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Abstract

This report describes our attempt to implement security-aware cache targeting
field-programmable gate array (FPGA) technology which can be customized to
meet various requirements. Our design, based on an architecture resilient to
side channel cache timing attacks, involves a range of new address decoders
to support efficient cache index re-mapping. Various implementations of our
security-aware cache have been developed for the Leon 3 processor, and their
performance and resource usage are evaluated.

The main contributions are:

• A customizable security-aware cache optimized for FPGA technology, based
on a range of new address decoders that utilize remapping register file for
index remapping (Chapter 3).

• Implementation of our security-aware cache on Xilinx FPGAs, with inter-
face to the Leon-3 soft-processor (Chapter 4).

• Evaluation of our approach, showing the resource usage and performance
for various implementations (Chapter 5).

We also prepared a guide on how to use security-aware cache (Appendix A).
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Chapter 1

Introduction

This report describes a security-aware cache targeting field-programmable gate
array (FPGA) technology which can be customized to meet various require-
ments. The design, based on an architecture resilient to side channel cache
timing attacks, involves a range of new address decoders to support efficient
cache index re-mapping. Various implementations of our security-aware cache
have been developed for the Leon 3 processor, and their performance and re-
source usage are evaluated.

The main contributions are:

• A customizable security-aware cache optimized for FPGA technology, based
on a range of new address decoders that utilize remapping register file for
index remapping (Chapter 3).

• Implementation of our security-aware cache on Xilinx FPGAs, with inter-
face to the Leon-3 soft-processor (Chapter 4).

• Evaluation of our approach, showing the resource usage and performance
for various implementations (Chapter 5).

Motivation

Modern processors and their components suffer from many physical security
flaws. The flaws vary in the potential risk that they pose and the difficulty
in which they can be exploited by the attacker. Side channel cache attacks
are difficult to exploit, but can lead to potentially serious information leakage
such as revealing cryptographic keys. People have been aware of cache side-
channel attacks for a while. A number of methods preventing these attacks have
been proposed, like disabling cache, constant timing programming or part cache
partitioning [9]. The problem with the above methods of attack prevention is
that they often degrade speed and power efficiency. A new way of countering the
problem was proposed by Wang and Lee without the drawback of performance
degradation [23]. Their cache architecture is not only security-aware, but also
has a performance advantage over the traditional cache architecture in the form
of increased hit rate.

However, the most novel aspect of the security-aware cache, the new address
decoder, is the only part of the design that cannot not be directly ported onto
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Chapter 1. Introduction

FPGA. It has been designed using a transistor-level description, targeting im-
plementation in application-specific integrated circuit (ASIC) technology. This
means that a trivial look-up-tables (LUT) and flip flops decoders implementation
is impossible without the loss of the benefits it poses over traditional decoders.
That makes the unmodified security-aware cache in it present form an unsuit-
able alternative to the ordinary cache for most of the soft processors and many
other devices that are based on the field programmable hardware. According
to Wang and Lee the security-aware cache is an improvement over traditional
cache in virtually every aspect; at the cost of slight area increase [23], as such it
seemed reasonable to investigate the possibility of porting the architecture onto
block ram (BRAM) and LUT based FPGA devices.

Challenges

At the birth of the idea of porting the security-aware cache onto FPGAs we were
aware that an resource overhead was going to be present, and that it would be
noticeable. The main reason behind this is the fact that the security-aware
cache introduces extra logic compared to an ordinary cache. Although this is
also the case with the ASIC security-aware cache, the extent of the overhead
has to be more significant on FPGA. FPGAs building fabric is specialized and
coarse-grained in nature opposed to the fine-grained and generic nature of the
ASIC.

An example relevant to our problem would be the implementation of a tag
array with a non trivial address decoder on FPGA. It is very straightforward and
consists of a simple BRAM instantiation. The problem is, that the BRAM file
has a built in address decoder that cannot be modified to implement a different
decoding scheme, which security-aware cache is using. One solution would be
to wrap the BRAM file with extra logic to implement a tag array with a more
sophisticated decoding scheme, but this can clearly cause redundancy. Although
we do not need two decoders, we have to use both of them. In ASIC we can
easily deal with this, as everything is implemented using transistors, while on
FPGA we can only minimize it.

Furthermore a number of different problems raised while working on cache
implementation. The solutions we came up with although very often simple
in concept were far more difficult to implement than expected. Not due to
complexity of the design, but due to the long hardware design-debug cycle. The
challenges that appeared during the design process:

• High resource demand.

• Increased critical path.

The Modified Security-Aware Cache

We present a number of possible modifications of the security-aware cache ar-
chitecture that make it suitable for the FPGA based devices, two of which are
solutions to the challenges mentioned before. The different ports of the security-
aware cache architecture are dependent on the target platform as well as the
goal performance levels (discussed in detail Chapter 5). There are three different
aspects of the design.
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Chapter 1. Introduction

• Security-aware cache base on unregistered CAM memory.

• L-associative security-aware cache. Answer to the high resource demand.

• Pipelined security-aware cache. Answer to increased critical path.

The security-aware cache address decoder is based on generic or vendor pro-
vided and unregistered single cycle write content addressable address memory
(CAM). The memory is part of the cache control logic therefore read/hit bits
are generated in one cycle and thus it is referred as a zero cycle. The cache
performance is highly dependent on the CAM memory used, the most generic
version being characterized by portability and ease of modification of existing
designs at the expense of high resource cost and increased critical path. The
high resource cost is especially prominent if a generic flip flop/LUT based CAM
is used.

Cache based solely on the first design with generic CAM is characterized
by high resource usage, as such the next logical step was an attempt to lower
it. The solution to the first problem is based on the idea of associative cache
architecture, but applied to the address decoder. It uses fraction of the resources
used by the ordinary (FPGA) security-aware cache, and can be implemented
using same CAM memories as the latter. It suffers from the problem of increased
critical path as the previous design. A number of problems appeared with
implementation of this type of cache. We came up with two different methods
of implementing the cache. One efficient but more difficult to implement based
on BRAM memory and one based on flip flops.

Although we have found a solution to the resource problem, we still faced
the problem of increased critical path. To counter the increased critical path
problem, pipelined design was approached. The idea can be applied both to the
associative and ordinary security-aware cache, depending on the users perfor-
mance and resource utilization goals. It has the advantage of offering shorter
critical path, and therefore higher design operating frequency, at the cost of
more complicated state machine as well as decreased portability. The decreased
portability is a result of cache being more difficult to implement and having
different behaviour than traditional FPGA caches. A similar design has been
approached (independently) by Yiannacouras and Rose in the context of fully
associative cache (FA) [24].

Potential Benefactors

Our modified caches are not solutions to all the problems that modern soft
processors designers face. We offer an alternative to fully associative caches,
and we offer an alternative solution to current hardware cache timing attack
prevention mechanisms.

Most soft processors have a very simple memory hierarchy and therefore are
far more vulnerable to the cache timing attacks then complicated x86 or Power
cores. The soft processors are also becoming more commonly used, especially
in the cryptographic and networking sector. New systems based on massively
simple parallel cores are being developed, also based on simple memory hierar-
chy. There are a number of DSL routers that use simple soft processor cores.
The problem of cache timing attack can become a serious issue. Currently the
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Chapter 1. Introduction

attacks were only successfully employed as part of research projects, but we be-
lieve that it is a question of a year or two when they will become a real threat.
It is even possible that they have already been used, but they not been traced...

Contributions

Summary of contributions:

• A customizable security-aware cache optimized for FPGA technology, based
on a range of new address decoders that utilize remapping register file for
index remapping (Chapter 3). We identified a number of potential prob-
lems with security-aware cache implementation and we propose different
techniques how to counter them. We base our approach on abstracted
CAM properties.

• Implementation of our security-aware cache on Xilinx FPGAs, with in-
terface to the Leon-3 soft-processor (Chapter 4). Although we did not
manage to implement all of the desired features we elaborate and explain
on how we could do it (and plan to do it in future).

• Evaluation of our approach, showing the resource usage and performance
for various implementations (Chapter 5). We evaluate different techniques
proposed in Chapter 3.

• Guide: How to use Security-aware cache, we present a guide on how to use
security-aware cache on FPGA chips. We identified a number of poten-
tial problems with security-aware cache while working on Leon 3 and we
believe that this guide can be of big help to any potential user (Appendix
A).
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Chapter 2

Background

This chapter contains basic background information on which this thesis was
based. Sections 2.1 - 2.3 contain basic information on soft processors and FP-
GAs. Sections 2.4 - 2.6 briefly describe different types of side channel attacks
and present in detail the principles of cache side channel timing attacks. Section
2.7 is the overview of security aware cache.

2.1 FPGA Design

In the 1960’s-1970’s software technology started to rapidly change, with the
development of first general-purpose computer programming languages like C
or Fortran and their associate tools. Thanks to the level of abstraction offered
by the new tools, programs became more complicated, consisting of sequences
of instructions incomprehensible for the human mind both, due to their ever-
increasing size and complexity; software development became relatively inde-
pendent of hardware. The process reached its pinnacle with the development of
JAVA in the 1990’s. The new language made the underlying computer hardware
so abstract to the programmers that the knowledge of computer architecture be-
came obsolete for majority of users. At the same time, another technological
revolution was happening, the development of reconfigurable hardware and logic
synthesizers.

The idea of reconfigurable hardware dates back to the very pioneers of com-
puter engineering. Nevertheless it was not till the 1990’s when first FPGAs and
complex programmable logic device (CPLD) devices appeared. At the very be-
ginning they could not compete with ASIC technology, due to both performance
and cost issues. However with the development of supporting software and bet-
ter hardware at the beginning of the 21st century, FPGA became commercially
feasible. They offered several advantages over ASIC based technologies (listed
in table Table 2.1).
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Chapter 2. Background

Table 2.1: Design Flow Comparison

ASIC Reconfigurable Hardware

Full custom compatibility Short time to market
Lower unit costs No upfront NRE (non recurring

expenses)
Smaller form factor Simpler design cycle
Higher clock cycle Simpler design cycle

More predictable project cycle
Programmability

One of the main reasons behind the success of reconfigurable hardware was
the development of logic synthesis tools. Along with several other hardware
synthesis tools, they require substantial computing power not available till the
late 1990’s. Without them, hardware design was extremely complicated and
time consuming due to the design mapping process. In exactly the same way
as a program can be written in a language like C and ran across a range of
hardware platforms we can design a circuit and implement it via logic synthesis
on a number of different semiconductor devices. The software code is analogical
to hardware description code, logic synthesis and then placing and routing a
design onto hardware design is analogical to code being compiled. Depending
on the target architecture we use a different compiler - similarly, depending on
the target semiconductor device, we use different logic synthesis tools. This
gives us the flexibility of porting one hardware design onto a range of different
platforms, given that logic synthesis tools are available.

2.2 Efficient and portable FPGA design

Any device that is designed for ASIC can in principle, be implemented on any
FPGA device. The challenge is to make the resulting FPGA circuit efficient.
The circuit needs to make effective use of FPGA embedded resources such as
LUTs, multipliers, flip flops, BRAMs, and debug support units (DSU).

The building blocks of FPGAs differ from ASIC; furthermore, FPGAs differ
in their embedded resources among vendors and within their respective chip
families. This is why the key to efficient design is to abstract the circuit ar-
chitecture away from the mapping. The architecture should focus on utilizing
generic FPGA features, and the mapping should focus on implementing the
components efficiently.

For example in the Figure 2.1 from the architecture point of view we have
a memory management unit connected to a 32-bit wide RAM array. On a
particular device it might be best to implement it using two 16-bit wide BRAMs.
If the mapping is separated from the architecture, we could quickly port the
design onto a FPGA device that could only implement the ram as 4 8-bit wide
BRAMs, by simply adding mapping constraints for the new device. The example
is over simplistic but it illustrates the concepts underlying behind architecture
and mapping separation.
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Chapter 2. Background

Table 2.2: Design Flow Comparison.

[c] ASIC Reconfigurable Hardware

The designer has to take into
account the physical constraints
of the device. For example the
high leakage current in transis-
tors fabricated in the 90nm pro-
cess. [21]

The designer has to take into ac-
count the architecture of the tar-
get device, not its physical imple-
mentation.

Requires careful floor planning
which can take months.

Hardware synthesis takes up to
two or three days for biggest
chips with high resource usage
designs.

FPGA devices vary in the degree to which they are portable. For example
Leon 3 has been implemented using a range of devices from ASIC to CPLD,
while some, like Xilinx MicroBlaze / PicoBlaze, target specific devices, as they
make heavy use of vendor hardware libraries. The portability/performance ra-
tio is an important aspect of FPGA design, which always has to be taken into
account. Vendor/chip specific hardware libraries can provide substantially ded-
icated circuits like faster CAM memories or arithmetic logical units (ALU). For
a truly portable design this has to be separated from the architecture.

Figure 2.1: Architecture of circuit and its mapping.

2.2.1 CAM memories and FPGAs

There are a number of techniques available to implement a CAM on an FPGA.
The most important fact about FPGA CAM circuits is that they are expensive
resource wise. They can be implemented in a number of different what changes
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Chapter 2. Background

their various properties. We approach several different CAM designs:

• Generic multi-cycle designs.

• Fast vendor specific designs.

• Very fast and area efficient designs based on LUT requiring of chip software
control.

• Resource expensive generic single-cycle register file based CAMs.

When discussing various designing and referring to CAMs we will charac-
terize them by abstracted properties. This has to be done as new CAM designs
are being approached by various research groups around the world and we want
our design to make use of whatever best tools are available across different
platforms.

FPGA CAM implementation properties:

• Control: On-chip line update or Off-chip line update.

• Main resources: LUT, BRAM or SLR.

• Read/write mode (if read/write is multi-cycle): Exclusive read/write or
Concurrent read/write.

• Read/write mode (separate read/write port): Exclusive read/write or Con-
current read/write.

• Write cycles: Multi-cycle write or Single-cycle write.

• Read cycles: Multi-cycle read or Single-cycle read.

• Registered outputs: Outputs are registered, Outputs are not registered or
Outputs are optionally registered(specified in design stage).

• Line match support: Single match support or Multiple match support.

2.3 Introduction to Soft processors

Soft processors are processors that can be implemented using different Logic
synthesis tools. They can be implemented using FPGA, ASIC, CPLD or any
device [11]. They are designed using one of the hardware description language
(HDL).In almost all cases they follow the previously described method of design
where architecture and mapping are separated. Soft processors have few very
important features:

• Parametrizable - A soft processor can be instantiated with different param-
eters in the same manner objects are instantiated with different variables.
The possible parameters are cache size, cache architecture(disabling differ-
ent levels), enabling/disabling extra cores like PCI controller or extending
the instruction set.

• Dependable on target device - Although soft processors can be and usually
are portable, there are some physical constraints that can limit that
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Chapter 2. Background

– It is impossible to run a large Java program on a 64 MB ram system,
and in the same way a huge circuit cannot be mapped onto a small
device.

– Some processors can become very slow due to physical properties of
a device. A soft processor might require certain amount of fast on-
board memory to implement cache or have certain timing constraints
that cannot be satisfied by the target platform.

It is very common for soft processors to be designed for one range of chips
or even a specific semiconductor device. Different LUT/multipliers size
might mean that a soft processor might work well on one FPGA while
on other it might waste a resources and on a CPLD it might not even be
possible to implement it, because of the way the ALU was designed to
exploit hardware based multipliers.

• Modular - Vast majority of soft processors are developed using intellectual
property cores (IP cores). Looking at the Figure 2.2. describing soft
processors data path we can see how this can potentially benefit us (The
diagram is based on part of the MicroBlaze Processor Block Diagram [1]).
For example in certain applications it would be wise to disable the divider
while in other the potentially saved resources would not balance out the
lowered instructions per cycle (IPC).

2.3.1 Difference between hard and soft processors

There are number of differences between soft and hard processors. A soft pro-
cessor can, in theory, be implemented on any device which has a associated
logic synthesizer, whereas hard processor is device specific and completely un-
portable; or the cost is unreasonable high. The dependability of soft processor
performance on the target device is crucial to the understanding of the idea of a
soft processor. Soft processors are not always implemented using NAND gates.
If our target device is FPGA, the micro blocks one would use to implement a
processor would consist of LUT, multipliers and flip flops. There are a number
of ways of implementing a multiplier on an FPGA and each is a compromise
of speed, power efficiency and resource usage. Some soft processors are easily
portable (Suns OpenSPARC have been implemented using a range of devices
from ASIC to CPLDs [2]), while some (like Xilinx Microblaze/Picoblze) can be
only implemented using a small range of chips.

