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Abstract

In our modern, networked world the software, protocols and algorithms involved
in communication are among some of the most critical parts of an operating system.
The core communication software in most modern systems is the network stack, but
its basic monolithic design and functioning has remained unchanged for decades.

Here we present an adaptable user-space network stack, as an addition to my
operating system Whitix. The ideas and concepts presented in this report, however,
are applicable to any mainstream operating system. We show how re-imagining the
whole architecture of networking in a modern operating system offers numerous
benefits for stack-application interactivity, protocol extensibility, and improvements
in network throughput and latency.
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Chapter 1
Introduction

In this report, I present an adaptable interactive TCP/IP user-space network stack
as an addition to my operating system Whitix.1 As well as decoupling the policy
of producing and processing packets from the mechanism of sending and receiving
them, it scales and adapts better than existing solutions as well as adhering strongly
to the end-to-end principle of the Internet. First of all, I will list the current problems
and limitations in the field of network stacks, before proposing my solution in detail
and the original contributions that I will make, along with a list of objectives that
need to be achieved to satisfy the project goals.

1.1 Motivation

In our modern, networked world the software, protocols and algorithms involved
in communication are among some of the most critical parts of an operating system.
The core communication software in most modern systems is the network stack, but
its basic monolithic design and functionality appears to have remained unchanged
since the 1970s. With the progress in processor technology aiming towards multi-
core and many-core systems,[38] there is a need for a new network stack design
to replace the current monolithic stacks of today with (what I believe to be) their
restricted legacy designs. First of all, I shall summarize the problems inherent in
current implementations.

1.1.1 Adaptability and interactivity

The first major problem is the lack of adaptability in and feedback from the net-
work stack in general. Although certain transport protocols like TCP can adapt
their data transmission algorithms (through mechanisms such as window scaling
and congestion control) to suit the circumstances, this useful information, which

1Whitix is a 32-bit Unix-like operating system that I wrote from scratch. It is detailed in Section 1.2.
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1.1. MOTIVATION CHAPTER 1. INTRODUCTION

includes estimates about the round-trip time and other knowledge about the net-
work, is lost once the socket is closed or the application exits – most estimates
would be very useful in future connections.[5] Applications receive no feedback
on the state of the network from the lower layers, and can unknowingly flood a
congested network with packets. Applications also vary in their usage patterns; a
SSH session consisting mainly of single keystrokes will need a different strategy for
data transmission compared to a large file transferred over a HTTP session – the
exact use of TCP and network bandwidth varies by protocol.[9]

Wouldn’t it be useful for the network stack to offer feedback to the application,
so that in times of network congestion, the application could adapt accordingly?
This would allow the application to be more efficient with bandwidth and offer
a better user experience in all network conditions. Such a symbiotic relationship
between the application and the network could minimize delays, network conges-
tion and reduce temporal disturbance (i.e. "buffering") to the user. If we move
the network stack into userspace, we can let the application know when to throttle
TCP traffic. This would really help with network congestion; in current imple-
mentations, there is no way of notifying interested stakeholders about network
congestion involving a particular host.

Another problem with current network stacks is that they treat their incom-
ing data as a stream of bytes, leaving error checking, protocol verification and
other networking-related issues to the application. Just as some applications have
predictable network usage patterns, some applications have predictable network
protocols. For instance, every HTTP session over a TCP connection comprises mes-
sages with a defined request and response format. If we moved the network stack
down to userspace, we could place high-level network functions like validation
and verification at that level as a common userspace library. By letting the network
stack handle verification of packets in a generic way, this could lead to much more
secure, smaller and safer code.

1.1.2 Multiprocessor systems and locking

The second problem is the ever-more multi-core design of today’s systems. The
typical design of the network stack is running into a number of problems as sys-
tems move towards a many-core design; a design where the number of cores is
large enough that traditional multiprocessor paradigms are no longer efficient.[64]
For example, passing a packet through different layers of the network stack often
involves switching to different CPUs in the process, although network stack devel-
opers have improved CPU locality recently. To illustrate this, a typical path in the
Linux kernel from receiving a Ethernet packet to distributing it to the application
is:[29]

1. Interrupt. The Ethernet card signals an interrupt, which is handled by an
arbitrary CPU. The interrupt routine is run, which typically schedules a soft
interrupt (softirq) to handle the packet.

2. Device processing (optional). The remainder of the device driver work
usually takes place here. The routine fetches the network packet from the

12
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card via direct memory access (DMA) or programmed I/O (PIO) into RAM. A
socket buffer is then allocated for the data, added to a work-queue list, and
then the receive soft-interrupt is marked for execution.

3. Packet processing. Most of the network stack processing occurs here. The
packet itself is checked for integrity (such as a valid IP checksum), then, if
possible, it is processed as part of a UDP session or TCP connection. Typically
the packet data is copied to a per-socket list, ready for the application to
process it.

4. Application. At this point the application which owns the packet’s socket
has made a read or recv system call to retrieve the new data to process it.
The data is copied from the per-socket list into the user-space buffer, and the
application returns back to user-space to process the data.

Although Linux’s packet processing has in fact been optimized for today’s pro-
cessors (typically, the first three stages run on the same CPU as a result of assigning
a work-queue per processor), there are still several issues present in most mono-
lithic network stacks (which are similar in design to that of Linux):

• Lack of CPU locality. There will still be a chance that the application will be
running on a different CPU to the one that processed the packet. This will
involve a big cache penalty as every memory access on the new processor
will involve a trip to lower-level caches or main memory.

• CPU usage. Since the processor that handles the initial interrupt is chosen
arbitrarily, the processing of the network packet could be assigned to a CPU
that is currently running other tasks. For example, in the worst case, the
window manager could be bound to a certain CPU, and if the processing of
incoming packets occurs on that CPU, there will be issues with data through-
put and latency from the network, especially if the window manager is busy
rendering graphics at the time.

The way to address these issues to optimize the workflow as much as possible,
by processing the packet in the hardware interrupt and saving as much work as
possible for the application’s context, while preferably eliminating the middle two
steps in Linux’s path. This saves multiple context changes and reduces CPU usage;
the lack of CPU locality is unavoidable if we allow a thread to run on a range of
processors.

In traditional network stacks, and in some where a kernel-space network spin-
lock2 exists, the tendency to frequently take locks moves a cache-line between all
processors and requires a cross-system atomic operation.[2] Both are expensive,
and certainly do not scale well for increasing number of processors. Therefore,
locking should be avoided as much as possible, especially in the network stack.3

2A spinlock is a synchronization primitive that provides mutual exclusion to a critical section, includ-
ing code running in the network stack (for example, exclusive access to a particular network interface).

3Note that the Whitix kernel does not yet support SMP, but it does not prevent us from designing a
multiprocessor-friendly network stack

13



1.2. WHITIX CHAPTER 1. INTRODUCTION

1.1.3 Cache performance

The third and final problem, and also linked to today’s multi-core systems and lock-
ing, is the cache performance of code. In today’s systems, loading a cache-line from
memory often takes 50 nanoseconds or more to complete.[25] As a result, when
considering the performance of kernel code, and therefore of today’s network stack,
cache performance is often the dominant factor.[29] Linked to this, particularly
in the Linux kernel, is the extensive use of linked lists to queue packets, which gen-
erally have poor cache performance and often lead to cache thrashing, especially
in multi-core systems.

Although modern kernels have attempted to tackle the above problems, mostly
by employing synchronization algorithms that avoid locking, such as read-copy-
update,[2] I would argue that the way to making the network stack scalable, flexi-
ble and multi-core-friendly is to perform as much work as possible in user-space.
This avoids many of the situations where data may need to be shared, and so it is
unlikely that a cross-processor lock will have to be taken.

Another aspect of cache performance that relates to the network stack is the
copying of packets. Large memory-to-memory copies are notoriously cache un-
friendly, as the same data is duplicated in the L1 data cache, evicting useful data
that may be used following the copy. After a copy operation, typically only one of
the copies is used again before it is evicted from the cache.[15] Therefore, to in-
crease cache performance and thereby speed up code performance, copying should
be avoided where possible. A zero-copy send operation, for example, would be
ideal for performance and memory usage.

1.2 Whitix

My userspace network stack has been developed for my operating system Whitix.
Whitix is a 32-bit Unix-inspired operating system based around a monolithic but
modular kernel. I have developed it from scratch over a number of years, and it
is not forked from any other operating system. Unless noted otherwise, the Whitix
design can be assumed to be similar to that of Linux. The only networking that
was present at the start of the project was a small local socket implementation,
developed for the operating system’s windowing environment. This is likely to be
made obsolete following the project, and replaced with a form of local network
channels. The key architectural points of difference are:

• System configuration. Whitix kernel and the drivers do not use ioctl.
Instead, the Information and Configuration Filesystem (IcFs) is a hierarchi-
cal tree for system configuration, broader in scope than sysfs in Linux and
intended as a complete replacement for ioctl. Devices can expose a set
of name-value pairs to allow userspace applications to read and write con-
figuration values via the filesystem or by using special system calls such as
SysConfRead and SysConfWrite.

• Processes and threads. In Whitix, new processes are created via SysCreateProcess

14
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– there is no fork equivalent. Instead, threads, using the kernel threads
implementation, can be created by calling SysCreateThread, suspended
and restarted using SysSuspendThread and SysResumeThread, and de-
stroyed by calling SysExitThread.

1.3 Outline

To solve the above problems and to add increased performance and flexibility to
networked applications, I have developed a novel networking subsystem (appli-
cable to almost any operating system) that places most of the functionality into
user-space, with a small zero-copy array of buffers linking user-space and kernel-
space. The components of this new network stack are:

1. Network drivers. We present the Linux driver layer, a framework for porting
Linux network drivers and providing a compatible runtime interface, and a
set of components for managing packet I/O and network interfaces. (Chapter
2)

2. Network channels. Building on top of the Linux Driver Layer, we present net-
work channels, high-performance packet arrays designed for zero-copy send
and receive. We detail an innovative fully-featured layer that is much more
complete than competing research implementations.

We chronicle the development behind network channels, and explain their
superior cache performance and scalability as well as their memory layout.
We describe the small protocol-specific kernel components for IPv4, and the
framework for classifying incoming packets. The process for sending and
receiving packets is outlined – we show that even adding a packet filter to
the kernel is small, stable and fast. We detail the usercode library, a flexible
mechanism that abstracts the internal structures of a channel for flexibility
and stability. (Chapter 3)

3. Userspace network stack. We demonstrate that a modern userspace TCP/IP
stack can be built as a shared library on top of network channels for increased
security and performance, with a special focus on the Transport Control Pro-
tocol (TCP) as the most complex part of the stack.

We investigate the userspace interface for network channels, and how the
TCP/IP stack is built upon this. We detail the fully functional implementa-
tions of transport protocols such as UDP, ICMP, and the most complex, TCP,
and their accompanying applications and utilities – many of which use the
innovative adaptability and interactivity features of the network stack. We
detail the two APIs available for the stack, the native and POSIX APIs, and
how the former exposes the new functionality available in the stack. (Chapter
4)

4. Network stack interactivity We will then explore the concept of events in a
TCP/IP connection, focusing especially on TCP events. We then detail a in-
novative method of exposing these events to an application through the use
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of callback functions, a finer-grained primitive compared to other implemen-
tations, which use whole processes to handle events. We then detail a frame-
work for user applications to monitor, filter and respond to these events.

The ability to establish a flow of events and hints, through the use of call-
backs and helper functions, between the application and the network stack
breaks new ground compared to other monolithic kernel-based stacks. We
describe the myriad use of events in providing applications with performance
and diagnostic information about network conditions, as well as the ability
to profile network usage and feed the data into future runs to optimize per-
formance. (Chapter 5)
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Chapter 2
Hardware and the LDL

The basis of any networking software is the exchange of data over physical or
virtual network interfaces. If we are to transmit or receive data and pass it to the
network stack, we will require a layer for network drivers, and a framework to
manage the raw packets involved.

In this chapter, we demonstrate how we have transferred support for a range
of Ethernet cards from Linux, by developing the Linux Driver Layer. We explain
the caveats of supporting Linux drivers through a binary interface, and how the
similarity of the Linux and Whitix driver model allow us to use Linux drivers to
transmit and receive packets on almost all Ethernet cards.

The low-level networking layer provides one main abstraction: the network
interface. The network interface provides an extra layer around a network card
device for sending and receiving data packets, assigning network and hardware
addresses via management functions, and for referencing in routing tables (by
a human-readable name). There are two classes of network interfaces found on
Whitix. One is the loopback interface, a virtual interface implemented in software
only, which is always available as Loopback0. Any packets sent to the interface
are immediately received on the interface. Second is the hardware Ethernet inter-
faces, where one physical interface corresponds to an Ethernet card. The Ethernet
interfaces are named Ethernet0, Ethernet1 and so on, although most desktop
machines only have one such card.

2.1 Architectural overview

There are four main components of the low-level networking layer, as detailed
in Figure 2.1. All are placed in the kernel for reasons of speed and direct hard-
ware access (and the idea of placing network drivers in user-space is evaluated and
discarded in Section 3.2.1). The network drivers are the main abstraction of the
layer; they allow the other components to interact with the device via management
functions, as well as providing a single interface for sending and receiving packets
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on the device. One other key driver component is the Linux driver layer, which is
explained in detail in Section 2.3 and allows standard Linux network drivers to run
as part of the Whitix kernel.

The network device manager manages the different physical and virtual net-
work cards, assigning them a human readable name and exposing them to the
Information and Configuration filesystem (IcFs). The manager registers a standard
set of values for configuration purposes: each device has a network address, used
by higher-level routing code, and, for physical interfaces, a hardware address. (For
example, the MAC address of the first Ethernet card in the system is available at
/System/Devices/Network/Ethernet0/macAddress as a file of six bytes).
These values are used by network utilities to configure the system appropriately.

For physical network interfaces, which actually transmit packets to other im-
mediate hosts based on their hardware address, a global hardware address cache
is present in the kernel. This is mainly used by the routing code, which queries
the cache for a translation from network to hardware address (in that respect, it
functions as a translation look-aside buffer). To satisfy these requests, this particular
implementation of the hardware address cache searches the generic cache, and if
a suitable entry is not found, issues Address Resolution Protocol (ARP) requests to
translate IP addresses to Ethernet MAC addresses. However, the caching code is
written to function with any combination of request packet type, network address
format and hardware address class.

The last component of the layer is the packet I/O layer, which interfaces with
the high-level layers to provide an abstraction for sending a single network packet,
as well as asynchronously notifying upper layers of a packet receive event. These
packets are treated by the layer as a stream of bytes; hardware addressing and
packet construction takes place at the network channel layer, with the help of
device-class-specific functions for retrieving hardware addresses. A per-card queue
for outgoing packets is provided, and used if the network card is busy transmitting
a previously queued packet.

2.2 Network drivers

The driver architecture of Whitix is inspired by that of the Linux kernel, although
with a stricter attitude to modularization; drivers are distributed as modules, and
there are very few device drivers built into the kernel itself. The Whitix kernel is a
monolithic kernel, with a range of subsystems available to drivers, such as timers,
scheduling and bus subsystems. Device drivers use functions provided by the kernel
and associated modules. The different subsystems of the Whitix kernel, such as the
different bus components (such as PCI and USB), make functions used by drivers
available via the SYMBOL_EXPORT macro (e.g. SYMBOL_EXPORT(TimerAdd),
from the part of the kernel that provides single-shot timers for use by other com-
ponents).
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Figure 2.1: The low-level networking layer comprises the network drivers, the network
device manager, the hardware address cache and the packet I/O layer. It interfaces between
the networking hardware and the network channel layer to abstract the class-specific and
hardware-specific functions of each device to allow packets to be transmitted and received
in a device-transparent manner.
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s t ruc t Pc iDev i ce Id pcnet IdTable []=
{

{0x1022 , 0x2000 , PCI_ID_ANY , PCI_ID_ANY , 0 , 0 , NULL} ,
{0x1022 , 0x2001 , PCI_ID_ANY , PCI_ID_ANY , 0 , 0 , NULL} ,
PciTableEnd () ,

} ;

Figure 2.2: An example of the list of supported devices supported by the Whitix pcnet32

driver (not used in this project). The first two fields are the vendor ID and device ID, two
defining fields describing a device.

2.2.1 Driver and device setup

Whitix drivers, denoted by the .sys suffix, are loaded via the SysModuleAdd sys-
tem call, and the module is then linked into the kernel by resolving these symbols.
The module’s list of symbols is then in turn made available to other modules. Net-
work drivers mainly interact with the bus manager and network device manager
layers. Ethernet devices are typically found on the Peripheral Component Intercon-
nect (PCI) bus, and drivers wishing to find devices register their list of supported
devices (provided as a filter on the different fields of the device’s PCI configuration
space), as in Figure 2.2, and a function to be called when a suitable PCI device is
connected. Drivers (and modules) remain in memory until explicitly unloaded via
SysModuleRemove.

On being assigned a device, the driver generally performs the following setup
procedure (this example is taken from the Ne2kInitOne function in the Whitix
ne2k-pci driver, available at devices/net/ne2k-pci.c in the source tree):

1. PCI device and resource setup. First of all, the device is enabled, with any
relevant PCI settings (such as DMA bus mastering) performed at this point.
The driver then locates the device resources, such as interrupt lines (a func-
tion is assigned to handle the interrupt), I/O ports and memory regions. The
NE2000 driver locates the base address for its physical registers in the x86
I/O space, which it then accesses via the inb and outb machine instructions.

2. Hardware setup. The driver then performs a device-specific setup proce-
dure. Note that the device does not have to be ready for packet sending and
receiving immediately after setup; this can be delayed until the interface is
brought up. This may also involve retrieving the hardware address; in the
NE2000 driver, the Ethernet MAC address is read from the programmable
ROM.

3. Network device registration. This is the part of the setup procedure that
is of interest to the network device manager. The exact registration process,
along with the information the driver supplies about the device, is detailed
in Section 2.4. The driver also registers a structure containing device opera-
tions, essentially its interface to the higher layers, with operations specific to
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s t ruc t NetDevOps
{

. . .
in t (∗ buildHeader ) ( s t ruc t NetDevice∗ device , s t ruc t NetBuf fer ∗

sockBuff , void∗ address ) ;
in t (∗ send ) ( s t ruc t NetDevice∗ device , s t ruc t NetBuf fer ∗ sockBuf f ) ;
. . .

} ;

Figure 2.3: A subset of the operations available in the NetDevOps structure, which describes
the device-specific operations for a device. send is the packet transmission function and
assigned by the driver, and buildHeader is used by the higher-level code to build a class-
specific hardware header. For example, EthDevRegister assigns EthBuildHeader if no
device-specific function is supplied.

the device (Send for different devices) and its class (GetHeaderLen, for Eth-
ernet cards), with the help of class-specific functions like EthDevRegister.

After the device is registered by the driver, the device stays idle until the net-
work interface is brought up by dhcp, essentially allowing it to transmit and receive
and function as a "live" interface. Bringing up an interface, in terms of the network
driver, involves awakening the device and preparing it for transmitting and receiv-
ing packets. Bringing down an interface is the opposite process.

2.2.2 Sending packets

Packet transmission is a synchronous operation from the viewpoint of higher layers.
It is an operation described in more depth in later sections and carried out through
multiple layers of the networking code. From the driver’s viewpoint, the only send-
related operation that needs to be implemented is the send operation (as described
in Figure 2.2.1), which, along with the device, takes a single packet (available as a
NetSendBuffer) and transmit it in a device-specific manner. The network device
may also signal to the higher layers that it is busy transmitting the packet as a
result; the packet I/O code can respond by queuing packets, and once the network
device is not busy, can resume packet transmission.

2.2.3 Receiving packets

In constrast, receiving a packet is an asynchronous operation. In most cases, the
network card will raise a receive interrupt, and the driver’s interrupt code will be
called as soon as possible to handle it. The driver typically allocates a temporary
network buffer (the NetBuffer structure) to transfer the packet from the card,
fills in key fields in the buffer structure, and passes it up to the packet I/O code by
calling the NetRecv function, which is part of the channel layer. Ignoring device-
specific code, the receive code is simple and does not inspect the content of the
packet.
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Due to the nature of receiving packets, there may be a queue of received pack-
ets on the network card itself. This is invisible to the driver and the rest of the
networking subsystem, and is usually handled by the device raising a series of in-
terrupts to handle each packet, or noting to the driver via a device register that
multiple packets need to be received in one interrupt.

2.3 Linux Driver Layer

Developing a driver for network hardware that works effectively and efficiently
on all models is a time-consuming and difficult task. To write network drivers for
Whitix, a laborious task that replicates almost exactly previously written drivers, for
even only the set of machines that I will test the project code on would take away
many hours of development time from the more innovative aspects of the project. I
decided therefore to look to porting network drivers for another operating system,
such as the Linux or one of the BSDs. I chose to port Linux drivers, found at
drivers/net in the recent Linux source trees, instead of the BSD network drivers
due to licensing compatibility concerns and the extent to which the kernel would
be a "derived work" of the drivers.1

It became clear I would have to write a compatibility layer, named the Linux
Driver Layer (LDL), to emulate the functions provided by the different subsystems
of the Linux kernel. However, the similarity in the driver architecture of the two
operating systems, as noted in Section 2.2, was a bonus; in particular, the network
device and bus functions of the two kernels are very similar. This is fortunate:
performance could have been degraded if major translation of structures and data
was needed between the Linux layer and the corresponding native Whitix inter-
faces. Although the concept of Linux driver compatibility is extendible to virtually
all types of device driver, I focused only on the functions and subsystems needed to
run certain drivers.

