
BEng Individual Project Report

Avgoustinos Kadis
Supervised by Francesca Toni

June 15, 2010

Abstract

Reading texts in a second language is challenging for many people. The plenty
of unknown words and complicated syntax makes the life of the reader a lot
harder. Readabix is a service that radically changes the reading experience
from unpleasant and demotivating to enjoying and encouraging.

How does it do that? First, it tries to find the easiest articles on the newspapers
of the day. Then it displays them to the user to select one to read. While the
user reads the page through a highly interactive interface that allows marking
of unknown words and instant translation, the system adopts to the user’s level
and tries to find him easier articles. When the user goes back to the articles list
he will notice that new, easier articles appear. At the same time he can track
his progress by seeing how many words he knows in the language and how many
he has learned. User can then read newly recommended articles and if he enjoys
reading one of them, he can recommend it to others at his level. Readabix has
a smart way of matching user’s level and recommending articles between the
users.

And that’s not all! Readabix was very carefully designed and optimised so all
these smart calculations would be as quick as possible. Additionally, in order
to allow the system to support hundreds or even thousands of users, we hosted
it on Google’s cloud. We used a distributed database for storage and optimised
our algorithms to access it effectively.

Users liked it, as evaluation showed they found it very useful for improving their
language skills. Hope you’ll like it too.

http://readabix.appspot.com

http://readabix.appspot.com

Acknowledgements

Firstly, above all, I want to thank my fiancee Karolina for her unconditional
support and guidance through these months. She was giving me the courage
and hope I needed, in moments that only she could do it.

Secondly, I want to thank my parents for dedicating their lives to me, my brother
and my sister and giving me everything I needed to come so far. I hope I make
you proud.

Thirdly, I want to thank Neophytos for believing in me and insisting on me
studying abroad. I wouldn’t be here without him.

I want to also apologise to my best friend Giorgos, for coming here alone. I
grew up now.

I want to also thank all the friends and colleagues that helped with evaluating
Readabix and giving me such motivating and great feedback!

Lastly, I want to thank my supervisor Francesca for accepting Readabix with
such enthusiasm and prospect. I’ll always remember her endless ideas, improve-
ments and calls for action. Thanks for the positive atmosphere and pleasant
meetings. They helped :)

Contents

1 Introduction 1
1.1 Road Map . 3

2 Background 4
2.1 Reading Comprehension . 4
2.2 Measuring Text Readability . 6

Baseline . 7
Vocabulary . 7
Syntactic . 8
Entity Coherence . 9
Discourse Relations . 9

2.3 Content Extraction . 9
2.4 Collaborative Filtering . 10

3 Retrieving Articles 11
3.1 RSS Feeds . 11
3.2 Articles . 13

Download HTML . 14
Extract Content . 15
Tokenisation . 17
Word Filtering . 18
Count Word Frequency . 18
Create Reverse-Index . 19
Evaluating Difficulty . 19

4 Reading Articles 21
4.1 Requirements . 21
4.2 Possible Solutions . 22

Translating Words . 22
Marking Words . 23
Saving User Progress . 23

4.3 Our Solution . 24
Interactivity . 25
Translation . 29

Saving Marked Words . 29
Saving Paragraph or Text . 30

4.4 Performance . 30

5 Recommending Articles 32
5.1 Interface . 32
5.2 User Independent Measures . 33

Word Frequency . 34
Word Repetition . 35

5.3 User Dependent Measures . 36
Known Words . 37
Unknown Words . 37
Weighted Mode . 37
Easy & Challenging Mode . 38

5.4 Combined Measures . 38
5.5 Incremental Counting . 39

6 Recommending Words 41
6.1 User Interface . 41
6.2 Measures . 42
6.3 Recommendations . 43
6.4 User Progress . 44

7 User Feedback 45
7.1 Motivation . 45
7.2 Profile Matching . 46
7.3 Recommendation Algorithm . 47
7.4 Incremental Counting . 48

8 Software Engineering 50
8.1 System Overview . 50

Retrieval Module . 52
Processing Module . 53
Feedback Module . 53

8.2 De-Coupling Database Operations 54
8.3 Running on the cloud . 56

Datastore . 56
Task Queues . 57

8.4 User Interface . 58
8.5 Code Base . 59

9 Evaluation 61
9.1 Objectives . 61
9.2 Evaluation Environment . 62
9.3 Tracking Users . 62
9.4 Survey . 64

9.5 Existing Tools . 69

Bibliography 72

Chapter 1

Introduction

Reading in a second language is a quite challenging and rewarding task. The
reader needs to spend lot of time disassembling the meaning of the text, looking
up words on the dictionary etc. The most challenging part is finding a good text
to read. Children start reading small stories with simple words and plot. Even
though children stories seem excellent source of easy texts to read, adults find
them very boring. From the other side, adults don’t have much time available to
be looking up many words on the dictionary and spend lot of time on getting the
meaning of the text. The reader wants something interesting to read without
too much effort and at the same time to allow him to expand his knowledge of
the language.

The question now is: where can the user find such texts? Novels are quite long
and usually use harder and complicated tenses and words. Language learning
books have texts at a more suitable level but they are not accessible to every
person and the texts can be rather boring or just outdated. Newspapers though
contain ”fresh” texts, probably more interesting than language books. They
cover many different subjects of interest (sports, politics, health etc) which
increases the probability of finding something interesting. Language used is
not necessarily the easiest to read but there is a lot of word repetition in their
vocabulary. This makes it rewarding for the reader when he learns a word and
encounters it later on.

Newspaper sounds like a great source. But how can the user find newspaper
articles? Visiting the newspaper’s website is one option but even better is to use
aggregated news services (like Google News) which gather articles from various
newspapers and present them in a single website. This gives quick access to the
most recent news from all around the world. There is an issue though. The
articles that are available on Google News are not guaranteed to be easy for
you to read. If an article has too many unknown words, reading it can be very
demotivating and tiring. Here comes the need for Readabix, the service that

1

CHAPTER 1. INTRODUCTION

finds you the most suitable news articles at the right level of difficulty (ex. not
too many unknown words).

Readabix is a new web-service where the reader can quickly find articles that
are easy for him to read (not many unknown words). While reading an article
the user can look-up the word translation and add words to his vocabulary lists.
Vocabulary lists contain words he knows and words he wants to learn (unknown
words he translated). Additionally, the user is able to rate the difficulty of the
text he read and the system will recommend it to users of lower, same or higher
level (of reading skills in that language).

Readabix is offering news articles in English, Spanish, French, Polish and Greek.
The system design allows it to expand to other languages easily.

To develop this service we use a combination of techniques from various fields:
Language Learning (non-technical), Natural Language Processing, Information
Retrieval, Recommender Systems, Social Computing and Software Engineer-
ing.

The aims of this project are:

• Collect news articles from various sources and provide them under a single
interface.

• Find easy articles for the user to read that will allow him to firm his
language skills.

• Find a bit more challenging articles for the user that wants to expand his
language skills.

• Allow the user to give feedback on which words he doesn’t know.

• Allow the user to give feedback on how easily he could read an article or
not.

• Provide news recommendations using information from the users network.

• Provide a simple web interface for browsing the news articles.

Additional aims would be to:

• Recommend new words for the user to learn.

• Inform user about his progress with which and how many words he learned
by reading the texts.

• Provide instant translation of words through online dictionaries.

2

CHAPTER 1. INTRODUCTION

1.1 Road Map

We start with the Background (chapter 2) in order to understand the parameters
that affect reading comprehension for second language learners and to show us
what has been done on the field of measuring text readability.

With that and a couple more algorithms for content extraction and network
recommendations we go off to understand how Readabix retrieves the articles
in the Retrieving Articles (chapter 3).

We then present the interactive interface we designed for Reading Articles (chap-
ter 4) on Readabix. In this chapter we present the kind of feedback we receive
from the user and we explain how we use this feedback for Recommending Ar-
ticles (chapter 5).

In chapter 6, we present our method for Recommending Words and the reasoning
behind it. In chapter 7, we see how we use User Feedback to recommend articles
to other users.

Chapter 8 explains the Software Engineering challenges we faced in order to
run Readabix on the cloud. When we run it on the cloud, we asked users to
do Evaluation of the system. In chapter 9 we present the findings and we make
conclusions.

3

Chapter 2

Background

Readabix wants to help the user that wants to use/improve his reading skills
in a second language (L2). To do that we need to find out which aspects need
to be taken into consideration when processing the news articles. That means,
to find out what makes a text easy (or hard) to read. Additionally, to improve
reading skills we need to see what methods are used in traditional language
learning and what are the most recent practises (see Section 2.1).

After that, we investigate some existing methods for measuring text readability
(Section 2.2) in order to find the most suitable technique that will be working
among different languages and will be easy to implement (due to limited time
available).

In Section 2.3, we see some Content Extraction methods, which are useful for
extracting the news article body from HTML (format in which news articles
appear online), avoiding noisy text such as advertisements, copyright statements
etc.

Section 2.4 talks about efficiency issues of the Collaborative Filtering algorithm.
This algorithm will be used for recommending news articles based on informa-
tion gathered through the users network.

2.1 Reading Comprehension

Learning a language is a long and complex undertaking with many variables
involved in the acquisition process [Bro00]. From this broad field of language
learning, we are particularly interested in reading comprehension (the level of
understanding a writing). We are interested on the factors that affect reading
comprehension in a second language (L2) and how can the reading skills be
improved.

4

CHAPTER 2. BACKGROUND

The two main factors that have been shown that affect L2 readers are:

1. Percentage of known words in the text: According to [Wal03], in
order to read comfortably, skilled readers need to know 95% or more of
the words in a text and be able to recognise them easily. Additionally,
”those who know 90 percent of the words in a text will understand its
meaning and, because they understand, they will also begin to learn the
other 10 percent of the words. Those who do not know 90 percent of the
words, and therefore do not comprehend the passage, will now be even
further behind on both fronts: They missed the opportunity to learn the
content of the text and to learn more words.” [EDH03].

2. Background knowledge on the topic: When a reader has background
knowledge on the subject of a text, it has been observed that he can un-
derstand and recall better the text. As cited in [Wal03] ”it has been shown
that even across passages on the same general theme, which had identical
structure and syntax and very similar vocabulary, the more familiar ver-
sion is better recalled”. Additionally, background knowledge enables the
readers to make sense of word combinations and choose among multiple
possible word meanings [EDH03].

A smaller factor that can affect the comprehension is the knowledge about the
type of the text. When a reader knows what he is reading (ex. a newspaper
article rather than a page from a novel), he unconsciously knows what sort of
information to expect, and has an influence on comprehension [Wal03].

The factor of how much the reader is interested in the topic of the text (topic
interest) does not seem to be important in L2 readers [Lee09]. This is completely
different in the case of first language (L1) readers, where topic interest influences
significantly reading comprehension. It may be reasonable, since L2 readers
might be focusing on low-text processing rather than the information given by
the text. This might not be the case with fluent L2 readers, which are reading
because of interest in the subject.

We have seen that vocabulary and background knowledge are significant to
reading comprehension. Now, how can the reader improve his reading skills?
Extensive reading - high exposure to texts at or just below a comfortable
level of comprehension. It is vital for development of automaticity1 in low-level
processing, providing as it does repeated exposure to frequent vocabulary items
[Wal03]. By extensive reading, the reader is being exposed to unknown words
and their frequent appearance makes it easier for the reader to recognise and
infer their meaning.

This method of acquiring vocabulary is classified as shallow strategy. Deep
strategy takes more time and focuses on vocabulary learning. It includes vocab-
ulary lists, extensive use of dictionaries and lot of revising to ensure the word has

1unconscious and quick recognition and understanding of a word

5

CHAPTER 2. BACKGROUND

been memorised [Wak03]. In other words, by improving vocabulary knowledge
you improve reading and reading improves vocabulary knowledge [GS97].

Each reader has some background knowledge on various fields, especially adult
readers. The challenge with L2 reading is that in order to fully understand a
text, the reader needs a basic knowledge of the culture and way of thinking of
the people in the new language [Bro00]. Reading about the new culture in the
reader’s mother language may help developing a better level of understanding.
As the reader’s comprehension skills improve he will probably be able to learn
cultural facts through extensive reading as well. The choice of reading materi-
als is important and this leads us to investigation of newspapers as a possible
resource for extensive reading.