The fact the soft processors are clocked in the range of MHz instead of
GHz and consist of far smaller number of logical gates than hard processors
means that in a large number of cases they are going to be orders of magnitude
slower than their hard counterparts. That is an obvious disadvantage, which
is countered by customizing the processors to better fit the goal performance
levels. A modern x86 CPU comes with a huge set of instructions, however
within one application usually only a very limited subset is used. In the case of
a soft processor, a user can customize so that they would not be implemented on
the semiconductor device. This saves hardware that can be used for something
else, for example including an extra ALU or increasing the precision of floating
point units, which might be of greater benefit to the potential user. Overall,
soft processors counter the speed disadvantage by task specific customization.
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Chapter 2. Background

By making more efficient use of hardware, we might be able to add vector
integer instructions or implement a faster integer multiplier. One can even
design custom instructions depending on a target application [16].

Figure 2.2: An overview of a modular soft processor architecture.

The data-paths relatively slow speed compared to memory access time has
a huge impact on soft processor architecture. A memory miss does not take
hundreds of cycles. This means that elaborate multilevel cache system is not
a necessity. This property has to be taken into account when designing a soft
processor for an FPGA or a CPLD device.

Soft processors are far more suitable for low scale systems, where the cost
of developing an ASIC chip would be outweigh the potential gains. The cost
of producing a single FPGA chip is much higher, but designing an efficient
ASIC chips takes months if not years, where else designing a soft processors can
take days (given that one is only customizing a ready design). Even a up to
bottom full scale soft processor design is less time consuming, mainly due to
lower prototyping cost.

Table 2.3: Differences between hard and soft processors.

Soft processors Hard processors

1. Soft processors can be easily ported
onto any semiconductor device if there
exists a target logic synthesizer.

Designed for a specific device, and
usually requires substantial amount of
work to be ported onto any other one.

2. Clocked in MHz Clocked in GHz
3. The clock-rate difference between

data-path and memory is not as promi-
nent

Data path is orders of magnitude faster
than memory

4. Short design cycle Long design cycle
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2.3.2 Soft processors automatic generation and optimiza-
tion

The advantage of soft processors is their potential for customization. Soft
processors can be customized to match specific performance/power/area usage
goals. On the contrary modern general purpose processors are used for a wide
range of applications, therefore they cannot be optimized for a small domain of
applications. Two problems have to be tackled in order to efficiently use soft
processor technology.

2.3.3 How to quickly and efficiently generate soft proces-
sors?

After choosing the processor, target device, performance, energy usage, func-
tionality and area usage levels the user has to optimize the processor to meet
the specified goal. A number of ways have been proposed to solve this problem.
Assuming that average configuration space of a processor lays in the range of
thousand of different settings, each requiring many multi-hour simulations, it is
infeasible perform a full search on the hypothesis space. A number of approaches
have been proposed to solve this problem. From the very simple one of using
”common sense” up to more elaborate ones like based on the Design of Experi-
ments Paradigm proposed by Sheldon, Vahidand and Lonardi [12]. What they
offer us is a way of finding a processor setting matching the goal performance
level, in a reasonable time. According to Sheldon, Vahidand and Lonardi they
were able to find a 3x-6x faster processor compared to other approaches in a
smaller number of simulations.

2.3.4 How to optimize the soft processor?

During the processor generation process, a user has to use a number of bench-
marks and simulations in order to optimize the processor by investigating the
performance impact of various parameters. Different power usage estimation
strategies such as a methodology based on instruction level energy profiling
[12], performance estimations and verification tools have to be used. For ex-
ample a system has been proposed which by identifies critical code of a target
application and extend the processor instruction set with custom ones which
might vastly improve performance (speed-ups between 1.7 and 6.6 times, code-
size reductions between 6% and 72%, and area costs ranging between 12 and
256 adders for maximum speed-up)[16]. Ideally all of that should be integrated
within the processor generation software package. If the software available is
both efficient and accurate it means that the user is going to be able to better
fit the processor within the required performance goal.

2.3.5 Soft processors caches

Most caches can be divided into two parts. First is the cache control unit
which can be integrated with the memory management unit (MMU). The cache
state machine for Leon 3 is presented as an example in Figure 2.3. The second
building block is usually a memory array. On FPGA this would be a BRAM
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file. The scheme is very similar to ASIC implementation, with the difference
that the resources are not transistors but BRAM and LUTs.

Figure 2.3: Leon 3 cache state machine.
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Due to the high cost of CAM memory fully associative caches are very rarely
used. The LUT, BRAM and flip flop cost can be so high that for even a small
cache it would have to use resources of an entire chip [3][4]. That is why nearly
all designs only support direct mapped and 1, 2 or maybe 4 set associative
designs.

The fully associative cache is very likely to increase the designs critical path
and power usage because of vast matching circuit. In order to keep the designs
operating frequency and/or power usage at reasonable level this might enforce
the use of pipelined cache or CAM. For example with a tag matching stage, and
tag/validation/context access stage. There are a lot of different approaches to
the topic depending on CAM size and performance goals [24][20][23].
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2.4 Brief overview of Side channel cache attacks

There are a number of ways of breaking a cryptographic system, we present two
of them.

• Brute force attack, is an attack which tries to force a security mechanism
by traversing a search space of possible keys.

• Side channel attack, is an attack trying to utilize information based on
physical traits of a target system. This can be anything from acoustic,
thermal or timing properties.

Modern processors and their components suffer from many physical security
flaws. The flaws vary in the potential risk that they pose and the difficulty in
which they can be exploited by the attacker. Side channel cache attacks cache
are relatively difficult to exploit, but can lead to serious key/passwords thefts.
Below are listed different types of attacks, as mentioned by Isuru [14].

• Timing attacks - Based on the timing difference between certain cache
access patterns executed at the target system. The technical details of
the attacks are out of scope of this paper, only the understanding of the
simplified concept presented in the next section is required.

• Fault Attack - Information gathered by causing exceptions and faults on
an attacked device can help the attacker to breach the system’s security.

• Power Analysis attacks - Attack based on the information gathered by
analysing the power consumption of the target device.

• Visible light attack - Monitoring systems have been proven to be capable
of ”seeing” through walls. This can possibly allow the attacker to see the
screen output despite being separated by a wall or any other obstacle.

• EM attacks - Exploit the electromagnetic radiation spectrum to attack a
processor. Different wavelengths than visible light can be used to ”see”
what is happening within a processor or what information is transferred
through a cable (for example Ethernet cable connecting different parts of
a system).

• Cache based attacks - Attacks which monitor data that is being moved in
and out of a processors cache. There are two types of cache based attacks.
The first one is trace driven attack which makes use of cache hits and
misses. The second one is a cache timing attack which makes use of the
fact that cache misses and hits are handled in different time.

There was a notable case of timing attack (non cache) TENEX OS pass-
word checking mechanism being broken using the fact that it compared one
character at a time. It terminated immediately if a checked character did not
match against the compared password. This enabled the attacked to determine
a stopping point, where all the characters before where contained within the
password. This allowed for a speed up of the brute force attack thousand-fold
[9]. In the same manner a cache timing attack can give a clue to the attacker
on secret key values.
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The main difference between timing, fault and cache based and the rest of
the listed attacks lies in the fact that timing attack can be performed remotely
while the latter require some kind of physical monitoring system. This report
is mainly concerned with the cache based attacks.

2.5 Cache Side Channel Timing Attack

The relevant characteristic of the cache side channel attack is that it exploits the
predictability of cache access patterns. Knowing the cache architecture and the
replacement policy of the target processor over a number of processor cycles, an
attacker can create a channel that can be used to steal confidential data. There
are many examples of various side channel attacks, the most prominent being
cache side-channel timing attack against AES. [9][10][18]

We can imagine the timing attack as probing a cipher machine. We know the
machine mechanism, but we do not know its cipher key (used to code messages).
The key cannot be recovered by comparing inputs and outputs (in a reasonable
amount of time) due to sophisticated coding mechanism. What we can do is
attack the cipher machine by using a timing attack. By comparing the amount
o time necessary to prepare a batch of coded messages we might be able to
verify small bits of the cipher key. After comparing large number of messages
we might be able to verify the full key (or narrow down the search space and
prepare a brute force attack). This is essentially a timing attack. Knowing the
structure of the machine, the timing attack uses the information leakage in the
form of variation of time necessary to generate output.

2.6 Countermeasures for Cache based Attacks

As people have been aware of the cache side-channel attacks for a while, there
is extensive literature covering this topic. A number of countermeasures have
been proposed, some of which are listed below.

• Disabling Cache, The most obvious solution to the cache based attacks.
It has a serious drawback of processor performance degradation. Very
inefficient (slow).

• Constant Timing programming, Extra instructions which hide timing from
the attacker are added to the applications code. This method of attack
prevention can slow down the application significantly, and usually only
forces the attacker to use a larger number of samples to extract the desired
information.

• Partitioning Cache, This method works by partitioning the cache, it is
designed for a multi-threaded system. By allowing certain threads to
access only a subset of cache, the attacker is denied the possibility to steal
the information held by another user (thread) using a timing or trace
driven attack [19].

• Security-aware cache, A way of countering the side-channel cache timing
attack has been proposed by Wang and Lee at Princeton University [23].
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It is reviewed in detail in the next section. It is based on the idea of
dynamic cache partitioning.

Table 2.4: Comparison of cache timing attack countermeasures.

Disabling Cache Constant Timing pro-
gramming

Partitioning cache Security-aware cache

Degrades Performance Degrades Performance
in case when security
features are enabled

Degrades overall per-
formance, compared to
standard cache archi-
tectures.

Improves overall de-
sign performance,
when compared to
standard architectures

Lowers resource cost Cost the same Increases resource cost Increases resource cost
Hardware based Software based Hardware based Hardware based

2.7 Security-aware Cache Architecture Overview

Security-aware cache is essentially a direct mapped cache with a more elaborate
address decoder and a new replacement algorithm named security-aware cache
replacement algorithm (SecRAND). According to Wang and Lee the security-
aware cache nearly matches the direct mapped cache (DM cache) address decoder
delay; the difference between the two being negligible; 64 KB 0.192ns against
0.197ns, 1 KB 0.149ns against 0.151ns [23]. Furthermore they have shown that
the new cache has less conflict misses than a DM cache of a larger size, and
almost as few as comparable size fully associative cache. Due to the new decoder
the new cache occupies a slightly larger area than DM cache. The overhead
depends on the security-aware cache parameters, but should lie around the 5%
overhead mark compared to same size DM cache. The security-aware cache is
summarized in Table 2.4.

Figure 2.4: Security aware cache. Diagram taken from Wang and Lee [23].
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2.7.1 Security-aware cache address decoder

The cache address decoder dynamically partitions the cache. A correct grouping
of the processes protects them from cache based attacks. A group of processes
that do not ”trust” each other should be assigned a different context remapping
table id RMT ID. Wang and Lee described a way of implementing a new hard-
ware decoder using traditional transistor representation. The advantage of the
design lies in dynamic grouping, which does not cause a performance degrada-
tion (given that the partitioning mechanism is fast). The concept is similar to
that of partitioned cache, but has the advantage of better memory allocation
between different thread groups.

Figure 2.5: Comparing ASIC static ram address decoder circuits. Taken from
Wang and Lee [23].

2.7.2 Dynamic cache line remapping

Instead of directly mapping cache indices to tag/data arrays, the lines in the
security-aware cache are being dynamically remapped using line number regis-
ters called LN registers. Every cache line has an assigned remapping register
that is used to access the appropriate cache line in the address decoding stage
(the value it stores is the index of the line). The line accessed is determined by
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Figure 2.6: Thread with context ID = 1 accessing security-aware cache line with
index = 2312.

the index stored in the remapping registers. For example in the case where reg-
ister at line number 778 stores index 2312, index of 2312 would cause an access
to line = 778. A simplified view of the security-aware cache and an access to
line 778 indexed 2312 is presented in Figure 2.6.

The full concept can be clearly seen in Figure 2.4. Simple remapping would
neither increase the hit rate nor decrease the decoder latency as an associative
search has to be performed on the registers before accessing memory line. This
is why the remapping registers can be extended to hold a longer index expanded
by k bits. This effectively extends the cache index range, and can significantly
lower the miss rate [23]. Any register can hold an arbitrary index, although no
two registers can hold the same index. There are n remapping registers, each
pointing to one tag and data cache line. The cache has an extended address
space of n+k, although its physical size is determined by n only.

2.7.3 Line context field

A line context field (we will refer to as context ID or simply ID) is associated
with every line, so that a process/thread address space can be separated from
the rest of the processes/threads if desired. As explained later it is needed if
we want to prevent channel creation by a malicious user. Depending on the
number of separate number spaces we need, the tag line is extended with d bits,
where 2D gives us the number of secure address spaces we can get. In 2.4. the
user (process or thread) with access granted to lines with ID = 1 selected line
indexed with 2312. What would happen on an access to line = 780 with index
= 421 and ID = 2 is explained in detail later.

2.7.4 Address decoder

Dynamic cache line remapping and associative memory architecture have been
exploited before [15][8][17] and most designs have significantly increased delay.
The security-aware cache decoder [23] has been designed using transistor level
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representation; this decoder has a marginally higher delay than the decoder
used in a traditional direct mapped cache. The transistor level description of
different address decoders can be seen in Figure 2.5.

2.7.5 SecRAND overview

The security-aware cache algorithm is based around a random number generator.
Cache hits are handled as in ordinary direct mapped cache and there are three
types of misses:

• Index miss - It occurs if there is no remapping register holding the needed
index.

• Context miss (Tag miss involving protected page) - If there is an index
match, but either the requested or stored line has a different context,
then the context is protected. By protected we refer to a block that was
written to cache by a process that wants to be safe against channel attacks
from processes from a different context. A context is a group of processes
that ”trust” each other within their group when cache channel attacks are
considered.

• Tag miss - An unprotected tag miss. This means that the index is matched
with a line but a tag does not match the requested address i.e. the line
lives in the same secure context as the process that has requested data
from the cache.

Referring to Figure 2.6 given that a process has access to lines with context
= 0 or 1. On a index hit a normal access to the cache line is granted; for
example index = 2312 where the line has context = 1. If the user tried to access
line = 561 that is not stored in the cache, an index miss would occur. This
would cause a randomly chosen cache line to be evicted and the requested word
would be fetched from memory and stored in cache, it could replace any line
no matter the context. On the other hand, if the process referred to word with
index = 990, and a tag miss would also occur than the behaviour would be very
different(context miss).

The cache line that stores memory line with index = 990 belongs to a dif-
ferent context. A randomly chosen line would be evicted and the data would
be accessed directly from memory without a line in cache being allocated for
it. This way of handling tag misses with a context conflict hides the informa-
tion from the potential attacker on whether certain memory words are stored in
cache, for example words that hold parts of AES key. The attacker cannot ver-
ify whether a word is cached or not by accessing cache lines and measuring the
average response time of the system. There is also one more scenario possible,
that the process accessed line with index = 89. The process lives in context =
0 and 1 as such if line = 777 is accessed (with index = 89 currently associated
with it) but stores a different tag than the requested word, an ordinary tag miss
occurs. The SecRAND algorithm is shown in the form of a flow chart in Figure
2.7.

21



Chapter 2. Background

Table 2.5: Notation used in the SecRAND algorithm flowchart [23].

C The cache line selected by the address decoder (dur-
ing a cache hit or a tag miss).

D The memory block that is being accessed.
R The cache line selected for replacement (victim).
Px The protection bit of X. If X is in a cache line, it is

the P bit of the cache line. Otherwise it is determined
by the PP bit of the page/segment that X belongs
to.

cache access(C) Access C as in a traditional Direct Mapped cache.
victim(C) Randomly select any one out of all possible cache

lines with equal probability.
victim(rand) Replace R with D, update LNreg.
replace(R,D) Write back R if it is dirty; invalidate R.
evict(R) Write back R if it is dirty; invalidate R.
mem access(D) Access to D without caching it.

