
Coinductive Definitions and Real Numbers

BSc Final Year Project Report

Michael Herrmann
Supervisor: Dr. Dirk Pattinson

Second Marker: Prof. Abbas Edalat

June 2009

Abstract

Real number computation in modern computers is mostly done via floating
point arithmetic which can sometimes produce wildly erroneous results. An
alternative approach is to use exact real arithmetic whose results are guaran-
teed correct to any user-specified precision. It involves potentially infinite data
structures and has therefore in recent years been studied using the mathematical
field of universal coalgebra. However, while the coalgebraic definition principle
corecursion turned out to be very useful, the coalgebraic proof principle coin-
duction is not always sufficient in the context of exact real arithmetic. A new
approach recently proposed by Berger in [3] therefore combines the more general
set-theoretic coinduction with coalgebraic corecursion.

This project extends Berger’s approach from numbers in the unit interval
to the whole real line and thus further explores the combination of coalgebraic
corecursion and set-theoretic coinduction in the context of exact real arithmetic.
We propose a coinductive strategy for studying arithmetic operations on the
signed binary exponent-mantissa representation and use it to define and reason
about operations for computing the average and linear affine transformations
over Q of real numbers. The strategy works well for the two chosen operations
and our Haskell implementation shows that it lends itsels well to a realization
in a lazy functional programming language.

Acknowledgements

I would particularly like to thank my supervisor, Dr. Dirk Pattinson, for taking
me on as a project student at an unusually late stage and for his continuous
support. He provided me with all the help I needed and moreover always found
time to answer questions that were raised by, but went far beyond, the topics
of this project. I would also like to thank my second marker, Professor Abbas
Edalat, for his feedback on an early version of the report.

I am extremely grateful to my family for enabling me to study abroad even
though this demands a great deal of them, in many respects. Likewise, I would
like to thank my girlfriend Antonia for standing by me in the last three labour-
intensive years. This project is dedicated to her.

Contents

1 Introduction 1
1.1 Why Exact Real Number Computation? 1
1.2 Coinductive Proof . 2
1.3 Contributions . 5

2 Background 6
2.1 Alternatives to Floating Point Arithmetic 6
2.2 Representations in Exact Real Arithmetic 7

2.2.1 The Failure of the Standard Decimal Expansion 8
2.2.2 Signed Digit Representations 8
2.2.3 Other Representations . 10

2.3 Computability Issues . 12
2.3.1 Computable Numbers . 13

2.4 Coalgebra and Coinduction . 13
2.4.1 Coalgebraic Coinduction . 15
2.4.2 Set-theoretic Coinduction 16

3 Arithmetic Operations 19
3.1 Preliminaries . 19
3.2 The Coinductive Strategy . 22
3.3 Addition . 23

3.3.1 Coinductive Definition of avg 23
3.3.2 Correctness of avg . 26
3.3.3 Definition and Correctness of ⊕ 27

3.4 Linear Affine Transformations over Q 28
3.4.1 Coinductive Definition of linQ 28
3.4.2 Correctness of linQ . 31
3.4.3 Definition and Correctness of LinQ 31

4 Haskell Implementation 33
4.1 Overview . 33
4.2 Related Operations in Literature 34

5 Conclusion, Related and Future Work 36

A Code Listings 40
A.1 Calculating the Muller-Sequence . 40
A.2 Haskell Implementation . 43

Chapter 1

Introduction

1.1 Why Exact Real Number Computation?

The primary means of real number calculation in modern computers is floating
point arithmetic. It forms part of the instruction set of most CPUs, can there-
fore be done very efficiently and is a basic building block of many computer
languages. The fact that it is used for astronomic simulations which require
many trillions (= 1012) of arithmetic operations shows that, although being an
approximation, it can be used for applications that require a high degree of
accuracy. This results in a high level of confidence in floating point arithmetic.

Unfortunately, however, there are cases where floating point arithmetic fails.
Consider for example the following sequence discovered by Jean-Michel Muller
(found in [6, 14]):

a0 = 11
2

, a1 = 61
11

, an+1 = 111 − 1130 − 3000/an−1

an
(1.1)

It can easily be shown via induction that

an = 6n+1 + 5n+1

6n + 5n

⎛
⎝=

6

1 + (5
6
)n + 5

(6
5
)n + 1

⎞
⎠

from which we deduce that (an) converges to 6. However, when using the C
programs given in Appendix A.1 to calculate the first few terms of Equation (1.1)
with (IEEE 754) floating point arithmetic, we obtain the following results:

1

Already after 6 iterations (that is, after a mere 12 divisions and 10 subtrac-
tions), single precision floating point arithmetic yields wrong results that make
it seem like the sequence converges to 100. Double precision performs slightly
better, however only in that it takes a little longer until it exhibits the same
behaviour. Interestingly, this trend continues when the size of the number repre-
sentation is increased: using higher precisions only seems to defer the apparent
convergence of the values to 100 [14].

Another surprising property of this sequence is that sometimes the error
introduced by the floating point approximation increases when the precision is
increased. We use the Unix utility bc similarly to [6] to compare two approxi-
mations to a10 (for the code see Appendix A.1). Using number representations
with precisions of 8 and 9 decimal places, respectively, we obtain:

Precision Computed Value Abs. Dist. from a10

8 110.95613220 105.09518068
9 -312.454929592 318.315881114

We can see that the approximation error triples (!) when increasing the precision
from 8 to 9 decimal places. This is a strong counterexample to the commonly
held belief that using a larger number representation is sufficient to ensure more
accurate results.

Several approaches have been proposed to overcome the problems of floating
point arithmetic, including interval arithmetic [9], floating point arithmetic with
error analysis [11], stochastic rounding [1] and symbolic calculation [4,22]. Each
of these techniques has advantages and disadvantages, however none of them
can be used to obtain exact results in the general case (cf. Section 2.1).

Exact real (or arbitrary precision) arithmetic is an approach to real number
computation that lets the user specify the accuracy to which results are to be
computed. The desired precision is accounted for in each step of the computa-
tion, even when this means that some intermediate results have to be calculated
to a very high accuracy. Arbitrary precision arithmetic is usually considerably
slower than more conventional approaches, however its generality makes it an
important theoretical tool. This is why it is one of the main subjects of this
project.

An interesting property of exact real arithmetic is that redundancy plays
an important role for its representations and that for instance the standard
decimal expansion cannot be used. This is because producing the first digit of
the sum of two numbers given in the decimal expansion sometimes requires an
infinite amount of input (see Section 2.2.1). Using a (sufficiently) redundant
representation allows algorithms to make a guess how the input might continue
and correct this guess later in case it turns out to be wrong. An important
representation that uses redundancy to this end is the signed binary expansion
which forms the basis for the arithmetic operations of this project.

1.2 Coinductive Proof

Many algorithms for exact real arithmetic have been proposed but their cor-
rectness is rarely proved formally (argued for instance in [3]). This is quite
surprising – after all, the goal of providing results that are known to be cor-
rect can only be achieved through proof. Moreover, those proofs that are given

2

in literature use a large variety of different techniques that are usually only
applicable to the respective approach or algorithm.

One of the most important aspects of exact real arithmetic is the inherent in-
finiteness of the real numbers. Consider for example the mathematical constant
π which can be represented using the well-known decimal expansion as

π = 3.14159265 . . .

Ignoring the decimal point for the moment, this corresponds to the infinite
sequence of digits (3,1,4,1,5,9,2,6,5, . . .). Any implementation of exact real
arithmetic can only store a finite number of these digits at a time, however the
underlying mathematical concept of π must be represented in such a way (typi-
cally an algorithm) that arbitrarily close approximations to it can be computed.
This tension between finite numerical representations and the underlying infinite
mathematical objects is a key characteristic of arbitrary precision arithmetic.

In recent years, the inherent infiniteness of the objects involved has been
exploited in work on exact real arithmetic using a field called universal coalgebra.
Universal coalgebra provides a formal mathematical framework for studying
infinite data types and comes with associated definition and proof principles
called corecursion and coinduction that can be used similarly to their algebraic
namesakes. In the context of arbitrary precision arithmetic, universal coalgebra
makes it possible to reason about infinite approximations to the underlying
mathematical objects (in the example above, the whole sequence (3,1,4,1, . . .))
and thus to avoid the distinction between finite representations and infinite
concepts.

Universal coalgebra models infinite structures by viewing them as states of
systems which have a set of possible states, properties that can be observed in
each state and actions that result in state transitions. In this way, for instance
an infinite stream (a1, a2, . . .) of elements can be modelled as state 1 of the
system whose possible states are the natural numbers N, whose (one) property
that can be observed has value an in state n and whose (one) action that takes
it to the next state is the successor function n↦ n + 1:

?>=<89:;1
a1 //?>=<89:;2

a2 //?>=<89:;3 // . . .

Each system described in such a way is formally called a coalgebra and specifying
a system amounts to giving a coinductive definition.

In the context of a coinductive definition, corecursion is one way of spec-
ifying the observations and effects of actions for a particular state. Consider
for example the following corecursive definitions in the functional programming
language Haskell:

ones , blink , blink ’ :: [Int]
ones = 1 : ones
blink = 0 : blink ’
blink ’ = 1 : blink

add :: [Int] -> [Int] -> [Int]
add (a : as) (b : bs) = (a + b) : add as bs

This specifies for instance that in state ones, the observation one can make
is the digit 1 and that the next state is again ones. Similarly, for the state

3

add (a : as) (b : bs), one can observe the value of (a + b) while the next
state is add as bs:

76 5401 23ones

1

¨¨ 76 5401 23blink

0
$$76 5401 23blink’

1

dd

76 5401 23add (a:as) (b:bs)
a + b //76 5401 23add as bs // . . .

Coinduction in universal coalgebra exploits the fact that, in certain systems,
the equality of two states (and thus of the two infinite structures they represent)
can be shown by proving that they are bisimilar. Intuitively speaking, two
states s1 and s2 are bisimilar if they are observation-equivalent, that is, if any
sequence of actions and making of observations starting from s1 leads to the
same outcomes of observations as when starting from s2. If for example s1 and
s2 represent streams, then this means that one has to show that they have the
same head and that the states corresponding to their tails are again bisimilar.

Unfortunately, due to the – for computability reasons inevitable – redun-
dancy of number representations involved, being able to show the equality of
two numerals alone is not sufficient in the context of exact real arithmetic. Fol-
lowing the approach recently proposed by Berger in [3], we therefore use the
more general (and historically older) set-theoretic coinduction.

Suppose we want to show that (add blink blink’) = ones in the example
above. This is equivalent to the statement that all elements of the two streams
are equal, which in turn is the same as saying that, for all n ∈ N, the first 2n
elements of (add blink blink’) are equal to the first 2n elements of ones. If
we write Intω for the set of all Int-streams, fn for the n-fold application of a
function f and define the operator O ∶ ℘(Intω × Intω)→ ℘(Intω × Intω) by

O(R) = {(a ∶ a′ ∶ α,a ∶ a′ ∶ β ∣ a, a′ ∈ Int, (α,β) ∈ R},
then this means that we have to show that

(add blink blink’, ones) ∈ ⋂
n∈N

On(Intω × Intω).

However, by an application of the Knaster-Tarski fixpoint theorem (cf. Sec-
tion 2.4.2), ⋂n∈NOn(Intω × Intω) is the greatest (in terms of set-inclusion, ⊆)
fixpoint of O and it is sufficient to show

R = {(add blink blink’, ones)} ⊆ O(R).
This is the set-theoretic coinduction principle.

Using the above reformulation, the proof is now as follows: We have

add blink blink’ = add (0 : blink’) (1 : blink)

= 1 : add blink’ blink

= 1 : add (1 : blink) (0 : blink’)

= 1 : 1 : add blink blink’

4

and clearly

ones = 1 : 1 : ones.

This shows that R ⊆ O(R) and hence, by set-theoretic coinduction, that

add blink blink’ = ones.

Despite the fact that set-theoretic coinduction does not reside in the field
of universal coalgebra, the steps it involves can often be interpreted in terms of
observations, actions and states. For this reason, set-theoretic coinduction may
greatly benefit from coalgebraic coinductive definitions of the objects involved.

