
Autonomous Transport Agents:
Simulating warehouse operation on

a bi-directional rail network

BSci
Final Year Individual Project

Final Report

Jean Moschetta
jm407@doc.ic.ac.uk

17th June 2010

Supervised by: Dr. Krysia Broda
Second Marker: Dr. Alessandra Russo

i

Contents

Abstract v

Acknowledgements vi

1 Introduction 2

1.1 Context . 2
1.1.1 Motivation . 3
1.1.2 Project aim . 3

1.2 Contributions . 4
1.3 Report Structure . 4

2 Background 6

2.1 Agent Based Modelling . 6
2.1.1 Autonomous Agent . 6
2.1.2 Key Steps of ABM . 7
2.1.3 MASON . 8

2.1.3.1 Grids . 8
2.1.3.2 Networks . 8
2.1.3.3 Visualisations 9

2.2 AGV . 9
2.2.1 Gottwald Automation . 9
2.2.2 KIVA Systems . 9

2.2.2.1 Speci�cation . 9
2.2.2.2 Tra�c Management 11
2.2.2.3 Design Issues . 11

2.3 Further Notes . 12
2.3.1 A* Algorithm . 12

3 Speci�cation and Design 15

3.1 Abstraction . 15
3.2 Bi-directional Rail Network . 16
3.3 General Speci�cation . 16
3.4 Scheduling . 17

3.4.1 Stepping the Schedule . 17
3.4.2 Speed . 17
3.4.3 Stations and Packages . 18
3.4.4 Graphics . 18

3.5 Maps . 19

ii

3.6 Nodes . 19
3.6.1 Stations . 21
3.6.2 Dispatcher . 21

3.7 Packages . 21
3.8 Transport Agent Protocol . 22
3.9 Analysis . 24
3.10 Visual Design . 24
3.11 Summary . 25

4 Implementation 26

4.1 Extending the SimState . 26
4.2 Protocols . 26

4.2.1 Initial Behaviour . 27
4.2.2 Stochastic Greedy Geographic Routing Protocol 27

4.2.2.1 Machine learning 28
4.2.3 Precomputed A* Path�nding Protocol 30

4.2.3.1 Path-Matrix . 31
4.2.4 Agent Avoidance . 32
4.2.5 Real-time A * path�nding 32

4.2.5.1 Heuristics . 33
4.2.6 Overriding . 34

4.3 Visualisation . 34
4.3.1 Console Runs . 34
4.3.2 2D Visualisation . 34

4.3.2.1 Visual Guide . 35
4.3.3 3D Visualisation . 37
4.3.4 Speed of the Simulation 39

4.4 Map Examples . 39
4.4.1 Debugging Maps . 40
4.4.2 Container Terminal . 40
4.4.3 Warehouse Grid . 40
4.4.4 Cross World . 41

5 Experimental Design 45

5.1 Parameters . 45
5.2 Experiments . 45

5.2.1 Agent Population . 46
5.2.2 System Load . 46
5.2.3 Optimal Parameters . 46

6 Results 48

6.1 Agent Population . 48
6.2 System Load . 51
6.3 Optimal Parameters . 51

6.3.1 Stochastic Thresholds . 51
6.3.2 Congestion Heuristic . 53

6.4 Example of Bottleneck Detection 53

iii

7 Evaluation 56

7.1 Recommendations . 56
7.1.1 Container Terminal . 56
7.1.2 Warehouse Grid . 57
7.1.3 Cross World . 57
7.1.4 System Load . 58
7.1.5 Stochastic Parameters . 59
7.1.6 Congestion Heuristic . 59

8 Conclusion 60

8.1 Limitations & Future Work . 60
8.1.1 Further Realism - Fuel Constraints 60
8.1.2 Agent Failure . 61
8.1.3 Job System . 61
8.1.4 Hill-climbing Algorithms for Parameter Search 61
8.1.5 Extending GUI for easy map creation 62

8.2 Closing Remarks . 62

A Listing 65

A.1 A* Algorithm . 65

B Extra Material 70

B.1 Square Map . 70
B.2 Small Grid Map . 70
B.3 Detailed Comparison of A* Protocols 70

iv

Abstract

Autonomous Transport Agents (ATAs) have been used to improve the ef-
�ciency and reliability of transportation systems in many real-life situations.
However the cost of such systems is still very high. It is therefore unfeasible for
the majority of businesses to implement such a system unless they can guarantee
it will be more e�cient than their current set up.

Therefore, the market for ATAs has a great need in having a reliable way
of simulating warehouse operation before the systems are installed. Due to the
fact that autonomous systems are extremely dependent on the environment's
set up and the agents' own behavioural characteristics, not only should clients
be able to simulate the autonomous systems, but they should also be able to
record and analyse di�erent sets of results in the aim of �nding the optimal
parameters to use with their warehouses.

This project therefore aims to bring an extensible ATA simulator so that
warehouse operators interested in integrating ATAs can have a realistic estimate
of the improvements in e�ciency which can be gained through using intelligent
agents. In this report we cover two main case studies, the European Combined
Terminal of Rotterdam and KIVA Systems' robots used in many warehouses.
We map these real-life examples to our simulation models and perform tests on
the quality of agent protocols.

v

Acknowledgements

Firstly, I would like to thank my supervisor, Dr. Krysia Broda, for all the
support, guidance and help she has brought to me throughout the duration of
the project. I would also like to thank Dr. Alessandra Russo for agreeing to
be my second marker and also for suggesting di�erent approaches in which to
tackle this project.

I am extremely thankful to my family and friends, who have given me con-
stant support throughout my studies at university and beyond.

vi

1

Chapter 1

Introduction

1.1 Context

An Automated Guided Vehicle (AGV) is a term used for a mobile robot which
autonomously performs tasks in an industrial environment. AGVs have been
used in warehouses since 1954 when Barrett Electronics (now Savant Automa-
tion) introduced them on the market [1]. These �Driver-less vehicles�, as they
were known at that time, were simple tow trucks guided by a wire installed on
the ground of the warehouse, these transport agents were �autonomous� in the
sense that they could operate by themselves, but could also do little apart from
moving forwards and backwards. Since then the autonomous logistics industry
has come a long way. There are now a wide range of AGVs available, some
are capable of transporting 40 feet containers as well as navigating outside in
di�erent kinds of weather conditions, while others are able to transport small
stacking shelves towards packing operators as well as reorganising the position
of the shelves in the warehouse based on real-time customer demand for the
items - the more an item is required by the customers, the closer the shelves
will be to the packing operators to improve speed and e�ciency. Intelligent
agents are therefore the key in reaching the goal of optimal e�ciency. AGVs
therefore involve many areas of Computer Science, from robotics to AI and even
operations research.

There are several reasons why it is advantageous for businesses which require
transportation of goods to move towards automation of their warehouses. AGVs
can operate 24 hours a day, 7 days a week with breaks only required to recharge
batteries or replenish fuel. Declining population rates in developed countries
like Japan have prompted the need for an alternative workforce and has in turn
driven the development of autonomous systems, with great progress made in
the AI of individual AGVs. The economic crisis along with rising labour costs
in western Europe, as well as in many other countries throughout the world,
has prompted warehouse managers to employ AGVs who, beyond maintenance,
require little to no attention. Given a set of goals, AGVs will nowadays be
completely autonomous and interact with the environment to accomplish these
goals with no direction from human operators. Of course, the initial investment
required to develop and install an AGV system is quite large and can be a

2

big obstacle for the majority of medium businesses, especially in this uncertain
economic climate, however the gains in speed and e�ciency of operations are
great and can often start paying for themselves within 3 to 5 years [11].

Although there are many advantages to a fully automated warehouse, the
complexity of designing e�cient autonomous behaviour is a great challenge.
Managing transportation in terms of planning and scheduling is a challenging
task due to the complexity and dynamics of the processes involved. Hence recent
developments show an increasing trend towards autonomous control of trans-
portation processes with software agents acting on behalf of human operators.
Software agents are the natural solution for transportation problems as they can
be applied not only to the AGVs but also to other processes in the warehouse
such as the refuelling or loading and unloading processes.

1.1.1 Motivation

Simulating the transport process will allow businesses interested in installing an
AGV system to evaluate the gains in e�ciency from developing various protocols
of interaction. As we noted previously, costs associated with AGV systems are
very high and business owners will want to simulate how well the agents are
performing before embarking on automating their warehouses.

Instead of simply simulating tra�c interactions between the AGVs we con-
strained the project to include bi-directional rails. This adds to the complexity
of the project as autonomous behaviour will not simply re�ect normal tra�c,
in our scenarios the AGVs will be able to navigate the warehouse freely but on
single-track roads.

1.1.2 Project aim

In this project we set out to simulate the operation of a warehouse in the aim of
�nding the �best� autonomous behaviour using software agents. By simulating
warehouse operation we were then able to observe the performance of a set of
autonomous protocols and deduce the best protocols to use based on warehouse
layout.

Therefore the main aims of this project can be summarised as follows:

1. Provide a warehouse simulation framework by extending the MASONMul-
tiagent Simulator (see section 2.1.3).

2. Investigate how to improve the e�ciency of the warehouse by experiment-
ing with the simulation parameters.

3. Being able to visually observe the agents and improve their protocols.

We also set out to meet the following criteria:

• A simple system, we wanted the simulations to be physical implementation
independent - we don't care so much about the physical aspects of AGVs
apart from making sure the simulation is �legal�. However we also wanted

3

to have enough parameters such as weight of packages and speed of agents
which can be altered to re�ect the real-life systems more accurately.

• We also wanted to implement a scalable routing protocol to attempt to
�nd the highest e�ciency based on di�erent stimuli such as congestion or
agent presence.

• Being able to analyse di�erent network topologies - how to �nd out where
bottlenecks are in a certain system.

1.2 Contributions

We now outline the contributions made in the design and development of this
project:

• We have implemented a warehouse transportation system which is easily
modi�able to �t the user's needs.

• We are able to record a number of statistics about each simulation - with
the objective of being able to judge how �good� a protocol is based on
di�erent measures.

• We are able to change simulation parameters to re�ect di�erent real-life
systems. In this project we have simulated the transportation aspect of a
container terminal and a warehouse.

• Using these points we are able to test and report which particular param-
eters are most suitable for which situation.

• The system was designed to be able to add new agent protocols easily by
extending the transport agent base class.

• We have implemented a series of di�erent protocols and tested these proto-
cols against di�erent network layouts and di�erent simulation parameters.

• The system also allows a future user to scale the A* routing protocol
which was used extensively in the implemented protocols. Extending the
heuristic function is all that is required to create new heuristics on which
the test the agents with.

1.3 Report Structure

We begin this report with some background information concerning Agent Based
Modelling and how we used this to model the real-life systems which were stud-
ied in the preliminary part of this project. We continue with case studies which
were used as the motivation behind this project as well as detailing the MASON
simulation framework which we used as the basis of our simulations. In chapter
3 we talk about the design aspects of the project and how all the simulation
objects link together to form our models. This is followed by chapter 4 where
we detail the implementation aspects of the project as well as giving concrete

4

examples of the situations in which we tested our agents. In this chapter we
also detail each of the protocols of agent interaction which were implemented
in tested. Chapters 5, 6 and 7 cover the experiments we carried out, the results
which were obtained, and an evaluation of these results respectively. We also
recommend a set of optimal parameters to use with each environment tested.
We conclude this report in chapter 8 where we give detailed descriptions of
possible extensions which could be added to this project in the future.