Figure 2.7: SecRAND algorithm flowchart.
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The advantages of security-aware cache

We summarize the advantages of the security-aware cache over traditional cache
architecture (ASIC):

• Nearly matches direct mapped cache in terms of access time, the difference
is negligible.

• Has hit-rate which is basically equivalent to Fully associative cache (For
k = 4).

• Has power efficiency that matches Direct mapped cache.

• The resource overhead is small compared to potential benefits. For rea-
sonable k parameter ranges in the area of 5 to 10%.

Random Number Generator

The main problem with ordinary cache when taking under account side-channel
attack is its predictability. If the attacker knows the cache replacement scheme,
and its underlying architecture he can exploit its features. By randomizing the
replacement policy, the predictability problem is solved. The random number
generator used in the SecRAND algorithm can be implemented in a number of
different ways, with the restriction that attributes like seed and number period
should be impossible to recover by the attacker.

2.8 Summary

This Chapter provided the essential background for understanding of the con-
cepts underlying the security-aware cache and its FPGA implementation. The
most important topics covered:

• The difference between ASIC and FPGA.

• The differences between soft and hard processors.

• Cache side channel timing attack.

• CAM FPGA implementation and the associated problems. High resource
usage, multi-cycle operation and long critical path being most prominent.

• Security-aware cache, and how it works. It is composed of the new re-
placement algorithm (SecRAND) and the index remapping circuit. The
index remapping circuit should be based on CAM memory.
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Efficient Design of
Security-aware Cache on
FPGA

This Chapter discusses the architecture of the modified security-aware cache. It
is assumed that the reader is familiar with the Chapter 2.

The main novel aspects of our design:

• Efficient index re-mapping decoders and their optimization.

• Modified Security Algorithm.

• Design portability.

This Chapter is divided into five sections. Sections 3.1 to 3.3 present the new
index re-mapping decoders and their optimization. Section 3.4 describes how
the security-aware cache algorithm was modified to work with the new decoders.
Section 3.5 summarizes how the design portability was achieved.

The novel aspects of the design and the problems they address:

• Security-aware cache - Different building blocks of FPGA and ASIC de-
sign, identifying the complications and differences. Design portability and
ease of modification.

• Pipelined security-aware cache - Solution to the increased critical path.

• L-associative cache - An answer to FPGA CAM high resource demand.

• Modified Security Algorithm - Modified algorithm addressing the new de-
coders.

• Design portability - Abstraction of CAM implementation.
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Overview of the new index re-mapping decoders

The main challenges with security-aware cache FPGA implementation are re-
lated to the FPGA CAM implementation problems:

• High resource cost of CAM memories.

• Multi-cycle read/write CAM operations.

• Unregistered CAM increases critical path.

• Difficulty of modification of existing designs.

To implement the remapping registers our design makes use of either a com-
binational CAM index decoder, or a multi-cycle CAM memory. The first is used
when single cycle data/tag read is needed and leads to a cache design which we
are going to refer to as security-aware cache. It allows for a quick design modi-
fication and evaluation. The second is used if line access can be delayed by one
cycle, and leads to what we will refer to as pipelined security-aware cache. The
number of read/write operations per cycle is the same for both designs as both
read and write can be issued every cycle despite the results being delayed in
the second case. The CAM based address decoders are used to find the correct
index, and to issue index hit/miss. They replace the LN register Array in the
ASIC security-aware cache [23]. It is an unregistered CAM.

To counter the high resource demand of FPGA CAM memory implementa-
tion we propose a new cache architecture to which we will refer as L-associative
security-aware cache. It is based on the associative principle but applied to
address decoder.

We will refer to CAM memories with combinational index decoders as unreg-
istered. Clearly because the outputs are not registered. The other being called
registered.

When discussing the new decoders we use the following notation:

• n - The number of index bits.

• k - The number of bits used in security-aware cache to extend index.

• t - The number of tag bits.

• d - The number of bit used to define line context.
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3.1 Security-aware cache

Table 3.1: Ordinary security-aware cache overview:

Advantages and Disadvantages

Utilizes LUTs and registers
therefore synthesize-able on any
FPGA.

Likely to become the critical
path (the likelihood increases
with CAM size).

Based on generic CAM. The
CAM becomes part of the cache
control logic.

Very narrow range of applicable
vendor specific CAM memories

The decoder can be easily used
to extend any existing device by
”wrapping” tag/data files.

In our first design we approach the problem of portability and modification of
existing designs. In order to make the design portable we need to ensure that
it is synthesize-able on any FPGA platform. This is achieved by making use
of resources that are synthesize-able on any FPGA platform. We designed the
CAM using a register file along with a combinational search circuit, in order to
make security-aware cache a cross platform solution. The main novel aspect of
the design are:

• Transparency from cache controller point of view.

• Portability.

In order to achieve ease of modification we make the modification transparent
from the existing cache state machines. The CAM memory matching circuit
extends cache control logic remapping the indices before they are used to access
cache lines. The modification is transparent as CAM matching is done in the
same cycle as the access to cache line.

Decoders CAM properties:

• Control: On-chip line update.

• Main resources: LUT.

• Read/write mode (if read/write is multi-cycle): Not applicable for read,
write is single-cycle.

• Read/write mode (separate read/write port): The design is single ported.

• Write cycles: Single-cycle write.

• Read cycles: Combinational unregistered read.

• Registered outputs: Outputs are not registered.

• Line match support: Single match support.
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The way we aim to modify existing designs is by extending the cache control
logic with the remapping register file. Equally it can be seen as wrapping the
tag/data arrays. The extension is done by inserting the remapping logic between
tag/data array input and circuit responsible for tag/data array access. Note that
the CAM matching circuit effectively becomes part of the cache control logic,
therefore from control perspective read/write operations can be performed in
the same way as in unmodified cache. The circuit for this decoder can be seen
in Figure 3.4.

When an access is issued to the tag/data array we do not use the usual
address index of width n to access a tag/data line. We access the CAM memory
decoder with index of width n+k. As discussed in Chapter 2 and by Wang and
Lee [23] k is the extended index used to improve performance. This index is
later mapped to a tag/data array with n lines.

When we issue a write to cache if the index we are searching the CAM for
resides in the cache, we use the address provided from the CAM memory to
access the appropriate cache line. If it does not reside in CAM, we use the
number generated from a random number generator to both index tag/data
line as well as map the index to a line in the CAM memory. This way we
ensure a single-cycle write to the tag/data lines as well as the CAM memory.
In order to decrease the potential critical path we register the write parameters,
and perform write to CAM in the following cycle. Doing that we need to check
whether a write was issued in the previous cycle, and whether there is a index
match. The index from write buffer has precedence over the CAM mapped
indices as the written index is more recent.

3.1.1 Increased critical path

It is important to note that the CAM memory physically becomes part of the
cache control logic. Although in most designs the execution stage (EXE) of a
processor data-path is the critical path and determines the frequency at which
the processor will operate, this might not be the case with this type of security-
aware cache. The CAM circuit extends the cache control circuit by a significant
amount of logic, if the CAM exceeds certain size it will become the critical path.
The transition can be seen from Figure 3.1 to Figure 3.2. The potential critical
path is marked in Figure3.4. From the behavioural point of view this type of
cache is identical to the security-aware cache as described by [23].

3.1.2 Using multi-cycle CAM memory

Using a M -cycle write memory is possible, and the concept is clearly explained
in the next section. We do not recommend it as it requires more complex control
mechanism and this platform should be used either as a temporary fix to cache
timing attack (till pipelined design is used) or as a quick evaluation platform.
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Figure 3.1: A simple diagram of a data path without security-aware data cache.

Figure 3.2: A simple diagram of a data path extended with the security-aware
data cache logic. It is important to note that the critical path increases as the
remapping register file becomes part of the control logic.
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Figure 3.3: Security-aware cache index remapping circuit. The critical path is
marked on the diagram. The circuit can be optimized to decrease the critical
path, but for readers convince we present the optimized circuit in Appendix A.
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3.2 Pipelined security-aware cache index remap-
ping

In order to counter the increased critical path problem we approach a pipelined
cache design. The problems the pipelined cache is trying to counter:

• Increased critical path. Pipelined cache does not extend the cache control
unit, this results in decreased critical path.

• Portability, using a wide range of different CAM memories to implement
the remapping register file.

There were a number of attempts to create pipelined associative caches/-
CAM memories before (essentially the pipelined decoder). For example by us-
ing a hierarchical search scheme as described by Pagiamtzis and Sheikholeslami
we could lower the power usage substantially [20]. The motivation behind most
pipelined CAMs and caches is to decrease the critical path and power, the mo-
tivation behind our cache is portability and throughput.

The main novel aspect of the pipelined security-aware cache:

• CAM FIFO buffer which is used to abstract the cache behaviour from the
underlying CAM.

• Portability due to large range of supported CAMs. The cache can be im-
plemented over a wide range of chips using whatever resources are avail-
able.

• Pipelined cache can be based on vendor specific CAM memory, therefore
achieving better performance and resource utilization. We have a larger
freedom in choosing potential CAM decoders as extra logic needed to
accumulate them is less likely to affect designs critical path.

The main difference between the pipelined and the security-aware cache lies
within the way we use CAM memory. In the security-aware cache we rely on a
LUT/register based CAM that extends the cache control logic (state machine
circuit). In the pipelined cache we operate in a two stage mode. During the first
stage the cache remaps the index using a CAM memory. In the following cycle
the previously remapped index is used to access a tag/data line. Effectively a
pipelined cache is created with an index remapping stage and an data/tag array
access stage.

Decoders CAM properties:

• Control: On-chip line update.

• Main resources: Any.

• Read/write mode (if read/write is multi-cycle): Both exclusive and con-
current are applicable.

• Read/write mode (separate read/write port): Both separate and dual port
CAM are applicable.

• Write cycles: M -cycles (any).
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• Read cycles: Single-cycle read.

• Registered outputs: Both registered and unregistered CAM are applicable.

• Line match support: Single and multi-line match support is applicable.

The security-aware cache and pipelined security-aware cache also differ in
the type of CAM memory we use. The pipelined cache is based either on the
LUT/register CAM (as in ordinary security-aware cache) or on a single-cycle
read and M -cycle store memory. This allows us to implement single-cycle read
M -cycle store vendor specific CAM memory. In virtually any case the vendor
provided CAM is going to be faster and more resource efficient than a generic
LUT/register based CAM. Therefore by using vendor specific CAM we improve
the cache resource utilization and decrease the critical path length.

A X -cycle read CAM could also be used, although the number of stages
would have to be increased. As most of the stages would be ”empty” it is not
recommended.

On the other hand referring back to the example of hierarchical search CAM
[20], increasing number of index decoding stages could result in advantages like
improved power efficiency.

We present the cache in Figure 3.6. A pipelined version of security-aware
cache based on the ordinary security-aware cache is presented in Figure 3.7.

Table 3.2: Pipelined cache overview.

Advantages and Disadvantages

Better resource efficiency. Two stages, index remapping
stage and an data/tag array ac-
cess stage.

Far less likely to become the crit-
ical path, as long as the CAM
has a higher operating frequency
than unmodified data-path.

More complex design.

Based on vendor specific single-
cycle read M -cycle write CAM
memory.

The cache behaviour is altered by the way and type of CAM we use, what
has important implications on the design. In the rest of this section we describe
techniques on how we counter them. Single-cycle delayed read and M -cycle
delayed write CAM enforces a use of buffering mechanism. Furthermore not
all CAM memories allow simultaneous read/write operations, potential cause of
pipeline stalls.
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Figure 3.4: A simple diagram of a data path with a pipelined security-aware
cache.

3.2.1 Pipelined security-aware cache based on M -cycle
write CAM

In order to perform tag/data array write operation every cycle we make use of
a first in first out (FIFO) CAM buffer. When an access is issued to tag/data
array, CAM memory is used to remap the index. As we are using a single cycle
read/M -cycle write memory, we are not going to get the index until the next
clock cycle; so we have to delay the tag/data/ID by single cycle. This is why we
insert a register between the tag/data/ID input and the arrays to which/from
which we are going to read or write. The box between tag/data/id arrays and
inputs in Figure 2.2. A similar mechanism is used in nearly all of the modern hi-
erarchical memory systems. For example buffering hard drive or random access
memory(RAM) operations in modern personal computer systems.

3.2.2 CAM FIFO buffer architecture

What is unique about the FIFO CAM buffer used in pipelined security-aware
cache is that the FIFO CAM buffer can be searched through in an associative
manner. The FIFO has to be accessible and searched through as otherwise when
performing a read operation the cache would be invalid with respect to the write
operations that have taken place within the last M -cycles. We present the data
flow in Figure 3.5.

It is important to note that the buffer is a CAM memory FIFO. We know
which LN registers are going to be updated as the buffer stores the index to
which the write is to be issued. It also preserves the write store order therefore
we know the current status of the LN registers. In case of a conflict when there
are 2 write operations issued using the same random number, we treat the most
recent one as valid. This search mechanism can be easily employed using a
binary tree structure, with the left branch having precedence over the right one
(as it is most recent).

We propose two ways of implementing control logic for the buffer, depend-
ing on the frequency of cache write/read operations. The first implementation
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requires easier control logic, although it results in some redundancy. We use a
simple counter with a cycle of length M that moves the buffered indices every
M cycles by one step. The redundancy comes from the fact that if the buffer is
empty we could move the incoming write to the front of the FIFO. The second
implementation is more sophisticated and differs from first in that it checks the
first empty spot within the FIFO and insert the incoming write at that point.

CAM FIFO buffer sizes and handling buffer overflows

The buffer can be of arbitrary size. In case when M = 1 we can ensure that the
buffer will not ever be filled up (write can be issued every cycle). When M = 2
in most caches we can also ensure that the buffer will never fill up. The reason
is that cache write operations are usually preceded by read operations, therefore
in worst case write is performed every other cycle. This might not be the case
when for example cache supports flushing and we nullify all of its entries by
writing to cache over large number of cycles. When M > 2 determining the
buffer size is non trivial and depends on the frequency and length of streams of
write operations.

When the buffer fills up, we can either discard any new incoming write
messages or stall the cache till the previous write operation finishes. Both
methods degrade cache performance but ensure correctness and limit resource
requirement. We have to take into account account cache write policy. In
case of write-through policy the mechanism of discarding messages has a trivial
implementation. In case of write-back the FIFO control logic has to issue a
”discard” signal to cache control logic in order to write back the data into the
cache.

The FIFO CAM buffer can be optimized to discard any writes to cache that
would invalidate writes that are currently pending or that would not change the
state of the cache. If we issue a write with index = A to the first remapping
register and then we issue a write to the same register with index = B, obviously
the old write can be discarded. Note that in case A = B, write will not be issued:
when we issue a write we search the buffer for stored indices. Again the cache
write policy has to be taken into account. With a write-through scheme the
implementation is again trivial. In case when write-back policy is used a more
sophisticated control is necessary and as it is case dependent will not be further
discussed.

Exclusive read/write CAM

Our solution depends on the memory access patterns and on the M parame-
ter. Clearly M is bigger then 1, as otherwise cache read/write operations would
not overlap. We do not recommend exclusive read/write CAM memories un-
less read/write operations are separated by a reasonable amount of cycles with
respect to M, as in order to ensure correctness of cache stalling has to be em-
ployed. Pipeline stalling is clearly undesirable as it hinders cache performance.
We could also drop write operations, what would also hinder the cache per-
formance. Extra control logic would have to be employed to drop writes to
tag/data arrays. Nevertheless we do not recommend these type of CAMs as
they hinder the performance significantly.
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Figure 3.5: Pipelined security-aware cache operation. We update the cache
during the first three and the fifth cycle. During the fourth cycle we perform
a read on index 54CFDC, and we get a hit from the CAM and miss from the
FIFO CAM buffer giving us a mapping to line 1. In cycle 5 we issue a write to
line 1 with a new index. The CAM will not be updated with the index till cycle
9, nevertheless we can read the state of the cache. During the read operation
in cycle 6 (77C1DC) the cache will read data/tag from line 1. The FIFO CAM
buffer has precedence over CAM mapping and will return us mapping to line 1,
despite CAM holding a different index at register 1 (54CFDC). Clearly in a 1
cycle read/write CAM the output from the cache would be the same.

  

4. 1. 

