is an associated
immediate cost that is incurred, depending both on the action and the current
state of the system. For state x ∈ S and action a ∈ Ax the cost is given by ga(x).
For the problems concerned with this project, the cost is additive over time, the
problems are treated as non terminating and the aim is to choose those actions
at each time step, that will minimize the total discounted infinite-horizon cost:∑∞

t=0 {αtgat(xt)} (2.1.1)

where

xt ∈ S the state at t

at ∈ Axt the chosen action at t

α ∈ (0, 1) the discount factor

4
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Figure 2.1: For the present state xt there is a set of admissible actions Axt. Policy
u will select one of those actions, denoted at, that will shape the environment
so that the next state xt+1 occurs according to the probability density function
Pa(xt, ·)

The role of the discount factor in this context is to prevent the total cost from
approaching infinity. However, its purpose goes beyond the mathematical need
for convergence to a finite value. It also models the economical behavior that
any measure of value depreciates as time progresses.

The solution of a Markov Decision Process is represented as a policy that will
minimize the aforementioned cost. A policy is a mapping to an admissible (for
that state) action. That is, a policy u will map state x ∈ S to an action a ∈ Ax
so that u(x) = a.

The challenge in solving a MDP comes from three properties:

(a) a decision-maker has partial control of what the resulting next state will be,
when the chosen action is done on the present state. That is, the decision
maker cannot fully predict what the next state will be, but can control
with his/her choice of action what the likelihood or the probability of a
state occurring next will be;

(b) the set of possible actions depends on the present state;

(c) a cost is not only associated with an action but also with the state in which
that action was performed.

As a result, an action performed now directly influences the environment within
which future actions take place, and hence influences the future costs that will be
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incurred. Therefore any policy that solves the MDP must take into account both
the immediate costs of the proposed actions, but also the probabilities associated
with those actions, for a favorable state to follow.

This results in a policy that will minimize the total expected cost that will be
incurred when the MDP is run. Formally, the problem that needs to be solved
is:

min
u(·)

E

[
∞∑
t=0

{
αtgu(xt)(xt)

}
|x0 = x

]
(2.1.2)

2.2 Dynamic Programming

A Markov Decision Process can be thought of as a collection of sub-problems. At
each time-step there is a decision to be made based on the current state, so each
time-step poses an independent sub-problem. The optimal policy that solves the
MDP problem is the one that chooses the optimal action at each time-step. In
other words, an optimal solution to the MDP can be achieved by finding the
optimal solutions to all the sub-problems of the MDP[8]. This method of solving
complex MDP problems by breaking them down into simpler subproblems is
called Dynamic Programming.

Central to the Dynamic Programming methodology is the assignment of a
value to each action for each particular state and time. That value is the sum of

(a) the immediate cost of that action, and

(b) the expected future costs that will result if that action is chosen. This
cost is discounted by the discount factor α, as used in the Markov Decision
Process. This cost measures how favorable a state is.

The problem of finding an optimal policy is hence reduced to the problem of
choosing the particular action at each time-step, that minimizes this value. Such
a policy that selects an action by comparing all actions according to a value, and
then choosing the one that minimizes(or maximizes) that value, is called a greedy
policy.

Assume there is a cost-to-go function J∗(y, t0), that provides the total ex-
pected cost of the MDP, if the process starts from time t0 and from state y. The
expected future cost for action a happening on state x at t0, where a ∈ Ax, is
given by : ∑

y∈S

Pa(x, y)J∗(y, t0 + 1) (2.2.3)
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Figure 2.2: An easy way to visualize Dynamic Programming (DP), is to consider
the Minimum Cost Path problem. The aim is to travel from node S to node E with
the smallest possible cost. Instead of finding a solution to the entire problem, i.e
laying out the entire path from S to E before we start, DP will solve the problem
node by node i.e.it will decide to go from S to A, and see how to proceed once
we have got there. Thus, at the first node we choose to go to the next node that
minimizes the sum of the action’s immediate cost ga and the resulting state’s
expected cost-to-go J∗(y). To do this, we must calculate J∗ for each node using
Bellman’s equation, so that J∗ is equal to the minimum cost that will be incurred,
if we were to reach node E from that particular node. That is, we must find for
each node, the minimum cost path from that node to the destination. For this
case this can be calculated using backtracking, that is, starting from the last node
and moving backwards.

Thus, the optimal policy u∗(·, ·) will map the particular state at that particular
time to the action that solves the subproblem:

u∗(x, t0) = arg min
a∈Ax

{
ga(x) + α

∑
y∈S

Pa(x, y)J∗(y, t0 + 1)

}
(2.2.4)

If the optimal solution for any subproblem is to be part of the overall optimal
solution of the problem, then the cost-to-go function J∗ used in (2.2.3) must
calculate the cost when the overall optimal policy is used. In other words, J∗(y, t0)
must reflect the minimum expected future cost that will be incurred from that
state onwards, by assuming that the best possible action is chosen at each state
in order to minimize that cost. Thus, J∗ is defined as:

J∗(y, t0) = min
u(·,·)

E

[
∞∑
t=t0

{
at−t0gu(xt,t)(xt)

}
|x0 = y

]
(2.2.5)

We may also conjecture that J∗(x, t) satisfies a recursive relation of the form

J∗(x, t) = min
a∈Ax

{
ga(x) + α

∑
y∈S

Pa(x, y)J∗(y, t1)

}
(2.2.6)
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which is no more than saying that the expected cost-to-go at time t, as given by
(2.2.5), is the expected cost-to-go at time t+ 1, given that the optimal action is
chosen presently, plus the immediate cost of that optimal action.

We observe that J∗(x, t) = J∗(x, t′) = J∗(x), for all t, t′. This means that
cost-to-go equation (2.2.6) can be re-written as :

J∗(x) = min
a∈Ax

{
ga(x) + α

∑
y∈S

Pa(x, y)J∗(y)

}
(2.2.7)

This equation is called Bellman’s equation [9]. By noting that the transition
probabilities Pa(x, y) do not depend on time and taking into account the time-
independent definition of the cost-to-go function in (2.2.7), it is inferred that the
optimal policy as defined in (2.2.4) does not depend on the current time stage t,
and u∗(x, t) = u∗(x) for some policy u∗(·). Such a policy that does not depend
on time stage is called stationary policy1. The equation of the optimal policy
(2.2.4) becomes:

u∗(x) = arg min
a∈Ax

{
ga(x) + α

∑
y∈S

Pa(x, y)J∗(y)

}
(2.2.8)

To conclude, Dynamic Programming solves a Markov Decision Process by
considering the subproblem of each time-step separately. The problem of finding
an optimal policy for the entire MDP reduces to the problem of assigning a
cost-to-go value J∗ to each state. The cost-to-go value reflects the expected cost-
to-go if the optimal policy for the MDP is followed. The cost-to-go is given as
in (2.2.5), and it is the unique solution of Bellman’s equation [3, Vol.2,Chap.1]
[4, Chap. 2] [9]. Once we solved Bellman’s equation to find J∗ for all states, an
optimal policy may be defined as the greedy policy. A greedy policy maps a state
to an action, by going through all admissible actions and chooses the one that
minimizes the sum of the immediate cost ga(x) with the (discounted) expected
future cost α

∑
y∈S Pa(x, y)J∗(y) for that action, or formally, by solving (2.2.8).

2.3 Approximate Dynamic Programming

During the development of the Dynamic Programming methodology Bellman
realized that it is not always possible to obtain an exact numerical solution to
Bellman’s equation . In fact, he concluded that for the majority of real life

1For more rigorous analysis and proofs, see [8], [3, Vol.2,Chap.1] and [4, Chap. 2]
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problems, it was computationally infeasible to find the true cost-to-go cost for
each state. Bellman dubbed this limitation as ’the curse of dimensionality’[8].

The ’curse of dimensionality states’ that in real life practical problems the
size of a state space grow exponentially with the number of state variables. This
limitation prevents the use of exact dynamic programming in various real life
applications. Consider the example where there are n dimensions in a state (i.e.
n different properties that make a state unique from the rest). If the state space
is discretized so that there are d discrete points in each state dimension, then
there are dn possible states. In order to solve Bellman’s equation numerically, we
need to manually calculate the right hand side of the equation for all dn states.
The calculations become even more complex according to the number of available
actions for each state Ax.

To overcome this limitation an entirely new branch of Dynamic Program-
ming has been developed, called Approximate Dynamic Programming. This area
of DP aims to find sub-optimal solutions by means of simulation based opti-
mizations, Monte Carlo sampling techniques and open-loop-feedback controls
[Vol.2,Chap.6][3][Vol.1,Chap.6][3][10][4] . Instead of looking for an exact solu-

tion J∗ to Bellman’s, we look for an approximation J̃ that is as close to J∗ as
possible.

Approximate Dynamic Programming includes numerous methods and their
variations, because none of the methods is considered to be applicable in every
situation. The choice of a method is highly problem dependent and success is not
guaranteed [10]. For this project we are interested in two widely used techniques
of Approximate Dynamic Programming, described below.

2.3.1 State Augmentation and Parametric Cost-To-Go approxima-
tion

In classical (exact) DP the aim is to find the cost-to-go value for each state. Under
the curse of dimensionality, such a calculation explodes exponentially in practical
problems with complex state systems. One technique for overcoming the curse of
dimensionality, is to generate an approximation of the cost-to-go function with a
parametrized class of functions. To produce such an approximation :

1. A class of K basis functions φ1, . . . , φK must be defined, with each basis
function φ mapping a particular characteristic of the state variables into a
real number φ : S 7→ <. The basis functions essentially augment a state
and reduce it to a set of K characteristics that are considered relevant to
the optimization;
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2. A weighting vector r ∈ <K must be computed for the class, so that by
weighting each basis function according to r, the weighted sum of the
parametrized class of functions J̃(·, r) approximates the optimal cost-to-
go function J∗ as closely as possible:

J̃, r =
K∑
k=1

rkΦk ≈ J∗

Choosing suitable basis functions is a very problem-specific task and requires
practical experience or theoretical analysis that provides rough information on
the shape of the function to be approximated. Even though some mathematical
guidelines exist, the basis functions are usually hand crafted based on whatever
human intelligence,insight,or experience is available [4, chap. 6][10].

Given a choice of basis functions φ1, . . . , φK a matrix may be defined:

Φ =

 | |
φ1

... φK
| |


The aim is now to find a weight vector r̃ ∈ <K such that Φr̃ is a close approxi-
mation to the optimal cost-to-go J∗.

Figure 2.3: Consider a policy that plays a game of poker. The initial state is the
suit and the value of each of the five cards that we currently hold. The state is then
augmented using three basis functions : Φ1 the position of the card combination
in hierarchy = 1, Φ2 the value of the highest card = 13 in our hand, and Φ3

the number of similar or higher card combinations possible =0. The cost-to-go is
then approximated, by summing up the three values according to a weight vector
rT = (1.5,−1, 3), thus, the approximated cost-to-go J̃ = −11.5

2.3.2 Simulation Based Optimization

Another technique widely used in Approximate Dynamic Programming is the
employment of simulators to collect samples that we base our cost-to-go estima-
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tion on. Such a technique is used when it is not possible to describe the system
analytically, but it is easy to simulate the system [11],[Vol.1,Chap.6][3]. This sit-
uation arises when we are dealing with an intractable number of states or when
it is infeasible to list all possible outcomes for each particular state and for every
particular action. It is also used in cases where information about the model,
such as transitional probabilities, is not fully available until up to the point when
the control must be applied. Simulation Based Optimization is often used in con-
junction with parametric cost-to-go approximations and it is usually an iterative
procedure where the following steps are followed:

(a) Set an initial estimation of the cost-to-go function. The cost-to-go function
can be (but not necessarily) approximated using parametric approximation
as describe above.

(b) Using the given cost-to-go estimation in the greedy policy, simulate a run
of the system and record the necessary parameters of the system in order
to generate samples. The samples are usually generated according to a
distribution.

(c) Using the samples generated above, the optimization process is applied in
order to find a new estimation of the cost-to-go function.

(d) The simulation may be repeated and the parameters refined at each itera-
tion, until reasonable performance is achieved.

2.4 Solving Bellman’s Equation

Dynamic Programming reduces the problem of finding an optimal policy, to the
one of solving Bellman’s equation for all possible states of the system:

J∗(x) = min
a∈Ax

{
ga(x) + α

∑
y∈S

Pa(x, y)J∗(y)

}
(2.4.9)

There are several methods of solving this equation. Most methods are designed
to work with approximate dynamic programming, as it has a wider application
in real life. We consider two methods described below.

2.4.1 Linear Programming Approach

Linear programming is a method for minimizing or maximizing a linear objective
function, subject to a set of linear equality or inequality constraints. A linear



2.4. SOLVING BELLMAN’S EQUATION 12

Figure 2.4: An iterative simulation based optimization. There are three major
components. The simulator, that operates according to the current greedy policy,
the sampler that decides when to record the state, and the cost-to-go optimizer,
that uses the sample set to generate a cost-to-go that is optimized for the given
sample. The cost-to-go estimation, is then used to generate the greedy policy
that the simulator uses. In this case, the simulation is repeated until reasonable
performance is achieved. However, this is not necessary, and optimization may
involve a single step simulation

problem is usually of the form:

min cTx

s.t. Ax ≤ b

The objective function is given by cTx where x is a vector of the decision variables
which we look to find, c is the cost vector, that is the known coefficients that
each decision variable has in the objective function. A is the matrix of known
coefficients, and the system of inequalities expressed as Ax ≤ b is the set of linear
constraints that the optimal solution of the objective function must satisfy. Any
minimization problem can be transformed to a maximization problem, by using
the equality

min cTx = −max −cTx

There are several techniques for solving a linear problem, and current solvers can
handle problems that involve millions of constraints and thousands of decision
variables.