The aim of this project is to explore the combination of coalgebraic coin-
ductive definitions and set-theoretic coinduction in the context of exact real
arithmetic. To this end, we coinductively define arithmetic operations that
compute the sum and linear affine transformations over Q of real numbers given
in the signed binary exponent-mantissa representation and prove their correct-
ness using set-theoretic coinduction.

1.3 Contributions

The main contributions of this project can be summarized as follows:

� We propose a general strategy for studying exact arithmetic operations on
the signed binary exponent-mantissa representation that combines coal-
gebraic-coinductive definitions and set-theoric coinduction. This strategy
is similar to that used in [3], however it explains the ensuing definitions
from a coalgebraic perspective and can be used for operations on the real
line rather than just those on the unit interval.

� We explore the proposed strategy (and thus the combination of coalgebraic
coinductive definitions and set-theoretic coinduction) by using it to obtain
operations that compute the sum and liner affine transformations over Q
and prove their correctness.

� We give a Haskell implementation of the operations thus obtained and use
this implementation for a brief comparison with related algorithms from
literature.

5

Chapter 2

Background

This chapter provides more detail on some of the relevant technical background
only touched upon in the previous chapter.

2.1 Alternatives to Floating Point Arithmetic

The Muller-sequence described in the previous chapter shows that there are
cases in which floating point arithmetic can not be used. This section briefly
describes some of its alternatives, including a slightly more exhaustive account
of exact real arithmetic than that given in the introduction. A more detailed
overview of these alternatives can be found in [15].

Floating point arithmetic with error analysis Floating point arithmetic
with error analysis is similar to floating point arithmetic except that it
keeps track of possible rounding errors that might have been introduced
during the computation. It produces two floating point numbers: the first
is the result obtained using normal floating point arithmetic while the sec-
ond gives the range about this point that the exact result is guaranteed
to be in if rounding errors are taken into account. In the example given
in the introduction, the bound on the error would be very large. Knuth
gives a theoretical model for floating point error analysis in [11].

Interval arithmetic Interval Arithmetic can be seen as a generalization of
floating point arithmetic with error analysis. Instead of using two floating
point numbers to specify the center and half length of the interval the
exact result is guaranteed to be in, it uses two numbers of any finitely
representable subset of the reals (eg. the rational numbers) to specify the
lower and upper bounds of the interval, respectively. Similarly to float-
ing point arithmetic with error analysis, each calculation is performed on
both bounds, with strict downwards and upwards rounding respectively if
the result on a bound cannot be represented exactly. Interval arithmetic
is very useful, however it does not make the calculations any more ex-
act. An accessible introduction to interval arithmetic and how it can be
implemented using IEEE floating point arithmetic is given in [9].

Stochastic rounding Unlike ordinary floating point arithmetic, which rounds
either always upwards or always downwards in case the result of a compu-

6

tation falls exactly between two floating point numbers, stochastic round-
ing chooses by tossing a (metaphorical) fair coin. The desired computation
is repeated several times and the true result is then estimated using prob-
ability theory. While stochastic rounding cannot guarantee the accuracy
of the result in a fashion similar to floating point arithmetic with error
analysis, it will in general give more exact results. Moreover, it allows to
obtain probabilistic information about the reliability of its calculations.
An implementation of stochastic rounding is described in [20]. When used
to compute the first 25 terms of the Muller-sequence, this implementation
does not give more accurate results than ordinary floating point arith-
metic. However, it does correctly detect the numerical instabilities and
warns the user that the results are not guaranteed [1].

Symbolic calculation Symbolic approaches represent real numbers as expres-
sions consisting of function symbols, variables and constants. Calculations
are performed by simplifying such expressions rather than by manipulat-
ing numbers. It is important to note that the number to be computed is
thus represented exactly at each stage of the calculation.

The problem with symbolic calculation is that the simplifaction of arbi-
trary mathematical expressions is very difficult and that there are many
cases where it cannot be done at all. In these cases, the expression has
to be evaluated numerically in order to be usable, which is why symbolic
approaches are rarely used on their own. This can be seen in the two
mathematics packages Maple [4] and Mathematica [22] that are known
for the strength of their symbolic engines but offer support for numeric
calculations as well.

Exact real arithmetic As explained in the introduction, exact real arithmetic
guarantees the correctness of its results up to some user-specified preci-
sion. Since this may require calculating some intermediate results to a
very high accuracy, implementations of exact real arithmetic have to be
able to handle arbitrarily large number representations and are therefore
often considerably slower than more conventional approaches. In return
however, arbitrary precision arithmetic solves the problems of inaccuracy
and uncertainty associated with interval arithmetic and stochastic round-
ing and can be used in many cases in which a symbolic approach would
not be appropriate. Various approaches to exact real arithmetic can for
instance be found in [3, 6, 7, 14,15].

We see that, of all these approaches, only exact real arithmetic can be used
to obtain arbitrarily precise results for the general case. As mentioned in the
introduction, this is why exact real arithmetic holds an important place among
approaches to real number computation.

2.2 Representations in Exact Real Arithmetic

It is clear that in any approach to exact real arithmetic the choice of representa-
tion largely determines how operations can be defined and reasoned about. As
we will see now, this impact goes even further in that there are representations
for which some operations cannot (reasonably) be defined at all.

7

2.2.1 The Failure of the Standard Decimal Expansion

Consider adding the two numbers 1
3
= 0.333 . . . and 2

3
= 0.666 . . . using the

standard decimal expansion (this is a well-known example and can for instance
be found in [6, 15]). After having read the first digit after the decimal point
from both expansions, we know that they lie in the intervals [0.3,0.4] and
[0.6,0.7], respectively. This means that their sum is contained in the interval
[0.9,1.1] and so we do not know at this stage whether the first digit of the
result should be a 0 or a 1. This problem continues: all that reading any finite
number of digits from the inputs can tell us is that they lie in the invervals
[0.3 . . .33,0.3 . . .34] and [0.6 . . .66,0.6 . . .67], and thus that their sum is con-
tained in [0.9 . . .99,1.0 . . .01], whose bounds are strictly less and greater than
1, respectively. We would therefore never be able to output even the first digit
of the result.

The way to get around this problem is to introduce some form of redundancy
into the representation (see eg. [2]). This allows us in cases as above to make
a guess how the input might continue and then undo this guess later in case
it turns out to be wrong. The next section describes an important class of
representations that use redundancy to this end.

2.2.2 Signed Digit Representations

One of the most widely-studied represenations (see eg. [2,6,11]) for real numbers
is the signed digit representation in a given integer base B. Instead of, as in
the standard decimal expansion, only allowing positive digits {0,1, . . . ,B−1} to
occur in the representation, one also includes negative numbers so that the set
of possible digits becomes {−B + 1,−B + 2, . . . ,−1,0,1, . . . ,B − 1}. For elements
bi of this set, the sequence (b1, b2, . . .) then represents the real number

∞
∑
i=1

biB
−i (2.1)

It should be quite clear from this formula how negative digits can be used to
make corrections to previous output.

Consider again the example of adding 1
3

and 2
3
. These two numbers can be

represented in the signed decimal expansion by the streams
1
3
= 0.333 ⋅ ⋅ ⋅ ∼ (0,3,3,3, . . .)

2
3
= 0.666 ⋅ ⋅ ⋅ ∼ (0,6,6,6, . . .)

After having read (0,3) from the first input, we know it is greater than or equal
to 0.2 (since the sequence could continue −9,−9,−9, . . .) and less than or equal
to 0.4. Similarly, we know that the second input lies in the interval [0.5,0.7] so
that the sum of the two is in the range [0.7,1.1]. Even though this interval is
larger than the one we obtained when using the ordinary decimal expansion, it
is now safe to output 1 because the stream starting (1, . . .) can represent any
number between 0 and 2.

A note on the word stream Streams are simply infinite sequences. We
will use the term sequence to refer to both finite and infinite lists of elements,
however it will always be made clear which of the two cases we are talking about.

8

The Signed Binary Expansion

The signed binary expansion is the simplest and most widely-used signed digit
representation. It represents the case where B = 2 and thus uses digits from
the set {−1,0,1} to identify real numbers in the interval [−1,1]. The signed
binary expansion is the representation on which the arithmetic operations of
this project are defined.

Interpreting numerals After having read the first digit d1 of a signed binary
numeral, the remaining terms in Equation (2.1) can give a contribution of mag-
nitude at most 1

2
. As visualized by Figure 2.1 (seen similar in [15]), this allows

us to conclude that the value of the numeral lies in the interval [d1
2
− 1

2
, d1

2
+ 1

2
].

−1 0 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d1 = 0

d1 = −1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ d1 = 1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Figure 2.1: Interval of a signed binary numeral with first digit d1

Suppose that we next read the second digit d2. By again referring to Equa-
tion (2.1) and a reasoning similar to the above, we can conclude that the numeral
lies in the interval [d1

2
+ d2

4
− 1

4
, d1

2
+ d2

4
+ 1

4
]. This is exemplarily shown for the

case d1 = 1 in Figure 2.2.

−1 0 1

d1 = 1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

¡
¡

¡
¡

¡
¡

0 1
2 1

d2 = 0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d2 = −1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d2 = 1

Figure 2.2: Interval of a signed binary numeral of the form (1, d2, . . .)

Note the symmetry! Again, we had an interval of half-width 2−n, where
n was the number of digits read thus far, and reading the next digit (in this
case d2) told us whether the value of the numeral lies in the lower, middle or
upper half of this interval. Since this can be shown to hold for any sequence of
digits, reading a signed binary numeral can be seen as an iterative selection of
sub-intervals with exponentially decreasing length.

9

Reference Intervals (or: The Decimal Point)

A disadvantage of the signed digit representation in base B is that it can only
be used to represent real numbers in the interval [−B +1,B −1]. In the decimal
expansion, this problem is overcome using the decimal (or, for bases other than
10 the radix) point, whose role we have silently ignored up until now.

What the decimal point does is that it specifies the magnitude of the number
that is to be represented. For instance, in the decimal expansion of π = 3.141 . . . ,
the position of the decimal point tells us that the normal formula

∞
∑
i=1

bi10−i

has to be multiplied by an additional factor of 101 to obtain the required result.
Instead of extending the set of allowed digits {−B+1, . . . ,B−1} to explicitly

include the decimal point, it is common to use an exponent-mantissa repre-
sentation, which simply specifies the exponent of the scaling constant. A real
number r is thus represented by its exponent a ∈ N (or even a ∈ Z) and its
mantissa (b1, b2, . . .) where bi ∈ {−B + 1, . . . ,B − 1} and

r = Ba
∞
∑
i=1

biB
−i

This allows us to use signed digit representations for specifying any real number,
even if it is outside the normally representable interval [−B + 1,B − 1].

2.2.3 Other Representations

This section briefly describes some alternative representations for the real num-
bers. An important feature of a representation for the real numbers is whether
it is incremental. A representation is said to be incremental if a numeral that
represents a real number to some accuracy can be reused to calculate a more ac-
curate approximation to that number. The signed digit representation described
above is incremental since all we have to do in order to get a better approxi-
mation for a real number is to calculate more digits of its expansion. We will
indicate which of the representations that are mentioned here are incremental
and which are not.

Linear Fractional Transformations

A one-dimensional linear fractional transformation (1-LFT) or Möbius trans-
formation is a function L ∶ C → C of the form

L(x) = ax + c

bx + d

where a, b, c and d are arbitrary but fixed real or complex numbers. Similarly,
a function T ∶ C ×C→ C of the form

T (x, y) = axy + cx + ey + g

bxy + dx + fy + h

where a, b, c, d, e, f , g and h are fixed real or complex numbers is called a
two-dimensional linear fractional transformation (2-LFT).