”Newspaper is the most widely and consistently read piece of literature pub-
lished. Much can be taught from the newspaper because it contains much”
[Che71]. Newspaper as reading material covers many topics of interest and be-
comes source of different opinions on the same subject. They are rich in cultural
and historical information and older printings are accessible through archives
in libraries. Various studies have been made on how effective can newspaper
be in improving reading comprehension. A particular case described in [GS97],
presents a person learning Portuguese mainly by reading newspaper and trans-
lating words from a bilingual dictionary on a daily basis. The tests he was
taking over the time showed that his reading comprehension skills (measured
by translation tests) went from 30% accuracy to 90% in just 3 months! Bill,
the person in the study, stated that the topics and vocabulary of the texts in
the newspaper were keeping him motivated to continue reading. The use of
English newspaper was also helpful to obtain background knowledge on some
news stories.

2.2 Measuring Text Readability

Readability is what makes some texts easier to read than others [DuB04]. Many
readability measures have been developed over the years and have been widely
used in journalism, research, health care, law, insurance and industry. The main
use of these formulae was to give feedback to editors that wanted their texts
to be easily read by an average person. This is quite essential for any kind of
manuals or written instructions that are connected with medicine or other life
crucial texts. Other popular uses of readability measures are for categorising
books for children, into different levels of difficulty, and helping publishers target
different ages.

Readability measures can be put into the 5 categories (shown in Figure 2.1)
and explained below. We start from the most simple measurements to the more
advanced techniques.

6

CHAPTER 2. BACKGROUND

Readability
Measures

Baseline Vocabulary Syntactic Entity Coherence Discourse Relations

Figure 2.1: Methods for measuring readability

Baseline

These were the first readability measures developed and were based on surface
linguistic features2 such as number of words in the sentences and the num-
ber of letters or syllables per word. Some measures were based on the
observation that smaller words tend to be in the list of most common words of
the language. The most popular of these are

• Flesch Reading Ease [Kin75]: Measures the number of words over the
number of sentences and the number of syllables over the number of words.
The formula is 206.835 − 1.015 × totalwords

totalsentences − 84.6 × totalsyllables
totalwords and

gives a measure from 0 to 100.

• Flesch-Kincaid Grade Level [SC01]: The grade level formula gives a num-
ber from 1 to 12 which indicates the grade (school age) that the stu-
dent needs to be in order to find the text easy. The formula is 0.39 ×

totalwords
totalsentences + 11.80× totalsyllables

totalwords − 15.59.

• Automated Readability Index - ARI : This measure also gives an approx-
imation of the US grade level (over which grade can this text be read
easily) but uses different measures. The formula is 4.71 × characters

word +
0.5 words

sentence − 21.43 [DuB04].

More recent research has shown that baseline measures don’t approximate well
the readability of a text and other methods that we will discuss below provide
more accurate measures. Additionally, these measures are limited to the English
language only. There are similar formulae for other popular languages, but they
can not be generalised to any language.

Vocabulary

Vocabulary based measures use the word frequency as their basic measure of
text difficulty. They create a language model based on a background corpus3

2not getting deep into the structure or meaning of the text
3large amount of text in a specific language

7

CHAPTER 2. BACKGROUND

and they predict the probability of knowing the meaning of the word, based on
how often the word occurs in the corpus. See [PN08] for a detailed mathematical
model.

The vocabulary measures are very powerful because they provide us with the
ability to modify the language model and measure readability for different cat-
egories of people. For example, we can get some 6th grade books and create
a language model over them and use it for predicting the readability for a 6th
grade student!

Syntactic

Syntactic measures take into consideration the number of noun phrases,
verb phrases, subordinate clauses per sentence and parse tree height.
These measures involve Natural Language Processing techniques such as part
of speech tagging and parsing. Tagging is the task of labelling (or tagging) each
word in a sentence with its appropriate part of speech. Parsing is the process
of reconstructing the derivation(s) or phrase structure tree(s) that give rise to
particular sequence of words [MS02].

For example, the sentence ”the dog barked” (depicted in Figure 2.2) by part
of speech tagging we would be able to recognise that ”the” is an article (AT),
”dog” is a singular noun (NN) and ”barked” is a verb in the past tense (VBD).
By parsing we would be able to recognise the noun phrase (NP) ”the dog” and
the verb phrase (VP) ”barked” which form the whole sentence (S).

S

VP

VBD

barked

NP

AT NN

the dog

Figure 2.2: Parse tree of the sentence ”the dog barked”

It has been shown that most of the syntactic measures are not particularly
accurate in predicting readability [PN08] and they are often misleading. For
example, the number of verb phrases in a sentence increases the text complexity
but at the same time it makes it more appealing to adults which might prefer
to have related clauses explicitly grouped together [PN08].

8

CHAPTER 2. BACKGROUND

Entity Coherence

Entity coherence has to do with identifying the subject, object, other and not
present entities in the text and performing various measurements based on the
transitions between these entity types. An experiment by [PN08] showed that
such features of the text are not affecting significantly the text readability.

Discourse Relations

Discourse relations have to do with relations/connections of words in the text.
A word might be referring to a person with the use of anaphora (ex. they),
to a place (ex. there), to a specific time (ex. before) or be explaining a cause
(ex. so that). Readability measurements can be made on the number of such
relations over the number of words [PN08] or by measuring conceptual overlap
between sentences, paragraphs and the entire text [MDA]. Such measurements
have been good estimators of text readability and they require advanced Natural
Language Processing (NLP) techniques to find these types of relations in the
text. Unfortunately, existing NLP tools are limited to the most commonly used
languages: English, German, French and Spanish.

An ambitious research has been made at University of Memphis and a software
tool (Coh-Metrix) has been developed that uses cohesion and coherence mea-
sures (discourse relations) along other measures to predict text readability. See
[MDA] for more details on the methods being used in the software.

2.3 Content Extraction

News articles appear on the web in HTML form. The problem with this repre-
sentation is that lots of advertisements, comments, images, links and forms are
present and extracting the main body of the article is a quite challenging task.
We need to extract the body in order to be able to measure correctly the text
readability, or else many irrelevant words will be affecting our results.

Various algorithms have been invented for Content Extraction and they compare
mainly on speed and accuracy. The most relevant (to extraction of news articles)
techniques are listed below:

• Body Text Extraction (BTE) [FKS01]: It flattens the DOM tree4 into a
sequence that has two kinds of tokens, words and tags. This algorithm
tries to find an area that contains as many words as possible and as few
tags as possible.

4Document Object Model - Tree structure representation of HTML content

9

CHAPTER 2. BACKGROUND

• Content Code Blurring (CCB) [Got08]: Similar concept with BTE but
uses image blurring techniques to blur the final sequence and more suc-
cessfully identify the body of the text.

• CoreEx [PP08]: DOM based algorithm that measures the number of links
and words in each node and finds the node with the biggest amount of
text and less amount of links. Note that this algorithm doesn’t need to
serialise the DOM tree.

2.4 Collaborative Filtering

Collaborative Filtering (CF) is a widely used algorithm for producing recom-
mendations based solely on other user’s ratings. ”Through the ratings it finds
users that are have similar tastes as you have, looks for other things they like
and combines them to create a ranked list of suggestions” [Seg07]. CF involves
a heavy computation that needs to be performed each time the rankings for the
items change.

A straightforward implementation of this algorithm has computational com-
plexity in order O(m2n) where m is the number of users and n is the number of
items on the system. Various sampling methods have been developed (randomly
picking a subset of users and items for the CF computation) but they have poor
accuracy.

To deal with this problem an Incremental Collaborative Filtering algorithm has
been proposed by [DE05] which reduces the cost of computation to O(mn) and
makes it very attractive for use in web-based applications. Google published
their implementation of a distributed collaborative filtering approach that uses
MinHash, Correlation and PLSI algorithms for recommending news articles to
users. For more information about these algorithms can be found in their pub-
lication [DDGR07].

10

Chapter 3

Retrieving Articles

The core resource of Readabix are articles gathered from the daily news papers
in different languages. Readabix periodically checks a list of RSS Feeds and
gets the address of the newly posted articles. It then downloads each of those
articles, stores them and processes them. It extracts the text content out of the
HTML page, cleans it and breaks it into paragraphs. It identifies then the words
of each paragraph (removes non-significant words) and stores them in a reverse
index. When the text processing finishes, the system evaluates the difficulty of
the page for each user.

3.1 RSS Feeds

RSS (Really Simple Syndication) is a Web content syndication format mainly
used by news-like sites (news websites, blogs etc) to provide updates on the
latest content posted on the site. We call RSS Feed the web page in RSS format
that can be accessed by a URL. It is common for websites to provide a link to a
RSS Feed on their HTML page in a similar way to the examples shown in figure
3.1.

Figure 3.1: Example links to RSS Feed

RSS-aware programs, called News Aggregators, check periodically the content
of RSS Feeds (see example content in figure 3.2) and retrieve information about
the latest content updates.

11

CHAPTER 3. RETRIEVING ARTICLES

Readabix has a list of pre-specified feeds in each language. It uses them to
get the title, description, publication date and URL link to the newly posted
articles. Figure 3.2 highlights the data we collect from the RSS feed.

Figure 3.2: Example content of RSS Feed (taken from Google News). The
highlighted text indicates the data Readabix stores

User can also specify feeds of his interest and put them under a category of
his choice. Figure 3.3 shows the interface of the ”Settings” page that allows
the user to paste in a RSS Feed URL, choose one of the existing categories (or
create a new one) and add it to the system. Then all the articles of this feed
will appear under the selected category.

12

CHAPTER 3. RETRIEVING ARTICLES

Figure 3.3: Interface that allows users to add their own feeds

We have to mention that a RSS feed contains at most N articles (the latest
ones). That means that some of those articles might be already in our system,
since they might still be in the list of the latest articles. It also means that if
we don’t check the RSS feed often enough, we might miss some articles.

Having this in mind, Readabix updates the feeds in a different process (cron
job) than the rest of the processing. This allows the updating cron job to be
quick. Each time the updating script is executed, the feeds that were least
recently updated are checked first. When a new article is found, we store its
title, link, description and publication date and we mark the article as ”ready to
be downloaded”. From this point and on the Article processing begins.

3.2 Articles

The articles that we gather with the RSS feeds need to be processed before they
become available to the user. Article processing is done in six steps: Download
HTML, Extract Content, Tokenisation, Word Filtering, Count Word Frequency,
Create Reverse-Index and Evaluate Difficulty. The rest of this chapter explains
each of these steps, through an example. The example article we will retrieve is
shown below in Figure 3.4.

13

CHAPTER 3. RETRIEVING ARTICLES

Figure 3.4: Example article we want to retrieve

Download HTML

On this first step we download the HTML article and store it on the database.
If the article is written in a different encoding than UTF-8 (detected by reading
the 〈meta charset = ”encoding”〉 HTML tag), we convert it to UTF-8. This
works in 95% of the cases.

Some of the articles (around 10%) can not be retrieved. This might happen
because the article’s URL might have changed (invalid URL) or the website
might be unavailable at that time. Each article that fails to download is given
other two chances. If it fails, it gets deleted from the database.

Figure 3.5 shows the HTML code of the example article we retrieved.

14

CHAPTER 3. RETRIEVING ARTICLES

Figure 3.5: HTML code of the example article

Extract Content

The second step is to extract the content out of the HTML page. To do that we
use the weighted scoring, subset selection CoreEx algorithm described in [PP08].
We remove scripts, style and form tags and convert the HTML to XHTML
using the HtmlCleaner1 library prior to running the algorithm. According to
[PP08], this implementation could give precision up to 0.9685 and recall up
to 0.9868.

In simple words, CoreEx measures how many words and links each node has
under it and tries to find the set of nodes (at the same level in the tree structure)
that maximises the amount of words over the number of links (words - links).
Note that each link counts as 1 word (the words inside the link element are ig-
nored). When we get that set of nodes, we traverse them and we transform each
〈div〉 and 〈p〉 elements into a paragraph in our extracted text. Each paragraph
is separated by two end of line characters ”\n\n”.

In our example, the div node has 1 word (”Menu”) and 3 links (score=1-3=-
2). The first paragraph node (p) has 15 words and 1 link (score=14). Second
paragraph has 8 words and no links (score=8). The body node has score=-
2+14+8=20. The algorithm will choose the set of nodes (at the same level)

1HtmlCleaner - http://htmlcleaner.sourceforge.net/

15

http://htmlcleaner.sourceforge.net/

CHAPTER 3. RETRIEVING ARTICLES

that maximise the score. In this case it will be the first and second paragraph
since they score together 22 points. Listing 3.1 shows the text that CoreEx
extracts out of the example page.

This i s the f i r s t paragraph o f a normal HTML page .
I t conta in s a l i n k to

This i s the second paragraph . No l i n k ; here .

