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Abstract

This report describes a biologically inspired approach to vision-only simulta-

neous localization and mapping (SLAM). A SLAM algorithm, named RatSLAM,

was extended to cope with ”shaky” video sequences. The main SLAM system,

models a part of the rodents brain, the hippocampus. This system communi-

cates with a fast vision system, which provides, both external and self-motion

cues. The system runs completely in an online manner, where it simultaneously

calculates odometric offsets, builds a map, detects loop closures and relocalises

by recalling previously visited scenes. The built map is continuously calibrated,

especially after a loop closure, where odometric errors are corrected. The map-

ping abilities of this program are demonstrated in a series of indoor and outdoor

tests, using a 2.83 GHz Intel Core Duo processor, and 3 GB of RAM. The video

capture device was a digital camera, capturing videos at 10 fps and a resolution

of 640 × 480 pixels. The largest outdoor experiment was 23 minutes long,

where a route of 750 m was travelled by a person holding a camera. All three

loop closures where detected, and an accurate map was obtained at the end of

the experiment.
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Chapter 1

Introduction

Simultaneous Localisation and Mapping is one of the most challenging prob-

lems in mobile robotics. Over the years, increase in computational power has

allowed theoretical solutions to this problem to be implemented in real world ex-

periments. Various techniques have been used, such as Extended Kalman Filters

or particle filtering[1]. Even with this computational power though, the problem

is still difficult to solve and make a model that would work efficiently. There are

two main reasons for this. Mobile robots are basically moving sensor platforms.

Different type of sensors provide various capabilities, but are far from consis-

tently accurate. The most accurate sensor for example, the laser range finder,

may still provide false data. It may ’see’ through glass, and beams may bounce

on multiple surfaces before returning to the receptor. Under direct sunlight,

it may make faulty readings. And most importantly, a good high quality laser

range finder is expensive. When using probabilistic SLAM, assumptions about

the environment are made, such as landmark based techniques, to reduce the

the computational processing made during the experiment. Otherwise, map-

ping large outdoor environments resort to off-line procedures occurring after

the experiment.

There have been other studies, where the point of view for solving the SLAM

problem is completely different. How can animals and humans navigate through

environments, without using expensive sensory systems? Humans do not store

the exact distance from a wall when they see one. But we are able to localise

our selves, and remember places in a more complicated and accurate manner

than a mobile robot. This inspired researchers to study the brain of animals to

get a better understanding of how animals use their spacial perception within

an environment. The most studied animal has been the rodent, focusing on the

rodent hippocampus[2]. This yielded some ideas on how a biologically inspired

system can be used to solve the SLAM problem, without using expensive sen-
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2 CHAPTER 1. INTRODUCTION

sors and and complex mathematical probabilistic algorithms.

RatSLAM[8] is a system based on a system of neural networks inspired by

the rodent hippocampal complex. It has been designed to work in indoor and

large outdoor environments in a real-time effective way, by simulating the ro-

dents spatial cognition described in Chapter 2. Experiments have been made

with success, creating maps from small 8*8 meter offices, to a large 3.0*1.6 km

suburb using a single video camera[13]. This system has also been extended to

allow path planning based on the self-built map and a given goal. RatChat has

also been developed to facilitate human-robot interaction,in a teacher-student

manner, to provide higher level spatial conceptualization.

1.1 Contributions

RatSLAM proved to be a very good solution for the SLAM problem. It simul-

taneously localises and builds maps in real time, and provides path planning

given a specific goal. The experiments have been proved successful, but with

one drawback. In order for the experiment to prove a success, there are a few

assumptions:

• The orientation of the camera being used must be forward facing with

respect to motion.

• The movement of the camera has little or no translational movement

parallel to the camera sensor plane.

This is the reason why when when mapping an outdoor environment, the camera

was mounted on the roof of a road vehicle.

The core contribution of this project is the extension of the existing RatSLAM

system, so that these constraints are removed (Chapter 3). This would result

in wider range applications, such as using the system on rough terrains or on

humanoid robots. The simplest implementation, would be to use the RatSLAM

system for a simple but effective personal localisation. It has been observed

during our experiments that when video recording while walking the movement

of the camera is far from parallel to the camera sensor plane.

By successfully implementing this extension, we can use RatSLAM more broadly,

but still use it effectively with the experiments that already took place in the

past (Chapter 4).



Chapter 2

Background

2.1 Spatial encoding in Rodent Brains

2.1.1 Overview

In the field of biological mapping and navigation, rodents are one of the most

studied animals. In addition, the rodent hippocampus is one of the most studied

brain regions of any mammal. This helped to establish a good understanding

of how rodents navigate and create models of this behaviour. While observing

individual cell activity in the rodent hippocampus, three type of cells where

identified that helped in navigation:

• Place cells

• Head direction cells

• Grid cells

Place cells appeared to respond to the spatial location of the rodent, head

direction cells responded to the animal’s orientation, and recently grid cells

where discovered, firing at regular grid-like intervals in the environment. It was

noticed that grid cells where firing only when certain place cells where active,

in conjunction with relative active head direction cells. These inventions are

very important to understand how rodents navigate, based on their self-motion

information and external cues, used in conjunction to keep their spatial cognition

accurate.

3



4 CHAPTER 2. BACKGROUND

Cells Represent Fired when:
PC Location Rat is in the corresponding location
HDC Orientation Head turns in the corresponding orientation
GC Grid-like Intervals in environment Specific PC’s and HD cells are active

Table 2.1: Cell Types: Place Cells(PC), Head Directions Cells(HDC) and
Grid Cells(GC)

Figure 2.1: Head Direction cell representation

2.1.2 Continuous Attractor Networks

Continuous attractor networks are often used to model the behaviour of the

rodent’s place cells, head direction cells and grid cells [16],[17]. They represent

neural units linked with each other with excitatory and inhibitory connections.

The activity in these units, is calculated by computing the sum of activity based

on these connections. These connections are recurrent and work rather dif-

ferently than the standard feed-forward network. In the following subsections,

we explain how these attractor networks are used to represent the rodent hip-

pocampus.

2.1.2.1 Attractor Dynamics

For explaining the properties of a continuous attractor network, we will use the

Head Direction cells as an example [5].

In figure 2.1 we see a set of head direction cells in a line. Each cell has a set

of links. In this example we will use the 120 degree cell. Links are represented
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Figure 2.2: A 3-D continuous attractor network, with it’s activity packet.
This packet travels in the network unaltered, based on self-motion cues

with lines, those ending with a circle being inhibitory links, and those with arrows

being excitatory links. When the head of the rodent turns at 120 degrees, a

series of events happen. The 120 degree cell is locally excited (injected with

energy). The cell excites it’s self, and cells around it, through the excitatory

links. It also activates the Global Inhibition cell, which in it’s turn inhibits cells

that is connected to. This will eventually result in a single peak activity, with

the most active cell being the 120 degree cell. It is important to say, that if no

excitation is provided for a long period of time, all cells will lose their energy.

Also in figure 2.1 we see only the connections between the 120 degree cell and

the activity level when that cell is excited, and no other self-motion cues are

occurring. The rest of the cells have similar connections as well.

2.1.2.2 Path Integration

The activity shown in figure 2.1(b) represents the activity of the head direction

cells, in a fraction of the time. With the presence of self-motion cues, this

activity packet is shifted, according to the cue. It was shown that this activity

packet is transferred while at the same time being unaltered. The activity peak

can be moved without deformation using weights that are derivative of the local

excitatory weights[19]. This shift in activity, imposes that when errors occur,

are not shown in the activity packet, which stays constant both in width and

heigh like for example in figure 2.2 . Unlike this method, it is known that in

traditional SLAM methods, uncertainty is taken into account, and dealt with

continuously, to eliminate false representations.