Linear Programming is used in Dynamic Programming to solve Bellman’s
equation 2.2.7. Bellman’s equation can be reformulated as a Linear Problem
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Figure 2.5: The graph shows a two dimensional linear minimization problem.
The decision variables are x1 and x2 and form the axis of the graph. The shaded
area shows the feasible region, that is, all possible values of x1 and x2 that satisfy
Ax = b. The black dot is the point where the optimal value resides. It is the
lowest possible value that the objective function cTx can take, and remain feasible
(i.e. within the shaded area)

(LP) as:

maxJ c′J (2.4.10)

s.t. ga(x) + α
∑
y∈S

Pa(x, y)J(y) ≥ J(x)

∀x ∈ S, a ∈ Ax

where c′ is a vector with positive components, signifying the state-relevance
weights. By the constraints definition , J(x) must be smaller than the left hand
side, for all actions possible in that state. This includes the action that is optimal,
so the constraints require that:

J(x) ≤ mina∈Ax

{
ga(x) +

∑
y∈S

Pa(x, y)J∗(y)

}
∀x ∈ S (2.4.11)

But the right hand side of this inequality is identical to the true cost-to-go value
(2.2.6) J∗. Thus any feasible J satisfies J ≤ J∗, which in turn implies that the
objective function of the LP can only increase up to the point where it is equal
to J∗ for any positive weight vector c, and so the solution of the LP is equal to
J∗ the unique solution to Bellman’s equation (2.2.7).
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2.4.2 Least Square Approach

Least Square methods are methods that are usually used in statistical contexts as
a mean of regression analysis. Least square methods attempt to derive a function
that fits the data as closely as possible.

In the context of dynamic programming least squares are used along with
iterative simulation techniques, in order to derive an approximation for the cost-
to-go function. That is, using simulation to run the system under a policy, a large
sample of states and actions is generated. Using that sample set, we attempt to
fit a cost-to-go approximation so that it solves Bellman’s equation for the specific
sample.

Recall that Bellman’s equation (2.2.7) is defined as:

J∗x = min
a∈Ax

{
ga(x) + α

∑
y∈S

Pa(x, y)J∗(y)

}
∀x ∈ S. (2.4.12)

The Least Square method adjusts J so that the left hand side of the equation
is as close as possible as the right hand side, for the specific sample of states.
Namely,given a sample X̄ the Least Square problem that we need to solve is:

min
J
‖J(x)−

(
min
a∈Ax

{
ga(x) + α

∑
y∈S

Pa(x, y)J(y)

})
‖2 (2.4.13)

for some choice of a norm. The methods that rely on a Least Square are usually
one step iterations, meaning that they approach a near optimal solution in one
step. There are several variations however, that control the conversion rate to
avoid being trapped in local minima. Some examples of Least Square methods
are:

(a) Least Square Policy Evaluation (LSPE)

(b) Policy Evaluation by Projected Vale Iteration (PVI)

(c) Least Square Temporal Differences (LSTD(λ))



CHAPTER 3

The BRLP method

The Bootstrapped Reduced Linear Programming (BRLP) approach to Approxi-
mate Dynamic Programming is a state of the art method for solving a parametric
approximation of Bellman’s equation. The method is designed to overcome the
curse of dimensionality. It relies on simulation based optimization of the approx-
imate cost-to-go function and iterative refinement of the solution.

The method works as follows:

1. Guess an initial weight vector r0 ∈ <K to approximate the cost-to-go func-
tion using the class of K basis functions Φ

2. Use the cost-to-go approximation Φrk to generate a greedy policy uk
3. Perform a simulation using the current policy

4. Throughout the simulation, record the state of the system at specific time
intervals to generate a sample Xk that is associated with current policy uk.
The sampling intervals must be far apart, so that the samples generated
are independent and identically distributed.

5. Solve a specific linear problem (RLP) conditioned on the sample Xk to
generate a new weight vector rk+1 ∈ <K

6. Increment k and go to step 2

The success of the method relies on two observations:

(a) The linear programming approach can be used to generate a descend para-
metric approximation to the cost-to-go function;

(b) The sampling technique generates samples that are representative of the
entire system, and the linear programming optimization can be based on
them instead of the entire system, without a significant loss of precision in
the solution.

15
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3.1 Linear Programming Approach

In exact Dynamic Programming, Linear Programming can be used to find the
cost-to-go function J∗ for all states by solving the LP problem (see section 2.4.1):

max
r

c′J (3.1.1)

s.t. ga(x) + α
∑
y∈S

Pa(x, y)J(y) ≥ J(x)

∀x ∈ S, a ∈ Ax

However, the problem’s formulation requires one decision variable per state and
one constraint per state-action pair. For real life systems that involve a large
amount of states and thus suffer from the curse of dimensionality, a problem
formulated as above becomes prohibitively large to be solved exactly. The BRLP
method relies on a parametric approximation for the cost-to-go function. The
cost-to-go is approximated parametrically, using a class of K basis functions Φ
(see section 2.3). The LP problem is reformulated to find the weight vector
r ∈ <K so that Φr ≈ J∗. The LP problem (3.1.1) is modified by substituting the
exact cost-to-go function J with its linear approximation Φr . The problem that
needs to be solved now becomes

max
r

c′Φr (3.1.2)

s.t. ga(x) + α
∑
y∈S

Pa(x, y)(Φr)(y) ≥ (Φr)(x))

∀x ∈ S, a ∈ Ax

This is called the approximate linear program (ALP). Its solution is a weight

vector r̃ ∈ <K that will result in a good cost-to-go approximation J̃(·, r). Observe
that the optimization variables no longer depend on the state space, but are equal
to the number of basis functions K regardless on how large the state space is.
This is a dramatic step towards tractability, however, the number of constraints
is still proportional to the number of state variables and the problem remains
infeasible.

3.1.1 State Relevance Weights in ALP

Recall that in exact DP (section 2.2), the state-relevance vector c in the objective
function does not affect the optimal solution, and the solution J∗ is the optimal
solution of the exact LP for any cost vector c > 0. This is not the case for the
ALP.
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Let
‖J‖1,c =

∑
x

c(x)J(x)

denote a weighted l1-norm. If J∗ is the exact solution to Bellman’s equation, a
solution of the ALP (3.1.2) is shown to minimize the weighted approximation
error

‖J∗ − Φr‖1,c

within the feasible region of the ALP and with state relevance weights equal to
c. That is, a solution to the ALP is also a solution to the problem:

min
r
‖J∗ − Φr‖1,c

s.t. ga(x) + α
∑
y∈S

Pa(x, y)(Φr)(y) ≥ (Φr)(x))

∀ ∈ S, a ∈ Ax

This suggests that c imposes a trade off in the quality of the approximation across
different states. By assigning higher values in c for a particular region in the state
space, the algorithm can be directed in generating a better approximation for that
region.

Let Ju be the expected discounted infinite-horizon cost incurred when using
a greedy policy generated by cost-to-go function J . Let J∗ be the expected cost
when the optimal policy is used, i.e. the greedy policy generated by the true
cost-to-go function J∗. Then ‖Ju − J∗‖1,v is the increase in the expected cost as
a result of using the suboptimal greedy policy u, and conditioned on the initial
state of the system being distributed according to a probability distribution v.
It can be shown that this loss in policy performance is bounded according to:

‖Ju − J∗‖1,v ≤
1

1− a
‖J − J∗‖1,µuj,v (3.1.3)

where µuj ,v is the probability distribution that captures the expected frequency
of visits to each state when the system runs under greedy policy uj[12]. As
(3.1.3) shows, the loss of performance due to the use of sub-optimal greedy policy
generated by the approximate cost-to-go function J , is bounded by the weighted
approximation error of J to J∗, where the weights are equal to the frequency
µuj ,v. In other words, if the ALP can generate a cost-to-go function J that is
close to J∗ for those states that are expected to be visited more when a system
runs under a near-optimal policy, then the greedy policy generated by J is close in
performance to the optimal policy. Combining this with the previous observation
that c can direct the algorithm to generate a good approximation for specific
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Figure 3.1: Graphical interpretation of approximate linear programming

states, it is obvious that c should mimic the frequency with which different states
are expected to be visited, when the system runs under a near-optimal policy.1

3.1.2 Error Bounds

The ALP solution is a weight vector r̃ ∈ <K , that will result in a good cost-
to-go approximation Φr̃. If the optimal cost-to-go function lies within the span
of the basis functions,that is the basis functions are chosen as to be capable
to represent the exact cost-to-go function J∗, then the ALP (3.1.2) will yield
the exact optimal cost-to-go function,i.e. Φr̃ = J∗ . However, it is difficult in
practice to select the basis functions that contain the optimal cost-to-go solution.
Consider the illustration in Figure 3.1. The figure illustrates a MDP process with
two states 1 and 2, and the plane presented is the space of all cost-to-go functions
over the state space. The shaded area shows the feasible region of both the exact
(3.1.1) and the approximate (3.1.2) LPs. J∗ is the solution of the exact LP, thus
the true cost-to-go function. The subspace denoted by the line J = Φr, is the
span of the basis functions. This span comes very close to the true cost-to-go
function, with the best cost-to-go approximation being at Φ∗r, given this choice
of basis functions. However,the solution of the approximate LP is restricted by
the constraints to be within the feasible space,so the solution of the approximate
LP results in the approximate cost-to-go approximation Φr̃.

The distance between the obtainable cost-to-go approximation Φr̃ and the
exact cost-to-go J∗, is not much greater than the distance between the best
possible approximation Φ∗r and the exact cost-to-go J∗. A naive bound on the

1For more details and proof see [12, p.5]
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approximation error of ALP’s solution relative to the minimum possible error
(given the choice of basis function), is given by:

‖J∗ − Φr̃‖1,c ≤
2

1− α
min
r
‖J∗ − Φr∗‖∞

This is a very loose bound since ‖J∗ − Φr∗‖∞ is likely to be very large for large
scale spaces. However, better bounds exist with more sensible measures, that
ensure that given a good choice of basis functions and state-relevance weights,the
ALP will give a good approximation2.

3.2 Constraint Sampling and ALP

The approximate linear programming method is a significant improvement on
the number of optimization variables. The ALP problem (3.1.2) requires only K
objective variables, where K is the number of basis functions Φ, eliminating the
need for one variable per state, as is the case in the exact LP (3.1.1). However,
the constraints of the ALP are still proportional to the state space dimensions
(one constraint per state-action pair) and thus are susceptible to the curse of
dimensionality, rendering the ALP intractable for most practical problems. The
BRLP method utilizes one method for creating a tractable approximation of the
ALP, the reduced linear program (RLP).

Reduced Linear Programming is based on the general assumption that when
the number of constraints exceeds by some orders of magnitude the number of
optimization variables, then most constraints are either inactive or have a minor
impact on the feasible region. Therefore, it can be speculated that the feasible
region specified by all constraints can be closely approximated by a subset of
these constraints.

Using a sampling distribution ψ, we sample from the original problem a set
of N constraints, denoted by X. We then solve the ALP for that set, thus the
problem (3.1.2) becomes the RLP:

max
r

c′Φr (3.2.4)

s.t. ga(x) + α
∑
y∈S

Pa(x, y)(Φr)(y) ≥ (Φr)(x)

∀(x, a) ∈ X
2For more details see [12, p.7] and [6]
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The use of constraint sampling is motivated by the findings of [13].Let the
number of optimization variables of the problem be K, that is the number of
basis function. Let the size of our constraint sample set X be:

N ≥ 4

ε
(K ln

12

ε
+ ln

2

δ
) (3.2.5)

for δ, ε ∈ (0, 1)

If the reduced LP (RLP) (3.2.4) is solved instead of the original ALP (3.1.2),
the constraints of the original problem that will be violated by the solution of
the RLP are unimportant [13]. In order to measure the importance of a set of
constraints, we use the sampling distribution ψ. The distribution ψ now assumes
a dual role:

1. The distribution with which we sample the constraints.

2. A measure of the quality of a particular set of constraint.

If V is the set of the constraints that are active in the original problem but
will not be selected during the sampling procedure, that is, V is the set of the
constraints that will be violated by the solution of the RLP, then ψ(V ) ≤ ε with
a probability of at least 1 − d. In other words, the importance (as measured
by ψ) of the violated constraints V will be less than ε, with probability at least
1−δ. This is an important result because it states that the number of constraints
that we need to sample does not depend on the number of constraints that the
original problem has. Instead, this number depends on the quality of the solution
we wish to find. That is, from which point onwards (equal to the ε parameter)
a constraint is considered important and needs to be included in the RLP and
with what probability (equal to 1− δ) we want to guarantee their inclusion.