5

Chapter 2

Background

2.1 Agent Based Modelling

In Agent Based Modelling, or ABM, the real-life system which we are interested
in is modelled using a collection of autonomous entities called agents. These
agents usually represent actual objects from the system which interact with each
other and are adaptive to their surrounding environment. By modelling a real-
life system using ABM, one can model complex behavioural patterns and record
meaningful information about the resulting e�ects on the system environment.
Using this information we are able to infer theories of how the actual system
would behave under the conditions in which we have modelled it.

In ABM we learn more about a system from the local interactions among the
agents. The agents interact with the �environment�, this is a space where all in-
teractions occur. Agents can interact with the environment or interact with each
other based on environmental conditions. The Object Oriented Programming
paradigm is a very natural way of implementing Agent Based Models, where
each agent is an object and interacts with other agent objects who themselves
have speci�c sets of characteristics and rules.

This approach to modelling was also ideal since as we will see in section
2.2.2, one of the real-life systems which we studied used this very approach to
operate their actual system.

2.1.1 Autonomous Agent

An agent is usually described as a discrete entity with its own set of behaviours
and goals. In this project we also used the term �autonomous agent� to refer
to an agent which has the capability to change its behaviour depending on the
conditions of the local environment which it senses. These autonomous agents
are usually mobile objects within the environment, however we also see that we
can make any entity an autonomous agent - with the purpose of closely mapping
the characteristics of the real-life system with our model.

An autonomous agent is characterised by the following general properties:

6

Figure 2.1: Autonomous Agent

• Interaction with the environment: the agent senses the (constantly chang-
ing) environment through its sensors and reacts accordingly.

• Goal driven: agents can have a wide range of goals, including satisfying
local states or end goals.

• Intelligence: the agent has a decision-making capability by which it uses
local information to select actions.

2.1.2 Key Steps of ABM

When using ABM, one usually takes a similar approach to [4] - from which the
following list is adapted to �t the needs of this project.

1. Find a meaningful question to ask about the behaviour of a real-life sys-
tem.

2. Take this problem and simplify it.

3. Simulate the system by programming the agents to follow simple rules and
interact with the system.

4. Run the simulations many times and observe patterns.

5. Take the observations and propose theories about how the system behaves.

6. Change parameters of the simulation and identify sources of behavioural
change.

7. Repeat steps 4 to 6.

Using this approach with the project proved very successful, especially since our
simulations revolved around a lot of modi�able parameters and therefore step
6 was repeatedly performed and results were recorded in chapter 6.

7

2.1.3 MASON

This section describes the framework and libraries we will be using for the
duration of the project.

MASON [10] is a fast discrete-event multiagent simulation library core writ-
ten in Java, designed to be the foundation for large custom-purpose Java simula-
tions, and also to provide more than enough functionality for many lightweight
simulation needs. MASON contains both a model library and an optional suite
of visualisation tools in 2D and 3D.

There are several simulation packages that would �t our needs, such as
SWARM, which fully supports multiagent based simulations. We decided to
go with MASON for several reasons: MASON was built with Java rather than
Objective-C with SWARM, this author is more pro�cient in Java. The graphical
component of MASON is also very nice and allows the user to build on top of
the existing libraries, this was a big selling point for MASON due to the fact
that in this project we wanted to spend more time designing heuristics for agent
interaction rather than building a graphical library from scratch. MASON also
has built-in grid representations, which are ideal for our project as we will
explain below.

2.1.3.1 Grids

MASON uses a grid concept for representing the position of agents (although
this can be done any way the user wants). There are di�erent types of grids,
such as int, double, etc. This allows us to represent all kinds of data, from
agent position to static objects in the world. All the information which the
grids contain can then be represented using MASON's internal graphics library.
By superimposing the grids, more than one set of data can be represented at
the same time.

The grids have other interesting uses. To prevent agents from bumping
into each other during their journey (as they could be carrying fragile cargo), a
method which we used in this project is to partition the world in small mutually
exclusive zone. Essentially two agents cannot enter the same zone at the same
time. Each zone must be cleared of agents before the next agent can enter it.
This is like locks in multi-threaded programs and serves as a good way of making
sure the agents are a safe distance away from each other. Using MASON's grid
is one way of achieving this �zone� principle and can be easily implemented,
each time an agent wants to move a grid square, it must �rst check there are
no agents in the adjacent square and so on. In this project we implemented
this scheme using the so-called �Moore neighbourhood�, which signi�es the 8
adjacent squares in a 2 dimensional grid. These squares are probed by the
agent's sensors and the agent will be informed of the local environment in this
way.

2.1.3.2 Networks

Also provided in the MASON's libraries is a network system consisting of edges
and nodes. These edges and nodes can be built and manipulated in the world.

8

These constructs could be used by the agents to navigate the world. In this
project we decided not to use MASON's edges and nodes so that agents could
be visualised consistently with the grid representations that we used for the
rest of the environment (rather than the abstract way in which networks are
visualised in MASON). Although we did not use networks, we created our own
node objects which we embedded inside the grid representations.

2.1.3.3 Visualisations

Since we aimed to visualise the simulations consistently but also collect results
in a batch manner, MASON was the best choice since it is speci�cally designed
to decouple the simulation from the visualisation. This enables us to run the
simulations many times and record results for each of these runs, as well as
observing the agents in action using the visualisation suites - enabling us to
debug agent behaviour and notice any behavioural patterns as the simulation is
in progress.

2.2 AGV

In this section we outline two AGV companies. The systems implemented by
these companies are what our simulations are modelling closely.

2.2.1 Gottwald Automation

Gottwald Automation is a company which introduced the autonomous trans-
port trucks at European Combined Terminals of Rotterdam in the Netherlands.
The huge autonomous trucks carry 40 feet containers to and from ships that
are docked in the harbour. Their navigation system works by following an elec-
tromagnetic wire which is embedded in the ground of the container terminal.
This allows them to navigate through the terminal �awlessly in many di�erent
weather conditions (see �gure 2.2).

2.2.2 KIVA Systems

The system described by the IEEE Spectrum article [6] served as an important
source of inspiration for this project. Although there are many Warehouse
Management Systems (WMSs) in the industry today, the one built by KIVA
Systems uses a revolutionary approach (a robot of which is shown in �gure 2.3).
By transporting items to the packing centres rather than requiring packers to
stand behind a conveyor belt, the system can optimise the time required for
each TA to reach their destination.

2.2.2.1 Speci�cation

The KIVA robot works by scanning the ground of the warehouse for barcodes
which specify grid-like locations throughout the warehouse. By scanning these

9

Figure 2.2: Gottwald ECT trucks [2]

10

Figure 2.3: KIVA Systems' Autonomous Agent [13]

codes the robot knows exactly where it is in relation to the warehouse, the
wares and other robots. This allows it to be very accurate in moving through
the warehouse as well as avoiding other robots in advance, all while ful�lling
the tasks that were assigned to it.

2.2.2.2 Tra�c Management

What is important about this WMS to the project, is the way KIVA Systems
modeled their warehouse. Figure 2.4 shows a colour diagram of KIVA's internal
representation of the warehouse. In red are the items which are most needed by
the warehouse, compared to green or purple which signi�es less important items.
These items are placed near the packing centres due to their high demand to
increase e�ciency.

In this project we will also use colour to represent di�erent characteristics
of the environment. Particularly congestion, which we cover in the visualisation
section of this project in chapter 4.

2.2.2.3 Design Issues

Without giving the game away, the IEEE article mentioned some of the tech-
niques which KIVA Systems used in building the algorithms needed for agent
interaction. The engineers talked about how organising the robots in ware-
houses was a di�cult task - because of having hundreds of robots and many
packing centres - coordinating the whole system to run �awlessly is an NP-hard
problem.

To solve this massive scale coordination problem they used software agents
to run the robots, the packing centres and the central computer. Each agent
would exchange information but act independently, each trying to optimise its
own tasks. They also used heuristic methods such as greedy algorithms, which
can make good (but not always optimal) decisions to perform the required tasks.

Similarly for this project, agents will be the most important entity in the
simulation. We also attempted to use the same sort of methods which KIVA

11

Figure 2.4: KIVA System's demand representation

Systems have used in their design.

2.3 Further Notes

• We refer to a �Moore neighbourhood� in several places in this report. This
neighbourhood consists of the 8 squares which are adjacent to any chosen
square in a 2D grid.

• The network topologies implemented in this project are �planar graphs�,
i.e. no edge in the network will overlap other edges. This was done to
realistically represent roads in a 2D environment, although bridges can
exist in a 3D environment, we restricted the simulation to operate only in
2D.

• We will also refer to the Time To Live, or TTL, of a package - this term
is used when talking about packets travelling through networks. It is
used here to refer to the perishability of a package, this TTL must not be
exceeded or else the package �dies�, i.e. it failed to be transported in due
time.

• Lastly but most importantly, when we refer to the waiting time of a pack-
age we mean the time it took from package generation (at a station) until
it was safely transported to its destination station and exist the system.
This is the main measure of quality of the protocols of agent interaction,
as the smaller the waiting time for a package, the better the protocol is
at navigating through the system and accomplishing its goals.

2.3.1 A* Algorithm

The A* algorithm was used extensively in this project. A pseudocode version
can be found at algorithm 2.1, a full listing of the Java implementation of the
A* algorithm for this project can be found in appendix A.1. The A* algorithm
works by using three functions, G,H and F. G is a function which calculates the
distance between two adjacent nodes. H is the heuristic function which tries to

12

estimate the total remaining distance until the goal and F is the sum of the G
and H functions. Each A* node keeps these values to allow the algorithm to
choose the best path.

13

Algorithm 2.1 A* Search Algorithm [3]

function A*(start ,goal)

// The set of nodes already evaluated.

closedset := the empty set

// The set of tentative nodes to be evaluated.

openset := set containing the initial node

// Distance from start along optimal path.

g_score[start] := 0

// Estimated total distance from start to goal through y.

h_score[start] := heuristic_estimate_of_distance(start , goal)

f_score[start] := h_score[start]

while openset is not empty

x := the node in openset having the lowest f_score [] value

if x = goal

return reconstruct_path(came_from[goal])

remove x from openset

add x to closedset

foreach y in neighbor_nodes(x)

if y in closedset

continue

tentative_g_score := g_score[x] + dist_between(x,y)

if y not in openset

add y to openset

tentative_is_better := true

elseif tentative_g_score < g_score[y]

tentative_is_better := true

else

tentative_is_better := false

if tentative_is_better = true

came_from[y] := x

g_score[y] := tentative_g_score

h_score[y] := heuristic_estimate_of_distance(y, goal)

f_score[y] := g_score[y] + h_score[y]

return failure

function reconstruct_path(current_node)

if came_from[current_node] is set

p = reconstruct_path(came_from[current_node])

return (p + current_node)

else

return current_node

14

Chapter 3

Speci�cation and Design

Bearing in mind that the main goal of the project was to simulate warehouse
operation with the intention to implement and compare di�erent protocols of
transport agent interaction. We now describe the speci�cation of the simulation
as a whole, along with the design decisions that were made to achieve the goals
that we set out to complete.