Listing 3.1: Extracted text of the example article

Our implementation of CoreEx performs quite well on the majority of the ar-
ticles. The hardest case are articles with many comments from users, which in
some cases are longer than the text itself. This makes CoreEx to extract the
comment rather than the article. This is not absolutely bad in our case, since
comments are written in simple language and therefore are easy to read. The
only issue is that you don’t know what the article is about when you read the
comment and we can’t inform the users that they are reading a comment rather
than the article itself.

Another hard case are articles that contain tables. They appear often in Tech-
nology news where they list specifications for devices and in Business where
they list some figures. Currently the implementation ignores tables, but they
could be considered in the future.

After the text is extracted by CoreEx, we run some regular expressions to correct
some common problems that occur frequently:

• Empty or single word paragraphs.

• Replace HTML tokens with their text value (ex ” ” with single
space).

• Remove double spaces.

• Remove words consisted by more than one non alphanumeric characters
(ex. ”[/ ”).

In our example, the whitespace at the beginning of each paragraphs is removed.
The new line that was in the first paragraph is also removed similarly (whites-
pace). Finally the HTML token ” ” is replaced with the space character.
Listing 3.2 below shows the cleaned up text.

This i s the f i r s t paragraph o f a normal HTML page . I t con−
t a i n s a l i n k to

This i s the second paragraph . No l i n k here .

Listing 3.2: Extracted and cleaned text of the example article

16

CHAPTER 3. RETRIEVING ARTICLES

The cleaned up version of the extraction is then saved in the database and is
used in the subsequent steps.

Tokenisation

Tokenisation is the process of breaking up the text into meaningful words (to-
kens). Each language has different tokenisation rules. Some words might have
no meaning by themselves and need to be combined with the previous/next
word. Tokenisation might also vary across different applications.

For example, in an application that converts text into logical predicates, the
token ”pre-defined” is more useful if it is split into ”pre” and ”defined”. In our
case, the token ”pre-defined” should be considered as a single word, which will
give more accurate translations to the reader while he reads it.

The tokenisation we use in Readabix is language dependent (different tokeniser
for each language). We use the SimpleTokeniser provided by the OpenNLP2

project as a base and we customise for each language. OpenNLP provides us
trained tokenisers for English, German and Spanish, which could be used as a
base for languages with similar punctuation symbols and structure.

A possible feature for tokenisation would be to convert each word into its root.
This process, known as stemming or lemmatisation in NLP and normalisation
in Information Retrieval. For Information Retrieval purposes, like searching,
the word ”scared” and ”scaring” are the same. For us is not. A user might
know ”scaring” and not be able to recognise ”scared” because he hasn’t learned
the past tense. English has simple word structure, but some other European
languages have very different forms of the same word, which makes it ”not the
same” for the user.

To understand better the concept of tokenisation we show in the listing 3.3
below the tokenised version of the cleaned up text of listing 3.2. Each word
of each paragraph is separated into a string (token) and is placed in a list of
strings in the order they appear in the text.

[” This ” ,” i s ” ,” the ” ,” f i r s t ” ,” paragraph ” ,” o f ” ,” a ” ,” normal ” ,
”HTML” ,” page ” , ” . ” , ” I t ” ,” conta in s ” ,” a ” ,” l i n k ” ,” to ” ,” This ” ,
” i s ” ,” the ” ,” second ” ,” paragraph ” , ” . ” , ”No” ,” l i n k ” ,” here ” , ” . ”]

Listing 3.3: Tokenisation of the example article

Obviously we don’t want the ”.” or the ”HTML” to appear as English words.
Therefore we need filter out the unwanted words.

2Open Natural Language Processing Tools - http://opennlp.sourceforge.net/

17

CHAPTER 3. RETRIEVING ARTICLES

Word Filtering

Texts contain names, countries, organisations, locations, numbers etc. In our
application, we want to keep track of user’s knowledge of the language elements.
So anything that isn’t connected with the language we want to ignore it. Ide-
ally we would want to ignore any word (or phrase) that doesn’t belong to the
language that the text is written into. That’s quite hard to do thought.

For our purposes we apply the simple rule that each word that begins with
capital is considered a name, thus ignored, except of words that begin a sentence.
Notice that a sentence might begin with a name and we have no way of detecting
it. We could think of making a list of the names we found in previous texts, but
the variety of names that could appear doesn’t make it very reasonable.

Words that don’t contain any characters of the alphabet and single character
words are also filtered out. Note that all the capitalised words at the beginning
of the sentence they get converted to lower case.

In our example the ”HTML” token is removed because it starts with an upper
case character and is not preceded by a ”.”. The words ”This”, ”It” and ”No” are
converted to lower case and the dots are removed. Word ”a” is removed because
it’s a single character word. After filtering we are left with the following set of
words in listing 3.4.

[” t h i s ” ,” i s ” ,” the ” ,” f i r s t ” ,” paragraph ” ,” o f ” ,” normal ” ,
”page ” ,” i t ” ,” conta in s ” ,” l i n k ” ,” to ” ,” t h i s ” ,” i s ” ,
” the ” ,” second ” ,” paragraph ” ,” no ” ,” l i n k ” ,” here ”]

Listing 3.4: Filtering of the example article

Count Word Frequency

After filtering we get a list of the ”meaningful” words in the text. We take then
those words and we find out how many times each of them appears in the text.
See example text word frequencies in listing 3.5 below. We then increase the
occurrences of each word in a global occurrences ”table” that keeps track of
how many times a word appeared in all the texts. This will be used later on for
recommending words (see chapter 8) and for evaluating texts (see 5.2).

{” t h i s ” : 2 , ” i s ” : 2 , ” the ” : 2 , ” f i r s t ” : 1 , ” paragraph ” : 2 ,
” o f ” : 1 , ”normal ” : 1 , ”page ” : 1 , ” i t ” : 1 , ” conta in s ” : 1 ,
” l i n k ” : 2 , ” to ” : 1 , ” second ” : 1 , ”no ” : 1 , ” here ” : 1]

Listing 3.5: Words frequency map for example article

18

CHAPTER 3. RETRIEVING ARTICLES

Create Reverse-Index

In this step, we create a Reverse-Index between words and texts. That allows us
to answer easily the query ”which pages contain this word?”. There are various
methods for creating indexes (see [CDM08] for more details), but we will use
a simple method that can be easily implemented with conventional databases.
We create 2 records for each word in a page. One for the paragraph the word
occurs and one for the text.

1. 〈page id, paragraph no, word, occurrences in paragraph〉

2. 〈page id, null, word, occurrences in text〉

To get the texts that a word appears in, we query with:

SELECT page id WHERE word = 〈word x〉 AND paragraph no =
null

The first tuple can be also used to get the words in a paragraph of a text (note:
this is not a reverse-index query):

SELECT word WHERE page id = 〈page id x〉 AND paragraph no =
〈paragraph no x〉

For optimisation, we define an index on word and paragraph no on our under-
lying database system. This is not the best way of creating a reverse-index
because it uses a lot of space. Another method we considered, was to create one
tuple per word and inside it have a list of texts. This is more space efficient but
it makes queries and updates harder (ex. get occurrences of a word in a text,
remove a text from the system).

Evaluating Difficulty

The whole point of processing the articles is to recommend them to users for
reading. This step makes it possible by evaluating the difficulty of the text for
each user. For details on how difficulty is evaluated and the measures listed
below see chapter 5.

For each user we then create a tuple that holds difficulty measures that can be
queried and return results to the user. The tuple structure is:

〈user id, page id, language, category, measure1, .., measureN〉

[figure: use the example above to show the measures]

The current version of this tuple contains the following measures:

• read percentage : How much of the text has been read by the user.

• known words : How many words the user knows in this text.

19

CHAPTER 3. RETRIEVING ARTICLES

• unknown words : How many words the user doesn’t know (and we know
he doesn’t).

• words : How many words the text has.

• unique words : How many unique words the text has.

• word frequency : Word Frequency measure (section 5.2).

• word repetition : Word Repetition measure (section 5.2).

• easy mode : Easy Mode measure (section 5.3).

• challenging mode : Challenging Mode measure (section 5.3).

The reason we keep so many measures in a tuple is to speed up the updating
of the difficulty measures (see section 5.5). When for example, when the user
reads a paragraph, the read percentage of that page will change, along with the
known words and unknown words. By fetching this tuple we can update all at
the same time and re-calculate the easy mode and challenging mode measures
which are used later on for recommending articles to the user.

20

Chapter 4

Reading Articles

The primary purpose of Readabix is to read! We find articles that users can
read. How the article is presented and the reading experience our users get
is very essential. In this chapter we discuss the requirements we set and our
solution. Additionally, we explain what happens when users give feedback while
reading the text and how we instantly update article recommendations.

4.1 Requirements

Before designing our solution we set the following requirements:

1. The text should be displayed in an easy to read font and text size.

2. The original text title should be displayed on the top.

3. We should provide a link to the original article.

4. User should be able to quickly get translations of words he doesn’t know.

5. User should be able to easily mark words he knows or doesn’t know.

6. User should be able to interrupt and continue reading a text at a later
time (all words he marked and translated should be available next time
he opens the text).

7. User should be able to give feedback on how easy/hard was this text for
him.

8. User interaction with the text should be fast and informative (let the user
know when the system is processing, or when a problem occurred).

21

CHAPTER 4. READING ARTICLES

4.2 Possible Solutions

We considered many possible solutions for each requirement. In this section we
outline the pros and cons of some solutions. We focus on the three trickiest
parts: Translating, Marking, Saving.

Translating Words

We are looking for a solution that will be quickly giving translations to the user,
so the user can read and understand the meaning of a sentence, even if it has a
few unknown words.

Option 1: Show a list of unknown words on the side of each paragraph.

• Pros: User can see all the unknown words of this text in one place, go
through them and refresh them in his mind.

• Cons: Hard to find the translation of a word while reading the text.
Would have to find it on the list of unknown words.

Option 2: Translation pops up when the user clicks on a word.

• Pros: User can continue reading the sentence without too much distrac-
tion.

• Cons: If you show the translation by clicking, how will you mark words
as known/unknown?

Option 3: Translation pops up when the user places the mouse over a word

• Pros: We avoid the problem of the previous option. User click can be
used for marking words.

• Cons: Translating words by accident. User wouldn’t be able to freely
move his mouse around the screen. It would be too disturbing popping
up translations for words you don’t want to translate.

Our Solution Translation pops up when the user places the mouse over an
unknown word

• Pros: User gets translations without too much distraction. Mouse click
can be used for marking words. Translations pop up only for words the
user doesn’t know.

• Cons: User can’t see a list of all the unknown words with their transla-
tions.

22

CHAPTER 4. READING ARTICLES

Marking Words

Marking words is about the user giving feedback on words he knows and words
he doesn’t know. Marked words should be easily distinguished. Once a word is
marked, it should stay marked for the next time the user opens the text.

Option 1: All words are unmarked and user marks words as known or as
unknown by clicking on them.

Once the user clicks on the word, the word switches from unmarked to unknown,
to known and back to unmarked.

• Pros: Straightforward for the user. All words are unmarked unless he
clicks on them.

• Cons: A lot of clicking involved. Requires 3 different ways of showing
a word so the user will be able to distinguish the unmarked/known/un-
known. This can be too distracting while reading the text.

Option 2: User marks the words he knows. The rest remain unknown.

All words appear as unknown. If a user clicks on a word, the word is changed in
to a known word (different colour). Note: when the text opens, all the known
words will be automatically marked.

• Pros: Simpler distinction between words. Only two categories: known
and unknown words.

• Cons: Still requires a lot of clicking, especially at the beginning when the
system doesn’t know much about the user’s vocabulary (known words).

Our Solution All words are considered as known unless the user clicks on a
word to mark it as unknown

All words appear as known. If a user clicks on a word, the word is changed in
to an unknown word (underlined). User can cancel his marking by clicking on
the word once again.

• Pros: Less clicking than other solutions. Less marking since suggested
texts wont contain too many unknown words.

• Cons: User needs to save the text he read in order to mark the words he
knows. No immediate way of marking known words.

Saving User Progress

User shall be able to save his work (markings) and continue reading the text
in the future. He should be able to see up to where he read, or which para-
graphs he read (might have skipped some paragraphs that looked big and com-
plicated).

23

CHAPTER 4. READING ARTICLES

Option 1: Progress is saved each time the user clicks on a word.

Each time a word is marked (known or unknown), a request is sent to the server
with the word and the marking. The word is saved and is considered for future
recommendations.

• Pros: Easy for the user. Avoid the case where user forgets to save his
progress (since it’s saved instantly).