Device setup, interrupt handling and transmission works in a very similar fash-
ion to the native network drivers; the only difference between the two drivers is
that the Linux driver believes it is running on a Linux kernel; the emulation of the
Linux subsystems, including the translation of structures in the layer, is sufficient
for this to hold. The LDL code itself is located in devices/linux/ in the source
tree, and is organized approximately by subsystem type.

2.3.1 Caveats

However, one major problem I foresaw involved the stability of the Linux kernel
driver interface. Unlike the (binary) kernel to user-space interface of Linux, which
is very stable, the internal driver interface at source-level changes frequently from
version to version, and at binary-level, because of the wide range of configuration

1The Whitix kernel is licensed under the GNU General Public License (GPL), whereas the network
drivers from the BSD kernels would be licensed under the BSD license.
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options for the Linux kernel,2 changes from machine to machine. This is suitable
for the Linux kernel developers, who can update kernel drivers in the development
tree, but awkward for closed-source driver developers who develop outside of the
kernel tree; they must adapt for each version of the software. [34]

As a result, and to simplify the implementation, I have selected the kernel mod-
ules supplied with my Ubuntu Linux distribution. These are built for the same
kernel version (2.6.28.11) and with the same configuration options. Therefore, the
Linux Driver Layer only supports modules built against that kernel version. Any
new devices and drivers that are released will mean the LDL will need to be up-
dated to support a new kernel version. This is the disadvantage of an unstable
kernel binary interface and driver API, but the time saved on my part outweighs
any flexibility cost involved.

2.4 Network device manager

To enable efficient routing of packets and interface management, the different net-
work devices are managed by the network device manager. The manager rep-
resents devices as interfaces to higher level code; the extra abstraction allows the
storing of statistics and the status of the interface, as well as group devices by hard-
ware class (Ethernet and virtual devices are just two examples of device classes) a
common set of IcFs configuration name-value pairs and a human readable name to
describe the interface.

The network drivers register the device by calling NetDevRegister (or a
wrapper function), as described in 2.2, using a structure that contains the at-
tributes used to describe the new interface. An Ethernet card typically calls the
EthDevRegister function, which fills in the fields specific to the hardware class,
such as the device name prefix, the hardware addressing callbacks and the packet
sizes (a similar process would occur for IEEE 802.113) when support for them is
implemented).

To take the packet size as an example, 10 megabit Ethernet has a minimum
packet size of 64 bytes, and a maximum size of 1500 bytes. This information
is important when allocating buffers for network channels; the maximum size of
a buffer corresponds to the maximum transmission unit (MTU) of the underlying
device. For loopback interfaces, the maximum packet size is arbitrary (there are
no limitations like in hardware), but the maximum packet size is generally limited
to under the page size of the machine, mainly to ease memory management in the
network channel layer.

The class-specific registration function calls NetDevRegister, which attaches
the device to the internal device tree and registers generic configuration variables

2For example, kernel data structures will contain different field alignments, depending on the C
compiler and a particular version. A SMP or non-SMP kernel can be built, which means some fields may
not be present in memory at all for a non-SMP build

3Also known as WiFi devices, they use MAC addresses like Ethernet devices, but transmit and receive
over a radio-based transmission medium and have different packet header requirements from Ethernet
Devices.
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/System/Config /Devices /Network/> l s
Loopback0/
Ethernet0 /
/System/Config /Devices /Network/> l s Ethernet0
running
macAddress
netAddress
/System/Config /Devices /Network/> l s Loopback0
running

Figure 2.4: A list of basic information and configuration variables that be read and writ-
ten by applications and utilities. An implementation of device management would expose
more statistics and internal hardware information and configuration options, similar to class-
specific programs such as ethtool or iwconfig on Linux.

with IcFs: running is a single byte value that, when written to, actually calls
NetDeviceSetRunning. The written value, either 0 or 1, brings the device down
or up respectively. The class-specific registration function also adds suitable IcFs
name-value pairs; EthDevRegister adds two entries for addresses: macAddress
and netAddress (for IPv4). These configuration values are used by network utili-
ties such as dhcp to construct raw packets and register any new network addresses.
The configuration directory structure for a test machine is shown in Figure 2.4.

As the network device manager has a list of all the interfaces in the system, it
also provides some functions to search the list or aggregate information over the
set of interfaces. NetDeviceFind finds a NetDevice, given a human-readable
name; this is useful for applications using network channels that want to bind to a
particular interface, dhcp again a good example.4

Functions that aggregate information over the set include NetDevFindMinMtu
and NetDevFindMaxHeader, used for determining the maximum packet size and
header size for channels (and their list of buffers) whose packets could be sent
out over any interface; one example is a UDP channel, whose destination address
could be the local host (then the packet is sent over the Loopback interface) or
any other host on the Internet (in which case the Ethernet interface is used).
Both have different minimum and maximum packet sizes.

2.5 Hardware address cache

The low-level networking layer deals with two classes of addresses: the network
address (e.g. IPv4, addresses like 143.23.2.43) and the corresponding hardware
address that the packet should be routed to. For example, when building the Ether-
net header, we need to resolve the destination network address to the destination
hardware address (which may or may not correspond to the actual destination’s

4dhcp is a rather unique system utility; it assigns a IPv4 address to a device, and so, transmitting
and receiving over a network interface with no IPv4 address, requires special routing and configuration
needs that no other program requires
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in t ArpGetLinkAddress ( s t ruc t NetDevice∗ device , ulong sourceAddr , ulong
destAddr , char∗ address ) ;

Figure 2.5: Definition of the ArpGetLinkAddress function. It is called by higher layers to
translate destAddr to a hardware address, that is then stored in address.

network address – this depends on the routing table). The hardware address
cache helps hardware address resolving by providing a framework for translating
between the two classes of addresses, formatting address request packets using the
Address Resolution Protocol (ARP) and parsing replies. The cache also contains a
mechanism for discarding old or out-of-date entries, and is optimized for random
read accesses.

Currently, the hardware address cache only supports resolving IPv4 network
addresses to Ethernet MAC hardware addresses. (There is no support for a reverse
lookup, as very few network-related operations need such a lookup). The central
function that provides to the higher layers (and most calls come from the routing
layer) is ArpGetLinkAddress, which takes the parameters described in Figure
2.5.

The ArpGetLinkAddress function first looks up the destAddr in the cache.
If it is not found, or is out of date, the function then constructs an ARP request
packet, which broadcasts a message over device asking "Who has destAddr?
Tell sourceAddr."5 The calling thread then waits for a reply for the packet; ARP
replies and requests from other machines are handled separately in a dedicated
kernel thread, with waiting threads being notified asynchronously of success or
failure. The returned hardware address is then copied to the buffer at address,
and the function returns successfully.

If there is no hardware address corresponding to the network address, because
the host does not exist on the network or there is no ARP reply, the cache repeatedly
sends an ARP request message before returning an error to the caller, who usually
returns an -ENOROUTE value to userspace to indicate this.

Since, in a rapidly changing network, the mappings between network addresses
and hardware addresses can change frequently, the ARP cache always checks if the
stored entry is out of date. Incoming ARP packets also update the cache; ARP
announcements, optionally sent by hosts when their IP or MAC address changes, al-
ways update the cache, and we can store the hardware address of another machine
that sends a ARP request packet to us.

2.6 Packet I/O

The main abstraction that the low-level code provides is a means for sending and
receive packets over a selected network interface. The packet I/O layer includes
the generic NetDeviceSend function, per-device queues for outgoing packets, and

5This is how the Wireshark packet sniffer describes ARP requests in its short packet summary.
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the NetBuffer and NetSendBuffer structures, which abstracts incoming or out-
going buffers respectively. These buffers can originate from either user-space or
kernel-space (e.g. ECHO REPLY messages) and the structures store context (de-
pending on whether the packet is incoming or outgoing respectively) such as the
length, the start of the data and the current read pointer.

The NetBuffer and NetSendBuffer structure is the most important abstrac-
tion of the packet I/O layer; it may at first appear, to take incoming packets repre-
sented by NetBuffer as an example, that only the memory address of the start of
the packet and its length need to be passed through the different networking layers
of the kernel. However, storing the device that the network packet was received
becomes important when selecting a channel type to distribute the packet to in
NetRecv in the channel layer.

The NetSendBuffer structures are statically allocated by the channel. One
NetSendBuffer maps to one send buffer in the channel memory, and stores con-
text information about the channel buffer while it is passing through the kernel.

2.7 Summary

In this chapter, we covered the extent of network device support in the kernel.
Because of the comprehensive Linux Driver Layer, which provides a translation
layer between Ethernet drivers for Linux and the native network device API, we
can support virtually every Ethernet card available on the market. We detail the
paths taken to transmit and receive packets in a lightweight fashion in the low
levels of the stack, and how we queue packets and represent them in the system.

We then described the network device manager, and how it represents the
network devices in the system as interfaces. We show how information about the
interface and the class of interface, such as the MTU and size of the hardware
header, are used by the higher layers to configure the memory layout for channels.
The hardware address cache helps the network stack translate the network ad-
dresses of higher layers down to the hardware addresses each interface needs to
transmit packets. Finally, we summarized the structures and functions comprising
the packet I/O layer in the kernel.
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Chapter 3
Network channels

In this chapter, we discuss the role of network channels in the user-space network
stack architecture. The network channel, with its shared list of buffers, allows
zero-copy sending and receiving of packets via a variety of network interfaces,
with extremely fast buffer allocation and deallocation. This project’s implementa-
tion of network channels adapts to different classes of connection paradigms seam-
lessly and with minimal configuration by user-space libraries and applications, and
shared data structures are encapsulated using a special user-level library provided
by the kernel.

Throughout this chapter, we discuss the design decisions involved, the tradeoffs
inherent in any implementation, and a detailed survey of the project’s implemen-
tation, noting its operation and memory layout. We conclude with an overview of
the API provided by the network channel libraries, and several use cases by appli-
cations and libraries.

3.1 Background

Van Jacobson, in his 2006 talk,[29] after discussing the early history of network
stacks and how they settled upon the Unix "standard model" of design, shows
how locking, synchronization, multiple software interrupts and poor cache behav-
ior conspire to reduce the scalability and performance of the current design of
network stacks. He also notes that a network connection can be abstracted as a
servo-loop,1 whereas a kernel-based implementation converts this to two coupled
loops. After noting that a "very general theorem" (Routh-Hurwitz) says that two
coupled loops are less stable than one, he also says that the kernel loop hides the
application dynamics from the sender, affecting socket time estimates and causing
spurious retransmissions.

He states that the existence of two loops in most implementations has more than

1A servo-loop is a self-regulating feedback system or mechanism.
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tripled the size of TCP, added the term "window" to distinguish between the arrival
of data at the host and its consumption, and issues between implementations, such
as the Silly Window Syndrome (SWS). SWS happens when poorly implemented
TCP flow control algorithms request that the sender reduce their window until the
window becomes so small that data transmission becomes extremely inefficient.

He also goes on to say that even for TCP, a "one size fits all" protocol implemen-
tation does not exist, implying that a network stack able to automatically adjust to
different classes of connections (such as transactions, bulk data or event streams)
would be preferred, rather than the static network stacks of today. He relates the
problem to the increasing network speed of many connections, followed by the
mismatch in the multiprocessing response to this development. He claims the end-
to-end principle should be followed, by saying that in a multiprocessing system,
the protocol work "should be done on the processor that’s going to consume the
data". To ensure this, he reworks the idea of packets being stored in a linked list to
a modelling them as a lock-free FIFO structure called a network channel, noting
that many network components have a producer/consumer relationship.

My project will not be the first implementation of network channels on a UNIX-
like system. In 2006, Evgeniy Polyakov wrote an implementation of network chan-
nels for the Linux kernel, accompanying his proof-of-concept implementation of a
userspace network stack.2 However, it radically differs in design from my eventual
design, as noted in later sections. Most importantly, it is not a zero-copy implemen-
tation; netchannel_copy_from_user and netchannel_copy_to_user copy
network channel buffers to and from userspace, with the static array of buffers not
shared with userspace.

3.2 Design

To make a user-space network stack work, there has to be an efficient method of
linking the network stack and the drivers. There are a number of possibilities here.
In line with the project’s aims, in particular that of increasing cache performance,
we can evaluate each design in turn with regards to the current architecture of
Whitix:

3.2.1 Possibilities

User-space network drivers

One possibility is to place network stack drivers at the same privilege level as the
network stack itself, to avoid expensive system calls into the kernel (and depend-
ing on the exact design, the overhead of data copying). However, the plan is un-
workable, insecure and certainly not scalable, especially considering the current
architecture of Whitix, for the following reasons.

2The source code for the implementation can be found at http://www.ioremap.
net/cgi-bin/gitweb.cgi?p=netchannel.git;a=tree;f=net/core/netchannel;h=
dfde00af264aa144a459d212bdeaa5f748e070db;hb=HEAD

28

http://www.ioremap.net/cgi-bin/gitweb.cgi?p=netchannel.git;a=tree;f=net/core/netchannel;h=dfde00af264aa144a459d212bdeaa5f748e070db;hb=HEAD
http://www.ioremap.net/cgi-bin/gitweb.cgi?p=netchannel.git;a=tree;f=net/core/netchannel;h=dfde00af264aa144a459d212bdeaa5f748e070db;hb=HEAD
http://www.ioremap.net/cgi-bin/gitweb.cgi?p=netchannel.git;a=tree;f=net/core/netchannel;h=dfde00af264aa144a459d212bdeaa5f748e070db;hb=HEAD


CHAPTER 3. NETWORK CHANNELS 3.2. DESIGN

First consider a single privileged process per hardware driver, known as a server
process, as it handles requests from client or user processes via a message passing
mechanism. This a design typically used in many microkernel operating systems,
where each driver is given its own address space. This is mainly to address reliabil-
ity concerns with driver stability, especially at a privileged level.

This first design was quickly discarded; the main disadvantage was the over-
heads associated with message passing. For example, copying data (in the form
of sending a packet) from the client process to the server process might involve
two memory copies and two context switches on a uniprocessor machine (from the
client process to the server process, and the reverse in order to return the packet
status the client process), even without including the overhead of system calls. For
a bandwidth-intensive application, these costs would result in very limited perfor-
mance.

The next design involves a compromise of less stability and much less security
to gain higher performance. In this design, network drivers are linked into the
user-space network stack library by dynamic linking, which is treated as a special
type of user-space library. This design is unworkable as well; as well as the net-
work stack library having different semantics compared to all other shared user
libraries, each process wanting to use network capabilities must obtain or be given
the appropriate privileges to manipulate hardware, which is undesirable for many
potential insecure applications that contain security holes, such as web browsers!

Raw sockets and file I/O

The next design I considered was an adaptation of the raw socket for unprivileged
applications. Raw sockets, a class of socket available in Unix-like operating sys-
tems such as Linux that can be used to generate any type of network packet. It
functions as a normal socket, and allows users to bypass kernel network packet
processing (usually for pure performance or special network setup, such as DHCP
in IPv4).

Although this appears to be the ideal type of kernel object to use, there are
number of disadvantages that means a more specialized design is required:

• Security. Allowing any user to construct their own packets without oversight
by the kernel or a trusted process can lead to network abuse. For example,
in TCP/IP, raw sockets can be used to launch SYN flood attacks, where a
particular host is flooded with SYN packets (which function as connection
requests in TCP) or perform session hijacking, where a malicious host sends
a specially constructed FIN packet to spoof a connection close by one of the
hosts.[30]

• Copying and performance. When sending a raw packet from user-space to
the kernel,3 the kernel must copy the packet to a private buffer or allocate

3In Linux, this is performed by calling sendto, or write and send if the application has specified
the destination address to the kernel previously.
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kernel-mapped pages to map the packet, to avoid the possibility of a mali-
cious application unmapping the packet memory from another thread and
causing the kernel to crash or fail to transmit the packet. As detailed in the
project’s introduction, this is not ideal for cache performance or the memory
footprint of the application.[59]

• Packet classification. Owing to the very nature of raw sockets, received
packets cannot be classified accurately by the kernel, as no information is
given by the raw socket about the socket’s connection context (if any) to
the kernel. Depending on the layer at which the raw socket operates (either
the data link layer or network layer), we must duplicate packets among all
raw sockets in all processes (ignoring those that do not pass some optional
criteria that the user-space can specify about the socket’s packets). This is
a major disadvantage, as it leads to very poor cache performance, massive
data duplication and a range of security issues. With raw sockets, different
applications run by different users can snoop each other’s packets with ease,
which is one reason why raw sockets are limited to privileged users.[59]

The above points, in particular the lack of efficient packet classification, means
that the raw socket design will need to be adapted to be suitable for systems with
many bandwidth-intensive network connections.

Network channels

The final design that I considered was an idea presented by Van Jacobson, known
as network channels.[12] The key to more scalable network stacks is to make sure
as much processing work is done on the CPU where the application that needs the
data is running, extending the end-to-end principle as much as possible. Jacobson
intends user-space applications to deal with one network channel per connection;
a network channel is a circular buffer of constant size containing packet pointers.
Circular buffers remove the need for locking and writable cache lines (which im-
proves performance greatly, as both operations are very cache-unfriendly) between
producer and consumer, with the kernel classifying packets to appropriate channels
given certain protocol-specific information.

This appeared to be an ideal object for further investigation. Although Jacobson
did not go into detail about a possible implementation, he gave the example of
a user-space network stack (after some kernel-space examples concerning driver
and socket code) that utilized zero-copy I/O. To send a complete TCP/IP packet
in user-space, the application would place a pointer to the buffer in the network
channel and signal, most likely via a write system call, that the packet should be
transmitted. The kernel would then copy the packet to the network card without
any intermediate copying involved.

When receiving a packet, the kernel utilizes channel context information given
to it when the channel was created. Through a small amount of protocol-specific
code, the kernel can then classify any incoming packet into the appropriate chan-
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nels and copy the data into the channel.4 The application, presumably polling the
channel for incoming data via poll or blocking on incoming data in user-space,
can then read the packet, process it as a TCP or UDP packet (for example) and
return it to the user if applicable.

Conceptually, the network channel addresses the three major disadvantages of
a user-space network stack that uses only raw sockets, mainly through the small
protocol-specific areas of the in-kernel implementation:

• Security. With raw sockets, much of the security issues arise from unmoni-
tored packet transmission. By using the protocol-specific information passed
to the kernel when a channel is created, the kernel can verify, at any point
during in-kernel packet transmission – right up until the packet is copied
to the network card – that the packet source and destination match that of
the supplied context. This verification can easily stop session hijacking, as
the packets in a channel can no longer masquerade as packets from another
host.

• Copying and performance. Because of the circular buffer design, packets
can remain in user-space while the kernel transmits them. Each packet stays
in the circular buffer until it is successfully transmitted (or in this imple-
mentation, the application has the option to manage transmission buffers);
this allows the kernel to copy data from the underlying physical pages (via
a temporary in-kernel mapping) to the network card without copying to a
temporary buffer.

• Packet classification. As described above, protocol-specific context can be
supplied upon channel creation to allow the kernel, with the help of protocol-
specific code, to match the packet with the correct channel, with no duplica-
tion or unnecessary copying.

Possible disadvantages of Jacobson’s network channels, and particularly my im-
plementation, mainly stem from the circular buffer design; leaving the packets in
user-space will allow applications to unmap the packet or change the contents be-
fore transmission, which, if not handled carefully by the kernel, may lead to a
system crash or attack packets slipping past the kernel’s packet verification proce-
dures. Jacobson does not specify exactly how userspace would share to-be-transmitted
packets with the kernel.

Without a last-minute packet verification check, one possible hole, which is
effectively a time-of-check-to-time-of-use bug, can be exploited by a malicious appli-
cation in the following manner:

1. Create two threads. One will send the packet using SysWrite, and the
other will alter the packet’s contents while the call is taking place.

4This memory copy is unavoidable. We must read the packet into a buffer in kernel space in order
to inspect its contents for classification. One possible optimization, especially with large packets, is to
read part of the header into the temporary buffer, classify the packet, and then copy and read the rest
of the packet into the appropriate channel buffer - however, this split receive operation is not supported
by many network cards.

31



3.2. DESIGN CHAPTER 3. NETWORK CHANNELS

2. Create the network channel with typical source and destination values, as
well as specifying a protocol the channel will follow. In this example, we will
consider TCP.

3. Construct a data packet in a network channel buffer that will pass verifi-
cation, such as a TCP SYN packet, and pass the buffer address to the other
thread.

4. Signal that the channel buffer is ready to be transmitted, via a write (or
similar) system call, and (especially on a multiprocessor machine, where two
threads in the same process can run concurrently) alter the buffer contents
subtly to form an attack packet. One possible attack might involve changing
the source address field in the IP header. If the attacker wins the race, a
malicious packet has been transmitted.

However, due to the nature of packet transmission the attacker is unlikely to
win the race, and even less likely if the packet is verified immediately (via a quick
header checksum) before transmission or run on a uniprocessor machine. The
chances of an attack packet being successful are diminishing with increasingly se-
cure network stacks; for example, TCP session hijacking or reset attacks, without
snooping, is now extremely unlikely with both hosts performing initial sequence
number randomization.[4] However, it is possible to detect manipulated packets
(perhaps not with a 100% success rate), and the kernel could possibly block the
application from using network channel objects as a precaution to prevent further
attacks.

The goals of network channels is to help build more cache-friendly, stable
and scalable network stacks in the following fashion: Jacobson appears to design
his network channels so no locks or shared writable lines are needed between the
producer and consumer, so adding and removing data to the channel becomes a
cache-friendly operation.[12] This appears to line up with most of the project goals
and so Jacobson’s network channels appear to be the best design to build upon. My
changes to his proposed kernel object are detailed in the following sections, along
with a more complete description of the implementation and operation of network
channels.

