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Abstract

We present an approach to parallel programming that expresses parallelism through
types. We use operator overloading to recognise uses of these types and to build a
representation of the parallelisable components of a program dynamically at run-
time. We implement these ideas within Haskell – a pure functional language with a
rich type system. We explore a simple stream-based model of parallelism that is ex-
pressed in a platform-independent manner through a suitably defined stream data
type and document the development of a code generator for a specific target ar-
chitecture – the CUDA platform for Nvidia’s family of General Purpose Graphical
Processing Units (GPGPUs). Experiments with small benchmarks show that ex-
tremely efficient CUDA code can be generated from very high-level Haskell source
code. Haskell’s rewrite system is also shown to be an excellent vehicle for optimising
the performance of parallel programs through source-level program transformation.
We show that the application of optimisation rules targeted specifically at stream
types can lead to substantial performance improvements in some cases.





Acknowledgements

Firstly, I would like to thank Dr. Tony Field, for dedicating countless hours of his
time to listening to me whine about programming. Without his support and guid-
ance this project would not have been realised. I would also like to thank a number of
Haskell experts – to Simon Peyton-Jones, Simon Marlow, Andy Cheadle and Tristan
Allwood I extend my utmost gratitude for giving me time in their busy schedules to
discuss the intricacies of compiling functional programming languages. Finally, I’d
like to thank my friends – whom I daren’t list explicitly in case I miss someone, and
my parents, for putting me through university and giving me the best four years of
my life to date.





Contents

1 Introduction 1
1.1 The Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Automatic Parallelisation . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The Glasgow Haskell Compiler . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Compiler Architecture . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Concurrent Haskell . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Parallel Haskell . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.4 Data Parallel Haskell . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Parallel Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 The Cell Broadband Engine Architecture . . . . . . . . . . . 18

2.5 Stream Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 StreaMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Streamware . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.3 Streams and OpenMP . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Other Programming Models . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.1 MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.2 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Streams in Haskell 29
3.1 Aims and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Underlying Architecture . . . . . . . . . . . . . . . . . . . . 30
3.2 Implementation Options . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Haskgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Restricting Streamable Types . . . . . . . . . . . . . . . . . . 32
3.3.2 Describing Computation . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Overloading for Expression Construction . . . . . . . . . . . 33
3.3.4 Streams as a Type Class . . . . . . . . . . . . . . . . . . . . . 33
3.3.5 A Working Stream Program . . . . . . . . . . . . . . . . . . 35

4 Implementing Haskgraph 37
4.1 Haskgraph.Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Why State is Necessary . . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Accumulating Kernel Bodies . . . . . . . . . . . . . . . . . . 39
4.1.3 Name Generation . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Hscuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Generating CUDA Code . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Wrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



4.2.3 Code Generation and Compilation . . . . . . . . . . . . . . 45
4.2.4 Other Considerations . . . . . . . . . . . . . . . . . . . . . . 48

5 Evaluation 49
5.1 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Non-Iterative Benchmarks . . . . . . . . . . . . . . . . . . . 49
5.1.2 Iterative Benchmarks . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Rewriting for Optimisation . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.1 Rewriting Stream Code . . . . . . . . . . . . . . . . . . . . . 56

6 Conclusions 63
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1.1 Constructing a Core-to-Core Pass . . . . . . . . . . . . . . . 63
6.1.2 Complex Data Types . . . . . . . . . . . . . . . . . . . . . . 63
6.1.3 Using Performance Models . . . . . . . . . . . . . . . . . . . 64
6.1.4 Back End Specific Optimisations . . . . . . . . . . . . . . . . 64
6.1.5 Pluggable Back Ends . . . . . . . . . . . . . . . . . . . . . . 64

vi



Introduction 1
Writing parallel software is hard. Non-deterministic execution, race conditions and
synchronisation are just a few of the common pitfalls encountered when writing par-
allel programs. Attempts to rectify these issues in the form of annotations [1] or
libraries [2] have been proposed, but these still entail a degree of program markup:
code that exposes parallelism but that is extraneous to the functionality of the ap-
plication. Furthermore, heterogeneous platforms such as graphical processing units
(GPUs) and specialised coprocessors impose further problems such as non-uniform
memory access times and the lack of a single global address space.

Consequently, writing general purpose parallel code remains a non-trivial pro-
cess. Commitments to a paradigm and platform often end up being deeply woven
into an application, and portability and robustness suffer as a result. To illustrate
this, consider the following very simple C program.

1 float f(float);
2
3 ...
4
5 void main(int argc, char **argv) {
6 int i;
7 int N = ...;
8 float *xs = ...;
9 float *ys = ...;

10
11 ...
12
13 for (i = 0; i < N; i++) {
14 ys[i] = f(xs[i]);
15 }
16 }

Here, the function f is applied to each element of an N element array of single-
precision floating point numbers. If the loop is parallelisable, an equivalent OpenMP
(Section 2.6.2) program could be written as follows.
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1 float f(float);
2
3 ...
4
5 void main(int argc, char **argv) {
6 int i;
7 int N = ...;
8 float *xs = ...;
9 float *ys = ...;

10
11 ...
12
13 #pragma omp parallel shared(xs, ys, N) private(i)
14 {
15 #pragma omp for schedule(dynamic, chunk)
16 {
17 for (i = 0; i < N; ++i) {
18 ys[i] = f(xs[i]);
19 }
20 }
21 }
22 }

With a good compiler, this should perform well on any commodity multi-core CPU:
a team of threads will be spawned to tackle different parts of the loop in parallel.
However, it is also well suited to execution on a vector processor, such as a general
purpose graphical processing unit (GPGPU). We could, for example, rewrite the pro-
gram for Nvidia’s CUDA platform (Section 2.4.1):

1 __global__ void kernel(float *xs, float *ys, int N) {
2 int thread_id = blockIdx.x * blockDim.x + threadIdx.x;
3
4 if (thread_id < N) {
5 // f is inlined into the kernel and uses
6 // xs[thread_id].
7 float f_x = ...;
8
9 ys[thread_id] = f_x;

10 }
11 }
12
13 void main(int argc, char **argv) {
14 ...
15
16 kernel <<<..., ...>>>(...);
17
18 ...
19 }

Both these programs require introducing parallelism at quite a low level. In the
OpenMP code, we must deal with scheduling the threads that execute the loop. In
CUDA, we must rewrite f as a kernel. In both cases, we have no portability. Ideally,
we’d like to forget about these low level details and not write any explicit parallel
code at all.
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1.1 The Idea

In this project we explore parallelism at a much higher level of abstraction. Specif-
ically we investigate how pure functions can allow us to concentrate on the data and
not potential side-effects that affect how it is handled. We look at how the use of pure
functions allows us to make guarantees about the code we parallelise, letting us gen-
erate efficient code without making compromises with regards to expressiveness.

The functional programming language Haskell provides an excellent testbed for
such an undertaking – in Haskell, all functions are pure, and powerful abstractions
can be created using higher-order functions – functions that take other functions as
arguments.

Higher-order functions have been used to study parallelism before; in [3], skele-
tons are introduced as a functional method of capturing patterns of parallel compu-
tation such as farming and pipelining. In this report we look at exposing parallelism
using the type system, specifically by providing data types which are known to be par-
allelisable. We explore a stream-based model of parallel computation, which is simple
yet powerful.

To illustrate the idea, consider the program below, which is a Haskell version of
our earlier C program that uses streams instead of arrays.

1 f :: H Float → H Float
2 f x = ...
3
4 main :: IO ()
5 main =
6 do
7 let
8 xs = streamFromList ...
9 ys = mapS f xs

10
11 ...

The only difference between this and a normal Haskell program is the H that
annotates the type signature. H changes functions so that they return descriptions
of the values they compute rather than the values themselves, i.e., H is an abstract
syntax tree (AST). While this seems like a substantial change to impose on a function
or program, we later show that this is all that is needed to parallelise this Haskell
program.

1.2 Contributions

In the remainder of this report we document our efforts to parallelise programs
automatically using domain-specific knowledge embedded in the type system. We
make the following contributions:

• We present a Haskell (Section 2.2) framework for runtime code generation
(Section 3.3), and apply it to a stream-based model of computation (Section 2.5).

• We use our framework to exploit stream-based parallelism (Section 4.2) on
an example platform, specifically Nvidia’s CUDA platform for their family of
GPGPUs (Section 2.4.1).

• We evaluate our implementation against a serial counterpart, and find that
extremely efficient CUDA code can be generated from pure Haskell source.
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• We discuss how we can exploit rewriting in GHC, the Glasgow Haskell Com-
piler (Section 2.3), and see that it can dramatically improve performance in
some cases.

• We discuss an alternative method for modifying GHC in order to achieve sim-
ilar results at compile-time, and compare it with the runtime approach that
forms the core of the project.
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Background 2
In this chapter we present the background for our work, both with respect to Haskell
and its compilers and parallel programming in general. We first define automatic
parallelisation, and look at prior work that has been conducted within the field. We
then detail the programming language Haskell and its flagship compiler, GHC. Fi-
nally we explore some of the platforms and models that are available for parallel
programming in order to evaluate effectively the criteria for successfully creating
high level abstractions thereof.

2.1 Automatic Parallelisation

Automatic parallelisation is the act of removing all responsibility for parallelisation
from the programmer. Parallelisation of this nature has been studied now for many
years [4, 5, 6], but advances in the field have largely come as compromises. Com-
monly a language’s expressibility is the first sacrifice, limiting the knowledge re-
quired by the compiler to generate correct parallel code; contrast the progress that
has been made with Fortran 77 with that made with C/C++. Recent years have seen
more activity within this scope – developments such as SPIRAL [7, 8] (for digital
signal processors (DSPs)) and pMatlab [9] 1 (for MATLAB) provide further evidence
that domain-specific languages (DSLs) are substantially easier to parallelise than their
general purpose siblings.

But what does it mean for parallelisation to be “automatic” in this context? Defi-
nitions vary in strictness with respect to how much the programmer can do to “help”
the compiler, ranging from nothing at all to dense annotations; this project takes a
somewhat intermediate standpoint based upon the following criteria:

• Parallelisation is not considered automatic if the user consciously writes code
to tell the compiler to parallelise part of a program, as in OpenMP (see Sec-
tion 2.6.2) or CUDA (see Section 2.4.1).

• The autonomy of parallelisation is unaffected if the user chooses to use spe-
cific data structures or libraries which he or she knows to have a parallel eval-
uation semantics. Examples of this approach include parallel arrays in Data
Parallel Haskell (DPH, see Section 2.3.4) and distributed arrays in pMatlab [9].
The distinction remains that the user is not telling the machine how or where
to parallelise the program, just that parallelism should be exploited.

It is important to note that our definition is not a denouncement of the work
that falls outside its scope; far from it – discussions within the scope of this project
will likely encompass generating this “help” for the compiler as an intermediate stage
of program transformation. Such parallelisation would then fall under our defini-
tion, since the annotations and hints are no longer decisive additions made by the
user.2

1Which bears resemblances to the approach used in DPH, discussed in Section 2.3.4.
2Or rather, the intermediate stage autonomously functions as a user of these technologies.
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2.2 Haskell

Haskell, named after the mathematician and logician Haskell B. Curry, is a purely
functional, lazy programming language. Its inception in Autumn of 1987 was designed
to address the lack of a common functional programming language; the most widely
adopted at the time being Miranda, a proprietary product. Over the last twenty
years it has matured as Haskell 98 [10], a diverse platform for users, developers and
researchers alike with its empowering features and open specification [11]. 2006
marked the beginning of work on Haskell 98’s successor, Haskell’,3 but at the time
of writing the specification is incomplete and thus has yet to be implemented or
adopted. There are currently numerous implementations of Haskell 98 in circula-
tion; GHC is arguably the most widely known and is discussed in Section 2.3, but
there are several such as Hugs [12], NHC [13, 14], YHC [15, 16] and JHC [17]. One
of Haskell’s most powerful features is its support for monads, which we provide a
brief introduction of here.

2.2.1 Monads
Monads are a construction that allow a pure functional language such as Haskell to
handle side-effects such as failure, state and I/O. As an example of how monads can
be used, consider Figure 2.1, where we have two functions f and g (all examples are
adapted from [18]).

1 f :: b → c
2 f x = ...
3
4 g :: a → b
5 g x = ...

Figure 2.1: The functions f and g.