2.1.2.3 Local View Calibration

So if the attractor dynamics do not take into consideration errors, how will the

attractor network consistently represent the position of the rodent? This is a



6 CHAPTER 2. BACKGROUND

Figure 2.3: Local View cells and their links working in parallel with Head
directions cells in figure 2.1 to calibrate the activity packet

common problem in robotics, where a robot cannot accurately know it’s position

in an environment, by only using it’s internal motor sensors. The solution is

simple and trivial. Use more sensors, that record environmental cues and make

corrections. This is exactly what an attractor network does. It uses local view

cells. These cells, represent environmental cues when the rodent is at specific

locations. These cells make connections with the head direction cells that where

active when the the environmental cue was present. These connections become

stronger by using methods such as Hebbian learning.

By using Local View cells (LV), the continuous attractor network will correct

the position of the activity packet. If a LV cell is fired randomly, even if the

rodent is not at the place where the LV cell was initially activated, activity will

be injected in a place where the activity packet is absent. In this case, the

Global Inhibition cell, shown in figure 2.1,will filter and inhibit this activity, thus

not affecting the network. If on the other hand the rodent is at the position

where the LV cell was initially activated, and the current head direction has

strong links with the LV cell, this will result in positioning the activity packet

where it should be in the first place, thus eliminating all errors. Local View cells

work in parallel with the Head Direction cells to provide this functionality [10] .

2.1.2.4 2-D Continuous Attractor Networks

Thinking in the same way as with the Head Directions cells, we can create an

attractor network for Place cells as well. This time though. instead of a one

dimensional Attractor network, we create a two dimensional attractor network.

It’s a sheet of neurons, representing the position of the rodent in space. Again

neurons have excitatory and inhibitory links, to guide the energy injected to

them by self-motion cues. They have links with the Local View cells, just like

the Head Direction cells do, to calibrate the activity packet based on external

environmental cues. Thinking of the sheet of neurons though,like in figure 2.4,
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Figure 2.4: A 2-D continuous attractor network, representing Place cells.
If the activity packet moves in one direction and reaches the edge of the
network, it will continue on the opposite side of the network

what happens if the activity packet reaches the edge of the sheet and still needs

to move beyond the edge? This implies that the area a rodent can travel,

is restricted by the amount of neurons available. To improve the model, A.

Samsonovich and B. L. McNaughton said that the attractor network should be

continuous[18]. This means that neurons that are on the edge, are connected

with neurons on the opposite side of the sheet. So in figure 2.4, when the

activity packet reaches a situation like 2.4(c), it will continue on the other

side of the sheet, just like in 2.4(d). This way the rodent is not limited to a

particular environment size. It simply means that each neuron, will represent

multiple situations in the environment [6] , since it might become active in more

than one places in the world.

2.2 RatSLAM

2.2.1 Overview

The RatSLAM model is designed to simulate the rodent hippocampus, and be

used in robotic applications. It can be described as a system, containing several

major components, shown in figure 2.5. The robots pose is encoded in a single

Continuous Attractor Network module, known as the pose cell network. Both

self-motion and external cues influence the activity in the pose cells through

their respective processing modules.

2.2.2 A model of Spatial Pose

In robotics, it is unusual to use separate representations of robot orientation and

spatial location in mapping and navigation algorithms. This is why RatSLAM

made an extension to the hippocampal model. It combines the concept of

head direction and place cells[3][4] to form the new type of cell, known as a
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Figure 2.5: The RatSLAM system structure

pose cell.Since place and head direction cells are combined, RatSLAM uses

a three dimensional Continuous Attractor Network, that is consisted of Pose

Cells. Each Pose Cell is arranged in an (x’,y’,θ’) pattern. This way, all robot

pose estimates can be represented in x’ , y’ , and θ’, like in figure 2.2. As

described in subsection 2.1.2.4, Pose Cells have wrap around connections as

well. This way the environmental size that can be explored by the robot is not

restricted to the amount of pose cells in the network.

Each cell in the network can have an activity range from 0 up to 1. This also

represents the probability of that specific cell being the correct pose of the robot.

When the network is viewed as a whole, and not concentrating on individual

pose cells, it all makes more sense. Areas where the activity is strong, is a more

probable estimate of the robots pose, than areas with weak pose activity.

2.2.3 Internal Dynamics

In the RatSLAM model, attractor dynamics control the activity in the pose cell

network. As described in subsection 2.1.2.1, we have two stages:

1. The excitatory update

2. The global inhibition update

A three dimensional Gaussian distribution is used to create the excitatory weight

matrix. This matrix is used by all cells, to inject energy to their neighbours in

the pose cell matrix.
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Because of the way the excitation works, there might be multiple activity pack-

ets present in the network simultaneously. This is the reason why we use a

relatively gentle global inhibition. This excitation and inhibition update, is done

continuously, during the ’life’ of the pose cell network [14] .

As we mentioned in subsection 2.2.2, the activity of each cell is in the interval

[0-1], and this is why we add a third step in our internal dynamics: Normali-

sation. At the end of each update,the sum of activity of all pose cells in the

network becomes 1, and the individual activity of each pose cell is normalised.

2.2.4 Local View Cells

Another module of the RatSLAM system, are the Local View Cells. These cells

act on the system in two ways. They perform associative learning to map with

pose cells, and they inject activity levels into the pose cells for localisation.

When using a single camera in the model, the external cues injected to the

system, are visual scenes. These visual scenes are represented by local view

cells. At each cycle of the model, the local view module, creates a connection

between the visual scene, and the pose cell that has the largest activity. These

links form the pose-view map, as shown in figure 2.5. When a pose-view map

is created, it is used by the local view module, to inject energy to the pose cell

network. In each system cycle, active local view cells inject activity to the pose

cells they have connections with, based on the pose-view map. The amount of

activity that will be injected, depends on the strength of association between

local view and pose cell. This is the mechanism that RatSLAM uses to maintain

or correct the robots believed pose.

In order for the system to work efficiently, the learning method used to build the

pose-view map, should not associate raw camera data with pose cells. This is

why raw images are processed in the local view module, in order to be converted

in a more usable structure for the system. Since the pose cell network will be

represented as a matrix, image data are reduced in dimensionality, and are

represented by a sparse feature vector (figure 2.6 ).

2.2.5 Path Integration

When the RatSLAM model is used with a single camera, we have a small pe-

culiarity. The external cues processed by the Local View cells, are raw image

data. The same data are used to feed the path integration module, as the inter-

nal self-motion cues. It is worth mentioning, that the path integration module

manipulates the input data in a different way than the local view module.
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Figure 2.6: The pose cell and local view cell structure

The biological approach in path integration, is injecting a copy of the activity

packet forward in time. The RatSLAM system though, takes a different ap-

proach. Instead of injecting a copy of the activity packet forwards in time, it

shifts the current activity packet, based on the self-motion cues and the po-

sition coordinates, (x’,y’,θ’), of each pose cell. The path integration module,

calculates the offset in all three directions,(dx’,dy’ and dθ’) based on the input

data, and shifts the activity accordingly. An example can be seen in figure 2.7,

where the activity packet shifts over a period of time. That shift, is calculated

by the path integration module. The activity packet is initialised at the centre

of the pose cell network, just like in figure 2.7.a .At 2.7.b, the path integration

module, calculated that based on the image data, the activity packet has to be

shifted and performs the shift. Since our network is continuous, the shift takes

place on the opposite side of where the activity packet has reached an edge,

just like in figure 2.7.d.

2.2.6 Experience Mapping

RatSLAM creates a fine-grained topological map, named the experience map,

which is composed of individual experiences, e, connected by transitions, t. Each

experience represents a union of Pose Code (pattern of activity in pose cells),

and Local View Code (pattern of activity in local view cells). Each experience

is positioned at position p in the experience space which is a useful manifold to

the real world. So an experience, ei, can be represented by:

ei = {PoseCode, LocalV iewCode, pi} (2.1)
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Figure 2.7: A sequence showing how the activity packet is shifted in the
pose cell network

In every system cycle, if either Pose Code or Local View Code change sufficiently

compared to stored experiences, a new experience is created. Along with the

new experience, an associated transition is created,tij (equation 2.2) [11].

tij = {∆pij} (2.2)

This transition stores the change in robot position based on self-motion cues.