3.2.2 Tradeoffs

The main tradeoff with moving network processing to user-space is that the sockets
no longer map to file descriptors in the kernel.5 This is especially important for
operations shared with other file descriptors, such as typical files, which will still
be represented as file descriptors. Operations like poll or the equivalent SysPoll,
which take a list of file descriptors and returns, informing the application of events
on those file descriptors, may be tricky to emulate with objects such as network
channels or raw sockets.

5What type of file descriptor depends on the particular user-space interface; the class of file descriptor
for a network stack based on raw sockets is not the same as an implementation based on network
channels for instance.
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Emulation is especially complicated because incoming data on these file de-
scriptors does not always map to user-readable data (consider ACK messages on a
TCP socket represented by a network channel). This means the application, if it is
not carefully, will be woken up by SysPoll or poll, attempt to read the socket via
SocketRead or recv, and block, perhaps for an undetermined amount of time,
or not be woken up at all (if the network stack is simultaneously polling that chan-
nel. However, the documentation for the select function (an equivalent) notes
the presence of spurious read notifications, even with kernel sockets. This issue is
further discussed in Section 4.4.6 in the context of TCP sockets in the userspace
network stack.

Other tradeoffs include being unable to aggregate or enumerate the network
connections present in a machine (or, depending on the protocol, only at a very
low-level). This is not normally important, but when we come to implement utili-
ties such as netstat, which (among other things) prints a list of open sockets, or
implement SNMP MIBs,6 exactly how to retrieve or expose this information when
most connection context is in separate userspace processes is difficult.

3.2.3 Architectural overview

Figure 3.1 depicts the network channel layer with regards to the overall network-
ing architecture of Whitix. The user-space network stack interacts with the network
channel layer via system calls such as SysChannelCreate and SysChannelControl,
as well as general I/O calls such as SysWrite and SysPoll, where the network
channel is treated as an ordinary file descriptor. The layer performs the following
functions:

• Channel management. Each process in Whitix has a private array of file han-
dles. An application may open channels using the SysChannelCreate call,
specifying the source and destination addresses in a protocol-specific manner
for the protocol classifier code, and receive a file handle for use with func-
tions such as SysWrite and SysPoll. These handles are then closed with
SysClose, and modified via SysChannelControl and SysFileControl.

• Memory management. The memory for incoming and outgoing packets
needs to be managed correctly. The channel is represented as a static array of
buffers shared between the kernel and userspace, partitioned by the buffer’s
purpose; the array of send and receive buffers are formatted and treated
differently. Allocation and deallocation is performed through setting bits in
one of these two bitmaps, with information about incoming and outgoing
packets (such as the packet length) specified in a standard header format.

• File emulation. Since the network channel is represented as a file descriptor,
it must fulfill a certain set of operations. Operations such as SysWrite and
SysPoll should obey all existing semantics where possible, so that calling
the functions on a channel file descriptor is indistinguishable from that of any
other file descriptor.

6A future SNMP implementation is discussed in Section 8.2.4
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Figure 3.1: The network channel layer interfaces between the lower-level networking code
(including the packet I/O code) and user-space code. The network channel layer struc-
tures packet I/O, routes outgoing packets to the appropriate network interface and classifies
incoming packets.
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• Packet classification. Incoming packets must be inspected, in a protocol-
specific manner, to match them with a channel. For example, incoming UDP
packets are matched with a channel that has the same source port; since
only one IPv4 channel can map to a (IPv4) port, it must be destined for
that channel. Because classification is performed in a interrupt context, the
process is as efficient as possible ensure a responsive system.

• Routing. The userspace network stack has no knowledge of the routing ta-
ble. Outgoing packets have their source address applied by the kernel after
signalling a packet transmit via SysWrite; the protocol-specific code then
updates any other dependent fields, such as the packet’s checksum, and trans-
mits the packet. The routing layer is updated by the dhcp utility as part of its
initial configuration, and it calls the lower layers to map network addresses
to hardware addresses.

• Firewall. A basic stateless firewall, or packet filter, has been implemented
as part of the packet classification code. Support for filtering incoming and
outgoing TCP and UDP packets by properties such as protocol, destination
or source port, and packet direction (or a combination) has been added to
a generic firewall layer that barely affect the throughput and latency of the
networking subsystem.

• Usercode library.. Because network channels share knowledge of data struc-
tures between the kernel and the user, we supply a small usercode library that
abstracts the lowest layer of structure manipulation (both for the channel in
general and individual packets) into a user-space library.

This kernel code is made available via a user-accessible shared page; the net-
work stack on startup finds this code via an in-memory directory and links a
set of function pointers (representing operations such as ChanSendBuffAlloc)
to the export table, so that the channel data structures can be updated in a
manner invisible to the application. This allows for greater maintainability
and flexibility in the kernel implementation.

3.3 Channel management

Before we can send and receive packets on network interfaces, we need to specify
to the kernel the address family (in this implementation, only IPv4 is supported),
protocol (TCP, UDP or ICMP) and source and destination addresses we will be dealing
with. This is to ensure security for outgoing packets and also to give the kernel
enough context to classify incoming packets to that channel. As a result, it means
the network channel truly is a bidirectional interface for data communication.

In channel creation, we can also specify several other options, such as retain-
ing the ability to manage deallocation of sent packets (important for a connection-
oriented protocol that retransmits lost or corrupt packets, such as TCP) or to later
bind to a certain interface (useful for dhcp, which initializes a particular interface).
The exact number of send and receive buffers needed can also be specified.
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This information is used to set up the network channel generically, as well as
any protocol-specific code that may be interested in the source and destination
addresses.7. The exact manner depends on the sub-protocol (such as TCP or UDP)
and what purpose the channel is intended to serve. For example, TCP master
sockets, which create child sockets to accept connections, are allowed to accept
TCP packets from any source on a certain port, but cannot then write to those
sources without creating a channel with a more specific channel address.

After creating the channel, we can also manage channel-specific options through
the SysChannelControl8 system call interface. For instance, if we create a chan-
nel that supplies raw packets (functioning like a raw socket), like dhcp, which ini-
tializes a particular interface, we need to specify what interface we sending these
packets out on. We can use the human-readable name of the interface to do this,
and the channel will then be bound to this interface. (Appendix B.2)

After creation and channel-specific control calls, the rest of the channel man-
agement interface comprises the standard filesystem calls, bearing in mind the
network channel behaves like a character device in UNIX.9 In particular, closing the
channel and releasing the associated resources is achieved by calling SysClose.
The file descriptor referring to the channel can be passed to new processes via
SysCreateProcess, duplicated (SysFileDup) or controlled using SysFileControl.

How exactly channels are internally organized by the kernel depends on the
channel’s address family and protocol; different protocols use their protocol-specific
source and destination address to arrange channels for the most efficient access.
However, the method of channel organization is generic; incoming packets are
hashed and matched in a hash table; this is common to all address families and
protocols. The exact mechanism is described in Section 3.3.3.

3.3.1 Setup

As part of socket creation or connection in the userspace network stack, we call
SysChannelCreate, specifying the address family and protocol, source and des-
tination addresses and optional features of the channel. (See Appendix B.1 for the
exact parameters). After validating the parameters, the kernel then inspects the
specified channel address family and protocol type. The address family is used to
determine the protocol-specific channel operations for the channel, in the form of
the ChannelOps structure (Figure 3.3).

Instances of the ChannelOps structure are registered by protocol-specific code
via the ChanRegisterFamily call, which links a address family, identified by an
integer, to a particular instance of the structure. This structure is then used to call

7For example, IPv4 assigns a temporary source port, known as an ephemeral port, if the source port
of the channel is set to zero.

8The exact description of the two channel-specific system calls that comprise part of the channel
management interface can be found in Appendix B.

9There are two types of device in UNIX-like operating systems: block devices, which are, able to read
at any point in the file using SysSeek and represent a repository of bytes, and character devices, which
represent a stream of bytes (in our case, packets!), and so, as a result, are cannot be read from at a
random location; this affects other operations such as synchronization.
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s t ruc t ChannelOps
{

in t (∗ c rea t e ) ( s t ruc t Channel∗ channel , s t ruc t ChannelHead∗∗ head ,
s t ruc t

ChannelOptions∗ opt ions ) ;
in t (∗ con t ro l ) ( s t ruc t Channel∗ channel , in t code , void∗ data ) ;
in t (∗wri te ) ( s t ruc t Channel∗ channel , s t ruc t NetSendBuffer∗ b u f f e r ) ;
in t (∗ r e cvBu f f e r ) ( s t ruc t NetBuf fer ∗ b u f f e r ) ;
in t (∗ c l o s e ) ( s t ruc t Channel∗ channel ) ;

} ;

Figure 3.2: The ChannelOps structure is used by protocol-specific components, such as the
IPv4 code, to present a generic interface to the general channel layer code. The operations
are used in general channel management and packet transmission and receiving.

the protocol-specific create, which verifies the source and destination address
(updating them if necessary), and if possible, assigns the channel to a particular
network interface, updating the ChannelInfo structure described in the next sec-
tion with values for the hardware header bytes needed and maximum packet size
permitted to send packets out over the interface.10 Finally, the channel is assigned
to a list (represented by the head parameter in create) for internal organization,
using information from the source and destination addresses.

Memory and the VFS

At this point, the channel has been assigned to a particular list of channels, the
source and destination addresses have been verified and modified, and if possi-
ble, the channel has been assigned to an interface. We still need to initialize the
channel’s memory, which comprises an array of buffers, complete with a general
channel header and packet headers. The exact setup is described later in Sec-
tion 3.4, but in brief, the memory setup operation (ChannelMemorySetup in
net/channels/memory.c) calculates the number of pages needed to store the
number of send and receive buffers (the exact number may be specified in the
options parameter of SysChannelCreate), which is a function of the maxi-
mum packet size (determined by the interface or interfaces that the packet can be
sent and received on), the number of buffers and the hardware header size.

Once we have calculated the number of pages needed for the send and receive
buffers, we can allocate a list of page pointers and set up the general channel
header structure. At this point, applications can now interact with the network
channel’s memory correctly. After memory initialization, the last operation to
perform is binding the channel to a file descriptor using the generic virtual filesys-
tem (VFS) infrastructure; the channel layer supplies a list of file operations it can
implement, and the VFS returns an integer corresponding to an index in the file
descriptor table for use in later file operations. This file descriptor value is returned
to the calling application in userspace – channel setup is now complete, and the

10See Section 3.6 for the exact rules involved in assigning IPv4 channels to network interfaces.
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application can now send and receive packets on it.

3.3.2 Control

It may not be efficient or possible to supply all the needed optional features for
a channel at channel creation. For instance, a suitably-privileged application may
want the network channel to ignore addresses (for raw network access) so it can
specify a binding to an interface, but then later use the routing functions in the
kernel when raw network access is no longer needed. This can be achieved with
the following series of calls to SysChannelControl, (which is further described
in Appendix B.2):

. . .
SysChannelControl ( channelFd , CHANNEL_GET_FLAGS , &f l a g s ) ;
f l a g s |= CHANNEL_IGNORE_ADDRESSES;
SysChannelControl ( channelFd , CHANNEL_SET_FLAGS , &f l a g s ) ;
SysChannelControl ( channelFd , CHANNEL_SET_INTERFACE , " Ethernet0 " ) ;
. . ( send raw packets ) . .
f l a g s &= ~CHANNEL_IGNORE_ADDRESSES;
SysChannelControl ( channelFd , CHANNEL_SET_FLAGS , &f l a g s ) ;

At the moment, there are only a few options that can be controlled by the
user; this is a testament to the generality of network channels as well as the fact
that most connection state is stored in userspace. In constrast, Linux provides
three system calls for controlling kernel socket operation, ioctl, getsockopt
and setsockopt; in Whitix, virtually all of the socket options are handled in by
the userspace network stack without complex demultiplexing of code arguments
in the kernel. Other options will be added when needed, but the options currently
available (see Appendix B.2) seem sufficient for virtually all applications and utili-
ties.

3.3.3 Organization

There are two goals to be achieved in channel organization:

• Efficient organization. The exact arrangement of channels is up to the ad-
dress family, and is often dependent on the matching criteria and information
available. This usually differs between protocols in a family. The IPv4 uses
a hash table per protocol, with the protocol determining the exact inputs to
the hash function. (Section 3.6)

• Generalized lookup. It is useful to make the lookup and organization code
as generalized as possible, to avoid code duplication and subtle bugs. There-
fore, the high level operations, such as adding and removing channels should
be a general mechanism, with the protocol-specific code providing the place-
ment policy with the most efficient organization possible as well as matching
code, as stated above.
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To achieve this, during channel setup, the protocol-specific create function
returns a list, represented by a ChannelHead structure, to attach to. The proto-
col classifier code supplies the same ChannelHead pointer to the generic matching
function ChannelSearchList (include/net/channels.h) when the recvBuffer
operation is called (see Figure 3.3), along with a callback to match against any
channels found. When the channel is closed, it is removed from the list without
calling any protocol-specific code.

3.3.4 Destruction

When the channel is no longer used by the application, it may be freed to save
memory and processing by calling SysClose, passing the file descriptor. Unlike
closing a kernel-level socket, closing a channel does not mean any close messages
are sent.11. In a connection-oriented protocol, userspace code should send the
appropriate connection termination messages (along with the usual application-
level protocol close handshaking) before closing the channel.

Since the channel’s context is kept mostly in a Channel structure instance, a
pointer to which is kept in the File structure, a channel close involves removing
from a ChannelHead list and freeing the Channel structure, with a short in-
memory protocol-dependent close procedure, which may include freeing any ports
allocated to the channel.

3.4 Memory management

The exchange of packets in a network channel is achieved via a shared memory-
mapped area between userspace and the kernel, divided into two main regions:
send and receive, each with a different number of buffers, header structure and
allocation map. The core of the network channel memory management involves a
tight coupling between kernel-space and user-space, with both the kernel and the
userspace application updating the packets and allocation maps as data is sent and
received using the network channel.

Because of this interaction between kernel and user-space, the implementation
relies on correctly functioning user-space code to work correctly. This is not an ideal
situation; a good rule of thumb is to assume that any user-space code is incorrect
and unreliable by nature. However, if the kernel can detect any errors made or
inconsistencies created by user-space, then we recover as quickly as possible or let
the application know in as detailed a fashion as possible.

It is also undesirable for user-space libraries to have knowledge of the inter-
nal channel data structures involved, and potentially encountering issues about
keeping the kernel and user code in synchronization, especially with a less tightly-
coupled development process than at the moment. To resolve this, most of the
low-level accesses to shared data structures is provided by a user-code library that
the kernel makes available via a dynamic mechanism (Section 3.4.2).

11One example of a connection termination protocol is the FIN handshake of TCP that is initiated
when either host in a connection signals a socket close.
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Figure 3.3: Layout of the network channel mapped contiguously in virtual memory. The
left side of the diagram shows the number of pages used for each region, with the number
of buffers in each region shown on the right-hand side. Note that send pages are mapped
with an unspanned organization (to avoid sending a buffer on two discontiguous pages),
but receive pages are mapped with a spanned organization.

The core motivation of the network channel design is the avoidance of costly
packet copying where possible; we follow a zero-copy philosophy. The zero-copy
philosophy in this case states "place the data where it is needed to begin with", as a
copy essentially states the data was not in the desired place to begin with. With the
correct design, placing the data in the correct place is perfectly possible to achieve.

3.4.1 Memory layout

Figure 3.4.1 shows the memory layout of a fully memory-mapped network channel
(from the viewpoint of userspace). It can be divided into three regions:

• Channel header The channel header stores the channel information struc-
ture (Section 3.4.1), the identification number of the last received packet
(updated by the usercode library and used when polling the channel), and
two allocation maps, one each for send and receive.

• Send packets This is a static array of sent or soon-to-be-sent packets. Each
packet comprises send headers and their accompanying buffers, which is the

40



CHAPTER 3. NETWORK CHANNELS 3.4. MEMORY MANAGEMENT

s t ruc t ChanUserHeader
{

in t magic ;
WORD recv Id ;
BYTE sendAllocMap [(CHAN_MAX_SEND_BUFFERS+7)/8] ;
BYTE recvAllocMap [(CHAN_MAX_RECV_BUFFERS+7)/8] ;
s t ruc t ChannelInfo in fo ;

} ;

Figure 3.4: The general header of the channel, placed in the first page of the shared memory.
It contains the information structure and the memory allocation bitmaps for the two memory
regions of the channel. The magic field could be used by the usercode library to verify the
pointer to the various functions points to a ChanUserHeader structure. The role of recvId
when receiving packets is described in Section ??

maximum length that allows the packet to be transmitted over a certain in-
terface or all possible interfaces (depending on the semantics of the data
protocol). Send buffers follow an unspanned organization, as network cards
may be unable to transmit buffers that span two virtual pages, where the
pages may correspond to non-contiguous physical pages.

• Receive packets This is a static array of received packets. It has a similar
structure to the send packets: one packet comprises the receive header and
its buffer. Each buffer is the maximum packet length that can be received
on a certain interface or all possible interfaces. Receive buffers do follow
a spanned organization, as the incoming packet is copied into the receive
region in software by the kernel and so can span two pages.

Channel header

The channel header structure is used for memory management of the channel’s en-
tire shared memory area. In the usercode library, the sendAllocMap and recvAllocMap
are updated using bit manipulation functions such as BitTestAndSet and BitClear,
to allocate and free buffers respectively in the various usercode library functions.
The structure itself is also updated by the kernel, and remains opaque to user ap-
plications. The application can retrieve a pointer to the ChannelInfo structure
by calling uChanGetInfo.

Our approach to allocation differs from both Jacobson’s and Polyakov’s imple-
mentations. In those, the network channel is a cache-aware, cache-friendly queue,
with a circular buffer approach. Incoming packets, if we take receive for exam-
ple, are placed at the tail of the queue, with any waiters being notified if there
is data between the head and the tail. They both presumably employ a copy be-
tween userspace and kernel (for user-facing network channels), since the network
channel consists of a list of pointers to buffers, whereas the Whitix implementation
is a list of buffers in the channel itself. The queue (Jacobson and Polyakov) and
allocation bitmap (Whitix) have similar cache and locking properties, but lookup
in the case where buffers may persist in memory is much faster with bitmaps; in
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s t a t i c i n l i n e void net_channel_queue ( net_channel_t ∗chan , u in t32_t item ) {
uint16_t t a i l = chan−>p . t a i l ;
u in t16_t nxt = ( t a i l + 1) % NET_CHANNEL_Q_ENTRIES ;
i f ( nxt != chan−>c . head ) {

chan−>q[ t a i l ] = item ;
STORE_BARRIER ;
chan−>p . t a i l = nxt ;
i f ( chan−>p . wakecnt != chan−>c . wakecnt ) {

++chan−>p . wakecnt ;
net_chan_wakeup ( chan ) ;

}
}

}

Figure 3.5: Van Jacobson’s network channel, as a queue implementation. This works well
for a producer-consumer relationship. However, if we would like some packets to persist
(say, for retransmission), iterating through the queue to find the first free buffer becomes
less effective. There is still a shared cache line if the channel is accessed by two threads –
the q. Whitix’s allocation bitmaps optimize lookup for allocation, deallocation and location
of the earliest unread packet for receives.

many processor architectures, finding the first free bit involves no loops and very
few processor instructions.

ChannelInfo

As well as sharing memory between the kernel and userspace, the network channel
also shares a structure describing the layout and configuration of the channel in
the ChannelInfo structure. This is used by the usercode library, as well as the
network stack library, to construct packets. The structure contains the members
shown in Figure 3.4.1.

This is the key mechanism for exposing information about the channel to the

s t ruc t ChannelInfo
{

unsigned short numSendBuffers , numSendPages ;
unsigned short numRecvBuffers , numRecvPages ;
unsigned short sendHeaderBytes , recvHeaderBytes ;
unsigned short sendPacketsPerPage ;
unsigned short hwHeaderBytes ;
unsigned short maxPacketSize ;

} ;

Figure 3.6: The ChannelInfo structure, placed in the first page of the shared channel
memory. Unlike the other structures shared between the kernel and userspace, it follows
a known standard format and the internals are available to applications (who use it to
construct and parse packets).
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s t ruc t ChanSendHeader
{

unsigned in t magic ;
unsigned short l ength ;
unsigned short indexF lags ;
void∗ pr i v ;
s t ruc t Time time ; /∗ t r a n s m i t t e d ∗/

} ;

Figure 3.7: The channel buffer send header. This is placed before the data of each send
buffer. A transmitted buffer has a different set of properties to a receive buffer; for example,
the time field is used to note the system time at which the packet was transmitted (for
round-trip time estimates). Unlike receive buffers, send buffers are automatically freed when
sent, unless the CHANNEL_KEEP_SEND_BUFFERS flag is specified upon channel creation
(Appendix B.1).

general application. For example, to calculate the local maximum segment size12 in
TCP, we must have an idea of the maximum packet size (maxPacketSize, which
excludes hwHeaderBytes) that the channel’s interface can support. Other fields of
the channel structure are generally used by the usercode library; uChanRecvBuffData
uses the recvHeaderBytes field to return a pointer to the start of the received
packet’s data, given a pointer to the start of the ChanRecvBuffer.

Transmission semantics

To send a packet, the application (usually via a channel layer in a userspace library)
executes the following steps:

1. The application allocates a send buffer by calling ChanSendBuffAlloc in
the usercode library.

(a) If there are free send buffers, the function is successful and sets the
appropriate bit in the send allocation map, returning a (opaque to the
application) ChanSendHeader pointer to the calling code.