Like all functions in Haskell, f and g are pure – for any argument, they always
return the same result when given that argument. But suppose we wish for f and g
to print out a message (represented by a String) when they are called. In Haskell,
the only way that a function can affect the environment is through the value that it
returns. We therefore need to change the types of f and g—let us call these newly
typed functions f’ and g’ respectively—to return two values: the first being the
result of applying f or g to the input, and the second being the message. Figure 2.2
gives the types of f’ and g’.

1 f’ :: b → (c, String)
2 f’ = ...
3
4 g’ :: a → (b, String)
5 g’ = ...

Figure 2.2: The functions f’ and g’.

f’ and g’ are now message producing variants of f and g, as required, but in
solving this problem, we have created another. While we can compose f and g to
combine their computations, this is not the case with f’ and g’ – their types no
longer match. We can alleviate this issue by writing code such as that in Figure 2.3.

3Pronounced “Haskell Prime.”
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1 let (y, s) = g’ x
2 (z, t) = f’ y in (z, s ++ t)

Figure 2.3: Code for combining f’ and g’.

This kind of “glue code” is likely to be common, so we can refactor it into a higher
order function that allows us to bind f’ and g’ together conveniently. Figure 2.4 gives
the definition of the binding function.

1 bind :: (b → (c, String)) → ((b, String) → (c, String))
2 bind f’ (y, s) =
3 (z, s ++ t)
4 where
5 (z, t) = f’ y

Figure 2.4: The bind function.

With this we can now combine f’ and g’ by writing bind f’ . g’. For conve-
nience, we will combine bind and composition into the infix operator�= . Thus
we can rewrite bind f’ . g’ as f’�= g’. You might now ask if there is an identity
message producing function forbind—let us name itunit—such thatunitbehaves
in an analogous manner to Haskell’s id function (as in Figure 2.5).

1 f . id = id . f = f
2
3 unit �= f = f �= unit = f

Figure 2.5: The unit function’s required behaviour.

The identity on strings with respect to concatenation is the empty string, so we
can define unit as in Figure 2.6.

1 unit :: a → (a, String)
2 unit x =
3 (x, "")

Figure 2.6: The unit function.
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We have in fact just defined Haskell’s Writer monad (apart from the fact that
messages can be of a more general type).4 This is the purpose of monads: they al-
low programmers to compose sequences of actions which exhibit side-effects into
larger actions. As mentioned earlier, side-effects encompass a wide range of features
such as state and I/O. Consequently monads are defined as a type class, as shown in
Figure 2.7.

1 class Monad m where
2 (�= ) :: m a → (a → m b) → m b
3 (� ) :: m a → m a → m b
4 return :: a → m a
5 ...

Figure 2.7: The Monad type class.

If we define:

1 type MessageProducing a = (a, String)

and substitute MessageProducing into m, we see that return is the same as the
unit function we defined earlier: it returns a value that has been lifted into the
monad. �= is exactly the same (albeit its generalised type signature) as its earlier
definition, and� is like�= except that it discards the result produced by its first
argument.�’s definition is not strictly necessary since it can be defined in terms of
�= .

We can illustrate the type class using another example. Consider the typeMaybe,
presented in Figure 2.8.

1 data Maybe a
2 = Just a
3 | Nothing

Figure 2.8: The Maybe type.

Maybe represents the possibility of failure, using theNothing constructor. Its monadic
instance declaration is given in Figure 2.9.

1 instance Monad Maybe where
2 return = Just
3 Just x �= f = f x
4 Nothing �= f = Nothing

Figure 2.9: Maybe’s monadic instance declaration.

We see that lifting a value x into the Maybe monad is the same as writing Just
x, and that�= ’s job is to propagate failure by moving Nothings through a chain
of computations that may fail. This ability to sequentially compose actions is what
makes monads so useful in a language such as Haskell.

4Defined in Control.Monad.Writer.
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2.3 The Glasgow Haskell Compiler

Commonly referred to as The Glasgow Haskell Compiler or simply GHC, the Glori-
ous Glasgow Haskell Compilation System is an open source optimising compiler
for Haskell that is itself written mostly in Haskell.5 GHC is compliant with the
Haskell 98 standard and provides a large number of optional extensions. It is an im-
plementation of the Spineless Tagless G-Machine, an abstract machine that allows for
the interpretation of functional programming languages on commodity hardware
[19, 11].

The GHC project started soon after the specification for Haskell 1.0 had been
finalised in January 1989 when Kevin Hammond at the University of Glasgow be-
gan working on a prototype compiler in Lazy-ML. Whilst this first version was re-
source hungry and exposed limitations and drawbacks in both the use of Lazy-ML
and Haskell’s design, it had almost completely implemented the Haskell 1.0 specifi-
cation by June of the same year. In the Autumn, a team consisting of Cordelia Hall,
Will Partain and Simon Peyton-Jones completely redesigned GHC with the idea
that it would be written in Haskell – and thus bootstrapped by the prototype com-
piler [11]. It is this incarnation that has evolved into the current version of GHC.

2.3.1 Compiler Architecture

GHC’s compilation process is structured as a pipeline in which a Haskell program
is successively refined before delivery of a binary (or whichever output the user has
requested); this is illustrated in Figure 2.10. At a first approximation, a program is
transformed through four intermediate representations:

HsSyn

HsSyn is a collection of data types that describe the full abstract syntax of Haskell. It is
capable of representing all of the “sugar”6 that Haskell offers and is therefore the
largest and most complex of GHC’s intermediate representations. All error check-
ing procedures operate on the HsSyn type (with a few exceptions, discussed later),
giving GHC the ability to produce error messages that relate to what the user wrote,
not some stripped down internal manifestation [20].
HsSyn is parameterised over the type of terms which it contains, which is also

indicative of which phase of the compilation it is in:

• The parser generates terms parameterised by the RdrName type. To a degree
a RdrName is what the programmer originally wrote. It can be thought of as
containing either one or two strings – these contents represent names and
qualified names respectively.

• The renamer generates terms parameterised by the Name type, which can be
conceptualised as aRdrNamepaired with a unique value. This prevents scoping
conflicts and allows GHC to check that all names referencing a single binding
occurrence share the same unique value.

• The typechecker generates terms parameterised by the Id type, which is yet
another pairing; this time of a Name and a type.

These three parts of the pipeline comprise what is known as the front end of
GHC [20].

5Strictly speaking the code is mostly Literate Haskell, a variant of the language where human readability
is the primary goal.

6“(Syntactic) Sugar” is a collective term for features in a language that do not affect its functionality
but merely make it easier or more natural for a programmer to write code.
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Haskell Source (*.hs)

Parsing

Renaming

HsSyn RdrName

Typechecking

HsSyn Name

Desugaring

HsSyn Id

Optimisation

CoreExpr

Tidying

CoreExpr

Normalisation

CoreExpr

Interface File Generation

Interface File (*.hi)Stg Transformation

CoreExpr

Code Generation

Stg

C Pretty Printing

Cmm

Machine Code Generation

C (*.hc) Assembly (*.s)

Figure 2.10: The GHC Compilation Pipeline, adapted from [20].
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Core

Core is GHC’s implementation of System FC, an extension of System F7 which is ex-
pressive enough to support features such as newtypes and generalised abstract data
types (GADTs) [21, 20]. It pervades the next five phases of the compilation:

• The desugarer transforms HsSyn into Core. Core is a dramatically smaller data
type than HsSyn and, as such, a lot of information deemed unnecessary is dis-
carded. Errors can be produced at this point, but these often pertain to more
generic problems than those noted in the front end (pattern matching over-
laps, for example).

• The optimiser is composed of several passes—known collectively as the Sim-
plCore pass—which apply a series of Core-to-Core transformations; currently
these include the following [20]:

1. Simplification and inlining [22, 23]
2. Float-out and float-in transformations [24]
3. Strictness analysis
4. Liberate-case transformations
5. Constructor-specialisation
6. Common sub-expression elimination

• The tidying phase (denoted CoreTidy internally) cleans up the generated Core
so that it is in a form suitable for processing later in the pipeline.

At this point two independent operations are applied:

• The Core is transformed and output into an interface file. An interface file
contains information accumulated by the compiler that allows it to make ad-
ditional safety checks and assertions when using and linking the correspond-
ing code. In an unoptimising compilation it is little more than a collection
of type signatures, but when the optimiser is active a lot more data about the
applied transformations is logged, resulting in a larger file.

• A finalCore-to-Corepass named CorePrep translates theCore into Administra-
tive Normal Form (ANF), a canonical form of the program in which all arguments
are either variables or literals.

The last part, CorePrep, is the first part of what is known as the back end of GHC,
comprising Stg and Cmm.

Stg

Stg (an abbreviation for Spineless Tagless G-Machine, the abstract machine on which
GHC is built [19, 11]) is the last form a program takes before code generation occurs.
It is produced by the CoreToStg translation, although this transformation performs
little work due to the similarities between Core in ANF and Stg.

The differences between Stg and its predecessor are mainly a result of further
normalisation and expansion – constructor and primitive operator applications are
saturated, lambda forms can only appear on the right hand side of a let binding and
type information is largely discarded [20]. Stg retains some decorations [20] that
are not present in the Core, particularly:

• All lambda forms list their free variables. These are the variables in the body
of the expression that are bound by the let.

7Also known as the polymorphic lambda calculus or the second-order lambda calculus.
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1 forkIO :: IO () → IO ThreadId
2 forkOS :: IO () → IO ThreadId

Figure 2.11: Functions for forking threads in Concurrent Haskell.

• Case expressions list their live variables, that is, the variables that will be reach-
able from their continuation.

Static Reference Tables (SRTs) are also added to the program’s lambda forms. SRTs
contain references that enable the garbage collector to locate constant applicative
forms (CAFs)8 relating to the object.

Cmm

Cmm is produced from Stg by GHC’s code generator, and is an implementation of
C−− [25].9 The decision to use a high level target language like Cmm gives GHC the
ability to work with a variety of back ends, and indeed it currently supports native
(assembly) and C code generation in this manner [20]. This part of the compilation
process is where code generation actually occurs.

2.3.2 Concurrent Haskell

Concurrent Haskell [26] refers to GHC’s Control.Concurrent library, which pro-
vides mechanisms for writing threaded (and therefore non-deterministic) programs
in Haskell. It offers two functions for forking threads, shown in Figure 2.11.

• forkIO spawns a thread that is scheduled by the GHC runtime system, known
as a lightweight thread.10 Such threads are usually one or two times more effi-
cient (in terms of both time and space) than native threads (those managed by
the operating system) [27].

• forkOS creates a native thread, referred to as a bound thread. Bound threads
may be cross foreign interfaces where other parts of the program expect op-
erating system threads, and may carry thread-local state.

In order to alleviate the potential for unnecessary blocking, GHC schedules
lightweight threads onto underlying operating system threads.11 A lightweight thread
may be scheduled onto many different native threads in its lifetime [27].

Synchronisation can be accomplished using mutable shared variables12 and locks,
or through GHC’s support for SoftwareTransactionalMemory (STM). Software Trans-
actional Memory is an optimistic alternative to lock-based synchronisation that views
all operations on memory as transactions. Transactions execute in the context of a
thread, and are atomic; between a transaction’s initialization and completion there
is no way for another thread to observe an intermediate state [28]. Concurrent
Haskell’s interface to STM is the Control.Concurrent.STM library, and is partic-
ularly comprehensive, supporting composable transactions and sophisticated failure
handling operations [29, 27].

8A CAF is an expression that is only evaluated once within the execution of a program.
9Pronounced “C Minus Minus.”

10Also known as a green thread.
11When the Haskell program in question is linked against the multi-threaded version of the GHC

runtime (through use of the -threaded option when building).
12MVars in the Control.Concurrent library.
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1 infixr 0 ‘par‘
2 infixr 1 ‘seq‘
3
4 par :: a → b → b
5 seq :: a → b → b

Figure 2.12: Annotation functions provided by the Control.Parallel library.

1 import Control.Parallel
2
3 nFib :: Int → Int
4 nFib n | n <= 1 = 1
5 | otherwise = par x (seq y (x + y + 1))
6 where
7 x = nFib (n - 1)
8 y = nFib (n - 2)

Figure 2.13: Parallelising the computation of the nth Fibonacci number with anno-
tation functions.

2.3.3 Parallel Haskell

Parallel Haskell encompasses GHC’s support for running Haskell on multiple pro-
cessors. Primarily this is achieved either through the direct mapping of threads (pro-
vided by Concurrent Haskell) onto processors or by the use of so called annotation
functions [27], as in Figure 2.12.