In spite of the above result it is still not guaranteed that a solution to an RLP
will be close to that of the ALP. In particular it might be the case that only a
few constraints in the ALP affect the solution space, as is the case in figure 3.2.
Removing constraints at random in such a problem might dramatically change
the solution of the problem. However, the structure of the ALP prevents this from
happening and it is established that , when the state-action pairs are sampled
independently according to the distribution:

ψ∗α(x) = (1− α)E

[
∞∑
t=0

αt1xt = x|x0 ∼ c, at = u∗xt

]

then for a large enough sample set there is a high probability that the approx-
imation error of the RLP’s solution will be match closely the approximation
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Figure 3.2: The shaded area is the feasible region. This formulation exhibits
a large number of redundant constraints, which can be removed. However, if
we remove either of the three active constraints will cause the feasible region to
change significantly. Fortunately, the structure of the ALP problem ensures that
not only there are a lot of redundant constraints that can be removed, but also
that even if we remove some key constraints the feasible region will not change
much

error of the ALP’s solution[13]. That is, for large N , if Φr̂ is the approximate
cost-to-go generated by the RLP, Φr̃ is the approximate cost-to-go generated by
the ALP, and J∗ is the true cost-to-go, then there is a good probability that
||J∗ − Φr̂||1,c ≈ ||J∗ − Φr̃||1,c. In other words a solution of the RLP will yield a
cost-to-go approximation almost as good as the one resulting from the solution
of the ALP.

The disadvantage of this result, is that the sampling distribution ψ∗α requires
the knowledge of the optimal policy u∗. However, empirical evidence [6][7] show
that this result holds for distributions that are close to ψ∗α, and thus RLP provides
a tractable means for providing a meaningful approximation to J∗.
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3.3 The Bootstrapped RLP

In the previous sections, was shown that one can create a good approximation of
the optimal cost-to-go function J∗, by making suitable choice of basis functions
Φ and by solving the tractable RLP defined in (3.2.4):

max
r

c′Φr

s.t. ga(x) + α
∑
y∈S

Pa(x, y)(Φr)(y) ≥ (Φr)(x)

∀(x, a) ∈ X

. For this solution to be meaningful though, great care needs to be taken for:

1. defining the state-relevance weight c so that it mimics the frequency with
which each state will be visited when the system runs under the optimal
policy

2. defining the sample distribution ψ so that is captures the distribution with
which state-action pairs occur when the system runs under optimal policy

The correct definition of these two parameters is crucial because, as demonstrated
(subsection 3.1.2, section 3.2), it affects both the approximation error of the
derived approximate cost-to-go function, but also the performance of the greedy
policy generated using that approximate cost-to-go function.

Now, assume that we run the process under a near optimal policy. For a
choice of a sampling interval M, we record the state visited by that policy at
time stages multiple of M and we incorporate it in the state sample X. By doing
so, we are generating nearly i.i.d samples of states, distributed according to the
relative frequencies with which states are visited by the near optimal policy. We
then use this sample to solve the following RLP:

max
r

∑
x∈X

Φr (3.3.6)

s.t. ga(x) + α
∑
y∈S

Pa(x, y)(Φr)(y) ≥ (Φr)(x)

∀(x) ∈ X,∀a ∈ Ax

Observe that in the above RLP:

1. c is replaced by the sampling distribution. Since the sampling distribution
is equal to the frequency with which states are visited by the near-optimal
policy, c now mimics that frequency, which is what we want;
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2. for each sample state, a constraint is generated for every possible action
in that state. It is because the policy used to sample the constraints is
sub-optimal, thus might not choose the optimal actions at each step. By
including all actions, the optimal action is guaranteed to be part of the
constraints.

The solution of the RLP (3.3.6) might generate a superior policy than the one
it started with(although no guarantees exist). In this light, we can use the new
superior policy to create another sample of states, and then proceed to solve
(3.3.6) to obtain an even better policy. As a result, a bootstrapping algorithm is
defined as follows:

1. Begin with a simulator that uses a policy u0

2. Generate a sample Xk using policy uk
3. Solve the RLP based on the sample Xk to generate a policy uk+1

4. Increment k and go to step 2

Things to note on this algorithm are that :

(a) It depends on an initial policy u0. An initial policy may be created by guess-
ing and adjusting the weights r, until reasonable performance is achieved.

(b) There is no guarantee that the policy generated at each iteration will be
better than the one generated in the previous iteration. This is because all
policies are near-optimal, whilst for the approximation errors of the RLP
to be bounded, we require that a sampling distribution is generated using
the optimal policy. Evidently, an iteration may be repeated several times,
before a better policy is generated.

3.4 Extensions to the BRLP method

One expects that successful iterations of the BRLP method will result to con-
tinually improving policies. However, experimental results [6][7] show that the
performance of policies generated by the BRLP peaks, usually after three to four
iterations of the BRLP, and then dies, as shown in figure 3.3. In the original pa-
per [6] one extension is proposed and tested without success. In order to examine
this further, we have devised some more extensions and tested to see how they
perform.
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Figure 3.3: The performance of the BRLP method peaks, as demonstrated in [6].

3.4.1 Guarded Sampling

This is the extension proposed in the original BRLP paper [6]. The BRLP method
is modified, so that the state sampling distribution in a given iteration is the
average of the distribution induced by the latest policy and the distribution used
in the previous iteration. That is, we construct our sample set Xk using samples
generated by the current policy uk and samples that belong to the previous set
Xk−1.

3.4.2 Adaptive Sampling

This extension is to investigate whether the drop in performance is due to the
sampled states becoming more dependent on each other, as the policy improves
in performance. This extension will test if recording the states at a fixed time
interval, generates states that become more and more dependent as the policy
gets better. The intuition behind this assumption, is that as the policy becomes
better, it can ’look’ further into the future, and thus sampled states need to be
further apart in order to be independent and identically-distributed as required
by the BRLP. Thus, to combat such a situation, we increase our sampling interval
according to the percentage increase in policy performance. To do this, we need
to first gage the performance of a policy, by running it for some time before we
can start sampling.
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3.4.3 Conditional Sampling

This extension is inspired by Semi-infinite Linear Programming. Semi-infinite LP
deals with LPs that have an infinite amount of constraints. Instead of sampling
the constraints, as we do with the BRLP, Semi-infinite programming starts with
a small number of constraints and finds a solution. Using that solution, it then
attempts to find the worst offender, that is, the constraint that is violated the
most by the proposed solution. The constraint is then added to the LP, and the
procedure is repeated [14]. To use such a technique in the BRLP method, we
are going to run the BRLP until we see a drop in performance. Let uk be the
best policy that was generated by the BRLP. That policy is generated by sample
Xk−1. What we propose is, to use the uk policy in order to find an offending
constraint. That is, we will run the simulator , but we will only sample the states
where the constraints are violated. That is, if we are at state x, and policy uk
selects an action a so that it violates the condition :

ga(x) + α
∑
y∈S

Pa(x, y)(Φr)(y) ≥ (Φr)(x) (3.4.7)

then we record that state. The recorded states are then incorporated to the
previous sample Xk−1, and the RLP is resolved based on that new sample.



CHAPTER 4

Tetris Optimization

4.1 Problem Specification

4.1.1 Description

Tetris is a video game in which falling bricks are positioned on a two dimensional
grid of a given width and height.The pieces may be rotated and positioned at any
point on the wall.The set of possible shapes for the falling pieces is finite. For a
typical game, there are 7 different pieces composed of four square blocks each,
called tetrominoes. The game starts with an empty grid. A point is received for
each row constructed without any holes, and the corresponding row is cleared.
The game ends once the height of the wall crosses a particular threshold. The
objective is to maximize the expected number of points accumulated over the
course of the game.

Tetris is a typical one-player game that can be formulated as a MDP. Because
it suffers from the curse of dimensionality, Tetris became very popular in testing
several Approximate Dynamic programming methodologies, including the BRLP
method. As a result, Tetris can be used as a benchmark for comparing the
different methodologies and establishing their performance.

Figure 4.1: The seven possible pieces of Tetris.

26
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Figure 4.2: A typical Tetris game along with the MDP representation of its state.
The state has two components, the binary board configuration and a number iden-
tifying the falling piece. In this case number 3 represents the current falling piece
’J’

4.1.2 Tetris as a MDP

Tetris can be formulated as a Markov Decision process:

1. A Tetris state is represented using two components:

(a) The board configuration, that is, a binary description of the full/empty
status of each square in the grid (before the current piece is placed)

(b) The shape of the current falling piece.

For a standard Tetris game of a board with dimensions 20(rows)× 10(columns)
and 7 possible pieces, there are

220×10 ∗ 7 ≈ 1.125× 1061

possible states. It is evident that the state space is large enough to prevent
the Tetris MDP from being solved using exact DP.
Tetris is a non-deterministic MDP.The decision maker has partial control
on the next state. The player can control through his/her choice of action
the first component of the state,i.e. what the board will look like in the
next run. However, the player cannot control the second component of the
next state, that is, the shape of the falling piece, which is chosen randomly
from a finite set of possible shapes.
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Piece Rotations Translations Total Actions
’Z’ 2 8,9 17
’S’ 2 8,9 17
’L’ 4 9,8,9,8 34
’J’ 4 9,8,9,8 34
’T’ 4 9,8,9,8 34
’I’ 2 10,7 17
’O’ 1 9 9

Average 23.14

Table 4.1: The table shows the possible actions for each falling piece. The trans-
lations shows number of different possible columns that a piece may be placed
on the board, according to its orientation. The number of possible orientations
(rotations).

2. For a particular state, the possible actions are all the available combinations
of the horizontal positioning and rotation applied to the falling piece. We
assume that the piece can be rotated and moved freely, that is, the actions
available for a particular piece are not restricted by the board (i.e. when the
wall on the board is too tall). The action space only depends on the falling
piece, and it contains all possible combinations of rotations and horizontal
translations for that piece. For the standard set of pieces, the number of
available actions per piece is shown in Table 4.1.2.

3. An immediate cost can be associated with each action acting on each state.
For example a reward can be defined to be equal to the number of points
gained as a result of the action happening on the current state, and the
MDP optimization objective is to maximize the expected sum reward over
the course of the game. Another formulation might be that an action cost
is the average height of the wall as a result of the action happening on
that state. The objective will then be to minimize the expected sum of
discounted future costs. Empirical evidence [6] suggests the second formu-
lation results in better policies.

4.1.3 Approximate cost-to-go function for Tetris

Given a board width w and height h, and a set of p possible shapes for the falling
piece, it is easy to see that there are p2w×h state variables. Thus , exact Dynamic
Programming cannot be applied here, and so an approximation to the cost-to-go
function needs to be designed.
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The cost-to-go function of the Tetris can be defined using a linear combination
over a class of basis functions Φ (see sections 2.3). The following choice of basis
functions has been proposed by [3] and was successfully used in several occasions
[3][6][7][5]. For a board with width w and height h, 2w+ 2 basis function can be
defined as:

(a) w basis functions, mapping the state to the height hk of each of the w
columns

(b) w − 1 basis functions,each mapping the stat to the absolute difference be-
tween the heights of successive columns:|hk+1 − hk|, k = 1, . . . , w − 1

(c) 1 basis function that maps the state to the maximum column height maxkhk
(d) 1 basis function that maps the state to the number of ’wholes’ in the wall

(e) 1 basis function that is equal to one at every state, serving as a constant
offset

4.1.4 Performance Objectives

Below is a table comparing the results from policies obtained for different state of
the art algorithms. All policies use the same class of basis functions. The game
has the standard board size of 20 × 10 (h × w), and standard set of possible
pieces (shown in figure 4.1).

Algorithm Mean Score Computation Time Reference
Policy Iteration 3183 hours [4]
Bootstrapped RLP 4274 hours [6]
CE+RL 21,252 ? [5]
CE+RL,decreasing noise 348,895 months [5]

It is shown that the BRLP method can produce a reasonably good result within
a reasonable time period [6]. The objective of this part of the project is to
reproduce the performance achieved by the BRLP. Given a standard Tetris board
of 20 rows times 10 columns and the standard set of the 7 shapes for the falling
pieces (figure 4.1, we use the class of 22 basis functions Φ as defined in section
4.1.3. A weight vector r̂ ∈ R22 must be calculated using the BRLP method, so
that the approximate cost-to-go function given by Φr̂ generates a greedy policy
that can achieve an average score over a 100 games of approximately 4000 lines
per game.