(b) If there are no free packets, the function is unsuccessful and a NULL
pointer is returned; the application must wait for send buffers to be
freed by the kernel, or, if it has chosen to manage it its own send buffers,
free the buffers in the allocation map itself.

2. The application constructs the packet at the network layer and above (e.g.
IPv4 and either TCP, UDP or ICMP), with an offset of sendHeaderBytes.
(reserved for the data link layer header and the buffer header itself) Check-
sum fields may be left to the kernel protocol-specific code to fill in, but this
depends on the protocol code.

12The maximum segment size is the largest packet that can be received by a host in one unfragmented
piece, excluding the size of the TCP or IP header.
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s t ruc t ChanRecvHeader
{

unsigned in t magic ;
unsigned short read ;
unsigned short id ;
unsigned short l ength ;
unsigned short indexF lags ;
void∗ pr i v ;

} ;

Figure 3.8: The channel buffer receive header. This is placed before the data of each receive
buffer. A received buffer mainly stores application information about the amount of process-
ing the buffer has gone through. read is updated by the application to note how many bytes
of the buffer have been processed, and id is used to indicate the place of the buffer relative
to others in the incoming stream of data.

3. The application sets the length of the buffer and calls the SysWrite system
call, passing the address of the start of the buffer (which is the send buffer
header) and the buffer length (including sendHeaderBytes).

4. The SysWrite system call returns, indicating how many bytes were success-
fully transmitted.

5. By default, the buffer is freed when transmitted by the kernel. If the applica-
tion has chosen to manage the send buffers for that application (for example,
to build a retransmission list such as in TCP), the buffer can be later freed by
the application by calling uChanSendBuffFree in the usercode library.

Receive semantics

Receiving a packet on the network channel can be an asynchronous or synchronous
process, as well as blocking or non-blocking. The implementation details are left to
the application. The most common kind of receive, a synchronous blocking receive,
is as follows:

1. (optional) The application calls SysPoll, passing the channel file descriptor
and the required event (POLL_IN) as a PollItem, along with an optional
timeout which can be used to implement the receive timeouts familiar in
user-level sockets.

(a) If a packet was received before SysPoll returns, the kernel will have
copied the packet into a free receive buffer, incremented the latestRecv
field of the in-kernel Channel structure, and signalled that data was
available to read in the channel by setting POLL_IN in the revents
field. SysPoll returns a positive number to signal the number of file
descriptors with events, and the receive process continues.

(b) If no packet was received, no POLL_IN events are signalled for the
channel file descriptor, and the SysPoll system call returns zero to
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indicate no events happened on the file descriptor. The application can
continue polling the channel, or perform other work in the meantime.

2. The application then calls the usercode library function uChanRecvBuffGet
to retrieve the (opaque pointer) ChanRecvBuffer. If the operation could
be performed in the context of multiple threads, the appropriate synchroniza-
tion is left to the application – the function may return NULL if another thread
has already acknowledged receipt of the buffer. It may also return NULL if
SysPoll was not called beforehand to ensure waiting data was present.

(a) uChanRecvBuffGet acknowledges receipt of the packet. It is a simple
operation in the usercode library with a simple general fast case (where
only several buffers are allocated in the receive buffer). The allocation
map is scanned for any allocated buffers, and those allocated buffers are
then inspected to see if they have a newer ID than the current recvId
value in ChannelInfo. If it is a new buffer, it is returned to the appli-
cation.

3. The data can then be inspected by calling uChanRecvBuffData13 – the re-
ceive buffer remains allocated until the application has processed all the data
and called uChanRecvBuffFree.

3.4.2 Usercode library

Because the internal structure of all the headers mentioned in the section may
change (in the future, the arrangement of fields in ChanSendBuffer and ChanRecvBuffer
might depend on cache line size, word alignment, or the processor’s word size), it
is preferable that we abstract the lowest layer of structure manipulation so that we
can update the structures without worrying about backwards compatibility.

The kernel provides a small usercode library used for manipulating the packet
and channel headers, as well as allocating and deallocating packets. The code it-
self is in net/channels/userlib.c, and is copied to a nominal high userspace-
accessible address into each application along with a directory of pointers to vari-
ous function pointer tables; these tables comprise a NULL terminated list of func-
tion pointers, in a prearranged order (not unlike system calls) for applications to
call. The userlibmechanism is available to all parts of the kernel in lib/userlib.c.

The function pointer tables are used in the user-space network library, where
they are copied from kernel space when the shared library is first loaded (via the
init function available to shared libraries). General user-space code can then call
these functions via a small inline wrapper for each function, but generally the inter-
nal network stack code calls these functions through the channel layer, which fur-
ther abstracts channel operation into high-level functions (such as reading a packet
from a channel in ChanRecvNb and polling a channel, described in the next chap-
ter). Many of these usercode functions are "getters" and "setters", and they provide

13This pointer generally points to the start of the buffer data – there is no link-layer header present in
received packets as such information is useless without more context
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an abstraction layer for channel structures to allow for maximum flexibility in the
kernel implementation.

For a list of the functions available in the usercode library, see Appendix C.

3.5 File emulation

Even though a network channel does certainly not appear to have the properties
of a traditional file, and since SysChannelCreate (Appendix B.1) returns a file
descriptor for use in file operations, we must implement a number of common
file operations to satisfy the semantics expected by user applications from any file
descriptor. However, some of these operations are not implemented, because the
alternative is faster and therefore should be used by libraries and applications. The
file operations implemented in net/channels/file.c so far include:

• Writing. (special semantics) The SysWrite system call is a signal to the
channel layer that the application wants the buffer to be transmitted. The
application, perhaps via a userspace shared library, constructs the buffer as
described in Section 3.4.1 and passes the address of the buffer (and header)
and the total length of the packet (including the bytes of the send header).
To avoid the corruption of packets, ChanWrite verifies the magic number
and length before assigning a NetSendBuffer and passing the buffer to
protocol-specific code (such as Ipv4Write) for transmission – as a result,
only correctly formatted ChanSendHeaders can be transmitted.

• Polling. Polling is the main mechanism, instead of blocking reads, for waiting
for data from a network channel. The channel can always send out data
(so long as it has enough free buffers), and waiting data is signalled by a
change in the in-kernel Channel structure of the value of the latestRecv
ID. (which is incremented whenever a packet is received by a channel)

• Handle duplication. This is handled automatically by SysFileDup. How-
ever, it does raise interesting questions about duplicating channels across
processes – by passing a file descriptor to SysCreateProcess, it is au-
tomatically duplicated and given to the new process. Given this, how can
userspace network stacks transfer whatever wraps around the channel (such
as the TCP socket state) with the duplicated file handle? This is an open
question that needs to be addressed.

• Closing. When SysClose is called, the channel destruction process begins in
ChanClose. The protocol-specific channel resources are then freed followed
by the channel itself, as described in Section 3.3.4.

• Memory mapping. Since the channel’s memory is faulted in when needed,
we implement the ChanMapNoPage virtual memory operation. This maps
in a zero page into an appropriate place in the channel’s memory (updating
the internal array of pages, a list of addresses of kernel accessible network
channel pages). The page then formatted by ChanMapNoPage to become
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part of either the general channel header or send region, or, if the accessed
page is part of the receive region, the page is left zeroed by ChanMapNoPage
– the ChannelCopyPacket formats receive buffer headers before data is
copied in.

I have chosen not to implement directly reading from the file (by calling
SysRead), because of the superior alternative of, if we wish to block, polling the
channel for data and then reading from userspace as described in Section 3.4.1, or,
if we wish to perform a non-blocking read, scanning the packets in the channel for
a newer ID than the last packet read using uChanRecvBuffGet. Using the chan-
nel library involves at most one user-kernel transition, compared to a SysRead,
which may involve multiple system calls if the specified buffer is smaller than the
maximum packet size. It also simplifies the in-kernel channel implementation, as
we do not have to consider specifying timeouts for reads as with in-kernel sockets.

3.6 Packet classification

When packets arrive in the network channel, the only context associated with the
data is the length of the packet and the device it was received on. To efficiently
match packets with channels, we need to solve the protocol demultiplexing prob-
lem associated with moving the userspace network stack out of the kernel. This is
done in the network channel layer, in the kernel, in two stages: (1) matching the
packet to an protocol family in NetRecv, and (2) in the protocol family-specific
code, calling a small protocol-specific matching function using extra context (such
as the protocol field in the IP header)14 for transport-layer protocols such as TCP,
UDP and ICMP, along with a generic IP layer.

The only address family that has been implemented so far is the IPv4 suite
of protocols, which currently also includes other lower-level IP-related protocols
such ARP. An flowchart of the various steps taken when receiving a IPv4 packet is
illustrated in Figure 3.9. The process is described in depth below:

3.6.1 Family matching

When the device driver receives a packet, it calls NetRecv, often through eth_recv
or similar in the device driver layer. At this stage, we have a packet buffer and a
set of address family operations (an array of ChannelOps structure – see Figure
3.4.1 for the layout), and we must first match the incoming packet with the correct
address family.

To simplify the process, we can work from the assumption that network inter-
faces will generally receive packets from the same address family15 – it then follows

14The protocol field is an 8-bit integer ID describing the protocol the IP packet encapsulates; for
instance, TCP is given value 6, and UDP 17. This is useful in matching packets to protocol-specific
handlers via an function pointer table indexed by the ID.

15This is an assumption that does not always hold. On the local area network used for testing, packets
from both IPv4 and IPv6, which can be considered to be different address families, were received.
Obviously there were more IPv4 packets than IPv6, but this assumption may be under question in the

47



3.6. PACKET CLASSIFICATION CHAPTER 3. NETWORK CHANNELS

Figure 3.9: A flowchart of receiving a IP packet, as detailed in Section 3.6, and matching
it with a channel. Processing of the packet takes place in an application-specific manner.
Compare with the process for processing an IP packet in Linux, described in Section 1.1.2.
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that the address family of the current received packet is likely to be the same as the
last packet.

Working from this assumption, we store a pointer in the NetDevice structure
to the ChannelOps structure of the address family that successfully handled the
last packet. The recvBuffer method is used to handle the incoming packet (and
hopefully match it to the channel), and it will return CHAN_HANDLED if matched,
and CHAN_NOT_HANDLED if it becomes apparent the incoming packet does not
match the address family.

In the case where the recvBuffer operation does not handle the packet, or
where it is the first received packet on an interface, we also try the recvBuffer
of other address families. If one of them matches, we (not always correctly) predict
the next packet will belong to the same address family. However, as there is only
one address family supported (IPv4), this infrastructure is only useful when more
address families (like IPv6) are implemented. If no address family can successfully
recognise the packet, it is silently dropped by returning from NetRecv.

3.6.2 Protocols: Matching packets to channels

Once we have matched the incoming packet to the address family in recvBuffer
(if the packet does not belong to the address family, the function returns with a
CHAN_NOT_HANDLED status), we can start matching the channel to a particular
channel. To take the IPv4 address family as an example, the following steps in
Ipv4RecvBuffer (depicted in Figure 3.9) are performed to match the incoming
packet to a protocol and channel:

1. The packet type is translated from the data-link layer header – in our case it
is the type field in the Ethernet header, and inspected by Ipv4RecvBuffer.
If it is an ARP packet, the IPv4 code lets the hardware address cache (Section
2.5) handle the packet. Ipv4RecvBuffer then returns, signalling it has
handled the packet.

2. Having handled any non-IP packets (i.e. ARP) in special cases, we then return
if the packet is not marked as an IP packet.

3. We can now inspect the packet to verify it is an IPv4 packet, and retrieve
the source and destination addresses (along with port numbers for TCP and
UDP) from the IP header.

4. If it is an ICMP packet, this is handled as a special case and the packet is
copied to all ICMP channels. ICMP channels essentially function like the
raw sockets described earlier, because of a lack of port multiplexing in the
protocol.

5. Using the protocol ID in the header, we find the protocol operations structure
(ProtoOps) that corresponds to the packet’s protocol (either TCP or UDP).
If there is no operation structure for the protocol, then we cannot handle it.

future.
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s t ruc t RouteEntry
{

DWORD d e s t i n a t i o n ;
DWORD gateway ;
DWORD mask ;
in t f l a g s ;
s t ruc t ListHead next ;
s t ruc t NetDevice∗ dev ice ;

} ;

Figure 3.10: The RouteEntry structure, similar in format to routing tables in other net-
work stacks. The destination address of a packet is used to retrieve the corresponding
RouteEntry in RouteLookup; if a gateway is present, the hardware address is set to that
of the gateway’s.

6. We use the protocol operation fwInput to verify that we are allowed to
accept the packet. If we must drop it, we signal to NetRecv that we cannot
handle the packet.

7. We then hash the source and destination address of the packet to locate the
protocol-specific ChannelHead structure.

8. We then search the linked list represented by the returned ChannelHead
structure using ChannelSearchList. There are two cases:

(a) We have successfully matched the protocol to a channel (using the
protocol-specific compareFunc passed to ChannelSearchList). If
so, we copy the packet to the first free receive buffer in the channel and
increment latestRecv. If there are no buffers, we drop the packet.

(b) We could not find a channel to match the packet to. In this case, we call
the chanNotFound function, which sends back a small RST packet (for
TCP).

Although much of the implementation of the recvBuffer function is protocol-
specific, the main steps apply to any protocol family: (1) inspection, (2) verifica-
tion, (3) firewalling, (4) matching and (5) copying.

3.7 Routing

In the network channel layer, routing outgoing packets is the opposite problem of
the classification of incoming packets. Given a channel and an outgoing packet,
we must choose the network interface is used to transmit the packet (and to what
hardware address). Contrast with classification, where we are given an incoming
packet and its network interface, and must match it to a channel. Currently, the
routing functionality is IPv4 specific and contained in net/ipv4/route.c, but it
can be generalized to suit other protocol families.
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Taking the IPv4 protocol family code as an example again, we inspect the des-
tination IP address of the outgoing packet in Ipv4Write (unless we are in "raw
channel" mode, such as the channels used by dhcp), and pass this to the core
of the routing component: RouteLookup. This retrieves a RouteEntry (Figure
3.7), given an IP address. If the gateway field is non-zero, then the packet must
be routed outside of the local network by sending it to the gateway. The implemen-
tation is similar to implementations in other networking subsystems, so it will not
be covered in depth here.

The routing table is constructed with information from interface drivers (such
as Loopback0, which knows packets sent to 127.0.0.0 to 127.255.255.255 should
be routed to it) and the dhcp utility, which uses dynamic host configuration infor-
mation from the local network to build the routing table. A routing utility may be
developed in future that would also allow the addition, listing and removal of table
entries, but only addition of entries via IcFs (/Network/Routes/addRoute) is
supported at the moment.

3.7.1 Firewall

The Whitix stateless firewall, a simple packet filtering mechanism, also inspects the
packet before it is routed to an interface (as well as after a packet has been received
on the interface and sent to a protocol family). It was included to show that such
filtering and security is still possible, even if most protocol processing takes place
in userspace. Currently, firewalling is supported for the UDP and TCP transport
protocols. The core functionality is the FwRuleMatch function, which, given a
rule and packet context (currently the protocol, source and destination port), re-
turns FW_ACCEPT, meaning protocol processing can continue, or FW_DROP, where
the packet must be not be processed further (matched to a channel or sent on an
interface). FwRuleMatch is generally called from protocol-specific code, either on
input or output.

The abstraction of a firewall rule is the IpFwRule structure, which is translated
from a IpFwUserRule structure passed to the kernel via the IcFs interface (at
/Network/Firewall/). There is no support for ordering rules by generality, so a
general rule to drop all input packets, if inserted first, will always take precedence.
There is also no support for listing or removing rules, but this can be trivially added.
See the description of the user application firewall (Section 4.5.1) for a further
description of the firewall rule format and the available filtering mechanisms.

3.8 Testing

The main test framework used to test the network channel layer involved auto-
mated testing with the channel system calls using the chan_test test suite.The
test suite could be described as grey box testing of the layer; we have knowledge of
the internal data structures and algorithms when designing the test suite, but we
test at the userspace level, just like typical users of the API.
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Test s e t #1: Channel c r ea t i on
=============================
Test #1.1: I n v a l i d parameters to ChannelCreate . . . [ passed ]
Test #1.2: UDP: Zero IP address as d e s t i n a t i o n . . . [ passed ]
Test #1.3: I n v a l i d number of send and r e c e i v e pages for channel . . . [

passed ]

Test s e t #2: ChanSendBuffer : memory map
=======================================
Test #2.1: Create v a l i d UDP network channel . . . [ passed ]

numSendBuffers > 0 . . . [ passed ]
numRecvBuffers > 0 . . . [ passed ]
numSendPages > 0 . . . [ passed ]
numRecvPages > 0 . . . [ passed ]

Test #2.2: A l l o c a t e one send b u f f e r . . . [ passed ]
c o r r e c t address . . . [ passed ]

Test #2.3: Free ing b u f f e r then a l l o c a t i n g again re tu rns same b u f f e r . . . [
passed ]

Test #2.4: A l l o c a t i n g a l l (32) b u f f e r s . . . [ passed ]
V e r i f y i n g b u f f e r a l l o c a t i o n f a i l s a f te rwards . . . [ passed ]

. . .

Figure 3.11: Part of the output of the chan_test program. The test suite tests a range
of conditions, using the channel system calls and the usercode library to verify the channel
implementation works correctly. Although it is not yet an exhaustive test, the test suite
covers as much of the channel code as possible, with a focus on IPv4 channels.

Figure 3.11 depicts the part of the output of the test suite. The test suite is di-
vided into sets, covering tests involving creation, send and receive buffer mapping,
sending and receiving packets, and covering many of the channel library calls as
well. The tests also cover the IPv4 protocol family code, but the tests can be easily
reused across multiple protocol families.

chan_test was useful in locating bugs. One example involved the send region
allocation map. The use of the bit operation BitTestAndSet function was present
in uChanSendBufferAlloc, a usercode library function. Testing the creation of
channels where the number of send buffers was larger than 32 caused the test to
fail – uChanSendBufferAlloc seemingly failed to allocate all the send buffers
in the channel. Using this test, I discovered that the processor instruction that the
BitTestAndSet function was using, bts, only accepted a bit argument of 0 to
31, as the byte-sized argument was taken modulo 32. The automated test allowed
me to identify the issue with ease (after all, the issue was located in the few lines
of code in uChanSendBufferAlloc), which would have been hard to find later
when sending packets using the userspace network stack.

Although the automated test suite was the dynamic testing performed on the
layer, I utilized static testing methods, such reviews and walkthroughs. I reviewed
the core kernel code often, often with a focus on justifying each operation and walk-
ing through rare cases in functions such as Ipv4ChannelCreate and ChanWrite
to focus on cases where errors were not detected or pointers were not validated.

52



CHAPTER 3. NETWORK CHANNELS 3.9. DISCUSSION

An ideal testing aid, especially for the automated test suite, would have been a
mock null protocol family, so I could isolate the generic channel layer and test with
a variety of invalid inputs – this would be to make sure any invalid inputs were
detected by the generic layer, rather than just one protocol family.

One area of testing I should have explored more was destructive testing. One
example of such a test would have been setting the fields of a ChanSendBuffer
header to invalid values (having knowledge of the internal structure) – there are
only a few such tests, and those are simple destructive tests, such as setting the
entire buffer to zero and attempting to send it by calling SysWrite. Most of the
memory corruption issues (and the lack of checking) were caught during testing in
the various application programs of the network stack, and not by the channel test
suite first.

3.9 Discussion

Network channels are a useful basis for handling packet I/O in a protocol-transparent
manner and helping to transfer work out of the kernel. They would also be useful in
a kernel-based network stack, avoiding the cache-unfriendly linked lists prevalent
in many current implementations. Aside from some concerns about race condi-
tions, they are also reasonably secure, and it is difficult to undermine the verifica-
tion procedure for outgoing packets. Channels, especially during transmission, are
multiprocessor-friendly – all the work of transmitting the packet is performed on
the same CPU for one, and there is only typically one shared cache line (the allo-
cation maps) that is atomically updated by multiple processors. Incoming packets
are classified efficiently into protocol families and protocols in a generic manner
– further research would most likely replace the simplistic hash table in the IPv4
code with a lookup-friendly data structure such as a trie for further performance
gains.

Even though we have shown that it is possible to avoid time-to-check-to-time-
of-use security holes by verifying the packet immediately before transmission, the
fact that we can theoretically send attack packets is not ideal. We could deny
access to network channels by programs whose packets pass all verification bar the
final one before transmission; a checksum mismatch on the packet indicating that
either they are corrupting their packets maliciously or they are overwriting channel
memory (in any case, making the two causes of the bug as obvious as possible is
useful). Even though it is becoming increasingly hard to construct useful attack
packets (and regardless, attackers can still do so using their own computer and raw
sockets), we should protect against future attacks by including other mechanisms.

Limiting the bandwidth usage per network channel will be important on pub-
lic systems. If we do not enforce resource usage limits, or bandwidth quotas, then
one process could perform a denial-of-service attack against the system, denying
other processes and channels the bandwidth resources needed to carry to oper-
ate. A quota system could be implemented that enforced limits on the amount
of data processes or users (such functionality already exists in the Linux firewall
iptables) could send using network channels. With kernel-based sockets, this is
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not a problem, as the kernel’s network stack controls the data output through the
use of send windows (depending on the protocol) and socket pages in the kernel.

3.10 Summary

This chapter detailed the network channel – a new kernel object for handling
packet I/O for high performance. We first evaluated the current work and imple-
mentations of network channels; where they were lacking and how their design
was changed in this implementation. Other possibilities, such as userspace network
drivers and raw sockets, were evaluated and discarded for security and performance
reasons along the way. We described how channel management, via the new sys-
tem calls SysChannelCreate and SysChannelControl, worked by represent-
ing channels as files, and depicted the standard memory layout of the channel,
how transmission and receive operations interacted with the shared memory, and
the design’s scalability and performance advantages.