• The expression par x y hints that x could be executed in parallel with y.
Specifically, the call to par sparks the evaluation of x to weak head normal form
(WHNF). It is important to realise that sparks are not threads; sparks are
queued in first in, first out (FIFO) order and then progressively converted into
real threads whenever the runtime detects a free (idle) core.

• A call seq x y ensures that x is evaluated before y and returns y as its result.
seq is strict with respect to both of its arguments, which means that the com-
piler may occasionally rewrite its applications unfavourably. For these scenar-
ios there is an alternative, pseq, that is strict only in its first argument.13

We can illustrate the use of par and seq using a simple example (adapted from
[27]) that parallelises the retrieval of the nth Fibonacci number; this is shown in Fig-
ure 2.13.

In this program we see that, for cases other than the zeroth and first Fibonacci
numbers, a spark is created to evaluate nFib (n - 1). seq’s importance is now
apparent: for the parallel evaluation to have any benefit we must force the parent
thread to evaluate nFib (n - 2) before returning the inclusive sum.

In their basic forms par and seq are examples of control parallelism – the evalu-
ation of arbitrary subexpressions in parallel. More elaborate parallelisation strategies
have been built around these functions14 that express higher level constructs such
as data parallelism (Section 2.3.4), divide and conquer and pipelining [30, 27]. Such ab-
stractions demonstrate the power of annotation functions but do not remove the
need for the programmer to understand their purpose altogether.

13Both par and pseq are defined in the Control.Parallel library.
14Available in the Control.Parallel.Strategies library.
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Figure 2.14: Removing unnecessary synchronisation points between data parallel
operations.

2.3.4 Data Parallel Haskell

Data Parallelism (also flat data parallelism) is the act of performing the same task on dif-
ferent pieces of data in parallel. Focus is placed on the distribution of data as opposed
to the processing, as in control parallelism. Nested Data Parallelism (NDP) describes
what happens when flat data parallelism occurs at many levels, over an array of ar-
rays, for example.

Data Parallel Haskell (DPH) is a relatively recent development in the GHC code-
base working towards an implementation of nested data parallelism in Haskell [31].
The key abstraction is the parallel array, a strictly evaluated data structure. The strict-
ness property means that in evaluating one element of a parallel array, the remaining
elements will be demanded also and therefore might be evaluated in parallel. Syn-
tactically they bear a resemblance to lists, but there are several differences:

• Parallel arrays are denoted with [: and :]. Analogous to lists, [:a:] repre-
sents the parallel array with elements of type a.

• Pattern matching is limited – the pattern [:x, y, z:]matches a parallel ar-
ray with exactly three elements which can be matched tox, y andz respectively.
Parallel arrays are not inductively defined ; there is no notion of “cons” (:) as there
is with lists.

Such semantics mean that parallel arrays have excellent optimisation potential
[32], indeed DPH offers several possibilities for performance gain:

• Flattening (or vectorisation) transforms all operations on nested data structures
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into their equivalents on flat data structures, which allows for efficient imple-
mentation on commodity hardware.

• Redundant synchronisation points between computation are exposed and can be
removed without affecting the overall result (see Figure 2.14). These can be
implemented using rewrite rules at the Haskell source level (supported by GHC).

• Array contraction reduces both space and time overhead, and is implemented
using a technique discussed in [32] which the authors call stream fusion.

All these features leave DPH in a favourable light, but unfortunately much of
that described in [31] and [32] is still work in progress. This leaves a current version
which is an actively developed compromise between elegance and efficiency, with
major changes happening without warning.

2.4 Parallel Architectures

In this section some existing parallel architectures and their respective program-
ming models are discussed. Later on, a brief evaluation of their benefits and short-
comings with respect to this project is presented.

2.4.1 CUDA
CUDA (Compute Unified Device Architecture) is a generalised parallel computing plat-
form developed by Nvidia atop of their range of Graphical Processing Units (GPUs). It
is a massively multi-threaded architecture (described by Nvidia as single instruction,
multiple thread (SIMT)) which uses busy thread scheduling to hide memory latency
[33]. The motivation for exposing the capabilities of GPUs to general purpose com-
puting is apparent - a GPU dedicates many more transistors to data processing—
potentially floating point ALUs—than a traditional CPU, allowing many programs
utilising CUDA to run an order of magnitude faster than their CPU-only counter-
parts [34, 35, 36].

Concepts and Nomenclature

Applications harness CUDA by instructing the CPU (the host) to delegate the pro-
cessing of various kernels to the GPU (the device). Each kernel is run by N threads in
parallel on the device. Threads are grouped into blocks, with multiple blocks form-
ing a grid upon which the kernel is executed. Both block and grid dimensions can
be specified on a per-kernel basis, described in the next section.

At a physical level, a CUDA-capable GPU consists of copious multi-processors
(see Figure 2.15). Each multi-processor is equipped with several scalar processors (SPs)
(the exact number is platform dependent), two special functional units (SFUs) (used
for transcendentals) and four types of on-board memory [33]:

• One set of 32 registers per SP.

• A shared memory that can be accessed by all the SPs.

• A read-only constant cache—again accessible from all SPs—that speeds up reads
from the constant space held in device memory.

• A read-only texture cache that provides the same functionally as the constant
cache, only for the texture space in device memory. Access to the texture
cache is via a texture unit that implements the necessary addressing modes and
filtering operations to work correctly with texture memory.

At runtime, the threads are scheduled in groups of 32, known as warps,‡ with
‡Hence the title of this project.
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1 for (i = 0; i < N; i++) {
2 xs[i] = xs[i] * xs[i];
3 }

Figure 2.16: Squaring an array with serial C code.

each thread being mapped onto one SP.15 Only one kernel may be present on the
device at a time, but the CPU is free to perform other operations once the device
has been allocated work.

Programming Interface

CUDA kernels and their host programs are written in a subset of C with a small base
of extensions; a proprietary software development kit (SDK) available from Nvidia16

provides the necessary toolchain and libraries. The most notable differences with
ANSI C are the prohibitions of recursive functions and function pointers, which would
cause problems for CUDA’s evaluation model.17 One might imagine that the use
of C means a significantly reduced learning curve for developers than that imposed
by say, the use of a DSL, and to an extent this is the case. However, CUDA is not
without its idiosyncrasies, the understanding of which will often enable the creation
of more elegant, more performant solutions [33, 37]:

• The mindset associated with CUDA programming is very different to that one
must adapt when writing conventional serial code. Threads are much more
lightweight entities than their CPU-world counterparts, and can often be used
at a much finer granularity than one might expect; one per pixel, for example,
is not uncommon.

• Developers should ensure that they use the whole device, spawning at least as
many blocks as multiprocessors and multiples of 32 threads per block in order to
utilise the card as best as possible.

• Memory access comes at a high price, but if each thread in a warp uses a different
address then the accesses will be coalesced. Equally important is the considera-
tion of whether a thread needs to load data at all, since other threads may load
data which exhibits spatial locality.

• Thread synchronisation is limited to threads within a block (via a call to__syncthreads())
– there is no “across the card” barrier facility.

The first point is best illustrated by an example. Figure 2.16 contains a trivial
serial for-loop that squares an array of single-precision floating point numbers, xs,
which we assume has already been initialised. In contrast, Figure 2.17 constructs the
equivalent CUDA kernel, which is a C function annotated with the __global__
keyword. Since the resulting compiled code will be designed to run on the device,
any data it processes must also be on the card. Consequently CUDA programs typ-
ically entail a certain amount of “boilerplate” code involving memory copying and
initialisation; this code has been omitted to preserve clarity.

We observe a couple of key differences, which also serve to emphasize some of
the other points made above:

15The term half-warp is also used as one might expect, referring to either the first or second half of a
warp.

16http://www.nvidia.com/object/cuda_get.html
17That is to say, each of hundreds of threads stepping through the same instruction at any one point.
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1 __global__ void squareArray(float *xs, int N) {
2 int i = blockIdx.x * blockDim.x + threadIdx.x;
3
4 if (i < N) {
5 xs[i] = xs[i] * xs[i];
6 }
7 }

Figure 2.17: Squaring an array in parallel using CUDA.

1 dim3 dimBlock(256);
2 dim3 dimGrid(N / dimBlock.x + 1);
3
4 squareArray <<<dimGrid, dimBlock >>>(xsDevice, N);

Figure 2.18: Calling the squareArray kernel from C.

1. There is no for-loop: rather than squaring N items sequentially there are now
N threads each squaring one item in parallel. This is a pattern commonly seen
in CUDA that can be additionally extended to nested loops using the various
levels of block and thread indexing available.

2. Indices are calculated from the thread’s location in the grid; since each thread
has a unique location the memory addresses requested by each warp will not
collide and the accesses will be coalesced.

As mentioned earlier the grid and block sizes can be chosen on a per-kernel ba-
sis. Specifically they are determined at the kernel’s point of call through CUDA’s
<<<…>>> syntax. Figure 2.18 depicts an example in which the squareArraykernel is
called with a block size of 256 and a grid size that ensures there is at least one thread
per array element. The ability to use runtime variables in deciding grid and block
size contributes to the portability that CUDA enjoys somewhat more than other
parallel platforms, but peak performance will always depend on the exact genera-
tion and model of the Nvidia GPU the code is running on.

2.4.2 The Cell Broadband Engine Architecture
The Cell Broadband Engine Architecture (usually referred to as just Cell or Cell BE)
is based on a multi-core chip consisting of a Power Processing Element (PPE) and eight
Synergistic Processing Elements (SPEs), linked together by an Element Interconnect Bus
(EIB) [38]. The bus is composed of four uni-directional channels that connect the
processing cores and the other important on-board components, namely the Mem-
ory Interface Controller (MIC) and two I/O interfaces. This makes for a configuration
of twelve interlinked units as shown in Figure 2.19.

The Power Processing Element

The PPE is a 64-bit two-way multi-threaded core based on IBM’s Power Architec-
ture. It supports a reduced instruction set computer (RISC) architecture and acts as the
controller for the other elements, as such it has supplemental instructions for start-
ing, stopping and scheduling tasks on the SPEs [38]. Unlike the SPEs it can also read
from and write to main memory, as well as the local memories of the SPEs them-
selves. Consequently it is the PPE that runs the operating system, and typically the
top-level thread of an application [39].

18



EIB

PPEMIC

SPE

SPE

SPE

SPE

I/O I/O

SPE

SPE

SPE

SPE

Figure 2.19: The Cell Processor.

The Synergistic Processing Elements

Each SPE is also a RISC processor, specialised for floating point calculations. As
mentioned above only the PPE can communicate with main memory; to this end
all of the SPEs are equipped with an asynchronous direct memory access (DMA) con-
troller. Both the PPE and the SPEs are single instruction, multiple data (SIMD) pro-
cessors,18 with the SPEs handling 128-bit instructions for both single and double
precision operations [40].

Programming Interface

Applications for the Cell are written in C with a set of hardware-specific extensions:

• SIMDcomputation is facilitated by intrinsics that support vectorised data types,
as well as functions that wrap the underlying VMX instruction set that oper-
ates on them.

• Threading and SPE control is achieved using library calls,19 which form a set of
APIs for working with the synergistic units.

Separate applications must be written for the PPE and the SPEs – the SPEs may
all run identical kernels but this does not always yield optimal results as discussed
below. Strictly speaking only the PPE needs to be programmed, but if one wants
to realise the Cell’s potential then the SPEs must be used effectively, which in this
context means considering factors such as the following:

• SPEassignment – Dividing a problem into a number of independent sub-problems
and solving those simultaneously is often a natural way to parallelise the task

18Although they do not share the same SIMD capabilities; a fact that contributes to their heterogene-
ity.

19Provided by libspe2 at the time of writing.
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at hand, but the Cell’s ring structure offers the potential for pipelining between
SPEs running different kernels, with varying performance returns depending
on the application.

• Memory management – The forced use of DMA on the SPEs means that ef-
ficient memory usage is critical to performance. The local memories of the
SPEs can be used as caches but they do not function as such automatically in
that their use is not transparent to the programmer [39].

The Cell has seen adoption in the image processing and digital media markets,
with Sony’s Playstation 3 being perhaps the most widespread example of its use.
But with a challenging programming model that emphasizes peak computational
throughput over code simplicity [41], it has yet to gain a strong position in general
purpose computing.

2.5 Stream Programming

Stream programming is a paradigm not dissimilar to SIMD that is concerned with
the application of concurrent kernels to a sequence of data – a stream. It was origi-
nally developed for media and imaging [42] (see Section 2.4.1 for a discussion of its
use in CUDA), but is applicable to a wide range of problems and fields. The stream
programming model has been developed over many years [43], but they remain an
active area of research; we examine a few of the contributions.