We begin this chapter by explaining several important points about the
assumptions that were made in designing the project, we then show how we
used the MASON scheduler in order to give life to the simulation objects. We
then move on to section 3.7 where we outline the design of the crucial package
objects, without which the simulation would not have much meaning. The
internal design of the maps, nodes and details of a basic agent protocol are
covered in sections 3.5, 3.6 and 3.8 respectively. We conclude this chapter with
section 3.10 which covers another crucial aspect of the project, its visual design.

3.1 Abstraction

Although we aimed to reach a realistic representation of warehouse operation,
we also did not want the simulation to be too dependent on the physical imple-
mentation of the Warehouse Management System (WMS). As seen in section
2.2 there are many di�erent types of AGVs and even more ways of making
them interact with their environments, whether they navigate the world using
electromagnetic wires or bar codes specifying warehouse locations.

Because of this we abstracted our simulation to be largely �physical imple-
mentation independent�. By this we mean that we do not concentrate on the
physical implementation of the agents, but instead we focus on their interaction
in the world. The transport agents could be big or small, fast or relatively slow,
this simply does not matter as far as our simulation is concerned. The only
physical aspects that was taken into account were how we perceived transport
agents to operate in a warehouse environment - which we designed through
careful observation of real life WMSs - as well as how the agents work their
way through the warehouse on the rail network which we devised, this is further
explained in the next section.

15

3.2 Bi-directional Rail Network

One of the main design decision before starting the implementation of the sim-
ulation was to restrict agents to operate on bi-directional rails. Unlike con-
ventional railways where trains usually travel in one direction, our simulation
allows the transport agents to go back and forth on the same piece of track. We
decided to use this model to allow more interesting levels of interaction from the
agents in their environment, if we had used uni-directional tracks our simulation
would amount to modelling conventional tra�c interactions.

Allowing agents to go in both directions increases the �exibility with which
they can travel through the network. It will also cause agents to travel towards
each other, causing one or both agents to have to abandon the path once they
have realised that it is blocked. Because of this �problem�, the project's emphasis
therefore resided in making sure the agents could recover from situations like
these and attempt to �nd a better path than the one they had just tried.

3.3 General Speci�cation

In this section we outline the general points of the speci�cation which our simu-
lation complied with. To achieve a reasonable degree of realism in the simulation
several points were taken into account during the design process of this project.

• Although the MASON data structures for keeping track of the transport
agents allow multiple agents at the same grid location, we restricted our
simulation to one agent per location. Transport agents travelling through
each other would not be very interesting and would not satisfy our goal
of making the simulation as realistic as possible.

• There is therefore no possibility of overtaking occurring on the same rail.
Any form of overtaking in our simulation would amount to routing through
an adjacent path and continuing towards the goal at a faster rate than
other agents.

• The speed of the transport agents was a factor which was identi�ed as
being crucial to the �realism� of the simulations. Early in the project's
inception we decided that speed should be inversely proportional to the
weight carried. It would make little sense for heavily loaded agents to
travel at the same speed as agents who are not carrying anything. We
have however provided functionality so that speed can be modelled to
user preference, more on this in chapter 4.

• Naturally, a maximum weight was imposed on the agents' cargo space.

• Since it would be unrealistic for the transport agents to load and unload
packages instantly, the simulation has parameters which simulate the load-
ing times dependent on the amount of packages picked up or dropped o�.
These parameters can be altered to user preference as well.

• Packages record their Time To Live (TTL) to simulate perishable pack-
ages, this parameter is completely user dependent and serves only to test

16

the performance of the agents if high priority packages enter the environ-
ment. The TTL function which de�nes how much time until a package
expires is based on the priority of the package. The higher the priority
the less time the package will �live� in the simulation. Failure to deliver
these packages is recorded and displayed at the end of the simulation.

3.4 Scheduling

The MASON simulation framework works like any discrete-event simulator. By
scheduling events to take place in the future on the schedule we can make the
warehouse world come alive. In this section we will use the term timestep to
specify a unit of time.

Although events in MASON can be scheduled to happen at very small in-
tervals within a timestep, for simplicity we made events occur only at whole
timesteps. This simpli�cation does not reduce the scope of the simulation,
events that are scheduled to happen immediately are scheduled for the next
timestep and events which require more time are simply scheduled multiple
timesteps in the future. One can think of a timestep as the smallest unit of
time in our discrete-event simulator.

3.4.1 Stepping the Schedule

Before we dive into further detail of how the schedule was used with all the
elements of the simulation, we note that the MASON framework speci�es a
�steppable� interface. This interface must be implemented by all agents which
are to be scheduled in the simulation. The steppable interface requires the
implementation of a single method called the �step� method. This method is
called whenever the schedule reaches a point in time where an agent is to be
scheduled, it can be thought of as the agent performing an action - hence all
interactions with the world occur within this step method.

We now continue this chapter with detailed explanations of how the schedule
was used to model di�erent aspects of the warehouse and its transport agents.

3.4.2 Speed

As noted earlier in this chapter, speed is a crucial variable which we wanted
to model accurately, namely that more heavily loaded agents travel at a slower
rate through the rail network.

To achieve this we decided to schedule empty agents immediately to the
next timestep, whereas heavily loaded agents will be scheduled to move only
several timesteps in the future - all depending on how many packages they are
carrying. This method of modelling speed proved very successful considering
the alternative, to calculate how many grid locations an agent would traverse
in a single timestep, would cause headaches in dealing with agents overlapping
each other.

17

3.4.3 Stations and Packages

Since stations are themselves �software agents�, they also have a place on the
schedule. Stations are scheduled every timestep and for every timestep stations
will generate package arrivals.

The package arrivals are generated at random intervals, to achieve this we
used an exponential distribution along with a threshold parameter. The thresh-
old parameter being user de�ned, if a sample from the exponential distribution
exceeds this threshold then a package is generated, if on the other hand the
threshold is not reached the station object simply does not generate a new
package.

To sample from the exponential distribution we used the inverse transform
method which is appropriate since the cumulative distribution function of the
exponential distribution has an inverse.

If we take random variable U ∼ Uniform(0, 1) which is a uniformly dis-
tributed random variable between 0 and 1, the variate

T = F−1,

has an exponential distribution, where F is the cumulative distribution function
of Exp (λ). In detail:

X ∼ Exp (λ)

F (x) = 1− exp {−λx} , x ≥ 0

setting

U = F (X)
U = 1− exp {−λX}

1− U = exp {−λX}
ln (1− U) = −λX

− ln (1− U)
λ

= X

F−1 (U) = X,

so since U ∼ Uniform (0, 1) then

F−1 (U) ∼ Exp (λ) .

Hence we used the exponential distribution sample as

F−1 (U) = − ln (1− U)
λ

∼ − ln (U)
λ
∼ Exp (λ) ,

since 1− U is also Uniform(0, 1).

3.4.4 Graphics

For the project's visualisation which is speci�ed in chapter 4, we used several
2D grids to represent di�erent e�ects such as trails of the TAs previous location

18

or other visual aids. These visual e�ects also took place on the schedule, al-
though the e�ects were not agents themselves, they were created by the agents
interacting with the environment. The visual e�ects are coordinated by a sep-
arate software agent, which like other objects on the schedule, operates at each
timestep to regulate the intensity of the visual e�ects. The visual e�ects were
created for easier analysis of the world when the simulation is paused, but more
on this in the next chapter.

3.5 Maps

The warehouse layouts were represented using a combination of several data
structures.

• For the model of the rail layout, a single 2D grid was used representing
areas with the rail tracks and areas without. The 2D grid representations
provided by MASON can hold any �oating point value at each location,
where any location that is non-zero speci�es a location in the world which
has a rail track. This allows the transport agents to query their surround-
ings by checking this 2D array and making sure they are still travelling
along the rail track.

• Maps contain four di�erent types of objects: nodes, stations, TAs and
usually a single dispatcher. These objects are stored within a sparse object
�eld, where each �eld has locations mapping one-to-one onto the 2D grid
representation. This allows locations for each �eld to map directly onto
a location in the 2D grid on which the rail tracks are speci�ed. Further
detail on each object which the maps contain are detailed in the following
sections.

• Rail tracks are connected using node objects, a similar concept to a train
set - where uniform pieces of rail track can be connected in di�erent ways
to form the track.

• We note that the 2D grid representing all possible locations within the
world is a discrete grid, by this we mean that agents move from their
current location to the adjacent location in one timestep, i.e. there is
nothing in between. One can think of a 1-dimensional array, with an
agent occupying a place within the array and when the agent moves it
simply changes location from one array index to the one next to it.

Several other 2D arrays were used to specify the visual aspects of the simu-
lation, more on this in section 4.3.

3.6 Nodes

Nodes are the base class for station and dispatcher objects, more importantly
they act as the single entry points where agents retrieve or calculate their next
path.

19

Figure 3.1: Rail tracks, nodes and agents

Agents essentially make decisions about where to go next when they arrive
at a node. Of course if an agent were to detect another agent in its path it
would make a decision wherever it �nds itself, but network routing only occurs
at node objects.

Not only does this minimise the amount of computation required per timestep,
but this prevents agents from recalculating a better path at each timestep and
suddenly deciding to abandon a path. Although it would seem advantageous to
recalculate a better path at each timestep, depending on the routing algorithm,
worst case scenarios could arise.

For example, if dynamic congestion is taken into account, the agent could
calculate a path and go along a rail track. If by the time the agent is in the
middle of the track the congestion changes, the agent could decide to reverse
and try an alternative track which is all good so far, however if the dynamic
congestion suddenly changes again the agent could decide to go down this track
again, essentially live-locking itself and not making any real progress. It was
therefore decided that agents should choose a piece of track until the next node.
Since nodes are evenly spaced within the maps the cost of choosing a track and
not abandoning it until the next node is not huge and prevents the live-lock
condition.

20

3.6.1 Stations

Stations are a subclass of node objects. Their sole purpose is to generate pack-
ages into the world, when a package is generated it is assigned a destination at
random. TAs load and unload packages on these stations, therefore agents will
remain inside the station for the speci�ed loading/unloading period.

3.6.2 Dispatcher

The dispatcher is a convenience object with two objectives.

1. It has the responsibility of spawning the TAs into the world, it can be
thought of as the �source� of the agents. The number of TAs to be gen-
erated is obtained from a parameter class and can be altered if multiple
simulations are executed with the goal of testing performance with di�er-
ent numbers of TAs.

2. It can also be set to be the �sink� once the simulation is nearing the end,
by this we mean that when all packages have been generated and picked
up by the TAs, any TA which does not have a job will set its next path
to the dispatcher and be removed from the simulation once it reaches it -
this is to allow the simulation to end without one agent taking a very long
time to �nd its �nal destination due to other idle agents being in the way.