Packet classification, which takes place in the kernel and involves matching
incoming packets to protocol families, protocols and channels is then outlined for
IPv4 – including the in-kernel packet filter that filters the packets of most trans-
port protocols. We summarize the routing that takes place in the channel layer,
matching outgoing packets to interfaces. Finally, we demonstrate the automated
test suite chan_test and how it helped discover bugs and improve stability in
the new network channel layer.
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Chapter 4
Userspace networking

The network channel objects described in the previous chapter are of limited use
to most applications. We would like present the abstraction of connections and
packets to applications. To do this, the userspace network stack provides support
for a range of protocols from the TCP/IP suite, including implementations of TCP,
UDP and ICMP and a DNS resolver. The userspace network stack provides an im-
plementation of the transport and session layers to the application.

We then list the various utilities and applications written to demonstrate and
complement the networking subsystem developed for this project, and note any ap-
plications that use unique features of the network stack, including the extensibility
and adaptability described in Chapter 5.

Distributed with the operating system and the networking subsystem is a sim-
ple HTTP server, httpd, FTP and Telnet clients, ftp and telnet, and a name re-
solver dns. Networking utilities include nprof, which displays network statistics
and profiling data collected from applications, firewall, for new packet filtering
rules, as well as key utilities such as dhcp and ping.

4.1 Background

This project is not the first implementation of a userspace network stack that uses
the concept of network channels, albeit in a different form, to prove that alter-
native network stack designs are possible. In 2006, Evgeniy Polyakov, who also
wrote a patch-set to implement network channels in the Linux kernel mentioned in
Section 3.1, wrote a small network stack, unetstack, focusing mainly on the TCP
implementation,1 as a small proof-of-concept.

Although Polyakov’s implementation is fairly complete in terms of basic TCP
features, including TCP timestamps, fast retransmit support and support for UDP

1The code is available here at http://www.ioremap.net/cgi-bin/gitweb.cgi?p=
unetstack.git;a=tree
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and TCP, the implementation is lacking in several areas, such as a general socket
API (the userspace network stack is distributed as part of a test program, not as a
shared library) or the correct socket semantics for server sockets (no new networks
channels are created to handle server connections using accept). Nevertheless, I
have based the design of my TCP state machine and TCP option handling upon that
of Polyakov’s, but many of the semantics, especially those relating to server sockets,
are completely different. There is also little similarity in how the network stack
interfaces with the channels, as well as a different approach to allocation (Section
3.4.1). I have also added support for other features not found in Polyakov’s stack:
retransmission timeout and estimation, and of course the adaptability, profiling and
interactivity APIs (Chapter 5).

4.1.1 Microkernel research

unetstack is not the only network stack that has been placed in userspace. Other
researchers have utilized different kernel objects to transfer the network stack into
userspace – it is a valid research objective, as the network stack logic is especially
vulnerable to outside attack, and most of the code involves manipulating data struc-
tures and therefore does not require privileged execution in a monolithic kernel.

One example is the 1995 paper "Experiences implementing a high performance
TCP in user-space", by Aled Edwards and Steve Muir,[20]which developed a userspace
network stack running on the JetStream token-ring network2 – even back then, the
performance of the userspace TCP implementation, by reducing the number of data
copies per packet from two to one, increased by 50%.

The research before then on userspace network stack mainly involved micro-
kernels, a hot topic in operating system research at that time, and two different
implementations for the Mach microkernel were developed. The first, described in
"Implementing Network Protocols at User Level" by Chandramohan Thekkath et al.
(1993) [62], argues that consideration of development efficiency and application-
protocol mismatches mandate a more distributed network stack, with the network
stack moving to userspace and divided protocol libraries.

Thekkath et al. develop three components: a set of transport protocol libraries
(UDP and TCP), a in-kernel network I/O module to provide protected access to the
network by the libraries, and a registry server that allocates and deallocates commu-
nication endpoints. They face the same problems with demultiplexing of incoming
packets and they even mention transport protocol adaptability to applications as
a benefit, but do not mention an implementation. "Protocol service decomposi-
tion for high-performance networking", by Chris Maeda and Brian Bershad (1994),
mention a similar design to [62], but move most of the non-performance-critical
operations and protocol management code, such as ARP requests and replies, to a
single userspace network server. The performance-critical code interacts with the
network stack directly via protocol libraries.

In summary, the two research projects involving the Mach kernel match well

2A token-ring network uses a special data-link messages, known as a token, to control access to the
medium.
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with the flexibility and adaptability-related goals of the project, but suffered poor
performance due to excessive data copying in many cases (due to the more dis-
tributed architecture) – they also did not provide convincing reasons (through their
implementation) concerning why the network stack should be placed in userspace.
In constrast, Polyakov’s implementation will be similar to mine, mainly due to the
fact that we are both adapting the network channel as a shared static array of
buffers, but the scope of his project and implementation is much less and the goals
and mechanisms used different.

4.2 Overview

The only kernel object directly exposed to userspace through a set of system calls is
the network channel. Although the kernel supplies a user-code library and supports
classifying a variety of protocols, the channel is intended as a low-level object for
zero-copy I/O between the userspace and kernel (with a focus on network trans-
mission), unlike a kernel-level socket, which represents one endpoint of a bidirec-
tional communication link. In short, the network channel has much more general
applicability to data transfer than the socket, at the expense of only providing a
low-level interface to userspace.

The userspace network stack provides the main abstraction for application
developers wishing to use networking in their application. It is still possible for
userspace applications to use the raw channel system calls, but operation can be
prone to errors (as described in the previous chapter). The userspace network stack
comprises wrappers and abstractions around all levels of the TCP/IP protocol suite,
including a simple userspace abstraction of the network channel for raw network
channel access (used by dhcp for example), and providing support for UDP, ICMP
and TCP to applications through two APIs: the Whitix native API, designed for
adaptability and interactivity and the POSIX API, supported for UNIX applications
that use the Berkeley Sockets API.

Networking utilities interact with the userspace network stack and other parts
of the networking subsystem through the Information and Configuration filesys-
tem (IcFs). One example is firewall, the Whitix packet filter, which processes
rules specified by the user and adds and removes firewall rules using the IcFs inter-
face in /Network/Firewall/, without interacting with the network stack (unless
functionality to test the new firewall rule is added). These rules are immediately
processed by the kernel firewall and added to the appropriate chain of rules.

Other utilities interact exclusively with the network stack. ping, used to verify
that a host is reachable, constructs ICMP Echo Request messages using the network
stack. dns verifies that a DNS hostname resolves correctly. dhcp uses raw network
channels to assign an IP address to a network interface. nprof does not directly
interact with any network stack component, but reads and synthesizes the output
of the network stack from a run of a networked application.

Applications constitute the majority of the users of the network stack. Appli-
cations (and utilities3) link to the libnetwork.so userspace shared library, and

3The differentiation between utility and application is traditionally a characteristic of the program’s
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Figure 4.1: The network stack resides in userspace as a shared library and is the only com-
ponent of the networking subsystem that applications interact with. Utilities interact with
the network stack and kernel-level components such as the firewall and routing table (via
the Information and Configuration filesystem).

58



CHAPTER 4. USERSPACE NETWORKING 4.3. NETWORK STACK

Figure 4.2: The userspace network stack architecture. The network stack is distributed
as a shared library (.so). The diagram shows the usercode code library copied down to
userspace – this is performed by the kernel and the code is in fact mapped into every process’
address space. The statistics and events components are covered in Chapter 5.

then use call functions from of the two APIs to use networking functionality in their
application. For POSIX applications, which Whitix supports for compatibility rea-
sons, the POSIX API is seamlessly supported by the libposix shared library. The
usage pattern of the network stack depends on the application and protocol: ftp
and telnet use TCP client sockets, and httpd creates a TCP "server" socket to
respond to HTTP requests.

4.3 Network stack

4.3.1 Architecture

The userspace network stack and library comprises a number of components that
interface either with the kernel or applications and utilities. Figure 4.2 depicts
the components and the interactions between them. The userspace network stack
itself is distributed as a shared library; applications link to the libnetwork.so
library that contains the socket API, protocol implementations and various libraries.
As a result, much of the network stack code is shared amongst applications in

function, rather than its form.
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memory; however, different processes contain different network stack state in the
data section of the shared library.

To implement the userspace network stack and provide primitives for socket
I/O and name resolution, the libnetwork.so library contains the following com-
ponents:

• Network channels Functions to control network channels and transmit and
receive data on them are provided. These mainly wrap around and directly
link to the usercode library provided by the kernel, although higher level
operations such as blocking receive are provided. The Channel structure,
created when the kernel channel object is created using ChannelCreate,
provides a wrapper for the lower-level channel file descriptor, as well as the
memory resources associated with the channel.

• IP layer. Transport layer protocols that use IPv4 use the IP layer for con-
structing IP headers for later transmission. The IP layer is also used for re-
ceiving packets from the network channel layer, and verifies the packet’s IP
header before returning the packet as valid data to higher layers.

• ICMP and UDP sockets. These two datagram protocols are fully supported
by the userspace network stack. Applications can create UDP servers and
clients using the native API, and transmit and receive packets with the usual
semantics. Because of the simplicity of the two protocols, we have little to
add in original contributions to their implementation in the network stack.

• DNS resolver library. This component will probably be moved into a sepa-
rate library in the future (libdns.so), but it is included in the main network
library because traditionally name resolution functions are available along
with sockets (c.f. gethostbyname in libc.so in Linux). As well as provid-
ing a high-level function that resolves a human-readable domain name to an
address, the DNS resolver code also provides functions for the construction
of DNS request packets and the parsing of DNS reply packets; these functions
are used by command-line utilities such as dns.

• TCP sockets. The most complex part of the network stack is the TCP imple-
mentation, which supports all the major features of a typical TCP implemen-
tation and code for gathering statistics, profiling and using profiling for the
adaptive algorithms. It abstracts TCP packets as a reliable ordered delivery
of a stream of bytes, and handles slow start, congestion avoidance, window
sizes, all TCP states and connection establishment and termination. Many
of the advanced features unique to our implementation are covered in detail
in the next chapter, however, we will summarize the architecture of the TCP
implementation in this chapter.

• Statistics and profiling. Statistics from TCP connections are collected while
the connection is active and written to disk after the application exits, to be
later read by programs such as nprof. This component also reads in profiling
data from a previous run of the application and uses it as additional input for

60



CHAPTER 4. USERSPACE NETWORKING 4.3. NETWORK STACK

s t ruc t SocketOps
{

in t (∗ accept ) ( Socket∗ socket , Socket∗ ch i ld , s t ruc t SockAddr∗ addr ) ;
in t (∗ bind ) ( Socket∗ socket , s t ruc t SockAddr∗ addr ) ;
in t (∗ l i s t e n ) ( Socket∗ socket , in t backlog ) ;
in t (∗ c rea t e ) ( Socket∗ socke t ) ;
in t (∗ send ) ( Socket∗ socket , const void∗ buf fe r , unsigned long length ,

in t f l a g s ) ;
in t (∗ sendTo ) ( Socket∗ socket , const void∗ buf fer , unsigned long length

, in t f l ag s , s t ruc t SockAddr∗ des t ) ;
in t (∗ recvFrom ) ( Socket∗ socket , void∗ buf fe r , unsigned long length ,

in t f l ag s , s t ruc t SockAddr∗ des t ) ;
in t (∗ recv ) ( Socket∗ socket , void∗ buf fer , unsigned long length , in t

f l a g s ) ;
in t (∗ connect ) ( Socket∗ socket , s t ruc t SockAddr∗ sockAddr ) ;
in t (∗ connectEx ) ( Socket∗ socket , s t ruc t SockAddr∗ src , s t ruc t SockAddr

∗ dest , in t f l a g s ) ;
in t (∗ shutdown ) ( Socket∗ socke t ) ;

} ;

Figure 4.3: The socket operations structure. All of these operations are available to user ap-
plications by calling functions such as SocketAccept, SocketBind etc, which are wrap-
pers around this simple form of object-oriented design. Depending on whether the protocol
is connection-less or connection-oriented, the exact set of functions implemented by a pro-
tocol differ.

fine-tuning of the TCP adaptive algorithms, which is described in the next
chapter.

• Asynchronous I/O and events. The network stack provides a set of func-
tions for handling events from and directly interacting with the network
stack. Asynchronous I/O functions, such as SocketAsyncSend and SocketAsyncRecv,
are special cases of network stack events and are handled accordingly. Appli-
cations such as httpd, ftp and telnet use these functions for performance
reasons. The mechanisms involved in event registration and notification are
detailed in the following chapter.

4.3.2 APIs

Two application programming interfaces (APIs) are provided for use in Whitix.
There is the native API, which is part of the userspace network stack in libnetwork.so,
and the POSIX API in libposix.so, which wraps around the native socket API
and is intended to support POSIX applications ported from other operating systems.
The two follow the same methodology in exposing networking functionality. Both
abstract connection endpoints as sockets, and the function have similar names and
the same order of parameters.

However, the native API includes sets of functions for statistics, events and
asynchronous I/O, which either do not exist, are operating system-specific, or are
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not widely implemented in the POSIX API. In short, the POSIX API supplies a subset
of the functionality of the native API and the network stack.

Native

The native API is specific to Whitix. The main handle in the API is the Socket
structure pointer, created using SocketCreate in a similar fashion to socket in
libposix.so. Most of the basic socket functions (SocketSend, SocketRecv
etc.) wrap around their corresponding entry in the SocketOps structure (Figure
4.3). As a result, if an operation is not implemented by a protocol, the native API
will return an error.

The main addition, and the reason for creating a separate API for the userspace
network stack, is that we can deal directly with socket objects (rather than indi-
rectly through file descriptors or indices) and easily expose an interface to the new
functionality of the userspace network stack. Functions such as TcpSetTransferSize
take a Socket pointer (the function verifies it points to a TCP socket) and inter-
act with the TCP implementation directly through the generic network events API
detailed in the next chapter.

POSIX

The POSIX sockets API is part of the general POSIX compatibility layer available in
libposix.so. It emulates the networking socket layer user interface of UNIX-like
OSes; functions, instead of dealing directly with a Socket pointer, pass around a
file descriptor to functions such as connect, send, recv and shutdown, which
in turn call their native equivalents. Essentially, the POSIX API is a thin wrapper
over the Native API, which is also a thin wrapper over the protocol-specific code
and essentially the network stack itself. This file descriptor is actually indexes
into a internal table of file pointers, with each file pointer having a different type
(e.g. socket or disk file). The action for generic functions like close depends on
the type of the file structure pointed to by the file descriptor; for normal files, the
SysClose system call is issued, but for sockets, we call the SocketClose function
in libnetwork.so to shut down the connection.

The "file descriptor as socket pointer" metaphor runs into trouble with the poll
function, which, to work effectively, must poll both sockets and files efficiently. The
workaround for TCP sockets, which has so far not been implemented, would in-
volve creating a local pipe using the SysPipe call during socket creation, handing
the write end to the network stack, and the read end to the application. The process
is described below.

Whenever application data arrives at the socket, the network stack would write
to the pipe to signal any waiters in SysPoll that there was new data available.4

The only disadvantage of the workaround is that the POLL_OUT descriptor event
would no longer signal, as writing to the read end of the pipe is never allowed. A

4Presumably UDP and ICMP sockets, which have no transport-level messages like TCP, could directly
poll the channel using the channel file descriptor.
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typedef s t ruc t tagChannel
{

in t fd ;
ChannelAddr src , des t ;
char∗ baseAddress ;
ChannelInfo∗ i n f o ;

}Channel ;

Figure 4.4: In the network stack, the channel structure keeps track of key resources asso-
ciated with the channel, including its file descriptor (fd), the address pair for connections
(src and dest), the memory associated with the channel (baseAddress) and a pointer
to the information structure in the channel (kept in the shared memory between userspace
and kernel), the ChannelInfo structure.

workaround for that is to create pipes in both directions, and so the pipe with the
write end given to the application would always signal POLL_OUT.

The overhead for this workaround has not been determined, but for servers
that have a large amount of client connections and poll using the POSIX API, the
overhead of three times the number of connections (one channel and two pipe file
descriptors) may result in considerable overhead when processing translating poll
to SysPoll calls in the kernel.

4.3.3 Internal layers: channels and IP

The channel layer of the network stack is not designed to be directly used by ap-
plications, expect in certain utilities such as dhcp (see Section 4.5.3). Instead, as
depicted in Figure 4.2, the higher level protocol implementations use a small set of
channel-centric network stack functions and the usercode library to interact with
the kernel.

The main abstraction in the channel layer is the (small) Channel structure,
shown in Figure 4.4. Each socket has a pointer to a private instance of the structure,
with the functions in the channel layer, such as ChanBufferSend and ChanBufferRecv
using it to access the resources associated with that channel when issuing a system
call to the kernel. Other structures used include the opaque pointers ChanSendBuffer
and ChanRecvBuffer, used for representing a send and receive network channel
buffer respectively.

Other functions wrap directly around the usercode library provided by the ker-
nel (Section 3.4.2), passing the baseAddress field, which points to the header
page of the channel, to the main usercode library function. For example, ChanSendBufferAlloc,
which allocates a ChanSendBuffer and the corresponding data pointer, calls
uChanSendBufferAlloc (and then uChanSendBufferData to retrieve the data
pointer) – both are function pointers that point to their implementations in the
usercode library (see Appendix C) and directly manipulate the shared memory
structures of the network channel on behalf of the channel layer.
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Figure 4.5: The layout of a IP packet in the channel send buffer represented by
ChanSendBuffer. The send header is filled in by functions in the usercode library, and
the hardware header and part of the IP header (the source address and checksum) are filled
in by the kernel. The rest of the packet is constructed by the userspace network stack.

IP layer

The IP layer is not directly responsible for packet transmission, but IP layer func-
tions are called to construct the packet. IpBuildHeader, given information about
the packet, prepends an IP header describing the packet, following the format de-
picted in Figure 4.5.

All protocols in the userspace network stack use a common set of functions for
receiving an IP packet on a channel. These functions, IpChanRecv and IpChanRecvNb,
call the channel-layer equivalent to receive a ChanRecvBuffer pointer to the
packet from the network channel, and perform basic error checking on the packet.
For example, the received packet length is compared against the IP header’s idea of
the packet’s length; if the received packet length is less, the packet has been trun-
cated and may not contain valid data. Eventually, when IP fragmentation support
is implemented, reassembly of the packet will take place at this layer.

4.3.4 UDP and ICMP sockets

These are two of the core protocols of the network stack, and are actually very
similar in operation. UDP delivers datagrams to other hosts in a connection-less
and unreliable manner, containing user-specified data. ICMP is used, mainly by
the system and utilities, to send error and diagnostic messages. Since both are
datagram-based, their mechanisms for sending and receiving data are very similar,
but the data carried by them and their usage patterns are very different. They are
also connectionless protocols, so little to no state is required for a socket. These
characteristics make it an ideal place to start implementation of the higher level
protocols.

As a result, both of the implementations are similar in operation, and involve
simple packet handling and error checking. We shall now survey the different
aspects of the protocols, noting any unique features of either protocol that affect
operation. These include:

• Socket creation. When the SocketCreate function is called, both protocol
implementations create a socket, noting their respective operation structures.
The UDP socket then calls UdpSocketConnect to create a network channel
for later calls; ICMP leaves this to the application or utility to call explicitly
before allowing the application to send ICMP messages.
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• Socket "connection". Although both are datagram protocols, we must allo-
cate a source port (among other things) using the kernel’s framework, and
there we must notify the kernel of our resource usage by creating a network
channel. Both create a network channel with a zero source address (so the
IP-specific code in the kernel can assign a suitable source address and port,
as in Section 3.6) and the broadcast address (255.255.255.255) is supplied
to the ChannelCreate function to indicate that this socket can send to all
hosts.

The destination address provided to the function, if not NULL, is used as
the default destination address when the application calls SocketSend in-
stead of SocketSendTo. It is also the only address, if specified, from which
SocketRecv datagrams can be received, although this is only enforced at a
userspace level.

• Sending and receiving data. Both ICMP and UDP transmit data using
SocketSendTo, or SocketSend if the default destination address has been
supplied by calling SocketConnect. The difference between the two pro-
tocols involves the input buffer in transmission, since ICMP is a diagnostic
protocol and UDP a transport one. Packets sent out over a UDP socket have
their header automatically added, whereas applications using ICMP sockets
must construct the header before transmitting the packet.

The reasoning for these differing semantics is that use of ICMP sockets and
channels in the future will be restricted to diagnostic applications run by
privileged users (where, in a security context, constructing raw packets is
permissible), and diagnostic applications typically need more control over
the transmitted packet. For example, the ping application uses the ID field of
the ICMP header in ECHO REQUEST packets to identify corresponding ECHO
REPLY responses. (Section 4.5.5).

Because UDP and ICMP are packet-based protocols, the send and receive
calls operate with packet semantics. Transmissions larger than the maximum
packet size of the channel (which corresponds to the minimum MTU of any
interface) are not allowed, and will return an error. This simplifies the imple-
mentation, and only a couple of small packets are sent over UDP in a typical
session anyway.

In a similar fashion to sending a packet, UDP and ICMP sockets can receive
packets by calling SocketRecvFrom, or SocketRecv if the default desti-
nation address has been supplied using SocketConnect. The same header
and packet semantics also apply when receiving packets; only one packet is
received in a call, and if the socket uses the ICMP protocol, the ICMP header
is included in the received data. If the caller supplies a buffer that is too small
for the entire packet, the packet is partially copied into the buffer, truncated
and the rest dropped.