It forms a link between the new experience,ej, and previous experience,ei based

on equation 2.3.

ej = {PoseCode, LocalV iewCode, pi + ∆pij} (2.3)

The initial experience, is created arbitrarily. This is not a problem, since the

experiences that will follow, will be build out from the first experience’s position,

and the transition links. This is why the experience map is used to create a

visual representation of the robots route. As soon as the first experience is
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Figure 2.8: Visual representation of an experience map

plotted on the experience map, the rest will be plotted based on the transitional

information. An example of an experience map is shown in figure 2.8, where

each experience is plotted as an x on the graph. The initial experience was

assigned the position [0,0].

During a loop closure, there is not a specific algorithm that will make this

detection. Instead, in RatSLAM the way to recognise a loop closure is fairly

simple. When sufficient change in Pose Code or Local View Code occurs,

these changes are compared to existing experiences. If there is a match with an

existing experience, it is meant that the robot is situated at a previously explored

area, thus a loop closure. If no match is found, then a new experience is created.

When a loop closure is detected, it is highly unlikely that the transition used

to map the previous experience with the matched one, will point at the same

position in the experience map, as the already stored position of the matched

experience. This is why a correction algorithm is continuously used to correct

the transitions of the experiences. This correction will be mostly effective only

when a loop closure occurs [11].

Using the example from figure 2.9, at 2.9a., there is sufficient change in

the pose or local view code, but an experience has been detected that matches

these new values. It is visually noticeable, that the experience position, is not

at a place that has been visited before, thus faulty representing the position of

the matched experience-which has already been plotted on the map. This is

where the experience correction algorithm starts correcting the map transitions,

so that the matched experience, is represented by it’s corresponding position

on the experience map, like in figure 2.9b. Then in figure 2.9c. and d, we can

see how the correction algorithm adjusts the rest of the transitions to make a

more accurate representation of the experience map.
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Figure 2.9: Experience map correction algorithm during loop closure

In Chapter 3, we explain how the RatSLAM model was implemented, and how

it was extended to adapt in our needs, of personal localisation using a single

camera. Then a series of tests where carried out and analysed in Chapter 4.





Chapter 3

The Details

The purpose of the project, is to create an algorithm to aid personal localisation

and mapping. The RatSLAM system was used to provide this solution. As

explained in Chapter 2.2, the algorithm can be divided in several modules. Each

of these modules where designed in a way so that there where no dependencies,

apart from using the same global variables. The advantage of modularising the

program, is that each module could be designed and implemented several times,

without interfering with the rest of the modules.

Figure 3.1 shows how the algorithm was divided. At the beginning of each

cycle, the visual template module will handle the external cues, which will be

camera images, and manage the local view cells. Following this step, the visual

odometry module will compute an estimation of the persons movement, based

on the camera images. It will calculate how much a person moved forward, and

whenever the person changed orientation or not. These results will be passed

on to the next module, the pose-cell iteration. Here the following steps will

take place:

1. Add view template energy of the current active local view cell

2. Apply local excitation

3. Apply local and global inhibition

4. Normalise the pose-cell activation levels

5. Do the path integration, by shifting pose-cell activity packets based on

the offsets provided from the visual odometry module

Finally the cycle ends with the experience map iteration module. This is

where the experience map is created, updated after each cycle run, and cor-

rected based on the experience correction algorithm.

15
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Figure 3.1: Modules that the RatSLAM algorithm consists of

This design was the one chosen to create the RatSLAM system, and it has

proven useful. Each module was created and then tested immediately, without

the need of the rest of the modules. It has proven useful during the imple-

mentation of the system and during testing as well. Errors and bugs where

spotted faster, and malfunctioned modules where removed and re-implemented

in a mobile way.

The purpose of this project is to localise and map the movement of a per-

son using simple computer vision. This is why it was decided that a single

camera should be the only way of providing cues or stimuli to the system. This

single camera, will provide raw images to:

1. The visual template module to handle the local view cells (representing

environmental cues)

2. The visual odometry module to calculate the persons offset compared to

his previous known position (representing self-motion cues).
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The raw images are processed within the modules before being used, by

being transformed into more usable structures. Each cycle shown in figure 3.1

will be carried out whenever a new camera image(frame) is available.

3.1 Creating the basic RatSLAM algorithm

The following subsections give a detail description of the algorithms used to

deliver a complete, working RatSLAM model.

3.1.1 Pose Cells

The activity of the pose cells is described in the tree dimensional activity ma-

trix, P. Each item in P, represents a pose cell in the (x’,y’,θ’) coordinates. The

activity of these items is updated by the attractor dynamics, path integration,

and visual template processes.

The excitatory matrix, εa,b,c, is created by using a tree dimensional Gaussian

distribution. a, b and c represent distances between pose cell units in x’, y’ and

θ’ coordinates, and the distribution used is:

εa,b,c = e
−(a2+b2)

kp e
−c2
kd (3.1)

where kp and kd are the width constants for place and direction respectively.

The change in pose cell activity, because of local excitation, is calculated by:

∆Px′,y,θ′ =

(nx′−1)∑
i=0

(ny′−1)∑
j=0

(nθ′−1)∑
k=0

Pi,j,kεa,b,c (3.2)

where nx′ , ny′ , nθ′ are the dimensions of the pose cell matrix in the x’, y’,

θ’ space. The excitatory matrix indexes, connect on the opposite side of the

activity matrix. This is why a,b and c are calculated like in equation 3.3.

a = (x′ − i)(mod(nx′))

b = (y′ − i)(mod(ny′))

c = (θ′ − i)(mod(nθ′))

(3.3)

In this model, instead of inhibiting cells concurrently while exciting, we will

apply local and global inhibition after the excitation takes place. This way, we
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can create an inhibitory matrix, that will be applied in the same way on the

pose cell activity matrix as the excitatory matrix, but with negative weights.

This will make our computation steps easier, with less parameter tuning, and

we can combine local and global inhibition in one equation. Global inhibition is

constantly applied to all pose cells in each cycle. The new activity matrix will

now change its activity level based on the inhibition equation 3.4.

∆Px′,y,θ′ =

nx′∑
i=0

ny′∑
j=0

nθ′∑
k=0

Pi,j,kψa,b,c − ϕ (3.4)

where ψa,b,c is the inhibitory matrix and ϕ is the global inhibition energy amount.

After this step, all pose cell activity levels are kept positive, by evaluating neg-

ative activity amount to zero. We then normalise the activity in the matrix, by

updating the activity level of each variable with equation 3.5.

P t+1
x′,y,θ′ =

P t
x′,y,θ′

nx′∑
i=0

ny′∑
j=0

nθ′∑
k=0

P t
i,j,k

(3.5)

The path integration process, described in section 2.1.2.2, updates the pose

cell activity by shifting the current activity packet, using, equation 3.6.

P t+1
x′,y,θ′ =

δx′0+1∑
i=δx′0

δy′0+1∑
j=δy′0

δθ′0+1∑
k=δθ′0

P t
(x′+i),(y′+j),(θ′+k)αi,j,k (3.6)

where δx′0, δy′0, δθ′0 are the rounded down integer offsets in the x’, y’ and θ’

directions [14] . The residue component α, is a 2*2*2 cube created from equa-

tions 3.7 and 3.8.