The dispatcher was made a subclass of station so that agents could easily path
�nd it without any changes to their protocols. Although manually placing the
TAs within the simulation is possible (and was done in the early stages of
the project), by using a scheduler we can specify the number of agents at run
time using the parameters �le and therefore run many simulations with varying
amounts of TAs.

3.7 Packages

Packages, along with the agents themselves, are the core of our simulation.
Transport agents pick up and transport these packages to their respective des-
tinations, how fast the agents perform this task is a measure of how well the
protocols are performing in the speci�ed environment.

We now list the �elds which each package contains:

destination as the name suggests, this keeps a reference to the station through
which the package will exit the system.

timeIn records the time from the schedule at which the package �rst entered
the system.

timeOut records the time from the schedule at which the package exited the
system, this is used to calculate total waiting time.

21

priority a number from 0 to 9 specifying the priority of the package, 0 is the
highest priority. This variable is used in calculating the TTL. The
simulation generates packages with priority uniformly distributed
within this interval.

TTL time to live, speci�es the upper bound of the amount of time the
package is allowed to stay on the system. If timeOut - timeIn is
greater than this TTL then the package has failed to be delivered in
time. A low priority package will have a large TTL - usually larger
than the average waiting time for a package, this TTL variable is
used to simulate perishable packages.

weight a variable describing the weight of the package, the simulation gen-
erates packages with weight uniformly distributed between a user
de�ned parameter.

Packages are initially contained by stations - where they are generated - they
are then picked up and transferred into the transport agents. They �nally exit
the system on their destination stations after which they are removed entirely.

A last note on the design of the priority variable, to prevent packages with a
low priority from staying inside an agent for too long, the priority of each package
decreases as the transport agents progress through their goals - each time an
agent deposits packages, all packages remaining to be transported increase in
priority (decreasing the priority variable towards 0). This will bring packages at
the front of the priority queue so that they are eventually removed. The TTL
is not a�ected by this change in priority, this will simply prevent low priority
packages from staying on a transport agent for too long and skew the average
waiting time in our results.

3.8 Transport Agent Protocol

In this section we describe the basic protocol for a transport agent. We note that
regardless of the decisions the agent takes, it is crucial for the agent to remain
�in motion�. Permanent deadlocks are not acceptable in our simulation since
the purpose of the simulation is to transport packages to and from stations, if
TAs remain in a deadlock state permanently this prevents any packages from
reaching their destinations and the simulation would therefore never end.

We now list the most �basic instincts� which TAs will have, this behaviour
will be observable for each of the protocols that were implemented in chapter
4, regardless of their level of intelligence.

1. Recognise the environment

2. Acquire goal

3. Path�nd goal

4. Pick up / unload packages

22

Figure 3.2: Flowchart of protocol basics

See �gure 3.2 for a more detailed breakdown of basic agent behaviour.

The TA class is the base class which all protocols extend. This class holds
all core functionality which we list below:

• Locating the agent's goal.

• Finding the nearest node.

• Finding the next forward direction.

• Environment discovery:

� Road detection.

� Node detection.

� Collision detection.

• Speed calculations based on packages carried.

• Picking up and unloading packages.

By providing core agent functionality in the base TA class, we enabled proto-
col creation to be a lot faster to implement. Protocols only specify their step
method, which is essentially a di�erent version of the �ow chart in �gure 3.2.

23

3.9 Analysis

By recording the occurrence of events we were able to collect meaningful infor-
mation from our simulation runs. This is a crucial aspect of the project as we
initially wanted to be able to compare the protocols and how well they perform
on certain types of layouts.

With this in mind we created a global statistics class which is used by all
objects and speci�es the occurrence of events. We note that events are com-
pletely user de�ned and the simulation has no way of automatically recording
when such events occur. Because of this, when a protocol is designed, the statis-
tics class must be used whenever an event of interest is noticed to happen and
should be recorded.

To explain further, if the user wanted to record how many times an agent
turns right compared to its direction of travel, the user would use the statistics
class to notify that this type of event has occurred. The results would then be
calculated and displayed at the end of the simulation.

It is possible to record any kind of event occurring within the simulation
environment, the two most important aspects of a simulation are as follows:

1. Total simulation time for agents to transport a user speci�ed amount of
packages.

2. Average waiting time for a package (from arrival on the system to its exit).

These two factors allow us to judge how well a protocol is performing, the worst
the protocol, the more time a package will spend being transported. With
this measure of quality, we were then able to design experiments and test the
protocols in chapter 5.

3.10 Visual Design

As one of the main goals of the project was to be able to visualise the simu-
lations, a bulk of the work involved creating the visual representation of each
element of the environment and how the objects within the world are visualised.
Details of each visual representation is speci�ed in chapter 4, in this section we
outline the visual aspects which we have covered in this project and leave the
implementation details and examples of each visualisation for the next chapter.

The basic visualisation of the simulations is a 2D representation with rail
tracks, nodes, stations and agents as di�erent coloured objects on screen. By
visualising the simulation in real time we are able to observe how well the agents
interact with the world. Not only does it allow us to see the agents interact as we
have programmed them to, but it is also crucial for debugging of the protocols.
Since creating autonomous behaviour involves taking into account all possible
situations in which an agent will �nd itself, it is sometimes di�cult to think
about all possible scenarios on the �rst iteration of a particular protocol.

By observing the agents in an informative 2D representation, we are able
to see when the agents do not behave as required because a particular scenario

24

was not taken into account. The 2D visualisation also allowed us to represent
di�erent events happening in the environment, such as packages arriving at a
node, or congestion building up on certain bottle neck roads.

By using Java3D's libraries, the MASON framework also allows us to visu-
alise the simulation in a 3D environment. Although the world is still �at, by
changing certain aspects of the simulation, such as the congestion, into a height
map, we are able to observe in real time where most of the congestion is focused.
In a 2D visualisation, although congestion can still be observed, we only have a
�at view of it and it is therefore not as informative as having a 3D representation
of it. The 3D visualisation can also enable us to run the simulations until they
have �nished and observe on which roads the agents were stuck on the most.
This in turn can let us change the layout of the world and observe the changes
that it has on overall congestion.

3.11 Summary

In this chapter we speci�ed the design decisions which were taken to re�ect the
original goals of the project. We also go into detail about certain aspects of
discrete-event simulation as well as describing the most basic elements of the
behaviour of transport agents.

In the next chapter we concentrate on the implementation details of the
project, giving concrete examples as well as specifying each protocol of interac-
tion for the transport agents. We give screen-shots of the simulations in di�erent
stages of progress as well as a breakdown of all the visual aspects which were
implemented through the duration of the project.

25

Chapter 4

Implementation

4.1 Extending the SimState

MASON provides a base simulation class called SimState. Every simulation that
is modelled using MASON must extend this class and implement the relevant
methods to set up the world and start the schedule. As speci�ed in section 3.4,
objects which wish to perform actions must implement the steppable interface
before being able to be scheduled.

Figure 4.1 shows in detail how MASON operates.

4.2 Protocols

In this section we specify the di�erent protocols which we implemented. All
protocols have the same collision detection mechanism. At each timestep the
agents recognise their environment and discover any possible collisions with
nearby agents - at which point they will try another path if they are blocked. If
all paths are blocked agents will simply schedule themselves immediately on the
next timestep and try to move again, at which point they will resume scheduling
themselves further in the future to simulate the di�erent speeds of travel.

Deadlocks will therefore not occur with this collision detection mechanism.
Agents which are blocked will �wait� until other agents have left the immediate
area - which in practice will not result in a deadlock but a wait of a few timesteps
for the agent. The only way a full, simulation-wide deadlock can occur is if
the number of agents exceeds the grid locations within a simulation. In this
situation each and every track would be saturated with TAs, however since
the simulation environments are generally quite large, a huge number of agents
would be required for this situation to occur. Most simulations will handle
hundreds of agents without any such problem, this issue would only arise in
smaller maps and as long as the user is sensible with the number of agents per
simulation there is nothing to worry about.

26

Figure 4.1: MASON

4.2.1 Initial Behaviour

The initial behaviour when the agents �rst enter the system is random. A simple
job requesting mechanism was implemented in which nodes request agents to
come pick up their packages. However this system did not prove to bear a
signi�cant impact on the results and was abandoned.

The initial random behaviour which is adopted by all the following protocols
proves to be very e�cient in getting agents to navigate towards nodes and
start transporting packages. For this reason we decided to spend more time
on developing e�cient routing protocols than worrying about the agents' initial
behaviour. However, a more complex job requesting system is discussed in
chapter 8, to be implemented if more time was given for the project.

4.2.2 Stochastic Greedy Geographic Routing Protocol

This is the �rst protocol to be successfully implemented. Before deciding on
using the A* routing algorithm, a simple geographic scheme was adopted so
that the agents could navigate through the world. By geographic, we mean that
whenever the agent makes a decision it will �rst locate the goal and depending
on its own current geographic location within the world, make a decision about
which path is best to follow. For example, if the agent realises that the goal lies
south of its own location, it will attempt to move south, this can be seen from
�gure 4.2 - the blue nodes are the goals and the arrows specify the direction
which the agent will take.

If there is a choice between two directions, such as when the goal is located
in the north western part of the map - the agent will pick one of the two paths
at random. Since this is a �greedy� protocol, it will attempt to �nd the shortest

27

Figure 4.2: Geographic Routing

path towards its goal, disregarding any other paths through the network.

Because of the nature of this routing scheme, it is possible for the agent to
navigate towards its goal but get stuck if the map is designed in such a way that
being �close� to the goal does not necessarily result in an agent ever reaching
that goal. This can be seen in �gure 4.3 where the agent continues to get closer
to the goal, but the actual optimal path requires the agent to get further from
the goal before �nally reaching it in the end.

This is why the stochastic factor was introduced in the second iteration of
this protocol. It would prevent agents from always choosing the shortest path
and sometimes go down a random path (with the default behaviour being set to
10% of path decisions being random), causing the agent to eventually reach its
destination even if the map is too complex to achieve reasonable performance
with the geographic routing scheme. We note that on the warehouse grid map
which is detailed in section 4.4.3, this protocol performed in a very similar
fashion to the more complex protocols which follow.

4.2.2.1 Machine learning

Even though the protocol will detect collisions and reverse its direction as a
result, it is often the case that the agent will try the same path again after
reversing from a collision with another agent even though the other agent could
potentially still be in the way. This behaviour is greedy and can sometimes
be the ideal situation if the nearby agent that was blocking the way has now
left the area (a common occurrence near stations). Although the stochastic
element of the protocol will often force the agent to try a di�erent path before
converging on the goal once more, the protocol will have tried the same path
several times before the stochastic factor comes into e�ect. For this reason we
devised a machine learning element to this protocol.

• The protocol will record how many times it detects a collision with nearby
agents.

• If the agent has been blocked by other agents too many times per schedule
steps, its stochastic factor will increase by 10%.