2.5.1 StreaMIT
Developed at MIT, StreaMIT is a language and compiler toolchain that enables
the development of stream-based applications at a high level of abstraction [44].
StreaMIT was implemented initially as an extension to the Kopi Java compiler, and
has evolved into a successful platform on which much research has been conducted
[45, 46].

Programming in StreaMIT focuses around the construction of a stream graph,
which is optimised by the compiler for the target architecture. A stream graph is
composed of a number of blocks which define operations upon the streams passing
through them. The smallest block is the filter, whose body consists of code that
operates on a single input to produce a single output. More complex kernels can be
built up using composite blocks [47]:

• Pipelines connect the inputs and outputs of a number of child streams.

• Split-joins allow computation to take place in parallel, possibly on different
parts of the input stream.

• Feedback loops have a body stream, the output of which is split into two streams.
The first leaves the loop, whilst the second is joined with the next input and
passed back into the body stream.

Figure 2.20 gives examples of each of these composite blocks in operation. All
blocks work on the same basis of single input, single output, and so may be recur-
sively composed to form applications of arbitrary complexity. Each block is also
obliged to declare its data rate, that is how much input and output it consumes and
produces per use; such rates may be static or dynamic [48, 47].

Syntactically StreaMIT bears some resemblances to Java and other imperative
languages; semantically it is a rich system that also supports messaging and parame-
terised stream types.20

20Analogous to C++’s templates; see [48] for more information.

20



Pipeline

Child1

Child2

…

Childn

Split-Join

Child1 … Childn

Feedback Loop

Body

Loop

Figure 2.20: Composite blocks in StreaMIT, adapted from [48].

2.5.2 Streamware

Streamware is an effort to move away from dedicated stream processors and imple-
ment the stream programming model on general purpose multi-core CPUs. Specif-
ically it exposes a runtime system that can be targeted by higher-level compilers
[42]; essentially a stream virtual machine (SVM). From the compiler’s perspective,
Streamware provides a set of local memories (LMs), used for storing stream data, and
kernel processors, for executing kernels.

What distinguishes Streamware from previous SVMs is that the runtime ac-
cepts a model of the physical machine as input. Compilation then generates a param-
eterised model, into which machine dependent values are substituted upon execution.
There are three such parameters of importance in Streamware:

• NUM_DMAS represents the number of LMs available in the underlying machine.

• NPROC[ndma] is the number of kernel processors sharing the LM with identi-
fier ndma.

• LM_SIZE[ndma]defines the capacity (in bytes) of the LM with identifierndma.

From these values the runtime’s control thread can calculate derived parame-
ters, such as those relating to strip size when optimising bulk memory operations. In
many cases these performance gains justify the overheads of having an intermediate
runtime system, with some applications approaching linear scaling factors [42].

Unfortunately the youth of the research means that little has been constructed
atop its foundations, though it offers a promising insight into general purpose stream-
based computing.

2.5.3 Streams and OpenMP

In [49], Gaster presents an implementation of streams that builds upon OpenMP
(Section 2.6.2). It consists of a C++ API and a “modest set of extensions,” and aims
to address OpenMP’s lack of consideration for non-shared memories, exploiting
accelerator cores such as those found in GPUs (Section 2.4.1) and heterogeneous
processors like the Cell (Section 2.4.2).

The C++ API is not much more than a declarative wrapper around the language’s
arrays, and can therefore be used in programs that don’t utilise OpenMP. The real
power of the application comes from the addition of theconnect clause to OpenMP’s
parallel construct. Conceptually, connect joins a stream defined outside aparallel
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1 double sumSquares(double xsArray[], int size) {
2 double sum = 0.0;
3 int i;
4
5 Stream *xs = Stream.create(
6 xsArray, // The stream’s backing array.
7 size, // The stream’s size.
8 CHUNK_SIZE , // The chunk size.
9 LINEAR_FORWARD // The access pattern to use.

10 );
11
12 #pragma omp parallel reduction(+:sum) connect(xs)
13 {
14 while (!xs->endOfStream(xs)) {
15 double x = xs->getNextElement();
16
17 if (xs->streamActive()) {
18 sum += x;
19 }
20 }
21 }
22
23 xs->destroy();
24
25 return sum;
26 }

Figure 2.21: Using the parameterised Stream<T> type and the OpenMP connect
clause in Gaster’s model of streams. Adapted from [49].
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region to the gang of threads executing the contained block. On the block’s termi-
nation, data is flushed to the stream defined in the outer scope. An example of this
behaviour is shown in Figure 2.21.

Gaster also considers formalisation: an operational semantics is defined for the
provided API that reasons about the evaluation of programs utilising streams.

2.6 Other Programming Models

Streams are a very simple and powerful model for parallel programming. They are
by no means the only model, however. Here we look at some other models which
are used for writing parallel applications.

2.6.1 MPI
MPI (Message-Passing Interface) is a message-passing library interface specification [2] that
allows many computers to communicate with one another. It is maintained and de-
veloped by the MPI Forum, a broad group of vendors, developers and specialists, and
is currently available in two versions:

• MPI 1.2 (MPI-1 in common usage, where the minor number is omitted) is the
most current revision of MPI-1, and modifies MPI 1.0 only through the addi-
tion of clarifications and corrections.

• MPI 2.1—MPI-2 as indicated above—adds completely new functionality to
its predecessor, such as support for parallel I/O and bindings for Fortran 90
and C/C++.

MPI provides a plethora of capabilities, all of which are underpinned by a set of
core concepts [2].

Processes

Processes are the building blocks of an MPI application. They execute autonomously
in a multiple instruction, multiple data (MIMD) style, communicating using the MPI
primitives discussed later in this section. Consequently there is no requirement for
any pair of processes to share the same program code (or even architecture if they
are running on different platforms).

Point-to-Point Communication

Two processes may communicate directly with each through use of send and receive
primitives, exposed as MPI_Send and MPI_Recv respectively. Such sending and re-
ceiving forms the basis of MPI’s communication mechanism, with support for both
blocking (synchronous) and non-blocking (asynchronous) sending available. A few esoteric
mechanisms, such as the ready send, where a send attempt will fail if a matching re-
ceive has not been posted prior, are also specified.

Collective Communication

Collective communication is defined as “communication that involves a group or
group of processes,” [2] and forms a large portion of MPI. Numerous methods for
such communication exist in MPI, some of which are shown in Figure 2.22.

Collective operations do not operate on groups of processes, rather communi-
cators, a layer of abstraction inserted by MPI that pairs groups with the notion of
context. Contexts partition the communication space such that messages received
in one context cannot be received in another; to this end there are two types of
communicator:
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1 #include <omp.h>
2 #include <stdio.h>
3
4 int main(int argc, char **argv) {
5 #pragma omp parallel
6 {
7 printf("Hello world!\n");
8 }
9

10 return 0;
11 }

Figure 2.23: Thread creation using the C language bindings for OpenMP.

• Intra-communicators are concerned with processes in the same group. Oper-
ations such as those depicted in Figure 2.22 fall within the domain of intra-
communication.

• Inter-communicators allow the exchange of data between different groups, an
action which is initiated by a point-to-point communication occurring be-
tween two processes in separate groups.

Initially there is just one communicator, known asMPI_COMM_WORLD, from which
other communicators can be constructed through progressive “slicing” of the com-
munication space. The decision to prohibit creating communicators from scratch
provides additional guarantees of safety, though the specification does recognise it
as a “chicken and egg” scenario [2].

Implementations

The initial implementation of MPI was MPICH [50], a project which has demon-
strated the application and scalability of MPI-1 on supercomputers and cluster plat-
forms [51]. MPICH2 has since superseded it, bringing a new implementation and
support for MPI-2.21

Bindings are also available for a variety of other languages, including Python
(mpi4py, PyMPI and MYMPI to name but a few), and OCaml (the OCamlMPImod-
ule). Success with Java has been limited due to the language’s lack of explicit pointers
and memory management.

2.6.2 OpenMP

Open Multi-Processing (OpenMP) is an API presented as a set of compiler directives
that allows multi-platform, shared memory multiprogramming in C, C++ and Fortran.
In each case the base language remains unchanged, leaving the implementation de-
sign and detail to the compiler writer [1]. Designed to be platform independent,
OpenMP’s structure can be partitioned into five distinct parts [52]:

Thread Creation

The key to thread creation in OpenMP is the parallel construct. When a thread
reaches an instance of parallel, a team of threads is spawned to execute the region
contained within it. Consider Figure 2.23, a (contrived) example that uses multiple
threads to print a string in C/C++.

21http://www.mcs.anl.gov/research/projects/mpich2/index.php
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1 #pragma omp sections
2 {
3 #pragma omp section
4 ...
5
6 #pragma omp section
7 ...
8 }

Figure 2.24: Use of the OpenMP sections construct in the C language bind-
ings.

The thread that encounters the parallel construct becomes the master of the
team that is created as a result. Since parallel regions can be nested, a thread may
master one group and merely participate in another.22 There is an implied barrier
at the end of a parallel instance’s execution, at which point the team is disbanded
and only the master thread continues processing [1, 52].

Work Sharing

OpenMP’s work sharing directives must appear within a parallel region, and con-
trol how work is distributed amongst a team of threads. There are currently three
constructs that fall into this category (excluding the Fortran-specific workshare
construct); in each case the team of threads referenced is that created by the inner-
most parallel instance:

• The loop construct (designated by the for construct in C/C++) segregates the
team of threads so that the iterations of one or more associated loops are di-
vided amongst the group.23 As the keyword hints, in C/C++ the loops in ques-
tion must be for-loops. They must also obey the rules set out in Section 2.5.1—
“Loop Construct”—of [52].

• The sections construct provides a model akin to that with which most par-
allel programmers will likely be familiar, that is the declaration of structured
tasks which are to be executed in parallel. Individual blocks are delimited with
the section construct, vis Figure 2.24. Each section is executed once, with
the scheduling order being implementation specific.

• The single construct specifies that the child region should be processed by
one thread only, which is not necessarily the master of the team.

• The master construct specifies that the enclosed region should be executed
by the master thread only. For this reason it is also sometimes considered a syn-
chronisation primitive, the rest of which are discussed later.

Both the loop and sections constructs may be “chained” onto the declaration
of a parallel region to create a combined parallel worksharing construct. Such a con-
struct is semantically equivalent to a parallel instance enclosing only the chosen
work sharing construct; Figure 2.25 gives an example. Whether work sharing con-
structs are included plainly or combinatorially, certain restrictions govern their us-
age, outlined in [52]:

1. Each work sharing region must be encountered either by all threads in a team
or by none at all.

22Though this depends on the compiler’s support for nested parallel constructs.
23The programmer may use the schedule clause to control exactly how work is assigned.
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1 #pragma omp parallel for
2 {
3 for (...) {
4 ...
5 }
6 }
7
8 ...
9

10 #pragma omp parallel sections
11 {
12 #pragma omp section
13 ...
14
15 #pragma omp section
16 ...
17 }

Figure 2.25: Combined parallel constructs in the C language bindings for OpenMP.

2. The sequence in which worksharing regions are encountered must be identi-
cal for all threads in a team.

By default a work sharing region mirrors the parallel construct in that there
is an implicit barrier upon its completion. This can however be removed (using the
nowait clause), allowing threads which complete early to continue executing code
within their enclosing region.

Data Environment

The data environment directives provided by OpenMP allow the control of data vis-
ibility and access within a parallel region. There are three options when choosing
the locality of data:

• The shared clause accepts a list of variables that are in scope at the point at
which it is defined. Any reference to a variable in this list will refer to the lo-
cation of the original variable, regardless of the thread in which the reference
appears. Synchronisation remains the responsibility of the programmer, who
must ensure that the variable is active for the duration of the threaded region.

• The private clause accepts a list of variables in the same manner as shared.
References to list items refer to new, thread local copies of the original item.
The item is not initialised24 and its value is not kept for usage outside the
parallel region. By default loop counters in work sharing regions areprivate.

• The threadprivate clause operates identically to the private clause with
one exception: threadprivate variables maintain their value acrossparallel
regions.

Synchronisation

Synchronisation clauses can be used to demarcate areas in the program where thread
interleaving would otherwise cause problems:

24Though the firstprivate and lastprivate directives can be used to annotate instances where
this is not the case.
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• critical and atomic specify areas that must be entered by only one thread
at a time. In particular, atomic hints to the compiler that special machine
instructions should be used for better performance, but the compiler is per-
mitted to ignore this and act as if critical had been used.