• Socket close and destruction Since UDP and ICMP are datagram protocols,
closing the socket does not cause any messages to be sent; no connection
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termination handshaking is involved. The socket is freed (there is no UDP or
ICMP-specific state stored) and the channel silently closed.

4.4 TCP

Since it estimated more than 80% of the traffic on wide-area networks such as
the Internet involves TCP,[9] it was key that there was a functional TCP imple-
mentation that would implement all the major features described in the relevant
RFCs,[48] so we could build an expressive interactive and adaptable event layer
on top of TCP. The major features supported are low start and congestion control
with retransmission (including the TCP Vegas congestion control algorithm), TCP
client and server sockets, Protect Against Wrapped Sequence numbers (PAWS), Ini-
tial Sequence Number Randomization, dynamic receive and send windows, and other
options, such as maximum segment size and window scaling.

4.4.1 Design choices

Since TCP involves a complex implementation (compared to the UDP and ICMP
datagram protocols), the architecture of the TCP code involved two major design
decisions, as well as deciding what optional features should be included, based
on how it would advance the eventual goals of adaptability and interactivity or
improve security.

The first decision involved how to handle incoming packets in TCP. Since
datagram protocols do not have stream management, there are no transport-layer-
specific packets that must be handled in UDP or ICMP. Since we have to send out
ACKs and handle connection initiation and termination without the knowledge of
the application (to obey general socket semantics), should we handle any incom-
ing packets in-band in a single-threaded approach whenever the application receives
data 5 or should we have a multithreaded approach, where there are separate thread
or set of threads that wait and poll for incoming data?

In the end I chose the latter multithreaded option. It appears as if the sin-
gle threaded route, in an initial observation, results in spurious retransmission of
packets from the remote host; this is because if a socket is rarely used, acknowl-
edgement packets are not sent when remote data arrives, but when the socket is
next used (either to send or receive data). The remote host might also deduce that
the network connection is congested and reduce bandwidth, reducing performance
further.

Instead, newly created sockets (both client and server) are polled by a single
thread, and packets are handled and processed as soon as they arrive. This results
in low latency for ACK packets, and as a result the network stack may be busy even
if the application is not; this may be a more efficient use of processing time, instead
of paying the processing cost when the application chooses to receive or send data,
which could be latency-critical. As a downside, this may result in less processing

5We may have to check any received packets when we send data as well, so we can send back ACKs
for received but unread data to avoid unnecessary retransmissions.
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time allocated to each socket if SysPoll indicates there are many incoming TCP
packets waiting.

Another feature that differentiates established network stacks is their choice of
measurement-based congestion control algorithm. Using the round-trip time , the
amount of time from a data packet being sent to its corresponding acknowledge-
ment being received, estimate as a guide, different algorithms adjust the congestion
window , the network stack’s idea of how many bytes can be sent without overload-
ing the network with too much traffic,6 differently: TCP Vegas, the algorithm that
I chose to focus my efforts on, measures the round-trip time from each packet and
linearly increases or decreases the congestion window to compensate.

Features that were not included (due to constraints on the length of the project)
included selective acknowledgement, which would have further reduced wasted
bandwidth by avoiding unnecessary retransmission, and a framework for an ap-
plication to select from a variety of congestion control algorithms for a particular
socket’s needs.

4.4.2 Possible TCP changes

While developing the TCP implementation, I realized several of the features of TCP
were focused on network stacks with a different design – especially those with in-
kernel network stacks where the received data regions were allocated in terms of
bytes, rather than buffers in the network channel.

For example, the receive window in flow control becomes irrelevant if we
have enough bandwidth to process incoming data, but rarely receive data from
the socket. Because of the way received packets are stored in the network channel
list of buffers (to avoid unnecessary copies, but there other possibilities), the fact
is that we could handle much more data, but are limited by the advertised receive
window.[29]

My belief is that the receive window partly originates from environments where
machines of diverse network speeds communicate, and also by the realities of mem-
ory management in the kernel; we can only allocate X bytes per socket because,
especially in monolithic kernels, the pages allocated cannot be swapped out7 and
so the memory is limited.

Enforcing a limit on the bytes for each receive window also avoids especially
high memory usage for one socket – however, if the received buffers are stored
in user memory (so per-process, with more allocated pages per network channel
meaning less memory available for the rest of the application) and can be swapped
out if needed, there may be one less reason for the concept of a receive window in
the protocol.8

6Note that this may be differ from the advertised receive window at the opposite host.
7In Linux some classes of pages can, but an interesting situation arises with swapping out network

pages if the swap file is located on a networked filesystem!
8Window scaling, a TCP option that allows the scaling of windows beyond 64KB, allows us to treat

receive windows as less important in the protocol by setting the value to an artificially high number if
needed.
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Figure 4.6: The retransmission list comprises the ChanSendBuffer pointers that point to
memory in the network channel send region (hence the array layout in the diagram). The
oldest transmitted unacknowledged packet is at the head of the list. The transmission list is
a linked list of variable size buffers in ordinary memory that are waiting to be transmitted,
but cannot be yet due to the receiver’s window being full or no buffers being available in the
channel’s send region.

If the received buffers are kept in channel memory until the data in the packets
are read by the application, (ACK packets containing no data are processed and
discarded) then, in terms of memory, we are limited by the number of packets we
can hold in the buffer at one time. The number can be changed by supplying a
value for numRecvBuffers during channel creation, but the important thing is
that currently the number of buffers per channel stays constant.

The particular channel memory configuration means, in the our implementa-
tion, that the receive window, defined in bytes, may be larger than the number of
packets we can receive that fill the window.9 This is a convincing argument for
copying data out of the channel buffer – a sensible approach may be to perform
copying in a situation where there are no free buffers in the receive array. How-
ever, since the receive region is meant as a temporary area for buffers, data tends
to be copied out of it quickly.

4.4.3 Sending packets

Although at first sight sending packets may seem trivial – just construct a packet
with the appropriate TCP header, update the relevant sequence numbers and send
– the presence of SocketSend calls with a buffer larger than maxPacketSize or
the maximum segment size (MSS) of the remote host and the potential for packet
loss (and its cousin retransmission) complicates the implementation somewhat.

9For example, a channel with N buffers can receive N (non-fragmented) packets in the receive win-
dow. If the packets are one byte long and the application does not continually read to free the corre-
sponding packets, then the receive window, in reality, will only be of N bytes.
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The fact that the remote host may also have a small receive window (or that data is
being sent quickly by the application) means we must also buffer data dynamically
outside the network channels and transmit when there is free space in the remote
host’s window.

The typical state of the TCP socket with regards to transmission buffers is de-
picted in Figure 4.6. Applications wanting to send data through a TCP socket end
up calling TcpSocketSend, which attempts to transmit any packets waiting on
the transmission queue. If the transmission queue could not be completely emptied,
the data to be transmitted is also added to the tail of transmission queue linked list.
Otherwise, TcpTryToSend is called, which then calls TcpDoSend if enough space
is available in the congestion and receive windows.

TcpDoSend sends one buffer, doing the work of splitting up the buffer into mul-
tiple TCP packets, updating sequence numbers, and adding packets to the trans-
mission queue if there is no space in the channel send buffer array (which also
functions as the retransmission list).

The two queues, the transmission list and the retransmission array, are updated
at different times and have different usage patterns. The retransmission list is
updated when an ACK is received – packets with a sequence number less than
the acknowledged sequence number are regarded as successfully transmitted and
discarded. The return trip time and dependent variables (such as the retransmission
timeout) are recalculated, and the transmission list is updated in a similar fashion
when packets are constructed, sent, and placed in the retransmission list – the two
operations are usually sequential.

4.4.4 Retransmission

Following Karn’s algorithm and the relevant RFCs,[43] each time a packet is trans-
mitted, the retransmission timer is set up to expire in rto seconds, where rto, the
retransmission timeout, is the amount of time the sender will wait for a given packet
to be acknowledged. If the retransmission timer expires, the packet is quickly re-
sent by calling ChanBufferSend with the oldest packet not yet acknowledged
– the ChanSendBuffer at the head of the retx list. The retransmission time-
out value is then updated and the retransmission timeout application-level event is
fired.

4.4.5 Receiving packets and the state machine

Packets are received asynchronously through a separate worker thread, as de-
scribed in Section 4.4.6. Once the packet arrives at the socket, it is processed
by TcpHandleData, which first performs header processing (such as the process-
ing of TCP options, described in [48]) and then runs the packet handler for the
particular state (one of the eleven shown in Figure 4.7) – for example, sockets in
the ESTABLISHED state have their packets processed by TcpEstablished.

Most of the state functions filter the packets with to find a single packet to move
to the next state in the state machine. For example, the CLOSING state only moves
to the TIME_WAIT state once a FIN+ACK packet is received. The most complex
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Figure 4.7: TCP state diagram. There are eleven standard states for a TCP socket; the exact
path through the state machine depends on whether it acts as a client or a server socket.
The Whitix userspace network stack implements all eleven, along with error handling for
erroneously sent packets. Packets sent to closed ports are handled either by the kernel or by
the channel corresponding to the now-closed TCP socket created by the application.
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state function is the ESTABLISHED state (this is where the exchange of data takes
place), which handles verifying sequence numbers, acknowledgement numbers,
receiving data payloads, and handling any FIN packets received. Receiving a new
ACK packet causes the retransmission and transmission queues to be updated as
in the previous section. Successfully received ACKs also increase or decrease the
congestion window, with the handling code in tcp_congestion.c.

Data received in the ChanRecvBuffers in the ESTABLISHED state is added to
the data linked list and the number of packets waiting to be received by the appli-
cation is increased. The application picks up the packets by calling TcpSocketRecv,
which, in a producer-consumer relationship, copies out packets as they arrive un-
til the buffer is full or there are no new packets arriving. The read field in
the ChanRecvBuffer structure, described in Section 3.4.1, is updated when the
packet is read by the application (and then freed in TcpSocketRecv if all the data
has been read from the packet).

4.4.6 Socket polling

To efficiently poll for incoming data on all open TCP sockets, the network stack,
through a worker thread that executes the TcpWatcherThread function, calls
SysPoll on an array of file descriptors of the network channels corresponding to
the list of TCP sockets. If there is no data arriving on any socket, the thread either
suspends itself or sleeps in SysPoll, leaving as much processing time as possible
to the application.

The array of file descriptors (and an array of the socket pointers corresponding
to these file descriptors) is constructed via the TcpSocketAdd and TcpSocketRemove
functions; when a TCP socket sends a connection request (TcpSendSyn) or reply
(TcpSendSynAck) for example, and expects a reply, the channel’s file descriptor is
appended to the array. If it is the first socket opened, the worker thread is created
and begins polling, so the cost of an extra thread is not paid by sockets that do
not use TCP functionality. When the TCP connection enters into the CLOSED state
and the socket stops sending and receiving data, the socket’s channel file descriptor
is removed from the array. The array dynamically expands to hold the number of
open sockets, but does not shrink if these sockets are closed.

If any network channels have incoming data, revents in the poll structure is
set to an appropriate value by the kernel. When SysPoll returns, along with a
return value that indicates the number of ready channels, the data is read from
the channel’s list of receive buffers by calling ChanBufferRecvNb, as described in
Section 3.4. This data is passed to TcpHandleData, which is the core of the state
machine described above; the packet is appropriately handled – we then signal any
events or the arrival of new application-level data – however, much of the traffic
may be session messages such as data acknowledgements and keep-alive requests.

Application polling semantics

There is one caveat with this method. Due to the way TCP sockets are asyn-
chronously polled in the shared library for new incoming data, using SysPoll on
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input drop −p tcp −d 80 // Drop a l l incoming p a c k e t s with d e s t i n a t i o n por t
o f 80 (HTTP)

input drop −p udp // Drop a l l incoming UDP p a c k e t s .

// Le t on ly outgo ing TELNET p a c k e t s through the f i r e w a l l .
output accept −p tcp −d 23
output drop

Figure 4.8: Examples of the rules enabled by the Whitix packet filter. The firewall parses
the command-line input and updates the kernel-level firewall, which is implemented in the
protocol classifier code for the TCP and UDP protocols and described in Section 3.7.1.

the channel’s file descriptor in the main application leads to unreliable notification
of events on that file descriptor. This is because, while the application is polling for
new data on that descriptor, the TCP worker thread is simultaneously polling on
the same descriptor. This causes a race to handle new notifications, which the TCP
worker thread, due to its frequency of polling, generally wins. The result of this
is that the application typically never or only rarely receives an event on the file
descriptor, which, if the application waits forever (specified by a negative value in
the timeout parameter of SysPoll) on just that file descriptor, the application may
appear to "hang", with negative consequences for interactivity and throughput.

The above is only true for TCP sockets that are polled using the direct sys-
tem call SysPoll. For the users of POSIX sockets (which because of numerous
ports of applications from UNIX platforms will be the main users of polling), a
workaround can be implemented because one UNIX file descriptor functions as
a wrapper around more than just one Whitix file descriptor. This workaround is
described in Section 4.3.2.

4.5 Utilities

4.5.1 firewall

firewall is the command-line user interface to the stateless firewall implemen-
tation available at the channel layer (Section 3.7.1). The firewall interacts with
the firewall via the /Network/Firewall directory in the Information and Con-
figuration filesystem, allowing the user to add, edit and delete rules in the INPUT
and OUTPUT sets of rules. firewall does not provide for ordering of rules, so a
very general rule added first of all (such as firewall -a input drop) will take
precedence over all others, including more specific rules that contradict the general
one.

The program supports the same set of atoms for specifying firewall rules as
the kernel implementation. Packets can be blocked based on protocol, source port
and destination port (as well as a combination of the three, see Figure 4.8); the
firewall program functions only as a simple wrapper around the firewall, sanity
checking values and passing them directly to the kernel-level firewall.
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4.5.2 nprof

nprof takes the (binary) statistical output (available as .ns files) from libnetwork.so
and displays it in a human-readable format, also adding any derived figures (such
as the average packet size and standard deviation of packet sizes) that are not di-
rectly included in the file. After verifying that the supplied file is an output file,
it outputs information about the most accessed ports, the last accessed hosts and
ports, and several aggregate functions over the data. There is no facility for editing
the file. The internals are covered further in Section 5.3.

It is designed to be run in a similar fashion to gprof, which profiles the CPU
time used in applications with a breakdown for functions; gprof itself only ana-
lyzes the automatically instrumented output from a program compiled with suit-
able command-line flags. nprof is designed to be used by developers and system
administrators for diagnostic and analytical purposes; with the program, we can
easily determine exactly how much bandwidth a particular connection is using,
without any of the statistical inaccuracies of other profilers.

4.5.3 dhcp

dhcp is the Whitix implementation of a DHCP client, which contacts a DHCP server
to retrieve its IP address assignment and other configuration information, like
the IP address of the DNS server for the local network.[19] It is a key utility – it
assigns an interface an IP address so that it can communicate as a host with the
rest of the network.

dhcp is a unique case in applications and utilities; it is the only program
that begins with no IP addresses assigned to the interface. After being supplied
the name of a network interface by the user, it creates a network channel using
SysChannelCreate with the CHAN_IGNORE_ADDRESSES flag, brings the net-
work interface up and binds the channel to that interface using the "bind to in-
terface" operation of SysChannelControl, before sending raw packets (includ-
ing the broadcast Ethernet and IP addresses) and receiving packets through that
interface.

dhcp uses the above mechanism to send out the DHCPDISCOVER and DHCPREQUEST
messages, and receive the DHCPOFFER and DHCPACK messages. The program
is also used to bring down the given interface, but does not yet send out the
DHCPRELEASE message; the IP address is still assigned to the machine by the router
but the host interface is no longer up.

4.5.4 dns

dns is the DNS lookup tool for querying DNS name servers. It performs DNS
lookups and displays the replies generated from the queried name servers. It is
similar to tools such as dig (the Domain Information Groper) on other systems.
Currently only name lookups to other names (aliases) and IPv4 addresses are sup-
ported (the most common use of the tool); Figure 4.9 shows a typical run of the
application.
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/>dns www. google . com
www. google . com i s an a l i a s for www. l . google . com
www. l . google . com i s an a l i a s for www−tmmdi . l . google . com
www−tmmdi . l . google . com has address 66.102.9.147
www−tmmdi . l . google . com has address 66.102.9.105
. . .

Figure 4.9: dns output for www.google.com. The dns utility is useful for diagnostic pur-
poses, and provides a simple test of UDP network channels and UDP client sockets.

/>ping www. whi t ix . org
PING www. whi t ix . org with 56 bytes of data
64 bytes from www. whi t ix . org : sequence=0
64 bytes from www. whi t ix . org : sequence=1
64 bytes from www. whi t ix . org : sequence=3
64 bytes from www. whi t ix . org : sequence=2
. . .

Figure 4.10: An example of the output of ping. Although Whitix’s implementation does
not have the configurability of the standard BSD implementation, it is intended as a diag-
nostic test of the ICMP protocol implementation, the packet classifier and as a small but
comprehensive test of the low-level networking layers.

dns uses the DNS resolver library in libnetwork.so to construct a DNS
packet and inspect the subsequent reply packet, which consists of a set of resource
records. dns displays replies for records of type CNAME (aliases) and A (32-bit
IPv4 addresses) in a human-readable format. Other resource records could be sup-
ported, but they are not as frequently used.

4.5.5 ping

ping uses ICMP sockets to test whether a particular host is reachable across through
the local network or the Internet. It constructs ICMP Echo Request packets and
sends them to a specified host, recording the type at which they were sent that
we can use the reply (which duplicates the data section of the packet) to calcu-
late the round-trip time of the packet in a stateless manner. It is the only test of
ICMP channels and their corresponding userspace sockets devised so far, and is
useful for comparing the estimate of the round-trip time to a host made by the TCP
implementation with a more direct measurement.

4.6 Applications

Each of the applications developed for this project used a special feature, such
as profiling output and input or asynchronous I/O, or combination of features
unique to the project. This was mainly for testing and demonstration purposes, and
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. . .
230−NFS and SMB/CIFS are no longer a v a i l a b l e .
230−
230−For comments on t h i s s i t e , p lease contac t <ftpadmin@kernel . org>.
230−Please do not use t h i s address for ques t ions tha t are not r e l a t e d to
230−the operat ion of t h i s s i t e . P lease see our homepage at
230−ht tp : //www. k e r n e l . org/ f o r l i n k s to Linux documentat ion r e s o u r c e s .
230−
230 Login s u c c e s s f u l .
f tp> l s
227 Enter ing Pas s i ve Mode (204 ,152 ,191 ,37 ,75 ,39) .
150 Here comes the d i r e c t o r y l i s t i n g .
drwxrwxrwx 3 0 0 109 May 27 04:06 bin
dr−xr−xr−x 2 0 0 28 Aug 29 1997 dev
d−−x−−x−−x 2 0 0 49 May 20 1998 e t c
drwxrwx−−− 2 536 528 124 May 21 2001 fo r_mi r ro r s_on ly
drwxr−xr−x 2 0 0 4096 May 20 1998 l i b
drwx−−−−−− 2 0 0 6 Oct 02 2005 l o s t+found
drwxrwsr−x 11 536 536 4096 Feb 12 2009 pub
lrwxrwxrwx 1 0 0 1 Apr 21 2007 usr −> .
lrwxrwxrwx 1 0 0 10 Apr 21 2007 welcome . msg −> pub

/README
226 Di re c to ry send OK.
f tp>

Figure 4.11: Output from the ftp program showing a connection to ftp.kernel.org.
Statistics are collated for both the main control connection and the PASV data connection, but
because of the variable destination port characteristic of PASV mode (e.g. the passive mode
tuple above), only the statistics for the control connection are saved to disk and reused in
future runs of the application.

their use is described below.

4.6.1 ftp

ftp is an implementation of a File Transfer Protocol client,10 the protocol used
for copying a file from one host to another.[51] ftp is an interesting test case for
profiling data reuse, because it utilizes separate control and data TCP connections
between the client and server applications; this two port structure is referred to as
out-of-band. The control connection remains open for the duration of the session,
with a number of data connections opened to the server to transfer directory listings
and files.

ftp implements passive mode (PASV), where it connects as a client to an ad-
dress and port tuple supplied by the control connection to the server; the port
value in this destination tuple is variable and often an ephemeral port. As a result,
for these ephemeral data ports, the port profiling output, which only stores persis-
tent information for connections on well-known ports, generated by this program
cannot be used at the moment as input to the next run of ftp; since the port com-

10ftp only supports read-only anonymous access currently.
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binations are variable, it would be difficult to identify which ports were used in a
previous PASV connection.

The host profiling output is still extremely useful, since the information in the
host entry, which is especially useful for bulk transfers (as described in Section 5.4),
is available for connections to all ports on that host. To this end, ftp was intended
as a demonstration of the profiling and adaptive capabilities of the new network
stack, even in the absence of much of the profiling information for many of ftp’s
connections.

4.6.2 telnet

telnet is an implementation of a Telnet client for Whitix, used to provide a bidi-
rectional interactive text-oriented connection via a terminal.[50] It uses one TCP
connection for the entire session. The unique feature of telnet (among well-known
protocols), is that, after an optional initial negotiation (or handshaking) of terminal
parameters, the protocol itself is entirely dependent on which host the client has
connected to and what program is running at the remote endpoint.

Because of these bidirectional features, telnet is an ideal test of the asyn-
chronous receive primitives available in the userspace network stack and described
in Section 5.5. During normal operation in asynchronous mode, telnet creates
the server connection, designates one asynchronous receive context (with a call-
back function TelnetSocketRecv) via SocketAsyncRecv and, during the main
loop, polls the keyboard input for data to send to the server connection. When
data arrives at the socket, TelnetSocketRecv is called in a separate thread con-
text and handles the Telnet control and data (distributed in band) information,
updating the console if necessary. This asynchronous feature of telnet was used
for testing purposes and to avoid the issue of socket polling (as described in Section
4.4.6).