28

Algorithm 4.1 Detailed pseudocode of the SGGR protocol

find unobstructed directions

recalculate speed

if unobstructed directions = 0

increment blocked count

schedule self for the next timestep

// unobstructed directions > 0

// start random behaviour

else if has job = false

if we found a station

pick up packages

schedule self with loading time

if we are on a node

pick a random direction

schedule self according to speed

else we are on a track

attemp to travel forward

reverse if an agent is in the way

schedule self according to speed

// end random behaviour

else we have a job

if we are on our goal

unload packages

schedule self with unloading time

// begin find goal

else if we are on a node

find best direction according

to geographic location of goal

//

// machine learning

//

if blocked count too high

choose random direction

schedule self according to speed

if able to go best direction

go best direction

schedule self according to speed

else

choose random direction

schedule self according to speed

else we are not on a node

if able to go forward

schedule self according to speed

else

reverse

schedule self according to speed

// end find goal

29

Figure 4.3: Disadvantage of the Greedy Geographic protocol

• This will increase the likelihood of the agent trying a path at random and
therefore moving away from a problematic path. If the agent continues
to be blocked, the stochastic factor will continue to increase until a user
speci�ed threshold.

• If the agent is now clear of other agents, it must now reduce its random
decisions so as to converge towards the goal once more. The stochastic
factor will therefore decrease if collisions with other agents have been
reduced per unit time.

4.2.3 Precomputed A* Path�nding Protocol

The A* path�nding algorithm proved to be extremely e�cient at navigating
through the warehouse. In the initial stages of this protocol, a very naive im-
plementation of a recursive path�nding algorithm was used. This recursive
algorithm turned out to be too ine�cient and was later dropped in favour of
the A* algorithm.

The full listing of the A* algorithm that was implemented for this project
can be found in appendix A.1 and the pseudo code that was used for the imple-
mentation can be found in chapter 2.

Because we had already designed the bulk of the project by the time this
protocol was implemented, it was impractical to reuse our node objects to im-
plement the A* routing algorithm since each node requires to hold G, H and F
values which speci�es the quality of the chosen path. For this reason we created
an overlay network consisting of A* nodes, which themselves map one-to-one to

30

Algorithm 4.2 Brief pseudo code of the precomputed A* protocol

find unobstructed directions

recalculate speed

if unobstructed directions = 0

wait

// unobstructed directions > 0

else if has job = false

behave randomly until find a node

else we have a job

if we are on our goal we unload packages

// begin find goal

else if we are on a node

//

// query path matrix for next decision

//

if able to go best direction

go best direction

else

choose random direction

else we are not on a node

if able to go forward

go forward

else

reverse

// end find goal

actual nodes within our simulation. This was possible due to the fact that we
assigned unique identi�cation numbers to each node in the simulation network,
these node IDs can be seen on the screenshots of the 2D visualisations of the
simulation runs.

4.2.3.1 Path-Matrix

In this protocol, before the agents are spawned into the world the A* search
algorithm is run from each node pair. Using the optimal paths created by the
algorithm we then build a �path-matrix� which stores these optimal paths for
later retrieval. Once this process is over the simulation can now start and the
agents query this matrix to select the ideal path from node to node. This
approach to path�nding is advantageous because the A* algorithm need not
be run again once the simulation is in motion, saving computation time. The
drawback is that new paths are not calculated in real time hence the heuristic
element of the A* algorithm cannot be used to �nd better paths due to changes
in the environment during a simulation.

Much like the previous protocol, this protocol is greedy in that it tries the

31

Figure 4.4: Agent Avoidance

optimal path even if it is blocked by another agent, reversing and trying again.
The next section speci�es the measures we took in implementing protocols which
avoid agents.

4.2.4 Agent Avoidance

It is often the case that agent will detect each other going through the same
path, this is especially the case in simulations with a large amount of agents.
For this reason agents will often have to reverse and try another path. The two
previous protocols greedily tried the same path until they were either unable to
enter the path (stuck at a node), or the agent that was blocking the path moved
away as itself could not enter the path.

Agent avoidance is a scheme by which agents will now almost never try the
same path again if it is blocked.

• If an agent has had to reverse, once it reaches the node it entered the path
from, it will attempt to go any other path than the one it just tried.

• The agent will try a path on its left or right - which is the next ideal path
as it will lead the agent to navigate around the blocked path, and if those
paths are unavailable it will continue forward - essentially going further
away from its objective. This is illustrated on �gure 4.4.

4.2.5 Real-time A * path�nding

The A* algorithm proved to be very e�cient and even for a large amount of
agents, the algorithm was fast enough to implement real time path�nding. Not

32

Algorithm 4.3 Brief pseudo code of the real-time A* protocol with agent
avoidance

find unobstructed directions

recalculate speed

if unobstructed directions = 0

wait

// unobstructed directions > 0

else if has job = false

behave randomly until find a node

else we have a job

if we are on our goal we unload packages

// begin find goal

else if we are on a node

//

// perform A* search for next best decision

//

if unable to go best direction

choose random direction

else if that random direction means reversing

//

// agent avoidance

//

attempt to turn away from path

move away from goal as last resort

else we are not on a node

if able to go forward

go forward

else

reverse

// end find goal

only could agents recompute paths in case they found themselves unable to
proceed through a path that was previously computed, but the heuristic function
of the A* algorithm could now be used to �nd the most optimal paths based on
di�erent characteristics.

4.2.5.1 Heuristics

By the time this protocol was implemented in the project, we were able to
include a congestion characteristic within the heuristic function of the A* search.

• The congestion in our simulations is modelled on the speed that agents
travel through the network. A slower agent produced more congestion for
the path on which it currently is.

33

• Congestion for a path decreases at each timestep of the simulation, pre-
venting paths which were previously heavily congested to stay in this state.

We note that in reference to the pseudocode in algorithm 4.3, all A* heuristics
are calculated when the agent performs the A* search. The agent itself does
not see any of the implementation of the heuristics as it need not have this
information. We tested this congestion heuristic in chapter 5.

4.2.6 Overriding

As a �nal detail about protocols, we note that almost all types of behaviour
speci�ed in this section can be overridden to suit the user's need. For example,
the way we modelled speed calculation - as speci�ed in section 3.8 - can be
changed so that the relationship between speed and cargo carried is not linear.
Since we designed the protocols to be extensions of the base TA class, all the
methods in this base class can be overridden in usual object-oriented fashion.

4.3 Visualisation

MASON provides both 2D and 3D visualisation capabilities. As stated in chap-
ter 3, the visualisation of the simulation was one of the main goals of this
project. Not only was visualisation useful for creating the environment in which
the agents would operate, but it was also crucial in checking agent behaviour
and �nding optimisations in their behaviour. We note that MASON decouples
a simulation from its visualisation. This is a very important features of MASON
as it allows us to run simulations without worrying of their graphical appear-
ance. We can then implement a graphical view of the simulation and modify it
as needed without changing any of the implementation details of the simulation.

4.3.1 Console Runs

At the most basic level, the visualisation of the simulation is simply the results
that it returns. By using the statistics class from section 3.9 we can record
the quality of the protocols by how quickly they transport packages to and
from stations. We can also display messages on the console when certain events
happen, allowing us to track di�erent characteristics such as how the stochastic
element of the �rst protocol changed as the simulation was executed. This type
of simulation is the fastest because the visual elements are restricted to the
messages that it returns, there is no fancy graphical element - hence this was
ideal to record results or do some initial testing.

4.3.2 2D Visualisation

The 2D visualisation of the simulations is the most useful type of visualisation
when designing the maps or agent behaviour. In this section we refer to the
term �portrayal� as an entity which displays information about its underlying
data structure on screen.

34

Several 2D grids are used to represent information from the simulation. The
MASON framework then superimposes these grids on top of each other and
allows their values to be represented on screen. We now list the di�erent types
of portrayals that we used for the 2D visualisation.

Roads The roads portrayal simply displays the paths which the agents can
take between each node. This portrayal uses the information stored
in the 2D grid specifying the network.

E�ects The e�ects portrayal is used to show the trails of the agents. This
shows the previous location of the agents, making it easy to distin-
guish how agents are behaving when deciding on a new path.

Congestion This portrayal displays the congestion element of the simulation.
This is particularly useful for observing the A* heuristic which takes
into account the congestion of the network.

Paths The paths portrayal displays the chosen path by the A* algorithm.
This was created to help development of the algorithm and debug
any issues.

Text The portrayal which displays text in certain areas of the grid, as can
be seen in section 4.4.

Trucks This portrayal showed the TAs on screen. As we explained in the
design chapter of this report, the TAs are stored on a di�erent data
structure than other objects but map one-to-one to a grid location.
This made it easy to display the agents interacting with the world.

Stations Likewise for node, station and the dispatcher objects - although they
are stored on a separate �eld from other objects, they also map one-
to-one to the 2D grid and are represented using their own custom
portrayals.

We now introduce visual detail of how each object was represented.

4.3.2.1 Visual Guide

Stations Here are the graphical representation of stations with di�erent amount
of packages ready for transport. White stations are empty stations
whereas blue stations have generated at least one package. Stations
which have generated many packages that have not yet been trans-
ported grow in size as the simulation progresses.

Agents We represented agents as oval orange objects with a trail showing
the agent's previous location.

35

Dispatcher Since the dispatcher is also a node in the network we represented
these objects just like stations but coloured yellow. We also inserted
a text object to make identi�cation clearer.

Congestion We modelled this visual e�ect in red, where a brighter red signi�es
higher levels of congestion.

36

Paths Green outlines were implemented whenever an agent calculates a
new path for protocols which use the A* algorithm.

4.3.3 3D Visualisation

For the 3D visualisation of the simulation, MASON uses the Java3D libraries.
Using this functionality we implemented a 3D representation as can be seen in
�gure 4.5. Much like in the 2D representation, agents are coloured orange. Sta-
tions are the blue spheres and the white spheres represent the nodes connecting
each path.

In �gure 4.6 we can observe the congestion as a height map as was detailed
in chapter 3. This makes it easier to notice bottle-necks within the network.
Slower agents produce the much larger peaks in congestion that can be seen
from the �gure. Faster agents will produce negligible congestion unless they are
stopped at a station, at which point the congestion will often peak only at this
location.

The �nal 3D visualisation that we implemented was a �lifetime� height map.
This height map records each location that agents visit during the simulation
run. At the end of the simulation run it is possible to view this height map and
locate any bottle-necks within the network layout. Figure 4.7 shows the height
map at the end of the simulation. The higher the peaks, the more times agents
visited the location. The highest peaks will show the location of stations, since
agents must spend time on these locations to load and unload packages. The
smaller peaks however, show where agents spent the most time while they were
navigating the world - indicating potential bottle-necks.

37

Figure 4.5: 3D Visualisation

Figure 4.6: Congestion height map

38

Figure 4.7: Lifetime height map

4.3.4 Speed of the Simulation

The speed of the simulation can either be slowed down manually (to allow
a greater amount of accuracy) or modi�ed using the MASON console. The
MASON console will slow down the simulation and let you specify how many
seconds (or fractions of a second) to wait between each timestep, resulting in
a slower simulation. However slowing down to even a fraction of a second per
timestep can sometimes be too much and result in a very jerky simulation.