αa,b,c = g(δx′f , a− δx′0)g(δy′f , a− δy′0)g(δθ′f , a− δθ′0) (3.7)

g(u, v) =

{
1− u, if v = 0;

u, if v = 1

}
(3.8)

Equations 3.9 and 3.10 show how δ′0 and δ′f are computed.
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δx′0δy′0
δθ′0

 =

bkx′ v cos θ′c
bky′ v sin θ′c
bkθ′ ωc

 (3.9)

δx′fδy′f
δθ′f

 =

bkx′ v cos θ′ − δx′0c
bky′ v sin θ′ − δy′0c
bkθ′ ω − δθ′0c

 (3.10)

The errors introduced in path integration, are not corrected like self-motion

errors are, in a probabilistic SLAM. This is why we use local view calibration,

as described in section 2.1.2.3. We use local view cells, to inject activity in the

pose cell network, based on learnt associations. Local view cells are represented

by vector V, where each element of the vector represents the activity of a local

view cell. The associations between local view cells and pose cells, are stored in

the association matrix, β. A local view cell becomes active, if the image input

provided is sufficiently similar to a previously stored image, associated with a

stored local view cell. In this case the local view cell will inject that activity into

pose cells that are stored in the association matrix, related to it. The learnt

connections in β, follow a learning routine similar to Hebb’s law, where the

association between a local view cell, Vi, and a pose cell, Px′,y′,θ′ is given by

equation 3.11.

βt+1
i,x′,y′,θ′ = max(βti,x′,y′,θ′ , λViPx′,y′,θ′) (3.11)

This equation is applied in each cycle, on all active local view cells and pose

cells. The calibrated pose cells, will now be updated with a correction value,

based on the equation 3.12.

∆Px′,y′,θ′ =
δ

nact

∑
i

βi,x′,y′,θ′Vi (3.12)

where δ determines the strength of visual calibration, and nact is the number of

active local view cells [9] . In section 3.2, we describe how activity is injected

into the local view cell vector, V, via a single camera.
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3.1.2 Experience Map

In section 2.2.6 we discussed why an experience map is created, and how to

connect experiences via their transition. The transition value, tij is unlikely

going to stay the same during a run. This is because the experience correction

algorithm will correct these transitions, following an experience map update [7]

. The changes in transitions will be more apparent during a loop closure, where

the correction will be higher. The equation for calculating the corrected transi-

tions is shown in equation 3.13.

∆pi = α

[
Nf∑
j=1

(pj − pi −∆pij) +
Nt∑
k=1

(pk − pi −∆pkj)

]
(3.13)

where α is a correction rate constant, Nf is the number of links from experience

ei to other experiences, and Nt is the number of links from other experiences

to experience ei [6] . The correction rate constant α was set up to 0.5 since

larger values resulted in map instability [13].

3.2 Extending the RatSLAM algorithm

RatSLAM has been previously implemented in various experiments, including

mapping a large outdoor suburb area [12]. This experiment has been proven

successful, but with two critical restrictions:

• The orientation of the camera being used must be forward facing with

respect to motion.

• The movement of the camera has little or no translational movement

parallel to the camera sensor plane.

Taking into account these restrictions, we conclude that in order for the system

to work effectively for our purpose, we must extend the visual odometry module,

seen in figure 3.1, so that it works in situations where the above restrictions

are not taken into consideration. Also, we have to make sure that the visual

template module, correctly recognises already visited areas, so that loop closures

are detected successfully. In this system, we will use the same input images,

provided to the visual odometry module.



3.2. EXTENDING THE RATSLAM ALGORITHM 21

3.2.1 Local View cell calculation

Previous RatSLAM experiments, used three ways for calculating the local view

cell vector:

• A cylinder recognition system

• A sum of absolute differences matcher

• A histogram matcher

Since we are using a single, not panoramic camera, we have chosen the sum of

absolute differences matcher as the main algorithm for the vision system.

When a new frame is available from the camera, the visual template module,

takes a portion of the image, and computes the sum of absolute differences

on each column of the sub-image, creating a profile template. This is then

compared to all previously stored sub-images. If the difference is small, then it

is decided that the image represents a previously visited area. Otherwise a new

local view cell is created, representing this profile template. The comparison

between the new profile and all stored profiles, is done using equation 3.14.

f(s, Ij, Ik) =
i

w − |s|

(
w−|s|∑
n=1

∣∣∣Ijn+max(s,0) − Ikn−min(s,0)

∣∣∣) (3.14)

where Ij and Ik are the scan-line intensity profiles to be compared, s is the pro-

file shift, and w is the image width. This comparison is made over a small range

of pixel offsets, ψ to provide some generalisation in rotation to the matches.

The best match is found by equation 3.15.

km = argmin f(s, Ij, Ik), s ∈ [−ψ, ψ] (3.15)

This match is then evaluated by equation 3.16,

d = min
s∈[−ψ,ψ]

f(s, Ij, Ikm) (3.16)

and compared to a threshold dm. If the result is below this threshold, then

the profile template is considered an already saved template. Otherwise, a new

local view cell is created in V, representing this profile template following the

equation 3.17.
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Vi =

{
dm − di, di 6 dm

0, di > dm
(3.17)

for all i.

3.2.2 Visual Odometry

3.2.2.1 Video Stabilisation

The initial idea for the visual odometry module algorithm, was to create a sub-

module named Video stabiliser. This sub-module, would process the frames

coming into the visual odometry module, and providing a sequence of images,

where the movement of the person would be stabilised. Since there are nu-

merous image stabilization algorithms available, a program was used, named

Virtual Dub, to stabilize an off-line video. After this video was stabilised it was

sent to the visual odometry module to calculate the offsets. The calculations

where based on the sum of absolute differences matcher.

In order to calculate rotation, equation 3.14 is used on consecutive frames. The

pixel shift, sm, is the shift in consecutive frames, Ij and Ik, that minimises f()

based on the equation 3.18.

sm = arg min
s∈[ρ−w,w−ρ]

f(s, Ij, Ik) (3.18)

where ρ is the value that ensures that there is sufficient overlap between images.

As soon as sm is found, it is then multiplied by the gain constant, σ, which is a

value calculated empirically based on the camera used. You point a camera to

an object, knowing the distance from the object, and the width of the object.

We then calculate the angle created from the triangle between the camera and

the edges of the object. That is the value of the variable σ.

A similar approach is used to calculate the amount of distance travelled by the

person forwards, between two consecutive frames. Again, we use equation 3.14,

and generate a speed estimate of the persons movement between two frames,

based on equation 3.19.

u = min[ucalf(sm, I
j, Ij−1), umax] (3.19)

where ucal is again empirically measured based on the speed of movement and

camera. In order to compute the value of ucal, we do the following steps:
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1. Capture a video of a person moving forwards, at walking speed.

2. At the same time, estimate the average walking speed, aw.

3. Run the video sequence through equation 3.14 and find the minimum

differences in shift between intensity profiles of consecutive frames.

4. Calculate the average minimum difference shift and multiply by the num-

ber of frames per second to get md.

5. Finally divide the average speed travelled by the person, by md to get

ucal.

ucal =
aw

md
(3.20)

It was observed, that during the system runs, sometimes there where extreme

values calculated for the speed estimation. In order to avoid these erroneous

measurements, we use umax as the upper limit for speed calculation, set to a

value that approximately represents the top speed of a walking person.

As soon as the visual odometry module was completed, the stabilised video was

passed to it for processing. The estimations of speed and rotational offsets

were not very accurate, as rotational values where always over-estimated. The

method of stabilizing the video prior processing was proven promising for the

visual odometry module, although some calibrations had to be made. The

was another, major drawback though when using this method. Feeding the

stabilized video to the visual template module gave some unexpected results.

Even though the video sequence was clearly making a loop closure, the visual

template module was not matching new templates with already stored ones,

thus not recognizing that a place in the map has been revisited. Indeed, by

looking at figure 3.2, we see that throughout the whole video sequence, local

view cells are continuously being created, but never identified again.

In a re-run of the same sequence, the threshold value of dm in equation 3.17

was increased to give a greater chance for a template match. Unfortunately, the

results have shown that even though a loop closure has been detected we had

plenty of false positive matches as well(figure 3.3). This means that multiple

erroneous loop closures would wrongly affect activity in the pose cell matrix,

and eventually the creation of a faulty experience map.