10

Linear fractional transformations can be written as matrices: The 1-LFT
above can be represented by the matrix

(a b
c d

)

The application of this matrix to an argument can then naturally defined via
its corresponding LFT:

(a b
c d

)(x) = ax + c

bx + d

It can be shown that the composition of two 1-LFTs L1(x) and L2(x) that are
represented by matrices M1 and M2, respectively, is again a 1-LFT and can be
computed using matrix multiplication:

(L1 ○L2)(x) = (M1 ⋅M2)(x)
Finally, it is possible to represent any real number r as the limit of an infinite
composition of LFTs with integer parameters applied to the interval [−1,1]:

r = lim
n→∞

((M1 ⋅M2 ⋅ . . . ⋅Mn)([−1,1]))

If these LFTs are constructed in the right way, one can guarantee that each ele-
ment of the sequence is a better approximation to r than the previous ones. This
implies that the linear fractional transformation representation is incremental.

The main advantage of LFTs is that numerical operations can be defined at a
high level of abstraction and that many well-known Taylor series and continued
fraction expansions can be directly translated into an infinite product of LFTs.
For an accessible introduction to LFTs see for instance [6].

Continued Fractions

The (generalised) continued fraction representation of a real number r is pa-
rameterized by two integer sequences (an)n≥0 and (bn)n≥0 such that

r = a0 +
b1

a1 +
b2

a2 + ⋱

.

Many important mathematical constants have surprisingly simple continued
fractions representations. For instance, the mathematical constant π by can
be represented by the sequences

an =
⎧⎪⎪⎨⎪⎪⎩

3 if n = 0
6 otherwise

bn = (2n − 1)2.

The continued fraction representation is incremental. Vuillemin proposed the
use of continued fractions with constant an = 1 for all n ∈ N in [21] and defined
algorithms for the standard arithmetic operations as well as some transcendental
functions. His work is partially based on results originally proposed by Gosper
in [8].

11

Dyadic Rational Streams

A dyadic rational is a rational number whose denominator is a power of two,
i.e. a number of the form

a

2b

where a is an integer and b is a natural number. Similarly to the signed binary
expansion, a stream (d1, d2, . . .) of dyadic rationals in the interval [−1,1], can
be used to represent a real number r ∈ [−1,1] via the formula

r =
∞
∑
i=1

di2−i.

Observe that this representation has the same rate of convergence as the
signed binary expansion. However, each dyadic digit di can incorporate signif-
icantly more information than a signed binary digit. This can greatly simplify
certain algorithms but unfortunately often leads to a phenomenon called digit
swell in which the size of the digits increases so rapidly that the performance
is destroyed. Plume gives an implementation of the standard arithmetic opera-
tions for the signed binary and the dyadic stream representations and discusses
such issues in [15].

Nested Intervals

The nested interval representation describes a real number r by an infinite se-
quence of nested closed intervals

[a1, b1] ⊇ [a2, b2] ⊇ [a3, b3] ⊇

The progressing elements of the sequence represent better and better approxi-
mations to r. In order for this to be a valid representation, it must have the
property that ∣an − bn∣→ 0 as n→∞ and that both an and bn converge to r.

The endpoints of the intervals are elements of a finitely representable subset
of the reals, typically the rational numbers. Computation using nested intervals
is performed by calculating further elements of the sequence and thus better
approximations to r. This implies that this representation is incremental.

An implementation of nested intervals for the programming language PCF
is given in [7]. This reference uses rational numbers to represent the endpoints
of the intervals and uses topological and domain theoretic arguments to develop
the theory behind the approach.

2.3 Computability Issues

Without getting bogged down in technical details of the various formalisations
of computability, there are a few key issues we would like to mention in order
to give the reader a feeling for the setting exact real arithmetic resides in. All
results that are presented here are described in a very informal and general
manner, even though the statements made by the given references are much
more precise and confined. However, the ideas that underlie them are of such
generality and intuitive truth that we hope that the reader will bear with us in
taking this step.

12

2.3.1 Computable Numbers

Turing showed in his key paper [18,19] that not every real number that is defin-
able is computable and that only a countable subset of the reals is computable.
Fortunately, the numbers and operations we encounter and use every day all
turn out to be in this set so that this limitation rarely affects us. Neverthe-
less, computability is an important concept that greatly influences the way our
operations are defined, even if we do not always make this explicit.

An interesting result in this context is that there cannot be a general algo-
rithm to determine whether two computable real numbers are equal [16]. The
intuitive explanation for this is that an infinite amount of data would have to
be read, which is of course impossible. Although our operations do not directly
need to compare two real numbers, they are constrained in a similar way: Even
though it would make the algorithms simpler and would not require redun-
dancy in the representation, operations for exact real arithmetic cannot work
from right to left, ie. in the direction in which the significance of the digits
increases, since this would require reading an infinite amount of data.

2.4 Coalgebra and Coinduction

Finally, in this section, we make precise how we are going to use coinduction
for our definitions and proofs.

We will use the following notation: If A is a set, then we write idA ∶ A → A
for the identity function on A and Aω for the set of all streams of elements of
A. Streams themselves are denoted by greek letters or expressions of the form
(an) and their elements are written as a1, a2 etc. The result of prepending an
element a to a stream α will be written as a ∶ α. If f ∶ A1 → B1 and g ∶ A2 → B2

are functions, then f × g ∶ (A1 ×A2) → (B1 ×B2) denotes the function defined
by (f × g)(a1, a2) = (f(a1), g(a2)). For two functions f ∶ A → B and g ∶ A → C
with the same domain, ⟨f, g⟩ ∶ A → B ×C is defined by ⟨f, g⟩(a) = (f(a), g(a)).
Finally, for any function f ∶ A→ A, fn ∶ A→ A denotes its nth iteration, that is

f0(x) = x and fn+1(x) = f (fn(x)) .

Many of the results presented here can be found in a similar or more general
form in [10] and [17]. For an application of coinduction to exact real arithmetic
see [3].

As briefly outlined in the introduction, universal coalgebra can be used to
study infinite data types, which includes streams but also more complex struc-
tures such as infinite trees. Since the coalgebraically interesting part of our
representation lies in the stream of digits however, we do not need the full the-
ory behind universal coalgebra but can rather restrict ourselves to the following
simple case:

Definition 2.1. Let A be a set. An A-stream coalgebra is a pair (X,γ) where

1. X is a set

2. γ ∶ X → A ×X is a function

13

Any stream (an)n∈N of elements in a set A can be modelled as an A-stream
coalgebra by taking X = N and defining γ by

γ(n) = (an, n + 1).
The following important definition captures one way in which A-stream coalge-
bras can be related:

Definition 2.2. Let (X,γ) and (Y, δ) be two A-stream coalgebras. A func-
tion f ∶ X → Y is called an A-stream homomorphism from (X,γ) to (Y, δ) iff
(idA × f) ○ γ = δ ○ f , that is, the following diagram commutes:

X

γ

²²

f // Y

δ

²²
A ×X

idA×f
// A × Y

This immediately gives rise to

Definition 2.3. An A-stream homomorphism f is called an A-stream isomor-
phism iff its inverse exists and is also an A-stream homomorphism.

The most trivial example of an A-stream isomorphism of a coalgebra (X,γ) is
idX ∶ X →X, the identity map on X: it is clearly bijective and we have

(idA × idX) ○ γ = γ = γ ○ idX .

This shows that idX is an A-stream isomorphism.
The composition of two A-stream homomorphisms is again a homomor-

phism:

Proposition 2.4. Let (X,γ), (Y, δ) and (Z, ε) be A-stream coalgebras and f ∶
X → Y and g ∶ Y → Z be homomorphisms. Then g ○ f ∶ X → Z is an A-stream
homomorphism from (X,γ) to (Z, ε).
Proof. We have

(idA × (g ○ f)) ○ γ = (idA × g) ○ (idA × f) ○ γ = (idA × g) ○ δ ○ f = ε ○ (g ○ f)
This shows that g ○ f is an A-stream homomorphism.

A coalgebraic concept that turns out to be extremely useful is that of finality :

Definition 2.5. An A-stream coalgebra (X,γ) is called final iff for any A-
stream coalgebra (Y, δ) there exists a unique homomorphism f ∶ Y →X.

Proposition 2.6. Final A-stream coalgebras are unique, up to isomorphism: If
(X,γ) and (Y, δ) are final A-stream coalgebras then there is a unique isomor-
phism f ∶ X → Y of A-stream coalgebras.

Proof. If (X,γ) and (Y, δ) are final A-stream coalgebras, then there are unique
homomorphisms f ∶ X → Y and g ∶ Y → X. By Proposition 2.4, their com-
position g ○ f ∶ X → X is again a homomorphism. Since idX ∶ X → X is a
homomorphism, too, we have g ○ f = idX by the uniqueness part of finality. A
similar argument yields that f ○ g = idY . This shows that f−1 = g exists and,
since it is a homomorphism, that f is an A-stream isomorphism.

14

Finality allows us to justify the claim that our definition of A-stream coal-
gebras captures the concept of a stream of elements of a set A:

Proposition 2.7. Let A be a set. If the functions hd ∶ Aω → A and tl ∶ Aω → Aω

are defined by

hd((an)) = a1 and tl((an)) = (a2, a3, . . .),
then the A-stream coalgebra (Aω, ⟨hd, tl⟩) is final.

Proof. Let (U, ⟨value,next⟩) be an arbitrary A-stream coalgebra. Define the
function f ∶ U → Aω for u ∈ U and n ∈ N by

(f(u))n = value (nextn(u)) .

Then f is a homomorphism:

(idA × f) ○ ⟨value,next⟩ = ⟨value, f ○ next⟩ = ⟨value, tl ○ f⟩ = ⟨hd, tl⟩ ○ f

Uniqueness can now easily be shown by noting that ⟨hd, tl⟩ is a bijection.

2.4.1 Coalgebraic Coinduction

The existence part of finality can be exploited to coinductively define functions.
Consider the function merge ∶ Aω ×Aω → Aω which merges two streams:

merge((an), (bn)) = (a1, b1, a2, b2, . . .)
Instead of specifying merge directly, we can take it to be the unique homomor-
phism that arises by the finality of (Aω, ⟨hd, tl⟩) in the following diagram:

Aω ×Aω

(α,β)
↓

(hd(α),(β,tl(α))) ²²

merge // Aω

⟨hd,tl⟩

²²
A × (Aω ×Aω)

idA×merge
// A ×Aω

This use of the existence part of finality to define a function is referred to as
the coinductive definition principle.

Observe that, by the commutativity of the above diagram, we have

hd(merge(α,β)) = hd(α) and tl(merge(α,β)) = merge(β, tl(α)),
that is,

merge(α,β) = hd(α) ∶ merge(β, tl(α)).
This is a corecursive definition of merge: Instead of, as in a recursive definition,
descending on the argument, we ascend on the result by filling in the observa-
tions (in this case the head) one can make about it.

As another example, consider the function odd ∶ Aω → Aω which can be
defined coinductively via the function ⟨hd, tl2⟩ in the following diagram:

Aω

⟨hd,tl2⟩
²²

odd // Aω

⟨hd,tl⟩
²²

A ×Aω
idA×odd

// A ×Aω

15

Again, the commutativity of the diagram implies

hd(odd(α)) = hd(α) and tl(odd(α)) = odd(tl(tl(α))).

In the following, we will also use odd’s counterpart even ∶ Aω → Aω which we
define by

even(α) = odd(tl(α)).
Suppose we want to prove the equality merge(odd(α), even(α)) = α for all

α ∈ Aω. Since we know that idAω ∶ Aω → Aω is a homomorphism, and since the
finality of (Aω, ⟨hd, tl⟩) tells us that this homomorphism is unique, it is enough
to show that merge ○ ⟨odd, even⟩ ∶ Aω → Aω is a homomorphism to deduce
that merge ○ ⟨odd, even⟩ = idAω . This is an example of a coalgebraic proof by
coinduction.

In order to prove that merge ○ ⟨odd, even⟩ is a homomorphism, we have to
show

⟨hd, tl⟩ ○ (merge ○ ⟨odd, even⟩) = (idA × (merge ○ ⟨odd, even⟩)) ○ ⟨hd, tl⟩.

This follows from the two chains of equalities

hd(merge(odd(α), even(α))) = hd(odd(α))
= hd(α)

and

tl(merge(odd(α), even(α))) = merge(even(α), tl(odd(α)))
= merge(even(α),odd(tl(tl(α))))
= merge(odd(tl(α)), even(tl(α)))
= (merge ○ ⟨odd, even⟩)(tl(α)).