• Cons: We can’t get a clear view of how much of the text the user read.
It also requires a lot of clicking, since each unmarked word needs to be
clicked in order to be saved.

Option 2: Marked words are saved instantly and progress is saved by clicking
a ”Save” button at the bottom of the page.

• Pros: User markings are always saved. Progress can be saved by clicking
once.

• Cons: User must read the whole text in order to save correctly his
progress. That’s not always the case, since the text might become boring
halfway.

Our Solution: Marked words are saved instantly and progress is saved by click-
ing a ”Save” button at the end of each paragraph.

Note: this solution keeps the save button at the end of the text, in case the user
read the whole text and wants to save it by clicking once.

• Pros: User markings are always saved. You can read any paragraph you
want and save it without reading all the text.

• Cons: You must read a whole paragraph before saving it. There are cases
where the beginning of a long paragraph is comprehensible and the rest
isn’t and user stops halfway.

4.3 Our Solution

Having all the requirements in mind and possible solutions, we came up with
the following interface:

24

CHAPTER 4. READING ARTICLES

Figure 4.1: Reading interface with an example text

The example (figure 4.1) is taken from the ”Health” category and we show the
first two paragraphs for simplicity. The first line shows the title of the article,
taken from the feed (highlighted in figure 3.2). The second line is the header
menu which contains a link to the original article, a button to inform the
administrator that this page is not extracted correctly (report bad page) and
the stars for rating the difficulty of the text.

The text paragraphs are listed under the header menu, one by one, with some
space between each paragraph. At the end of each paragraph we find the button
(white circle) that saves the user progress. After the last paragraph, the footer
menu appears and has two buttons: ”Save & Close” and ”Close”.

Interactivity

Figure 4.1 shows the text as it would appear to the user when he would open it
for the first time. The user then starts reading the text (whichever paragraph
he wants) and clicks on the words he doesn’t know. The marked words are then
underlined as shown in figure 4.2.

25

CHAPTER 4. READING ARTICLES

Figure 4.2: First paragraph with 5 marked words

When the user puts the mouse over an unknown word, the word translation
appears under the word.

Figure 4.3: Translation appears right under the word as the user places the
mouse over the word

If the user clicks on an unknown word, the line under it disappears and the
translation no longer appears when the mouse goes over it.

Figure 4.4: Marked the unknown word as known

When a user finishes reading a paragraph, he clicks on the white circle shown
in figure 4.5 below.

Figure 4.5: White circle at the end of paragraph with the mouse over it

The white circle then turns into a waiting animation until the saving is finished
(see figure 4.6 below).

26

CHAPTER 4. READING ARTICLES

Figure 4.6: Waiting animation while saving user’s progress

After the words and progress of the user has been saved, the circle turns yellow,
which means that the paragraph has been saved. Figure 4.7 shows the saved
paragraph. Note that if the user wants to save the paragraph again (if he
made any changes to his markings) then he can still do it by clicking the yellow
circle.

Figure 4.7: Paragraph has been saved and white circle turned in to yellow.

Now, if the user has read the whole text, rather than marking one by one each
paragraph he can use the ”Save & Close” button at the bottom. When the save
button is clicked, a progress bar animation appears and the user can’t modify
anything, until the saving process finishes. When it finishes, the window/tab of
the text closes. Figure 4.8 shows a snapshot of the saving pop-up window.

27

CHAPTER 4. READING ARTICLES

Figure 4.8: User waits for the text to be saved

If the user opens again the same text (after saving) he will still be able to see
the words he marked, make changes and save the paragraphs again. Note: all
the paragraphs have been saved, thus all the circles will be white (as shown
below in figure 4.9).

Figure 4.9: User opens again the saved text

28

CHAPTER 4. READING ARTICLES

Translation

For translation we use Google Translate1 tool, through the Google AJAX Lan-
guage API2. Google translate currently offers translation between 51 language
pairs. When the user requests a translation we do one of the two:

• If we translated the same word in the text, we show the translation, which
we stored locally on the browser.

• If not, we make a request for translation to the URL below and once we
get it we store it locally (to minimise the number of hits to the server).

The URL we use for translation is:

http://ajax.googleapis.com/ajax/services/language/translate?v=1.0&q=<word>

&langpair=<from_lang>%7C<to_lang>

where

〈 word 〉 is the word we want to translate.

〈 from lang 〉 is language you want to translate from.

〈 to lang 〉 is language you want to translate to.

Note that the Google Translate API can translate whole sentences and para-
graphs. Translating a whole sentence gives more accurate word translation since
it knows the context where it appears (called word disambiguation in Natural
Language Processing).

Saving Marked Words

Each time a user clicks on a word, we update an entry on the database, marking
the state of this word (known/unknown) in the current text. The tuple looks
like this:

〈user id, page id, language, word, known, marked date〉

known Is the word known or unknown? Note that this value can be null, which
is the case we don’t know anything about this word.

marked date Date and time the word was marked.

Note: These entries are used only for keeping track of which words the user
marked in this text. They don’t affect article recommendations or anything
else.

1http://translate.google.com/
2http://code.google.com/apis/ajaxlanguage/

29

http://ajax.googleapis.com/ajax/services/language/translate?v=1.0&q=<word>&langpair=<from_lang>%7C<to_lang>
http://ajax.googleapis.com/ajax/services/language/translate?v=1.0&q=<word>&langpair=<from_lang>%7C<to_lang>
http://translate.google.com/
http://code.google.com/apis/ajaxlanguage/

CHAPTER 4. READING ARTICLES

Saving Paragraph or Text

When the user requests to save a paragraph or the whole text, we do the fol-
lowing:

1. Retrieve (from database) all words of the paragraph/text we want to
save.

2. Retrieve the marked words (known/unknown) in this paragraph/text.

3. Mark all unmark words in the paragraph/text as known (update database).

4. Mark all the known words in this text as known for the user.

5. Mark all the unknown words in this text as unknown for the user.

Note: This is a simplified version of what really happens. We will see more de-
tails about how does this knowledge affects article recommendations (see chapter
5).

We mark words as known for the user in the same tuple structure but with the
page id field as null.

〈user id, null, language, word, known, marked date〉

This structure represents the knowledge of each user, in other words, the words
he knows and words he doesn’t. This simple structure is the basis of the user
profile and is used for recommending articles to other users at the same user’s
level (see chapter 7). Its also used for keeping track of user’s progress (see
chapter 6).

4.4 Performance

When a user waits for a computation to be completed, it better be quick! Users
don’t like waiting and they will stop using a system if it is not highly responsive.
Having this in mind, we analyse the performance of our operations:

Table 4.1: Performance analysis of reading article operations
Operation Time Time [Cold Start]

Load article 500-700ms 2-8s
Mark a word 300-500ms 900ms-6s
Translate a word 200-400ms 700ms-6s

By this table we observe that the only ”worrying” waiting times are the Cold
Start waiting times. Cold start means that the process responsible for serving
the request is inactive/sleeping and it takes some time to load and start serving
requests. All the subsequent requests (if not too much time passed by) will be
served at the normal service times shown in the middle column.

30

CHAPTER 4. READING ARTICLES

The performance of the saving operation (paragraph/text) is cleared out in
the Software Engineering chapter 8, where we take into consideration batch
operations that can speed up the retrieval of the articles which need to be
updated.

It’s important to mention here that the user can continue reading, marking
and translating words while a paragraph is being saved. That means that the
saving operation doesn’t affect directly the user’s experience, since it’s done in
the background. Also, more than one paragraph can be saved concurrently (no
need to wait for the previous paragraph to finish saving).

31

Chapter 5

Recommending Articles

Readabix helps users find articles they can read. When a user joins the website
for the first time, he gets recommendations of texts in various languages. The
system knows nothing about the user, so it recommends articles that could
possibly be easy to read. These recommendations are based on User Independent
measures. As the user starts reading and marking words, the system improves
the recommendations. If the texts that the user read were too hard, the system
will recommend articles that are easier to read (less unknown words). If the
texts were too easy, user has the option to get more challenging texts (more
unknown words). The easy and challenging modes are based on User Dependent
measures.

This chapter presents the User Independent and User Dependent measures we
used to create the Combined measures that we use for recommendations. At the
end of the chapter we discuss performance issues and how we tackle them.

5.1 Interface

Before diving into maths and measures, let’s see how we recommend the articles
to the user. When the user enters the website, a list of articles, grouped into
categories appear in the default language. The page looks like the figure 5.1
below.

32

CHAPTER 5. RECOMMENDING ARTICLES

Figure 5.1: User interface for recommending articles

On the left of the articles there is a list of categories. When the user clicks on
one of them, a list of articles from that category appears. On the top left of
the page (under the logo), user can select the language of his choice from the
drop-down menu. The biggest part of the page is the article view which shows
the list of articles. Each article’s title is listed as a link that by clicking it the
user can start reading the article’s text. A small summary (first 200 words) of
the first text of each category appears right under the title. At the left of the
title, the white circle shows how much of the text has been read by our user.
The circle becomes more yellow as bigger percentage of the text is being read.
On the right of the page we can track our progress in learning words and get
word recommendations (see chapter 6 for more details).

5.2 User Independent Measures

As we mentioned earlier, User Independent measures are useful for recommend-
ing articles when we know nothing about the user. They are based on simple
statistics. The aim of these measures, is to recommend texts that are possibly
easy to read. That us not guaranteed, since these measures are not very accu-
rate. The two measures we use are Word Frequency and Word Repetition.

Before we present the measures, let’s define some symbols that will be used in
the rest of the chapter. First is the occurrence of a word which equals to:

occurrence(w, t) = how many times the word w appears in the text t

33

CHAPTER 5. RECOMMENDING ARTICLES

By knowing the occurrence of each word in each text we define the word fre-
quency as the sum of all occurrences of that word in all texts we retrieved so
far.

frequency(w) =
∑

t∈texts

occurrence(w, t) (5.1)

Maximum frequency will be the frequency of the most frequent word (ex. word
”the” in English).

frequencymax = max
w∈words

frequency(w) (5.2)

The maximum frequency is used to give a normalised measure of each word’s
frequency. The normalised measure range is [0..1]. Apparently the most frequent
words will have measure closer to 1 and less frequent words will have measure
closer to 0.

frequencynormalised(w) =
frequency(w)
frequencymax

(5.3)

Before we move on, let’s define word count as the number of words in a text:

word count(t) =
∑

w∈words(t)

occurrence(w, t) (5.4)

Word Frequency

Word Frequency measure is based on the assumption that

The more frequent a word is, the more probable is that the
user knows that word.

By frequent, we mean the amount of times a word appears in all the articles
we retrieved so far. This works with words that appear often in news articles,
but there are many other words that don’t appear and are well known by many
users. In English, the word ”president” appears to be very frequent, where
the word ”baby” is not.

We define the Word Frequency measure as the average of the normalised fre-
quency of each word in the text. Note that we need to multiply the normalised

34

CHAPTER 5. RECOMMENDING ARTICLES

frequency by the occurrence of the word, since words(t) is a set (contains each
word once).

word frequency measure(t) =

∑
w∈words(t)

occurrence(w, t) ∗ frequencynormalised(w)

word count(t)
(5.5)

The range of this measure is [0..1], since each frequency is normalised from [0..1].
Texts with high word frequency measure are considered easier than texts with
low measure.

Word Repetition

Word Repetition measure is based on the assumption that:

Texts with high word repetition are easier to read.

By word repetition we mean the amount of words that appear more than once in
the text. Intuitively, when a word appears many times in the same text, even if
we don’t know that word, by translating it once, we can remember the meaning
the next time we see it. It helps also with learning the word by repeatedly seeing
it and remembering the meaning.

The formula for calculating word repetition is simple: we divide the amount of
words in the text by the number of unique words. This gives us on average of
how many times each word appears in the text.

word repetition(t) =
word count(t)
|words(t)|

(5.6)

Using the word repetition we define the Word Repetition measure as

word repetition measure(t) = 1− 1
word repetition(t)

(5.7)

The measure range is [0..1). A text with no word repetition will have word
repetition measure = 0. The higher the repetition in a text, the higher word
repetition measure will be (closer to 1).

There is an issue with this measure though. It is biased towards larger texts.
The larger the text is, the more probable it is that words will repeat. This can
be improved by measuring the word repetition of each paragraph and taking
the average of it.

35

CHAPTER 5. RECOMMENDING ARTICLES

Thus, we use this formula for calculating word repetition.

word repetitionunbiased(t) =

∑
p∈paragraphs(t)

word count(p)
|words(p)|

|paragraphs(t)|
(5.8)

5.3 User Dependent Measures

User Dependent measures are based on the user’s feedback on which words he
knows and which ones not. Based on this feedback, each text can be split into
three groups of words as shown in figure 5.2.