4.2. PROBLEM FORMULATION 30

4.2 Problem Formulation

The RLP to be solved is (from section 3.2)

max
r

∑
x∈X̄

Φ r (4.2.1)

s.t. ga(x) + α
∑
y∈S

Pa(x, y)(Φr)(y) ≥ (Φr)(x)

∀(x, a) ∈ X̄

where Φ ∈ <|S|×K is the matrix constructed by the basis functions φk, k = 1 . . . K
(see section 2.3). Each basis function φk, k = 1 . . . K maps a state x ∈ S to a
real value, that is φk(x) ∈ <, k = 1 . . . K. The weight vector r ∈ <K is used to

sum up the basis functions φk to get the cost-to-go approximation J̃ . For any
single state x ∈ S:

J̃(x) = (Φr) (x)

=
K∑
k=1

rkφk(x)

≡ (Φ(x))r (4.2.2)

Using (4.2.2) we can rewrite our objective∑
x∈X̄

(Φr) x ≡ (
∑
x∈X̄

Φ(x))r (4.2.3)

With the same reasoning, the constraints are re-written:

ga(x) + α
∑

y∈S Pa(x, y)(Φr)(y) ≥ (Φr)(x)

≡ ga(x) + α(
∑

y∈S Pa(x, y)Φ(y))r ≥ (Φ(x))r

⇔ (Φ(x))r − α(
∑

y∈S Pa(x, y)Φ(y))r ≤ ga(x)

⇔ (Φ(x)− α
∑

y∈S Pa(x, y)Φ(y)) r ≤ ga(x) (4.2.4)

There are two components in the state:

(a) The board configuration

(b) The shape of the falling piece

The board configuration evolves in a deterministic manner. The decision maker
has absolute control how the board will look at the next time step by choosing
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where to place the current falling piece. However, the player has no control what
the next falling piece will be. Any state y following state x and action a, must
have as a board configuration the board that resulted from action a happening
on state x. Now, consider the probability Pa(x, y) for a given state x ∈ S and an
action a ∈ Ax ,where Ax is the action space of that state x. Then Pa(x, y) gives
the probability of the state y occurring after action a has happened on x, and is
defined as:

Pa(x, y) =


0 if board in y is not the result

of action a happening on board in x

1
7

otherwise, since there are 7 possible
pieces for the 1 possible board

(4.2.5)

Thus, when calculating the expected cost to go of the next state after action
a occurs on state x:

(
∑
y∈S

Pa(x, y) Φ(y))r

we only need to consider the states y ∈ Ya,x where:

Ya,x = { (board, piece) | board = f(a, x); piece = 1..7} (4.2.6)

where

f(a, x) ∈ <20×10 gives the board when a happens on x

There are only seven possible states in Ya,x. All seven states have the same
board configuration and only vary at the shape of the falling piece. So, to redefine
our problem (4.2.1) using the set Ya,x defined in (4.2.6) and the findings of (4.2.3)
and (4.2.4) we get:

max
r

(∑
x∈X̄

Φ(x)

)
r (4.2.7)

s.t. (Φ(x)− α
∑
y∈Yax

Pa(x, y) Φ(y)) r ≤ ga(x)

∀(x, a) ∈ X̄

But, our basis functions Φ do not consider the falling piece of a state x, only the
board configuration of that x. Since there is only one board configuration in set
Yax, we have:

Φ(y) = c, c ∈ <K ;∀y ∈ Yax
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where c is some constant. Using this with the definition of Pa(x, y) (4.2.5) and
noting that |Y | = 7, we have∑

y∈Yax

Pa(x, y)Φ(y) = Φ(ỹ)

where ỹ any element of Yax. So the problem to solve (4.2.7) becomes:

max
r

(∑
x∈X̄

Φ(x)

)
r

s.t. (Φ(x)− αΦ(ỹ))r ≤ ga(x)

∀(x, a) ∈ X̄; ỹ any element of Yax (4.2.8)

Re-writing (4.2.8) to the standard LP form;

min
r

c r (4.2.9)

s.t

Ar ≤ b

r is unbounded

where :

c = −
∑
x∈X̄

Φ(x)

A = [Phi(x)− αΦ(ỹ)]

b = [ga(x)]

∀(x, a) ∈ X̄; ỹ any element of Yax

4.3 Implementation

The system was modularized and implemented in Matlab as three separate sub-
systems:

(a) The simulator/sampler.

(b) The constraint/coefficient generator

(c) The optimization solver

Matlab was chosen as the implementation language due to its simplicity and
ability to store large number of data as binary files (.mat files). Matlab also has
the advantage of interfacing well with optimization toolkits that can handle large
number of constraints.
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Simulator/ Sampler

The simulator plays the Tetris game over a number of configurable times. It
plays according to the greedy policy generated by the basis functions Φ and a
specified weight vector r which is passed in as input. The simulator includes a
sampling mechanism that logs the following:

1. The game state (board and falling piece): x

2. the action chosen by the current policy: a

3. the resulting board when the action a is applied to state x: ỹ.

at a configurable sampling interval of M moves. All three pieces of data are stored
into a file, The M moves used as the sampling interval may overlap between
successive games. That is the sampling counter is not reset at the beginning
of each game, but continues from the previous game. In order to speed up the
sampling process, we use a bash script that starts the simulator on 5 different
machines. The simulator runs concurrently on the machines, with each machine
storing its samples in a different .mat file. Once all simulators are finished,
the files are combined together into a single file as required by the constraint
generator. This provides the advantage of using samples derived from different
policies, as required by the guarded sampling extension of the BRLP (see section
3.4).

Constraint/Coefficient Generator

The constraint generator takes as input a single mat file that contains all states
and chosen actions, recorded as a table. The generator proceeds to create the
necessary constraints along with the objective coefficients, as required by the
optimizer. The constraints and objective coefficients are then stored into a mat
file. The generator creates:

1. objective coefficient vector c = −
∑

x∈X̄ Φ(x)

2. the constrain coefficient matrix A = [Phi(x)− αΦ(ỹ)]

3. constraint rhs vector b = [ga(x)]

For the constraint elements (matrix A and vector b), the generator can be con-
figured to work in two different ways:

(a) It can create one constraint for each possible action, for the state x in
the sample. The generator will extract the sample state x and ignore the
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Figure 4.3: Data flow for the Tetris system. The separate components communi-
cate with each other via .mat files

corresponding sampled action. It will retrieve the action space Ax, that is,
the set of admissible actions for that particular state. It will then create
one constraint for every action in Ax. The available actions for a particular
state depend on the falling piece, and there are on average 23 combinations
(see Table 4.1.2) for rotating and placing the pieces on the board.

(b) It can create one constraint for every sampled state x and the corresponding
action a, which was chosen by the policy running during the simulation.
That is, it will only create a constraint for the state-action pair that exists
in the sample.

Whilst the first configuration is the which was successfully used [6], it has the
disadvantage that it limits the sample space. This is due to the fact that there is a
fixed number of constraints that the optimization toolkit can handle. Generating
one constraint per possible action for the given state, limits the amount of sample
states that can be used. The amount of state samples in the Tetris are reduced
by a factor of 23, as there are 23 possible actions on average for each state (see
Table 4.1.2.

That is, for 2,000,000 constraints we can only sample 2000000/23 ≈ 90000
states. However, this limitation is a lot more significant when it comes to prob-
lems with a lot more actions available per state, as is the Routing problem (chap-
ter 5). Thus, we need to examine how the BRLP method works when the second
configuration is used, and see whether we can use the second technique if the
first one does not succeed.
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Optimization Solver

The optimization solver takes as input the .mat file with the constraints and ob-
jective coefficients and solves the standard LP (4.2.9). The Mosek optimization
engine was used to solve the LP. The Mosek engine handles 1,000,000 constraints
on a machine that runs on 32-bit addressing space. Mosek has the advantage
that it interfaces directly with Matlab and there is no need for the problem to
be passed in a human readable equation format in a text file. The amount of
constraints will render such a text file unmanageable in terms of size, and this is
the main reason why attempts to optimization engines with this kind of interface,
such as CPLEX, failed.

# Options Details
Every M moves, we take a sample of the state,

Sampling The moves may overlap between games.
1 Interval M i.e. If a game terminates and there are 60

moves made since the last sample,we will take
the next sample at 30 moves into the new game.
We can either generate 1 constraint per sampled

# of Constraints state and action (1 per (x, a)), where the sampled
2 generated per action is the action chosen by the current policy;

state or for each sampled state, generate 1 constraint
constraint for every possible action (Ax per x).
To allow for guarded sampling, the sample may be
constructed from a combination of new states,sam-

New samples vs pled according to the current policy, and states
3 old samples in taken from the previous sample. The ratio of new

the sample set states vs the states taken from the previous sam-
ple may be adjusted. In any case, the size of the
sample is always sufficient to create the full number
of constraints, that Mosek can handle.

Table 4.2: The configurable options of the Tetris implementation.



CHAPTER 5

Routing Under Uncertainty

The Routing problem under investigation is motivated by the problems faced with
transmitting data through overlay networks. Overlay networks are networks that
have high uncertainty with regards to the bandwidth of their links. Our objective
is to repeatedly transmit a maximum amount of data through a network whose
links have uncertain bandwidths. Some sort of bandwidth measurement is allowed
but only on a limited number of links per unit time, right before transmission.
The uncertainty about the bandwidths increases with the time since the last
measurement.

5.1 Problem Specification

5.1.1 Description

In this section we are dealing with the transmission of data through a network.
The network is represented as an undirected graph G = (V,E) with a set of nodes
V and a set of bi-directional links(edges) E. The graph may be fully connected,
but there is at most one link connecting two nodes. The graph is undirected
in order to represent the ability of data to flow in either direction between two
nodes. For this problem, there is a source node S and a sink(destination) node
T.We need to transmit data from S to T over a number of times. There is a finite
set of available paths from S to T, that pass from different nodes. The paths
may share links between them. The paths do not contain any loops as it makes
no sense to go through them. According to basic graph theory, there are at most
n(n− 1)/2 edges in a graph with n nodes.

Each link connecting two nodes is associated with a bandwidth. That band-
width is the maximum load of data that the link can carry and the system must
never put more strain on a link than that value. The link’s bandwidth is not
certain and changes with time. A central controller can measure only a limited
number of links (say 1 for simplicity) at each time step, but it can be any link

36
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Figure 5.1: the bandwidth behavior of a link. Uncertainty grows with time since
last measurement.However, the minimum and maximum bandwidth can be guar-
anteed with a specific confidence probability.

in the network. A link’s bandwidth becomes more and more uncertain as time
since the last measurement increases. However, the value that the bandwidth
may have obeys a known probability distribution that is conditioned on both the
time since last measurement as well as the last measured value. That is to say,
the variance of the link’s bandwidth grows with time, and the expected value of
a measurement depends on the value of the last measurement. The lowest and
highest values that the bandwidth of a link can take can be established using
that distribution. As with the distribution, these bounds also depend on both
the time since the last measurement was made as well as the value of the last
measurement. Graph 5.1.1 shows the bandwidth of a single link. At each discrete
time step, a link has bandwidth indicated by the dots. However, this bandwidth
is not observable by the system unless the link is measured, as it happen at t0 and
t4. Once a link is measured the system can establish a lower and upper bound
on the possible values of the link’s bandwidth, shown by the curves. The bounds
grow wider as time since measurement increases. In order to use a specific link,
we must transmit data at a bandwidth no greater than the lower bound of the
link. Given the lower bound of each link in a path, one can transmit data from
source to sink using that path only if he/she transmits at the bandwidth that
ensures that it will not exceed the lower bound of any link in the path. That is,
to use that path we must transmit at the lowest lower bound of the links in the
path.

The system repeats the following sequence:

1. Choose a link to measure and measure it

2. Update the measured link, and the bounds on all the other links according
to the time since last measurement.

3. Go through all the paths and for each path, establish the path’s bandwidth
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Figure 5.2: The figure shows a network from a controller’s perspective, with source
node S and destination node T. There are 5 paths available from S to T. Each
link has associated with it a measured bandwidth, and a time since last measure-
ment(not shown). From the two, we can establish the lowest and upper bounds
of the link’s bandwidth. In order to use a particular link, we must transmit at a
bandwidth not greater than the lower bound. If we want to use the path S-A-D-T
we must transmit at a bandwidth of 1, which is the low bound of link A to D. In
this scenario, we can see that the link that was measured before transmission is
S-A , because the bounds are equal to the measured value.

bp that guarantees to be below or equal to the lower bound of all links
within that path

4. Select the path with the highest bp and transmit at that bandwidth

5. Increase the time and repeat

The decision that the controller needs to make, is which link to measure, in order
to maximize the bandwidth with which we transmit.

5.1.2 Formulation as a MDP

To formulate the Routing problem as an MDP we need to specify:

(a) The State space definition S

(b) The Action space definition Ax for each state x ∈ S,

(c) The probability Pa(x, y) that action a on state x will lead to state y

(d) The expected immediate cost ga(x) of action a happening on state x
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State Definition
At any particular time each link in the graph has associated with it the following:

1. the measured bandwidth

2. time since last measurement

3. the probability distribution over the link’s bandwidth

From the above we can derive the minimum and maximum possible bandwidths
that the link may have. In order to keep the state space finite, we need to dis-
cretize both the bandwidth space and the time space. Also, for simplicity we
assume that the probability distribution does not change with time, meaning
that we can move it out of the state and make it a part of the system’s struc-
ture. However, this distribution is conditioned on the measured bandwidth and
the time since last measurement. Even though the distribution is part of the
structure, it does depend on the present state. The MDP state of the system
G = (V,E) is defined as the set:

S = { (be, te)|e ∈ E } (5.1.1)

where

te time since last measurement of link e

be last measured bandwidth level of link e

te ∈ T ; be ∈ B; B = 1 . . .M ; T ⊂ N0 (5.1.2)

Note that the bandwidth is discretized as integer levels and has a maximum and
minimum value. That is, at any given point in time, no link can have a possible
bandwidth value that is more than level M and less than level 1. For simplicity
we assume that this is the set of bandwidths that any link can take, i.e. this
set does not depend neither on the specific link nor on the system running time.
Time is also discretized. Since time te is time since last measurement, it is an
integer between 0 (for the single link that is measured now) and +∞.