Hence, by coinduction, merge(odd(α), even(α)) = α for all α ∈ Aω.
As a concluding remark, recall that only the finality of (Aω, ⟨hd, tl⟩) allowed

us to use the coinductive definition and proof principles in the above examples.
This is one of the main reasons why finality plays such a key role in the field of
coalgebra.

2.4.2 Set-theoretic Coinduction

Because of the – for computability reasons inevitable – redundancy of exact
real number representations, the coinductive proof principle outlined in the
previous section is often too restricted to express equality of real numbers given
as streams (argued for instance in [3]). The more general (and historically
older) set-theoretic form of coinduction exploits the fact that every monotone
set operator has a greatest fixpoint. Since this kind of coinduction will be used
to prove the main results of the next chapter, we here introduce its underlying
principles and show how it can be used to prove the merge identity from the
previous section. For a thorough comparison of coalgebraic and set-theoretic
coinduction see for instance [12].

16

Background

Recall the following standard definitions and results:

Definition 2.8. A partially ordered set is a set P together with a binary relation
≤ on P that satisfies, for all a, b, c, ∈ P

� a ≤ a (reflexivity)

� a ≤ b and b ≤ a⇒ a = b (antisymmetry)

� a ≤ b and b ≤ c⇒ a ≤ c (transitivity)

Definition 2.9. A complete lattice is a partially ordered set in which all subsets
have both a supremum and an infimum.

Theorem 2.10 (Knaster-Tarski). If (L,≤) is a complete lattice and m ∶ L→ L
is a monotone function, then the set of all fixpoints of m in L is also a complete
lattice.

Corollary 2.11. If (L,≤) is a complete lattice then any monotone function
m ∶ L→ L has a least fixpoint LFP(m) and a greatest fixpoint GFP(m) given by

� GFP(m) = sup {x ∈ L ∣ x ≤ m(x)}
� LFP(m) = inf {x ∈ L ∣ x ≥ m(x)}

Moreover, for any l ∈ L,

� if m(l) ≤ l then LFP(m) ≤ l and

� if l ≤ m(l) then l ≤ GFP(m).
These results can be used as follows: Let X,Y be sets, R,M ⊆ X ×Y be binary
relations on X and Y and suppose we want to show that (x, y) ∈ M for all
(x, y) ∈ R. If we manage to find a monotone operator O ∶ ℘(X × Y)→ ℘(X × Y)
whose greatest fixpoint in the complete lattice (℘(X × Y),⊆) is M , then it
suffices to show R ⊆ O(R) to deduce that R ⊆ M by the last part of the above
corollary. This is the set-theoretic coinduction principle.

An Example Proof

Recall the merge identity from the previous section: For all α ∈ Aω,

merge(odd(α), even(α)) = α. (2.2)

In order to prove this result by set-theoretic coinduction, we work in the com-
plete lattice (℘(Aω ×Aω),⊆) and define the operator

O ∶ ℘(Aω ×Aω)→ ℘(Aω ×Aω)
O(R) = {(a ∶ a′ ∶ α,a ∶ a′ ∶ β) ∣ a, a′ ∈ A, (α,β) ∈ R}.

O is clearly monotone and we claim that its greatest fixpoint GFP(O) is given
by

M = {(α,α) ∣ α ∈ Aω}.

17

To see this, let (α,β) ∈ GFP(O). We want to show that (α,β) ∈ M which
is equivalent to proving that α = β. Since GFP(O) is a fixpoint of O, we
have GFP(O) = O(GFP(O)) and thus (α,β) ∈ O(GFP(O)). This means by
the definition of O that the first two digits of α and β are equal and that
(tl2(α), tl2(β)) ∈ GFP(O). Repeating the same argument for (tl2(α), tl2(β)),
then for (tl4(α), tl4(β)) etc. shows that all digits of α and β are equal and thus
that α = β. Hence GFP(O) ⊆ M . Since clearly M ⊆ O(M) and thus by the last
part of the above corollary M ⊆ GFP(O), this shows that GFP(O) = M .

The next step is to define the relation R ⊆ ℘(Aω ×Aω) by

R = {(merge(odd(α), even(α)), α) ∣ α ∈ Aω}.

We want to show that R ⊆ M . By the set-theoretic coinduction principle how-
ever, we only have to show R ⊆ O(R): Let (merge(odd(α), even(α)), α) ∈ R and
suppose α = a ∶ a′ ∶ α′ for some a, a′ ∈ A,α′ ∈ Aω. Then

merge(odd(α), even(α)) = merge(odd(a ∶ a′ ∶ α′), even(a ∶ a′ ∶ α′))
= merge(a ∶ odd(α′),odd(a′ ∶ α′))
= merge(a ∶ odd(α′), a′ ∶ odd(tl(α′)))
= a ∶ merge(a′ ∶ odd(tl(α′)),odd(α′))
= a ∶ a′ ∶ merge(odd(α′),odd(tl(α′)))
= a ∶ a′ ∶ merge(odd(α′), even(α′)).

This shows that (merge(odd(α), even(α)), α) ∈ O(R) and thus that R ⊆ O(R).
Therefore, by (set-theoretic) coinduction, Equation (2.2) holds for all α ∈ Aω.

As already mentioned above, this is the kind of coinductive proof that will
be given for the arithmetic operations in our project.

18

Chapter 3

Arithmetic Operations

In this chapter, we use the coinductive principles outlined in Section 2.4 to
study operations that compute the sum and linear affine transformations over
Q of signed binary exponent-mantissa numerals. We will keep using the same
notation (cf. page 13), however we will additionally write

D = {−1,0,1}
for the set of signed binary digits.

3.1 Preliminaries

Definition 3.1. The function σ∣1∣ ∶ Dω → [−1,1] that identifies the real number
represented by a signed binary numeral is defined by

σ∣1∣(α) =
∞
∑
i=1

2−iαi.

Its extension σ ∶ N ×Dω → R to the exponent-mantissa representation is defined
by

σ(e,α) = 2eσ∣1∣(α) = 2e
∞
∑
i=1

2−iαi.

The following results will be used throughout the remainder of this chapter:

Lemma 3.2 (Properties of σ∣1∣). Let α ∈ Dω. Then

1. ∣σ∣1∣(α)∣ ≤ 1

2. σ∣1∣(α) = σ(0, α)
3. σ∣1∣(tl(α)) = 2σ∣1∣(α) − hd(α)

Proof.

1. Using the standard expansion of the geometric series,

∣σ∣1∣(α)∣ = ∣
∞
∑
i=1

2−iαi∣ ≤
∞
∑
i=1

2−i ∣αi∣ ≤
∞
∑
i=1

2−i = (1
1 − 1

2

− 1) = 1.

19

2. Clear from the definition of σ.

3. Direct manipulation:

σ∣1∣(tl(α)) =
∞
∑
i=1

2−i(tl(α))i

=
∞
∑
i=1

2−iαi+1

=
∞
∑
i=2

2−i+1αi

= 2
∞
∑
i=2

2−iαi

= 2
∞
∑
i=1

2−iαi − α1

= 2σ∣1∣(α) − hd(α).

Corollary 3.3 (Properties of σ). Let (e,m) ∈ N ×Dω. Then

1. ∣σ(e,α)∣ ≤ 2e

2. σ(e, tl(α)) = 2σ(e,α) − 2ehd(α)
Proof.

1. By the definition of σ and by Lemma 3.2(1),

∣σ(e,α)∣ = 2e ∣σ∣1∣(α)∣ ≤ 2e.

2. By the definition of σ and by Lemma 3.2(3),

σ(e, tl(α)) = 2eσ∣1∣(tl(α)) = 2e(2σ∣1∣(α) − hd(α)) = 2σ(e,α) − 2ehd(α).

Definition 3.4. The relation ∼ ∈ ℘((N × Dω) × R) that specifies when a real
number is represented by a signed binary exponent-mantissa numeral is defined
by

∼ = {((e,α), r) ∣ σ(e,α) = r} .

Its restriction ∼∣1∣ ∈ ℘(Dω × [−1,1]) to the unit interval is defined by

∼∣1∣ = {(α, r) ∣ σ∣1∣(α) = r}.

We write (e,α) ∼ r if ((e,α), r) ∈ ∼ and α ∼∣1∣ r if (α, r) ∈ ∼∣1∣.
The following operator will form the basis of our coinductive proofs:

Definition 3.5. The operator O∣1∣ ∶ ℘(Dω × [−1,1])→ ℘(Dω × [−1,1]) is defined
by

O∣1∣(R) = {(α, r) ∣ (tl(α),2r − hd(α)) ∈ R}.

20

Note. The codomain of O∣1∣ really is ℘(Dω × [−1,1]): Let R ∈ ℘(Dω × [−1,1])
and (α, r) ∈ O∣1∣(R). Then (tl(α),2r − hd(α)) is in R, so that ∣2r − hd(α)∣ ≤ 1.
But 2∣r∣ − ∣hd(α)∣ ≤ ∣2r − hd(α)∣ and hence 2∣r∣ − ∣hd(α)∣ ≤ 1. This implies
2∣r∣ ≤ 1 + ∣hd(α)∣ ≤ 2 and thus ∣r∣ ≤ 1.

Proposition 3.6. O∣1∣ has a greatest fixpoint and this fixpoint is ∼∣1∣.
Proof. O∣1∣ is clearly monotone and so by Corollary 2.11 has a greatest fixpoint.
Call this fixpoint M . We want to prove that M = ∼∣1∣.

Let (α, r) ∈ M . Note that

(α, r) ∈ ∼∣1∣ ⇔ σ∣1∣(α) = r

⇔ σ∣1∣(α) − r = 0

⇔ ∣σ∣1∣(α) − r∣ = 0

⇔ ∣σ∣1∣(α) − r∣ ≤ 21−n ∀n ∈ N. (3.1)

In order to show that (α, r) ∈ ∼∣1∣, it therefore suffices to prove that Equa-
tion (3.1) holds. This can be done via induction:

n = 0: We have (using Lemma 3.2(1))

∣σ∣1∣(α) − r∣ ≤ ∣σ∣1∣(α)∣ + ∣r∣
≤ 1 + ∣r∣ .

Now (α, r) ∈ M implies ∣r∣ ≤ 1 and so

∣σ∣1∣(α) − r∣ ≤ 2,

as required.

n→ n + 1: Let n ∈ N be such that ∣σ∣1∣(α′) − r′∣ ≤ 21−n for all ((α′, r′) in M .
Since M is a fixpoint of O∣1∣, M = O∣1∣(M) and thus (α, r) ∈ O∣1∣(M). This
implies that (tl(α),2r−hd(α)) is in M so that, by the inductive hypothesis
and Lemma 3.2(3):

21−n ≥ ∣σ∣1∣(tl(α)) − 2r + hd(α)∣
= ∣2σ∣1∣(α) − hd(α) − 2r + hd(α)∣
= 2 ∣σ∣1∣(α) − r∣ .

Hence, as required
∣σ∣1∣(α) − r∣ ≤ 21−(n+1).

Thus by induction, (α, r) ∈ ∼∣1∣. Since (α, r) ∈ M was arbitrary, this shows that
M ⊆ ∼∣1∣.

In order to show ∼∣1∣ ⊆ M , it suffices by Corollary 2.11 to prove

∼∣1∣ ⊆ O∣1∣(∼∣1∣).
Recall

O∣1∣(∼∣1∣) = {(α, r) ∣ (tl(α),2r − hd(α)) ∈ ∼∣1∣}
= {(α, r) ∣ σ∣1∣(tl(α)) = 2r − hd(α)}.

Let (α, r) ∈ ∼∣1∣. Then by Lemma 3.2(3) and the definition of ∼∣1∣,
σ∣1∣(tl(α)) = 2σ∣1∣(α) − hd(α) = 2r − hd(α).

Hence (α, r) ∈ O∣1∣(∼∣1∣) and so ∼∣1∣ ⊆ O∣1∣(∼∣1∣), as required.