Index Write to 
Cache 

operations 

77C1DC 

 

n/a 

77C1DC 

 

1 

 

441AE2 

 

3 

A4AB21 2 

54CFDC 1 

 

Read 

1 

0 

0 

0 

0 
77C1DC 

 

 0 

1 

2 

3 

CAM (M = 2) 

We assume that CAM 

entries are not 

invalidated till write 

to a line is finished.  

FIFO CAM (Size = 3) 

 

5. 

 

 0 

1 

2 

3 

2. 
 

 0 

1 

2 

3 

6. 
 

 0 

1 

2 

3 

3. 
 

 0 

1 

2 

3 

7. 
 

 0 

1 

2 

3 

 

 0 

1 

2 

3 

8. 
 

 0 

1 

2 

3 

54CFDC 

441AE2 

441AE2 

A4AB21 A4AB21 

CAM is being  
- updated with 
index 

XXXXXX 

54CFDC 

A4AB21 

54CFDC 

77C1DC 

 

54CFDC 

A4AB21 

54CFDC 

A4AB21 

441AE2 

441AE2 

77C1DC 

 77C1DC 

 

A4AB21 

441AE2 

54CFDC 54CFDC 

54CFDC n/a 1 

34



Chapter 3. Efficient Design Security-aware Cache on FPGA

Figure 3.6: Pipelined security-aware cache.
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Figure 3.7: Pipelined security-aware cache based on the ordinary security-aware
cache.
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3.3 Optimized CAM Decoder, the L-Associative
security-aware cache.

Figure 3.8: L-Associative security-aware cache.

Table 3.3: L-Associative cache overview.

Advantages and Disadvantages

Can be based either on the
pipelined design or ordinary
security-aware cache. Shares
both the advantages and disad-
vantages of either.

Not suitable for write-back pol-
icy.

Decreased resource usage. Decreased Hit rate.

Both of the previously described caches can be expensive in terms of BRAMs
and LUTs as well as any other resources used to implement CAM. The security-
aware cache index remapping circuit can also drastically lengthen the critical
path within the cache control. The L-Associative security-aware cache (where
L is the number of sets) is based on the associative cache architecture where
one security-aware cache index remapping scheme (either ordinary or pipelined
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cache scheme) is used to map indices in all of the sets. This decreases both the
critical path length of the cache logL and resource usage L times for a fixed
size cache, when compared to equivalent capacity security-aware cache. The
circuit for this decoder can be seen in Figure 3.8. The cache operation and the
explanation behind set invalidation is shown in Figures 3.9 and 3.10.

Overview of the L-Associative security-aware cache

The cache is based on the principle of increasing the block-size. It could be
considered as a security-aware cache with L times larger block-size but with
a small but important difference. The L-associative cache does not load a L
times larger block to memory. It only fetches one block of ”normal” size from
RAM, and stores it within one of its sets. The set that the data is fetched to is
determined by modified SecRAND described in Section 3.4.

L-Associative security-aware cache multi-set validation mech-
anism

As the cache makes use of number of sets, and only one line address decoder, the
set validation mechanism is redesigned. The set validation control mechanism
can be based on a number of different resources, and is highly dependent on
the choice of the underlying CAM based decoder. Nevertheless the scheme is as
follows.

Besides having the usual decoder we extend cache with a valid table. The
valid table stores sets (number of sets) bits per line, each indicating whether a
set within a line is valid. In the ideal situation when pipelined security-aware
cache is used we can easily extend the tag array to incorporate valid tables,
making a cheap and fast extension. In case of non-pipelined cache data cache
control modification is required in order to manage set invalidation.

Unregistered storage element is applicable for valid table implementation in
any CAM based decoder. Registered storage element is not suitable for designs
which a user does not want to modify the cache control logic. Users should
be aware that the unregistered validation table is an expensive design due to
complex routing. The validation bits are being associatively searched for along
with CAM what implies a larger CAM. The validation table can be implemented
using vendor provided CAM by using do not care bits. Matching is performed
on the index bits, while the valid bits are read from the CAM and used to verify
valid sets.

Example of L-associative cache write

We have L = 4 and line = 231 being occupied by index = 8890. We need to
store a word to index = 2412, which is not currently present in the remapping
register file. During the store the random number generator provides us with
index = 231. We invalidate all of the sets within line = 231, and change the
index of the register to 2412. At the same time we validate the set within the
line that we performed the store to. If in the subsequent cycle a write is issued
to index = 2412, we follow the modified SecRAND and write to one of the sets
within the line = 231 and update the valid table accordingly.

38



Chapter 3. Efficient Design Security-aware Cache on FPGA

Figure 3.9: The figure presents set invalidation during 3rd cycle. Line 4 stores
now index = 77C1DC, and the previous tag H1231241241253 is no longer valid
with the current index.
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Figure 3.10: The figure presents what would happen without set invalidation.
We can see tag H1231241241253 present in 3rd cycle. The cache is wrong state
where address with tag H1231241241253 indexed by 77C1DC seems to be valid.
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Drawbacks of the L-Associative security-aware cache

The drawback of this design is that when a cache line eviction occurs and a
remapping register is updated, we invalidate all of the lines that made use of
the former index. The hit rate degradation will depend on the application using
the cache as well as on the number of sets; the higher the associativity, the
higher the miss rate. To visualize it better, the cache has the drawback of
larger block-size, without the advantage of smaller compulsory misses due to
data pre-fetching (it does not make use of the spatial locality).

Write-back policy is not recommended for this design. On a cache miss, all
of the sets would have to be written back to memory. Depending on the number
of misses and CPU:Main memory bus throughput write-back policy could cause
stalls, or require large buffers.

3.4 Modified Security Algorithm

The replacement policy depends on the decoder we use and on the cache write
policy. Both write through and write back policies are supported. If we use
write through policy, no dirty block has to be written back to memory during
a protected line tag miss.

SecRAND for ordinary security-aware cache

The SecRAND algorithm works as in the original security aware cache [23]. The
difference is that context ID bits would be stored and fetched from a resource-
wise less expensive tag array.

SecRAND for pipelined security-aware cache

Most of the M cycle CAM memories consist of BRAMs, therefore there is no
difference whether the protected bit is stored within the tag CAM line. If we
store the ID context within the CAM memory, we can detect context miss a cycle
earlier. We can act as if it was an index miss. From the attacker’s perspective,
it looks as if it was an index miss despite the fact that the data accessed from
memory would not be written to cache as in the original SecRAND [23].

Modified SecRAND for L-associative security-aware cache

The advantage we have in this case is that there are L sets holding the same
index. What happens during a tag miss involving a protected line is different
from the original algorithm [23]. Instead of writing to a randomly selected set,
we choose one that is unprotected (if there is one) and we write the new tag/data
to that set. If all of the sets are used within one line, we operate as if the original
SecRAND algorithm is used (with the difference of invalidating one line within
all of the sets).

In case we decide to use a multi-cycle CAM in an L-associative security-
aware cache, the ID bits for every set have to be either stored in CAM memory
along the index remapping register, or in the tag line of every set. The first
implementation allows us to detect a context conflict one cycle earlier.
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Table 3.4: The table describes the notation used in the modified associative
SecRAND algorithm.

C The cache line selected by the address decoder (dur-
ing a cache hit or a tag miss).

D The memory block that is being accessed.
R The cache line selected for replacement (victim).
Px The protection bit of X. If X is in a cache line, it is

the P bit of the cache line. Otherwise it is determined
by the PP bit of the page/segment that X belongs
to.

cache access(C) Access C as in a traditional Direct Mapped cache.
victim(C) Randomly select any one out of all possible cache

lines with equal probability.
victim(rand) Replace R with D, update LNreg.
replace(R,D) Write back R if it is dirty; invalidate R.
evict(R) Write back R if it is dirty; invalidate R.
mem access(D) Access to D without caching it.
U A set with non conflicting address.
victim set(U) Select U as the victim set to be replaced.

Figure 3.11: SecRAND for L-associative security-aware cache.
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3.5 Design Portability

Design portability has been achieved by abstracting the architecture from its im-
plementation. Depending on the technology used, the cache can be implemented
across different vendors FPGAs. The choice a user has to make is whether the
cache is going to be used in pipelined mode, associative mode or both. Given
that appropriate CAM libraries are often provided for a given platform, any of
our cache designs is efficiently portable onto any FPGA chip. In case platform
specific CAM is not available, a flip flop based CAM memory can be used. This
also holds for our pipelined security-aware cache.

3.6 Summary

This Chapter described the novel aspects of the design and the problems they
address. The reader should be accustomed with the following ideas before fur-
ther reading.

• Security-aware cache - Different building blocks of FPGA and ASIC de-
sign, identifying the complications and differences.

• Pipelined security-aware cache - Solution to the increased critical path.
The cache is based on the idea of a pipelined cache design, in separate
CAM search circuit from cache control. The cache should be used in two
stage mode. During the first stage CAM memory is used to remap indices.
During the second stage Tag/Data access is performed. The user has a
large freedom when choosing the underlying CAM. Single cycle read CAM
is recommended. X -cycle read CAMs can be used although result in more
complicated pipeline and are likely to degrade performance.

• L-associative cache - An answer to FPGA CAM high resource demand.
The cache makes use of modified SecRAND. It degrades performance but
improves resource utilization.

• Modified Security Algorithm - Modified algorithm addressing the new de-
coders. The algorithm changes when we use of L-associative security-aware
cache. Similar to security-aware cache with L times larger block-size, but
not making use of spatial locality.

• Design portability - The design portability is reached by use of generic
resources as well as abstraction of CAM implementation (prominently the
case when pipelined security-aware cache is used.
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Cache implementation and
Leon 3

In this Chapter we discuss the implementation issues of the designs described
in Chapter 3 as well as our attempt to modify Leon 3 processor. We present
methodology of our work as well as achievements and findings. Currently we
managed to implement non-pipelined security aware cache (Both associative
and non-associative versions), with several restrictions. We used the platform
in order to identify potential problems arising from various security-aware cache
designs.

Section 4.1 is an overview of the design choices. In Section 4.2 we discuss
the different stages in which the Leon 3 was modified.

4.1 Design choices

The Leon 3 modification is an evaluation platform and is not yet fully vali-
dated and for the time being will not be released. The processors data cache is
modified to the L-associative and ordinary security-aware cache standard with
some restrictions. We extended the processor with the most performance and
resource-wise crucial part of the design the remapping register file. This provides
us with the information on the potential costs and benefits of the new cache.
The full SecRAND algorithm implementation requires trivial modification (dis-
cussed later).

4.1.1 Why Leon

We wished to show that our security-aware cache works, and it can be as fast as
a direct-mapped cache. We needed a platform (soft processor and its utilities)
that would provide us with tools to compare ordinary, associative caches and
our cache. We required the platform to be portable and easily parametrizable.

When choosing a soft processor we have mainly taken into account the as-
sociated tools. Without appropriate generation and optimization tools, the
generated processor would not have superior performance. The qualities de-
sired are good support, a broad range of tools and simplicity of design as well
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as documentation. The Leon 3 processor is chosen since it meets the above
requirements. It is publicly available, and is relatively simple.

Although initially a simple processor extended with security-aware cache
would be an easier platform to work on, this approach would have a number of
drawbacks:

• The design of appropriate tools would be extremely time consuming, and
the exact scope of required tools can never be determined. Putting 90%
of available time into building the processor associated tools would be a
reasonable estimate. Clearly, this would restrict the amount of time we
would be able to invest into extending the processor with security-aware
cache.

• The results obtained by builds of various configurations of a simple pro-
cessor would not be as informative as numbers got on a platform as widely
recognized as Leon 3. 2000 extra LUTs mean nothing on a soft processor,
2000 extra LUTs on Leon 3 with a specific design give an insight into how
expensive the security-aware cache can be.

• The security-aware cache is an answer to an existing problems, and only
by modifying an existing and acclaimed design we get feedback on the
potential implementation difficulties. The platform is expected to be used
in more advanced work. Performing a cache timing attack requires a real
system, one which consists of an operating system, FPGA chip, boards,
ram modules etc. Putting all of the components together is an extremely
time consuming project, Leon 3 has all of that.

• Although when designing a new system from scratch we would have the
freedom to design it without the constraints which made some modifica-
tions of Leon difficult, we were not aware of them when the project was
launched. Therefore it is very likely that the platform would have to be
redesigned, and as such this approach was of no advantage to us.

• Leon 3 is already portable across a vast number of platforms. It is one of
the most portable designs available.

4.1.2 Random number generator

For the purpose of simulating and building our design we used linear feed-
back shift register (LSFR) method [5]. This uniform random number generator
should provide good quality uniform numbers, and be efficiently implementable
on FPGA. As the performance of cache is dependent on quality of uniform
random numbers, in future we plan to use a different RNG for benchmarking
purposes. LUT-Optimized [13] random number generators would also be suit-
able for this design. It is cheap LUT-wise, allowing index remapping registers
to utilize a large amount of LUTs. The way the current system is modified,
exchanging random number generator is equivalent to reconnecting one signal
and is not prone to cause any problems.
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4.2 How we modified Leon

Before working on the modification we identified and modelled the Leon 3 file
and component structure as well as the signal interconnections. Although seem-
ingly an unimportant step, it allowed us to narrow down the extent of required
modifications. We also got accustomed with Leon 3 suite, as well as commented
the code and used reverse engineering techniques (as the documentation on a
number of components was scarce) to model their behaviour.

We approached the Leon 3 modification in a number of testable stages.
Every next stage was a solution to the problems that raised in the previous
one. At each stage we aimed to verify the resource and timing requirements of
each of the cache designs. After evaluating a number of different processors we
decided to use Leon 3 as our evaluation platform. The stages are arranged in a
chronological order. We present the stage overview:

• Stage 1. - Identifying the performance crucial components. (Subsection
4.2.1.)

• Stage 2. - L-associative security-aware cache. (Subsection 4.2.2.)

• Stage 3. - Extending Leon 3 with pipelined security-aware cache. (Sub-
section 4.2.3.)

• Stage 4. - Enabling Full SecRAND. (Subsection 4.2.4.)

4.2.1 Stage 1. Identifying the performance crucial com-
ponents

Our next step was to identify the performance crucial components of the new
cache and prioritize them accordingly. The most important part of security-
aware cache is the remapping register file. CAM memories are very expensive
to implement on FPGA and bascially they are the remapping register file.

In order to implement the remapping register file we decided to make use of
a cut down Leon 3 core. We based our design on Leon 3 with MMU disabled.
As the remapping register file has unregistered outputs we were able to keep
the processors data-path unchanged, allowing us to shorten the testing cycle
substantially. We decided not to use MMU as we tried to keep the design as
simple as possible to narrow down the number of possible bugs. Keeping the
core simple decreased the simulation times substantially. Our approach allowed
us to implement part of the cache in very short time and reveal a number of
challenges. We did not aim to implement full security-aware cache at this point.

Goals for stage 1:

• Identification of Leon 3 components crucial to the security-aware cache.

• Getting accustomed with Leon 3 and SPARC documentation.

• Extending Leon 3 processor and identifying potential problems with remap-
ping register file.

In order to decrease the modification, validation and test cycle length we
imposed several constraints on the Leon 3 functionality:
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• Cache snooping cannot be used.

• Instruction cache is not security-aware. The reason is as in the two previ-
ous cases. In addition, extending instruction cache is not necessary.

• MMU is disabled.

• Only remapping register file is installed.

Efficient Index Re-mapping Based on CAM, first approach to Leon 3
processor

We aim for a portable design. Depending on the vendor and the chip model,
FPGAs vary significantly in terms of ratio of BRAM:LUT:DSU. The building
blocks are arranged in a different way on every chip which can hinder perfor-
mance. Vendors offer libraries that can be used to increase efficiency of the
design. The key to a secure, efficient and portable design lies in abstracting the
design from its implementation, by identifying the components for a cache. For
security-aware cache, this is the index remapping circuit, tag and data array
and random number generator.

CAM memories (the most important part of our design) have been imple-
mented in several different ways across a wide range of platforms, each im-
plementation having different pros and cons. This is the first reason behind
customizing caches based on different index remapping circuits, to maximize
the potential of different platforms. The second reason is to vary the degree
of modification required from existing caches to match our design. There are
a number of techniques available to implement a CAM (LN registers file) on
an FPGA(as mentioned in Chapter 2). We approach several different CAM
designs, and all of them pose different challenges:

• Generic slow multi-cycle designs based on BRAM, and fast multi-cycle
designs based on LUTs.