An important observation is that the state space is still infinite, even after
we discretized the time and bandwidth. This is because time is taken from an
infinite discrete set. However, this is not an issue, because, as we will see later
on, given a state x, the set Ya,x containing all the possible states that may follow
from action a happening on state x is a finite set.

Action
The rooting problem is not about choosing the optimal route, but the link that
we need to measure. Given the state of the system, the optimal route is chosen
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analytically as the one that maximizes the bandwidth (see the immediate cost
subsection). Thus for each state, the action set is always the same, and its
identical to the set of links E. That is,

Ax = E,∀x ∈ S

In other words, the action is the choice of the single link to measure, and at any
time step we can measure any link we want.

Next state Set
Given an action a, and a state x = {(be, te)| e ∈ E}. Our next state y is:

y = {(be, te + 1) | e 6= a; e ∈ E; (be, te) ∈ x}
⋃
{(b′a, 0)} (5.1.3)

That is, if we choose to measure link a in the current state x, in the next state
y, all other links will have the same measured bandwidth be as in the current
state x. However, the time since last measurement will increase by one, since
we are not measuring them at this stage. For our chosen link a, the time since
last measurement is set to 0, since we measure the link at the present time
right before transmission. The new measured bandwidth b′a of link a will be the
outcome of the measurement. This outcome is according to the link’s probability
distribution, conditioned on the previous measurement ba and the time since last
measurement ta. The new bandwidth b′a is defined as a random variable where:

b′a ∼ Fa(ba, ta)

where Fa is the probability distribution for the bandwidth of the chosen link, and
it depends on the link’s present state.

The state of the system evolves in a deterministic matter, apart from the
chosen link’s measured bandwidth. For a given action a happening on state
x, the number of different states y that may follow is equal to the number of
possible values that b′a may take. However, the number of values that b′a may
take is bounded, since there is a finite number of possible bandwidth levels equal
to M . So there are at most M possible states that may follow after a certain
action a has taken place on current state x. The set Ya,x that contains all possible
states y that may follow after a happens on x, is defined as:

Ya,x = {{(be, te + 1) | e 6= a, e ∈ E; (be, te) ∈ x}
⋃
{(b′a, 0)} | b′a = 1 . . .M}(5.1.4)

This is an important result. It allows for the Dynamic Programming methodology
to be applied, even though the state space is not finite.
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Figure 5.3: Lattice demonstrating the possible bandwidths at each time. The
figure shows the system with maximum bandwidth level equal to b = 6, that is
M = 6. The available bandwidths at are taken from the finite set {1, 2, . . . , 6}.
The measured bandwidth be = 3 and the time since measurement te = 4.

State probabilities Pa(x, y)
For any state y ∈ S, we can define the probability Pa(x, y) of the specific state y
following after after action a happens on x. First, note that according to the set
definition Ya,x in (5.1.4), the probability Pa(x, y) of any state y′ ∈ S; y′ /∈ Ya,x is
equal to 0. This is to say, that the set Ya,x as defined in (5.1.4) contains all the
possible states that may follow after a happens on x, and any state that is not
contained in that set has 0 probability of occurring.

Now consider a state y ∈ Ya,x. Let (b′a, t
′
a) ∈ y. That is, for state y the

bandwidth of the link a that is chosen to be measured is found to be b′a. The
probability Pa(x, y) of that state y following after action a happens on x, is equal
to the probability that link a is found to have a bandwidth b′a after measurement.
This is because all other elements in state y are deterministic, and defined ac-
cording to (5.1.3). The only element that differentiates state y from any other
state in the set Ya,x is the outcome of the measurement b′a. Thus the probability
Pa(x, y) that y will follow x after action a happens on it, is equal to the probabil-
ity that the bandwidth of link a is found to be b′a. But the probability of link a
having a certain value is governed by the link’s conditional probability distribu-
tion Fa(ba, ta) where ba and ta is the current state’s information about the link.
Thus to define Pa(x, y) we need to define the probability mass function fa,ba,ta(·)
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Figure 5.4: The three different types of nodes,center node, lower bound node, and
upper bound node, along with their possible changes and transitional probabilities
associated with each change

.

for that link’s distribution Fa(ba, ta). The probability mass function gives us the
probability with which the link’s bandwidth will have a specific value. Once we
have defined the mass function, we can define the probability Pa(x, y) for all
possible states as follows:

Pa(x, y) =


0 if y /∈ Ya,x

fa,ba,ta(b′a) where (b′a, 0) ∈ y; (ba, ta) ∈ x
(5.1.5)

For simplicity, we formulate all distributions Fa using a finite trinomial lattice
with upper and lower limits b = 1 and b = M respectively.

Figure 5.3 shows the possible changes in a link’s bandwidth. The bandwidth
takes discrete values, from the set B = {1, 2, . . . , 6}. Thus, the diagram is for
measured bandwidth be = 3, and time since last measurement te = 4. Using a
trionomial lattice we observe the following:

(a) There are 3 different ways a bandwidth can ’move’ at each state, either
go up, down , or remain the same. This happens with transitional prob-
abilities pu, pd and ps. However, not all the changes are available at all
states.This is because there are upper and lower limits, which restrict the
bandwidth from going up or down respectively, at the next state.This is
demonstrated in figure 5.4. Thus, there are three sets of transitional prob-
abilities ([pu, pd, ps][p

′
u, p
′
s],[p

′′
d, p
′′
s ]).The assumption that the probability dis-
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Figure 5.5: The probability for various bandwidth levels of a specific link, when the
last measured bandwidth level was found to be ba = 3. This link has transitional
probabilities pU = pD = pS = 1

3
which remains constant with time. The probability

for each bandwidth level, for the different time intervals is shown in the circles.
Note that at te = 1, the possible bandwidth levels are from the set {2, 3, 4}, whilst
for te = 2 the set grows to {1, 2, 3, 4, 5}. Any bandwidth level not shown, or not
connected to the lattice at a specific time since last measurement, is not possible
and has probability of occurring 0.

tribution over a link’s bandwidth does not change with time, translates into
these probabilities being constant over time.

(b) The lower and upper bounds increase, until they include all available band-
width levels ( 1 to M). From a specific time since last measurement interval,
the probability distributions associated with the possible bandwidth levels
becomes stable, and does not change as time since last measurement in-
creases. We call this time interval Tstable, and we note that the probability
mass function after Tstable remains the same.

(c) It is easy to see that the upper and lower bounds of possible bandwidths
for a given link with be at time since measurement te, are given by, up-
per: minbe + te,M) where M the maximum allowable bandwidth level,
and lower: max(bm − te, 1), where 1 the minimum allowable bandwidth
level.

We need one trinomial lattice per bandwidth level per link. Since this is a finite
trinomial lattice, we cannot define the probability mass function using an ana-
lytical method. However, we can populate the lattice iteratively using the known
transitional probabilities. Let bt denote the bandwidth at time since last mea-
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surement equal to t. Assume that the bandwidth was last measured and found to
be at level n. That is,the initial node in our lattice will be b0 = n, and is assigned
probability 1 (P [b0 = n] = 1). Starting with the initial node we calculate the
probabilities of the next three nodes (b1 = n− 1, b1 = n, b1 = n+ 1)as :

P [b1 = n− 1] = P [b0 = n] ∗ pd
P [b1 = n] = P [b0 = n] ∗ ps

P [b1 = n+ 1] = P [b0 = n] ∗ pu

where pd, ps, pu are the three known transitional probabilities. This can be gen-
eralized for any node as:

P [bt = n] = P [bt−1 = n+ 1] ∗ pd
+ P [bt−1 = n] ∗ ps + P [bt−1 = n− 1] ∗ pu

That is, the probability of the node with bandwidth at level n and time since
last measurement t is the probability of the previous node being at the immedi-
ately higher level times the transitional probability of a drop in bandwidth, plus
the probability of the previous node being at the same level times the transi-
tional probability of remaining at that level, plus the probability of the previous
node being at the immediately lower level times the transitional probability of
a gain in bandwidth during the transition(Figure 5.1.2 shows an example where
the lattice is populated). We can easily adjust this equation to account for the
absolute bounds b = 1 and b = M . This is best done if we index the probabilities
according to the bandwidth level, and set the transitional probabilities for going
beyond the maximum and below the minimum to 0. Thus the generalization
becomes:

P [bt = n] = P [bt−1 = n+ 1] ∗ pd,n+1

+ P [bt−1 = n] ∗ ps,n + P [bt−1 = n− 1] ∗ pun− 1

Using the three sets of transitional probabilities (([pu, pd, ps],[p
′
u, p
′
s] and [p′′d, p

′′
s ]),
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we define the indexed probabilities as :

pd,n =


pd n = 2 . . .M − 1
0 n = 1
p′′d n = M

ps,n =


ps n = 2 . . .M − 1
p′s n = 1
p′′s n = M

pu,n =


pu n = 2 . . .M − 1
p′u n = 1
0 n = M

We need to expand the lattice until a stable distribution is reached. Then
the probability mass function is derived by indexing the correct lattice for the
given link and measured bandwidth level, and retrieving the probability of each
bandwidth level for that specific time since last measurement from the lattice.

Immediate Action Cost ga(x)
At each time step, data are transmitted from the source node S to sink node T , at
the maximum safest bandwidth level. The maximum safest level is the one that
we can guarantee that no link along the chosen path will have a lower bandwidth
than that. Since a link bandwidth is uncertain and obeys a finite trinomial lattice
tree, as shown in figure 5.3, we define the bounds of the bandwidth that a link e
can take using the previous measurement be and the time since last measurement
te as:

• .The lower bound of the bandwidth blo,e = max(bm − te, 1)

• .The upper bound of the bandwidth bhi,e = min(bm + te,M).

We assume that there is a fixed set of known paths P from source node S to
sink node T , and that for any path p ∈ P ; p = {es, ........, et} , ei ∈ E ∀i, the
bandwidth of the path p at time t when the system is at state x is :

bp = min
e
{blo,e | ∀e ∈ p} (5.1.6)

⇔ bp = min
e
{ min{be − te,M} | ∀e ∈ p; (be, te) ∈ x}

That is, the path bandwidth is the lowest lower bound over all the edges in that
path. Choosing to send data over that path at that bandwidth, is guaranteed
with probability 1 to arrive at the sink, without exceeding the bandwidth level
of any link along the way.
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Our chosen path p∗ is the one that solves :

p∗ = argmax
p
{bp | ∀p ∈ P} (5.1.7)

⇔ p∗ = argmax
p
{min

e
{ blo,e | ∀e ∈ p; (be, te) ∈ x} | ∀p ∈ P}

and the bandwidth with which we will transmit the data will be:

bp∗ = min{ min(be − te,M)| ∀e ∈ p∗} (5.1.8)

Our objective is to maximize that bandwidth by choosing the appropriate link
to measure at each time. Thus, we are no longer considering an immediate cost,
but an immediate profit. However we will maintain the same notation, so the
immediate profit for action a is ga(x) = bp∗ . Note that, unlike the Tetris game,
this immediate profit is not really immediate. That is, we cannot at the time we
choose our action, i.e. which link to measure, determine the immediate cost that
our action will have. The profit is realized after we have performed the chosen
action, that is, after we have measured the link and found its current bandwidth
level. This profit does not play part in the greedy policy, and is only used to
formulate the optimization problem that we need to solve:

∞∑
t=0

{
αtgat(xt)

}
. However, a way of having the greedy policy consider the immediate profit of an
action, is to include the profit in the basis functions. Thus, at least the expected
immediate profit will be considered by the policy when choosing an action.

5.1.3 Approximate Cost-to-Go for the Routing Problem

Given a graph G = (V,E) with |V | nodes and |E| links, we introduce a set of
basis functions that will be used in the parametric cost-to-go approximation as
follows:

(a) |E| basis functions, each mapping the state to the measured bandwidth
level be for each of the links e

(b) |E| basis functions, each mapping the state to the time since last measure-
ment te for each of the links e

(c) |E| basis functions, each mapping the state to the minimum possible band-
width blo,e for each of the links e
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(d) |E| basis functions, each mapping the state to the minimum possible band-
width bhi,e for each of the links e

(e) 1 basis function that is equal to one at every state, serving as a constant
offset

Thus we have a total of |E| ∗4+1 basis functions. The number of basis functions
and thus objective variables depends only on the number of links, and not the
number of bandwidth levels. As discussed earlier, if we want to include the
immediate action profit as defined in (5.1.8), or at least the expected value of it,
in our greedy policy, we can include it in the basis functions, However, calculating
the immediate profit for every possible outcome of every possible action is a very
time consuming procedure, that delays the greedy policy significantly. Particular,
consider a graph of n nodes and l links. If there are on average b possible outcomes
for every action, then we need to solve (5.1.8) b ∗ l times. That is, b times for all
possible outcomes for each action, multiplied by l which is the number of links
and thus the number of possible actions. To solve (5.1.8) we need to traverse
all paths in order to find the one with the largest path bandwidth, as defined
in (5.1.6). This is a major bottleneck and a greedy policy that includes such a
problem will introduce significant delays to the network when trying to choose
the next action.