• A barrier creates an explicit barrier at the point it is declared, causing all
threads in the innermost team to wait for each other before continuing exe-
cution.

• Theordered clause can be used to define a region that is executed in the order
that the innermost loop construct would have executed had it been processed
sequentially.

The nowait clause mentioned earlier is also categorised as a synchronisation di-
rective; as stated its purpose is to remove the barrier that is implicitly present at the
end of all work sharing regions.

Runtime Library and Environment Variables

OpenMP’s runtime library provides definitions for the important data types and
functions that allow developers to work with its capabilities during program execu-
tion:

• Execution environment routines relate to threads and their parallel scope. Func-
tions for managing the number of running threads (omp_get,set_num_threads())
and working with team sizes (omp_get_team_size()) are examples of this
type of procedure.

• Lock functions form the basis of general purpose synchronisation within OpenMP,
and work with the lock data types also defined in OpenMP’s runtime library.
Both simple locks—which may only be locked once before being unlocked—
and nested locks—which may be locked multiple times (by the same owning
thread) before being unlocked—are supported.

• Two timing procedures support a “portable wall clock timer” [52].

Implementations

OpenMP has seen considerable adoption in commercial products, with vendors
such as IBM, Intel, Sun and HP implementing the specification for C, C++ and
Fortran.25 As of version 4.2 the GNU Compiler Collection (GCC) has supported ver-
sion 2.5 of OpenMP, an effort coordinated under the GOMP project; GCC 4.4 is
expected to support OpenMP 3.26

25http://www.openmp.org/wp/openmp-compilers
26http://gcc.gnu.org/projects/gomp
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Streams in Haskell 3
We now discuss the use of streams in Haskell to write parallel programs. Streams
offer a powerful yet simple model of parallelism which frees the user from the bur-
den of explicitly parallelising code; the use of streams is the “hint” that a compiler or
runtime needs in order to parallelise code automatically. In this chapter we discuss
the methods that may be used to parallelise stream code written in Haskell using
CUDA, both at compile-time and runtime. We focus on a runtime approach and
present Haskgraph (Section 3.3), a pure Haskell library that uses metaprogramming
to generate code for parallelising stream code. Chapter 4 continues with details of
how the library is built with respect to an implementation on CUDA.

3.1 Aims and Motivations

Any high level abstraction must satisfy the two criteria of simplicity and predictabil-
ity. The stream programming model fulfills both of these:

• Conceptually a stream is just a set of data – analogous to a list in Haskell. Any-
one that can understand lists should therefore be able to understand streams.

• By providing a similar family of stream processing functions to those for lists,
code and results are predictable.

In principle we would like to be able to write a program as in Figure 3.1. Even with
no knowledge of streams or their combinators, it is clear what this program does.1

1 f :: a → b
2 g :: a → b → c
3
4 ...
5
6 main :: IO ()
7 main =
8 print zs
9 where

10 xs = streamFromList [1..100]
11 ys = mapS f xs
12 zs = zipWithS g xs ys

Figure 3.1: A stream program in Haskell.

But how does it end up being parallelised? The answer depends on the target plat-
form.

1Not including the definitions of f and g, of course.
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3.1.1 Underlying Architecture

Stream computers have been implemented on a variety of targets using various meth-
ods of abstraction. Section 2.4 presented two heterogeneous platforms on which
parallel software has been developed: Nvidia’s GPU-based CUDA and STI’s Cell
Broadband Engine. In this project we explore a solution that utilises CUDA, for
the following reasons:

• Performance gains have been widespread with CUDA [34, 35, 36]; the litera-
ture on its advantages, disadvantages and methodologies is consequently sub-
stantial.

• CUDA’s programming interface is relatively uncluttered and intuitive, largely
due to the use of a domain-specific language (DSL).

• Good software engineering practices should ensure that architecture-specific
back ends can be swapped in and out or combined with little effort.

So how might the program in Figure 3.1 be realised in CUDA? Taking the appli-
cation of mapS f in line 11, for example, and assuming that f has type Int→ Int,
we would perhaps write its equivalent CUDA kernel as in Figure 3.3.

1 __global__ void mapSCuda(int *xs, int *ys, int N) {
2 int thread_id = blockIdx.x * blockDim.x + threadIdx.x;
3
4 if (thread_id < N) {
5 int x = xs[thread_id];
6 int y;
7
8 ...
9 /* The inlined body of f, which assigns to y. */

10 ...
11
12 ys[thread_id] = y;
13 }
14 }

Figure 3.2: A CUDA kernel for the function mapS f.

Conceptually this would be launched with N threads (where the stream xs has N
elements), each of which applies f to a unique element in the stream. This is illus-
trated in Figure 3.3.

xi

Thread i

f xi

Figure 3.3: Applying the function mapS f using CUDA.

Generating this kernel from the stream code is non-trivial; there are several
points that must be addressed:
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Type Correspondence

Haskell’s type system is richer than that of C/CUDA. In our example, Haskell Ints
are mapped to C ints. This merging of type systems presents several potential pit-
falls:

• There may be no suitable CUDA representation for a given Haskell type. Con-
sider, for example, an infinite data structure, or the Integer type, which can
handle arbitrarily precise numbers.

• Only a partial representation may exist: this is the case in our example – the up-
per bound of the Int type is actually implementation specific: there is conse-
quently no guarantee that it will fit in an int.

• C’s lack of bounds checking means that the sizes of variable length structures
must be supplied to the kernel as extra parameters (here, the value N).

Function Code Generation

We need to convert f to some CUDA equivalent. In order to do this we must be
certain that f is computable on CUDA. Data movement is also an issue: instead
of returning values, CUDA kernels make use of output parameters. In our example
this is the purpose of the ys parameter, and its relationship with the return value is
clear. In general however, we may be required to encode arbitrary return types. The
separation of inward and outward parameters also raises questions about how much
data movement should occur – do ingoing parameters have to be copied back from
the GPU to the host, for example?

3.2 Implementation Options

There are two points within a program’s life cycle at which we can parallelise code:
compile-time and runtime. Instrumentation from inside the compiler brings some at-
tractive performance benefits – a one-off cost is paid in the form of program compi-
lation time in exchange for a self-contained, parallelised executable file. A compile-
time implementation using GHC’s Cmm code generator was explored in the initial
stages of the project, but was later abandoned. It turns out that exploiting paral-
lelism well at compile-time is very hard to do, since a lot of necessary information
isn’t available until runtime. An outline of an alternative approach using GHC is
given in Section 6.1.1; for the remainder of this and the next chapter we present
Haskgraph, a runtime approach for handling stream code.

3.3 Haskgraph

At runtime, compilation and linking are expensive, but the availability of extra in-
formation may facilitate optimisations; for example, if the kernel in Figure 3.2 was
generated at runtime, the parameter N could be omitted and hard wired into the
source code. Haskgraph is a pure Haskell library that uses runtime code generation
to parallelise stream applications without any modifications to the compiler. In this
section we discuss the interface it presents to a user, and provide a first look at how it
generates parallel code. In Chapter 4 we focus on implementation details, covering
a CUDA specific back end in Section 4.2.
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3.3.1 Restricting Streamable Types
Consider once again the application of the function mapS f. What is f’s type? Our
experience with map and its applications to lists suggests that it should be a→ b.
This is a problem: f is polymorphic, but we noted earlier that not all types may have a
representation on a GPU, or indeed any other multi-core back end. We must restrict
the types on which fmay operate. Typically this is achieved using type classes, and it
is in this manner that we introduce the notion of a describable type, a type which any
back end architecture can represent. The class’ definition is given in Figure 3.4.

1 data TypeDesc
2 = Int
3 | Float
4 ...
5
6 class DescribableType a where
7 getTypeDescriptor :: a → TypeDesc

Figure 3.4: DescribableTypes have a representation in CUDA (or any back end).

f’s type becomes (DescribableType a, DescribableType b)⇒ a→ b; apply-
ing it to invalid objects is now a type error, and will be raised as such at compile-time.

3.3.2 Describing Computation
In a similar vein let us think about f’s body. With the proposed approach we want
to make f responsible for generating its own code, i.e., f doesn’t so much compute an
answer as describe how it should be computed. This can be modeled with an abstract
syntax tree (AST). Haskgraph.Core.Expr is a data type for building such an AST; its
definition is shown in Figure 3.5.

1 data Expr a where
2 Lit :: DescribableType a ⇒ Const a → Expr a
3 Val :: DescribableType a ⇒ Var a → Expr a
4 App :: DescribableType a ⇒ Op → [Expr a] → Expr a
5 Cast :: Castable b a ⇒ Expr b → Expr a
6 If :: DescribableType a ⇒
7 BoolExpr → Expr a → Expr a → Expr a

Figure 3.5: The Haskgraph.Core.Expr type.

Expr is a small DSL for working with basic arithmetic, additionally supporting condi-
tional expressions (if...then...else in Haskell) and type casting. As a first attempt
we could use it to build an arbitrary expression representing f, giving f a type of
Expr a → Expr b. Note that f’s restriction over describable types is preserved
through the contexts of Expr’s constructors.

Unfortunately, this representation of f suffers a few limitations. In an imper-
ative environment such as that of CUDA, functions are composed of statements,
which implement actions such as assignment. We therefore need to be able to ac-
cumulate these statements in order to construct kernels – we need to maintain state.
As mentioned in Section 2.2.1, this can be achieved using a suitably defined monad.
In Haskgraph, this monad is called H. It is important to note that Expr is still used to
construct f: the monadic type H a returns values of type Expr, whilst allowing state-
ments to be accumulated as a side-effect. The internals of H are discussed further in
Chapter 4
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3.3.3 Overloading for Expression Construction
Constructing expressions explicitly in terms of the constructors of Expr is inele-
gant. The expression 2 + x, for example, would have to be written as App Add
[Lit Const 2, x]. Since operators are just infix functions in Haskell, we can over-
load their behaviour so that they build expressions directly. This is done through
instance definitions, since most operators belong to type classes. Figure 3.6 illus-
trates this point using the Prelude’s Num class, all instances of which must provide
arithmetic operators for working with integers.

1 class (Eq a, Show a) ⇒ Num a where
2 (+) :: a → a → a
3 (-) :: a → a → a
4 (*) :: a → a → a
5 negate :: a → a
6 abs :: a → a
7 signum :: a → a
8 fromInteger :: Integer → a
9

10 instance Num a ⇒ Num (H a) where
11 (+) = liftedBinaryApplication Add
12 ...

Figure 3.6: Overloading arithmetic operators using the Num class.

We can now write the above expression as just2 + x – our instance definition means
that the function actually called is liftedBinaryApplication Add 2 x, a func-
tion which builds the expression explicitly for us.

3.3.4 Streams as a Type Class
We now turn to the representations of streams themselves. In our example, mapS f
is being applied to the stream xs. It is possible that xs is nothing more than an array
in memory, but it could also be a closure (cf. Haskell lists). Ultimately, it doesn’t
matter – we want to provide a consistent interface irrespective of issues such as this.
This leads us to define the streams as a type class, shown in Figure 3.7.

1 class DescribableType a ⇒ Stream s a where
2 newStream :: Int → a → s a
3 newEmptyStream :: Int → s a
4 streamFromList :: [a] → s a
5
6 mapS :: Stream s b ⇒ (H a → H b) → s a → s b
7 zipWithS :: (Stream s b, Stream s c) ⇒
8 (H a → H b → H c) → s a → s b → s c
9 foldS :: (H a → H a → H a) → s a → a

Figure 3.7: Haskgraph’s Stream type class.

Lines 2 to 4 are functions for constructing streams –newStream andnewEmptyStream
both take a size and, in the case of newStream, an initial value for all elements of
the list. streamFromList creates a stream from a list. Figure 3.8 gives an example
of each.
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1 let
2 xs = newStream 5 1
3 -- xs = [1, 1, 1, 1, 1]
4
5 ys = newEmptyStream 5
6 -- ys = [⊥, ⊥, ⊥, ⊥, ⊥]
7
8 zs = streamFromList [1..5]
9 -- zs = [1, 2, 3, 4, 5]

Figure 3.8: Stream construction using the Stream class. Streams have been written
out as lists for clarity.

A stream is parameterised by two types:

• s is the type of the container. This can be seen as analogous to a list of type
[a]. Here, the container is the list, i.e., [ ]. An example of this is given in
Section 4.2, where we introduce the CudaStream container, a type well suited
for moving between host and GPU devices.