• Fast vendor specific designs based on BRAMs, SLR (shift registers) etc.

• Very fast and area efficient designs based on LUT.

• Simple register files (resource wise very expensive).

The first implementation is not considered as read/write access time is ex-
cessive, in dozens of cycles. The third CAM implementations are not considered
as they either require off chip software to be updated (The CAM is written to
using off chip software [22]).

For the single cycle cache decoder, we used the 4th type of CAM memory
listed above. The characteristics of the cache based on this design are portability
and not requiring a complex state machine, as the index remapping circuit makes
it possible to perform a single cycle read and write operation to data/tag arrays.
A number of soft processors (Leon 3 in particular) have complex state machine.
Integrating the new cache could potentially be time consuming if a multi-cycle
design is used, and would degrade performance due to enforced stalling/cache
write dropping mechanisms.
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This cache has the drawback of being resource demanding (it uses LUT/Flip-
Flops instead of BRAMs) and having a longer critical path. Logically the de-
coding combinational circuit becomes part of the cache control instead of being
a simple array index decoder(explained later in the Section).

Abstracting the implementation

In order to keep the testing suite and all current software valid we extend the
processors data cache in a way which is completely abstract from the Leon 3
programmers point of view. Furthermore to decrease the amount of our inter-
ference within the Leon 3 design we use the k parameter to decrease the size
of cache instead to increase the range of indices. For example to get a 4 KB
cache with k = 1 we should set cache size to 8 KB and k = 1. The k param-
eter decreases the size of cache by 2k. The functionality is the same, but from
engineering point of view it allowed us to simplify the design. To the processor
the tag/data arrays appear as if they were of the index appropriate size.

Listing 4.1: The tag/data array wrapping.
1 dme : i f dcen = 1 generate
2
3 −−− dont use the secur i ty−aware cache
4 dtags0 : i f ( not DSECCACHE) and (DSNOOP = 0) generate
5 dt0 : for i in 0 to DSETS−1 generate
6 dtags0 : syncram
7 generic map ( tech , DOFFSET BITS, DTWIDTH)
8 port map ( c lk , dtaddr , dtdata in ( i ) (DTWIDTH−1 downto 0) ,
9 dtdataout ( i ) (DTWIDTH−1 downto 0) , dtenable ( i ) , d twr i t e ( i

) ) ;
10 end generate ;
11 end generate ;
12
13 −−− use secur i ty−aware cache
14 dtags2 : i f DSECCACHE and (DSNOOP = 0) generate
15
16 −−− the remapping r e g i s t e r f i l e ( l n r e g f i l e ) has to be

updated whenever a wri te to tag/data array occurs .
17 l n s i g 0 : for i in 0 to DSETS−1 generate
18 s e c c a che enab l e ( i )<= dtenable ( i ) or ddenable ( i ) ;
19 s e c c a ch e w r i t e ( i ) <= dtwr i t e ( i ) or ddwrite ( i ) ;
20 end generate ;
21
22
23 r eg s s 0 : l n r e g f i l e
24 generic map (n=>DOFFSET BITS−DLNREGS BITS, k=>

DLNREGS BITS, s e t s=>DSETS)
25 port map (
26 index =>dtaddr ,
27 wr i t e =>s e c ca che wr i t e ,
28 c l o ck =>clk ,
29 h i t =>i ndex h i t ,
30 index out =>sec cache addr ,
31 rnd number =>sec cache rnd number ,
32 c l e a r =>crami . dcramin . s e c c a ch e c l e a r ,
33 enable =>s e c c a che enab l e
34 ) ;
35
36
37 dt0 : for i in 0 to DSETS−1 generate
38
39 dtags0 : syncram
40 generic map ( tech , DOFFSET BITS−DLNREGS BITS, DTWIDTH)
41 port map ( c lk , s ec cache addr , dtdata in ( i ) (DTWIDTH−1

downto 0) ,
42 dtdataout ( i ) (DTWIDTH−1 downto 0) , dtenable ( i ) , d twr i t e ( i

) ) ;
43
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44 end generate ;
45 end generate ;

Listing 4.2: The data cache control logic only modification.
1 i f DSECCACHE then
2 i f ( dcramov . tag ( i ) (TAG HIGH downto TAGLOW) = dc i .

maddress (TAG HIGH downto TAGLOW) ) then
3 −−− Tag h i t
4 h i tv ( i ) := dcramov . i nd ex h i t ( i ) ;
5 end i f ;
6 else
7 i f ( dcramov . tag ( i ) (TAG HIGH downto TAGLOW) = dc i .

maddress (TAG HIGH downto TAGLOW) ) then
8 −−− Tag h i t
9 h i tv ( i ) := ’ 1 ’ ;

10 end i f ;
11 end i f ;

Figure 4.1: Diagram visualising the Leon 3 data cache modification

The data cache state machine holds for both the modified and non-modified
Leon 3. We tried to minimize Leon 3 modification in order to keep its behaviour
as close to the original design as possible. This approach allows using standard
testing suits, and decreases debugging time due to small scale of code modifi-
cation. Using registered multi-cycle read CAM memories would require us to
create an extra stalling states while waiting for CAM read operations to finish.
This could also cause a number of potential problems with the processor control
unit. Under this approach, cache can be implemented on any platform.

This design has the advantage of being portable. Register file can be imple-
mented on any FPGA. In case a cache has to be defended against cache timing
attack, this architecture can be used to protect it. After the design has been
successfully modified, the user could optimize the LN register file to best fit the
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target platform. Potentially the register based CAM could be replaced with
a vendor provided CAM with the option of not registering output. Although
the resource usage might be decreased it is very likely to suffer from elongated
critical path.

Indeterministic cache behaviour

While installing the remapping register file we found out a potential complica-
tion of this extension. SPARC v8 instruction set allows separate data cache tag
and data cache data reads and write using the privileged LDA instruction with
ASI 0xe and 0xf respectively. In order to independent cache tag/data write the
remapping register file has to be updated when either the data is written to the
tag or data array. Users should bare in mind that has implications on the cache
behaviour. For example in the following situation where the data cache has just
been flushed and index(addr1 ) = index(addr2 ).

1. ST addr1, reg1

2. ST addr2, reg2

3. LDA index(addr1 ), reg3, 0xf

User would expect to get the data stored under addr2 when issuing the LDA
instruction. This might not be the case as storing the second word to cache has
a probability of 1/cache size of being stored in the same line as word with addr1.
This should not cause any complications, as separate cache tag/data writes are
only used for diagnostic reasons, nevertheless potential users should be aware
of the problem. A possible way to counter it would be to supply deterministic
numbers instead of random number to the remapping registers file in case of
diagnostic access.

Increased critical path

The critical path was increased due to remapping register file becoming part of
the cache control circuits. The critical path is illustrated in Figures 4.2 and 4.3.

4.2.2 Stage 2. L-associative security-aware cache

At the end of Stage 1. we identified a number of potential problems with the
security-aware cache.

The two problems were:

• Increased resource usage

• Elongated critical path

Although initially we struggled to find solution to the first problem, we came
up with one while running a number of builds to verify cache parameter impact
on Leon 3 resource utilization. The clue lied within the block-size. A larger
block-size implies a smaller number of remapping registers. This is the case
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Figure 4.2: Leon 3 7-stage pipeline.
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Figure 4.3: Leon 3 extended 7-stage pipeline.
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as each cache line stores more words, and we need one remapping register file
for each line. Therefore smaller amount of lines results in a smaller number of
remapping registers.

There are a number of problems with increasing block-size.

• Larger miss penalty on a cache miss

• Higher memory bandwidth requirement

• Larger memory buses.

Although in ASIC larger memory buses are expensive, the impact is not as
severe as it is the case in FPGA. Bus routing and multiplexing can become very
expensive. We came up with the idea of L-associative security-aware cache which
closely resembles larger block-size, but with a number differences (Chapter 3).
The cache performance is carefully evaluated in Chapter 5.

Our goal for this section was to formalize and implement the L-associative
cache architecture.

Validation table design choices

As discussed in Chapter 3 we came up with two possible ways on implementing
validation tables. Currently we decided only to make use of the unregistered
validation table, which in a lot of cases nullifies the potential benefits of the
cache due to similar resource requirements as LUT based CAM memory. Un-
fortunately this project had a limited time-scale and we had a strong belief that
registered validation tables would be very resource efficient, but we were not
sure about our predictions on unregistered tables. We decided to follow the
second approach.

There were two main reasons behind that decision

• Validation tables implemented with tag array require cache control mod-
ification

• When implementing validation tables using BRAM the resource usage
can be easily estimated. We had very rough idea of performance impact
of unregistered validation tables on L-associative security-aware cache.

We implemented the associative cache using existing cache set control logic.
We did not implement the associative SecRAND algorithm.

Cache implementation: L-associative Security-aware Cache

Making a generic and efficient CAM based design is difficult using modern
FPGA chips. This is the reason behind creating L-associative security-aware
cache with one remapping register file for all the sets. We distinguish this de-
sign from the traditional N -associative cache as the L parameter has a very
different impact on cache performance. This cache can be based on either our
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security-aware cache or the pipelined security-aware cache, sharing the advan-
tages and disadvantages of the corresponding design.

The main difference between the L-associative security-aware cache and
other caches lies in resource utilization. When we are short of LUTs or BRAMs,
we might consider using one decoder for a number of sets. Obviously one would
suffer from a higher miss rate (discussed in Chapter 5) as all sets are invalidated
on an index miss, but the size of the decoder decreases linearly with the num-
ber of sets. Furthermore when we use a single cycle decoder, the critical path
length decreases as well. We need to compare L times fewer elements. Since
the CAM decoder is based on a binary tree structure (elements are compared
using binary tree structure), we can expect logarithmic decrease of the decoder’s
critical path length(in case pipeline stage includes index decoding) and linear
decrease of resource usage compared to a basic cache.

4.2.3 Stage 3. Extending Leon 3 with pipelined security-
aware cache

The pipelined security-aware cache was our answer to the increased critical path
problem.

The main idea behind the pipelined security-aware cache is to decrease the
critical path length. The way to separate search from control is to use a single
cycle CAM memory. In ordinary security-aware cache, read is performed in
the same cycle as index remapping. In the pipelined cache, we separate the
index remapping stage from data/tag access. Obviously to access data and tag
arrays, we need to index it correctly during the same cycle as read/write is
performed. We achieve this by inserting extra registers, effectively creating a
pipelined design. The pipelined cache can be implemented using the register
based CAM as mentioned in Chapter 3. Registering inputs to the single cycle
index remapping circuit provides us with a single cycle write and single cycle
read decoder (M = 1).

This cache has the disadvantage of being more difficult to implement than the
non-pipelined cache. At the same time it can easily utilize a number chip specific
CAM, usually with better speed/power/area characteristics, while decreasing
the critical path length. It also allows us to make use of registered BRAM based
validation tables, which are faster and less resource demanding the LUT/flip
flop based. We have not yet finished implementing the pipelined security-aware
cache (discussed later in the Chapter), although the design is in a mature state
and the current results show a lot of promise (Chapter 5).

There are a number of reasons why extending Leon 3 with pipelined security-
aware cache is more difficult than non-pipelined version. The exact details are
irrelevant, the concept is important. The jmp address that can be seen in Figure
4.4 is used to select the lines within the tag/data arrays. It is not registered,
and it is one of the signals sued to access data/tag arrays. If not for that fact,
the cache could be considered pipelined as index is dependant on two registered
inputs which are multiplexed using a registered value; the path overhead is
very little. Our current idea is to insert an extra index decoding stage after
execution stage. From our current estimates based on registering inputs this
should allow us to raise the modified Leon 3 operating frequency to match that
of original Leon 3. Although it is very likely that the problem has a neat and
simple solution, currently there is a number of issues that we are trying to solve.

54



Chapter 4. Cache implementation and Leon 3

The concept of extra stage is illustrated in Figure 4.4. It is possible that the
approach will lower the processors CPI.

4.2.4 Stage 4. Enabling Full SecRAND

Due to limited time scale of the security-aware cache project we had to post-
pone the implementation of pipelined security-aware cache. Our next approach
to security-aware cache implementation was installation of full SecRAND algo-
rithm. We had two possible ways of approaching this task, one was to enable
MMU and extend it with SecRAND. The other one was to modify non-MMU
Leon 3 and modify one of the current Leon 3 supported operating systems.

Non-MMU Leon 3

”Does uClinux support multitasking? What limitations are im-
posed by not having a MMU?

A. uClinux absolutely DOES support multi-tasking, although
there are a few things that you must keep in mind when design-
ing programs...

1. uClinux does not implement fork(); instead it implements
vfork(). This does not mean no multitasking, it simply means that
the parent blocks until the child does exec() or exit(). You can still
get full multitasking.

2. uClinux does not have autogrow stack and no brk(). You
need to use mmap() to allocate memory (which most modern code
already does). There is a compile time option to set the stack size
of a program.

3. There is no memory protection. Any program can crash an-
other program or the kernel. This is not a problem as long as you
are aware of it, and design your code carefully.

4. Some architectures have various code size models, depending
on how position independence is achieved.” [6]

In order for security-aware cache to work operating system and hardware
cooperation is required. Operating system is responsible for separating process
by context switching. Without MMU, which in SPARC v8 is responsible for
context management, two different process can operate by interleaving. This
concept can be clearly seen in the above quote taken from uClinux frequently
asked questions (FAQ).

Currently full SecRAND is not implemented when MMU is disabled. In
order to use full SecRAND replacement algorithm operating system (OS) coop-
eration is required, and due to the limited time scale of the project as well as its
different scope we decided to leave this part of the design out. Full SecRAND
algorithm would require, depending on the operating system used, a context
switch instruction to be executed whenever a new untrusted thread would be
initialized by kernel. Although trivial concept the validation phase is very likely
to become time consuming. For simplicity and efficiency we recommend adding
an STA instruction to a new status register (ID register) whenever fork is ex-
ecuted. Currently the OS keeps track of the process ID, and a single STA
instruction to a processor status register has an negligible execution time and
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Figure 4.4: Leon 3 7-stage pipeline. The extra stage is marked with a red dashed
line.
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no impact on the application performance. SPARC v8 ISA offers a number of
address spaces which are undefined in Leon 3 and would be suitable for the
implementation.

The required hardware modification consists of:

• Extending tag array with context ID fields.

• Adding an extra context control register. Our idea is to make use of
SDA instruction(SPARC v8 alternate address space store instruction)
and a context register to change the context within which processor is
operating.

• Extending cache control logic with context matching mechanism, a simple
comparator of current register state and the output from the tag.

• Whenever a context miss is detected, we issue a force missed. Fetch nec-
essary data from memory, and write an invalid tag to a randomly chosen
cache line. The cache control logic requires very little modification(couple
lines of code), as most of the required functionality is already implemented.
Nevertherles a number of currently undefined problems can arise.

The only question we ask is whether work on implementing security-aware
cache in MMU disabled Leon 3 going to be fruitful. Without MMU and under
the uClinux thread model in most scenarios it would be much easier (and more
efficient) to flush cache after every vfork() call. When MMU is not used, the
context switches are going to be less frequent, therefore the impact of cache
flushing on processor should not be microscopic. Flushing the cache would hide
any potential timing information leakage. In case higher hit rate is required the
remapping register file would be sufficient on its own.

Enabling MMU

With MMU enabled, the context mechanism is already implemented within
Leon 3(it is part of the SPARC v8 ISA). Furthermore no software modification
is required.

”A SPARC Reference MMU provides three primary functions:
1) It performs address translation from the virtual addresses of each
running process to physical addresses in main memory. This map-
ping is done in units of 4K-byte pages so that, for example, an
8-megabyte process does not need to be located in a contiguous sec-
tion of main memory. Any virtual page can be mapped into any
available physical page. 2) It provides memory protection, so a pro-
cess cannot read or write the address space of another process. This
is necessary for most operating systems to allow multiple processes
to safely reside in physical memory at the same time. 3) It imple-
ments virtual memory. The page tables track which pages are in
main memory; the MMU signals a page fault if a memory reference
occurs to a page not currently resident.” [7]

By examining Leon 3 data cache code and SPARC v8 manual it can be
clearly seen that the required context collision mechanism is part of Leon 3, the
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only difference is that context miss have to be differentiated from other misses.
The main advantage behind the MMU version is that it requires no software
modification. This does mean, that in theory all current Leon 3 software could
be defended against timing attacks. As a research platform, although more
complicated and difficult to use, would give a great feedback on real systems
performance.