However, since asynchronous I/O is not really suitable for interactive programs,
the asynchronous behavior can be switched on or off via a preprocessor #define
statement. If the socket receive is synchronous, the socket itself is set to non-
blocking, so that the keyboard can be continuously polled.

4.6.3 httpd

httpd is a HTTP 1.0 server used to test the application feedback capabilities of
the userspace network stack.[6] httpd responds to GET requests by transferring
files from the local filesystem. This typically involves distributing large files to
clients, which is an ideal test of the userspace network stack’s ability to reach peak
performance quickly; it is useful as a benchmarking tool. httpd is the sole user of
the POSIX API described in Section 4.3.2, with several Whitix-specific calls (when
HTTP_TEST_HANDLERS is defined) added for testing features unique to the Whitix
network stack. It is also a test of the TCP server socket implementation in the
userspace network stack.

httpd tests the interactive and adaptive capabilities of the stack. When a client
connects to the server, HTTP registers a number of callbacks with the socket for
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Figure 4.12: Wireshark used to inspect a TCP connection as the userspace network stack
on Whitix runs on Virtualbox. Wireshark and Virtualbox were useful in debugging sequence
number problems, checksum errors and packet formats for certain classes of application pro-
tocols, such as FTP. Shown here is the start of a FTP session using ftp to ftp.kernel.org.

performance, benchmarking, and diagnostic purposes (the exact combination of
these can be expressed through a set of preprocessor #define statements). These
include the round-trip time measurement update event and the remote window size
changed event. In particular, the remote window changed event is used to adjust
the buffer size used to read from disk in the application; they are probably more
efficient ways of optimizing data flow with the right information and algorithms.

After the initial callback setup, the server handles the client request (and option-
ally printing out debug information). In HTTP, when the server responds to a GET
request, the server spends a small packet containing the HTTP headers, followed
by the data of the file. Before sending out the data, httpd lets the userspace net-
work stack know much data will be transferred by calling TcpSetTransferSize
with the size of the file and the size of the buffer used to transfer data from the file
(using SysRead) to the network.

The information supplied by the application, combined with the previous TCP
slow start values and the round-trip time estimate from previous connections from
the client (automatically incorporated when the connection is created) and the
transfer size could be used to implement a variation on the network adaptive slow
start algorithm described in [7].
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/> t c p _ t e s t −−verbose
Test s u i t e #1: Socket c r ea t i on
===============================
Test #1.1: Create se rve r socke t with source por t 3434 . . . [ passed ]
Test #1.2: Create TCP channel connect ing to 3434 on l o c a l h o s t . . . [ passed ]

Test s u i t e #2: L i s t e n
======================
Test #2.1: Send packet conta in ing ACK . . . [ passed ]

( rece ived packet with c o r r e c t SEQ and RST s e t )
( socke t s t i l l in LISTEN s t a t e )

Test #2.2: Send SYN . . [ passed ]
( rece ived packet with c o r r e c t SEQ , ACK and SYN , ACK s e t )

[ accept ing connect ion ]
Test #2.3: Sending RST b i t to socke t in SYN−RECEIVED . . . [ passed ]

( c h i l d socke t now c losed )
Test #2.4: Repeat Test 2.2 . . . [ passed ]
[ accept ing connect ion ]
. . .

Figure 4.13: The output of tcp_test. Like TIRTS (Section 7.2.1), tcp_test constructs a
series of raw packets to test the TCP stack conformance to RFC 793.[48] The technique is
applicable to testing any host on the Internet, but tcp_test also creates a local raw socket
and verifies its state after each raw packet has been sent, something TIRTS does not do.

4.7 Testing

During development of the userspace network stack, I used a variety of testing
methods to ensure, as far as possible, that the stack, and especially the TCP imple-
mentation, worked under a variety of network conditions and network interfaces.
The fact that there are few debugging tools available on Whitix, such as the lack of
a traditional source debugger such as gdb or code coverage tool like gcov, ham-
pered quick testing, but also meant that I had to be more inventive with testing
methods, employing automated testing where possible. The fact that virtually all
the software I wrote was network-facing aided testing greatly.

4.7.1 Specific methods

In the early stage of development, using the packet sniffer Wireshark (when the
operating system was being tested in VirtualBox) was a useful diagnostic tool to
ensure we generated correct output for ICMP, UDP and TCP packets. Figure 4.12
depicts the tool being used in development to snoop on a TCP connection; the fact
it would display clearly any errors found in sniffed packets, at all layers of the stack
(including various application protocols like DNS, FTP and HTTP) was useful for
debugging packet construction and transmission at all levels.

Verifying that the packets followed the standard format using Wireshark was a
useful method of finding obvious bugs (especially when network communication
appeared not to work at all due to some low-level error), but it would be time-
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consuming to exhaustively test each possible scenario in each protocol. To that end,
I started to develop a unit test suite, tcp_test, with the objective of exhaustively
testing the TCP implementation in an automated manner. Figure 4.13 shows the
set of tests executing – although the test suite is not exhaustive yet, the goal is to
achieve 100% code coverage and to test all states in the state machine. With the
port of a code coverage tool such as gcov, I will soon be able to verify this.

Another possibility in testing was the TCP/IP Regression Test Suite (by Nanjun
Li), because since it ran solely on FreeBSD systems (which I did not have easy
access to), I could not test regularly with the software. (The software is further
described in Section 7.2.1). The advantage of testing network-facing software is
that it can be easily tested and verified remotely, which greatly increases the range
of software available – however, since there appear to be no TCP unit testing suites
that run on Linux, it was difficult to perform automated tests regularly.

One area of the network stack that is not well-tested is the multithreaded
aspect of the TCP implementation. The locking that takes place between the main
application using TcpSocketSend and TcpSocketRecv (where the sendUpdate,
txLock and retxLock locks are taken to update the sequence numbers, transmis-
sion list and retransmission buffers respectively) can be taken through a number of
different paths – although the common case (and many other tested cases) appears
to be free of deadlocks, we have not been able to verify this. Errors in synchroniza-
tion may lead to deadlock or gaps in synchronization protection, so testing efforts
should be focused on verifying there are no multithreaded issues before continuing
future development of new features.

4.7.2 Application testing and summary

When creating the range of user application distributed along with the network
stack, I chose a range of application that would test the ability to handle general
workloads of all the major socket types. Therefore, ftp and telnet are tests of
TCP client sockets, httpd is a test of TCP server socket handling, echoserv is a
very simple UDP server implementation, and dns is the test of the DNS resolver
library and UDP client sockets.

In summary, the most effective type of testing was the automated testing suite
tcp_test used for the TCP implementation; the use of unit tests, non-functional
testing methods (such as sending incorrect packets that the TCP implementation
should reject), and regression testing improved the quality of the TCP implementa-
tion – using the TCP RFC [48] as a guide, we could test for a variety of packets sent
to the host and verify the response followed the RFC. The Wireshark packet sniffer
was also useful initially as a first resort whenever we found errors; the ability to
inspect a single packet and for Wireshark to describe errors in the packet was useful
for quick verification of functionality during the main implementation stage.
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4.8 Discussion

In the timescale of the project, we have managed to demonstrate that a modern
TCP/IP stack can be implemented in userspace. Apart from issues with polling
sockets, which is important enough to high performance servers to demand a per-
manent solution in future work, and more thorough testing of the multithreaded
aspects of TCP sockets, there are relatively few issues with moving the stack down
to userspace.

One major open problem that has yet to be addressed is how to transfer socket
state between processes. Although the fork and handle connection metaphor is not
used in Whitix, there are times when we would like to pass a socket to a child
process for further handling. Possible solutions include a common area in shared
memory for multiple applications to have access to the protocol state data,[20]
which introduces the problem of locking state that we have tried to avoid by devel-
oping network channels. For Whitix applications however, passing sockets between
applications, especially since they are only available as Socket pointers, will not
be a very common operation and can probably be ignored as a result. However,
this is an important issue for systems that do use fork regularly to create new
processes, and future work should focus on this.

One area to be explored concerns the zero-copy I/O beneath the network stack.
This could be utilized by user applications (avoiding memory copies while building
packets) in a high-performance network API, such as the interface mentioned in
[18], that exposes the network channel buffers to the application itself. Explicit
management of these buffers by high performance applications, and so discarding
the POSIX send and recv, would improve performance by enforcing the zero-copy
philosophy through all the layers of the stack.

4.9 Summary

We described in this chapter the new userspace network design, and how a mod-
ern TCP/IP stack can be implemented in userspace with all major features of popu-
lar protocols, such TCP and UDP, included. We discovered that the latest research
in the field, which was either at the proof-of-concept stage or intended for other
kernel architectures, suffered from performance and security issues. After setting
out the general architecture of the network stack, with the network channels at the
base, we covered the two APIs available for Whitix, the native and POSIX APIs.
Building from the basic network channel layer in userspace, we explored the simple
IP, UDP and ICMP protocol support available.

In the rest of the chapter, we outlined the architecture of the TCP implemen-
tation, and how it used a multithreaded architecture to receive packets and post
them to the application. The complete implementation of features like conges-
tion control, retransmission, and polling sockets were also discussed. Applications
such as httpd, ftp and telnet, as well as the numerous utilities (ping, dhcp
and dns included) were described – many of the applications used the advanced
adaptability and interactivity covered in Chapter 5. We then evaluated the test-
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ing performed, including the automated test suite tcp_test suite and verifying
network stack output using Wireshark, and then discussed, among other things,
extending the APIs available with a high-performance network API.
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Chapter 5
Dynamic protocols

In this chapter, we discuss the new next-generation features that have been devel-
oped, helped by the flexibility that a userspace network stack offers. We first survey
the gathering and use of statistics by the network stack to generate persistent pro-
filing data, its inspection by the nprof program to output and aggregate data in a
human readable manner, and we then investigate how the network stack can use
this performance data in future runs of the application.

The threshold for a interactive event in the network stack no longer involves a
transition to and from the kernel. Instead, we have designed a simple event delivery
for all sorts of TCP events using callback functions, where the application registers
for events from the network stack that it is interested in and receives notifications
in a timely fashion.

5.1 Background

5.1.1 Adaptable and interactive protocols

After I decided to write the network stack in user-space, I considered how it could
produce a tighter coupling between applications and the network stack. After read-
ing literature on event-driven systems, and how many APIs are partly event driven
(for example, the Windows event messages that arrive at WndProc), I thought
about how the network stack could notify the application of certain events, and
decided to look for any research implementations.

The only implementation I found was a modification to the FreeBSD 4.3 net-
work stack called the Interactive Transmission Control Protocol (iTCP).[32] The
iTCP project at Kent State University investigated the possibility of making TCP
extensible by introducing elements such as an event subscription, tracking and no-
tification mechanism for certain TCP events that applications can subscribe to.

Their work was motivated mainly by the fact that congestion control for mul-
timedia traffic (such as VOIP) has remained a difficult problem; many schemes
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Figure 5.1: The architecture of Project iTCP, which adapts the FreeBSD 4.3 kernel-based
protocol stack to generate TCP events. Applications (which are the subscriber programs in
the model) subscribe to TCP events – these events are forwarded to the "InTraN-enabled
protocol entity" (i.e. TCP) for processing. When an event occurs, such as a retransmit
timeout, the in-kernel TCP implementation signals a separate user process, known as a T-
ware, that probes the kernel for the relevant socket descriptor. The T-ware program then
handles the original event.[32]
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introduce time distortion, not ideal for time-sensitive data. As part of this appli-
cation and network symbiosis, the application registers a subscription to a subset
of TCP events, and to handle them, small T-ware processes are either supplied by
the programmer or by a third party. These programs then alter the behavior of the
subscriber program when the kernel network stack sends a signal with event data
to the T-ware process.

Practical applications of the technology were detailed on their website and pa-
pers; they mostly involved a number of symbiotic video and audio transcoders.
One demonstration of this was a network-friendly adaptive MPEG-2 encoder, which
altered the stream bit rate based on the transport layer’s perception of the level of
network congestion. It was also used to implement a TCP extension, FAST TCP,
without altering the core protocol code. It will be interesting to see in my project
if this can be expanded to other parts of TCP.

The iTCP project may be the only implementation I found in my research,
but other groups have had the idea of interaction between the application and
the network stack. For example, Thekkath et al. in [62] advocate "exploiting
application-specific knowledge to fine-tune a particular instance of a protocol".
Other researchers, as early as 1991, (e.g. [63]) were noting that transport pro-
tocols should be specialized to the needs of a particular application.1

However, [62] proposes addressing this problem by partially evaluating a gen-
eral purpose protocol such as TCP with respect to a particular set of requirements.
Each application would use a slightly different variant of the general purpose pro-
tocol. They advocate the use of protocol compilers and language-based protocols
to generate efficient specialized protocols – an approach that I did not consider in
this implementation, but is perfectly possible with a userspace design. Develop-
ers using language-based protocols such as Morpheus [1] implement protocols by
refining five base classes, deriving subclasses specific to the protocol.

In summary, event-based architectures for adapting protocols have rarely been
implemented, and if so, have used heavyweight notification mechanisms, such as
signals to processes located in separate address spaces. The specialization of proto-
cols using language-based solutions transfers more of the burden onto the program-
mer for network usage optimization – however, such an approach is still perfectly
possible in our userspace network stack. However, since event-based solutions are
more dynamic, use only general-purpose protocols and offer more runtime feed-
back to an application, it seems a more fruitful avenue for generating adaptive and
interactive network protocols.

5.1.2 Statistics, profiling and adaptation

In Bhumralkar et al. (2000) [7], they note that discovering bandwidth afresh each
time for a host is extremely inefficient. The bandwidth probing mechanism used
during slow start takes several round-trip time (RTT) estimates – if the transfer
is small and the network has sufficient bandwidth, the transfer never moves into

1[62] also predicted that request/response protocols would co-exist with existing byte-stream pro-
tocols such as TCP, arguing that in systems that need to support both throughput-intensive and latency-
critical applications, there is a good reason for both to exist.
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the congestion avoidance phase, and so the duration of the transfer is only related
to the RTT, rather than the actual amount of available bandwidth. Stating that
studies show 85% of the packets transmitted by a typical high performance web
server occur in the slow-start phase, (for example, [3]) which means the bulk of
the transfer occurs while the connection is probing for bandwidth.

Their aim was provide an alternative to the TCP slow start algorithm, network
adaptive slow start, so small files could be transferred much more efficiently. In
their algorithm, they stores a history of the congestion window and the smoothed
round-trip times (the average estimate over the course of an entire connection)
at the end of previous connections. They also utilize the size of the file being
transferred to choose the particular method of transfer (for large files, normal TCP
is perfectly efficient), and use these values to estimate two values. First is the slow
start time (ss), where ss = R(log2W ) (R is the round-trip time estimate, and W is
the size of the congestion window in terms of the number of segments), then, using
ss, we calculate the number of packets (and therefore the amount of data) we will
be sending in slow-start, max possible = (W × ss)/R

Bhumralkar et al. then use this maxpossible value to choose between using
normal TCP for large file transfer (if f ilesize > max possible), and a modified
slow-start algorithm for small transfers ( f ilesize <= max possible). Combining
that with the value of ssthresh, the window size value at which the connection
moves into congestion avoidance mode, we can work out if we still have spare
bandwidth and can increase the receive window size further.

However, there is no research on persistent adaptive protocols, because stor-
ing statistics and profiling data across connections is an option not feasible for
kernel-based network stacks, which is where most of the adaptive TCP research
takes place.

5.1.3 Asynchronous I/O

Asynchronous non-blocking I/O has always been a useful form of I/O that allows
processing to continue while the I/O is being processed – I/O devices (especially
hard drives) can be extremely slow (in a relative sense), and the application could
always be performing other work while waiting for data. It makes sense to extend
this metaphor to sockets, whose receive operation can block indefinitely if no new
data arrives. As a result, socket AIO is already available in other operating systems,
although how well is supported depends; Windows has supported asynchronous
I/O for longer than Linux and its support is arguably more complete – in general,
Unix-like operating systems do not support asynchronous I/O on sockets well.

My base for designing the asynchronous event interface was the Linux and
POSIX AIO API. Incidentally, asynchronous I/O has been a problematic issue in
the Linux kernel for many years, and is "difficult to use, incomplete in its coverage,
and hard to support in the kernel".[14] However, most of the UNIX-like operating
systems have begun to support the POSIX AIO specification. In FreeBSD, AIO sup-
port is not built into the default kernel and must be loaded as a module. In other
Unix-like operating systems, such as Mac OS X, AIO support has only recently been
added for file descriptor types other than disk files.[10]
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Figure 5.2: Architecture of the adaptable components of the network stack. Since TCP is a
complex protocol, a number of TCP events have been created for applications to use, such as
retransmission timeout and dropped packets, as well as an asynchronous I/O implementation.

In Windows, asynchronous I/O, referred to as overlapped I/O, has been sup-
ported for a number of years by the NT kernel. Developers use objects such as
I/O completion ports, which provide a queue object and a set of threads to han-
dle requests on the queue, to synchronize between threads.[40] Typically syn-
chronous calls to ReadFile and WriteFile can be performed asynchronously by
calling CreateFile initially with the FILE_FLAG_OVERLAPPED flag, and passing
a pointer to an OVERLAPPED structure to subsequent I/O operations.

There is no mechanism for notifying applications of network stack events in
either Windows, Linux or the BSDs. Since of all those operating systems employ
kernel-based network stacks, the only method of signalling applications of events
is through signals in the UNIX-like OSes and WndProc messages in Windows –
there has not been any widespread adoption of the interactive protocols mentioned
above.

5.2 Architecture

To enable the adaptability and interactivity features, there are three main compo-
nents added to the network stack, as depicted in Figure 5.2. They are as follows:

• Statistics and profiling. The TCP implementation in the userspace network

87



5.3. STATISTICS AND PROFILING CHAPTER 5. DYNAMIC PROTOCOLS

stack now gathers a variety of statistics (such as the total packets sent to a
particular port) and data (including the round-trip time estimate) about open
connections; these statistics are stored in memory until the end of the pro-
gram. If the application has specified an output file, we write the statistical
data to a .ns file, which can be used for profiling the application’s network
usage. We then show how this network data could be used in the next run of
the application in an efficient and useful manner.

• Application feedback. We can notify the TCP implementation of any up-
coming data transfers with a known size (such as a large document being
transferred over HTTP) to enable the various congestion control to adjust
quickly in combination with previous profiling data about the host. We show
how algorithms such as network adaptive slow start and algorithms involving
other estimates can be optimized with the data, as well as how they extend
the adaptability inherent in current byte-stream transport protocols such as
TCP.

• Event handling and asynchronous I/O. Placing the network stack in userspace
as a shared library allows to easily notify interested applications through the
use of event callbacks. Combined with a mechanism for registering interest
in events and submitting asynchronous I/O requests, we explore how appli-
cations could use this interactivity to optimize bandwidth usage and adjust
their applications to suit network conditions.

5.3 Statistics and profiling

After consulting the adaptivity research, I realized that when a network socket is
closed, lots of useful context is lost about the state of the network connecting the
two hosts, including the information about the traffic profile and network condi-
tions. This data has to be derived again and again, usually from estimates. Since
IPv4 addresses (and many other protocol families and protocols that perform port
multiplexing) consist of two elements, the address and the port, I came to the
conclusion that the two represented different state spaces; there were certain es-
timates and statistics that held for hosts across all of their ports, and likewise for
ports across all hosts. This meant, to make the statistics as reusable as possible, I
would have to divide the collected statistics into two categories: host statistics and
port statistics.

After storing this information throughout the lifetime of the program, I also con-
sidered that this data would be useful as history from previous runs. I could feed
the collected data into sockets when they were created, and adjust their congestion
control for maximum performance with algorithms such as network adaptive slow
start. The information collected would also be useful for profiling the application’s
network usage via the nprof utility – tools such as iptraf exist, but it is not
possible to feed the data collected in the program directly into the Linux network
stack.
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/>nprof /System/Temp/ f t p . ns
There are 1 por t s (20 bytes ) and 3 hos t s (52 bytes )
[ Pres s any key to continue ]

PORT 21
f l a g s = CLIENT

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t o t a l by tes sent = 32
t o t a l packets sent = 3
avg data bytes per packet sent = 10

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t o t a l by tes recv = 2265
t o t a l packets recv = 10
avg data bytes per packet recv = 226

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[ Pres s any key to continue ]

Figure 5.3: Output from nprof, after running the ftp application several times. The port
data could by the network stack to determine whether the the program focused on through-
put (small amount of large packets) or latency (large amount of small packets) – however,
it is unclear exactly how this information could be used to improve performance.

5.3.1 Categories

This section describes the mechanism by which we collect data about network us-
age and performance. The actual format for the network stack’s persistent statis-
tics file is described in Appendix A. In libnetwork.so, we collect and store
statistics from TCP connections taking place that involve a well-known port (con-
nections where the source or destination port number is below 1024). After we
have collected statistics about a TCP connection and the connection is then closed
(by calling SocketClose) by the application, the memory containing the actual
TCP-specific state of the connection (TcpSocketInfo, which in turn contains the
TcpStatistics structure) is not freed. Instead, it is written out, when the appli-
cation exits, to a specified file in the above described format.