21

3.2 The Coinductive Strategy

Coinduction gives us the following strategy to define and reason about arith-
metic operations on the signed binary exponent-mantissa representation: Let
X be a set and suppose we have a function F ∶ X × R → R for which we want
to find an implementation on the exponent-mantissa representation, that is,
an operation F̃ ∶ X × (N × Dω) → N × Dω which satisfies, for all x ∈ X and
(e,α) ∈ N ×Dω,

F̃ (x, (e,α)) ∼ F (x,σ(e,α)).
We first find a subset Y of X and a function f ∶ Y × [−1,1] → [−1,1] that, in
some intuitive sense, is representative of F on the unit interval. Then, we look
for a coinductive definition of an implementation of f on the level of streams
which is, similarly to above, an operation f̃ ∶ Y ×Dω → Dω that satisfies, for all
y ∈ Y and α ∈ Dω,

f̃(y,α) ∼∣1∣ f(y, σ∣1∣(α)).
In the remainder of this section, we call f̃ correct if and only if this equation
holds.

Once we have (coinductively) defined f̃ , we use the set-theoretic coinduction
principle outlined in Section 2.4.2 to prove its correctness in the above sense as
follows: We define the relation R ⊆ (Dω × [−1,1]) by

R = {(f̃(y,α), f (y, σ∣1∣(α))) ∣ y ∈ Y,α ∈ Dω} ,

which makes proving the correctness of f̃ equivalent to showing R ⊆ ∼∣1∣. How-
ever, since we have seen in the previous section that ∼∣1∣ is the greatest fixpoint
of the monotone operator O∣1∣, it in fact suffices by the set-theoretic coinduction
principle to prove R ⊆ O∣1∣(R). Let (f̃(y,α), f (y, σ∣1∣(α))) ∈ R and recall that

O∣1∣(R) = {(α, r) ∣ (tl(α),2r − hd(α)) ∈ R}
= {(α, r) ∣ ∃y′ ∈ Y,α′ ∈ Dω s.t. tl(α) = f̃(y′, α′),

2r − hd(α) = f(y′, σ∣1∣(α′))}.
Because f̃ was defined coinductively, there is a function γ for which the following
diagram commutes:

Y ×Dω

γ

²²

f̃ // Dω

⟨hd,tl⟩
²²

D × (Y ×Dω)
id×f̃

// D ×Dω.

Choose y′, α′ and d such that γ(y,α) = (d, (y′, α′)). The commutativity of the
diagram implies tl (f̃(y,α)) = f̃(y′, α′) and hd (f̃(y,α)) = d, so that all we have
to show in order to prove that (f̃(y,α), f (y, σ∣1∣(α))) ∈ O∣1∣(R) and thus that
f̃ is correct is

2f (y, σ∣1∣(α)) − d = f (y′, σ∣1∣(α′)) .

Once we have done this, it should be easy to define F̃ in terms of f̃ and prove
that F̃ really is an implementation of F using the correctness of f̃ .

The next two sections show how this strategy can be used in practice.

22

3.3 Addition

Our aim in this section is to define the operation

⊕ ∶ (N ×Dω) × (N ×Dω)→ N ×Dω

that computes the sum of two signed binary exponent-mantissa numerals. Fol-
lowing the strategy outlined in Section 3.2, we do this by first (coinductively)
defining a corresponding operation on the level of streams. Since signed binary
numerals are not closed under addition, the natural choice for this operation
is the average function that maps x, y ∈ [−1,1] to x+y

2
(∈ [−1,1]). We will

represent this function on the level of digit streams by defining an operation
avg ∶ Dω ×Dω → Dω that satisfies

σ∣1∣(avg(α,β)) = σ∣1∣(α) + σ∣1∣(β)
2

(3.2)

for all signed binary streams α and β.

3.3.1 Coinductive Definition of avg

Recall that a coinductive definition of avg consists of first specifying a function

γ ∶ Dω ×Dω → D × (Dω ×Dω)

and then taking avg to be the unique induced homomorphism in the diagram

Dω ×Dω

γ

²²

avg // Dω

⟨hd,tl⟩

²²
D × (Dω ×Dω)

id×avg
// D ×Dω.

(3.3)

If we let α = (a1, a2, . . .) and β = (b1, b2, . . .) be two signed binary streams and
write γ(α,β) = (s, (α′, β′)), the commutativity of the diagram will imply

hd(avg(α,β)) = s and tl(avg(α,β)) = avg(α′, β′),

that is,
avg(α,β) = s ∶ avg(α′, β′). (3.4)

Since our goal is to coinductively define avg in such a way that Equation (3.2)
holds, this means that s, α′ and β′ have to satisfy

σ∣1∣(s ∶ avg(α′, β′)) =
σ∣1∣(α) + σ∣1∣(β)

2
. (3.5)

23

Finding the First Digit s

Suppose we read the first two digits from both α and β. By the definition of σ∣1∣,

σ∣1∣(α) = a1

2
+ a2

4
+

∞
∑
i=3

2−iai

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
∈[− 1

4 , 1
4]

and σ∣1∣(β) = b1

2
+ b2

4
+

∞
∑
i=3

2−ibi

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
∈[− 1

4 , 1
4]

.

What we know after having read a1, a2, b1 and b2 is therefore precisely that

σ∣1∣(α) ∈ [a1

2
+ a2

4
− 1

4
,
a1

2
+ a2

4
+ 1

4
] and σ∣1∣(β) ∈ [b1

2
+ b2

4
− 1

4
,
b1

2
+ b2

4
+ 1

4
]

which implies

σ∣1∣(α) + σ∣1∣(β)
2

∈ [p − 1
4
, p + 1

4
]

where

p = a1 + b1

4
+ a2 + b2

8
.

If p is less than − 1
4
, then the lower and upper bounds of [p − 1

4
, p + 1

4
] are strictly

less than − 1
2

and 0, respectively, so we can (and must!) output −1 as the first
digit. Similarly, if ∣p∣ ≤ 1

4
, then [p − 1

4
, p + 1

4
] ⊆ [− 1

2
, 1

2
] so we output 0 and if

p > 1
4
, then we output 1. This can be formalized by writing

s = sg 1
4
(p)

where p is as above and the generalised sign function sgε ∶ Q→ D (taken from [3])
is defined for ε ∈ Q≥0 by

sgε(q) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if q > ε

0 if ∣q∣ ≤ ε

−1 if q < −ε.

Interlude: Required Lookahead

The above reasoning shows that reading two digits from each of the two input
streams is always enough to determine the first digit of output. A natural
question to ask is whether the same could be achieved with fewer digits. We
will see now that the answer is no: In certain cases, already reading one digit
less makes it impossible to produce a digit of output.

Suppose we read the first two digits from α but only the first digit from β.
By a reasoning similar to the above, one can show that this implies

σ∣1∣(α) + σ∣1∣(β)
2

∈ [a1 + b1

4
+ a2

8
− 3

8
,
a1 + b1

4
+ a2

8
+ 3

8
] .

If for instance a1 = b1 = 1 and a2 = 0, this is the interval [1
8
, 7

8
]. Since [1

8
, 7

8
] is

contained in [0,1], we can safely output 1 without examining any further input.
If, however, a1 = 1 and b1 = a2 = 0, the interval becomes [− 1

8
, 5

8
]. Because − 1

8

can only be represented by a stream starting with −1 or 0 and 5
8

can only be
represented by a stream starting with 1, we do not know at this stage what the
first digit of output should be. We require more input.

24

Determining (α′, β′)
Recall Equation (3.5) which stated the condition for the correctness of avg as

σ∣1∣(s ∶ avg(α′, β′)) =
σ∣1∣(α) + σ∣1∣(β)

2
. [3.5]

Both sides of this equation can be rewritten. For the left-hand side, we use the
ansatz

α′ = a′1 ∶ tl2(α) β′ = b′1 ∶ tl2(β),
where a′1 and b′1 are signed binary digits. Assuming avg will be correct(!),
this yields

σ∣1∣(s ∶ avg(α′, β′)) =
s

2
+ 1

2
σ∣1∣(avg(α′, β′))

= s

2
+ 1

2
σ∣1∣(α′) + σ∣1∣(β′)

2
(!)

= s

2
+ 1

2

a′1
2
+ 1

2
σ∣1∣(tl2(α)) + b′1

2
+ 1

2
σ∣1∣(tl2(β))

2

= s

2
+ a′1 + b′1

8
+ 1

8
(σ∣1∣(tl2(α)) + σ∣1∣(tl2(β))).

For the right-hand side,

σ∣1∣(α) + σ∣1∣(β)
2

=
a1
2
+ a2

4
+

∞
∑
i=3

2−iai + b1

2
+ b2

4
+

∞
∑
i=3

2−ibi

2

= a1 + b1

4
+ a2 + b2

8´¹¹¸¹¹¶
p

+1
2
(
∞
∑
i=3

2−iai +
∞
∑
i=3

2−ibi)

= p + 1
8
(
∞
∑
i=3

2−(i−2)ai + 1
8

∞
∑
i=3

2−(i−2)bi)

= p + 1
8
(σ∣1∣ (tl2(α)) + σ∣1∣ (tl2(β))) . (3.6)

Using these steps, Equation (3.5) becomes

s

2
+ a′1 + b′1

8
= p,

i.e.
a′1 + b′1

8
= p − s

2
.

Now a′1 and b′1 are signed binary digits so that a′1 must be 1 when p − s
2
> 1

8

and −1 when p − s
2
< 1

8
. Also, when ∣p − s

2
∣ ≤ 1

8
, we can take a′1 to be 0 by the

symmetry of the equation. We therefore choose

a′1 = sg 1
8
(p − s

2
) ,

which forces us take

b′1 = 8p − 4s − a′1.

An easy case analysis on p shows that b′1 is in fact a signed binary digit.

25

Final Definition of γ and avg

To summarize, the function γ ∶ Dω × Dω → D × (Dω × Dω) is defined for any
signed binary numerals α = (a1, a2, . . .) and β = (b1, b2, . . .) by

γ(α,β) = (s, (α′, β′))
where

s = sg 1
4
(p) α′ = a′1 ∶ tl2(α) β′ = b′1 ∶ tl2(β)

p = a1 + b1

4
+ a2 + b2

8
a′1 = sg 1

8
(p − s

2
) b′1 = 8p − 4s − a′1

and the generalised sign function sgε is as on page 24. By the finality of the
D-stream coalgebra (Dω, ⟨hd, tl⟩), this induces the (unique) homomorphism avg
in Diagram (3.3):

Dω ×Dω

γ

²²

avg // Dω

⟨hd,tl⟩

²²
D × (Dω ×Dω)

id×avg
// D ×Dω

[3.3]

In particular, if we let s, α′ and β′ be as above, then

avg(α,β) = s ∶ avg(α′, β′). [3.4]

3.3.2 Correctness of avg

In order to prove the correctness of avg, we first need the following lemma:

Lemma 3.7 (Correctness of γ). Let α and β be signed binary streams and
suppose s, α′ and β′ are as in the definition of γ. Then

σ∣1∣(α) + σ∣1∣(β)
2

= s

2
+ 1

2
σ∣1∣(α′) + σ∣1∣(β′)

2
.

Proof. For the left-hand side, we refer back to Equation (3.6):

σ∣1∣(α) + σ∣1∣(β)
2

= p + 1
8
(σ∣1∣ (tl2(α)) + σ∣1∣ (tl2(β))) ,

where p is as in the definition of γ.
For the right-hand side, recall that a′1 and b′1 were constructed so that

s

2
+ a′1 + b′1

8
= p.

Together with the definitions of σ∣1∣, α′ and β′, this implies

s

2
+ 1

2
σ∣1∣(α′) + σ∣1∣(β′)

2
= s

2
+ 1

2

a′1
2
+ 1

2
σ∣1∣ (tl2(α)) + b′1

2
+ 1

2
σ∣1∣ (tl2(β))

2

= s

2
+ a′1 + b′1

8
+ 1

8
(σ∣1∣ (tl2(α)) + σ∣1∣ (tl2(β)))

= p + 1
8
(σ∣1∣ (tl2(α)) + σ∣1∣ (tl2(β))) ,

as required.