5.1.4 Performance Objectives

As this is a unique problem, there aren’t any benchmarks that we can use to
evaluate a policy’s performance. However, we have devised a test that will allow
as to measure the performance compared to some other logically derived policies
. We run a simulation of the network and have various controllers acting on
it. Each controller has its own state, which is the set of information about the
network (i.e. measured bandwidth and time since last measurement for each
of the links). Each controller follows its own policy in updating its state. At
each time step, we record the transmission bandwidth achieved when using each
controller’s state. In other words, we derive the immediate profit ga for each of
the controllers. Thus, we can compare the average performance of the controllers
running in the same environment over a sufficiently large period of times. The
reason we can run different policies on the same simulation, is because a policy
does not affect the actual network’s evolution. Measuring a link will not force
that link to take a certain bandwidth level. A policy’s action only affects the
information we know about the network. We can compare the policy derived by
the BRLP method against the following policies:
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(a) A heuristic policy. The policy is designed based on common sense. This
is a greedy policy, that uses the same basis functions to approximate the
cost-to-go as the policy on test. However, for this policy, we use a specially
hand crafted weight vector r, which is logically designed so that:

• the direct link between source and sink is measured more often than
those links that are only connected to either the source or the sink,
and the latter links are measured more often than the links between
the other nodes.

• links with higher uncertainty are more likely to be measured than links
with low uncertainty.

• links with high expected bandwidth are more likely to be measured
than links with low expected bandwidth.

• links that have not been measured for some time are more likely to be
measured

This evidently, is the same weight vector that we use as the starting point
for the BRLP method

(b) A round robin policy. This policy measures the links in a round robin
fashion.

(c) A perfect-information policy. This policy is derived from the simula-
tor. The policy tabs into the simulator data and maintains the current
bandwidths of all the links. This policy represents the ability to measure
all links at each time step. It has the optimal performance that can be
achieved by the network.

The objective is for the derived policy to at least surpass the round robin policy,
and hopefully the heuristic policy. Ideally, we would like the derived policy to
closely match the performance of the perfect information policy.

5.2 Problem Formulation

The routing problem varies from the Tetris problem, for three reasons:

(a) The state space S infinite

(b) We are dealing with action profits, not costs. The objective now is to
maximize the accumulated profit ga(x) over time.

(c) The immediate action profit is not realized until after the action, and is
non-deterministic
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These differences require a reformulation of both the RLP objective, as well as
the greedy policy’s definition. The main difference lies in the way we calculate
the expected future cost, or in this case profit.

5.2.1 Expected Future Profit

Given a cost-to-go approximation J̃ , so far we have been calculating the expected
future cost of action a happening on state x as (see section 2.2):∑

y∈S

Pa(x, y)J̃(y) (5.2.9)

That is ,calculate the weighted average the cost-to-go over all states in the state
space S, according to the probability Pa(x, y) that those states may follow after a
happens on x. Such a calculation is intractable for the Routing problem, because
the state space S is now infinite. However, the set Ya,x that contains all possible
states that may follow once action a happens on state x is finite, as shown earlier.

Thus, by noting that Pa(x, y) is 0 (see (5.1.5)) for any state not in the set
Ya,x, we can reformulate the Expected Future Profit in a tractable equation by
summing over the states in the finite set Ya,x rather the entire state space. So
the expected future cost for action a on x is:∑

y∈Ya,x

Pa(x, y)J̃(y) (5.2.10)

5.2.2 RLP modification for the expected Profit-To-Go

The problems we have dealt with so far aimed at minimizing the total cost accu-
mulated by running the system over time. The BLRP method discussed is set up
to find the best cost-to-go approximation for each state, given the choice of basis
functions. However, in this problem we need to maximize the total accumulated
profit, so a profit-to-go approximation is needed now.

Remember, the cost-to-go for a state is defined as the minimum total expected
cost that will be incurred when the system starts at that state and runs under the
optimal policy. The cost-to-go is the solution to Bellman’s equation (see section
2.2):

J∗(x) = min a ∈ Ax

{
ga(x) + α

∑
y∈S

Pa(x, y)J∗(y)

}
(5.2.11)



5.2. PROBLEM FORMULATION 50

The exact version of the Linear Problem that solves the above equation is (see
subsection 2.4.1 :

max
J

c′J (5.2.12)

s.t. ga(x) + α
∑
y∈S

Pa(x, y)J(y) ≥ J(x)

∀x ∈ S; ∀a ∈ Ax

Similarly to the cost-to-go, the profit-to-to is defined to be equal with the
maximum total expected profit that will be incurred, when the system starts
from the specific state under the optimal policy. Thus, maintaining the same
notation, the profit-to-go is defined as :

J∗(x) = max
a∈Ax

{
ga(x) + α

∑
y∈S

Pa(x, y)J∗(y)

}
(5.2.13)

The Linear program needs to be modified to return the expected profit-to-go as:

min
J

c′J (5.2.14)

s.t. ga(x) + α
∑
y∈S

Pa(x, y)J(y) ≤ J(x)

∀x ∈ S; ∀a ∈ Ax

Any solution to the above problem is both optimal and feasible. Thus, by the
constraint definition, any solution J will be greater than the left-hand side. The
profit-to-go J can only decrease up to the point where it is greater than the left
hand side. As a result, J will be equal to the largest allowable value of

ga(x) + α
∑
y∈S

Pa(x, y)J(y)

which is what is required by the profit-to-go definition (5.2.13).

In order to bring the problem (5.2.14) to its RLP form, we modify it in the
same manner as we did with its cost-to-go version(see chapter 3. Thus the RLP
we need to solve now is:

min
r

c′Φr (5.2.15)

s.t. ga(x) + α
∑
y∈S

Pa(x, y)(Φr)(y) ≤ (Φr)(x)

∀(x, a) ∈ X
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However, as with subsection 5.2.1, we need to replace the expected future
profit term in the constraints ∑

y∈S

Pa(x, y)(Φr)(y)

with its tractable form ∑
y∈Ya,x

Pa(x, y)(Φr)(y)

where Ya,x the set of next possible states as defined in (5.1.4). The final version
of the RLP that is used by the BRLP method is:

min
r

c′Φr (5.2.16)

s.t. ga(x) + α
∑
y∈S

Pa(x, y)(Φr)(y) ≤ (Φr)(x)

∀(x, a) ∈ X

5.2.3 Greedy policy

When dealing with cost, the greedy policy generated by a cost-to-go approxima-
tion J̃ = Φr needs to choose the action that solves (see section 2.2:

u(x) = arg min
a∈Ax

{
ga(x) + α

∑
y∈S

Pa(x, y)J̃(y)

}
(5.2.17)

That is, the policy will choose the action that minimizes the sum of the expected
future cost and the immediate action cost. Now that we are considering a profit
instead of a cost, we need to redefine the greedy policy to choose the action that
maximizes the sum of the immediate action profit and the expected future profit.
Thus, the greedy policy is now defined as :

u(x) = argmax
a∈Ax

ga(x) + α
∑
y∈Ya,x

Pa(x, y)J̃(y)

 (5.2.18)

where ga(x) is now the immediate action profit and J̃ is now the parametric
approximation of the profit-to-go function. We again replace the state space S
with the set of the next possible states Ya,x, in order to calculate the expected
future profit.
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The immediate profit of an action is not readily available when choosing the
action, but is realized after the action has been chosen (see subsection subsection
5.1.2). Thus, the immediate profit has no weighting when choosing an action.
As a result, the greedy policy becomes:

u(x) = argmax
a∈Ax

{
∑
y∈Ya,x

Pa(x, y)J̃(y)} (5.2.19)

Finally, the set of admissible actions is the same at each state, and is identical
to the set of links (see 5.1.2. Thus, we can replace Ax with E, where E is the set
of links. The final greedy policy to be used in the rooting problem is :

u(x) = argmax
a∈E

{
∑
y∈Ya,x

Pa(x, y)J̃(y)} (5.2.20)

5.3 Implementation

The system was implemented in Matlab. Mosek was again used as the LP solver.
This problem involves a continuously evolving network, so there is no scope for
concurrent simulation, as we did with the Tetris (see section 4.3). The system
was implemented as a self-contained program, in order to automate a BLRP
iteration. The program is designed to run without any user interaction and
perform a configurable number of BLRP iterations before terminating. Each
iteration consists of :

1. Simulation/Sampling phase using current policy

2. Constraint and objective coefficient generation using the recorded sample

3. Solution of the linear program formulated in order to derive the policy to
use in the next iteration

The program is designed to log all results at the end of each iteration, such as:

(a) the bandwidths achieved by the policy used in each iteration, as those
bandwidths were observed in the simulation process,

(b) the weight vectors used in the each of the policies and the sample sets that
were constructed in each iteration.

The program also backups regularly its entire internal state in a .mat file. As the
program is left to run unattended as a background process, there is the possibility
that the host computer crashes or reboots before completion. The backup points
allow as to restore software execution, without having to start all over again.
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5.3.1 Network Representation

The software needs to simulate the network and evolve the bandwidths of each
link according to the link’s pre-specified probability distributions. The links
follow a trinomial lattice based distribution, and the simulator only needs to
store the three sets of transitional probabilities shown in figure 5.4 for each of
the links. There are two components that form the network’s structure:

(a) The nodes and the links between them. The nodes and links are represented
as a two dimensional array. If there are |V | nodes, then the entire network
is represented as an |V | × |V | symmetric matrix. If there is a link from
node i to node j, then the entry at row i and column j is set to 1, and so is
the entry at row j and column i. The rest of the entries are marked as 0,
meaning that we can store the matrix in the more memory efficient sparse
representation that Matlab provides. The number of nonzero elements in
the matrix will be equal to 2|E| where |E| is the number of links.

(b) The 3 sets ( 8 distinct probabilities in total) of probabilities that are as-
sociated with each link. In order to store these probabilities, each link is
associated with a specific id. Thus, the above matrix is modified, so that if
there is a link between node i and node j, instead of setting the ij and ji
entries of the matrix, we set them to the link’s specific id. We then use that
id to index the row in separate table, that holds the specific probabilities
for that link. There are 3 sets of 8 probabilities associated with each link,
but we only need to store 5 distinct probabilities, as the other 3 can be
derived by knowing that each of the three sets sums up to 1.

Overall, to represent the network of |V | nodes and |E| links we need an |V |× |V |
matrix to hold the network topology and an |E| × (5 + 1) matrix to hold the
probabilities.

5.3.2 Simulator/Sampler

The simulator needs to evolve the system at each time step, by progressing the
bandwidth of each link according to the link’s transitional probabilities, as they
are stored in the network structure. In order to do so, the simulator needs to store
the actual bandwidth of each of the links at each time step. This can be stored
as an entry to the table that holds the probabilities associated with each link. So
the matrix now needs to hold the 5 probabilities plus another entry which is the
current bandwidth, for each of the links. The sampler needs to derive the action
profit ga for the sampling purposes. In order to do so, the sampler needs to go
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through all paths, and find the bandwidth of each path as defined in (5.1.6). To
do this, the sampler needs to hold a list of paths, representing each path as an
array of the link ids that the path consists of. This list is created on start up,
using the network structure and a breadth-first search. The sampler also needs
access to the MDP state that the policy maintains. Even though finding the
best path along with the transmission bandwidth is implemented as part of the
sampler, in a real life system this would be part of the controller, along with the
greedy policy.

5.3.3 Greedy Policy Implementation

As discussed in subsection 5.2.3, the greedy policy of the routing problem only
needs to consider the expected future profit given the choice of a particular action,
and ignore the immediate action profit. In order to calculate the expected profit∑

y∈Y

Pa(x, y)Φ(y)r

, the greedy policy needs to:

(a) Generate the set of next states Y for each of the links

(b) Retrieve the probability Pa(x, y) of a state y occurring after action a hap-
pens on state x

(c) Apply the basis functions to any state for every action and possible outcome

In order to generate the next possible state, the policy implementation needs to
maintain the MDP state, as well as the set of trilattices (one for every bandwidth
level) that are associated with each of the links.

Generate Set of next states
The policy stores the MDP state , as an |E| × 2 matrix, where |E| is the number
of links. The row number is the specific index of that table, as that index was
assigned in the network representation. Each row holds the measured bandwidth
and time since last measurement for that link. Also, to save computation time,
the table has another 2 entries on each row, which hold the minimum and maxi-
mum bandwidths, for the specific time since last measurement.We can derive the
next state, both in the case that we have actually made a decision to measure a
specific link, but also in the case that we want to create the set of next possible
states, to be used by the greedy policy. Regardless of the situation, for all links
apart from the one considered/chosen, we do the following:
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(a) increment the time since last measurement by 1

(b) update the bounds according to:

• .blo,e = max(bm − te, 1), (bm, te) ∈ x
• .bhi,e = min(bm + te,M), (bm, te) ∈ x.

(c) the measured bandwidth bmes remains the same

For the considered/chosen link, we set the time since measurement tmes to 0,
and then we set the measured bandwidth bmes, along with the blo and bhi to:

(a) either the actual bandwidth as recorded by the simulator, in case this is
the link that has been chosen to be measured

(b) the bandwidth as proposed by a potential next sate, in case we want to
create the set of possible next states Ya,x if this link is considered. This will
be used by the greedy policy to estimate the future expected profit-to-go if
this link is chosen.