Using an image stabilization algorithm imposed some new problems to our

system. During the stabilization process, frames are edited, cropped, zoomed

and transposed, in order to provide a less ”shaky” video stream [15] . The
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Figure 3.2: Local view cell creation and recognition per frame

Figure 3.3: Local view cell creation and recognition per frame, with in-
creased dm threshold

result, is a stabilised video stream, which is not ’clear’ enough. The image

frames appear blurry and out of focus. Sometimes black borders appear on the

edges of image frames, because of excessive camera shake. As a consequence,

the visual template module was creating biased image templates, that where not

representing the actual intensity profiles of images that were originally captured

by the camera.

In figure 3.4a., we see a created experience map, that closely represents the

actual path a person has taken. In figure 3.4b. and 3.4c. we see the experience

maps created using the stabilized video, with variable’s dm value increased in c.

The experience maps created when using the image stabilization algorithm as

a solution to the extended RatSLAM system have proven that another method
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Figure 3.4: Experience maps created during an experimental run, with
different dm values

had to be chosen, in order to make the system more reliable. In the following

section, we describe a new method used that made RatSLAM deliver more

consistent and correct results.

3.2.2.2 Vertical Image Shift

This idea was inspired while observing the frame-by-frame motion action of an

off-line video sequence captured for testing. Motion vectors where applied to

the image frames, in order to detect the camera motion when held by a person

while walking. The video result, showed a repeated pattern of human motion

while walking forwards. If we observe the consecutive frames shown in figure

3.5, we can see that an arc is created by the motion vectors. In fact if more

image sequences where shown, the motion vectors follow a pattern similar to

the one shown in figure 3.6.

This pattern is the reason why equation 3.17 cannot be used for calculating

intensity differences in consecutive frames. For example, let’s assume that the

camera is not shaking (i.e always parallel to the camera plane) and two consecu-

tive image frames are sent to the visual odometry module. The visual odometry

module then takes a subset of this image, and sums the pixel intensities in a

column wise direction, like in figure 3.7.

The next step is to shift the second image on top of the first one, in order
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Figure 3.5: Motion vectors detect camera movement on a frame-by-frame
rate. The sequence begins from the top left image

to find the minimum offset between the two images, where the sum of absolute

difference is minimised, as illustrated in figure 3.8. This method does not work

correctly though when the camera is not consistently parallel to the camera

plane. This is because the camera shake introduces erroneous shifts in the im-

ages, both in the horizontal and the vertical axis. The idea of the algorithm

described below, is again based on the sum of absolute intensity differences,
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Figure 3.6: A repetitive motion pattern describing the camera movement
while a person walks forwards

Figure 3.7: Consecutive frames captured by a stable camera. The inner
squares, are the subsections the visual odometry module extracts for calcu-
lating rotation. The sum of absolute differences based on pixel intensities
is then calculated in a per column pattern

but with additional processing to eliminate the camera shake. Instead of shift-

ing sub-images in the horizontal axis and immediately calculate the minimum

possible offset, we introduce an intermediate algorithm:

• We shift the sub-images vertically, until we find the minimum shift, based

on sum of absolute differences in per row pixel intensities .

• We then extract a new sub-image from the second frame, but this time

we add the minimum offset shift.

• Finally we replace the old sub-image with the new one, and exit the

algorithm.
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Figure 3.8: Shifting Frame t+1 to the left, until the sum of absolute differ-
ence in intensities between the two images is minimised

Figure 3.9: Two consecutive image frames, with sub-images selected for the
visual odometry module.

The outputs of each step during this algorithm run are presented visually in

figures 3.9, 3.10 and 3.11.

As we can see from figure 3.11, the vertical camera shake is eliminated

by the algorithm. As stated in section 3.2.2.2, the camera shake was always

following a pattern in the shape of an arc. By eliminating the vertical cam-

era shake, we now need to eliminate horizontal camera shake. This could be

done by re-applying the algorithm described above, but this time checking if

the horizontal shift was below a threshold, shiftmax. Instead,we provide the

sub-images to the visual odometry module and expand the rotation calculation

algorithm to cope with this horizontal shake. When estimating rotation, we

calculate the minimum shift, sm calculated in equation 3.18. This shift though

is biased, since the camera horizontal shake is added to it as well. This is why

we extend the algorithm, and the new sm is decided by equation 3.21,

sm =

{
0, sm < bs

sm, otherwise
(3.21)
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Figure 3.10: Sub-image of frame t+1 is shifted vertically until it is matched
with frame t in the best possible way

Figure 3.11: Frame t+1 is assigned a new,corrected sub-image, which is
then sent to the visual odometry module

where bs is the horizontal shift created by the camera shake. This value can

be calculated empirically, by processing a video sequence of forward movement

while holding a camera, and calculating the average horizontal offset created

by camera shake during that sequence.

When running the extended RatSLAM model with the method used in this sec-

tion, the results where outstanding. The same video stream was used during

this experiment, as the one used with the video stabilisation algorithm, in sec-

tion 3.2.2.2. The results, comparing to the ones we discussed in sections 3.2.2.2

are more accurate and consistent. Using the video stabilisation algorithm, the
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Figure 3.12: Experience map, compared to the actual route taken. The dot
on the actual map is where the video sequence started

experience map created (figure 3.4b. and c.) was not a good representation of

the actual route the person has travelled during the video recording. On the

other hand, using the algorithm explained in this section, the experience map

created was an accurate representation of the route travelled. As we can see

from figure 3.12, the map is consistent, and almost spot on compared to the

actual route followed.

During the same experiment, we recorded the activity of the local view cells,

and how they where manipulated by the visual template module. The results

again where accurate. We can see in figure 3.13, that local view cells where

created, whenever unknown scenes where encountered. During the end of the

video stream, the person returns to the starting point, and follows an already

explored route. Again, in figure 3.13 we observe that towards the end of the

run, the visual template module has recognised that image frames given to
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Figure 3.13: Local view cell creation and recognition per frame intervals.
We can see that towards the end of the video sequence, familiar scenes are
detected, meaning that there is a possible loop closure

the module for processing, have been recognised as already saved images, thus

possibly an already explored area. Further testing of the extended RatSLAM

system is presented in Chapter 4.

3.3 Implementing the extended RatSLAM algo-

rithm

The programming language that was initially chosen for coding the RatSLAM

model, was C++. The only drawback, was the lack of an existing interface

between video capture devices and the programming language. This is the

reason why it was decided that an other programming language had to be

chosen. So after research, the language chosen was Matlab. There where

several reasons why MatLab was chosen, the most important being:

1. The ability to read and manipulate multimedia files

2. By adding a specific plug-in you can read live video sequences from any

camera device

3. Combining files written in C++ with functions in Matlab, in order to

process computationally expensive algorithms faster

4. Using the plotting area to show a graphical visualisation of how RatSLAM

works (i.e Experience map, the pose cell 3-D network, the raw video feed.)
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The ability to combine C++ files and Matlab functions was really helpful, since

it made the whole algorithm run 4 times faster. Profiling results are shown in

Chapter 4. Understanding the way of communication between the programming

languages was a difficult point during the project development.One example, is

that Matlab numbers matrices column-wise, whereas C++ numbers them row-

wise, starting from 0, not 1.Also Matlab uses only one type of structure, the

mxArray. So sending variables to C++ is simply providing a number of mxAr-

rays. One could be an Integer, another being a Matrix. They had to be handled

in a special way so that the correct inputs where given to the program.

Within Matlab, each module shown in figure 3.1 was written in a separate

file. This way, each module was developed, tested and debugged individually. A

separate file, combined and coordinated all modules, and displayed the result on

the plot area. The C++ files, where written within Matlab. They where then

compiled, and a .mex file was created, which was the one used by the program

during runtime, whenever the C++ function was called.