Figure 5.2: Division of a text into known, unknown and undetermined words

Undetermined words are the ones we don’t know yet their classification. Some
of them might be known to the user and some not. These words haven’t been
seen by the user in any previous text. Apparently, the amount of undetermined
words will be decreasing as user reads more texts. There is always though the
possibility that a word appears only in one text and therefore it will remain
undetermined until the user reads that text.

In the following sections we present the measures we use, based on this classifi-
cation of words. Before we do that, we define known words count(u, t) as the
amount of words the user u knows in text t.

known words(u, t) =
∑

w∈known words(u)

occurrence(w, t) (5.9)

Similarly, the amount of unknown words in text t is defined by

unknown words(u, t) =
∑

w∈unknown words(u)

occurrence(w, t) (5.10)

36

CHAPTER 5. RECOMMENDING ARTICLES

Known Words

Known words measure is based on the assumption that:

The more known words, the easiest will be to read.

This measure works fine if the user specified all the words he knows. But often
(if not always) this is not the case. Users learn new words that the system isn’t
aware of them.

known words measure(u, t) =
known words(u, t)
word count(t)

(5.11)

This measure ranges from [0..1], where the higher the measure, the easier the
text.

Unknown Words

The Unknown Words measure comes in to improve the Known Words measure
by including the unknown words. This measure is based on the assumption
that:

Some of the unknown words are known to the user (user
learned them).

When a user marks an unknown word, he sees the translation and tries to learn
the word. Then that word will be easier for the user, since he has seen it
before.

unknown words measure(u, t) =
known words(u, t) + unknown words(u, t)

word count(t)
(5.12)

Unknown words measure has a drawback. A text with K known words and
0 unknown words is evaluated the same with a text with 0 known words and
K unknown words. This drawback leads us to the Easy Mode measure (see
next).

Weighted Mode

The Weighted Mode measure comes in to improve the Unknown Words measure
by adding a parameter A that controls the significance of known and unknown
words.

37

CHAPTER 5. RECOMMENDING ARTICLES

weighted mode(u, t, A) =
A ∗ known words(u, t) + (1−A) ∗ unknown words(u, t)

word count(t)
(5.13)

This parameter gives us the flexibility to control the recommendations. By
increasing parameter A, we get texts with more known words (probably easier).
By decreasing it we get texts with less known words, more unknown words,
therefore more challenging.

Easy & Challenging Mode

Easy and Challenging modes are simply the Weighted Mode measure with dif-
ferent parameter A.

easy mode measure(u, t) = weighted mode(u, t,0.6) (5.14)

challenging mode measure(u, t) = weighted mode(u, t,0.3) (5.15)

In the current version of Readabix, Easy Mode uses A=0.6 and Challenging
Mode A=0.3. Note that Challenging Mode aims to recommend articles that
user will learn more words by reading them. These articles will contain many
words that the user has translated before, therefore he gets another chance to
learn them. If we would want to get hard texts, we would define a hard mode
measure = 1 - easy mode measure.

5.4 Combined Measures

User Independent measures are good for recommending articles before the user
has given any feedback. User Dependent measures work only after user gives
feedback. The measures we present below combine these two.

The first measure gives us the recommendations for the Easy Mode and the
second for the Challenging Mode.

easy combined measure(u, t) = 0.1 ∗ word frequency measure+
0.3 ∗ word repetition measure+
0.6 ∗ easy mode(u, t) (5.16)

38

CHAPTER 5. RECOMMENDING ARTICLES

challenging combined measure(u, t) = 0.1 ∗ word frequency measure+
0.3 ∗ word repetition measure+
0.6 ∗ challenging mode(u, t)(5.17)

The measures are combined with significance proportional to their accuracy.
Word frequency measure gets significance of 10%, since its the least accurate.
Word repetition gets significance of 30%, since its more sound an accurate. User
dependent measures (easy & challenging mode) get significance of 60% and they
start affecting recommendations after the first user feedback.

Note that these two measures are the only ones used for recommendations, since
they combine all the measures we defined.

5.5 Incremental Counting

User Independent measures are computed once for each article; when it enters
system. However, User Dependent measures change each time the user saves a
paragraph or text. When he does that, new known and unknown words enter
his profile, known words become unknown and the opposite. In order to get the
updated recommendations, the combined measures need to be re-evaluated for
each text.

Re-evaluating the measures is a very expensive computation. For each text we
need to fetch all its words and compare them with the user’s profile to determine
if they are known or not. The system might contain thousands of texts and re-
evaluating them would take a long time.

Having this difficulty in mind, we created an incremental algorithm that exploits
the advantages of the Reverse-Index we created while retrieving the articles (see
section 3.2 for more details). The Reverse-Index gives us the set of texts each
word appears into.

texts(w) = {t|w ∈ words(t)} (5.18)

Now, when the user saves a paragraph or text, we iterate through the saved
words and we update the measures of the affected texts.

f o r w in marked words :
f o r t in t e x t s (w) :

c h a n g e a f f e c t e d t e x t (w, t)

The changes we make depend on the marking and the status of the word in
user’s profile. Table 5.1 below lists the changes that need to be made in each
case.

39

CHAPTER 5. RECOMMENDING ARTICLES

Table 5.1: Changes in measures of an affected text
Marking User Profile Change in affected texts

known known none
known null increase known words
known unknown increase known words, decrease unknown words

unknown unknown none
unknown null increase unknown words
unknown known increase unknown words, decrease known words

40

Chapter 6

Recommending Words

Apart from articles, Readabix has the ability to recommend words. Word rec-
ommendations, give another chance for the user to learn new words. If not
learn, he will at least recognise them the next time he sees them. Repetition
is essential for language learning. Through word recommendations we also get
more feedback on the user’s known words.

The chapter begins with presenting the User Interface we use for recommending
words and the basic interaction it provides. We then move into defining the
measures we used for recommendations and the recommendations algorithm. At
the end, we talk about keeping track of user’s progress with language learning
and the way we detect newly learned words.

6.1 User Interface

Readabix provides a simple user interface for recommending words. It appears
on the right of article recommendations (main page), and looks like in figure 6.1
below.

Figure 6.1: Recommended words interface

41

CHAPTER 6. RECOMMENDING WORDS

A user can remove a word from the recommendations list by clicking the ”x”
button. At the same time, the word is marked as known.

As expected, a new word appears at the place of the removed word. Note that
the list of recommended words can change at any time, since it depends on the
retrieved articles and users’ profile. Both can changed at any time.

6.2 Measures

Before we present our recommendation algorithm, we need to define some rele-
vant measures that we will use. The three statistical measures we use are the
following.

1. Word Frequency : How many times this word appears in all the texts.

2. Text Popularity : How many texts contain this word.

3. User Popularity : How many users know this word.

Intuitively, a word that appears very often (high word frequency) and in many
texts (text popularity), worths to be learned.

We use the same Word Frequency formula (formula 5.1) as in Article Recom-
mendations. We normalise it in the same way (formula 5.3).

We define Text Popularity as the amount of texts this word appears in (similar
to the Reverse-Index formula 5.18).

text popularity(w) = |{t|w ∈ words(t)}| (6.1)

We normalise popularity by dividing each text popularity measure with the
maximum text popularity measure.

text popularitymax = max
w∈words

text popularity(w) (6.2)

text popularitynormalised(w) =
text popularity(w)
text popularitymax

(6.3)

The normalised text popularity takes values from [0..1], where higher values
refer to higher text popularity.

User popularity is defined as the number of users that know a word.

user popularity(w) = |{u|w ∈ known words(u)}| (6.4)

42

CHAPTER 6. RECOMMENDING WORDS

In a similar way with text popularity we normalise the user popularity (by
dividing with the maximum user popularity).

user popularitymax = max
w∈words

user popularity(w) (6.5)

user popularitynormalised(w) =
user popularity(w)
user popularitymax

(6.6)

6.3 Recommendations

As mentioned in the introduction the purpose of word recommendations is
to

1. expose user to new words that will improve his reading skills by learning
them.

2. discover words he already knows to improve article recommendations.

Having this in mind, we present two approaches we experimented with and the
combined approach which we use in the current version of Readabix.

Our first approach is based on the assumption that:

If the user learns words that appear many times (high word fre-
quency) in many texts (high text popularity), he will eventually be
able to read more texts in the system.

This approach exposes user to new words but fails to discover words he might
already know. It is also affected by the variety of texts we retrieve. In a sense,
if there are more financial articles than health articles the word ”commodity”
will be recommended instead the word ”body”.

Our second approach is based on the assumption that:

If many users know a word (high user popularity), it is more probable
that our user will do the same.

This approach, works well for discovering words user already knows and exposing
user to new words. The main drawback of this approach is that it requires
many users in order to distinguish the words to recommend. In other words,
most words have the same user popularity and recommending ends up choosing
randomly between them.

Taking into consideration the pros and cons of these two approaches, Readabix
combines them into one measure, which is currently used.

combined measure(w) = 0.1 ∗ frequencynormalised(w) +

43

CHAPTER 6. RECOMMENDING WORDS

0.3 ∗ text popularitynormalised(w) +
0.6 ∗ user popularitynormalised(w) (6.7)

Word frequency counts the least, since we want to avoid words that appear many
times in few texts. User popularity is our ”best” measure, so it counts the most.
Text popularity will have a big impact at the early stages of Readabix. As the
user base increases, user popularity will overtake text popularity.

As all the measures we use, combined measure takes values from (0..1]. In order
to recommend words, we iterate through the words with the highest combined
measure and we select the ones that are unknown to the user.

6.4 User Progress

Readabix wants to keep users motivated so they continue reading and improving
their skills. One way of doing that is by showing them their progress on words
they learned. But how do we detect learned words?

It’s simple. Each time a user marks a word as known, if that word was previously
unknown, we mark it as learned. In other words, if a user marked a word as
unknown in a text and later on when he read another text he remembered the
meaning of the word and marked it as known, we consider that he learned the
word.

User progress is shown at the right of the article recommendations (main page),
along with word recommendations. Figure 6.2 below shows the learned, un-
known and known words lists.

Figure 6.2: User progress interface

The lists appear one under another in the website. They are listed in one row
only for the purposes of the report. Note that use can give feedback in a similar
way by clicking the ”x” buttons.

44

Chapter 7

User Feedback

We have seen so far how Readabix improves article recommendations by gather-
ing feedback on known/unknown words. The methods we have seen are limited
to improving a single user’s recommendations. Why not using this feedback
for improving other user’s articles? Do we need additional feedback to make it
possible?

This chapter answers such questions by introducing another method of receiving
feedback and how to improve recommendations of other users.

7.1 Motivation

We used feedback on known/unknown words for improving article recommen-
dations. The issue with this approach is that is based on the assumption
that:

A text with many known words will be easy to read.

But isn’t there a case where the user might know many (if not all the) words and
still not be able to understand the text? Authors ”can make the simple things
complicated and the complicated things simple”. Text difficulty depends also on
the subject itself. Some texts talk about complicated concepts, situations, topics
etc. Other texts might be using many undefined references, many local names,
local situations etc that make them harder for users from other countries.

A possible approach to this would be to use Natural Language Processing (NLP)
for further analysis of the texts to find undefined references etc. This approach
could improve our recommendations but its very hard to implement and extend
it to many languages (lack of freely available NLP tools). Additionally, to
discover local references we would need to use a database with locations, names
etc of each country.

45

CHAPTER 7. USER FEEDBACK

Readabix approaches this issue with the collaborative approach. Users decide if
the text is easy or hard and let others know about it by rating it. We introduce
the 5 stars rating scheme shown in Figure 7.1.

Figure 7.1: Menu on top of each article page

The star values correspond to the following interpretations:

1 star Not recommended - Hard to read

2 stars Not recommended - Quite hard to read

3 stars Recommended - Quite hard to read

4 stars Recommended - Quite easy to read

5 stars Highly recommended - Easy to read

Using this additional feedback we can get a estimate for each rated article how
easy or hard it is. We can assume that:

An article with many ”easy” votes has higher probability to be easy
for users that haven’t read it.

But there is an issue with this approach. What if a text is rated as ”easy” by
users with advanced language skills; should we recommend it to everyone else?
In other words, an ”easy” text for an advanced user doesn’t mean it will be easy
for a beginner!

A better approach would be to take into consideration ratings from users at a
similar level with you. In order to do that we need a way to compare users’
level.