• a is the type of the elements, which must be of a describable type. In the case
of the list with type [a], this is the type a.

By offering an interface parameterised in this fashion, implementing back ends
can choose to represent streams in a manner that can be easily manipulated on the
target platform. Issues such as contiguity and alignment, for example, can be dealt
with on a per-module basis.
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3.3.5 A Working Stream Program
Recall the program we wished to be able to write at the beginning of this chapter
(reproduced in Figure 3.9), along with possible definitions for floating point versions
of the functions f and g.

1 f :: Float → Float
2 f x =
3 sin x / cos x
4
5 g :: Float → Float → Float
6 g x y =
7 2 * x + y
8
9 main :: IO ()

10 main =
11 print zs
12 where
13 xs = streamFromList [1..100]
14 ys = mapS f xs
15 zs = zipWithS g xs ys

Figure 3.9: A stream program in Haskell.

The program we can actually write using Haskgraph is given in Figure 3.10.

1 f :: H Float → H Float
2 f x =
3 sin x / cos x
4
5 g :: H Float → H Float → H Float
6 g x y =
7 2 * x + y
8
9 main :: IO ()

10 main =
11 print zs
12 where
13 xs = streamFromList [1..100]
14 ys = mapS f xs
15 zs = zipWithS g xs ys

Figure 3.10: A working stream program using Haskgraph.

We observe that only the type signatures of f and g are different, having had
their parameters wrapped by H. Thanks to overloading their bodies actually remain
the same, despite now doing completely different things. This will be the case in
general, assuming f and g are pure functions (i.e., produce no side-effects).
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Implementing Haskgraph 4
In this chapter we turn to the internals of the Haskgraph library: how computational
kernels are built and how code is generated. We examine these features with respect
to a CUDA back end, but the library’s design should facilitate their implementation
on any multi-core platform.

4.1 Haskgraph.Core

Haskgraph.Core is at the top of Haskgraph’s module hierarchy (depicted in Fig-
ure 4.1). Together with the Stream type class (defined in Haskgraph.Stream and
discussed in Section 3.3.4), it comprises the interface presented to user programs.
It defines describable types (Section 3.3.1) and provides the Expr data type (Sec-
tion 3.3.2), along with its associated instance definitions.

Haskgraph.Core

Haskgraph.Stream

Haskgraph.Stream.Cuda Haskgraph.Stream.Cell

Figure 4.1: The Haskgraph module hierarchy. Dashed lines indicate modules that
do not exist, but which could be added to extend the library’s capabilities.
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4.1.1 Why State is Necessary

In Section 3.3.2 the Hmonad was introduced to capture state when generating code
for Haskgraph expressions. You might ask why – we could just build an expression
tree representing a kernel and generate all the code in one go, when needed. The
problem with such an approach becomes apparent when compounding expressions,
as in Figure 4.2.

1 let
2 x = 3
3 y = 2 + x
4 z = 5 * y

Figure 4.2: Compounding expressions in stream computation.

On line 4, zmakes use of y. If we had just used pure Expr values, then generating
code for zwould involve generating code to compute y twice: once when computing
y itself and once when computing z. Clearly this is inefficient. By building kernels
incrementally, we can avoid this; now line 3 can return an expression holding the
name of a variable that will be assigned the value 2 + x at runtime. However, as a
side-effect, it also adds a statement to the current kernel body that makes such an
assignment. In this manner, z now references y symbolically, and duplicate compu-
tation is avoided. This is illustrated in Figure 4.3, where we see the two possible
expression trees for z (x has been inlined for simplicity).

y

+

2 3

z with y inlined – bad

*

5 +

2 3

z with y referenced – good

*

5 y

Figure 4.3: Expression trees created through expression compounding.

We note that the same point is not valid with respect to y’s use of x – since x is
a constant there is no performance lost if it is used in multiple places.
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4.1.2 Accumulating Kernel Bodies
Since state is (perhaps surprisingly) a common requirement when writing Haskell
programs, the standard libraries define MonadState and State1, a type class and a
monad instance for threading state through a program. Figure 4.4 contains their
definitions; the syntax m→ s in a class definition’s head expresses that s is function-
ally determined by m, that is, there can only be one value for s associated with each
value for m.

1 class Monad m ⇒ MonadState s m | m → s where
2 get :: m s
3 put :: s → m ()
4
5 newtype State s a = State {
6 runState :: s → (s, a)
7 }
8
9 instance MonadState s (State s) where

10 ...

Figure 4.4: The MonadState type class and the accompanying Statemonad. Here,
s is the type of the state and a is the type of the return value.

We can use the State monad in a first attempt at defining H. An example of how
this might be applied to our earlier example (Figure 4.2) is given in Figure 4.5.

1 type H a = State [Stmt] a
2
3 evaluate :: ... → H (Expr a)
4 evaluate ... =
5 do
6 -- Generate a variable to assign the result to.
7 result ← generateVariable ...
8
9 -- Add an assignment to the generated variable.

10 assign result ...
11
12 -- Return the name of the variable.
13 return result
14
15 assign :: ... → H ()
16 assign ... =
17 do
18 body ← get
19
20 let assignment = ...
21
22 put $ body ++ [assignment]

Figure 4.5: Using the Statemonad to build kernels.

Here, evaluate is an arbitrary function that might handle addition, for exam-
ple. It creates a statement that assigns the result of some expression into a freshly

1Part of the Control.Monad.Statemodule.
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generated variable, and returns that variable as its result. We see that this definition
of H is still not quite right according to the definitions given in Sections 3.3.3 and 3.3.4,
but that it implements the accumulation we discussed in this and the previous sec-
tion.

4.1.3 Name Generation
When kernels are produced, the code generator creates a fresh name for each iden-
tifier it encounters. For example, an application of the function mapS (2+) to a
stream of floating point numbers might produce a kernel as shown in Figure 4.6.

1 __global__ void name_1(float *name_4, float *name_5) {
2 int name_6 = ((blockDim.x * blockIdx.x) + threadIdx.x);
3
4 if (name_6 < 65536) {
5 float name_7 = name_4[name_6];
6 float name_8 = (2.0 + name_7);
7 name_5[name_6] = name_8;
8 }
9 }

Figure 4.6: Using generated identifiers to construct a kernel.

Clearly each name much be unique! Unique values are also a common requirement,
and to this end the Haskell libraries provide the Unique type, as in Figure 4.7

1 data Unique = ...
2
3 newUnique :: IO Unique
4 hashUnique :: Unique → Int

Figure 4.7: The Unique type, provided by the Data.Uniquemodule.

We notice that Unique values exist only within the IOmonad, but that we have al-
ready committed to working inside the environment provided by State. To over-
come this issue we can transform the IOmonad so that it supports stateful computa-
tion using the StateT type, a so-called state transformer. StateT’s definition is given
in Figure 4.8. Here, s is (as before) the type of the state and m is the underlying
monad that StateT is transforming.

1 newtype StateT s m a = StateT {
2 runStateT :: s → m (a, s)
3 }
4
5 instance Monad m ⇒ MonadState s (StateT s m) where
6 ...

Figure 4.8: The StateT state transformer monad.
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Applying a transformer in this manner creates a monad stack. This is theHaskgraph
monad, defined in Figure 4.9.

1 data HaskgraphState = HaskgraphState {
2 graphBody :: [Stmt]
3 }
4
5 newtype Haskgraph a = Haskgraph {
6 run :: StateT HaskgraphState IO a
7 }

Figure 4.9: The Haskgraphmonad.

We have generalised the state to a record type so that extra information may
be passed around. We see that lifting expressions into this monad encapsulates the
necessary side-effects discussed up to this point whilst facilitating the construction
of arbitrary ASTs; finally, this yields the H monad introduced in Section 3.3.2. Fig-
ure 4.10 gives H’s definition.

1 type H a = Haskgraph (Expr a)

Figure 4.10: Defining H.

Note that H is actually a type synonym that lets us talk explicitly about expressions
that have been lifted into the Haskgraphmonad.

4.2 Hscuda

Hscuda is an example of a code generating back end that could be implemented using
Haskgraph. It provides the CudaStream type, an instance of the Stream type class
that generates CUDA kernels at runtime to exploit parallelism exposed by the usage
of streams. Figure 4.11 shows the type’s definition.

1 newtype CudaStream a = CudaStream (StorableArray Int a)
2
3 instance DescribableType a ⇒ Stream (CudaStream a) where
4 ...

Figure 4.11: The CudaStream type.

StorableArray is a data type provided by Haskell’s array libraries that offers
the following guarantees:

• Contiguous storage – the array is laid out in a C compatible manner, and all ele-
ments are unboxed i.e. in-place as opposed to referenced by pointers.

• Access to an underlying foreign pointer, so that the data structure may be passed
across language barriers (C to Haskell, for instance).

• Use of pinned memory, ensuring that any use of a foreign pointer will not be
interrupted by the garbage collector.
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These points mean StorableArrays are ideal for using with CUDA; the type’s
support for foreign pointers means that we can use Haskell’s foreign function interface
(FFI) to move streams from Haskell to C and back, while marshalling is simplified
by the fact that stream data on the heap is unboxed and contiguous.

4.2.1 Generating CUDA Code
Like Haskgraph.Core, Hscuda pairs a domain-specific language (Cuda.Expr) with
a monad (Cuda) for code generation. Since Cuda.Expr is used exclusively by Hscuda,
it does not prevent the construction of many potentially dangerous statements. De-
spite this it could be modified with little effort to produce a general-purpose DSL
for working with CUDA in Haskell. Definitions are given in Figure 4.12.

1 data CudaType
2 = Void
3 | Pointer CudaType
4 ...
5
6 data Direction
7 = HostToDevice
8 | DeviceToHost
9

10 data Expr where
11 Constant :: DescribableType a ⇒ a → Expr
12 Variable :: String → Expr
13 Apply :: Op → [Expr] → Expr
14 Cast :: CudaType → Expr → Expr
15 AddressOf :: Expr → Expr
16 Dereference :: Expr → Expr
17 Index :: Expr → Expr → Expr
18 CopyDirective :: Direction → Expr
19
20 data Stmt = ...
21
22 data CudaState = CudaState {
23 kernelBody :: [Stmt]
24 }
25
26 newtype Cuda a = Cuda {
27 run :: StateT CudaState IO a
28 }

Figure 4.12: Cuda.Expr and the Cudamonad.

Cuda.Expr is a closer realisation of a CUDA expression’s AST, supporting point-
ers, void types and directives for moving data between the host and the GPU. Kernel
bodies are again realised as sequential lists of statements, supporting operations like
control flow, memory management and block-local synchronisation (__syncthreads()).
As with Haskgraph.Expr, Cuda.Expr is also an instance of common type classes
such as Num and Floating, making it easy to construct arbitrary expressions.
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4.2.2 Wrappers
Wrappers are pure C functions callable from Haskell that wrap calls to CUDA ker-
nels. They are also used for compartmentalising several “boilerplate” actions.

Global Synchronisation

There is no facility in CUDA for synchronising threads “across the card” (see Sec-
tion 2.4.1). This restriction is typically overcome by using kernel launch (a relatively
cheap operation) as a global synchronisation primitive. An illustration of this tech-
nique is given in Figure 4.13, whereby a stream of elements is being summed. After
the first invocation of the summing kernel, a set of partial sums remain. By invoking
the same kernel again, we obtain the single result we need.

xs1︸ ︷︷ ︸
+

xs2︸ ︷︷ ︸
+

xs3︸ ︷︷ ︸
+

xs4︸ ︷︷ ︸
+

Iteration 1

y1 y2 y3 y4︸ ︷︷ ︸
+

Iteration 2

y

Figure 4.13: Using kernel invocation to synchronise data in a sum.

Hscuda supports this type of synchronisation through iterative kernels, i.e., ker-
nels whose domain and codomain are the same. Kernels of this nature are repeatedly
launched with their input and output parameters switched (an O(1) operation since
all parameters are pointers). This is cheaper than moving data between iterations
and, in the event that there are an even number of invocations, an extra kernel for
copying the data to its correct location (in parallel) is generated and called after the
last iteration has completed execution.

Marshalling and Blocking

Marshalling is the act of gathering data and copying it between the host and the
GPU, prior to and following computation. As stated earlier, this is a relatively sim-
ple process as a result of choosing the StorableArray type as a stream representa-
tion. However, it requires that blocking be taken into account. Blocking is the act
of dividing up streams of data into pieces—blocks—that will fit into GPU memory
and arranging for the pieces to be processed separately. This is not a straightforward
process: it is heavily dependent on the data and algorithm being used. We overcome
this in Hscuda by introducing parameter strategies, which describe how partial com-
putations on separate blocks should be composed into an end product. Strategies
are defined as an ADT, the definition of which is given in Figure 4.14.
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1 data ParameterStrategy
2 = Reduce (Expr → Expr → Cuda Expr)

Figure 4.14: Parameter strategies as defined in Hscuda.