By slowing down the simulation manually by using Java thread functional-
ity, an even smaller delay can be imposed, resulting in �uid simulations which
are slow enough to observe the interactions between the agents. This is very
much appropriate for small simulations (especially in the debugging stage of a
protocol), where most computers are powerful enough and will therefore zoom
through simple simulations. When the number of agents increases however, the
simulation will often slow down simply because of the expensive cost of simu-
lating so many agents on screen - at which point a better computer is required
if one wants to visualise the simulation �uidly.

4.4 Map Examples

In this section we introduce the most important rail network topologies that were
used to record results for our experiments. We note that the implementation of

39

a more convenient GUI editor would be an applicable extension to this project,
which is outlined in chapter 8.

4.4.1 Debugging Maps

Two smaller maps than the ones following were created in order to debug agent
behaviour, these can be found in appendix B. It was important to test the
initial protocols on a smaller environment, especially when designing the routing
algorithms. We found that if the routing algorithms worked on small maps,
bigger maps were not a problem. It also made it easier to debug potential
problems whether with visualisation, agent behaviour or the routing algorithms.

4.4.2 Container Terminal

This map is based on the container terminal layout as can be seen in certain
ports like the ECTerminal in Rotterdam, Netherlands. This was an important
map to implement as like the following warehouse map, it is based on a real
life example. By introducing the TAs in a realistic situation we increased the
relevance of our results with the real world.

Figure 4.9 shows the full map using 2D visualisation. Labels were introduced
to re�ect the actual location of certain elements in a real container terminal such
as the docking area, the centre of the terminal which holds all the containers
and the port exit from which the containers enter and leave the terminal. The
TA dispatcher was placed in the centre of the map to allow the TAs to quickly
�ood the system and start moving packages to and from stations.

This layout is fairly complex and involves bottle-necks, this makes it di�cult
for the TAs to easily navigate the world. This type of sparse topology is ideal to
distinguish the quality of the agent protocols. Simpler protocols will obviously
have more di�culty navigating through this map than other more intelligent
protocols. This map is also useful to see bottle-necks using 3D visualisation.

4.4.3 Warehouse Grid

The warehouse network topology is taken directly from real warehouse layouts.
To make maximum use of space real warehouses have a grid-like layout with
wares being stored in all locations within the warehouse. This network topology
is exceptionally easy for agents to traverse since it is so densely populated with
nodes. At each node agents will usually have 4 di�erent paths that they can
choose from. As we will see later, all protocols scale very well on this kind of
map.

Like with the container terminal map, the dispatcher was placed right at the
centre to allow agents to quickly traverse the network and start transporting
packages. This can be seen on �gure 4.11.

40

Figure 4.8: Container Terminal Layouts

4.4.4 Cross World

This map is not based on any real life example but was simply created to test
the performance of the agents on a di�erent layout. By having stations in the
centre of the cross as well as at its tips, the TAs had a lot of work to do to
traverse each side of the map as there is no other choice but to return to the
centre of the cross before continuing to another tip. The map is shown on �gure
4.12.

41

Figure 4.9: Container Terminal

Figure 4.10: Warehouse layout

42

Figure 4.11: Warehouse grid

43

Figure 4.12: Cross world

44

Chapter 5

Experimental Design

5.1 Parameters

In the following experiments we altered parameters which control either agent
or environment behaviour. There are many possible parameters to tweak, we
list a sample of these below:

• Number of TAs.

• Number of packages per simulation.

• Arrival rates of packages.

• Maximum weight which the agents can carry.

• Stochastic parameters for the relevant protocols.

• Heuristic parameters for the A* routing algorithm.

Each of these parameters will a�ect the environment and in turn the perfor-
mance of the protocols. We will select several of the above parameters and
modify them while measuring the quality of the protocols using the criteria out-
lined in section 3.9. We will outline recommendations about which protocol to
use for which warehouse layout and with what parameters. This can be found
in chapter 7.

5.2 Experiments

Each experiment was performed on the three main maps of the project:

• Container Terminal

• Warehouse Grid

• Cross World

45

5.2.1 Agent Population

In this �rst experiment we altered the number of agents operating in one sim-
ulation run. We kept the number of packages constant - likewise for other
simulation parameters. Changing too many parameters per experiment would
make it di�cult to extract meaningful information from the results.

We repeated the simulations 10 times and took the average of all these runs so
as to minimise the e�ect of outliers on our results. For each batch of simulations,
we recorded the average waiting time for a package (the time the package spent
on the system) and plotted these results against a growing number of agents.
We then tested the same set up against di�erent network layouts to witness how
well protocols performed when faced with di�erent environments.

• We predict that with a low number of agents interacting with the world,
the average waiting time will be very big. This is due to the fact that
packages will be generated faster than agents can realistically transport
them from station to station.

• As we increase the agent population, we should see a great improvement
in the average waiting time - this is simply because the agents can now
transport packages faster than they are generated.

• However as we keep increasing agent population we should see a drop
in performance, especially on maps which a sparser node layout, since
agents will now impede each other due to there being so many agents
in the environment. They will block each other's paths and increase the
average waiting time for a package.

5.2.2 System Load

For this experiment we altered parameters which would simulate an increase
in system load. By this we mean the rate of package arrivals. The more of-
ten packages arrive, the more they will wait at their respective stations before
enough agents come and transport them.

• The natural prediction is that as the rate of arrivals increases, the average
waiting time obviously increase as well. We will see how this scales when
there are so many more packages than the agents can carry.

• In this situation we will expect protocols which are better at navigating
the maps to scale better as packages keep on arriving on the system at
faster rates.

5.2.3 Optimal Parameters

As many of the simulation characteristics can be altered by changing the param-
eters, it also makes sense to experiment with di�erent values in the parameter
space and see how these a�ect the overall performance of the agents or how the
environment responds to the changes.

46

We will test both the stochastic parameters for the SGGRP agent from sub-
section 4.2.2 and the heuristic parameters for the real-time A* agent.

• For the stochastic parameters, we predict that as the randomness of the
agent is increased, the better the agent will perform in sparse network
layouts like the container terminal map. However we also predict that if
the parameter which speci�es the upper bound for the randomness of the
agent is too high, then the agent will then perform poorly - as if the agent
is too random, although it will be able to move away from blocked areas,
it will also not navigate towards its goal e�ciently.

• We will also test the congestion heuristic parameters for the A* algorithm,
by modifying how much the congestion heuristic is �worth� - we will see
whether having the congestion heuristic improves are impedes the perfor-
mance of the agents.

47

Chapter 6

Results

For each parameter, we tested the agents on the Container Terminal, Warehouse
Grid and Cross World maps. We now give graphical representation of these
results. Please refer to chapter 7 for a detailed analysis of these graphs and the
recommendations of which parameters are best to use for which map tested.

6.1 Agent Population

We begin by testing each protocol with a varying amount of agents on each of
our three example maps, while keeping other simulation parameters constant.
Since we are showing average waiting time in these graphs, the higher the curve,
the worst the performance.

In the following graphs we ran simulations until the agents had transported
100 packages. We start with a low number of agents, increasing the agent
population by 5 agents each time. Each simulation was run for a total of 10
times and the average of the simulations was plotted. As is usual, we plotted
the standard error directly on the graphs to give the viewer an idea of the
signi�cance of the curves in relation to each other.

We use the following abbreviations when referring to the di�erent protocols
which we tested:

SGGRP Stochastic Greedy Geographic Routing Protocol

PA*RP Precomputed A* Routing Protocol

PA*RPAA Precomputed A* Routing Protocol with Agent Avoidance

RA*RPCH Real-time A* Routing Protocol with Congestion Heuristic

In the following tests, agents with the RA*RPCH used a weighting of 1.0 for
the congestion heuristic unless otherwise speci�ed. Agents with SGGRP used
stochastic parameters of 10% minimum random behaviour and 50% maximum
for when the machine learning is activated.

48

Best Average Waiting Time
Container Terminal Warehouse Grid Cross World

SGGRP 926.40 556.20 590.16
PA*RP 781.77 556.04 482.17
PA*RPAA 720.55 519.48 473.31
RA*RPCH 623.12 507.71 500.00

Optimal number of TAs
Container Terminal Warehouse Grid Cross World

SGGRP 25 45 40
PA*RP 20 45 35
PA*RPAA 40 55 30
RA*RPCH 35 30 35

Table 6.1: Best Performance

Figure 6.1: Number of agents increasing on Container Terminal map

49

Figure 6.2: Number of agents increasing on Warehouse Grid map

Figure 6.3: Number of agents increasing on Cross World map

50

One can clearly see that the performance with a low number of agents (each
simulation started with 5 agents initially) is very poor. This makes sense as
packages are generated a lot faster than the few agents can deal with them.
This is indeed in line with our prediction in chapter 5 - we predicted that initial
performance would be very poor and show a sharp increase as we increased
agent population. We also predicted that performance would get worst as more
and more agents are added to the simulation. For the Container Terminal map
on �gure 6.1, we do indeed notice this trend, with an initial drop in average
waiting time, followed by a gradual increase.

We observe di�erent behaviour on the di�erent maps, with the Warehouse
Grid map on �gure 6.2, showing very similar performance for each of the proto-
cols even though the number of agents is increasing. Notice that the Container
Terminal map has a more signi�cant increase as the number of agents increase,
this is similar but to a lesser extent on the Cross World map. The Warehouse
Grid map shows almost no increase, even when faced with 100 agents in the
environment, we suggest reasons for this behaviour in chapter 7.

6.2 System Load

To test how system load a�ects di�erent protocols we used an arrival rate from
0 (extremely fast) to 6 (fairly slow) for the generation of packages. More de-
tail on how we implemented arrival rate using the exponential distribution can
be found in subsection 3.4.3. We tested two protocols for this experiment,
RA*RPCH (real-time A*) and SGGRP (geographic) - on the two case-study
maps, Warehouse Grid and Container Terminal.

Each simulation was made to generate 100 packages with a population of
30 agents for each protocol. We repeated the simulations 100 times to get a
more accurate view of the results. Since we did not compare all protocols it was
feasible to repeat the simulations for so many iterations.

6.3 Optimal Parameters

6.3.1 Stochastic Thresholds

Figure 6.6 shows how agents with the SGGRP performed when the stochastic
parameters were altered. We changed the maximum percentage of allowable
random behaviour from 0% (no learning) to 90%. We observe a sharp dip from
0% random behaviour to around 20%, when the performance of the agents start
to worsen.

We plotted 3 di�erent agent populations: 25 agents, 65 agents and 85 agents.
This was to check that with a lower number of agents the machine learning
capabilities of the SGGR protocol would not often be activated. This is indeed
re�ected in the curves, with the 25 agent population (green) curve staying fairly
level regardless of the maximum percentage of random behaviour allowed.

We also note that although the maximum allowable percentage of random
behaviour might theoretically reach 90%, resulting in a very random agent, this

51

Figure 6.4: Increasing System Load on the Container Terminal

Figure 6.5: Increasing System Load on the Warehouse Grid

52

Number of Agents
85 65 25

Best Average Waiting Time 1080.45 975.54 952.53
Best Parameter to use 20% 20% 10%

Table 6.2: Best Stochastic Parameters

Figure 6.6: Comparison of Stochastic Parameters

behaviour would only occur if the agent has di�culty navigating the world and
is very blocked often. Once the agent is unblocked the percentage of allowable
random behaviour then decreases towards 10%, making the agent a lot more
deterministic in its choice of paths.