Calculating Pa(x, y)
The set of trilattices is generated using a separate Matlab program. The program
will take as argument the number of bandwidth levels M and the number of paths
|P |. It will then proceed to generate the three sets of transitional probabilities
at random for each of the p links. Using the probabilities, it will populate the
lattices, which are represented as a 2 dimensional array ( 1dimension are the
bandwidths, the other is the time step). Thus, overall ,the lattices are stored as
four dimensional arrays, where the first dimension, refers to the link, the second
dimension, to each possible starting bandwidth, and the last two dimensions to
the lattice. It will store the four dimensional table in a mat file, that is passed in
the main program. From the trilattice, we can derive the probability Pa(x, y) for
any x, y and a. Let (ba, ta) ∈ x be the measurement bandwidth and time since
last measurement of link a in the current state. Let (b′a, 0) ∈ y be the same data
in the proposed next state y. To get Pa(x, y) we retrieve the set of lattices for
link a, from that set we retrieve the lattice that has as a measured bandwidth ba,
and from there we index the value at the cell with bandwidth b′a and time since
measurement ta.

Apply the basis functions
The greedy policy solves (5.2.20) by calculating the expected future cost for every
possible action. The greedy policy works as follows:
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method GreedyPolicy ( s t a t e x ) r e tu rn s opt imalAct ion
CurrentState = x
Set Opt imalProf i t = 0
for every l i n k a

// c a l c u l a t e expec ted f u t u r e p r o f i t
set FuturePro f i t = 0
[ blow , bhi ] = getRangeOfPossibleBandwidths (x , a )
for bmes = blow up to bhi

nextStateY = der iveNextState (x , bmes , a )
Bas i sVector = phi ( y )
ProfitToGo = dotProduct ( BasisVector , r )
FuturePro f i t = FuturePro f i t + prob (x , y , a )∗ProfitToGo

end f o r l o op
// check i f maximum
i f OptimalProf i t< FuturePro f i t

Opt imalProf i t = FuturePro f i t
opt imalAct ion = a

end i f
endloop
return opt imalAct ion

method der iveNextState ( s t a t e x , bandwidth bmes , l i n k a )
r e tu rn s s t a t e y

// t h i s method , t a k e s in the current s t a t e x , and
// the sugge s t ed measured bandwidth f o r the chosen l ink ,
// i t r e tu rns the next s t a t e , f o r t ha t bandwidth

method getRangeOfPossibleBandwidths (x , a ) r e tu rn s [ blo , bhi ]
// the method g e t s the curren t s t a t e x and the chosen l i n k a
// and re turns the two bounds f o r t ha t l i n k , as they are
// recorded in the s t a t e x

method phi ( s t a t e y ) r e tu rn s vec to r
// the method a p p l i e s the b a s i s f unc t i on s on the
// s t a t e t ha t i s passed in as parameter

Thus the greedy policy needs to derive Φr for all possible outcomes of an
action, for all possible actions. Given an action and an outcome, there are 4∗ |E|
basis that functions that we need to apply for that specific outcome state. That
is, there are 4 basis functions for each of the links, that extract the measured
bandwidth, the time since last measurement, the lower and the upper bounds.
Remember, the number of possible actions is the number of links |E|. If there
are on average n possible next states per action, then we need to apply the basis



5.3. IMPLEMENTATION 57

functions a total of |E| ∗ n times . Thus, we will need to do

|E| ∗ n ∗ 4 ∗ |E| = 4n|E|2

operations when we apply the greedy policy, in each iteration. As implemented
above, the true work happens in the ’deriveNextState’ method. The method
calculates the new entries of all links, including the link that is chosen to be
measured. The ’phi’ method simply extracts the information already calculated
in the ’deriveNextState’ method, in a vector form. No calculation is done in the
’phi’ method.

However, we note that :

(a) Given the chosen action, each possible outcome state only varies in 1 link
from any other outcome. All other links have the same values. Namely, if
we choose as action link a, then for any two outcomes states y, y′ ∈ Ya,x
where x is the present state, y will vary from y′ only in the measured
probability of link a. All other entries in the two states will be the same

(b) Any outcome of an action, will vary only in 2 links from any outcome of
another action. Thus, if we take action a and a′, then states y and y′

resulting from a and a′ respectively, will only vary in the entries for link a
and a′.

Thus, we can derive an optimized implementation of the greedy policy as follows:

method GreedyPolicy ( s t a t e x ) r e tu rn s opt imalAct ion
CurrentState = x
set OptimalProf i t = 0
// de r i v e next s t a t e i f no ac t i on take s p l ace
yGen = gener i cNextState (x )
for every l i n k a
set FuturePro f i t = 0
[ blow , bhi ] = getRangeOfPossibleBandwidths (x , a )
for bmes = blow up to bhi

CurrentState= ad ju s tS ta t e (yGen , bmes , a )
Bas i sVector = phi ( y )

ProfitToGo = dotProduct ( BasisVector , r )
FuturePro f i t = FuturePro f i t + prob (x , y , a )∗ProfitToGo
end f o r l o op

// check i f maximum
i f OptimalProf i t< FuturePro f i t
Opt imalProf i t = FuturePro f i t
opt imalAct ion = a

end i f
endloop
return opt imalAct ion
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method ad ju s tS ta t e ( s t a t e yGen , bandwidth bmes , l i n k a )
r e tu rn s the s p e c i f i c next s t a t e
// t h i s method , t a k e s in the gener i c next s t a t e x , and

// the sugge s t ed measured bandwidth f o r the chosen l ink ,
// i t r e tu rns the next s t a t e , f o r t ha t bandwidth , by ad j u s t i n g
// the s e l e c t e d l i n k in the gener i c s t a t e a pp r op r i a t e l y

method gener i cNextState (x ) r e tu rn s a g ene r i c next s t a t e
// the method take s a pre sen t s t a t e , and re turns
// the next s t a t e when no ac t ion i s app l i e d to i t

method getRangeOfPossibleBandwidths (x , a ) r e tu rn s [ blo , bhi ]
// the method g e t s the curren t s t a t e x and the chosen l i n k a
// and re turns the two bounds f o r t ha t l i n k , as they
// are recorded in the s t a t e x

method phi ( s t a t e y ) r e tu rn s vec to r
// the method a p p l i e s the b a s i s f unc t i on s on
// the s t a t e t ha t i s passed in as parameter

The difference lie in two methods, the ’genericNextState’ method and the
’adjustState’ method. Thus the new implementation, only needs to derive an
entire state one time, by calling the ’genericNextState’ method which takes 4|E|
operations. It then proceeds to modify the generic state n ∗ |E| times, by calling
the ’adjustState’ operation. That is, one time per possible outcome per action.
However, each modification is only 4 operations long, that is, the 4 operations
that correspond to the specific chosen link. Thus, the total number of operations
is n ∗ |E|+ 4 ∗ n|E| = 5n|E|.

Object Number of Entries Size of Entry Total size
MDP State |E| × 4 32 bit |E| ∗ 16
Trilattices |E| ×M × |E| × Tstable 32 bit |E| ×M × Tstable ∗ 4

Table 5.1: Policy Memory Requirements. For a fully connected network of 10
nodes, there are 45 links. If the total number of bandwidth is 20 levels, then the
Tstable, that is, the time level where the trilattice no longer changes, is around
1000 time steps. So, the total memory requirements are 45*16 + 45*20*1000



CHAPTER 6

Numerical Evaluation

All experiments were run on 32 bit Pentium IV 3.0 GHz CPUs with hyper-
threading technology equipped 4 GB RAM and 250 GM hard disk. The running
environment is the Linux distro Ubuntu 8.06. The programming language used
is Matlab R14SP3 interfaced with the Mosek v4 optimization toolkit. The total
number of constraints that Mosek can handle in a 32 bit Linux environment is
approximately 1,000,000. Even though in the original version in [6] the number of
constraints is 2,000,000, we will only use 1 million in all BRLP runs. Fortunately,
the number of constraints does not affect the average performance of the derived
policy, but it does affect the variance in that policy’s performance.

6.1 Tetris Results

Recall that for the Tetris optimization, we implemented the BRLP method to
allow the following configurations(see Table 4.2):

(a) The Sampling Interval M. How many moves must pass from the time we’ve
recorded a sample, before we record the next one.

(b) The constraint generation strategy. How many constraints are generated
for every sample. We can either generate 1 constraint per sampled state
and action (1 per (x, a)), where the sampled action is the action chosen by
the current policy; or we can disregard the

(c) The ratio of new samples vs old samples in our sample set. To allow for
guarded sampling, the implementation can construct the sample set from
a combination of new states, sampled according to the current policy, and
states taken from the previous sample. The ratio of new the sample set
states vs the states taken from the previous sample may be adjusted. In any
case, the size of the sample is always sufficient to create 1000000 constraints,
that Mosek can handle.

Five methods were tried in total:
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(a) Standard BRLP

(b) Guarded Sampling BRLP

(c) Adaptive Sampling BRLP

(d) Conditional Sampling BRLP

(e) Least Square

6.1.1 Standard BRLP

The standard BRLP method is the one that was successfully used in [6]. The
method is configured as follows:

(a) Sampling interval M: 90 moves. This is a fixed interval

(b) Number of constraints a sampled state creates : One constraint for every
possible action, for every sampled state. There are on average 23 possible
combinations of rotations and translations that we can perform on a falling
piece, thus , for every sampled state there are on average 23 actions that
can happen on that stage (see Table 4.1.2.

(c) Number of states sampled in each BRLP iteration(New:Old) : Every it-
eration generates an entirely new sample of states. The sample must be
large enough to generate 1000000 constraints. For every sampled state, we
generate 22 constraints on average, meaning that we require approximately
1000000

23
≈ 45500 sampled states.

The BRLP method was repeated a total of 6 times, using 6 different starting
policies. Each run of the BRLP lasted 5 iterations. Each iteration was repeated
5 times, in order to create 5 different samples. From the 5 samples, we generated
5 different policies and the policies were evaluated by taking the average score
over 100 games. The best policy was used in the next iteration. Thus, a total of
6∗5∗5 = 150 samples were generated, each sample holding 1 million constraints.
Table 6.1 shows some statistics from the system run.

Total # of Average Sample Total # of Total #
Sample sets size (in States) moves performed games played

150 46 983 634 270 500 279 718

Table 6.1: BRLP Statistics

Unfortunately, we were unable to generate the results reported in [6] using
this configuration. This is a testament that the BRLP method’s success depends
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on the initial policy. The graph 6.1 shows the most successful run of a BRLP
iteration.

Figure 6.1: The most successful run for the standard BRLP. The graph shows
the average score achieved by the best policy derived in each iteration. It also
shows the score of the median policy. The best policy achieves scores well below
the scores that were reported in [6]

Guarded Sampling BRLP

In the Guarded Sampling version of the BRLP, we create a sample using states
that are sampled by the current policy, and states that exist in the previous
sample. For this method, we tried different proportions of new states vs previous
states. The method’s exact configuration is as follows:

(a) Sampling interval M : 90 moves. This is a fixed interval

(b) Number of constraints a sampled state creates: For this method, we have
tried both configurations (1 constraint for every possible action per state,
and 1 constraint per state-action pair in the sample). In the case where
we generate one constraint per state, that constraint corresponds to the
action that is chosen by the policy. This way, we can use more states in our
sample. However, generating only 1 constraint per sample, increases the
number of states that we need to sample by a factor of approximately 23.
This has a major impact on the time that it takes an iteration to complete.
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Figure 6.2: The successful application of the guarded BRLP method. The graph
shows the average score of the different policies at each iterations. The method
used for this graph was configured for 1 constraint for every possible action per
sampled state, and a sampling mix of 250 000 new samples and 750 000 old
samples.
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(c) Ratio of new states against old states in the sampling mix: We have tried
3 different combinations:

• 250 000 constraints generated new samples, the remaining 750 000 are
taken from the previous sample

• 500 000 new constraints vs 500 000 from the previous sample

• 750 000 new constraints vs 250 000 from the previous sample

In this case, we did not repeat each iteration in order to choose the best policy
to continue. Instead, we left the BRLP method to run for up to 20 iterations.
This method proved a success, as we managed to generate a policy with a score
of approximately 6000 lines per game, on average. The successful sample mix
is the one where 250 000 new constraints are generated by the current policy,
and 750 000 are taken from the previous sample. With this mix , we were able
to derive various hi-scoring policies, with performance ranging from 4200 to the
maximum of 6000 lines, using different starting policies. Both configurations of
1 constraint per sampled state-action pair and one constraint per sampled state
for all possible actions succeeded.

These results are very encouraging for the Routing problem, because they
provide evidence that :

(a) the BRLP method can give a good policy if its let to run long enough,
regardless of the initial policy

(b) there is no need to generate one constraint per possible action for each
sample state. The method also works when we generate a single constraint
for each sampled state, that corresponds to the action chosen by the policy
in use.

6.1.2 Adaptive Sampling BRLP

Once we’have found the optimal policy, we investigate why the performance
reaches a peak during the BRLP iterations. One possibility is that samples
that are 90 moves apart become correlated as the policy gets better. A similar
possibility is that under a better policy, the needed samples are generated in a
much smaller number of games, and thus there are less opportunities for a bad
or terminating state to be sampled. This is illustrated in Figure 6.3.