There are a number of problems associated with context misses. Although
paper by Wang and Lee describes the new security-aware cache architecture and
a new cache replacement algorithm, it does not discuss the issue of how to man-
age different contexts. This might have a severe impact on cache performance.
Our current approach is that there is no mutual trust between context. Any
context mismatch results in a context miss. The issue is discussed in a bit more
detail in Chapter 6.

Currently the MMU enabled version is not yet fully verified.
The L-associative SecRAND algorithm would require substantial modifica-

tion to the Leon 3 MMU set replacement circuits. Therefore a version of or-
dinary security-aware cache is being used (We do not make use of the possible
performance advantage by checking which sets are in conflict with the currently
access word).

4.3 Summary

This chapter was an overview of the Leon 3 modification process. We ap-
proached the modification process in four stages:

1. Identifying the performance crucial components. The problems we discov-
ered; High resource requirement and increased critical path.

2. L-associative security-aware cache. We implemented the unregistered val-
idation tables, as we wanted to investigate the performance and resource
utilization impact.

3. Extending Leon 3 with pipelined security-aware cache. We did not finish
the pipelined approach. We currently believe that adding an extra stage
to Leon 3 pipeline is the way to implement pipelined security-aware cache.

4. Enabling Full SecRAND. There are a number of questions that need to
be answered, the most important being context management. Which con-
text trust each other? The modified Leon 3 with MMU needs further
verification.
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Functional and Performance
Evaluation

In this chapter we evaluate both our implementation and design. Section 5.1
evaluates L-associative cache hit rate. In Section 5.2 we present a number
of builds along with comments on our design resource usage and performance.
Section 5.3 compares our cache with other pipelined FPGA caches. Last Section
5.4 includes comments on the security features of the new design.

5.1 Performance Cache Hit Rate

We follow the standard convention of compulsory, capacity and conflict misses.
We define a context miss to be one that occurs when there is a conflict of con-
text between two accesses. This can have a huge impact on cache performance
(in terms of hit rate) in case two or more conflicting applications run in paral-
lel. We discuss cache performance in two different environments. An ordinary
environment when there are few processes requiring protection against timing
attacks, and a highly-secure environment when the security-aware cache would
suffer from a large number of context misses.

5.1.1 Ordinary environment

We analyse our L-associative security-aware cache since our pipelined and ordi-
nary security-aware cache offer the same hit rate as the original security-aware
cache [23]. The L-associative security-aware cache always has a higher miss
rate than the equivalent capacity and k size security-aware cache due to all set
invalidation (compulsory miss causes between one and L evictions instead of
1). Conflict and capacity misses are on a par with other security-aware caches.
The hit rate drops with associativity (the opposite of what happens in tradi-
tional caches), as although the number of conflict misses decreases, the cache
set invalidation effectively cancels it out.

The cache can be viewed as security-aware cache of block-size L times larger
than security-aware cache but without the possibility of fetching L blocks at a
time. Contrasting the two caches the number of L-associative cache compulsory
miss > L times larger block-size security-aware cache compulsory misses due
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Figure 5.1: Security-aware cache miss rates with different architectures.

to single block fetching (L times smaller block-size). At the same time cache
suffers from the same performance degradation, a full line consisting of L blocks
is invalidated. All other cache parameters that affect hit rate are equivalent
to L times larger block-size security-aware cache. Therefore an equivalent size
security-aware cache with L times larger block-size is an upper bound on caches
hit rate.

5.1.2 Highly-secure environment

There are certain applications where there are a number of process/threads run-
ning in parallel that do not trust each other, so have to be protected against
each other in case of a timing attack. The security-aware cache performance
suffers heavily in this environment. Context misses would be common, which
means that a lot of blocks would be accessed directly from memory at the same
time evicting large numbers of valid lines. The security-aware cache should
perform worse than the L-associative security-aware cache, as the latter can be
used to store up to the L conflicting context lines. This is the same concept
that lies behind N -associative cache applied to context misses instead of conflict
misses. As the principle is the same, the speed-up for a highly secure environ-
ment (processes only trust themselves) should be similar to speed up achieved
by increasing ordinary cache associativity.

5.1.3 Simulation

We use functional simulation to compare different cache architectures in a non-
secure environment, with a benchmark based on Jacobi sparse matrix multi-
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plication. The results are shown in Figure 5.1. Results from traditional cache
and non-associative security-aware cache match the results obtained for the
security-aware caches. Our main concern is to validate the principles, not the
fine details; as such we decide not to extend CACTI or other more advanced
simulators. Our security-aware cache and pipelined security-aware cache follow
the same principles as the original security-aware cache [23]. However the L-
associative cache differs from other implementations substantially. The cache
miss rate grows along with the L parameter. The L-associative cache k param-
eter has a small impact on cache performance for k > 1. The security-aware
cache reduces conflict misses, but only when single line is evicted on a miss and
the L associativity increases the penalty for the conflict misses nearly L fold.
The experiment has shown that conflict misses are more common due to line
eviction in L-associative cache no matter what index is being used for remap-
ping (longer k). Nevertheless line remapping still improves cache performance
as can be seen in Figure 5.1, where even 4 L-associative cache outperforms all
but the ordinary fully-associative cache architectures and security-aware caches.

5.2 Performance - Cache decoder delay and re-
source usage

Our goal is to investigate the worst case scenario and to explore potential prob-
lems with our implementation. We summarize LUT utilization and achievable
frequency for Leon 3 extended with our security-aware cache in Figures 5.2 to
5.4. The LUT figures present the overhead introduced after adding security-
aware cache.

For comparison, we present the resource usage and maximum frequency for
vendor specific CAM in tables 5.1 and 5.4. We prepared a number of builds
using a Xilinx Spartan 3 FPGA chip for comparison. The chip is larger then
the Virtex 4 chip and as the builds take substantially larger amount of time we
made only a limited number of them. The results can be seen in Figure 5.6.

We only present the flip flop utilization for Spartan 3 chip. The flip flop
utilization for Virtex 4 chip follows the same pattern as for Spartan 3. We are
aware that for some systems on chip (SOC) number of available flip flops is
important.

Leon 3 with the configuration we are using utilizes around 5,000 LUTs and
1,800 flip flops and equivalent amount of BRAMs (ordinary Leon with equivalent
size cache will use as many BRAMs as modified Leon 3) for a Virtex4 chip. The
figures we present are the overhead that the security-aware cache introduces.
We use Virtex4 as it is a small chip and allowed us to prepare a large number
of builds.

The configuration files for Spartan 3 and Virtex 4 Leon 3 are provided in
Appendix B.
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Figure 5.2: Security-aware cache remapping register file cost for different cache
sizes and k parameters. Avnet ML401 board with Xilinx Virtex 4 XC4VLX25
FPGA. The quadratic growth of the number of required LUT is very clear for
any k. k value has very little impact on the amount of required LUTs.

Figure 5.3: Security-aware cache highest achievable frequencies with different
cache sizes and k parameters. Non modified Leon achieves 66-69 MHz. Avnet
ML401 board with Xilinx Virtex 4 XC4VLX25 FPGA. For cache size of 2 KB
and k = 2 we can see a clear anomaly, it is most likely due to synthesis tool
being able to extract a faster circuit for certain parameters.
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Figure 5.4: Security-aware cache LUT cost different L and cache sizes (k = 1).
Avnet ML401 board with Xilinx Virtex 4 XC4VLX25 FPGA. The cost clearly
follows a linear pattern. The L = 4 4 KB set cache was the largest security-aware
cache we were able to synthesize on Virtex 4 chip.

Figure 5.5: Security-aware cache highest achievable frequencies for different L
and cache sizes (k = 1). Avnet ML401 board with Xilinx Virtex 4 XC4VLX25
FPGA. The frequency drop is proportional to increase in cache set size. The L
parameter has very little impact on the achievable frequency.
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Figure 5.6: GR-XC3S-1800: Resource Utilization and Performance of Security-
aware cache with k=1 L=1.

The CAM properties of designs presented in Tables 5.1 to 5.4:

• SRL16 based CAM with a 16 clock-cycle write operation and a one clock-
cycle search operation.

• Block RAM based CAM with only a two clock-cycle write operation and
a one clock-cycle search operation. The block RAM based CAM also
supports an optional additional output register, which adds one clock cycle
latency to all read operations.

• The frequency provided is ”ideal”. The benchmark was performed on a
chip with CAM and minimal extra logic.

The tables on the next page present resource utilization and performance of
different CAM implementations.
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Table 5.1: Virtex-5 FPGA SRL-based CAM Implementation: [4]

Table 5.2: Virtex-5 FPGA Block RAM-based CAM Implementation: [4]

Table 5.3: Spartan-3A FPGA SRL-based CAM Implementation: [4]

Table 5.4: Spartan-3A FPGA Block RAM-based CAM Implementation: [4]
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5.2.1 LUT

The index remapping register files size grows quadratically with the cache size.
This is due to the fact that both the index and depth of cache is increased with
cache size. Although vendor provided CAM memories currently have better
resource utilization they also do follow quadratic growth.

The L parameter can increase resource efficiency when the validation tables
are unregistered, but this is not always the case. For example looking at Figure
5.4 we can see that we need more LUTs to implement a L = 4 1 KB set cache
than L = 1 4 KB set cache. The results for L-associative cache are obviously
far from satisfactory, and although the cache is unoptimized it gives a good
feedback on that the unregistered tables should only be used for evaluation
platforms. For example 4 L set 8 KB set L-associative security-aware cache (32
KB cache size) with validation tables implemented as part of tag/data arrays
would use equivalent amount of LUTs to a single set 8KB security-aware cache,
the current design over-maps on the chip resources. The associative search logic
is expensive as it is unoptimized and when L > 2 we use unregistered validation
tables(evaluated later in the Chapter).

5.2.2 Flip-flops

Our cache has flip flop utilization rate that follows the LUT demand. The flip
flop usage scales quadratically with cache size. The k parameter has a slight
effect on flip flop usage. On Viretx 4 even for 8 KB set size with L = 1 the
difference between design with k=3 and k=1 is 300 flip flops (7900 and 7600).

5.2.3 Frequency

It is obvious that the security-aware cache introduces overheads for both flip
flop and LUT resources. Our decoder is currently designed for correctness, not
speed. The cache CAM decoder has to be optimized to achieve a reasonable
performance level.

The frequency drop is quite clear when we increase cache size. The k param-
eter seems to have little impact on the performance. This should be the case as
it only widens the CAM circuit, it does not change its depth.

The frequency also drops with increased L parameter. This is due to in-
creased depth of the circuit imposed by set management logic.

There is a clear irregularity in Figure 5.3. Currently we have not investigated
the reason why cache with k = 2 performs worse than cache with k = 3 although
it is likely to be a result of Virtex 4 slice architecture.

5.2.4 Block-size

Although we do not present the impact of block-size on cache performance, we
are going to comment on it. A two-fold increase in block-size decreases the
depth of the search circuit by one level (assuming binary tree structure) and
lowers the resource requirement at exactly the same rate as decrease of cache
set size.

A cache with 4 byte block-size and 4 KB security aware cache needs basically
the same remapping circuit as 8 byte 8 KB security-aware cache. The only
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difference will be a change in Tag field width (decreased by 1 bit in case of twice
as big block-size).

Using vendor provided CAM memory:

Large security-aware caches and especially marketable designs are not intended
to be implemented using the generic flip flop/LUT based CAM. The pipelined
security-aware cache CAM FIFO buffer can be based on CAM and this is why
we investigate different customizations of the security-aware cache, as logic for
both is essentially the same. For the final design, appropriate buffer size should
be investigated as it could lengthen the critical path.

We present a study case of using a vendor provided memory.
If the chips we are using have a reasonable number of BRAMs we could

decrease the number amount of LUTs down to approximately 75% of what we
currently use. Assuming:

• We use a Spartan 3 chip.

• CAM size linearly increases with the word width.

• CAM is 1024 word deep.

• 32 byte block-size.

• Index of width (n + k) 11(k=1; n=10).

• The vendor provided CAM memory imposes pipelined design as it is a
single-cycle read design.

• Cache control logic would add to the CAM cost for security-aware cache
implementation.

Referring to the Tables 5.1 up to 5.4 it is clear that we would need around
8000 extra LUTs over the original design and around 32-34 extra BRAMs. Our
remapping register file uses around 12,000 LUTs for a 32 KB cache with k = 1
on a Spartan 3 chip. We could save around 4,000 LUTs at the expense of using
a pipelined design and a number of BRAMs.

One could argue that the BRAMs could be used to extend cache, and this can
be true in certain cases. Increasing non security-aware cache two folds increases
the BRAM requirement quadratically as well, as the cache depth has to be
increased two fold and the tag width has to be increased as well. Furthermore
the BRAM binding logic has to be included. It might be the case that half sized
security-aware cache will deliver similar or higher hit rate at smaller BRAM
and higher LUT usage. Depending on the chip parameters, it might be of an
advantage. The choice of CAM requires a careful case study depending on the
user requirements.

Taken into account that our CAM circuit is unoptimized it might be reason-
able to verify the flip flop based CAM designs. If the number of LUTs of our
current design was decreased by around 30% the design would be a tough com-
petitor for current Xilinx designs. We believe that current overhead is caused
by single bit latches and excessive routing. Although we did not measure the
critical path of our CAM, it is very likely that the critical path of Xilinx CAM
is shorter. For maximum cache performance it is of no difference as long as
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the critical path of CAM is slightly longer than the current designs critical
path(given that we use pipelined cache).

5.3 Comparison of pipelined security aware cache
with fully associative pipelined cache

A similar non-security-aware FPGA cache has been proposed by Yiannacouras
and Rose [24], which has several significant differences from our design. The
first difference is that our cache performs associative search only on indices.
Associative search is both slow and resource wise very expensive, by decreasing
the width of CAM to n+k instead of n+t (t is tag width, t >> k) bits. Using
a tag array implemented as BRAMs, we have a smaller and therefore faster
design, yet offering similar hit rate [23].

The second difference is that our cache can use both write through and write
back policy. First one requires less logic and the second is only really suitable
for non L-associative caches. In case write back policy is used we implement
the tag/data/id array using dual port BRAMs. Whenever a collision occurs
between the line written to the cache and one that is currently being stored, we
read the data from the cache to write it back, and we use the second port to
store the new data. The indices we need to reference the arrays are known as
they are stored within the CAMs.

5.4 Security

Our security-aware cache and pipelined security-aware caches follow the same
principles as the original security-aware cache which has been proved to offer
enhanced security [23]. The L-associative security-aware cache treats tag misses
differently. The miss is a tag miss that involves protected cache lines and there
are sets within the line that are not protected by context bits. We replace them
with the new block, effectively treating the miss as a tag miss. The miss is a
tag miss that involves protected cache lines, and there are no sets within the
line with unprotected context. We treat the miss as an ordinary context miss in
a security-aware cache (evicting randomly selected line and accessing the data
directly from memory). The proposed SecRAND randomization mechanism
satisfies the security criteria stated in [23] that if an attacker accesses line i
that causes an eviction, an eviction can be observed at any line with equal
probability. Thus achieves zero channel capacity.

Proving Modified processors security features

The processor testing suite is currently not designed to take the security-aware
features into account thus we present a general study case of an attempted cache
timing attack and how it is being prevented by the security-aware cache.

The AES cache-timing attack exploits the following fact(as described in
Chapter 2).

”Cache-Collision Assumption. For any pair of lookups i, j, given
a large number of random AES encryptions with the same key, the
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average time when < i >=< j > will be less than the average time
when < i >! =< j >.” [10]

This concept of cache-timing attack can be further generalized to all cache
timing attacks.

We assume:

• Leon 3 is running any operating system with MMU enabled. Without
MMU processor is modified with context switching mechanism as de-
scribed in Chapter 4. Therefore has the same secure against cache timing
attacks.

• The user process A with context ID = A stored within the processors
data-cache.

• Malicious process B is trying to perform a timing attack on line with index
I containing part of the protected information.