6.3.2 Congestion Heuristic

In �gure 6.7 we plotted a comparison of performance of the A* congestion
heuristic as agent population increased. These simulations were also performed
10 times but to a lower resolution. We did not deem it necessary to perform the
simulation in increments of 5 agents instead opting for 20. See chapter 7 for a
detailed explanation of the results.

6.4 Example of Bottleneck Detection

We now give an example of the extra functionality which our implementation
provides. By using a �lifetime� height map, we can record the locations which
the TAs have visited throughout the simulation. We can inspect these lifetime
maps after the simulation is over or at a late stage in the simulation and see

53

Figure 6.7: Comparison of congestion heuristic

where the agents have been the most. Peaks in the height map represent areas
which agents were most concentrated around, these are usually stations where
agents remained to load and unload packages. However if there are huge peaks
compared to the rest of the map, this usually signi�es that that particular area
is subject to a bottleneck during the simulations.

In �gure 6.8 we give an example of how this functionality is used in an
obvious case. By taking the Warehouse Grid map and modifying it so as to
cause a bottleneck between the two halves, we can see that where agents were
most congested was the middle bridge of the two halves - where stations are on
both sides.

54

Figure 6.8: Bottleneck on a modi�ed warehouse grid layout

55

Chapter 7

Evaluation

In this chapter we give a detailed analysis of the results obtained from chapter
6. We give recommendations of which protocols and what parameters to use to
obtain the best performance for the three maps which we tested as well as insight
into the behaviour of the protocols when faced with di�erent environments.

7.1 Recommendations

7.1.1 Container Terminal

Container terminals generally have more complex layouts than warehouses (�g-
ure 4.9). For this reason the A* protocols performed a lot better than the
SGGRP - the A* search guarantees an optimal path towards the goal whereas
SGGRP only attempts to get closer to the goal if it can, deviating every once
in a while due to its stochastic factor. The SGGRP therefore scales quite badly
compared to the other protocols on this map.

• Like with other potentially complex layouts, we recommend the A* pro-
tocols to be used with this map.

The best protocol was RA*RPCH, we believe this is due to it being able to
recalculate paths in real time rather than use precomputed paths like the other
A* protocols do. By recomputing their optimal path at each node, agents which
are blocked can easily �nd ways around these blocked paths.

Indeed, both precomputed A* protocols performed fairly similarly to each
other (see �gure 6.1). With the agent avoidance protocol performing slightly
better than its simpler cousin. We note however that SGGRP required 25
agents to achieve its best performance, and the simplest A* protocol PA*RP
only required 20 agents. In comparison RA*RPCH which achieved the best
results required 35 agents.

• We therefore recommend the use of RA*RPCH if the map is used with
perishable packages, as this protocol achieved the best performance but

56

Figure 7.1: Taxicab Geometry

with a slightly increased number of agents. If the cost of each extra agent
is too high, we also recommend the use of PA*RP (with only 20 agents for
best performance) if the user is willing to trade a greater average waiting
time for a reduced number of agents.

7.1.2 Warehouse Grid

The Warehouse Grid layout is simplest of all the maps that were tested in
this report (�gure 4.11). It is very densely populated with nodes and allows
maximum freedom for the agents to move around. In fact it is a kind of �taxicab�
geometry, as shown in �gure 7.1 where the red, blue and yellow paths each have
the same length and are each a shortest path.

This therefore means that the A* algorithm will usually choose the blue
path due to the diagonal distance being the shortest. On the other hand, the
geographic protocol will uniformly choose between the red, blue and yellow
paths. This will often result in the geographic protocol choosing di�erent (but
equally good) paths compared to the A* algorithm. In fact, it turns out that
SGGRP performs very similarly to PA*RP. We can see this in �gure 7.2 - apart
from the beginning of the curve where SGGRP performs marginally worst than
PA*RP, the other points are well within the error margin.

• For this map, it seems that using a basic protocol (SGGRP) does not
seriously impact the overall performance of the agents. SGGRP therefore
becomes a viable alternative in this sort of map if the designer does not
wish to spend too long developing complex interactions.

7.1.3 Cross World

Although this network topology (�gure 4.12) would be rarely used in practice,
it does show the performance of the agents when faced with di�erent kinds of
networks.

From �gure 6.3 we can see that the A* protocols once again perform the best
in this more complex map, however it is unclear from the results which of the
A* protocols scales better on this map due to the errors overlapping over each

57

Figure 7.2: Comparison of SGGR with precomputed A* routing

curve. There is a hint that agent avoidance does increase the performance of the
protocols as both protocols that used it seemed to perform better overall than
the simple precomputed A* search. However the di�erences are not so important
so the overall recommendation for this network is indeed to use agents with A*
search, whether with complex agent avoidance behaviour or not.

• In this map we would use a total of around 30 to 40 agents to achieve
the best performance - in fact the best performance was achieved by
RA*RPAA with 30 agents (see table 6.1).

7.1.4 System Load

We had predicted that increasing system load would of course increase average
waiting time and this was clearly shown in �gures 6.4 and 6.5. The higher
the arrival rate (0), the higher the average waiting time. As load decreases
(towards value of 6) so does average waiting time. This is because packages are
not generated as often and while the ones that were previously generated are
being transported, the arrival rate is such that not many packages are generated
and left waiting.

Since we kept the number of packages to be generated constant, the highest
average waiting time is the upper bound when using 100 packages. If we had
used a di�erent amount of packages we would see the same trend (the same
shape of the curve), but with a higher upper bound on the average waiting
time.

Comparing both the SGGRP and RA*RPCH allowed us to see how much
better A* protocols are at transporting packages in general. We note that like

58

previous results, the Warehouse Grid map shows a smaller gap between the two
protocols, whereas the more complex Container Terminal map has a wide gap
between the performance of the protocols.

We also note that on the Container Terminal map, as the arrivals are made
to be less frequent, the average waiting times for both protocols start to become
more and more similar (see �gure 6.5). We believe this is because if packages are
not generated rapidly, the SGGRP still manages to carry out the transportation
in a reasonable amount of time. However this points that the A* protocol is
much faster than SGGRP at transporting packages when the system load is very
high.

• We therefore recommend the use of RA*RPCH for all simulations in which
package arrivals are very frequent.

• As noted previously, SGGRP does scale pretty well on the Warehouse
Grid since the layout is very dense - however its performance on complex
maps with a high arrival rate is very poor.

7.1.5 Stochastic Parameters

From our predictions in chapter 5, we can indeed see that �gure 6.6 shows that
allowing the agents to behave randomly improves their overall performance.
This is due to the fact that their randomness allows them to behave like if they
had implemented the agent avoidance mechanisms. By abandoning the blocked
paths and choosing a random path instead, the agents can unblock their way
out of tricky situations.

However we also veri�ed that if the maximum percentage of random be-
haviour is too high (above 30 or 40%) then the agents starts to perform less
well due to the fact that they now behave too randomly to be e�cient at trans-
porting the packages. As mentioned in the previous chapter, a low population
of agents will not activate the machine learning capabilities of the SGGRP and
therefore increasing the stochastic parameters will not a�ect the performance
of the agents signi�cantly.

7.1.6 Congestion Heuristic

We can see from �gure 6.7 that our congestion heuristic for the A* search did
not signi�cantly a�ect the results, with parameter 0.0 (when congestion was
ignored) often performing better compared to when the heuristic was given
more weight.

We conclude that the way we implemented congestion, by recording where
agents were in the past and how fast the agents were going at that time (in-
creasing congestion), is not a realistic estimation of agent congestion. Conges-
tion should be calculated in the future as well as in the past, by this we mean
that our heuristic should take into account where the agents are going and plot
congestion accordingly, as it could be the case that a path does not have much
congestion, but many agents are concurrently converging on this path to make
it completely saturated at some later point.

59

Chapter 8

Conclusion

8.1 Limitations & Future Work

We have shown that using Agent Based Modelling is very much appropriate
for simulating autonomous transportation agents. The next step is a formal
justi�cation that all the components that were implemented during the length
of this project do indeed work as speci�ed. With this in mind we propose
several improvements to the current implementation as well as improved ways
of collecting results for analysis.

8.1.1 Further Realism - Fuel Constraints

Although this project took into account a range of realistic parameters (such as
speed being a�ected by weight carried), further parameters may be implemented
to reach a higher level of �delity with real world mobile transportation systems.
In this project we simpli�ed the simulation to ignore fuel constraints on the
transport agents. The agents would of course need some sort of fuel (electric or
otherwise) hence a viable way of recharging the agents during operation of the
warehouse must be found to further enhance the realism of the simulation.

Because of the way this project was designed, fuel costs and recharging
stations can be implemented by extending the current transport agent and node
objects in the Java code. A protocol taking into account fuel capacity as well as
fuel consumption parameters based on speed can be created, recharging nodes
can themselves be placed on the warehouse layout and will act like other station
nodes where the agent spends a certain amount of time on the node while it
recharges its fuel capacity.

Not only would this constraint add to the realism of the simulation, but
it would also allow the operators to �nd out the costs associated with agents
recharging periodically, as well as �nding the optimal location of these recharg-
ing stations to minimise congestion (which is already doable with the current
implementation), other statistics could also be collected such as how much fuel
is required, or how many times agents need to recharge when they are loaded
with a certain capacity. All these parameters would be of interest to increase

60

e�ciency of the simulation, hence �nd out a more accurate estimate of the total
costs of installing an autonomous transportation system.

8.1.2 Agent Failure

Increasing the amount of realism by taking into account fuel constraints would
also lead to the question of what an agent should do when its fuel runs out?
When designing protocols which take fuel into account we would of course expect
the agent to stop its current task and head for a recharging station before it
completely runs out of fuel. However, due to congestion or otherwise it will be
possible for the agent to fail to reach the recharging station before it runs out
of fuel.

The agent will therefore be stopped in the middle of a track. There are
two obvious ways of rescuing the failed agent. Firstly other nearby agents may
be given the task of pushing the immobile agent to a recharging station - they
would of course choose to help the agent or not depending on their current
job, speed and location. Another approach would be to create a special agent
that would be dispatched when a failure occurs, one or more of these special
repairing agents could enter the simulation depending on the number of failures
and refuel or repair the broken down agents.

8.1.3 Job System

Each of the protocols that were implemented start with random behaviour when
they are �rst spawned into the world. As mentioned previously, attempts at
creating a simple job requesting system were not met with satisfying results
- however, a more complex system could be implemented and its performance
measured against the current behaviour.

This more complex job system could include jobs which the agents give to
each other, by this we mean things like commanding other agents to help them
with a certain task. For example, agents could cooperate together if one agent
has discovered that a node has many packages waiting to be transported and
these packages are nearing the end of their TTL. Nearby agents responding to
the call could then converge on this node in an intelligent manner (so as not to
create so much congestion for outgoing agents) and attempt to transport the
packages before their TTL expires.