The adaptive sampling BRLP is configured so that the number of games
needed to generate the sample remains the same through all BRLP iterations.
Apart from the sampling interval, all other parameters including the starting
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Figure 6.3: The graph shows the number of games needed to collect 250 000
samples, as it was recorded during a BRLP run, where the sampling interval was
fixed at 90 moves. The y axis is in logarithmic scale.

policy, are the same as the ones that yielded the successful policy . The adaptive
sampling version of the BRLP method is configured as follows:

(a) Sampling interval M: Varies according to the policy. At each iteration, there
is a calibration stage where the policy is used for 100 games, without any
sampling occurring. During that stage, the total number of moves played
through the 100 games is recorded and the average number of moves per
game is derived. The goal is to play 2000 games every iteration, so the
expected number of moves that will happen when that policy plays 2000
games is estimated. The expected number is divided by the 250 000 samples
that we need, and thus we get the sampling interval. The sampling interval
is not allowed to go below 90, and so, for very bad policies we need to play
more than 2000 games.

(b) Number of constraints a sampled state creates: We generate 1 constraint
for every possible action for each sampled state. Thus, we generate approx-
imately 23 constraints per sample.

(c) Number of new constraints generated in each BRLP iteration : 250 000 new
constraints generated by current policy, the remaining 750 000 are taken
from the previous sample
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Figure 6.4: A successful run of the adaptive sampling BRLP, showing the average
score achieved by the policies at each iteration.

The adaptive sampling technique behaved the same way as the other tech-
niques. The performance of the policies generated reached a peak at roughly the
same level as before. However, there was a major impact in the performance of
the BRLP method. As the sampling interval increases, the BRLP method re-
quires a lot more time to generate the samples. This has a major impact on the
applicability of the method, especially in larger problems where more samples
will be needed. Table 6.2 shows how the sampling interval was set in each of the
iterations.
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Figure 6.5: The graph shows how the sampling interval is set in each iteration.
The y axis represents moves, which are equivalent to time intervals in the MDP
process. Table 6.2 shows the data in more detail.

Avg Moves Proposed Actual Avg Samples per
Iteration

per Game Sampl. Interval Samp. Interval game point

0 5064.12 40.51 90 53.73
1 2647.38 21.18 90 147.08
2 35186.33 281.49 281 74.08
3 34869.36 278.95 279 57.54
4 62315.05 498.52 499 70.89
5 122161.96 977.30 977 80.21
6 67113.99 536.91 537 50.96
7 111448.17 891.59 892 51.31
8 190660.04 1525.28 1525 45.59
9 3425.86 27.41 90 68.52

Table 6.2: The sampling interval is adjusted, so that at each iteration a minimum
of 2000 games is required to generate 250 000 constraints to use in the new
sample.
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6.1.3 Conditional Sampling

For conditional sampling, we need to input the following:

(a) The optimal policy found so far, to be used as initial policy uk
(b) The sample that derived that optimal policy, to be used as the base sample

The conditional sampling method, does not replace any of the existing samples.
Instead it only adds the generated samples. As soon as there is a new sample,
the simulation ends and the optimization is started to derive the new policy.
A new sample is generated when, during the simulation, we encounter a state
that under the present policy violates the constraints. That is, assume that the
present policy uk operates according to the weight vector rk, and for the state
x chooses an action a. Then, the state-action pair (x, a) will be entered in the
sample if it violates the constraint:

ga(x) + α
∑
y∈S

Pa(x, y)(Φrk)(y) ≥ (Φrk)(x) (6.1.1)

Adding just 1 constraint to the sample changes the solution dramatically.
That is, from the first iteration where the sample used is the one that results to
the optimal policy, we add to that sample the first state that is violated by the
optimal policy and we solve the RLP. The derived policy is dramatically worse
than the policy that would have been derived without that constraint (i.e. the
optimal policy). Figure 6.6 demonstrates the score of the two policies over 100
games.

This is a surprising result, as it seems to suggest that the BRLP method
benefits from the fact that it does not include all the constraints in the problem.
Such a situation is illustrated in figure 6.1.3. The figure shows an MDP process
with two states, J1 and J2 which correspond to the axes. The original problem
with all the constraints is shown on the left hand side. The feasible region is
represented as the gray area. The exact solution to the problem, and thus the
true-cost-to-go approximation is J∗. However, the solution of the approximate
linear program lies on the approximation space shown as the line Φr. Given that
choice of approximation, we see that the best approximation lies at the point
which is closest to J∗, namely point Φr∗. However, when using the LP approach,
the approximation we get lies at the maximum intersection of the approximation
space (line Φr) and the feasible area. That intersection is labeled Φr̃. It is
clear that the constraint labeled A renders the constraint B (shown as the doted
line)inactive. That is, as long as A is included constraint B will not influence the
solution. However,consider the reduced LP on the right hand side. Constraint
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Figure 6.6: The performance difference of the Semi Infinite Policy and the BRLP
policy. The samples that generated the two policies vary only in a single constraint

A is not included in the problem. That is, suppose at an iteration of the BRLP,
we do not sample constraint A, but we sample constraint B. The feasible region
is again shown in the shaded area, however, the solution of the reduced Linear
Problem will give a point a lot closer to the real cost-to-go, than before. Thus,
we have actually benefited from the fact that we did not include constraint A.

This observation suggests a change in the sampling mechanism. Instead of
attempting to find a sample that will approximate the entire LP, we should aim
for a sample that will force the LP to come as close to the true cost-to-go as
possible. However, more rigorous analysis and investigation is required.

6.1.4 Least Square Objective

In order to test whether the above findings are justified, we decided to reformulate
the problem as a least square problem. That is, instead of trying to solve the RLP
at each iteration, we will try to find the weights that make the RHS in Bellman’s
equation equal to the LHS(see subsection 2.4.2). Recall that Bellman’s equation
for a parametric approximation of the cost-to-go is:

(Φr)x = min
a∈Ax

{
ga(x) + α

∑
y∈S

Pa(x, y)(Φr)(y)

}
(6.1.2)
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Figure 6.7: Graphical illustration of the solution of an RLP with missing con-
straints (on the right), compared to the solution of the actual LP which includes
all the constraints.

Using the l2-norm, we want to minimize the LHS and the RHS for the state and
action in our sample set:

min
r

∑
(x,a)∈X̄

(
(Φr)(x)−

(
ga(x) + α

∑
y∈S

Pa(x, y)(Φr)(y)

))2

(6.1.3)

By differentiating the above, we can derive the r vector that makes the derivative
0, and thus minimizes the (6.1.3). The vector is found to be:

r =
∑

(x,a)∈X̄

(da,x d
T
a,x)
−1

∑
(x,a)∈X̄

(ga(x) da,x) (6.1.4)

where

da,x = Φ(x)− α
∑
y∈S

Pa(x, y)Φ(y)

The BRLP method remains the same, except that now instead of solving the
RLP, we solve the equation (6.1.4). The method is summarized as follows:

1. Begin with a simulator that uses a policy u0

2. Generate a sample Xk using policy uk
3. Solve the Least Square problem (6.1.4) according to the sample Xk to gen-

erate a policy uk+1
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Figure 6.8: The average performance of the policies at each iteration

4. Increment k and go to step 2

The results are shown in graph 6.8. As mentioned in 2.4.2, the least square
methods are usually one step methods, that is, they succeed on the first iteration.
This is evident in the graph.

The policy derived from the Least Square method scores on average 11000
lines. The policy is almost two times better than the policy which resulted from
the BRLP method. Figure 6.9 shows the performance of the best BRLP policy
and the Least square policy over the course of 100 games.

Graphs 6.10 and 6.11 show the different approach that the BRLP method and
the Least Square method take in order to solve Bellman’s equation. The graphs
shows the right hand side and left hand side of the constraints evaluated for the
two policies over a sample set of states and actions. Observe that in the BRLP
version, the RHS is always smaller from the LHS is negative, as depicted by the
constraints in the RLP. Thus, we can visualize the BRLP method as trying to
approach the solution from below. On the other hand, the Least Square version
the difference oscillates around the x-axis. This is because the Least Square
method tries to minimize the distance between the two, regardless of whether
the LHS is larger or smaller from the RHS.

• RHS : (Φrpol)x

• LHS : ga(x) + α
∑

y∈S Pa(x, y)(Φrk)(y)

where (x, a) is the sample.
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Figure 6.9: The two optimal policies compared over 100 games
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Figure 6.10: The constraint samples of the BRLP policy.The RHS corresponds to
(ΦrBRLP )x and the LHS to ga(x) + α

∑
y∈S Pa(x, y)(Φrk)(y) ,where (x, a) is the

sample. The RHS is always smaller that the LHS, as this is what is required by
the RLP being solved.

Figure 6.11: The constraint samples of the Least Square policy.The RHS corre-
sponds to (ΦrLSq)x and the LHS to ga(x)+α

∑
y∈S Pa(x, y)(Φrk)(y) ,where (x, a)

is the sample.
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6.2 Routing Results

All experiments were done on fully connected networks, of a total of 10 nodes.
The reason we have chosen to do the experimentation on fully connected networks
is that they represent overlay networks, which this kind of system might be
applied. However, each network has different distributions for each of its link,
which are generated randomly using a Matlab program.

We attempted to optimize the routing problem using 2 methods:

(a) Guarded Sampling BRLP

(b) Least Square

The two methods yielded almost identical results, so we will only present the
best results for each network. The sampling configuration that worked best for
the BRLP method, and was that used in both methods is as follows:

(a) Sampling Interval M: 120 fixed

(b) Constraints Generated per sample: 1 constraint for each sampled state-
action pair

(c) Number of new constraints generated in each iteration : 250 000 new con-
straints generated by current policy, the remaining 750 000 are taken from
the previous sample

The maximum bandwidth levels were set 20.

The graphs below show the results. We were unable to generate a heuristic
policy that would produce good results, due to the complexity of the system.
There are 45 links in a fully connected network requiring 4∗45+1 = 181 weights
meaning that handcrafting a weight vector for those weights is not trivial. Also,as
this is a fully connected, the links have the same structural properties,i.e. they
are part of the same number of paths. The only difference between the links is
their bandwidth distribution, making the task of handcrafting the vector even
harder. As a result, the performance comparison was done against the round
robin policy and the perfect information policy.



6.2. ROUTING RESULTS 74

Figure 6.12: Performance for Network Configuration 1

Figure 6.13: Performance for Network Configuration 2



6.2. ROUTING RESULTS 75

Figure 6.14: Performance for Network Configuration 3

Figure 6.15: Performance for Network Configuration 4
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Figure 6.16: Performance for Network Configuration 5

Figure 6.17: Performance comparison for Network Configuration 6



CHAPTER 7

Conclusion and Future Work

The BRLP method is a very powerful approximate dynamic programming tech-
nique. It is designed to overcome the curse of dimensionality and can be used
to optimize stochastic problems which cannot be solved using exact dynamic
programming. However, the success of the method is highly dependent on the
running parameters, such as the starting policy, the sampling interval and the
mix of old and new constraints in the sample sets.

By fine-tuning the method, we have managed to generate a policy for Tetris
that is better than what was originally though possible. That is, we have managed
to bumped the performance of the optimal policy derived by the BRLP, from 4300
points per game to 6000 points. Additionally, we have provided a possible reason
as to why the BRLP method seizes to refine the solution after a certain number
of iterations. Namely, we have investigated the possibility of the BRLP method
benefiting from the fact that some of the constraints are not included in the RLP
problem that is being solved. That is, by excluding certain constraints the BRLP
method is able to approach the true cost-to-go a lot more closer, than when we
include the constraints. This might explain the reason why there is a performance
drop in the policies generated by the BRLP after a small number of iterations.
The above finding has inspired as to use a Least Square method to optimize the
Tetris problem. The method resulted in a policy that scores an average of 11000
lines per game.

Finally, we were able to formulate the problem of routing under uncertainty
as a MDP problem and solve it using the BRLP. The aim was to design a policy
that would choose the link to measure before transmission, so that we maximize
the throughput of the network using those measurements. The BRLP method
was used to optimize a fully connected network of 10 nodes with very success-
ful results. For most network configurations, the policy derived by the BRLP
achieved a throughput that was very close to the maximum possible throughput
given a perfect set of information. The BRLP policy outperformed a naive Round
Robin policy by a significant factor. The results suggest that the BRLP method
can be used to optimize overlay networks with similar characteristics.
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7.1 Future Work

As future work, we suggest continuing the investigation as to why the BRLP’s
performance peaks after a certain number of iterations. The investigation can
continue with more experimental work, but it should also extend to providing
mathematical insights as to why this happens.

For the routing problem, we have shown that the BRLP method is successful
for a certain network topology. Future work should broaden this investigation
to various other network topologies, and use additional optimization techniques.
The method can also be tested in situations where all paths can be used con-
currently for transmission, instead of using just the one. Other extensions may
include optimizing a network were we have no prior knowledge for the links’
bandwidth distribution. The ultimate objective is to implement such a controller
on a real overlay network, in order to regulate its traffic, improve its throughput
and make it more robust.
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