26

Theorem 3.8 (Correctness of avg). Let α and β be signed binary streams. Then

avg(α,β) ∼∣1∣
σ∣1∣(α) + σ∣1∣(β)

2
.

Proof. Following the strategy outlined in Section 3.2, we define R ⊆ (Dω × [−1,1])
by

R = {(avg(α,β), σ∣1∣(α) + σ∣1∣(β)
2

) ∣ α,β ∈ Dω} .

The statement of the lemma is equivalent to R ⊆ ∼∣1∣. By the set-theoretic
coinduction principle, this can be proved by showing R ⊆ O∣1∣(R).
Let (avg(α,β), σ∣1∣(α)+σ∣1∣(β)

2
) ∈ R and recall

O∣1∣(R) = {(α, r) ∣ (tl(α),2r − hd(α)) ∈ R}
= {(α, r) ∣ ∃α′, β′ ∈ Dω s.t. tl(α) = avg(α′, β′)

and 2r − hd(α) = σ∣1∣(α′)+σ∣1∣(β′)
2

} .

Take α′, β′ as in the definition of γ. By the commutativity of Diagram (3.3),
we have

tl(avg(α,β)) = avg(α′, β′) and hd(avg(α,β)) = s.

Moreover, by the correctness of γ (Lemma 3.7),

σ∣1∣(α) + σ∣1∣(β)
2

= s

2
+ 1

2
σ∣1∣(α′) + σ∣1∣(β′)

2
,

which implies

2
σ∣1∣(α) + σ∣1∣(β)

2
− hd(avg(α,β)) = σ∣1∣(α′) + σ∣1∣(β′)

2
.

This shows that (avg(α,β), σ∣1∣(α)+σ∣1∣(β)
2

) ∈ O∣1∣(R) and thus that R ⊆ O∣1∣(R).

3.3.3 Definition and Correctness of ⊕
The final ingredient we need before being able to define the addition operation
⊕ is the small lemma below. It will give us a way of finding a common exponent
for two signed binary exponent-mantissa numerals.

Lemma 3.9. If α is a signed binary stream, then for all n ∈ N
σ∣1∣ ((0 ∶)nα) = 2−nσ∣1∣(α)

where (0 ∶)nα is the result of prepending n zeros to α.

Proof. By induction on n. The result clearly holds for the case n = 0. Also, if
it holds for some n ∈ N, then

σ∣1∣ ((0 ∶)n+1α) = σ∣1∣ (0 ∶ ((0 ∶)nα)) = 0
2
+ 1

2
σ∣1∣ ((0 ∶)nα) = 2−(n+1)σ∣1∣(α),

as required.

27

Definition 3.10. The addition operation ⊕ ∶ (N ×Dω)× (N×Dω)→ N×Dω is
defined for any signed binary exponent-mantissa numerals (e,α) and (f, β) by

(e,α)⊕ (f, β) = (max(e, f) + 1, avg ((0 ∶)max(e,f)−eα, (0 ∶)max(e,f)−fβ)) .

Theorem 3.11 (Correctness of ⊕). For any (e,α), (f, β) ∈ N ×Dω,

(e,α)⊕ (f, β) ∼ (σ(e,α) + σ(f, β)) .

Proof. By the correctness of avg (Theorem 3.8) and Lemma 3.9,

σ∣1∣ (avg ((0 ∶)max(e,f)−eα, (0 ∶)max(e,f)−fβ))
= 2e−max(e,f)−1σ∣1∣(α) + 2f−max(e,f)−1σ∣1∣(β).

Hence, by the definitions of σ and ⊕,

σ((e,α)⊕ (f, β)) = 2eσ∣1∣(α) + 2fσ∣1∣(β)
= σ(e,α) + σ(f, β).

3.4 Linear Affine Transformations over Q
This section introduces the operation LinQ ∶ Q × (N ×Dω) ×Q→ N ×Dω that
represents the mapping

Q ×R ×Q Ð→ R
(u,x, v) z→ ux + v.

As in the last section, we first (coinductively) define the corresponding operation
linQ on the level of streams in such a way that

σ∣1∣(linQ(u,α, v)) = uσ∣1∣(α) + v, (3.7)

where α = (a1, a2, . . .) is any signed binary stream and u, v ∈ Q are such that
∣u∣ + ∣v∣ ≤ 1. This last condition ensures that the result of the operation can in
fact be represented by a signed binary numeral.

3.4.1 Coinductive Definition of linQ

Before we give a coinductive definition of linQ, we first find a lower bound on
the lookahead required to output a digit in the general case. In some cases such
as when u = 0 and v = 1, we can output one (or even all) digits of the result
without examining the input. In other cases however, even one digit does not
suffice: If u = 3

4
, v = 1

4
and a1 = 0, then all we know after having read a1 is that

uσ∣1∣(α)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
∈[− 1

2 , 1
2]

+v ∈ [−1
8
,
3
8
] .

Since this interval is not contained in any of [−1,0], [− 1
2
, 1

2
] and [0,1], we cannot

determine what the first digit of output should be. This shows that a lookahead
of at least two digits is required to produce a digit of output in the general case.

28

In order to (coinductively) define linQ, we first specify its domain C that
captures the constraint mentioned in the introduction to this section:

C = {(u,α, v) ∈ Q ×Dω ×Q ∶ ∣u∣ + ∣v∣ ≤ 1} .

The coinductive part of the definition now consists of specifying a function
δ ∶ C → D ×C and taking linQ to be the (unique) ensuing homomorphism in the
diagram

C

δ

²²

linQ // Dω

⟨hd,tl⟩

²²
D ×C

id×linQ
// D ×Dω.

(3.8)

Let (u,α, v) ∈ C and write δ(u,α, v) = (l, (u′, α′, v′)). If we follow the steps
above, then the commutativity of the diagram will imply

linQ(u,α, v) = l ∶ linQ(u′, α′, v′). (3.9)

Since we want linQ to satisfy the correctness condition given by Equation (3.7),
this means that we have to choose l, u′, α′ and v′ in such a way that

σ∣1∣(l ∶ linQ(u′, α′, v′)) = uσ∣1∣(α) + v. (3.10)

To find l, we observe that

uσ∣1∣(α) + v = u(a1

2
+ a2

4
+ 1

4
σ∣1∣ (tl2(α))) + v

= u(a1

2
+ a2

4
) + v + u

4
σ∣1∣ (tl2(α)) ,

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈[− ∣u∣

4 ,
∣u∣
4]

(3.11)

so that

uσ∣1∣(α) + v ∈ [q − ∣u∣
4

, q + ∣u∣
4

] ⊆ [q − 1
4
, q + 1

4
]

where
q = u(a1

2
+ a2

4
) + v.

By a reasoning similar to that behind the choice of s in the definition of γ/avg,
this implies that we can choose

l = sg 1
4
(q).

For u′, α′ and v′, we note that if linQ is correct, then

σ∣1∣(l ∶ linQ(u′, α′, v′)) =
l

2
+ 1

2
(u′σ∣1∣(α′) + v′) .

But we also have by Equation (3.11) that

uσ∣1∣(α) + v = l

2
+ 1

2
(u

2
σ∣1∣ (tl2(α)) + 2q − l) .

29

Since we want Equation (3.10) to hold, we therefore compare terms and choose

u′ = u

2
α′ = tl2(α) v′ = 2q − l.

We have to check that ∣u′∣ + ∣v′∣ ≤ 1. This can be done by a case analysis on δ,
for which we will need

∣q∣ = ∣u(a1

2
+ a2

2
) + v∣

≤ 3
4
∣u∣ + ∣v∣

= ∣u∣ + ∣v∣ − ∣u∣
4

≤ 1 − ∣u∣
4

. (3.12)

l = 0: By the definition of l, we have ∣q∣ ≤ 1
4
. Also, ∣u∣+ ∣v∣ ≤ 1 implies ∣u∣ ≤ 1 and

so

∣u′∣ + ∣v′∣ = ∣u∣
2
+ 2∣q∣ ≤ 1

2
+ 1

2
= 1.

l = 1: We have q > 1
4

and thus v′ = 2q − l > − 1
2
. Also, by Equation (3.12),

v′ ≤ 1 − ∣u∣
2

. These inequalities tell us that ∣v′∣ ≤ max (∣−1
2
∣ ,1 − ∣u∣

2
). But,

∣u∣ ≤ 1 implies 1− ∣u∣
2
≥ 1

2
, so this is in fact ∣v′∣ ≤ 1− ∣u∣

2
= 1− ∣u′∣. The result

follows.

l = −1: Similarly to the case l = 1, we have ∣u∣
2
−1 ≤ v′ < 1

2
and ∣u∣

2
−1 ≤ − 1

2
. Hence

∣v′∣ ≤ 1 − ∣u∣
2
= 1 − ∣u′∣ and so ∣u′∣ + ∣v′∣ ≤ 1.

Final Definition of δ and linQ

Let C = {(u,α, v) ∈ Q ×Dω ×Q ∶ ∣u∣ + ∣v∣ ≤ 1}. The function δ ∶ C → D × C is
defined for any (u,α, v) ∈ C by

δ(u,α, v) = (l, (u′, α′, v′))
where, writing α = (a1, a2, . . .),

l = sg 1
4
(q) u′ = u

2
α′ = tl2(α)

q = u(a1

2
+ a2

4
) + v v′ = 2q − l.

This allows us to take linQ to be the unique induced homomorphism in Dia-
gram (3.8):

C

δ

²²

linQ // Dω

⟨hd,tl⟩

²²
D ×C

id×linQ
// D ×Dω

[3.8]

The commutativity of the diagram implies that, for (u,α, v) ∈ C,

linQ(u,α, v) = l ∶ linQ(u′, α′, v′) [3.9]

where l, u′, α′ and v′ are as above.

30

3.4.2 Correctness of linQ

Theorem 3.12 (Correctness of linQ). For any (u,α, v) ∈ C,

linQ(u,α, v) ∼∣1∣ uσ∣1∣(α) + v.

Proof. Define R ⊆ (Dω × [−1,1]) by

R = {(linQ(u,α, v), uσ∣1∣(α) + v)∣ (u,α, v) ∈ C} .

We show that R ⊆ ∼∣1∣ by showing that R ⊆ O∣1∣(R).
Recall

O∣1∣(R) = {(α, r) ∣ (tl(α),2r − hd(α)) ∈ R}
= {(α, r) ∣ ∃(u′, α′, v′) ∈ C s.t. tl(α) = linQ(u′, α′, v′),

2r − hd(α) = u′σ∣1∣(α′) + v′}.

Let (linQ(u,α, v), uσ∣1∣(α) + v) ∈ R and take l ∈ D, (u′, α′, v′) ∈ C as in the
definition of linQ. By the commutativity of Diagram (3.8), we have

tl(linQ(u,α, v)) = linQ(u′, α′, v′).
Moreover,

u′σ∣1∣(α′) + v′ = u

2
σ∣1∣ (tl2(α)) + 2q − l

= u

2
(2σ∣1∣(tl(α)) − a2) + 2q − l

= u

2
(4σ∣1∣(α) − 2a1 − a2) + 2q − l

= 2uσ∣1∣(α) − 2u(a1

2
+ a2

4
) + 2q − l

= 2uσ∣1∣(α) − 2(q − v) + 2q − l

= 2(uσ∣1∣(α) + v) − l.

Since the commutativity of Diagram (3.8) also implies hd(linQ(u,α, v)) = l, this
shows that (linQ(u,α, v), uσ∣1∣(α) + v) ∈ O∣1∣(R) and thus that R ⊆ O∣1∣(R).

3.4.3 Definition and Correctness of LinQ

Let u, v ∈ Q and (e,α) ∈ N × Dω. In order to define LinQ that computes
uσ(e,α) + v using linQ from the previous section, we have to find scaled-down
versions u′, v′ ∈ Q of u and v, respectively such that ∣u′∣+ ∣v′∣ ≤ 1. The scale will
be determined using the (computable!) function ⌈log2⌉:
Definition 3.13. The function ⌈log2⌉ ∶ Q≥0 → N is defined by

⌈log2⌉(s) =
⎧⎪⎪⎨⎪⎪⎩
0 if s ≤ 1
1 + ⌈log2⌉ (s

2
) otherwise.