We take into account any possible attack. We consider attack against one
cache line as the principle can be generalized to any case. The code is executed
by a malicious process a number of times in order to calculate and compare
the average response time. Be it service, program or any other. The cache
timing attack would involve executing any one of the following instructions and
comparing the execution times.

• index(addr1) = index(addr2).

• LD addr1, reg1. Any memory loading instruction(beginning with LD).

• ST addr1, reg1. Any store to memory instruction(beginning with ST).

Timing attacks exploit the response time of the system, which varies and
allows the attacker to determine whether a given cache line is cached or not.
This is the information that the attack is trying to obtain, how it is using it is
irrelevant and can vary between the attacks. To prevent the attack we have to
make the response time for < i >=< j > and < i >! =< j > indistinguishable
if i and j are owned by different processes.

Non-modified Leon 3

In case of non-modified Leon 3 any miss(tag or context) will results in a line
eviction and a replacement by a new line. Both context and tag miss results in
the same state pattern. The evicted line is the one with the matching index.
Therefore it is predictable and exploitable by cache-timing attacks.
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Modified Leon 3

• Tag miss, In case of a tag miss without a context miss match, the index
matching line is replaced. No information is leaked.

• Index miss, Whenever a index miss occurs, a randomly chosen line is re-
placed. The victim is randomly chosen and does not leak any information
on cache state.

• Context miss, Whenever a context miss occurs, the cached line will not be
evicted. Instead a word is fetched from memory, and a randomly chosen
line is evicted. The procedure follows the same state pattern and as such
timing-wise is indistinguishable from an ordinary tag miss. The attacker
can not verify whether the line is cached or not.

From attackers perspective it is impossible to distinguish the evicted line
index.

5.5 Summary

In this chapter we evaluated the performance of modified Leon 3 processor.
Clearly the elongated critical path problem has to be countered by employing
the pipelined cache design. Currently for larger caches the frequency impact is
significant.

We have shown that the increase of size of the remapping register file is
quadratic with respect to cache set size increase. This holds for both the sum-
marized vendor provided CAM memories and our circuits.

We also investigated the impact of k and L parameters on the security-aware
cache hit rate. What the current figures tell us is that we should only make
use of registered validation tables. Also the k parameter can be easily used
to extend the cache by 3 bits, and most likely more, without severe resource
overhead.

We summarized our design by showing that it is secure.
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Future work and
conclusions

Future work

There are a number of things that we feel should be done. We plan to extend
the Leon 3 suite to support all of the caches presented above with a full range
of available parameters for customization. The task is to implement them in an
efficient and portable manner making the cache attractive to potential users.
This includes finishing the pipelined design and making use of vendor provided
CAM memories. The obvious issue with the pipelined security-aware cache is
the difficulty in modifying the existing designs. The modification should keep
or even improve the IPC metric of the processor.

Having all of the designs implemented we plan to install the full SecRAND
algorithm with MMU enabled. This would allows us to devise a cache timing
attack and test the caches security features on an actual application. It would
have to be done on an actual FPGA based system, simulator is not suitable due
to the amount of time such an attack requires. Having a Leon 3 modified system
running we also plan to run a number of community recognized benchmarks to
further verify Leon 3 performance results.

There are a number of potential performance bottlenecks that have to be
verified. An extension to Simplescalar, or CACTI would allow us to verify
cache functional performance. The more advanced extended simulator would
be a perfect performance evaluation platform for any of the new architectures.
Our current functional simulator was only intended to give us a quick insight
on the new architecture performance. If any new issues arise it could still be
used to verify whether a solution is worth any further investigation.

One of the parameters which we did not verify is the buffer size in pipelined
security-aware cache. The performance impact of buffer size should be investi-
gated both from theoretical and practical point of view. The theoretical aspect
should be modelled using queuing theory. Modelling of impact of CAM FIFO
buffer size on performance and resource utilization is an important step. This
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should lead to an evaluation tool which would be provided along with extended
Leon 3 software suite.

The two different implementations of FIFO CAM buffers used in pipelined
security-aware cache should also be investigated. Although the more compli-
cated control might be more resource demanding, in case of certain write/read
patterns it could offer a serious performance advantage. We only have a very
rough intuition on this manner. Currently we believe that the cache control
implementation should depend on the CAM memory (not FIFO CAM as this
should be based on generic CAM) parameters, more precisely the M parameter.
For large M the buffer size should be appropriately extended, and then the more
complex control logic could be offer a serious performance advantage.

We plan to design a processor architecture and memory management unit
that would address the pipelined cache problem. The challenge is to develop
a processor with a cache that will be only slightly more resource-demanding
compared to existing processors, while delivering superior power, speed and
security. The architecture could be based on any of the current ISA, even be a
development of Leon 3 or the new Leon 4 processor.

We would like to evaluate a more pipelined design. One where the index
remapping circuit is pipelined in a similar fashion to what Pagiamtzis and
Sheikholeslami [20] proposed. The security-aware cache would become a highly
pipelined design. We did not evaluate the power consumption of current design,
but is is likely that hierarchical search would surpass it. There are a number of
complications with such an approach and they would have to be evaluated. For
example increased complexity of the design.

Conclusions

Our results indicate that security-aware cache architecture shows promise for
FPGA implementation. One question we ask is whether our cache would match
performance expectations when implemented using optimized CAM memories.
Is it worth spending a quarter of chip resources to increase security? We believe
that it is. Modern soft processors do not fully exploit the potential offered by
FPGA technology in terms of embedded flip flops, and we feel that one way
to efficiently utilize them is by using a security-aware cache and other highly
pipelined architectures.
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Appendix A

Guide: How to use
Security-aware cache?

The security-aware cache has several parameters and features what results in
a large number of possible configurations. This chapter is a guide on how to
select the parameter depending on different performance and implementation
goals. By resource usage we understand the resources used to implement CAM
memory and by performance the combined impact of hit rate and achievable
frequency. The guide is based on our findings discussed in Chapter 5 along with
Wang and Lee paper [23]. The cache configuration utility for modified Leon 3
is presented in Figure A.1. We discuss the impact of individual parameters on
cache performance.

We try to clarify the impact of the following parameters on cache resource
usage and performance:

• k - The number of bits used to extend index.

• L - The number of sets.

• b - Block-size.

• set size - self explanatory.

In case user is time constrained the non-pipelined security aware cache is
recommended. Although design performance will most likely be degraded L-
associative principle could lower the resource increased impact. We do not
recommend unregistered validation tables, as our study has shown although
easier to implement it is a resource demanding solution.

For applications that require high performance and the implementation is
not as time constrained, our pipelined security-aware cache should be used.
It offers the same cache hit rate while having a higher clock frequency and
lower resource usage than a fully associative cache. The resource utilization and
performance for a specific customized processor can be balanced by choosing k
and the cache depth carefully. The L-associative principle can be applied here
as well, if resource utilization becomes an issue.
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Figure A.1: Modified Leon 3 cache configuration utility. Currently Several
constraints are imposed on the design when using the extended cache. The
cache can be fully configured using the Leon 3 configuration utility.

In case one is more concerned with cache size and security than performance,
we offer the L-associative cache. By balancing the cache depth, L and k, the
L-associative security-aware cache can be customized to use only (1/L) of the
resources of an ordinary security-aware cache of equal size, at the cost of a
marginally lower hit rate. By varying L in this associative cache, one would also
expect a rise in its clock frequency with respect to the non-associative security-
aware cache, if the remapping register file was part of the critical path. This
requires a careful analysis of specific applications, since the effect of increased
miss rate might offset any performance gain.

The rest of the chapters serves as a guide with visualisation of impact of
different cache parameters on both resource usage and performance.
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Figure A.2: Theoretical impact of k parameter on performance. The impact is
non trivial and is a combination of the device achievable frequency and hit rate
increase. Depending when (and if) the cache index remapping circuit becomes
the critical path the k parameter impact on the design achievable frequency will
vary. The frequency will decrease at approximately logarithmic rate and depend
on both the cache size and k, due to binary tree structure of CAM matching
circuit. The hit rate improvement is included in the graph, it is based on results
obtained and discussed in the Chapter 5. Curves show how performance varies
with k depending on when the remapping circuit becomes the critical path.

Figure A.3: Theoretical impact of k parameter on resource usage. The relation-
ship is linear, as k extends each register linearly. Every comparison is extended
by k extra bits what also implies a linear increase in resource usage. This holds
for both BRAM, SLR and LUT implementations. Careful study should be per-
formed in order to maximize resource utilization. Very often CAM memories
are implemented by vendors so that they have best efficiency when words have
certain width at certain depth.
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Figure A.4: Theoretical impact of L parameter on performance. What we
can see on the graph is performance degradation of cache with respect to the
increased associativity. Both the unregistered and registered validation table
based caches are included. It is quite clear that unregistered validation tables
should be avoided.

Figure A.5: Theoretical impact of L parameter on resource usage. In ideal
situation when the validation table is implemented along with the rest of tag
field the L parameter has a linear relationship with resource utilization of cache.
The extra overhead in terms of logic required to determine set invalidation is
negligible. When unregistered storage is unavailable, L-associative cache is not
recommended(refer to Chapter 5). The L-associative cache when implemented
with unregistered validation tables can be more efficient than non-associative
cache but is far less likely.

78



Appendix A. Guide: How to use Security-aware cache?

Figure A.6: Theoretical Impact of block-size on resource usage. Increasing the
block-size decreases the amount of required remapping registers exponentially.
This is due to the fact that increasing block-size twice increases the amount of
lines per registers two fold.

Figure A.7: By increasing cache size we exponentially increase the resources
required to implement the CAM circuit. This is due to the fact that we do
not only increase the index width but we also increase the depth of the CAM
memory.
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Leon 3 Configuration Files

Listing B.1: leon3-xilinx-ml403 sample configuration file.

1
2 −−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 −− LEON3 Demonstration des ign t e s t bench con f i gu ra t i on
4 −− Copyright (C) 2009 Aero f l ex Gai s l e r
5 −−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6
7
8 l ibrary techmap ;
9 use techmap . gencomp . a l l ;

10
11 package c o n f i g i s
12 −− Technology and s yn t h e s i s op t ions
13 constant CFG FABTECH : i n t e g e r := v i r t e x 4 ;
14 constant CFG MEMTECH : i n t e g e r := v i r t e x 4 ;
15 constant CFG PADTECH : i n t e g e r := v i r t e x 4 ;
16 constant CFG NOASYNC : i n t e g e r := 0 ;
17 constant CFG SCAN : i n t e g e r := 0 ;
18 −− Clock generator
19 constant CFG CLKTECH : i n t e g e r := v i r t e x 4 ;
20 constant CFG CLKMUL : i n t e g e r := (13) ;
21 constant CFG CLKDIV : i n t e g e r := (20) ;
22 constant CFG OCLKDIV : i n t e g e r := 2 ;
23 constant CFG PCIDLL : i n t e g e r := 0 ;
24 constant CFG PCISYSCLK: i n t e g e r := 0 ;
25 constant CFG CLK NOFB : i n t e g e r := 0 ;
26 −− LEON3 processor core
27 constant CFG LEON3 : i n t e g e r := 1 ;
28 constant CFG NCPU : i n t e g e r := (1) ;
29 constant CFG NWIN : i n t e g e r := (2) ;
30 constant CFG V8 : i n t e g e r := 0 ;
31 constant CFG MAC : i n t e g e r := 0 ;
32 constant CFG BP : i n t e g e r := 0 ;
33 constant CFG SVT : i n t e g e r := 0 ;
34 constant CFG RSTADDR : i n t e g e r := 16#00000#;
35 constant CFG LDDEL : i n t e g e r := (1) ;
36 constant CFG NWP : i n t e g e r := (1) ;
37 constant CFG PWD : i n t e g e r := 0∗2 ;
38 constant CFG FPU : i n t e g e r := 0 + 16∗0 ;
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39 constant CFG GRFPUSH : i n t e g e r := 0 ;
40 constant CFG ICEN : i n t e g e r := 0 ;
41 constant CFG ISETS : i n t e g e r := 1 ;
42 constant CFG ISETSZ : i n t e g e r := 1 ;
43 constant CFG ILINE : i n t e g e r := 8 ;
44 constant CFG IREPL : i n t e g e r := 0 ;
45 constant CFG ILOCK : i n t e g e r := 0 ;
46 constant CFG ILRAMEN : i n t e g e r := 0 ;
47 constant CFG ILRAMADDR: i n t e g e r := 16#8E#;
48 constant CFG ILRAMSZ : i n t e g e r := 1 ;
49 constant CFG DCEN : i n t e g e r := 1 ;
50 constant CFG DSETS : i n t e g e r := 1 ;
51 constant CFG DSETSZ : i n t e g e r := 32 ;
52 constant CFG DLINE : i n t e g e r := 8 ;
53 constant CFG DREPL : i n t e g e r := 0 ;
54 constant CFG DLOCK : i n t e g e r := 0 ;
55 constant CFG DSNOOP : i n t e g e r := 0 + 0 + 4∗0 ;
56 constant CFG DKSIZE : i n t e g e r := 2 ;
57 constant CFG DFIXED : i n t e g e r := 16#0#;
58 constant CFG DLRAMEN : i n t e g e r := 0 ;
59 constant CFG DLRAMADDR: i n t e g e r := 16#8F#;
60 constant CFG DLRAMSZ : i n t e g e r := 1 ;
61 constant CFGMMUEN : i n t e g e r := 0 ;
62 constant CFG ITLBNUM : i n t e g e r := 2 ;
63 constant CFG DTLBNUM : i n t e g e r := 2 ;
64 constant CFG TLB TYPE : i n t e g e r := 1 + 0∗2 ;
65 constant CFG TLB REP : i n t e g e r := 1 ;
66 constant CFG MMU PAGE : i n t e g e r := 0 ;
67 constant CFG DSU : i n t e g e r := 0 ;
68 constant CFG ITBSZ : i n t e g e r := 0 ;
69 constant CFG ATBSZ : i n t e g e r := 0 ;
70 constant CFG LEON3FT EN : i n t e g e r := 0 ;
71 constant CFG IUFT EN : i n t e g e r := 0 ;
72 constant CFG FPUFT EN : i n t e g e r := 0 ;
73 constant CFG RF ERRINJ : i n t e g e r := 0 ;
74 constant CFG CACHE FT EN : i n t e g e r := 0 ;
75 constant CFG CACHE ERRINJ : i n t e g e r := 0 ;
76 constant CFG LEON3 NETLIST : i n t e g e r := 0 ;
77 constant CFG DISAS : i n t e g e r := 0 + 0 ;
78 constant CFG PCLOW : i n t e g e r := 2 ;
79 −− AMBA s e t t i n g s
80 constant CFG DEFMST : i n t e g e r := (0) ;
81 constant CFG RROBIN : i n t e g e r := 0 ;
82 constant CFG SPLIT : i n t e g e r := 0 ;
83 constant CFG AHBIO : i n t e g e r := 16#FFF#;
84 constant CFG APBADDR : i n t e g e r := 16#800#;
85 constant CFG AHB MON : i n t e g e r := 0 ;
86 constant CFG AHB MONERR : i n t e g e r := 0 ;
87 constant CFG AHB MONWAR : i n t e g e r := 0 ;
88 −− DSU UART
89 constant CFG AHB UART : i n t e g e r := 0 ;
90 −− JTAG based DSU in t e r f a c e
91 constant CFG AHB JTAG : i n t e g e r := 0 ;
92 −− Ethernet DSU
93 constant CFG DSU ETH : i n t e g e r := 0 + 0 ;
94 constant CFG ETH BUF : i n t e g e r := 1 ;
95 constant CFG ETH IPM : i n t e g e r := 16#C0A8#;
96 constant CFG ETH IPL : i n t e g e r := 16#0033#;
97 constant CFG ETH ENM : i n t e g e r := 16#020000#;
98 constant CFG ETH ENL : i n t e g e r := 16#000009#;
99 −− LEON2 memory c o n t r o l l e r