7.2 Profile Matching

We present in this section the way Readabix matches profiles of users (compares
users’ level). By profile we mean the information we know about the user:

• known words

• unknown words

• ratings

Our first approach is based on the simple assumption that:

Users are at a similar level if they know a similar amount of words

46

CHAPTER 7. USER FEEDBACK

A user that knows 1000 words is more probable to be at a similar level with a
user that knows 1200 words rather than a user that knows 300 words. Using
the above we define the comparison as:

similarity(userA, userB) =
1

||known words(userA)| − |known words(userB)||+ 1
(7.1)

This is fine, but what if the words they know are different? Especially for
beginners which have limited vocabulary. Its possible that some users know
more words in categories in which others don’t.

To face this issue we compare the amount of words they both know (com-
mon words) and we define a new similarity function (similaritywords) based on
it.

common known words(userA, userB) = known words(userA) ∩ known words(userB)(7.2)

similaritywords(userA, userB) =
|common known words(userA, userB)|

max(|known words(userA)|, |known words(userB)|) + 1
(7.3)

This similarity function has the same properties with the first one. If the amount
of words they know is very different, the measure will be lower. Additionally, if
two users know the same amount of words, the measure will be higher if they
share many known words.

This function is the one used by Readabix. It could be expanded to include
unknown words and ratings in a similar way. We refrained doing that in order
to keep the computation simple and quick. See Incremental Counting section
7.4 below for details on how we quickly compare users’ profiles.

7.3 Recommendation Algorithm

As stated in the Motivation section, we want to give emphasis on ratings of
users at the same level. One approach would be to define a threshold τ that
defines if two users are at the same level or not.

same(userA, userB) = if similarity(userA, userB) > τ then> else⊥ (7.4)

This would require us to discover the right threshold and creates the problem
of not finding any users at similar level. In case no user at similar level exists,
with this approach we would get no help from other users.

47

CHAPTER 7. USER FEEDBACK

A better approach would be to use all user’s ratings, but each rating will have
a different weight, depending on how similar the two users are. This way, if no
users exist at the same level, we would get recommendations from users from
other levels (lower and higher). The closer another user’s level is, the more his
vote counts. Therefore, for each rated article, we define its weighted rating(u, t)
by:

rated by(text) = {u ∈ users|rating(u, text) > 0}(7.5)

weighted rating(user, text) =

∑
u∈users

similarityword(user, u) ∗ rating(u, t)

|rated by(text)|
(7.6)

The weighted rating measure returns values from [0..5]. The higher the value
the better the recommendation will be for the user. The algorithm calculates
the weighted rating of all the pages and returns the K best pages.

getRecommendations (user ,K) :
recommendations = []
f o r t in r a t e d t e x t s () :

S = 0
f o r u in rated by (t) :

S += s i m i l a r i t y (user , u) ∗ r a t i n g (u , t)
R = S / l en (rated by (t))
recommendations . append ((R, t))

s o r t (recommendations)
re turn recommendations [0 :K]

The algorithm is in order O(T*U), where T is the number of rated texts and
U the number of users. Thus, complexity increases by the number of ratings in
the system. This algorithm is currently used by Readabix, since the users base
and amount of ratings is small.

For better performance an incremental algorithm could be considered that up-
dates the weighted average of pages when a user’s profile is changing or a page
is being rated.

7.4 Incremental Counting

Evaluating similarity of users is a computationally intensive operation since it
needs to compare the known words of all the users. Users might know hundreds
or thousands of words and comparing them would take long time. To handle
this, we use a similar method to the Incremental Counting (see section 5.5) to
update the user similarity measures.

48

CHAPTER 7. USER FEEDBACK

Each time a new word is coming into the user’s known list, we find all the users
that know that word and we increment their common known words. Similarly,
when a known word gets marked as unknown we decrement the common known
words of the other users. This way, we need to only update the user’s common
known words count.

Note that similarly to Incremental Counting we need to have a reverse index
from known words to users. This speeds up the process of finding the users that
know each word.

49

Chapter 8

Software Engineering

We wanted Readabix to scale-up easily in the number of users, articles and
languages. We had this in mind from the beginning when we were choosing
our tools and kept it though the whole development process. We split up the
processing into small manageable units that can run concurrently on the cloud.
We refactored the code and kept coupling low using popular design patterns
in order to easily scale up the code. We unit tested all the algorithms and
database operations. We created a modular user interface using the latest tools
and patterns.

This chapter presents the Software Engineering aspects of Readabix. We start
by presenting an overview of the system and the different modules. We then
move to talk about deploying the service on Google’s cloud and the way it
affected our design. We conclude by presenting our code structure on server
and client side.

8.1 System Overview

Readabix collects periodically news articles from the web, stores them, processes
them, recommends them to users for reading and receives feedback. Figure 8.1
below shows this interaction of Readabix and the environment.

50

CHAPTER 8. SOFTWARE ENGINEERING

Web
articles

Unprocessed
Articles

Processed
Articles

User

recommendations

feedback

processed
 articles

Readabix

Figure 8.1: Readabix interaction with the environment

As you can see in the figure above, articles are split into two conceptual cate-
gories: unprocessed and processed articles. Unprocessed articles represent the
articles that have been downloaded, extracted and stored on the database.
These articles can not be recommended yet because their difficulty hasn’t been
evaluated. When their difficulty has been evaluated for every user in the sys-
tem and a reverse index is created for them, they become processed. Processed
articles are recommended to the users and the system receives feedback for im-
proving the recommendations. Feedback consists of the known/unknown words
and the rating we discussed in the previous chapters.

This system interaction with the environment leads us to structure conceptually
the system into three main modules: Retrieval, Processing, Feedback.

Retrieval Processing Feedback

Figure 8.2: Readabix main modules

The responsibilities of these modules are:

• Retrieval - Find new articles, download them and extract their text.

• Processing - Create reverse index, count word frequencies and evaluate
difficulty.

• Feedback - Update user’s profile, recommendations and profile compari-
son.

Now, by knowing the role of each module we can find out where it applies in the
whole system interaction. A more complete view of the system is shown below
(figure 8.3).

51

CHAPTER 8. SOFTWARE ENGINEERING

Web
articles

Unprocessed
Articles

Processed
Articles

User

recommendations

feedback

processed
 articles

Retrieval Processing Feedback

Figure 8.3: Readabix modules in the environment

We continue by breaking down each module into smaller, independent units.

Retrieval Module

Retrieval module is consisted of three main processes:

• Feeds Updater - Updates feeds and discovers new articles

• Page Loader - Downloads articles

• Page Extractor - Extracts content out of HTML

It is important to mention that these processes run independently (don’t depend
on each other). Feeds Updater gets new articles and stores them on database.
Page Loader queries periodically the database and downloads the new articles.
Page extractor finds downloaded articles in the db and extracts them. Figure
8.4 below shows this process independence.

Database

Feeds Updater Page loader Page Extractor

Figure 8.4: Retrieval processes

This design (independent execution) gives us the following advantages:

• We can run each of them at different rate (ex. Feeds Updater needs to
be more often)

52

CHAPTER 8. SOFTWARE ENGINEERING

• We can run them concurrently (system can be downloading, updating
feeds and extracting text at the same time).

• Easier to make changes to the processes (ex. If we want to use a
different extraction algorithm for the articles we don’t have to download
them again).

The main disadvantage of this approach is that it requires more database
accesses. For processing a single page we require 5 accesses (2 reads and 3
writes) where if they were all in one process they would require only 1 access
(1 write). In order to reduce database accesses we use batch read and write
operations (see Datastore in section 8.3) and we process many articles at each
run (not only one).

Processing Module

This module aims to process the text content, measure each text’s difficulty
and make it available to users through article recommendations. This module
consists of the following three processes.

• Reverse Index - Creates database entries that allow us to easily find
which texts a word appears in.

• Word Frequencies - Increases frequency of each word in the text.

• Difficulty Evaluation - Evaluate difficulty of a text for each user, using
user’s profile.

The processes run independently for the same reasons as the Retrieval Mod-
ule’s processes. Figure 8.5 below shows these three processes independent exe-
cution.

Database

Reverse Index Word Frequencies Difficulty Evaluation

Figure 8.5: Processing Module processes

Feedback Module

Feedback module is responsible for updating the measures that change when
the user gives some feedback. It implements the incremental approaches of the

53

CHAPTER 8. SOFTWARE ENGINEERING

algorithms used in the Processing module. The Processing module initialises
the measures that the incremental algorithms update in the Feedback mod-
ule.

Recommendation
Updater

Similarity
UpdaterUser

mark words

Rating
Updater

database

rate article

Figure 8.6: Feedback processes

As shown on figure 8.6 above, when a user marks some words as known and
unknown, article recommendation and similarity measures need to be updated.
When a user rates an article, the rating of this article changes for other users.
The Rating Updater process performs this calculation.

8.2 De-Coupling Database Operations

Each process we presented above accesses the database. However, none of them
has direct access to it. All accesses are done through a set of Database Managers
(commonly known as DAO1) which keep the database de-coupled from the
processes (see figure 8.7 below). This gives us the following advantages:

• We can change the underlying database (or better, the persistence layer)
without modifying our processes.

• We can optimise database access by performing batch read and write
operations more easily.

1Direct Access Object:http://java.sun.com/blueprints/corej2eepatterns/
Patterns/DataAccessObject.html

54

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

CHAPTER 8. SOFTWARE ENGINEERING

Processes

Database Managers

database

Figure 8.7: Database Managers between Processes and Database

Each Database Manager handles the operations (creation, query, modification,
removal) of one kind of entities. Here is the list of entities we use:

• User: Holds user specific data like date of join, language preferences etc.

• Feed: Contains feed’s URL, language, category and last time we updated
it.

• Page: Holds an article’s URL, HTML, text, category and language.

• Word: Information we hold about a word (frequency, language etc).

• WordPages : Reverse index. Contains the pages each word appears into.

• UserWord : A word that a user knows.

• UserReadParagraph : Holds information about which paragraphs have
been read from each text.

• UserPageMeasure : Holds measures of how easy/hard is an article for
a user.

• Recommendation : Holds user ratings (who, which page and what rat-
ing).

Each entity is represented by a Java Data Object (JDO)2 and contains a primary
key that uniquely identifies it. As we will see later on we use these keys for
efficient retrieval.

2Java Data Objects : http://java.sun.com/jdo/

55

http://java.sun.com/jdo/

CHAPTER 8. SOFTWARE ENGINEERING

8.3 Running on the cloud

Readabix is hosted on Google AppEngine3 which allows you to run your ap-
plication on Google’s infrastructure (cloud). Google AppEngine supports ap-
plications written in Java4 or Python. We chose Java for static typing, easier
refactoring and accurate code completion.

Running Readabix on Google’s cloud has the following advantages:

• Performance - The application runs on highly optimised infrastructure
(BigTable, GFS).

• Easy to scale - The increase on the number of users doesn’t affect service
performance. In other words, we can have as many users as we want.

• Cost efficiency - Price depends on resources usage. No monthly fee etc.
A remarkable amount of resources is available for free5.

• Multiple Versions - We can run different versions of our website at the
same time. This is very useful for trying out a new version before releasing
it to the users.

It has also a number of disadvantages:

• 30s limit on each request - This causes some trouble with time con-
suming operations. However, it can be addressed by using Task Queues
(see section 8.3 for more details).

• Lack of SQL - You can’t use the features of SQL for querying the
database (aggregation, joins etc). You have to manually code the ones
you need.

• Database query overhead - A database query on the cloud has a lot
higher overhead than a local query, which makes it harder to estimate the
actual performance during development. This can be addressed by batch
read/write operations, caching and Query Cursors6.

Datastore

Datastore is Google’s storage service available for AppEngine applications. Data-
store is a schema-less object database. There are no tables or schemas. Each
object (known as entity) is stored serialised and is identified by a unique key.
Datastore supports the following operations:

3Google AppEngine Website: http://code.google.com/appengine/
4It can host any language that runs on JVM (Java Virtual Machine
5Google AppEngine Quotas: http://code.google.com/appengine/docs/quotas.

html
6Query Cursors : http://code.google.com/appengine/docs/java/datastore/

queriesandindexes.html#Query_Cursors

56

http://code.google.com/appengine/
http://code.google.com/appengine/docs/quotas.html
http://code.google.com/appengine/docs/quotas.html
http://code.google.com/appengine/docs/java/datastore/queriesandindexes.html#Query_Cursors
http://code.google.com/appengine/docs/java/datastore/queriesandindexes.html#Query_Cursors

CHAPTER 8. SOFTWARE ENGINEERING

• Put - Writes one or more (up to 500) objects concurrently in the database
(max total size: 1 MB).