Currently, only one scheme is supported: Reduce f specifies that the function f
should be used to reduce pairs of results. Since blocks could could be processed in
any order, potentially using multiple GPUs,2 f should be associative and commuta-
tive. For example, addition could be implemented as in Figure 4.15.

1 reduceAddition :: Expr → Expr → Cuda Expr
2 reduceAddition x y = return $ x + y
3
4 ...
5
6 let
7 strategy = Reduce reduceAddition

Figure 4.15: Using addition as a reduction function with the Reduce parameter strat-
egy.

No checks are made with regard to whether f is associative and commutative – it is
assumed that the user knows what they are doing.3

Kernel parameters are also associated with a high level type, another ADT defined
as in Figure 4.16.

1 data ParameterType
2 = Array Int32
3 | Scalar ParameterStrategy

Figure 4.16: High-level parameter types for generating boilerplate code.

In the case of an array we pair it with its size; currently only scalar parameters can be
assigned strategies. This does not limit the library at present – arrays are implicitly
assigned a strategy whereby their blocks are processed separately and copied back
into the correct part of the array.

2Neither of these features is implemented currently.
3The “users” in this context are the implementations of mapS and the like; users of the stream type

class do not need to concern themselves with this.
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4.2.3 Code Generation and Compilation

The features we have discussed up to now are aggregated by the generateKernel
andgenerateIterativeKernel functions, whose type signatures are shown in Fig-
ure 4.17.

1 generateKernel :: [ParameterSpec]
2 → (Expr → [(Expr, Expr)] → Cuda ())
3 → IO (String, String)
4
5 generateIterativeKernel :: Int32
6 → [ParameterSpec]
7 → (Expr → [(Expr, Expr)] → Cuda ())
8 → IO (String, String)

Figure 4.17: Type signatures for the kernel generation functions in Hscuda.

Aside from the fact that generateIterativeKernel takes an additional integer
argument – the number of iterations, they both take the same parameters:4

• A kernel signature, given as a list of formal parameter specifications. TheParameterSpec
type is a synonym for a triple containing the following:

– A parameter’s direction (either In or Out). Only outward parameters are
copied back from the GPU to the host; this level of control can allow for
simple optimisations or just tactful variable reuse.

– A primitive type. This is a CudaType as defined in Figure 4.12.

– The parameter’s high level type, as given in in Figure 4.16.

• A body generation function. The parameters that the function must accept are
the current thread’s unique identifier and a list of actual parameters, each of
which is a pair composed of:

– An expression representing the corresponding formal parameter; this
can be used inside the generator’s closure to reference the parameter’s
value.

– The parameter’s size, with blocking taken into account.

The generation function can also make use of CUDA-specific variables (blockDim
andthreadIdx, to name a couple) through similarly named functions; gridDim.x,
for example, becomes gridDim X.

With all this information, generation and compilation proceeds as follows:

1. Kernel generation is almost entirely directed by the body generation function –
the statement list is evaluated and code is produced.

2. Wrapper generation is hidden from the caller; it is performed using the formal
parameter list:

• Boilerplate code is generated through the analysis of parameter direc-
tions and strategies. For example, an steam may contain more elements
than there are threads, and will be blocked as a result. All code is divided
into pre- and post- kernel invocation blocks.

4generateKernel is, as you might expect, implemented in terms of generateIterativeKernel.
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• Kernel calls are instrumented with appropriate sizings – iterative kernels
are handled as described earlier. The blocks of boilerplate code are then
assembled around the invocations.

3. The CUDA compiler5 is called to compile the kernel and wrapper into a shared
library. In the case of the wrapper, which is pure C, the host compiler will be
invoked automatically by the CUDA compiler.

The names of the wrapper and shared library are then returned as a tuple, so that
the caller has enough information to utilise the generated code.

A Kernel Generation Example

Figure 4.18 shows the call to generateKernel used in zipWithS.

1 generateKernel
2 [ (In, x_type, arrayP size),
3 (In, y_type, arrayP size),
4 (Out,z_type, arrayP size) ] $
5
6 \thread_id [(xs, xs_size), (ys, ys_size), (zs, zs_size)] →
7 ifThen (thread_id *< xs_size) $ do
8 x ← declareAssignLocal x_type (xs *!! thread_id)
9 y ← declareAssignLocal y_type (ys *!! thread_id)

10
11 z ← insertHaskgraph (f (parameter x) (parameter y))
12
13 zs *!! thread_id *= z

Figure 4.18: The kernel generation code used in zipWithS. Operators beginning
with * are Hscuda versions of their vanilla Haskell equivalents.

Given an application of zipWithS (+) xs ys for two streams of one million
floating point numbers, the CUDA code generated by this implementation is shown
in Figure 4.19 (snipped and formatted for clarity). Let us quickly correlate the two
pieces of code:

• Lines 2 to 4 of the Haskell code define the formal parameter list of the CUDA
kernel and its wrapper. This corresponds to lines 1 and 13 in the generated
code.

• Lines 8 to 9 declare local variables for holding one element of each of the two
streams. These declarations appear in lines 5 and 6 of the generated code.

• Line 11 inserts the code that represents the function, f, that was passed to
zipWithS. In this case f is the function (+), and this is reflected in line 7 of
the CUDA kernel code.

• Line 13 assigns the computed result back into the output parameter – this oc-
curs in line 8 of the generated code.

We see also that the wrapper takes care of blocking and marshalling (lines 22 to 42),
keeping the kernel and the Haskell code required to build everything relatively small.

5nvcc at the time of writing.
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1 __global__ void name_1(float* name_4, float* name_5, float* name_6) {
2 int name_7 = ((blockDim.x * blockIdx.x) + threadIdx.x);
3
4 if (name_7 < 65536) {
5 float name_8 = name_4[name_7];
6 float name_9 = name_5[name_7];
7 float name_10 = (name_8 + name_9);
8 name_6[name_7] = name_10;
9 }

10 }
11
12 extern "C" {
13 void name_2(float* name_14, float* name_17, float* name_20) {
14 float* name_15;
15 cudaMalloc((void**)&name_15, (sizeof(float) * 65536));
16 float* name_18;
17 cudaMalloc((void**)&name_18, (sizeof(float) * 65536));
18 float* name_21;
19 cudaMalloc((void**)&name_21, (sizeof(float) * 65536));
20 dim3 name_11(256);
21 dim3 name_12(256);
22 cudaMemcpy(name_15, (name_14 + 0),
23 (sizeof(float) * 65536), cudaMemcpyHostToDevice);
24 cudaMemcpy(name_18, (name_17 + 0),
25 (sizeof(float) * 65536), cudaMemcpyHostToDevice);
26 cudaMemcpy(name_21, (name_20 + 0),
27 (sizeof(float) * 65536), cudaMemcpyHostToDevice);
28 name_1<<<name_11, name_12, 2048>>>(name_15, name_18, name_21);
29 cudaMemcpy((name_20 + 0), name_21,
30 (sizeof(float) * 65536), cudaMemcpyDeviceToHost);
31
32 ... " 70 lines snipped
33
34 cudaMemcpy(name_15, (name_14 + 983040),
35 (sizeof(float) * 16960), cudaMemcpyHostToDevice);
36 cudaMemcpy(name_18, (name_17 + 983040),
37 (sizeof(float) * 16960), cudaMemcpyHostToDevice);
38 cudaMemcpy(name_21, (name_20 + 983040),
39 (sizeof(float) * 16960), cudaMemcpyHostToDevice);
40 name_1<<<name_11, name_12, 2048>>>(name_15, name_18, name_21);
41 cudaMemcpy((name_20 + 983040), name_21,
42 (sizeof(float) * 16960), cudaMemcpyDeviceToHost);
43 cudaFree(name_15);
44 cudaFree(name_18);
45 cudaFree(name_21);
46 }
47 }

Figure 4.19: The CUDA code generated by the Haskell code shown in Figure 4.18.
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4.2.4 Other Considerations
The use of output parameters means that all kernels constructed by Hscuda are de-
structive, that is, they return results by overwriting their output parameters in the
Haskell heap. Clearly this is against the functional programming ethos, whereby
change is reflected in returning new values. Rather than make the link between
Haskell and C bidirectional, this behaviour is emulated by creating the required
number of empty streams in Haskell code and passing them to wrappers. This is
done with the expectation that they will be filled as a result of expectation. Conse-
quently the stream functions retain their purity, leaving their parameters unmodi-
fied.
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Evaluation 5
At this point we turn to the evaluation of the Haskgraph library. We first evalu-
ate the compromises between speed and ease of programming by comparing several
serial benchmarks with their equivalent Haskgraph implementations. We then ex-
amine how program rewriting can be exploited to minimise unnecessary use of the
library, and the impact this has upon performance.

5.1 Benchmarking

All benchmarks were conducted on a machine with a 3.00Ghz Intel Core 2 Duo
CPU with 6MB of shared L2 cache. The CUDA-compatible GPU used was an
Nvidia GeForce 8600 GTS/PCIe, targeted by version 2.2 of the nvcc compiler. A
maximum GPU thread limit of 65536 (a grid of 256 blocks of 256 threads each) was
imposed so that the effects of blocking could be analysed, and each test was run five
times with an average result taken. Unless stated otherwise, all tests were compiled
using GHC 6.10.1 with no optimisations or other parameters.

5.1.1 Non-Iterative Benchmarks
The first set of benchmarks were non-iterative, that is, no looped computation oc-
curred on the GPU.

mapS

Figure 5.1 shows the how runtime varies with stream size as the cosine of every ele-
ment in a stream of single-precision floating point numbers is computed using mapS.
We see that the serial implementation easily outperforms CUDA. This is to be ex-
pected – the non-iterative nature of the application means that the work done per
byte copied is very low. Consequently, data movement dominates the CUDA ap-
plication’s runtime, resulting in poor performance. The extreme decrease in speed
between 100,000 and 1,000,000 elements can be attributed to blocking – with only
65536 threads available on the GPU, the application suddenly moves from not need-
ing blocking at all to requiring around 16 separately blocked computations. Since
the current version of Haskgraph does not asynchronously stream new data to the
GPU whilst existing data is being processed, this imposes a heavy additional cost.
Figure 5.2 shows the increasing overhead that synchronous blocking adds to mapS’s
runtime.

foldS

Figure 5.3 graphs runtime against stream size for computing the sum of a list of
single-precision floating point numbers. Again we see that the overheads are domi-
nant even for large streams, moreso than with mapS. We attribute this to the use of
multiple kernel launches per block of computation, as covered in Section 4.2.2.

49



0

2

4

6

8

10

12

10 100 1000 10000 100000 1e+06

T
im

e
Ta

ke
n

(s
)

Number of Elements

Serial
CUDA

Figure 5.1: Performance of mapS cos vs. map cos.

0

2

4

6

8

10

12

14

0 200000 400000 600000 800000 1e+06

T
im

e
Ta

ke
n

(s
)

Number of Elements

Serial
CUDA

Figure 5.2: The effect of blocking on mapS’s performance.
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Figure 5.3: Performance of foldS (+) vs. foldr (+) 0.
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Figure 5.4: The effect of blocking on foldS’s performance.
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5.1.2 Iterative Benchmarks
The second set of benchmarks were iterative, that is, looped computation occurred
on the GPU. Iteration in Haskgraph is provided by the iterateH function, defined
in Figure 5.5.

1 iterateH :: Int32 → (H a → H a) → H a → H a

Figure 5.5: Haskgraph’s iterateH function.

iterateH takes an iteration count, a function to iterate and an initial value. It
constructs an AST representing an iterated computation and returns an expression
holding a reference to the result. In Hscuda, iterated expressions are then trans-
formed into for-loops. This often presents good opportunities for the compiler to
unroll iterated computation, since the bounds are hard wired into the kernel’s source
code.

In Haskell, we emulate iterative behaviour using iterateN, a recursive function
defined in Figure 5.6. Though similar to the Prelude’s iterate, iterateN takes an
iteration count, and only returns the final result of its computation.