100 constant CFG MCTRL LEON2 : i n t e g e r := 1 ;
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101 constant CFG MCTRL RAM8BIT : i n t e g e r := 0 ;
102 constant CFG MCTRL RAM16BIT : i n t e g e r := 0 ;
103 constant CFG MCTRL 5CS : i n t e g e r := 0 ;
104 constant CFG MCTRL SDEN : i n t e g e r := 0 ;
105 constant CFG MCTRL SEPBUS : i n t e g e r := 0 ;
106 constant CFG MCTRL INVCLK : i n t e g e r := 0 ;
107 constant CFG MCTRL SD64 : i n t e g e r := 0 ;
108 constant CFG MCTRL PAGE : i n t e g e r := 0 + 0 ;
109 −− DDR con t r o l l e r
110 constant CFG DDRSP : i n t e g e r := 1 ;
111 constant CFG DDRSP INIT : i n t e g e r := 1 ;
112 constant CFG DDRSP FREQ : i n t e g e r := (100) ;
113 constant CFG DDRSP COL : i n t e g e r := (9) ;
114 constant CFG DDRSP SIZE : i n t e g e r := (64) ;
115 constant CFG DDRSP RSKEW : i n t e g e r := (0) ;
116 −− SSRAM con t r o l l e r
117 constant CFG SSCTRL : i n t e g e r := 0 ;
118 constant CFG SSCTRLP16 : i n t e g e r := 0 ;
119 −− AHB s t a t u s r e g i s t e r
120 constant CFG AHBSTAT : i n t e g e r := 0 ;
121 constant CFG AHBSTATN : i n t e g e r := 1 ;
122 −− AHB ROM
123 constant CFG AHBROMEN : i n t e g e r := 0 ;
124 constant CFG AHBROPIP : i n t e g e r := 0 ;
125 constant CFG AHBRODDR : i n t e g e r := 16#000#;
126 constant CFGROMADDR : i n t e g e r := 16#000#;
127 constant CFGROMMASK : i n t e g e r := 16#E00# + 16#000#;
128 −− AHB RAM
129 constant CFG AHBRAMEN : i n t e g e r := 0 ;
130 constant CFG AHBRSZ : i n t e g e r := 1 ;
131 constant CFG AHBRADDR : i n t e g e r := 16#A00#;
132
133 −− Gais l e r Ethernet core
134 constant CFG GRETH : i n t e g e r := 0 ;
135 constant CFG GRETH1G : i n t e g e r := 0 ;
136 constant CFG ETH FIFO : i n t e g e r := 8 ;
137
138 −− UART 1
139 constant CFG UART1 ENABLE : i n t e g e r := 0 ;
140 constant CFG UART1 FIFO : i n t e g e r := 1 ;
141
142 −− LEON3 in t e r r up t c o n t r o l l e r
143 constant CFG IRQ3 ENABLE : i n t e g e r := 0 ;
144 constant CFG IRQ3 NSEC : i n t e g e r := 0 ;
145
146 −− Modular t imer
147 constant CFG GPT ENABLE : i n t e g e r := 0 ;
148 constant CFG GPT NTIM : i n t e g e r := 1 ;
149 constant CFG GPT SW : i n t e g e r := 8 ;
150 constant CFG GPT TW : i n t e g e r := 8 ;
151 constant CFG GPT IRQ : i n t e g e r := 8 ;
152 constant CFG GPT SEPIRQ : i n t e g e r := 0 ;
153 constant CFG GPT WDOGEN : i n t e g e r := 0 ;
154 constant CFG GPT WDOG : i n t e g e r := 16#0#;
155
156 −− GPIO port
157 constant CFG GRGPIO ENABLE : i n t e g e r := 0 ;
158 constant CFG GRGPIO IMASK : i n t e g e r := 16#0000#;
159 constant CFG GRGPIO WIDTH : i n t e g e r := 1 ;
160
161 −− I2C master
162 constant CFG I2C ENABLE : i n t e g e r := 0 ;
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163
164 −− VGA and PS2/ i n t e r f a c e
165 constant CFG KBD ENABLE : i n t e g e r := 0 ;
166 constant CFG VGA ENABLE : i n t e g e r := 0 ;
167 constant CFG SVGA ENABLE : i n t e g e r := 0 ;
168
169 −− GRLIB debugging
170 constant CFG DUART : i n t e g e r := 0 ;
171 end ;

Listing B.2: leon3-xilinx-xc3sd-1800 sample configuration file.
1
2 −−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 −− LEON3 Demonstration des ign t e s t bench con f i gu ra t i on
4 −− Copyright (C) 2009 Aero f l ex Gai s l e r
5 −−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6
7
8 l ibrary techmap ;
9 use techmap . gencomp . a l l ;

10
11 package c o n f i g i s
12 −− Technology and s yn t h e s i s op t ions
13 constant CFG FABTECH : i n t e g e r := spartan3 ;
14 constant CFG MEMTECH : i n t e g e r := spartan3 ;
15 constant CFG PADTECH : i n t e g e r := spartan3 ;
16 constant CFG NOASYNC : i n t e g e r := 0 ;
17 constant CFG SCAN : i n t e g e r := 0 ;
18 −− Clock generator
19 constant CFG CLKTECH : i n t e g e r := spartan3 ;
20 constant CFG CLKMUL : i n t e g e r := (6) ;
21 constant CFG CLKDIV : i n t e g e r := (20) ;
22 constant CFG OCLKDIV : i n t e g e r := 2 ;
23 constant CFG PCIDLL : i n t e g e r := 0 ;
24 constant CFG PCISYSCLK: i n t e g e r := 0 ;
25 constant CFG CLK NOFB : i n t e g e r := 0 ;
26 −− LEON3 processor core
27 constant CFG LEON3 : i n t e g e r := 1 ;
28 constant CFG NCPU : i n t e g e r := (1) ;
29 constant CFG NWIN : i n t e g e r := (8) ;
30 constant CFG V8 : i n t e g e r := 2 ;
31 constant CFG MAC : i n t e g e r := 0 ;
32 constant CFG BP : i n t e g e r := 0 ;
33 constant CFG SVT : i n t e g e r := 0 ;
34 constant CFG RSTADDR : i n t e g e r := 16#00000#;
35 constant CFG LDDEL : i n t e g e r := (1) ;
36 constant CFG NWP : i n t e g e r := (0) ;
37 constant CFG PWD : i n t e g e r := 0∗2 ;
38 constant CFG FPU : i n t e g e r := 0 + 16∗0 ;
39 constant CFG GRFPUSH : i n t e g e r := 0 ;
40 constant CFG ICEN : i n t e g e r := 0 ;
41 constant CFG ISETS : i n t e g e r := 1 ;
42 constant CFG ISETSZ : i n t e g e r := 1 ;
43 constant CFG ILINE : i n t e g e r := 8 ;
44 constant CFG IREPL : i n t e g e r := 0 ;
45 constant CFG ILOCK : i n t e g e r := 0 ;
46 constant CFG ILRAMEN : i n t e g e r := 0 ;
47 constant CFG ILRAMADDR: i n t e g e r := 16#8E#;
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48 constant CFG ILRAMSZ : i n t e g e r := 1 ;
49 constant CFG DCEN : i n t e g e r := 1 ;
50 constant CFG DSETS : i n t e g e r := 1 ;
51 constant CFG DSETSZ : i n t e g e r := 2 ;
52 constant CFG DLINE : i n t e g e r := 8 ;
53 constant CFG DREPL : i n t e g e r := 0 ;
54 constant CFG DLOCK : i n t e g e r := 0 ;
55 constant CFG DSNOOP : i n t e g e r := 1 + 0 + 4∗0 ;
56 constant CFG DKSIZE : i n t e g e r := 1 ; −−−∗∗∗Maciej ∗∗∗ dk s i z e added
57 constant CFG DFIXED : i n t e g e r := 16#0#;
58 constant CFG DLRAMEN : i n t e g e r := 0 ;
59 constant CFG DLRAMADDR: i n t e g e r := 16#8F#;
60 constant CFG DLRAMSZ : i n t e g e r := 1 ;
61 constant CFGMMUEN : i n t e g e r := 1 ;
62 constant CFG ITLBNUM : i n t e g e r := 8 ;
63 constant CFG DTLBNUM : i n t e g e r := 8 ;
64 constant CFG TLB TYPE : i n t e g e r := 0 + 1∗2 ;
65 constant CFG TLB REP : i n t e g e r := 0 ;
66 constant CFG MMU PAGE : i n t e g e r := 0 ;
67 constant CFG DSU : i n t e g e r := 1 ;
68 constant CFG ITBSZ : i n t e g e r := 4 ;
69 constant CFG ATBSZ : i n t e g e r := 4 ;
70 constant CFG LEON3FT EN : i n t e g e r := 0 ;
71 constant CFG IUFT EN : i n t e g e r := 0 ;
72 constant CFG FPUFT EN : i n t e g e r := 0 ;
73 constant CFG RF ERRINJ : i n t e g e r := 0 ;
74 constant CFG CACHE FT EN : i n t e g e r := 0 ;
75 constant CFG CACHE ERRINJ : i n t e g e r := 0 ;
76 constant CFG LEON3 NETLIST : i n t e g e r := 0 ;
77 constant CFG DISAS : i n t e g e r := 0 + 0 ;
78 constant CFG PCLOW : i n t e g e r := 2 ;
79 −− AMBA s e t t i n g s
80 constant CFG DEFMST : i n t e g e r := (0) ;
81 constant CFG RROBIN : i n t e g e r := 1 ;
82 constant CFG SPLIT : i n t e g e r := 1 ;
83 constant CFG AHBIO : i n t e g e r := 16#FFF#;
84 constant CFG APBADDR : i n t e g e r := 16#800#;
85 constant CFG AHB MON : i n t e g e r := 0 ;
86 constant CFG AHB MONERR : i n t e g e r := 0 ;
87 constant CFG AHB MONWAR : i n t e g e r := 0 ;
88 −− DSU UART
89 constant CFG AHB UART : i n t e g e r := 0 ;
90 −− JTAG based DSU in t e r f a c e
91 constant CFG AHB JTAG : i n t e g e r := 1 ;
92 −− Ethernet DSU
93 constant CFG DSU ETH : i n t e g e r := 0 + 0 ;
94 constant CFG ETH BUF : i n t e g e r := 1 ;
95 constant CFG ETH IPM : i n t e g e r := 16#C0A8#;
96 constant CFG ETH IPL : i n t e g e r := 16#0033#;
97 constant CFG ETH ENM : i n t e g e r := 16#020000#;
98 constant CFG ETH ENL : i n t e g e r := 16#000009#;
99 −− LEON2 memory c o n t r o l l e r

100 constant CFG MCTRL LEON2 : i n t e g e r := 1 ;
101 constant CFG MCTRL RAM8BIT : i n t e g e r := 1 ;
102 constant CFG MCTRL RAM16BIT : i n t e g e r := 0 ;
103 constant CFG MCTRL 5CS : i n t e g e r := 0 ;
104 constant CFG MCTRL SDEN : i n t e g e r := 0 ;
105 constant CFG MCTRL SEPBUS : i n t e g e r := 0 ;
106 constant CFG MCTRL INVCLK : i n t e g e r := 0 ;
107 constant CFG MCTRL SD64 : i n t e g e r := 0 ;
108 constant CFG MCTRL PAGE : i n t e g e r := 0 + 0 ;
109 −− DDR con t r o l l e r
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110 constant CFG DDR2SP : i n t e g e r := 1 ;
111 constant CFG DDR2SP INIT : i n t e g e r := 1 ;
112 constant CFG DDR2SP FREQ : i n t e g e r := (125) ;
113 constant CFG DDR2SP TRFC : i n t e g e r := (130) ;
114 constant CFG DDR2SP DATAWIDTH : i n t e g e r := (32) ;
115 constant CFG DDR2SP COL : i n t e g e r := (10) ;
116 constant CFG DDR2SP SIZE : i n t e g e r := (128) ;
117 constant CFG DDR2SP DELAY0 : i n t e g e r := (0) ;
118 constant CFG DDR2SP DELAY1 : i n t e g e r := (0) ;
119 constant CFG DDR2SP DELAY2 : i n t e g e r := (0) ;
120 constant CFG DDR2SP DELAY3 : i n t e g e r := (0) ;
121 constant CFG DDR2SP DELAY4 : i n t e g e r := (0) ;
122 constant CFG DDR2SP DELAY5 : i n t e g e r := (0) ;
123 constant CFG DDR2SP DELAY6 : i n t e g e r := (0) ;
124 constant CFG DDR2SP DELAY7 : i n t e g e r := (0) ;
125 constant CFG DDR2SP NOSYNC : i n t e g e r := 0 ;
126 −− AHB ROM
127 constant CFG AHBROMEN : i n t e g e r := 0 ;
128 constant CFG AHBROPIP : i n t e g e r := 0 ;
129 constant CFG AHBRODDR : i n t e g e r := 16#000#;
130 constant CFGROMADDR : i n t e g e r := 16#000#;
131 constant CFGROMMASK : i n t e g e r := 16#E00# + 16#000#;
132 −− AHB RAM
133 constant CFG AHBRAMEN : i n t e g e r := 0 ;
134 constant CFG AHBRSZ : i n t e g e r := 1 ;
135 constant CFG AHBRADDR : i n t e g e r := 16#A00#;
136 −− Gais l e r Ethernet core
137 constant CFG GRETH : i n t e g e r := 0 ;
138 constant CFG GRETH1G : i n t e g e r := 0 ;
139 constant CFG ETH FIFO : i n t e g e r := 8 ;
140 −− UART 1
141 constant CFG UART1 ENABLE : i n t e g e r := 1 ;
142 constant CFG UART1 FIFO : i n t e g e r := 1 ;
143 −− LEON3 in t e r r up t c o n t r o l l e r
144 constant CFG IRQ3 ENABLE : i n t e g e r := 1 ;
145 constant CFG IRQ3 NSEC : i n t e g e r := 0 ;
146
147 −− Modular t imer
148 constant CFG GPT ENABLE : i n t e g e r := 1 ;
149 constant CFG GPT NTIM : i n t e g e r := (2) ;
150 constant CFG GPT SW : i n t e g e r := (8) ;
151 constant CFG GPT TW : i n t e g e r := (32) ;
152 constant CFG GPT IRQ : i n t e g e r := (8) ;
153 constant CFG GPT SEPIRQ : i n t e g e r := 1 ;
154 constant CFG GPT WDOGEN : i n t e g e r := 0 ;
155 constant CFG GPT WDOG : i n t e g e r := 16#0#;
156
157 −− GPIO port
158 constant CFG GRGPIO ENABLE : i n t e g e r := 1 ;
159 constant CFG GRGPIO IMASK : i n t e g e r := 16#0000#;
160 constant CFG GRGPIO WIDTH : i n t e g e r := (8) ;
161
162 −− SVGA con t r o l l e r
163 constant CFG SVGA ENABLE : i n t e g e r := 0 ;
164
165 −− SPI memory c o n t r o l l e r
166 constant CFG SPIMCTRL : i n t e g e r := 0 ;
167 constant CFG SPIMCTRL SDCARD : i n t e g e r := 0 ;
168 constant CFG SPIMCTRL READCMD : i n t e g e r := 16#0#;
169 constant CFG SPIMCTRL DUMMYBYTE : i n t e g e r := 0 ;
170 constant CFG SPIMCTRL DUALOUTPUT : i n t e g e r := 0 ;
171 constant CFG SPIMCTRL SCALER : i n t e g e r := 1 ;
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172 constant CFG SPIMCTRL ASCALER : i n t e g e r := 1 ;
173 constant CFG SPIMCTRL PWRUPCNT : i n t e g e r := 0 ;
174
175 −− SPI c on t r o l l e r
176 constant CFG SPICTRL ENABLE : i n t e g e r := 0 ;
177 constant CFG SPICTRL SLVS : i n t e g e r := 1 ;
178 constant CFG SPICTRL FIFO : i n t e g e r := 1 ;
179 constant CFG SPICTRL SLVREG : i n t e g e r := 0 ;
180 constant CFG SPICTRL ODMODE : i n t e g e r := 0 ;
181 constant CFG SPICTRL AM : i n t e g e r := 0 ;
182 constant CFG SPICTRL ASEL : i n t e g e r := 0 ;
183
184 −− GRLIB debugging
185 constant CFG DUART : i n t e g e r := 0 ;
186 end ;
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Appendix C

Optimized security-aware
cache decoder

As multiplexing logic can be very expensive we re-reorder the buffer/CAM/ran-
dom number multiplexing logic so that the output from CAM is multiplexed
in the last stage. The hit bit generation logic should have a shorter path than
CAM index output. Otherwise the old circuit can be used.
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Figure C.1: The security-aware cache decoder with a shorter critical path.
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