• Get - Gets one or more objects concurrently from the database (max total
size 1 MB). Note that each object is retrieved with all its properties.

• Delete - Removes one or more (up to 500) objects concurrently from the
database (max. total size: 1 MB).

• Query - Query a single entity by its properties. Each query can be served
only if an index has been created for it.

The nature and limitations of Datastore affected our design in the following
ways:

• Design of the Word model - Initially we wanted to keep all the infor-
mation we know about a word in the same object. That would include
the reverse index (list of texts it appears in), word frequency and other
measures. With this approach, we would be limited on the amount of
words we can retrieve in one Get operation (max 1MB). For example, if
we wanted the frequency of 800 words, we would have to do it in many
Get operations than in one. So, our final approach was to split the model
into two.

• Design of Incremental Counting - When a user saves a paragraph,
we need to update the texts that contain the affected words. Normally,
we would iterate over the words, retrieve the texts each word appears in
and modify them one by one. Instead, we use a single Get operation to
retrieve all the affected texts at once, we update their them and we use a
single Get operation to write the changes. This speeds up incredibly our
operations and allows us to scale easier on the number of articles.

• Design of the Reverse-Index - Here we had two choices. Either to
create an entity with text and word as properties and store multiple pairs
for each word in each text or store a list of texts for each word. The
first approach wouldn’t allow us to get texts of more than one words at
once and the second approach makes it slower to remove a text from the
system. The second approach limits also the amount of texts a word can
appear in (around 1 MB / 8 bytes ≈ 100 000 texts). We implemented
both approaches and we chose the second approach which leads to a lot
faster saving of paragraphs.

Task Queues

Task Queues is the service that Google AppEngine offers for running a com-
putation in the background. When you want to perform an operation without
forcing the user to wait for it’s completion, you can put a task in the Task
Queue and run it on the background. You can put more than one task at once

57

CHAPTER 8. SOFTWARE ENGINEERING

(max 100 at once) and they will be executed concurrently. In case a task fails
to complete, it will be re-executed.

There is a limit of starting 50 tasks per second and each task can run up to 30
secs. That means that you can have up to 50 ∗ 30 = 1500 active tasks at the
same time. Note that all these executions don’t affect the speed of the rest of
the system. In other words, it doesn’t slow down the website. This is because we
are running it on the cloud and the tasks can be executed on different machines.
With a single server web hosting we wouldn’t be able to do so many concurrent
computations without a major performance drop.

We use Task Queues in Readabix for all the processes. Retrieval and Processing
processes are scheduled by cron jobs and Feedback processes by users. Table
8.1 below shows the task scheduling.

Table 8.1: Task Scheduling
Module Process (Task) Schedule

Retrieval Feeds Updater every 1 minute
Retrieval Page Loader every 5 minutes
Retrieval Page Extractor every 5 minutes
Processing Reverse Index every 10 minutes
Processing Word Frequencies every 10 minutes
Processing Difficulty Evaluation every 10 minutes
Feedback Recommendation Updater when user saves text/paragraph
Feedback Similarity Updater when user saves text/paragraph
Feedback Rating Updater when user rates a text
none Front Page Updater when user saves text/paragraph or rates a text

Table 8.1 contains the Front Page Updater process we didn’t mention earlier.
This process is responsible for loading the front page into cache, so it will load
quickly when the user goes back to get more recommendations.

8.4 User Interface

User Interface was done with Google Web Toolkit (GWT)7 which translates
Java code into Javascript. GWT’s main advantages are:

• The generated Javascript code is optimised and cross-browser compatible.

• Easy to debug your code. You can do it in Eclipse.

• Can easily call server side code using RPC calls (which are translated to
AJAX calls in Javascript).

• Higher productivity than with Javascript
7Google Web Toolkit : http://code.google.com/webtoolkit/

58

http://code.google.com/webtoolkit/

CHAPTER 8. SOFTWARE ENGINEERING

• You can call native Javascript code from Java. This allows you to use any
Javascript library available online.

GUI code can get quite complicated and hard to scale if it’s not properly struc-
tured. In order to allow our application to scale-up on client side we used from
the beginning the Model-View-Presenter (MVP) design pattern as suggested in
”Large scale application development and MVP” [Ram10].

We split the User Interface into 5 main views: Global Menu, Language, Feeds,
Pages and Embedded Words (see figure 8.8). Each of them can be modified,
exchanged with a different view without any changes on other views. To lower
coupling we used Event Bus for inter-views communication. For example, when
language changes, Languages View sends a message to the Event Bus which in
turn informs Feeds, Pages and Embedded Words that the event happened and
they should switch to the new language.

Feeds
View

Language View

Pages
View

Embeded
Words
View

Global Menu View

Figure 8.8: GUI Views

Administration Panel contains other 5 additional views for inspecting and mod-
ifying feeds, pages, words etc.

8.5 Code Base

The code base consists of 212 Java classes: 79 for client-side code, 23 for server-
side servlets, 28 for database operation and 82 classes of application logic.
Additionally there are 59 JUnit tests: 16 for database and 43 for application
logic.

We used Dependency Injection8 thoroughly and one Factory (Language Tools).

8Dependency Injection - http://code.google.com/p/google-guice/wiki/
Motivation?tm=6#Dependency_Injection

59

http://code.google.com/p/google-guice/wiki/Motivation?tm=6#Dependency_Injection
http://code.google.com/p/google-guice/wiki/Motivation?tm=6#Dependency_Injection

CHAPTER 8. SOFTWARE ENGINEERING

The Language Tools factory is responsible for creating language dependent ob-
jects like Tokeniser, Word Manager, Known Words Evaluator etc. The Language
Tools factory keeps references of the created objects and returns the same ones
when requested. This way we keep garbage collection low when we process a
batch of pages from many languages.

60

Chapter 9

Evaluation

We worked hard to design, implement, debug and optimise Readabix. We set
a goal to create the best reading experience for language learning. Did we do
that? Did we miss something? There is a way to find out: Evaluation.

In order to evaluate Readabix we asked from users to use it for two days. We
friezed the articles on the system (no new articles added) and we added special
evaluation instructions to appear when the site loads. We then tracked user’s
interaction and we got their opinions through an online survey.

In this chapter we present the objectives of the evaluation, the evaluation envi-
ronment and the results we got from tracking the users and their opinions. We
critically evaluate the results and we point out our mistakes and achievements.
At the end, we do feature evaluation with other existing systems.

9.1 Objectives

In order to know what information to track and what questions to ask the users
we had to put down a set of objectives. We placed the following objectives to
find out

• if Readabix suggests easy articles (initially and after users’ feedback).

• if users liked our page for reading articles (marking, translating, saving).

• which features users liked and which ones they didn’t.

• if people find Readabix useful for language learning.

• if there is any issue with the user interface we didn’t notice.

• which additional features would users like to use in Readabix.

61

CHAPTER 9. EVALUATION

9.2 Evaluation Environment

As we mentioned earlier we used a fixed set of articles for the evaluation. We
offered articles in 4 languages: Spanish, French, Polish and Greek. We inten-
tionally excluded English because our users were all very proficient in English
and the evaluation environment didn’t include the challenging mode. Unfortu-
nately we didn’t have enough articles in French due to HTML encoding issues.
There was no time to address those issues because French was added on the last
moment upon users’ request. Users were informed about the issue before using
the system. Table 9.1 below shows the number of articles in each language and
the average size of the articles (in words).

Table 9.1: Languages used for evaluation
Language Number of articles Average number of words per text

Spanish 111 246.01
French 32 193.84
Polish 222 148.62
Greek 109 181.37

Our feeds source was Google News. We got texts from Business, Technology,
Entertainment, Sports and World categories for all the languages. Additionally
for each language, we added the country’s local news: Spain, France, Poland
and Greece (also taken from Google News).

Each user was starting with a clean profile (no words, no ratings). We used
Easy Mode measure for evaluation (Word Repetition and Weighted Mode mea-
sures).

The features that were de-activated during evaluation are:

• Ability to interact with the lists of learned/known/unknown words.

• Recommend article to other users (the stars were used for rating difficulty
of the article).

• Settings page wasn’t accessible to users because we didn’t want new arti-
cles in the system.

• Word recommendations

9.3 Tracking Users

We tracked user’s interaction with the system by adding log entries to the
database about:

• Which articles were displayed for each user.

• Which articles were opened by each user.

62

CHAPTER 9. EVALUATION

These log entries, would give us an accurate measure of how many distinct
articles were displayed to each user.

The rest of the the data we collected them by querying the database after the end
of the evaluation phase. The table 9.2 below shows the data we collected:

Table 9.2: Data collected at the end of evaluation phase
Measure Value

Number of users 18
Number of displayed articles 2183
Number of opened articles 178
Number of saved articles (partial or full) 62
Number of rated articles 12
Number of articles rated as easy (rating ≥ 3) 8
Number of articles rated as hard (rating ≤ 3) 4
Number of users that rated articles 6
Average number of articles read per user 3.44
Average number of read (saved) paragraphs 6.84
Average number of paragraphs 11.42

By processing the data above we get the following percentages (displayed in
table 9.3).

Table 9.3: Analysis of tracked data
Measure Value

Opened articles out of displayed articles 8%
Saved articles out of opened articles 34%
Rated articles out of saved articles 19%
Users that rated any article out of all users 30%

We observe that the number of rated articles is very low (19%). This seems
to be because only 30% of the users rated any article. By a closer look in the
database we noticed that the users that rated any article have rated only 54%
of the articles they read. The possible reasons are considered:

• Users didn’t want to rate the articles they read.

• Users forgot to rate the articles they read.

The second is more probable to be the real reason. Users started reading the
text, marking words, saving paragraphs and scrolling down to the next of the
paragraphs. When they finished they clicked the ”Save & Close” button, the
article closed and they forgot to rate the article.

This discovery gives us a good feedback about the mistake we did with the
User Interface. Users should be prompted to rate the article when they finished
reading it. When the user would close the window/tab by either clicking the
buttons on the bottom or the browser ”x” button, a pop-up message should
appear asking the user to rate the text before he closes it.

63

CHAPTER 9. EVALUATION

9.4 Survey

Users were instructed to fill up the survey at the end of the evaluation. We
provided a link (for the online survey) in red colour at the top-right menu.
Survey participation was 50% (9 users). Users were asked to answer 9 questions.
We list the questions along with the responses we received. For each question
we make some comments.

Q1. Which languages did you use?

English has been disabled for evaluation, so no users used it. The most popular
language was French and second most popular was Spanish. Note that French
had the smaller number of articles (due to encoding errors) in the system. That
didn’t affect users’ response because only 2 out of 7 users used only French. The
other 5 tried the system with Spanish, Polish or Greek.

Q2. Did you like the page that displays the article? Mark-
ing and translating words, saving paragraphs etc.

64

CHAPTER 9. EVALUATION

The majority of the users liked a lot the interface for reading the article. The
minority that liked it less, left comments on misformatted pages and more user
friendly page (ability to change text size and show pictures from the original
article). We consider the reading interface as successful with space for improve-
ment.

Q3. Which of the following features did you use?

We notice that almost all the users used the marking, translating and saving
features. We notice that 1 user responded that he didn’t mark any unknown
word. This is impossible, since to get word translations you must mark the
words as unknown. It’s highly probable then that the user didn’t realise that he
marked the word as unknown. This can be improved by showing a hint (”click
to translate and mark this word as unknown”) when the user puts the mouse
over a word.

We notice that users didn’t use much the lists of learned/known/unknown words.
This might be because interaction between the user and the words was disabled
for evaluation.

Users didn’t use that much the ability to keep track of articles you read. They
might have not noticed it, if they read only a few paragraphs.

65

CHAPTER 9. EVALUATION

Q4. From the features you used, which ones did you like?

The fact that most people liked the marking of unknown words, proves that
they liked giving feedback about their knowledge. We were concerned if users
would like clicking/interacting with the text, since they are not used to or it
could be too distracting while reading.

Translations were also appreciated. We believe we missed that one vote from
inaccurate translations.

We noticed by this answer that not many users liked the ”saving paragraphs”
feature. The reasons need to be investigated and actions must be taken for
improvement. The same is with the list of words (on the right). Few users liked
them. We must consider either improving them (making them more useful) or
removing them completely. We need to investigate before we do that because
the list of words wasn’t updating automatically and users had to refresh the
page. This might have been the reason of so low votes on it.

Ability of keeping track of articles you have read seems to have been liked
by the people that used it. This indicates that it’s desired but not noticed
enough.

66

CHAPTER 9. EVALUATION

Q5. Which feature(s) didn’t you like?