Chapter 4

Evaluation/Discussion

When the project was being developed, there where two kind of requirements

that had to be fulfilled. One was to deliver consistent and accurate results,

the other being to compute those results fast enough. Therefore, two types of

testing where taking place at the same time. A built in profiler was used to

time the program during execution, and maps where created and saved, to view

if the algorithm mapped an area accurately. Both types of testing, required the

complete working Matlab code, including the compiled C++ files.

The experiments where conducted on a 2.83 GHz Intel Core Duo processor,

and 3 GB of RAM. The system was using the Windows Vista 64-bit operating

system. The version of Matlab installed was ver. 7.7.0(2008b), and the C++

compiler used was Microsoft Visual C++ 2008 Express. In order to compile

C++ files in Matlab, one has to type ”mex -setup” in the Matlab console,

and follow the steps to set up the preferred C++ compiler. Then, C++ files

can be compiled, by typing ”mex foo.c” in the Matlab console, where ”foo” is

the name of the C file.

All off-line videos, where captured using two type of cameras:

• Canon Digital IXUS 700

• SONY DCR-SR35 Video Camera

and then converted into .avi files, using the xvid compressor.

4.1 Program Profiling

The system went through profiling tests in 4 rounds. The video sequence used in

all rounds was the same, and no program adjustments where made in between.

33
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The output of the RatSLAM algorithm was exactly the same after each round.

This way we can focus completely on efficiency, rather than output quality and

result accuracy. The built in Matlab profiler, need not any initial configuration

when used.

There are three .mex files (compiled .c files) in the project, and each one was

written in order to help Matlab functions with computational burden. In the

4 round testing, we initially profile a complete working program, with no help

from .mex files and obtain some unsatisfactory results.

Function Name No. of Calls Total time (in s) Self time time (in s)
main 1 750.344 0.31
experience map iteration 1068 281.602 143.666
visual template 1068 171.518 169.343
pose cell iteration 1068 146.07 134.862

Table 4.1: Profiling results after round 1. Total time is the time a function
was consuming. Self time represents the time solely spent by the function,
excluding external calls

Table 4.1 shows the profiling results after processing a video of length 135

seconds. The complete process was taking too long, with the computational

burden appearing in the functions displayed in table 4.1. More functions where

used, but here are shown the ones that taken most of the time. Using the

Matlab only system, we see that the RatSLAM model was running 5.5 times

longer than the length of the video, in order to create the experience map for

the whole video sequence. The results for the visual template module, have

showed that 99% of the computational burden was within the function, and not

because of external Matlab calls.

In Round 2, we profiled the program, which this time included a .mex file,

segments.c. It is used by the visual template module to improve it’s efficiency.

When profiling the program again, we got some better results, shown in table

4.2.

The visual template module, has now dropped to around 52 seconds, with

self time of 3.625 . The rest of that time, segments.mex was doing the calcu-

lations for the module, making it 3.3 times faster than in round 1. Clearly, the

experience map iteration function is now the most computationally expensive

function, consuming 45% of the total program run time.

In Round 3, the second .mex is added to the program, vtcalc.mex, which is used

by the experience map iteration function. Profile results after the run of this

round are shown in table 4.3.
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Function Name No. of Calls Total time (in s) Self time time (in s)
main 1 630.628 0.282
experience map iteration 1068 281.602 143.666
pose cell iteration 1068 146.07 134.862
visual template 1068 51.802 3.625
segments(MEX-function) 271016 48.492 48.492

Table 4.2: Profiling results after round 2. Total time is the time a function
was consuming. Self time represents the time solely spent by the function,
excluding external calls

Function Name No. of Calls Total time (in s) Self time time (in s)
main 1 240.165 0.274
pose cell iteration 1068 151.22 138.942
visual template 1068 50.068 3.863
segments(MEX-function) 271016 46.437 46.437
experience map iteration 1068 17.091 1.654
vtcalc(MEX-function) 1068 13.911 13.911

Table 4.3: Profiling results after round 3. Total time is the time a function
was consuming. Self time represents the time solely spent by the function,
excluding external calls

Using vtcalc.mex made the whole program much faster, by making the ex-

perience map iteration function 16.5 times faster than round 2. The pose cell

iteration function is now the most computationally expensive function consum-

ing 63% of the total program run time.

Finally in Round 4, posecell-iteration.mex is used by the pose cell iteration

function, giving the profiling results in table 4.4.

Function Name No. of Calls Total time (in s) Self time time (in s)
main 1 147.602 0.044
visual template 1068 47.882 4.146
segments(MEX-function) 271016 44.153 44.153
pose cell iteration 1068 30.679 10.322
experience map iteration 1068 17.091 1.654
vtcalc(MEX-function) 1068 13.911 13.911
posecell-iteration(MEX-function) 2136 6.007 6.007

Table 4.4: Profiling results after round 4. Total time is the time a function
was consuming. Self time represents the time solely spent by the function,
excluding external calls

The pose cell iteration function is now 4.9 times more efficient than in round

3. As a result of using these three .mex files, the total run time of the program

was estimated to be 147.602 seconds. Comparing this to the total run time of
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Figure 4.1: How computationally expensive modules are improved, after
each round

Figure 4.2: Total run time after each round. The aim is to have a total run
time, less than or equal to the video run time(video length)

the video sequence, which was 135 seconds, an additional 12.602 seconds of

processing time is required. This means that there is a 0.087 seconds of delay

in each second of the video sequence. Figure 4.1 shows how the three most

computationally heavy modules where improved after each round. As a result

the total run time was reduced, almost reaching real-time processing capabilities

(figure 4.2).

4.2 Test Cases and Experiments

This section describes experiments run in indoor and outdoor environments.The

experiments where carried out on a desktop computer, whose specifications
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Figure 4.3: Floor plan of indoor test area

where described at the beginning of this chapter.

4.2.1 SLAM in indoor environments

This set of experiments where carried out in an indoor environment, with di-

mensions of approximately 7 m × 4 m. No modifications where made to the

environment. No information was given to the program prior execution. Learn-

ing, recall and map calibration where all made during the experiment at regular

intervals. A floor plan of the indoor testing area, is shown in figure 4.3.

In the following tables, we see how variables, stated in Chapter 3, are set

in order for the experiment to be accurate. For example, the average walking

speed in this indoor environment, is 0.2 m/s -ucal-(table 4.8 ). It is important to

state that dm, in table 4.6 was set to a low value, comparing to the value given

in outdoor experiments. The performance of the algorithm was dependent on

how this value is set.

Pose cell Variables
nx′ , ny′ ,nθ′ 61 × 61 × 36
Pose cell size 0.2 m × 0.2 m × 10 deg
kp 7 cells(70 m)
kd 7 cells(70deg )

Table 4.5: Variable value assignments for indoor environments
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Local View cell Variables
dm 0.06

Table 4.6: Variable value assignments for indoor environments

Experience map Variables
a 0.5

Table 4.7: Variable value assignments for indoor environments

Empirically calculated Variables
σ 0.0625 degrees per pixel
ucal 0.2 m/s
umax 0.35 m/s

Table 4.8: Variable value assignments for indoor environments

Indoor Test 1

In this experiment, a video sequence was captured during a route shown in

figure 4.4 .The duration of the test was 4:11 minutes. The path was repeated

three times, in two RatSLAM configurations. The first configuration included

no local view cell calibration, thus the experience map was displaying pure

odometric measurements [7] . The second configuration of RatSLAM, included

local view cell calibration and the results where completely different.

Figure 4.5 shows the experience map delivered at the end of the video

stream, while using the 1st configuration. We can see that there are odometric

errors in the created map, and no detected loop closures. The reason why the

errors seem to be so big, is because of image frames that had no features (i.e

a white, featureless wall), thus not accurately computing camera movement

in between frames. A rigid example, is a sequence of frames, where during

rotation, a white wall is encountered, and rotation is calculated inaccurately

(figure 4.6).