Lemma 3.14. For any s ∈ Q≥0,

log2(s) ≤ ⌈log2⌉(s)
where log2 ∶ R>0 → R is the (standard) logarithm to base 2.

31

Proof. Observe that Q≥0 = ⋃
n∈N

⌈log2⌉−1(n) so that it suffices to show that the

result holds for all n ∈ N and s ∈ ⌈log2⌉−1(n). This can be done by induction.
If n = 0 and s ∈ ⌈log2⌉−1(n) then s ≤ 1 and thus log2(s) ≤ 0 = ⌈log2⌉(s). Con-

versely, suppose the result holds for all t ∈ ⌈log2⌉−1(n) where n ∈ N is fixed. Let
s ∈ ⌈log2⌉−1(n + 1). Then n+1 = ⌈log2⌉(s) = 1+⌈log2⌉ (s

2
) so that s

2
∈ ⌈log2⌉−1(n).

This implies by our assumption that log2(s) − 1 = log2 (s
2
) ≤ ⌈log2⌉ (s

2
) = n and

thus that log2(s) ≤ ⌈log2(s)⌉.
Corollary 3.15. Let u, v ∈ Q and u′ = 2−nu, v′ = 2−nv where n = ⌈log2⌉(∣u∣+ ∣v∣).
Then ∣u′∣ + ∣v′∣ ≤ 1.

Proof. By Lemma 3.14, n = ⌈log2⌉(∣u∣ + ∣v∣) ≥ log2(∣u∣ + ∣v∣). This implies that
2−n ≤ 1

∣u∣+∣v∣ so that ∣u′∣ + ∣v′∣ = 2−n (∣u∣ + ∣v∣) ≤ ∣u∣+∣v∣
∣u∣+∣v∣ = 1, as required.

Corollary 3.15 implies that we can write

uσ(e,α) + v = 2nu′2eσ∣1∣(α) + 2nv′

= 2e+n (u′σ∣1∣(α) + 2−ev′) (3.13)

where n, u′, v′ are as above and (!)

∣u′∣ + 2−e∣v′∣ ≤ ∣u′∣ + ∣v′∣ ≤ 1. (3.14)

This immediately gives rise to

Definition 3.16 (LinQ). The function LinQ ∶ Q × (N × Dω) × Q → N × Dω is
defined for u, v ∈ Q and (e,α) ∈ N ×Dω by

LinQ(u, (e,α), v) = (e + n, linQ(u′, α,2−ev′))

where

n = ⌈log2⌉(∣u∣ + ∣v∣) u′ = 2−nu v′ = 2−nv.

Theorem 3.17 (Correctness of LinQ). For any u, v ∈ Q, (e,α) ∈ Dω

σ(LinQ(u, (e,α), v)) = uσ∣1∣(α) + v.

Proof. Let n, u′ and v′ be as in the definition of LinQ. Then by Equation (3.14),
∣u′∣ + 2−e∣v′∣ ≤ 1, so that, by the correctness of linQ (Theorem 3.12) and Equa-
tion (3.13),

σ(LinQ(u, (e,α), v)) = 2e+nσ∣1∣ (linQ (u′, α,2−ev′))
= 2e+n (u′σ∣1∣(α) + 2−ev′)
= uσ(e,α) + v.

32

Chapter 4

Haskell Implementation

4.1 Overview

This section briefly describes the most important parts of the Haskell imple-
mentation of the arithmetic operations introduced in the previous chapter. The
full (though still not very long) code is given in Appendix A.2.

The most important types in the Haskell implementation are SD, SDS and
Real which represent signed binary digits, signed binary streams and numerals
in the exponent-mantissa representation, respectively. The functions fromSD
and sdToRational convert objects of type SD to the Haskell types Integer
and Rational, respectively, so that calculations on signed binary digits can be
performed in the natural way.

Apart from some type conversions, the implementations of avg and linQ
correspond exactly to the definitions of avg and linQ:

approximate :: SDS -> Int -> Rational
-- Calculates the value represented by the given

stream to an accuracy of 2^(-n).

approximate (a1 : a’) 1 = (fromSD a1) % 2
approximate (a1 : a’) n

= (sdToRational a1 + approximate a’ (n - 1)) / 2

approximateReal :: Real -> Int -> Rational
approximateReal (e, m) n = 2^e * approximate m n

approximateAsDecimal :: SDS -> Int -> IO ()

s = sg (1 % 4) p
p = (fromSD a1 + fromSD b1) % 4 + (fromSD a2 +

fromSD b2) % 8
a1’ = sg (1 % 8) (p - (fromSD s) % 2)
b1’ = sg 0 (8 * p - 4 * sdToRational s -

sdToRational a1 ’)

prependZeros :: Integer -> SDS -> SDS

33

-- Prepends the given number of zeros to the given

signed binary stream.

-- Defined in Section 3.3.3.

prependZeros 0 a = a
prependZeros n a = prependZeros (n - 1) (Z : a)

In order to implement ⊕, we need to be able to prepend a stream with
an arbitrary number of zeros (this was (0 ∶)n in the definition of ⊕). This is
done by the function prependZeros using which, again, the translation from
mathematical definition to implementation is immediate:

showRationalAsDecimal q decPlaces
= show p ++ "." ++ showFractionalPart (10 * r) (

denominator q) decPlaces
where

(p, r) = divMod (numerator q) (denominator q)
showFractionalPart n d 0 = []

Finally, linQ_real is the Haskell implementation of the function LinQ. It
uses the implementation ceilLog2 of the function ⌈log2⌉:
add :: Real -> Real -> Real
-- Calculates the sum of two real numbers to an

arbitrary precision.

-- Introduced and proved correct in Section 3.3.3.

add (e, a) (f, b)
= (max e f + 1, avg (prependZeros ((max e f) - e) a)

(prependZeros ((max e f) - f) b))

ceilLog2 :: Rational -> Integer
-- Exactly computes the ceiling function of the

logarithm to base 2 of the given number.

-- Introduced and proved correct in Section 3.4.3.

As pointed out, all translations from the mathematical definitions to the
respective Haskell implementations are straightforward and do not require more
than a few syntactic changes and extra type conversions. The credit for this
is of course mostly due to Haskell, however it also shows that the coinductive
approach lends itself well to an implementation in a functional programming
language that supports corecursive definitions.

Manual tests were performed and verified that the developed algorithms are
indeed correct.

4.2 Related Operations in Literature

Operations on signed binary streams similar to those studied in this work can
for instance be found in [3, 5](avg) and [13](linQ). We would like to find out
whether these are output-equivalent to our operations, that is, whether they
produce the same streams when given the same input.

The reference [13] defines the function applyfSDS which corresponds to our
linQ and gives a Haskell implementation. The average operation av from [3] can
easily be translated as follows:

34

av :: SDS -> SDS -> SDS
-- Calculates the average (a + b)/2

-- Implementation of the definition given in [3]

av (a1 : a’) (b1 : b’) = av_aux a’ b’ ((fromSD a1) + (
fromSD b1))

av_aux :: SDS -> SDS -> Integer -> SDS
av_aux (a1 : a’) (b1 : b’) i

= d : av_aux a’ b’ (j - 4 * (fromSD d))
where

j = 2 * i + (fromSD a1) + (fromSD b1)
d = sg 2 (j % 1)

For linQ and applyfSDS, we try the input u = 2%3, v = -1%3 and a =
toSDS 1%5, where toSDS converts a Haskell Rational to a signed digit stream
(cf. Appendix A.2). For the first 5 signed binary digits, this yields

Digit: 1 2 3 4 5
linQ: -1 1 0 1 0
applyfSDS: -1 1 0 1 -1

So linQ and applyfSDS are not output-equivalent (even though, of course, the
infinite streams do represent the same real number).

For avg and av, we compare the respective outputs for the following values
(again using toSDS):

a b
0 0
1 1
1 -1

1%2 1%2
3%4 -1%3

-13%27 97%139

In all cases, the first 100 digits of output are the same. We also note that avg
and av have the same effective lookahead: For the first digit of output, both
read two digits from each of the two input streams. For every following digit,
av reads one digit from both streams while avg reads two, of which however the
first was generated in the last iteration of avg. For these reasons, we conjecture
that the Integer parameter i of av_aux and the two new digits a1’ and b1’
that are prepended to the tails of the input streams in avg are in a one-to-one
correspondence.

35

Chapter 5

Conclusion, Related and
Future Work

We have proposed a general strategy similar to that given in [3] for studying
exact arithmetic operations on the signed binary exponent-mantissa represen-
tation using coinduction. The main steps of this strategy consist of giving a
coalgebraic coinductive definition of a function that represents the required op-
eration on the level of streams and then proving the correctness of this function
using set-theoretic coinduction. In this way, the strategy brings together two
different (though related) forms of coinduction that are usually not combined.

Using the proposed strategy, we have obtained operations that compute
the sum and linear affine transformations over Q of real numbers given in the
above-mentioned representation and proved their correctness. In each case, the
strategy gave us a criterion that guided our search for the coinductive part of
the definition. More importantly, the use of coalgebraic coinductive definition
principles provided us with a pattern of choices to make in the set-theoretic
coinduction proofs which essentially reduced these proofs to one key step.

Our Haskell implementation shows that the operations we have developed
can be used in practice. Moreover, the fact that the algorithms it consists of
are almost literal translations of the corecursive definitions of the corresponding
operations indicates that the coinductive approach is well-suited for an im-
plementation in a lazy functional programming language. This is particularly
important because it alleviates the likelihood of introducing an error when going
from mathematical definitions to implementation.

Evaluating the results of a project as theoretical as this one is difficult. The
main contribution of this work is to show that the combination of coalgebraic
coinductive definition principles and set-theoretic coinduction can be used in
the context of exact real arithmetic and, for the aforementioned reasons, we feel
that this combination is very fruitfuil. One drawback of our approach might
be that it does not take performance considerations into account so that the
ensuing algorithms may not be very efficient.

Operations on signed binary streams similar to those studied in this project
can for instance be found in [3,5,13]. Our experiments with appropriate imple-
mentations have shown that the average operation av from [3] may be closely
related to the function avg defined in this work while the function applyfSDS

36

from [13] is certainly different from our corresponding operation linQ.
An interesting approach related to that followed in this project is program

extraction as for instance studied in [13]. It involves giving inductive and (set-
theoretic) coinductive proofs of general computation problems and then extract-
ing algorithms and programs from these proofs in a systematic way. This has
the advantage that the obtained programs are correct by construction and that
formalisations become simpler because the approximating data are left implicit
in the proofs.

As regards future work, there are several interesting possibilities. We be-
lieve that the coinductive approach should lend itself similarly well to other
representations and a next step could be to apply it to the more general linear
fractional transformations. Another possibility would be to study coinductive
representations of operations rather than just real numbers. For instance, an
operation on a signed binary stream can be represented as an infinite tree whose
edges represent the digits of the input and whose nodes represent the output
digits or a symbol ∗ that indicates that more input is required:

'&%$Ã!"#∗
−1

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

0

²²

1

ÂÂ?
??

??
??

??
?

. . . '&%$Ã!"#∗
−1

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

0

²²

1

ÂÂ?
??

??
??

??
? . . .

'&%$Ã!"#1

²²

.

. . .

On this representation, for instance an integral operator could then be defined.

37

Bibliography

[1] Study of iterations of a recurrence sequence of order two. Example appli-
cation of the CADNA library; Available from http://www-pequan.lip6.
fr/cadna/Examples_Dir/ex4.php.

[2] A. Avizienis. Signed-digit number representations for fast parallel arith-
metic. IRE Transactions on Electronic Computers, 10:389–400, September
1961.

[3] U. Berger and T. Hou. Coinduction for exact real number computation.
Theory of Computing Systems, 43:394–409, December 2008.

[4] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan,
and S. M. Watt. Maple V Language Reference Manual. Springer Berlin /
Heidelberg, first edition, November 1991.