One person didn’t like saving paragraphs. Possible reasons:

• The saving paragraphs process was inactive and took too long to load and
mark the words

• Might have been a server error

• Too much clicking

As we mentioned earlier, the saving paragraphs needs improvement since users
are not satisfied with it.

Q6. When you used Readabix for the first time, how easy
were the articles?

67

CHAPTER 9. EVALUATION

The system doesn’t know anything about the user at the beginning and recom-
mends articles based on Word Repetition. This response indicates that Word
Repetition might not be enough. Different measure can be considered in the
future but its not urgent. It would be urgent if the texts were hard!

Q7. After using the system for a while (marking words
and saving them), did you get any articles that were easy
to read?

This is the most surprising response. Having in mind that each user read on
average 3.44 articles, we were not expecting them to notice any difference. Sur-
prising also was that 1 of the 2 users that used only French reported that he/she
got easier articles.

This answer proves (even though it needs to be confirmed with more users)
that the User-Dependent measures we used work well and need small amount
of feedback to start working.

Q8. Do you find Readabix useful for improving your lan-
guage skills?

All users found Readabix very useful. This surprised us, since we were expecting
some votes for ”a bit useful” but we got none.

68

CHAPTER 9. EVALUATION

Q9. Which of the following features would you like to be
included in Readabix?

We have many things in mind to add to Readabix. But which one would be
the most wanted? This response gives us a hint that we should go towards the
lyrics feature and vocabulary exercises. Lyrics can be the next feature, since its
the easiest to support with the current system structure.

This response also tells us that the Word Recommendations feature we im-
plemented (but disabled for evaluation) wasn’t really needed. Wish we had
asked earlier. It would save us some time. Uploading and sharing texts also
doesn’t seem to be very popular either. It will be postponed then for the time
being.

9.5 Existing Tools

We looked for tools that recommend you articles to read in foreign languages.
We found websites with users sharing texts and labelling manually the text
difficulty. We looked for tools that help you to read in a foreign language and
we found translators and browser plugins for translation. We looked for a service
that can keep track of your known and unknown words and we found vocabulary
trainers and language learning programs.

We strongly believe that Readabix is unique in its kind, at least for English
users learning other languages. There might be a system like Readabix entirely
written in a foreign language for learning English (or German) and we couldn’t
find it.

69

CHAPTER 9. EVALUATION

Since we didn’t find any similar service with Readabix, we will compare it with
popular language learning software (Babbel), with news aggregators (Google
News) and with vocabulary trainers (Parley-KDE4).

We do a feature comparison, showing which features of Readabix are supported
by which tools and which features is Readabix missing. Table 9.4 shows this
comparison.

Table 9.4: Feature Comparison Table with Existing Tools
Feature Readabix Babbel Google News Parley-KDE4

Online Service X X X -
News aggregation X - X -
Interactive reading environment X - - -
Keeping track of known and unknown words X X - X
Dynamic vocabulary X - - X
Vocabulary exercises - X - X
Supports many languages X - X X
Keeping track of learning progress X X - X
Provides word translation X X - X
Adjusts to the user’s level X - - X
Suggests words X X - -
Supports images and audio - X X X
Social interaction X X X -

By comparing to these systems we can see Readabix’s potential. The features
Readabix has in common with them might not be as advanced as the theirs’
(yet) but there are certainly features that give Readabix a big advantage.

Comparing Readabix with Babbel, Readabix has the ability to meet up user’s
level and recommend him something challenging. Babbel has a predefined set
of lessons and leaves it up to the user to go through the lessons and find out
which one is the right one. And that doesn’t guarantee that all the previous
lessons will contain vocabulary that the user knows. Babbel has nice content
with images, videos and text but lacks the dynamic of Readabix to adjust to
the user.

Comparison of Readabix with Google News can be seen only for the article
reading experience. Google indexes thousands of articles on the web and displays
them in groups to the users. Readabix’s capability is much much lower than
that. We can’t compare to Google News for aggregation.

Comparing Readabix with Parley-KDE4 is interesting. Parley helps users im-
prove their vocabulary but they need to type in manually all the words they
want to exercise. This makes it hard for users to keep on using it. Read-
abix, can get to Parley’s level by providing similar vocabularity exercises. But
Readabix’s approach will be different. Vocabulary exercises will be created au-
tomatically for each user, which we believe gives a very strong advantage over
Parley-KDE4.

70

Conclusions

Evaluation gave us a big motivation to continue working on Readabix. Our aim,
to prove that Readabix is a useful language tool that can help users improve
their language skills has been achieved. Finding easy articles for users works and
requires small amount of feedback. However, further evaluation is needed with
more users, more articles and more languages in order to be completely confi-
dent. Some mistakes we did with the user interface need to also be addressed
and focus on creating a more user-friendly website.

Our choice to run Readabix on the cloud turned out to be a good one. The
performance advantage it gives and the ease of scaling up is incomparable to
any other conventional hosting service. It’s also very cost efficient and gives
us the benefit of having Readabix available all the time. However we need to
address some copyright issues with the news articles before we open Readabix
to the public. This will probably require us to develop a browser plugin for
reading the articles.

Readabix has many options for expansion. First would be the songs and lyrics
which would allow the practise of listening and reading skills of a user with songs
that are easy to understand. Second would be automatically created vocabulary
exercises (missing words, word recall etc) that would challenge every user. Books
would be another option, through project Gutenberg which offers thousands of
free ebooks. I’m sure iPad users would love it.

Working on Readabix has been a great personal pleasure, challenge and reward.
There were moments of desperation with many technical difficulties and uncer-
tainties but we got over them. It needed a lot of effort to do that but we knew
from the beginning that ”τ ′ αγαθα κoπoις κτωνται” (good things are gained
with effort).

71

Bibliography

[Bro00] H. Douglas Brown. Principles of Language Learning and Teaching.
Pearson ESL, 10 Bank Street, White Plains, NY 10606, 4th edition,
March 2000.

[CDM08] Hinrich Schutze Christopher D. Manning, Prabhakar Raghavan. In-
troduction to Information Retrieval, pages 61–77. Cambridge Uni-
versity Press, New York, NY, 2008.

[Che71] Arnold B. Cheyney. Teaching Reading Skills through the Newspaper,
page vi. Reading Aids Series. International Reading Association, 6
Tyre Avenue, Newark, Del. 19711, 1971.

[DDGR07] Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam Ra-
jaram. Google news personalization: scalable online collaborative
filtering. In WWW ’07: Proceedings of the 16th international con-
ference on World Wide Web, pages 271–280, New York, NY, USA,
2007. ACM.

[DE05] Papagelis M. Rousidis I. Plexousakis D. and Theoharopoulos E.
Incremental collaborative filtering for highly-scalable recommenda-
tion algorithms. In Foundations of Intelligent Systems, volume
3488/2005 of Lecture Notes in Computer Science, pages 553–561,
Berlin / Heidelberg, 2005. Springer.

[DuB04] W.H. DuBay. The principles of readability. Impact Information,
pages 1–76, 2004.

[EDH03] Jr. E. D. Hirsch. Reading comprehension requires knowledge of
words and the world. American Educator, 27(1):10–13,16–22,28–
29,48, 2003. http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.115.721&rep=rep1&type=pdf.

[FKS01] A. Finn, N. Kushmerick, and B. Smyth. Fact or fiction: Content
classification for digital libraries. In Joint DELOS-NSF Workshop
on Personalisation and Recommender Systems in Digital Libraries
(Dublin), 2001.

72

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.721&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.721&rep=rep1&type=pdf

BIBLIOGRAPHY

[Got08] Thomas Gottron. Content code blurring: A new approach to content
extraction. In DEXA ’08: Proceedings of the 2008 19th International
Conference on Database and Expert Systems Application, pages 29–
33, Washington, DC, USA, 2008. IEEE Computer Society.

[GS97] William Grabe and Fredricka L. Stoller. Reading and vocabulary
development in a second language. In Second language vocabulary
acquisition: a rationale for pedagogy, The Cambridge applied lin-
guistics series, chapter 6, pages 98–122. Cambridge University Press,
Cambridge, UK, 1997.

[Kin75] JP Kincaid. Derivation of New Readability Formulas (Automated
Readability Index, Fog Count and Flesch Reading Ease Formula)
for Navy Enlisted Personnel. 1975.

[Lee09] Sang-Ki Lee. Topic congruence and topic interest: How do they af-
fect second language reading comprehension? Reading in a Foreign
Language, 21(2):159–178, October 2009. http://www.nflrc.hawaii.

edu/rfl/October2009/articles/lee.pdf.

[MDA] Louwerse M.M. McNamara D.S. and Graesser A.C. Coh-metrix:
Automated cohesion and coherence scores to predict text readabil-
ity and facilitate comprehension. http://cohmetrix.memphis.edu/

cohmetrixpr/publications.html.

[MS02] C.D. Manning and H. Schutze. Foundations of statistical natural
language processing. MIT Press, 2002.

[PN08] Emily Pitler and Ani Nenkova. Revisiting readability: a unified
framework for predicting text quality. In EMNLP ’08: Proceedings
of the Conference on Empirical Methods in Natural Language Pro-
cessing, pages 186–195, Morristown, NJ, USA, 2008. Association for
Computational Linguistics.

[PP08] Jyotika Prasad and Andreas Paepcke. Coreex: content extraction
from online news articles. In CIKM ’08: Proceeding of the 17th
ACM conference on Information and knowledge management, pages
1391–1392, New York, NY, USA, 2008. ACM.

[Ram10] Chris Ramsdale. Large scale application development and mvp.
http://code.google.com/webtoolkit/articles/mvp-architecture.

html, 2010.

[SC01] L. Si and J. Callan. A statistical model for scientific readability.
In Proceedings of the tenth international conference on Information
and knowledge management, pages 574–576. ACM New York, NY,
USA, 2001.

[Seg07] Toby Segaran. Programming Collective Intelligence, page 8. O’Reilly
Media Inc., Sebastopol, CA, 2007.

73

http://www.nflrc.hawaii.edu/rfl/October2009/articles/lee.pdf
http://www.nflrc.hawaii.edu/rfl/October2009/articles/lee.pdf
http://cohmetrix.memphis.edu/cohmetrixpr/publications.html
http://cohmetrix.memphis.edu/cohmetrixpr/publications.html
http://code.google.com/webtoolkit/articles/mvp-architecture.html
http://code.google.com/webtoolkit/articles/mvp-architecture.html

BIBLIOGRAPHY

[Wak03] Richard Wakely. Good practice in teaching and learning vocabulary.
In Good Practice Guide. Subject Centre for Languages, Linguistics
and Area Studies, Southampton, UK, February 2003. http://www.

llas.ac.uk/resources/gpg/1421.

[Wal03] Catherine Walter. Reading in a second language. In Good Prac-
tice Guide. Subject Centre for Languages, Linguistics and Area
Studies, Southampton, UK, January 2003. http://www.llas.ac.uk/

resources/gpg/1420.

74

http://www.llas.ac.uk/resources/gpg/1421
http://www.llas.ac.uk/resources/gpg/1421
http://www.llas.ac.uk/resources/gpg/1420
http://www.llas.ac.uk/resources/gpg/1420

	Introduction
	Road Map

	Background
	Reading Comprehension
	Measuring Text Readability
	Baseline
	Vocabulary
	Syntactic
	Entity Coherence
	Discourse Relations

	Content Extraction
	Collaborative Filtering

	Retrieving Articles
	RSS Feeds
	Articles
	Download HTML
	Extract Content
	Tokenisation
	Word Filtering
	Count Word Frequency
	Create Reverse-Index
	Evaluating Difficulty

	Reading Articles
	Requirements
	Possible Solutions
	Translating Words
	Marking Words
	Saving User Progress

	Our Solution
	Interactivity
	Translation
	Saving Marked Words
	Saving Paragraph or Text

	Performance

	Recommending Articles
	Interface
	User Independent Measures
	Word Frequency
	Word Repetition

	User Dependent Measures
	Known Words
	Unknown Words
	Weighted Mode
	Easy & Challenging Mode

	Combined Measures
	Incremental Counting

	Recommending Words
	User Interface
	Measures
	Recommendations
	User Progress

	User Feedback
	Motivation
	Profile Matching
	Recommendation Algorithm
	Incremental Counting

	Software Engineering
	System Overview
	Retrieval Module
	Processing Module
	Feedback Module

	De-Coupling Database Operations
	Running on the cloud
	Datastore
	Task Queues

	User Interface
	Code Base

	Evaluation
	Objectives
	Evaluation Environment
	Tracking Users
	Survey
	Existing Tools

	Bibliography