When the second configuration was used, local view cells calibrated the

experience map, making a huge difference. The experience map is presented

in figure 4.7. The path was calibrated every single time a loop closure was

detected. It’s obvious, that the visual template module, is a must during a

SLAM test, since external cues are important for calibrating a purely odometric

system. A problem encountered during this test, was recognising the initial
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Figure 4.4: Path taken during Test 1

Figure 4.5: Path taken during Test 1

stored images during loop closure. This is the reason why an extra line appears

on the bottom right corner of the experience map in figure 4.7.

There where 443 visual templates created, over a total of 2517 image frames.

As shown in figure 4.8, all three loop closures where recognised by the visual

template module, by identifying familiar scenes that have been visited before.

An important observation, is that the system does not recognise already visited

paths if travelled in opposite directions. In order to tackle this problem, an

omnidirectional camera can be used instead, providing 360 degrees images.
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Figure 4.6: A sequence of images where rotation and forward movement are
calculated inaccurately

Figure 4.7: Experience map delivered after Test 1, using local view calibra-
tion

Indoor Test 2

Under the same conditions, another experiment took place in the same in-

door environment, but with a different route, as shown in figure 4.9. The total

length of the video sequence was 1:57 minutes. The path was repeated 1.5

times.
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Figure 4.8: Creation and recognition of Visual templates

Figure 4.9: The route for Indoor test 2

Again we run the video sequence twice, one with a path integration only per-

formance, and one with the complete program, including local view calibration.

The results where similar to the ones in Test 1. When local view calibration

was disabled, the experience map created did not show any consistency or ac-

curacy comparing to the actual route taken by the person (figure 4.10). It is

worth mentioning though, that even if the experience map is not accurate, each

individual line on the map is a good representation of the corresponding path

line travelled in the real world. Thus the repeated line patterns occurring in the
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Figure 4.10: Experience map created while in a Path Integration only per-
formance. The pattern of the path that was travelled twice, is erroneously
plotted twice, the second time being rotated comparing to the first pattern.

Figure 4.11: Experience map creation during a complete program run

map, which in normal conditions, should have been just a single pattern.

When local view calibration was activated in the 2nd run, more accurate

results where plotted on the experience map, by calibrating odometric errors.

Loop closures where detected, already visited routes where identified, and the

final result was much more accurate than the first run. Figure 4.11 shows what

the experience map looked like at the end of the run.
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Figure 4.12: Creation and Recognition of Visual Templates

In this test run, 455 local view templates where created, in a total of 2937

frames (figure 4.12).We can clearly see the image identification, indicating a

possible loop closure between at frame 1275, and then a continuous identifica-

tion of images, giving a possible sign that the path has been explored before.

The same pattern starts repeating itself from frame 2590.

4.2.2 SLAM in outdoor environments

This set of experiments, focuses on SLAM in outdoor environments.No mod-

ifications where made to the environment. No information was given to the

program prior execution. Again, learning, recall and map calibration where all

made during the experiment at regular intervals. No extra,off-line processing

time was given for any calculation. Some system variables had to be changed

in order for the program to work well in outdoor environments, shown in the

following tables.

Pose cell Variables
nx′ , ny′ ,nθ′ 61 × 61 × 36
Pose cell size 2 m × 2 m × 10 deg
kp 7 cells(70 m)
kd 7 cells(70deg )

Table 4.9: Variable value assignments for outdoor environments

We can see that the local view template threshold, dm, is set to 0.1 (table

4.10), comparing to 0.06 used in the indoor environment. This is because while

doing a sample run, it was noticed that visual scenes which have already been



44 CHAPTER 4. EVALUATION/DISCUSSION

Local View cell Variables
dm 0.1

Table 4.10: Variable value assignments for outdoor environments

Empirically calculated Variables
σ for Sony DCR-SR35 0.089 degrees per pixel
σ for Canon Ixus 400 0.056 degrees per pixel
ucal 1.7 m/s
umax 2.35 m/s

Table 4.11: Variable value assignments for outdoor environments

Figure 4.13: Actual path taken during Outdoor Test 1

visited, where not identified [9]. Thus the threshold went through a tuning

period, where it’s value was incrementally raised, until familiar scenes where

recognised. While incrementing the value above 0.1, many false positives ap-

peared in the results. Thus it has been decided that this value was the ideal for

balancing visual discrimination and generalization.

Outdoor Test 1

During this experiment, a single 60 m × 20 m square was travelled, creat-

ing a single loop closure in under 5:52 minutes (figure 4.13). The starting point

was A, and following the square in an anti-clockwise direction, end up at point

B.
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Figure 4.14: Frames from the video sequence for Outdoor Test 1

The video was captured during mid-day on a normal working day. There was

not any preparation prior the capture of the video. As shown in figure 4.14,

there where parked cars of different colours, paths where intense light reflections

where reducing the picture quality, and areas where other people are present,

and are captured in the video sequence.

This did not affect the overall performance of the algorithm though. We got

some good results, even when local view calibration was not enabled. As we can

see from figure 4.15, the final map is accurate enough. What RatSLAM has not

done, is detect the loop closure towards the end of the video sequence, and fix

the experience map. So when the video sequence reached point A after a whole
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Figure 4.15: Experience map after a Path Integration only performance

Figure 4.16: Experience map after a Complete System run, including Local
View Calibration

loop, an odometric error caused a slight shift to the left. As a consequence,

two paths on the experience map represent the single route between A and B.

During another run, the local view calibration was enabled, and the result

can be seen in figure 4.16. The loop of the square was detected, and the part

of the route that was travelled twice (between A and B) was recognised with

the help of the visual template module. As a result, the SLAM algorithm has

created a map, that is very accurate, with no additional erroneous paths.

It is important to recall that the experience map is corrected continuously

throughout an experiment. In order to cause a big correction in the map, a loop
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closure should occur. Using figure 4.17 as an example, we see on the left column

the experience map and on the right column the local view cells. The first pair

shows an indication that there might be a possible loop closure because familiar

scenes are recognised on the local view graph. By viewing the next pair, we can

say that the scenes recognised where actually an already travelled path, since

the local view graph keeps showing that more familiar scenes are recognised.

This is where the gap, between the Starting Point of the route and the current

position of the person, is filled. The third pair indicates that further correction

was done on the map after the loop closure, and the current position of the

person holding the camera is on a path already travelled. This is also confirmed

by the visual template graph, where familiar scenes continue to get recognised.

Outdoor Test 2

This test run involves an outdoor environment of 160 m length and 25 m width.

The conditions where the same as with Outdoor test 1. The video sequence

was 23 minutes long. It includes 3 loop closures, as shown in figure 4.18.

At the end of the run, the final experience map was the one showing in

figure 4.19h. The map is consistent concerning the path taken throughout the

route. What the program has not been able to do, is to generate a straight

line while walking a 160 m straight street. Because of this, the rest of the map

becomes slightly bend when the loop closures occur, and a peculiar S bend at a

part of straight path. Some of the key moments of experience map correction,

during the experiment, are displayed in figure 4.19

In figure 4.19.a ,the first loop closure is detected, thus the result in 4.19.b. In

4.19.c, we see that the 160 m straight line was recorded by the visual odometry

as slightly bend. 4.19.d shows the second loop closure. The most important

figure, is 4.19.e. At this point, because of the small curve created at 4.19.c, the

current path is very inaccurate in comparison to the actual route taken, which

should be a straight line connecting the 1st with the second loop closures. At

4.19.f, the visual template injects activity to the pose cell network, since familiar

scenes are recognised. This results in the 3rd loop closure. It is obvious though,

that the current experience map does not represent the actual route, since an

approximately 315 degree turn is introduced into the path, which is non existent.