8.1.4 Hill-climbing Algorithms for Parameter Search

As we found out from our results, the protocols of interaction varied a lot
when the parameters of the simulation were altered. Although we performed
a more �brute-force� approach (testing parameters incrementally) to choosing
which parameters to use, given more time for the project, we would try to use
hill-climbing algorithms [8] to obtain more accurate results for our choice of
parameters. These algorithms do not randomly search through the parameter
space, but instead they pin-point areas where there is a hill (usually indicating

61

optimal parameters) and �climb� this hill with small changes to the parameters,
with the goal of obtaining an accurate result of the best parameter to use.

8.1.5 Extending GUI for easy map creation

We propose a �nal extension for this project, which would allow easier creation
of maps. A simple GUI could be created where objects such as stations, nodes
and roads/tracks could be inserted easily. The maps could then be read from
an external �le type such as XML and recreated for MASON to interpret and
simulate.

8.2 Closing Remarks

Overall, we believe that this project has been successful in reaching the goals
that we initially set out to do. The use of MASON was a very good decision early
in the project and proved very �exible to allow us to implement a wide range
of characteristics. We recommend that future projects involving autonomous
agents try the MASON framework, given how easy to use it proved to create
simple simulations and visualise them.

62

63

Bibliography

[1] Savant Automation. FAQ. http://www.agvsystems.com/faqs/q1.htm, 2010.

[2] Gottwald. Autonomous Agent Photo Archive.
http://www.gottwald.com/gottwald/site/gottwald/en/news/gallery/agv.html.

[3] N. J.; Raphael B. Hart, P. E.; Nilsson. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics SSC4, 1968.

[4] Andrew Ilachinski. Arti�cial War - Multiagent-Based Simulation of Com-
bat. World Scienti�c, 2004.

[5] Iris F. A. Vis and Ismael Harika. Comparison of vehicle types at an auto-
mated container terminal. OR Spectrum, 26:117�143, 2004.

[6] KIVA Systems. http://spectrum.ieee.org/robotics/robotics-software/three-
engineers-hundreds-of-robots-one-warehouse/3.

[7] Ling Qiu and Wen-Jing Hsu. Algorithms for Routing AGVs on a Mesh
Topology. Centre for Adv. Info. Sys., Schl. of Applied Science., Nanyang
Tech. Univ., Singapore, Oct 1999.

[8] Sean Luke. Essentials of Metaheuristics. 2009. available at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

[9] Rajeeva Lochana Moorthy. Cyclic deadlock prediction and avoidance for
zone-controlled agv system. 2001.

[10] Keith Sullivan Liviu Panait Sean Luke, Gabriel Catalin Balan. MASON.
http://cs.gmu.edu/ eclab/projects/mason/.

[11] Port Strategy. AGVs, what will it take?
http://www.portstrategy.com/features101/port-operations/planning-and-
design/automation/what-will-it-take, October 2005.

[12] Swisslog. Logistics Solution and Pharmacy Automation for Healthcare.
http://www.swisslog.com/index/hcs-index.htm.

[13] Christopher M. Wright. Dance of the Bots. APICS Magazine, October
2007.

64

Appendix A

Listing

A.1 A* Algorithm

We now list the full code in algorithms A.1, A.2, A.3 and A.4 for the Java
implementation used in this project. We mapped each AStarNode to a single
Node object in our simulations. Although this increases complexity, it makes it
easy for the designer to alter details in the A* algorithm without a�ecting the
simulation objects at all.

65

Algorithm A.1 A* Node

package warehouse;

public class AStarNode

{

private int ID;

private AStarNode parent;

public double fscore = 0;

public double gscore = 0;

public double hscore = 0;

public AStarNode(int ID)

{

this.parent = null;

this.ID = ID;

}

public AStarNode(int ID, AStarNode parent)

{

this.parent = parent;

this.ID = ID;

}

public int getID()

{

return ID;

}

public AStarNode getParent ()

{

return parent;

}

public void setParent(AStarNode parent)

{

this.parent = parent;

}

@Override public final boolean equals(Object obj)

{

if(this == obj) return true;

if(!(obj instanceof AStarNode)) return false;

return ((AStarNode) obj).getID() == this.ID;

}

@Override public int hashCode ()

{

return ID;

}

}

66

Algorithm A.2 A* Declaration

package warehouse;

public class AStar

{

// references for use in the methods

Warehouse world;

AStarNode start;

AStarNode goal;

public AStar(Warehouse world)

{

this.world = world;

}

public AStar(Warehouse world , AStarNode start , AStarNode goal)

{

this.world = world;

this.start = start;

this.goal = goal;

}

public void set(AStarNode start , AStarNode goal)

{

this.start = start;

this.goal = goal;

}

// work backwards from goal and create path

public LinkedList < AStarNode > reconstruct(AStarNode goal)

{

LinkedList < AStarNode > retList = new LinkedList < AStarNode >();

AStarNode current = goal;

while(current != null)

{

// add first so that we have an ordered list from start -> goal

retList.addFirst(current);

if(current.getParent () != null)

{

drawPath(current.getID(), current.getParent (). getID());

}

current = current.getParent ();

}

return retList;

}

public LinkedList < AStarNode > neighbours(Warehouse world ,

AStarNode current)

{

Node node = Node.getNode(current.getID(), world);

LinkedList < AStarNode > list = new LinkedList < AStarNode >();

if(node.Nneighbour != null) { list.add(new AStarNode(

node.Nneighbour.getID(), current)); }

if(node.Sneighbour != null) { list.add(new AStarNode(

node.Sneighbour.getID(), current)); }

if(node.Eneighbour != null) { list.add(new AStarNode(

node.Eneighbour.getID(), current)); }

if(node.Wneighbour != null) { list.add(new AStarNode(

node.Wneighbour.getID(), current)); }

return list;

}

}

67

Algorithm A.3 A* Search Implementation

// we'll use a LinkedList instead of ArrayList since we don't need positional

// access to the list (i.e. we only want the beginning/end)

// since we'll be adding a lot of elements to the list and iterating through

// it - LinkedList takes constant time for these operations whereas ArrayList

// would take linear time

public LinkedList < AStarNode > search ()

{

LinkedHashSet < AStarNode > openSet = new LinkedHashSet < AStarNode >();

LinkedHashSet < AStarNode > closedSet = new LinkedHashSet < AStarNode >();

// add start node to open -set

openSet.add(start);

start.gscore = 0;

start.hscore = h(start , goal);

start.fscore = start.hscore;

// while there are still nodes to check

while(openSet.size() > 0)

{

AStarNode current = findBest(openSet);

// stop if we have found the goal

if(current.equals(goal)) { return reconstruct(current); }

// remove the next choice from open set , add it to closed set

if(!openSet.remove(current)) { System.exit(-1); }

closedSet.add(current);

Iterator < AStarNode > it = neighbours(world , current). iterator ();

boolean tentative_is_better = false;

while(it.hasNext ())

{

AStarNode neighbour = it.next ();

if(closedSet.contains(neighbour))

{

continue;

}

double tentative_g_score = g(current) + 1;

if(!openSet.contains(neighbour))

{

openSet.add(neighbour);

tentative_is_better = true;

}

else if(tentative_g_score < g(neighbour))

{

tentative_is_better = true;

}

else tentative_is_better = false;

if(tentative_is_better)

{

neighbour.setParent(current);

neighbour.gscore = tentative_g_score;

neighbour.hscore = h(neighbour , goal);

neighbour.fscore = neighbour.gscore + neighbour.hscore;

}

}

}

// failed to find goal

return null;

}

68

Algorithm A.4 A* Methods

// convenience method

public LinkedList < Node > getNodePath ()

{

LinkedList < Node > path = new LinkedList < Node >();

Iterator < AStarNode > it = search (). iterator ();

while(it.hasNext ())

{

path.add(Node.getNode(it.next (). getID(), world));

}

return path;

}

// convenience method

public LinkedList < Node > search(Node current , Node goal)

{

set(new AStarNode(current.getID ()), new AStarNode(goal.getID()));

return getNodePath ();

}

public AStarNode findBest(LinkedHashSet < AStarNode > set)

{

Iterator < AStarNode > it = set.iterator ();

AStarNode min = it.next ();

AStarNode current = null;

while(it.hasNext ())

{

current = it.next ();

if(current.fscore < min.fscore)

{

min = current;

}

}

return min;

}

// distance from start node to current node along generated path , there is

// always a distance of 1 unit between child and parent node

public double g(AStarNode curr)

{

AStarNode current = curr;

int count = 0;

while(current != null)

{

count ++;

current = current.getParent ();

}

// pre -decrement count as distance between node and itself is 0

return --count;

}

// distance between two nodes

public double h(AStarNode start , AStarNode goal)

{

return Node.getNodePosition(start.getID(), world). distance(

Node.getNodePosition(goal.getID(), world));

}

69

Appendix B

Extra Material

B.1 Square Map

The map was used with the �rst protocol that was implemented as a debugging
environment (�gure B.1).

B.2 Small Grid Map

This map was used for testing the A* algorithm since it is more complex than
the square map. It was also �rst used to test the dispatcher agent (�gure B.2).

B.3 Detailed Comparison of A* Protocols

70

Figure B.1: Square

Figure B.2: Small Grid

71

72

	Abstract
	Acknowledgements
	Introduction
	Context
	Motivation
	Project aim

	Contributions
	Report Structure

	Background
	Agent Based Modelling
	Autonomous Agent
	Key Steps of ABM
	MASON
	Grids
	Networks
	Visualisations

	AGV
	Gottwald Automation
	KIVA Systems
	Specification
	Traffic Management
	Design Issues

	Further Notes
	A* Algorithm

	Specification and Design
	Abstraction
	Bi-directional Rail Network
	General Specification
	Scheduling
	Stepping the Schedule
	Speed
	Stations and Packages
	Graphics

	Maps
	Nodes
	Stations
	Dispatcher

	Packages
	Transport Agent Protocol
	Analysis
	Visual Design
	Summary

	Implementation
	Extending the SimState
	Protocols
	Initial Behaviour
	Stochastic Greedy Geographic Routing Protocol
	Machine learning

	Precomputed A* Pathfinding Protocol
	Path-Matrix

	Agent Avoidance
	Real-time A * pathfinding
	Heuristics

	Overriding

	Visualisation
	Console Runs
	2D Visualisation
	Visual Guide

	3D Visualisation
	Speed of the Simulation

	Map Examples
	Debugging Maps
	Container Terminal
	Warehouse Grid
	Cross World

	Experimental Design
	Parameters
	Experiments
	Agent Population
	System Load
	Optimal Parameters

	Results
	Agent Population
	System Load
	Optimal Parameters
	Stochastic Thresholds
	Congestion Heuristic

	Example of Bottleneck Detection

	Evaluation
	Recommendations
	Container Terminal
	Warehouse Grid
	Cross World
	System Load
	Stochastic Parameters
	Congestion Heuristic

	Conclusion
	Limitations & Future Work
	Further Realism - Fuel Constraints
	Agent Failure
	Job System
	Hill-climbing Algorithms for Parameter Search
	Extending GUI for easy map creation

	Closing Remarks

	Listing
	A* Algorithm

	Extra Material
	Square Map
	Small Grid Map
	Detailed Comparison of A* Protocols