[5] A. Ciaffaglione and Di P. Gianantonio. A certified, corecursive implemen-
tation of exact real numbers. Theoretical Computer Science, 351(1):39–51,
February 2006.

[6] A. Edalat and R. Heckmann. Computing with Real Numbers, volume 2395
of Lecture Notes in Computer Science, pages 953–984. Springer Berlin /
Heidelberg, January 2002.

[7] M. H. Escardó. PCF extended with real numbers. Theoretical Computer
Science, 162(1):79–115, August 1996.

[8] R. W. Gosper. Item 101b: Continued fraction arithmetic. Memo
239 (”HAKMEM”), MIT Artificial Intelligence Laboratory, February 1972.

[9] T. Hickey, Q. Ju, and M. H. van Emden. Interval arithmetic: From prin-
ciples to implementation. Journal of the ACM (JACM), 48(5):1038–1068,
September 2001.

[10] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction.
EATCS Bulletin, 62:222–259, 1997.

[11] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer
Programming. Addison-Wesley, third edition, 1997.

[12] M. Lenisa. From set-theoretic coinduction to coalgebraic coinduction: some
results, some problems. In B. Jacobs and J. Rutten, editors, Proc. Coalge-
braic Methods in Computer Science(CMCS’99), volume 19 of Electr. Notes
Theor. Comput. Sci., 1999.

38

[13] S. Lloyd. Implementation and verification of exact real number algorithms.
Bachelor’s Thesis, Department of Computer Science, University of Wales
Swansea, 2009.

[14] V. Ménissier-Morain. Arbitrary precision real arithmetic: Design
and algorithms. Submitted to J. Symbolic Computation. Avail-
able from http://www-calfor.lip6.fr/~vmm/documents/submission_
JSC.ps.gz, September 1996.

[15] D. Plume. A calculator for exact real number computation. 4th Year
Project Report, Departments of Computer Science and Artificial Intelli-
gence, University of Edinburgh, 1998.

[16] H. G. Rice. Recursive real numbers. Proceedings of the American Mathe-
matical Society, 5(5):784–791, October 1954.

[17] J. J. M. M. Rutten. Universal coalgebra: A theory of systems. Theoretical
Computer Science, 249(1):3–80, October 2000.

[18] A. M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2(42):230–
265, 1936.

[19] A. M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. A correction. Proceedings of the London Mathematical So-
ciety, 2(43):544–546, 1937.

[20] J. Vignes. Discrete stochastic arithmetic for validating results of numerical
software. Numerical Algorithms, 37(1-4):377–390, December 2004.

[21] J. E. Vuillemin. Exact real computer arithmetic with continued fractions.
IEEE Transaction on Computers, 39(8):1087–1105, August 1990.

[22] S. Wolfram. Mathematica: a System for Doing Mathematics by Computer.
Addison Wesley, second edition, April 1991.

39

Appendix A

Code Listings

A.1 Calculating the Muller-Sequence

This section gives the code that was used to compute the values for the floating
point arithmetic example in section 1.1.

The two standard C programs Single.c and Double.c use single and double
precision, respectively, to calculate elements 1 to N of the sequence given on
page 1, where N can be specified on the command line. As a sanity check,
both report a measure of the precision with which the system they are run on
executes floating point arithmetic. This precision should be 1.19209e-07 for
Single.c and 2.22045e-16 for Double.c.

Listing A.1: Single.c
#include <stdio.h>
#include <stdlib.h>

int main(int argc , char** argv) {
int MAX;
if(argc == 1 || (MAX = atoi(argv [1])) == 0) {

printf("Single.c\n");
printf("========\n");
printf("Uses single precision floating point

arithmetic to compute elements 1...N of the
sequence\n");

printf("\ta_0 = 11/2, a_1 = 61/11 , a_(n+1) =
111 - (1130 - 3000/ a_(n-1))/a_n\n");

printf("\n");
printf("Usage: \n");
printf("======\n");
printf("\tSingle N\nwhere N is the largest

element of the sequence that should be
computed\n");

return 0;
}

float a_n_minus_1 = 5.5f;

40

float a_n = 61.0f/11.0f;
int n;
for (n = 1; n <= MAX; n++) {

printf("%f\n", a_n);
float tmp = a_n;
a_n = 111 - (1130 - 3000 / a_n_minus_1) / a_n;
a_n_minus_1 = tmp;

}

float precision = 1.0f;
float y;
while((y = precision + 1.0f) != 1.0f)

precision /= 2.0f;
precision *= 2.0f;
printf("Precision is %g \n", precision);
return 0;

}

Listing A.2: Double.c
#include <stdio.h>
#include <stdlib.h>

int main(int argc , char** argv) {
int MAX;
if(argc == 1 || (MAX = atoi(argv [1])) == 0) {

printf("Double.c\n");
printf("========\n");
printf("Uses double precision floating point

arithmetic to compute elements 1...N of the
sequence\n");

printf("\ta_0 = 11/2, a_1 = 61/11 , a_(n+1) =
111 - (1130 - 3000/ a_(n-1))/a_n\n");

printf("\n");
printf("Usage: \n");
printf("======\n");
printf("\tDouble N\nwhere N is the largest

element of the sequence that should be
computed\n");

return 0;
}

double a_n_minus_1 = 5.5;
double a_n = 61.0/11.0;
int n;
for (n = 1; n <= MAX; n++) {

printf("%1f\n", a_n);
double tmp = a_n;
a_n = 111 - (1130 - 3000 / a_n_minus_1) / a_n;
a_n_minus_1 = tmp;

41

}

double precision = 1.0;
double y;
while((y = precision + 1.0) != 1.0)

precision /= 2.0;
precision *= 2.0;
printf("Precision is %g \n", precision);
return 0;

}

Arbitrary.bc uses a fixed but arbitrary precision to calculate the nth ele-
ment of the sequence given on page 1. As mentioned in section 1.1, it is a script
for the UNIX program bc.

Listing A.3: Arbitrary.bc
Call with UNIX utility bc
Uses arbitrary precision floating point arithmetic

to compute the Nth element of the sequence
a_0 = 11/2, a_1 = 61/11, a_(n+1) = 111 - (1130 -

3000/ a_(n-1))/a_n

Precision
print "\nPlease enter the precision (in number of

decimal places after the decimal point) the
calculations should be executed with: ";

scale = read();

print "\nPlease enter which element of the sequence
you would like to have computed: ";

max = read();

a_n_minus_1 = 5.5;
a_n = 61.0/11.0;

for(n = 2; n <= max; n++) {
tmp = a_n;
a_n = 111 - (1130 - 3000/ a_n_minus_1)/a_n;
a_n_minus_1 = tmp;

}

print "\na_", max , " calculated using the given
precision: ", a_n , "\n";

print "distance from the exact value of a_n: ", a_n -
(6 ^ (max + 1) + 5 ^ (max + 1)) / (6 ^ max + 5 ^
max), "\n";

quit;

42

A.2 Haskell Implementation

This section gives the full code of the Haskell implementation of the arithmetic
operations developed in Chapter 3. An overview of the most important parts
of this code is given in Chapter 4.

Listing A.4: Coinductive Reals.hs
import Ratio

data SD = N | Z | P deriving Eq
type SDS = [SD]
type Real = (Integer , SDS)

instance Show SD where
show = show . fromSD

fromSD :: SD -> Integer
fromSD N = -1
fromSD Z = 0
fromSD P = 1

sdToRational :: SD -> Rational
sdToRational = (%1) . fromSD

sg :: Rational -> Rational -> SD
-- Generalised sign function

-- Introduced in Section 3.3.1.

sg d x
| x > d = P
| abs(x) <= d = Z
| x < -d = N

toSDS :: Rational -> SDS
-- Returns the signed digit stream that exactly

represents the given rational.

toSDS u
= d : toSDS (2 * u - sdToRational d)
where

d = sg (1 % 2) u

toReal :: Rational -> Real
toReal q

= (n, toSDS (q/(2^n)))
where

n = ceilLog2 q

approximate :: SDS -> Int -> Rational
-- Calculates the value represented by the given

stream to an accuracy of 2^(-n).

approximate (a1 : a’) 1 = (fromSD a1) % 2

43

approximate (a1 : a’) n
= (sdToRational a1 + approximate a’ (n - 1)) / 2

approximateReal :: Real -> Int -> Rational
approximateReal (e, m) n = 2^e * approximate m n

approximateAsDecimal :: SDS -> Int -> IO ()
-- Approximates (and prints) the value of the given

SDS to an accuracy of n decimal places

approximateAsDecimal ds n = putStr (
showRationalAsDecimal (approximate ds (floor ((
fromIntegral n) * log (10) / log (2)))) n)

showRationalAsDecimal :: Rational -> Int -> String
showRationalAsDecimal q n

| q < 0 = ’-’ : showRationalAsDecimal (-q) n
showRationalAsDecimal q 0 = show ((numerator q) ‘div ‘

(denominator q))
showRationalAsDecimal q decPlaces

= show p ++ "." ++ showFractionalPart (10 * r) (
denominator q) decPlaces

where
(p, r) = divMod (numerator q) (denominator q)
showFractionalPart n d 0 = []
showFractionalPart n d decPlaces = (show (n ‘div ‘

d)) ++ showFractionalPart (10*(n ‘mod ‘ d)) d (
decPlaces - 1)

avg :: SDS -> SDS -> SDS
-- Calculates the average (a + b)/2.

-- Introduced in Section 3.3.1, proved correct in

Section 3.3.2.

avg (a1 : a2 : a’) (b1 : b2 : b’)
= s : avg (a1 ’ : a’) (b1 ’ : b’)
where

s = sg (1 % 4) p
p = (fromSD a1 + fromSD b1) % 4 + (fromSD a2 +

fromSD b2) % 8
a1’ = sg (1 % 8) (p - (fromSD s) % 2)
b1’ = sg 0 (8 * p - 4 * sdToRational s -

sdToRational a1 ’)

prependZeros :: Integer -> SDS -> SDS
-- Prepends the given number of zeros to the given

signed binary stream.

-- Defined in Section 3.3.3.

prependZeros 0 a = a
prependZeros n a = prependZeros (n - 1) (Z : a)

add :: Real -> Real -> Real

44

-- Calculates the sum of two real numbers to an

arbitrary precision.

-- Introduced and proved correct in Section 3.3.3.

add (e, a) (f, b)
= (max e f + 1, avg (prependZeros ((max e f) - e) a)

(prependZeros ((max e f) - f) b))

ceilLog2 :: Rational -> Integer
-- Exactly computes the ceiling function of the

logarithm to base 2 of the given number.

-- Introduced and proved correct in Section 3.4.3.

ceilLog2 s
| s <= 1 = 0
| otherwise = 1 + ceilLog2 (s / 2)

linQ :: Rational -> SDS -> Rational -> SDS
-- Computes the linear affine transformation u*a + v

where |a| <= 1 and |u| + |v| <= 1.

-- Introduced in Section 3.4.1, proved correct in

Section 3.4.2.

linQ u (a1 : a2 : a’) v
= d : linQ u’ a’ v’
where

u’ = u / 2
v’ = 2 * r - sdToRational d
r = u * (fromSD a1 % 2 + fromSD a2 % 4) + v
d = sg (1 % 4) r

linQ_Real :: Rational -> Real -> Rational -> Real
-- Computes the linear affine transformation u*a + v

to an arbitrary precision.

-- Introduced and proved correct in Section 3.4.3.

linQ_Real u (e, a) v
= (e + n, linQ u’ a (v ’/(2^e)))
where

n = ceilLog2 (abs u + abs v)
u’ = u/(2^n)
v’ = v/(2^n)

av :: SDS -> SDS -> SDS
-- Calculates the average (a + b)/2

-- Implementation of a definition given in [3]

av (a1 : a’) (b1 : b’) = av_aux a’ b’ ((fromSD a1) + (
fromSD b1))

av_aux :: SDS -> SDS -> Integer -> SDS
av_aux (a1 : a’) (b1 : b’) i

= d : av_aux a’ b’ (j - 4 * (fromSD d))
where

j = 2 * i + (fromSD a1) + (fromSD b1)

45

d = sg 2 (j % 1)

46