What we see in 4.19.g and 4.19.h, is a further correction of the experience map,

caused by the loop closure in 4.19.f. The result of this experiment is not entirely

accurate, but it is consistent enough. There are two ways that could improve

the output of this test stated below:
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Figure 4.17: Loop Closure and Experience Map correction

1. Increase the number of experience correction loops made after each cycle.

The problem is that as you increase the number of correction loops, the

less efficient the program becomes.

2. The final map was fairly corrected after 3 loop closures. If the video

sequence was extended, and more loop closures where added to the se-

quence, then the experience map would be further corrected, thus be-

coming more accurate.



4.2. TEST CASES AND EXPERIMENTS 49

Figure 4.18: The three loop closures during the experiment

Outdoor Test 3

This test was carried out in order to confirm that the Extended RatSLAM

model described in this report, alongside the new visual odometry algorithm,

delivers accurate results when run on test cases used in the standard RatSLAM

algorithm. The video sequence used, is a route around a suburb of St Lucia,

in Brisbane, Australia and has a total length of 35 minutes. The video was

captured from a laptop’s built in camera, mounted on the roof of a car. This

way it was ensured that the camera was always facing forward with respect to

motion, and the movement of the camera had almost no transational movement

parallel to the camera sensor plane [13].

It is important to say that some variables used in the Extended RatSLAM

algorithm had to be changed. Most important changes, are the Pose cell size

(table 4.12), and the empirically calculated variables σ, ucal and umax (table

4.14). The reason these variables have changed, is because during this video

sequence, the speed of movement is larger than the one we previously set (table

4.11), since now the way of travelling through the route was via a car, and not

on foot. For this reason, the Pose cell Size has increased as well, each cell now

representing a 10 m × 10 m area in the pose plane.

After the completion of the test, we acquired some test data to evaluate

the results. In figure 4.20, we show the real map of the St Lucia suburb, with

the route taken shown in colour red.

During the test, 6807 Visual Templates where created, and 7406 experiences



50 CHAPTER 4. EVALUATION/DISCUSSION

Figure 4.19: Experience map Creation and Correction during Outdoor Test
2

Pose cell Variables
Pose cell size 10 m × 10 m × 10 deg

Table 4.12: Variable value assignments for the St Lucia experiment

alongside the corresponding transitions. All 12 loop closures where detected,

and the map was corrected accordingly. The final experience map is shown in

figure 4.21.

Using the experience map as a visual form of evidence, we can conclude that

the algorithm explained in Chapter 3 can be successfully used as an extension
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Local View cell Variables
dm 0.09

Table 4.13: Variable value assignments for the St Lucia experiment

Empirically calculated Variables
σ 0.0828 degrees per pixel
ucal 13.2 m/s
umax 18.5 m/s

Table 4.14: Variable value assignments for the St Lucia experiment

Figure 4.20: Actual map of a St Lucia suburb, with the route taken shown
in red

of the existing RatSLAM model, and still deliver accurate results on runs tested

with the existing RatSLAM model.
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Figure 4.21: Final Experience map after the completion of the test run

Figure 4.22: Visual template creation and recognition during all 20999
frames



Chapter 5

Conclusions and Further work

Developing a SLAM algorithm is one of the most challenging problems in mobile

robotics. Existing algorithms, such as Extended Kalman Filters or Particle fil-

tering using Monte Carlo localisation are purely mathematical implementations

which heavily rely on probabilities. As a result a huge computational burden

makes mapping large outdoor environments a hard problem. Expensive sensor

receivers have also been used in combination with a probabilistic SLAM algo-

rithm, to tackle this problem. Although sensory inputs provide very accurate

data of the environment, running the algorithm in real time is impossible. Off-

line computations are made in order to provide reliable results.

A new approach for solving a SLAM problem has been recently introduced,

where the algorithm does not make any use of statistics. It is brain inspired,

and tries to simulate the way a brain navigates in space. It relies more on the

concept of creating a mental map, like humans do, and recognise familiar sights

by going back in time and remembering if a sight has been visited before.

RatSLAM is an algorithm developed by Michael Milford and Gordon Wyeth.

It is a biologically inspired SLAM algorithm, that simulates an extended model

of the rodents hippocampus. It has the strengths of both the probabilistic and

biologically inspired systems. The algorithm was successfully used in large scale

outdoor environments.It is proven that it can solve these demanding experi-

ments by using simple vision sensors, like a web-cam, instead of expensive, high

fidelity range sensors.

The purpose of this project was to implement an extended version of the existing

RatSLAM algorithm, in order to provide personal localisation using a hand-held

video camera. Existing work, has presented results where RatSLAM has accu-

53
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rately localised robots, and created detailed maps of unknown environments.

During the experiments though, it was clearly stated, that the platform hold-

ing the camera was fixed on the robot in a rigid position, so that the camera

would always point at a fixed parallel plane to the ground (sensor plane), with

minimum to none transitional movement compared to that plane, and facing

forwards in respect to movement.

This project has implemented the core RatSLAM algorithm, and extended it’s

visual odometry algorithms, in order to eliminate the restrictions stated in pre-

vious implementations. Two methods have been used to solve this problem. An

image stabilisation algorithm, and an algorithm based on pixel intensities. The

first method has proven to be erroneous, the main reason being that the video

sequence provided to the algorithm was pre-processed, thus reducing the quality

of the video. The second algorithm, was basically doing a sort of image stabili-

sation, but within the RatSLAM model, without altering the video input frames.

Test results have shown that the extended RatSLAM algorithm worked well

during experiments, by detecting all loop closures, providing an accurate map

representation of the navigated area, and localising the person holding the cam-

era in all times. In some experiments, loop closures where not detected imme-

diately like they would in a probabilistic SLAM algorithm, the reason being that

some times images where not recognised as already seen areas. Eventually the

loop closures where detected, and correction algorithms eliminated any erro-

neous map representations of the navigated areas.

Although the algorithm is implementing SLAM, it was not tested in a real

time environment. The lack of equipment and the required program, made it

impossible to use the algorithm in real time. The purpose of this project though,

was to provide an algorithm that implements personal SLAM using simple vision

sensors. Although the videos where off-line, and stored on the computer hard-

disk, there was not any preprocessing made on those videos, and they where

given to the algorithm the same way they where captured by the video camera.

By having the right equipment, and installing the Image Acquisition Toolbox

plug-in in Matlab, converting the existing code into a program that runs in real

time is as easy as changing 10 lines of code.
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5.1 Further work

Test results have shown that the extended RatSLAM algorithm used in this

project is very promising. It can now simultaneously create maps of unknown

environments, and localise both mobile robots, where camera shake is barely

present , and a person walking, where camera shake is apparent throughout a

video sequence.

Using this extended algorithm, possible future research and work can be:

• The whole project could be converted into a real-time algorithm, and

be used in experiments with mobile robots by providing on-board SLAM

capabilities.

• If used with a mobile robot, which has self-motion sensors, the feedback

from those sensors can be used to provide an additional calibration on

path integration, thus making the program even more reliable, and less

prone to errors.

• An interesting idea, would be to extend this program, and develop algo-

rithms, that would intelligently recognise if a robot is either driving, or

walking. This might sound as science fiction at present, but imagine in

future years, where humanoid robots have the ability to choose either driv-

ing a vehicle or exploring an area on foot. Using an intelligently designed

RatSLAM algorithm, the robot would have SLAM capabilities whenever

using either of it’s two possible ways of transportation, each having a

completely different motion pattern, thus feeding the algorithm with a

different type of video sequences. Large outdoor environments, and in-

door areas could be mapped by a single robot, using a more advanced

RatSLAM algorithm.
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Appendix A

Downloads

The following web-page includes a list of available downloads, of all tests used

in Chapter 4. The video sequences show how the experience map is created

and corrected during the test runs.

All videos are encoded with the Xvid MPEG-4 codec, an open source soft-

ware (GNU GPL licence), which is available for download from this web-page:

http://www.xvid.org/Downloads.15.0.html.

Web-page for available downloads:

• http://www.doc.ic.ac.uk/∼sk205/
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