1 iterateN :: Int32 → (a → a) → a → a
2 iterateN n f x =
3 iterateN ’ n f x x
4 where
5 iterateN ’ :: Int32 → (a → a) → a → a → a
6 iterateN ’ 0 f x a = a
7 iterateN ’ n f x a =
8 iterateN ’ (n - 1) f x (f a)

Figure 5.6: The iterateN function, used for emulating iterative behaviour in
Haskell.

iterateN is written in a tail recursive manner, so that GHC is able to compile it to
iterative code if it can do so.

mapS

Figure 5.7 plots runtime against iteration count for repeatedly doubling every ele-
ment in a stream of single-precision floating point numbers. We see that the CUDA
applications are relatively unaffected by rising iteration count; this is further demon-
strated in Figure 5.8. Note that the scale in Figure 5.8 is much finer, and that the
fluctuation in Figure 5.8 are therefore marginal and arguably unavoidable.

These results suggest that iteration on CUDA is very cheap, which is as we would
expect: as a platform CUDA is perfectly suited for looped floating point computa-
tion. The serial implementations suffer from being tail recursive – GHC actually
compiles tail recursive to a series of jumps to entry code, and not as loops. Con-
sequently they grow linearly with respect to the number of iterations. In terms of
space their growth will also be linear due to the use of the stack; contrast this with
the constant space requirements of the CUDA versions.
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Figure 5.7: mapS (iterateH (2*)) vs. map (iterateN (2*)).
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zipWithS

Figures 5.10 and 5.11 graph analogous runtimes for the zipWithS combinator. The
functions zipperH and zipper are defined in Figure 5.9.

1 zipperH :: H Float → H Float → H Float
2 zipperH x y =
3 cos (x + y)
4
5 zipper :: Float → Float → Float
6 zipper =
7 cos (x + y)

Figure 5.9: The functions zipperH and zipper.

Similar results are again produced, although the CUDA runtimes are less vari-
adic; this is a consequence of the extra stream that must be moved between the
host and the device in a zipWithS. It is clear from all of the results we present that
CUDA excels when computational load is intensive – when iterating 10,000 times
over each of 50,000 elements we see that CUDA performs over 200 times faster than
vanilla Haskell. This is further illustrated by the fact that CUDA continues to per-
form well for much larger iteration counts, as shown in Figure 5.12. For these itera-
tion counts, serial benchmarking became intractable as stack operations dominated
the runtime.
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5.2 Rewriting for Optimisation

Rewriting is the process of applying a series of source-to-source transformations at compile-
time. This is typically done in order to produce a better program, for some given def-
inition of “better” – faster or more space efficient, for example. Figure 5.13 shows an
application of this functionality as provided by GHC (Section 2.3).

1 {-# RULES
2 "map/map"
3 forall f g xs. map f (map g xs) = map (f . g) xs
4 #-}
5
6 main :: IO ()
7 main =
8 do
9 let

10 xs = [1..10]
11 ys = map (2*) (map (2+) xs)
12
13 print ys

Figure 5.13: Rewrite rules as supported by GHC.

Rewriting actions are specified as a sequence of rewrite rules, denoted by GHC’s
RULES pragma. Each rule is assigned a name—used only for debugging purposes—
and a corresponding body. During compilation, GHC will rewrite instances of the
body’s left hand side with the body’s right hand side.

In Figure 5.13, line 11 will generate an unnecessary intermediate list through the
double use of map. With the application of the map/map rule, this is no longer the
case. The functions (2*) and (2+) will be composed, and the result will be an im-
provement in both space and time.

5.2.1 Rewriting Stream Code
The same principle can be applied to the stream functions provided by Haskgraph.
Consider mapS, for example. Figure 5.14 shows how its type is compatible with the
same compositions—and consequently rewritings—as map.

1 f :: b → c
2 g :: a → b
3
4 map f . map g :: [a] → [c]
5 map (f . g) :: [a] → [c]
6
7 f’ :: H b → H c
8 g’ :: H a → H b
9

10 mapS f’ . mapS g’ :: s a → s c
11 mapS (f’ . g’) :: s a → s c

Figure 5.14: Composing mapS with other stream functions.

Since mapS has significant startup overheads compared to map, rewriting to re-
duce its applications may offer considerable increases in performance. In this sec-
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tion we quantify these increases by comparing the execution times of programs
which have been compiled several times, with rewriting enabled and with rewriting
disabled. As before, the benchmarks were conducted on a machine with a 3.00Ghz
Intel Core 2 Duo CPU (6Mb L2 cache) and an Nvidia GeForce 8600 GTS/PCIe,
and the average time was taken over five executions.

mapS and mapS

First let us consider the stream analogue of the program given in Figure 5.13, that is,
the program given in Figure 5.15.

1 {-# RULES
2 "mapS/mapS"
3 forall f g xs. mapS f (mapS g xs) = mapS (f . g) xs
4 #-}
5
6 main :: IO ()
7 main =
8 do
9 let

10 xs = streamFromList [1..10]
11 ys = mapS (2*) (mapS (2+) xs)
12
13 print ys

Figure 5.15: Applying the mapS/mapS rule to a stream program.

Only one rewrite will occur – the application on line 11. Figure 5.16 shows the run-
times of the original and rewritten programs over a scale of ten to one million ele-
ments.
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Figure 5.16: The performance gains of rewriting applications of mapS.
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Overall we see about a 50% reduction in execution time if rewriting is enabled.
Arguably this is as you might expect. One kernel is generated and compiled as op-
posed to two, and the copying of data between the host and the GPU only happens
once, and not twice. The severe drop in performance between 10,000 elements and
1,000,000 is again a result of blocking. Figures 5.17 and 5.18 illustrate this point at
coarse and fine levels, where we observe a steady increase in runtimes for both pro-
grams as more blocking is needed.
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Figure 5.17: The effects of blocking on mapS (coarse grained).
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Figure 5.18: The effects of blocking on mapS (fine grained).
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mapS and zipWithS

We now turn to the composition of mapS and zipWithS. There are three possible
compositions here – the application of mapS g to either zipWithS’s first stream
parameter, its second stream parameter, or both. Here we only consider the first
and third cases: the second is analogous to the first and can be built using the flip
function. For benchmarking purposes, we test the program shown in Figure 5.19 in
three configurations:

1. With rewriting disabled.

2. With rewriting enabled and the inclusion of the zipWithS/mapS rule only.
This will result in one rewriting, and two kernel generation / invocation pro-
cesses.

3. With rewriting enabled and the inclusion of the zipWithS/mapS3 rule only.
This will result in one complete rewriting of the zipWithS call, leaving only
one kernel generation and invocation process.

1 {-# RULES
2 "zipWithS/mapS"
3 forall f g xs ys.
4 zipWithS f (mapS g xs) ys = zipWithS (f . g) xs ys;
5
6 "zipWithS/mapS3"
7 forall f g h xs ys.
8 zipWithS f (mapS g xs) (mapS h ys) =
9 zipWithS (flip (f . h) . g) xs ys

10 #-}
11
12 main :: IO ()
13 main =
14 do
15 let
16 xs = streamFromList [1..10]
17 ys = streamFromList [1..10]
18 zs = zipWithS (+) (mapS (2*) xs) (mapS (3*) ys)
19
20 print zs

Figure 5.19: Applying the zipWithS/mapS rule to a stream program.

The results for varying stream sizes are plotted in Figure 5.20. We observe that
we remove approximately 33% of the total work for each call to mapS we rewrite
away. Avoiding this data movement is especially important as blocking increases, as
indicated by Figures 5.21 and 5.22 by the divergent nature of the results.
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Figure 5.20: The performance gains of rewriting applications of zipWithS.
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Figure 5.21: The effects of blocking on zipWithS (coarse grained).
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Figure 5.22: The effects of blocking on zipWithS (fine grained).

mapS, iterateH and iterateN

We already saw in Section 5.1.2 that iterated computation is one of CUDA’s strengths.
Consequently, our last experiment concerns rewriting iterated computations onto
the GPU in order to transform tail recursion into iteration. Consider the two meth-
ods of repeatedly applying a function to every element of a stream, as presented in
Figure 5.23.

mapS f

mapS f

mapS f

iterateN n (mapS f) xs

xs

xs′

xs′′

ys

mapS (iterateH n f) xs

x1 x2 x3 x4 x5 x6 x7 x8 x9

f

x′1 x′2 x′3 x′4 x′5 x′6 x′7 x′8 x′9

f

x′′1 x′′2 x′′3 x′′4 x′′5 x′′6 x′′7 x′′8 x′′9

f

y1 y2 y3 y4 y5 y6 y7 y8 y9

Figure 5.23: Rewriting the composition of iterated functions for better performance.

We expect that the rightmost application will be faster – the other will likely
incur repeated data movement costs. The leftmost method is also tail recursive,
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whilst the rightmost will be compiled to purely iterative code. Figure 5.24 shows
how we can rewrite the slow version to the fast version.

1 {-# RULES
2 "iterateN/mapS"
3 forall n f xs.
4 iterateN n (mapS f) xs = mapS (iterateH n f) xs
5 #-}

Figure 5.24: Rewriting iterateN as iterateH to eliminate tail recursion.

Figure 5.25 shows the results of this rewriting for streams of 10,000 and 100,000
elements, with a varying number of iterations.
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Figure 5.25: The performance gains of rewriting iterateN as iterateH.

The results are as expected: iteration is much cheaper on the GPU. Since Hask-
graph does not currently implement any caching, each call to mapS in the slow ver-
sion creates and compiles a new kernel. The cost of doing so, combined with the
cost of moving data to and from the card for each invocation, is vastly greater than
performing all of the iteration on the GPU.
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Conclusions 6
In this report we have demonstrated that it is possible to provide high levels of ab-
straction for parallel programming. We have shown that the type system can be
used to expose opportunities for parallelism, by introducing stream data types to
Haskell. In evaluating our implementation, we showed that speed need not be sac-
rificed for these conveniences. We also exploited existing features such as GHC’s
rewrite engine to make some programs run even faster. We conclude the following:

• Using the type system to expose parallelism is an effective method that re-
duces programming complexity. Overloading means that markup code is min-
imised and program clarity is maintained (Section 3.3.3)

• Runtime code generation is a viable technique for producing parallel software
(Section 5.1). In many cases the costs of generation and linking can be offset
against the performance gained by parallelisation.

• Program transformations such as rewriting can provide further performance
improvements by reducing unnecessary parallelisation (Section 5.2)

6.1 Future Work

In the remainder of this chapter we discuss some extensions and improvements that
could be investigated, and their implications for what we have presented.

6.1.1 Constructing a Core-to-Core Pass

An alternative approach to parallelising code is at compile-time. In GHC, this could
be achieved with a Core-to-Core pass, such as the SimplCore pass described in Sec-
tion 2.3.1. A Core-to-Core pass receives a list of bindings from the program being
compiled and returns a new list, representing the results of that pass’ execution.
In this manner stream functions could be recognised and replaced with parallelised
equivalents. While parallelisation of this nature is typically more conservative since
less information is available, it is likely that a statically linked executable would per-
form better than one that links in parallel components at runtime.

6.1.2 Complex Data Types

The current version of Haskgraph does not support the streaming of complex data
types such as tuples or records. To make the library more useful, this would need to
be addressed. Also of interest is an investigation into whether infinite data structures
(lists, for example) could be handled by progressively blocking successive parts of the
computation.
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6.1.3 Using Performance Models
In the evaluation we presented many parallel applications that actually ran slower
than their serial counterparts. These results were attributed to the overheads of
data movement, and a low ratio of work done per byte copied. A possible solution to
this is to use performance models to speculatively evaluate stream functions on CUDA.
This is feasible since a function’s structure can be determined by traversing its AST.
For example, a simple model could only send iterative computations to the card,
but a more complex one could potentially analyse the complexity of a function on a
per-application basis.

6.1.4 Back End Specific Optimisations
The introduction of complex data types as described in Section 6.1.2 could present
problems for a back end such as CUDA, where memory coalescing is needed to max-
imise performance returns. For example, it is often much more efficient to use struc-
tures of arrays (streams) (SoA) rather than arrays (streams) of structures (AoS). In general,
transformations such as these can be considered back end specific optimisations,
and adding support for them would greatly add to the value of the Haskgraph li-
brary.

6.1.5 Pluggable Back Ends
In this report we documented a CUDA-based implementation, but the layers of
abstraction provided by Haskgraph mean that writing a back end for another plat-
form (the Cell, for example) should be possible. It is expected that multiple plat-
forms could be combined: since each back end provides a different stream data type,
stream function calls could be delegated to different platforms, potentially in paral-
lel.
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