To enable efficient collection and use of collected data in subsequent runs of
the network stack, we decided to divide the TCP statistics and the stored file into
two main categories:

• Port (protocol) statistics These involve information about the packets sent
and received using the connection. Statistics like minSndPacketSize and
maxSndPacketSize, totalBytesRecv and totalBytes are useful for
calculating the number of send and receive buffers needed on subsequent
runs; application developers can inspect the statistics using nprof to find out
the buffer size they should be using for optimum performance when calling
SocketRecv (either as a result avoiding repeat calls to TcpSocketRecv or
wasted memory for buffers that are much too large); information about the
parameters passed to TcpSocketSend and TcpSocketRecv is stored and
aggregated too.
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• Host statistics These mainly focus on the actual network conditions during a
connection, including the transport and retransmission functions and a mea-
sure of their success or failure. This can be used again if the application
connects to that host again; however, to prevent very old data from being
used, we include an expiry time in the host entry.

Examples of host-based statistics include droppedPackets and droppedBytes,
which count the number of packets dropped by the userspace network stack
for invalid or out-of-range sequence numbers. retxBytesSent and retxPacketsSent
is a similar statistics, summarizing the number of packets retransmitted due
to timeout.

Important host statistics that are immediately useful in adapting the TCP
transmission algorithms include rtt and rto – an accurate estimate of the
round-trip time and retransmission timeout value, which will not vary too
much in the time between application runs. Using these values as an esti-
mate will reduce the number of duplicate retransmissions and save network
bandwidth. (Section 5.4.3)[43]

This organization of statistics is reflected in the format of the stored file written
to disk at program exit, which aggregates information about all well-known ports
used by the application and stores statistics about the N most recent port connec-
tions and hosts (as a most-recently used cache – useful if the application accesses the
same host and port repeatedly) – N can be chosen by the user, who may want to
balance the processing time cost at program and connection startup associated with
many entries with increased adaptive performance coverage for TCP connections.

5.3.2 Use

The statistical data in the .ns file can be used by the developer in two ways. First
of all, if the application specifies an output file for network data at runtime via
NetworkInitEx, the data already present at that location will be automatically
incorporated into the adaptive components of the userspace network stack –
this is similar to how software tools such as gcov, the GNU code coverage tester,
can use profiling information it collects to optimize the application by incorporat-
ing its findings when the application is next compiled using gcc. (However, our
optimization and adaptability takes place solely at runtime).

A second use of the persistent statistical data is to manually inspect the net-
work usage using nprof, the network profiler program I developed to comple-
ment the profiling mechanisms in the network stack. An example of its output is
shown in Figure 5.3 – the per-port output provided especially illustrates how the
program is using the network over a number of runs. One port may be sending
very large packets, or packets whose variance is very large. This may be useful for
developers wishing to break down and track their network usage by port and host
to conserve bandwidth usage.
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5.4 Adaptation

In this section, we describe how the statistics gathered above are used in the same
and subsequent runs of the application to optimize TCP connections for maximal
bandwidth usage. We also detail how the aggregate statistics are stored and quickly
accessed to retrieve information about previous connections from a host and port
tuple supplied to TcpSocketConnect or TcpSocketBind.

5.4.1 Current adaptive technologies

Current TCP implementations already employ algorithms for data transmission that
adapt to the perceived congestion in the network. A number of interrelated algo-
rithms are used for high performance and to avoid network congestion. They are:

• Slow-start and congestion avoidance. These are both transmission strate-
gies; the aim of the pairing is to avoid congestion collapse, where network
performance falls by a large amount due to an excessive number of packets
being dropped. We try to avoid sending more data than the network is capa-
ble of transmitting.2 The key object is a congestion window (see p. 67), and
in slow-start, the protocol increases the congestion window exponentially in
size before congestion is detected (or the slow-start threshold is passed) than
afterwards, the congestion avoidance stage, where the congestion control algo-
rithm, such as TCP Vegas, is employed.[57]

• Fast retransmit and recovery. This is a variation on the slow start algorithm
– if we receive a number of duplicate ACKs (usually 3) for a single sequence
number, we will assume that the next segment was lost in the network and
quickly retransmit. We then reduce the congestion window size to the slow-
start threshold, rather than the initial congestion window size.

• Retransmission timeout. One mechanism for retransmission is not based
on duplicate ACKs, but on the estimated round-trip time (see p. 67) for the
packets in a connection. The round-trip time essentially states the length
of time we can expect to wait before we receive an acknowledgement; if
we are waiting a great deal longer than this, we should retransmit. This
retransmission timeout then retransmits the last packet not acknowledged
by the receiver. These are all estimates, which is why previous data from
persistent profiling data is very useful for more accurate estimation.

5.4.2 Application hints

Because the network stack operates at a lower level than the application (and un-
necessary system calls tend to be avoided by the application, which could doing
useful work instead of the system call overhead), the network stack and applica-
tion do not exchange much information. This is undesirable, especially with large

2This congestion control is in comparison to flow control, where we avoid sending more data than the
host is capable of handling.
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file transfers, where, combined with the historical values of the TCP congestion
window and the round trip time for packets, we know how much data we need to
transfer and the size of buffers involved. Essentially, the application knows what
the data transfer pattern will look in the immediate future, and the current imple-
mentations of network stacks are blind.

Take httpd for example. If the network stack knows in advance the file size
that will be transferred, it can avoid the inefficiencies of the TCP slow start algo-
rithm and help determine the degree of adaptability to network conditions that
the transfer will need. A small file transfer over HTTP will experience a lot less
variability in bandwidth compared to a large video or audio file being transferred
(or streamed) over the same connection. The network adaptive slow start algorithm
uses application hints, such as the file size, combined with historical data about the
host to speed up the slow start mechanism. (The algorithm is currently not part of
the TCP implementation, but is fairly trivial to implement given the supplied data)

5.4.3 Profiling data

Use of profiling data from previous runs is incorporated into various adaptable al-
gorithms. Since many of the values TCP uses to adjust its algorithms are estimates,
like the retransmission time, starting with a more accurate estimate will give the
socket a more accurate idea. There are several ways in which the TCP stack uses
(and potentially could use) data to improve performance:

• Round-trip time estimates (host). All connections to the host could benefit
from a more accurate estimate of the round-trip time – this means we have a
much better idea of the state of the network between the two hosts (obviously
the network and the network load could change between application runs,
but the data is worth taking into account) and can use this to modify the
retransmission timeout value, so we avoid unnecessary retransmissions in
the slow-start process over a range of sockets in the same application.

• Retransmission statistics and window sizes (host). We can gauge the con-
gestion and reliability of the host from these measurements. These can be
combined with the round-trip time estimates to gain an overall picture of the
network congestion between the local and remote hosts in the past.

• Packet sizes (protocol). It is not clear exactly how we can incorporate
these statistics when the socket is created, and, as a result, they are ignored
in socket startup. It may be useful in deducing whether the connection is
throughput or latency-critical, based on the number of packets sent and their
average size. One possible idea to automatically add the PSH flag for ap-
plications that sends many very small packets, as it is likely they are part
of an interactive connection in a protocol such as telnet – currently the
application must manually signal this.

When a TCP socket is created, the host and port linked lists (implemented
in stats_host.c and stats_port.c in user/sdk/network/stats/ respec-
tively) are searched; if a suitable entry is found for either the host (in the list of
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Figure 5.4: Diagram of the internal event component of the adaptable network stack. An
ability to automatically log events would be useful for network stack and application debug-
ging. There is no central storage of all events; each TCP socket has a list of asynchronous
contexts per event which function as lists of subscriptions..

. . .
in t SocketAsyncCreate ( s t ruc t AsyncCtx∗ async , AsyncCal lback func , in t

f l a g s ) ;
in t SocketAsyncAdd ( s t ruc t AsyncCtx∗∗ head , s t ruc t AsyncCtx∗ item ) ;
in t SocketAsyncCancel ( s t ruc t AsyncCtx∗ sync ) ;
in t SocketAsyncReturn ( s t ruc t AsyncCtx∗ async ) ;
in t _ So ck e t Ev en tF i r eL i s t ( Socket∗ socket , s t ruc t AsyncCtx∗ head , void∗ data

, in t l ength ) ;
. . .

Figure 5.5: Some of the functions in the socket event API. Many applications call other APIs,
such as AIO (Section 5.5.3) or the TCP event API (Section 5.5.2), that wrap around these
event primitives and provide automatic storage or differing semantics.

recently accessed hosts) or the port, then the relevant group of statistics is found
and incorporated into the TcpSocket structure – for example, the round-trip esti-
mates are copied from the HostEntry structure to the TcpEntry structure, so we
already have a reliable estimate of the value of rtt and rto.

5.5 Events

Events are asynchronous notifications generated by a protocol implementation in
the stack. Interested applications register for a certain event or class events using
a asynchronous context, a structure usually allocated on the stack or globally, and
supply a callback called when the event fires. The idea behind events is to pro-
vide interactivity primitives to the application so that the application can base its
network output on network conditions – they are a form of messaging coupling
enabled by the fact that both the application and network stack are located in the
same address space and privilege level.
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5.5.1 Design

There were a number of design choices for the asynchronous API – the library
code can be hard to write, and we would like to avoid potential resource conflicts
and their associated failure conditions. For example, one potential problem with
callback functions that we may have is the depth of the call stack growing unman-
ageably; if a event handler registers interest in another event and that event fires
immediately, we could have problems with procedure call recursion if the stack
context of the first callback is not unwound. This proved not to be a problem in the
implementation.

We also wish to minimize the latency from a packet being received or sent
successfully (or a TCP event firing) to the application handling it. This means we
must find an efficient way of delivering the notification, performing as little work
as possible without introducing synchronization issues and balancing the load so
the events of one socket are not prioritized above another. Figure 5.4 shows the
event subscription and notification architecture in the network stack.

I will summarize the major issues tackled in developing the asynchronous event
code:

• Repetitive or single-shot events. I chose to leave this particular policy deci-
sion to each class of event. There should be no overall semantics dictated by
the generic event handling code. Certain classes of events, such as an asyn-
chronous send, should only be fired once; once the data has been sent, the
event associated context is no longer needed as the event will not fire again.

• Subscription. How should interested stakeholders register for events? Most
importantly, how should we handle storing event subscriptions and access-
ing them later? One possibility is a set of dynamic arrays in a central event
subscriber component, but I eventually decided on a more distributed mech-
anism, with protocol code storing per-socket linked lists (updated by a com-
mon API for both the protocol) that stored a series of AsyncCtxs (a structure
that served as an abstraction for an asynchronous context), which were allo-
cated and registered by the application by calling event functions categorised
by protocol. Removal and cancellation of subscriptions was then handled by
the generic Async* API.

• Event delivery. Once notifications are generated by the network, how should
they be delivered to subscribers? One design is to call the event functions as
the events are generated by the network stack (in the same thread context in
which we receive the packet) – however, this has stability and latency issues if
an event callback hangs or the set of event handlers perform a large amount
of processing. In the end, I opted for a separate global event worker thread
to handle events, with an option for the application to create a worker thread
per socket if needed.

• Event data. Should we supply a standard array for each event, or let events
pass their own data to handlers? In the end, I chose the latter; since, in the
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event delivery mechanism, I wanted to avoid unnecessary copying of gen-
eral structures, I let each event pass its own data to handlers; in the main
event-firing function, _SockEventFireList, I then copy the data (given
the length) to each asynchronous context as part of the standard AsyncCtx
structure, which was linked to the Socket the event fired on. If the event
handler required more data about the socket, it could retrieve the informa-
tion using the Socket pointer.

• Time-based events. Should we support timer events that update an applica-
tion on the status of a socket periodically? These kinds of events are useful for
diagnostics, but the overhead in managing many events using kernel timers
means a clever global situation involving one kernel timer and the ability to
register timed events from different classes was the preferred solution. How-
ever, I did not focus on these timer events, because they were not directly
linked with the concept of a protocol event itself and therefore not the ob-
ject of my research – these are periodic updates of socket state, rather than
notifications of socket events.

5.5.2 TCP

I decided to focus on implementing a set of events for TCP and demonstrating
their applicability applications such as httpd. As TCP is the most complex and
widely-used protocol in the Internet Protocol Suite, the flow control and congestion
control algorithms in TCP are vital in preventing data overwhelming the receiver3

and congestion collapse – feedback to the application about when the host or
the network is becoming congested or uncongested would allow the application
to adjust its data transmission accordingly (e.g. adjusting the quality of streaming
media). In a very congested network, it may make sense for the application to
perform other work in the meantime, or display a warning message indicating the
network conditions.

The events I imagined would be useful to applications, for diagnostic and per-
formance reasons, are detailed below. This list is from the events available in
user/sdk/network/tcp/tcp_events.c:

• Retransmission timeout This event is fired when the retransmission timeout
timer expires. This is usually a reliable sign that the network is congested,
and passing the current retransmission timeout value, the next one and the
current estimate of the round-trip time should allow the application to judge
whether it is more useful to perform other work (such as reading more bytes
from a file on disk in a file transfer) and throttle its data flow accordingly.

• Round-trip time change This event is related to the retransmission timeout.
Depending on the exact congestion control algorithm used, the round-trip
time will be sampled regularly or rarely. This is the best possible estimate

3Flow control is not always a function of the host; the host may have a heavy traffic load from
other networks, and so the receive window, the main abstraction in flow control, may be a function of
congestion on other networks.
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of network latency, which may be useful to latency-critical applications that
use TCP connections – although many such applications use UDP combined
with a custom application protocol, streaming video on web pages such as
YouTube often utilizes a TCP connection to deliver data. If the round-trip
time goes above a certain threshold, we can adjust the data rate accordingly
to try and lower it again.

The only problem with this event is that it may fire rapidly (as certain con-
gestion control algorithms such as TCP Vegas incorporate timings from every
packet into the sample) – the ability to sample the round-trip time after every
Nth measurement would be useful for the general event load, but is currently
not implemented.

• Dropped packets Obviously we cannot detect dropped packets if they are
dropped during transmission through the network, but there are several cases
in TCP where we may have to drop packets at the host. These include out-of-
order packets, duplicate packets and packets with incorrect checksums. All of
these events can be used to gauge network reliability (for instance, the error
rate of transmitted packets in wireless networks is much larger than wired
networks) and congestion. This is also a useful diagnostic tool, and can be
adapted to other transport protocols that use checksums, such as UDP.

• Local window change This event is fired when the window size we advertise
to the remote host changes. Although we should not allow the application
to set the receive window directly, an idea of how much data the TCP socket
can receive is useful. We would like to receive as much data as possible to
process in one SocketRecv call, but avoid allocating buffers that are too
large and will never be filled.

• Remote window change This event is fired when the window size advertised
by the remote host changes in value. Using this, we can perform application-
level flow control and deal with overwhelmed hosts at an application level
– we can do other work while the size of the remote window is small, and
restart transmission when the window size becomes larger, to help avoid
problems such as silly window syndrome at an application level, where the
receive window setting becomes so small that the data transmitted in each
packet is smaller than the packet header. This is preferable to forcing the TCP
socket to cope with a burst of data and the transmission backlog that follows.

Subscriptions

After a socket is created, we can register for an event using its corresponding reg-
istration function. This applies to TCP events and asynchronous I/O. For example,
to register for the remote window change event, we execute the following steps:

in t RemWinChanged( s t ruc t AsyncCtx∗ c tx )
{

/∗ Handle e v en t ∗/
}
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. . .
s t ruc t AsyncCtx c tx ;
. . .
TcpEventCtxCreate(&ctx , RemWinChanged) ;
TcpRemWinRegister ( ch i ld , &c tx ) ;
. . .

1. We call the TcpEventCtxCreate function, passing a TcpEventCtx, which
wraps around a SockEventCtx object and provides storage for a range of
TCP events. The caller is responsible for allocating the TcpEventCtx. We
also pass a callback function, RemWinChanged for example, whose only pa-
rameter is a AsyncCtx pointer – this is the event handler. TcpEventCtxCreate
sets up the context structure, but does not register the context with any
socket.

2. We attach the event context, represented by TcpEventCtx, to a socket by
calling the relevant registration function for the remote window change event,
TcpRemWinRegister. The TCP implementation adds this to the linked list
corresponding to the event handlers for the structure. At this point, the event
could now fire.

To cancel a TCP event subscription, we call TcpEventCtxCancel, which ac-
tually just calls SocketAsyncCancel on the internal SockEventCtx object. The
mechanism of asynchronous event delivery is covered in Section 5.5.4.

Other protocols

It will be hard to asynchronously deliver events if the protocol implementation does
not asynchronously receive packets (that is, does not handle receiving packets in
a dedicated thread, like the TCP implementation) – event notifications would only
occur once the application synchronously receives a packet. The datagram proto-
cols, such as UDP and ICMP, are also rather simplistic; there would be few impor-
tant performance-related events available. The only obvious class of events would
a checksum failure event, although that would be more useful when considering
diagnostics rather than performance.

One possibility is introducing the idea of a UDP "connection". This would allow
for the automatic timing of packets in the "connection"; an automatic estimation
of the round-trip time taken for packets would be useful for applications, such as
online role-playing games, that require a low latency connection. With an estimate
of the round-trip time, we would then be able to introduce the round-trip time
change event for UDP – typically applications perform their own ping time mea-
surements. Adding socket operations for sockets using datagram protocols that are
meant solely for the benefit of the local network stack, such as those described
above, could be a fruitful avenue to pursue for multimedia applications.

97



5.5. EVENTS CHAPTER 5. DYNAMIC PROTOCOLS

Figure 5.6: Asynchronous I/O in the context of sockets and how it fits into the I/O model of
UNIX-like operating systems. Whitix’s functions are similarly named.

5.5.3 Asynchronous I/O

Overview

Figure 5.6 depicts the four methods of performing I/O in operating systems today.
In existing programs the most common model of socket interaction is the syn-
chronous blocking I/O model, where the userspace application performs a system
call such as send or recv on sockets and write and read on files; the file is repre-
sented on Unix-derived systems as a single file descriptor.[31] In a single-threaded
application, no work can be performed while the system call waits for data to com-
plete (or a timeout occurs). In a multithreaded application, other threads can still
perform work, but this leads to synchronization issues if multiple threads access
the same data. Cross-thread communication might also be difficult each time a
blocking system call could occur.

Synchronous non-blocking I/O is also possible (see the O_NONBLOCK flag);
however, this can be inefficient if the application has to busy-wait until the data is
available anyway – the time between data becoming available to the file descriptor
and the application calling read or recv, especially in the case where it decides
to perform other work for example, will be non-zero, leading to increased latency
and decreased throughput.

For networked applications with unpredictable I/O needs, especially ones where
data arrives in an irregular fashion, asynchronous I/O is very useful. As Figure 5.6
shows, there are two types of asynchronous I/O, blocking and non-blocking. Block-
ing asynchronous I/O, SysPoll in Whitix, is useful if the application’s work only
involves reacting to events on multiple file descriptors; one class of examples is
interactive applications like a command-line shell (burn in Whitix), where work is
only performed upon user input. (There are several issues with SysPoll interact-
ing with the userspace network stack and network channels - these are covered in
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Section 4.4.6 - but in short we can assume that the semantics are similar).
The last I/O model is non-blocking asynchronous I/O (usually referred to as

AIO, with blocking asynchronous I/O known as multiplexing). In this model, appli-
cation post a request, either to send or receive data, to the network stack, supplying
information about how to be notified upon I/O completion. The application is then
free to continue other work while the background operation completes. A thread-
based callback, usually performed by an AIO worker thread, can then be generated
to complete the I/O transaction. This model is available with a wide range of con-
figuration options, such the mapping of AIO worker threads for each socket to an
I/O request. The use of multithreading, handled by the AIO layer, can really help
an application take advantage of multiple processors.

AIO and the network stack

Only the asynchronous receive operation is available in this implementation of the
userspace network stack. I chose not to implement asynchronous send, but to focus
on other TCP events instead – the two operations are very similar to other events
anyway. To register for an asynchronous receive event, the application performs
the following steps:

1. The application allocates an instance of the AsyncCtx structure.

2. SocketAsyncCreate is then called, passing the asynchronous context and
a callback function to handle the asynchronous receive event. This callback
function is called every time a packet is received on the connection.

3. The application then calls SocketAsyncRecv to register the context to a
socket, passing the data buffer (also allocated by the application) and its
length. The asynchronous event could fire at any point on this socket as a
result. Only one asynchronous receive context can be registered at one time
to handle packets – this is because a packet receive event is fairly common and
can involve a lot of data copying, limiting the asynchronous receive events to
one context reduces the global event load greatly (and a well-designed ap-
plication should only need to have one copy of the data, like an synchronous
receive).

In the TCP implementation, the asynchronous receive event fires in TcpEstablished,
the main data receive function, when we receive a packet containing the data. If
the socket has registered an asynchronous context for the receive operation, then
we call _SockEventFireList, which distributes the event to the subscriber as
described in Section 5.5.4.

5.5.4 Event delivery

Mechanism

Once we have an event has occurred, we need to deliver a notification to the event
as quickly as possible through the use of event worker threads to call the specified
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callbacks; there is at least one global thread, and possibly a thread for each socket.
The generic internal function for this is _SockEventFireList, which takes the
following parameters:

in t _SockEven tF i r eL i s t ( Socket∗ socket , s t ruc t AsyncCtx∗ head , void∗ data ,
in t l ength ) ;

where socket is the socket where the event has occurred (we may want to use
its private event worker thread), head is the linked list of contexts (with callback
functions) that we wish to invoke, and data and length describe the event data,
which is different for each type of event.

_SockEventFireList locates the appropriate event worker thread, and copies
the data to each context’s buffer, setting each context as active (i.e. in the process
of being invoked). The function then signals to the worker thread that the noti-
fications are ready to deliver by appending to the worker thread’s list of waiting
events and signalling the presence of work to the thread (resuming the thread if
necessary). The waiting event list (the shared object) is appropriately synchronized
between the two threads.

The worker thread (which runs the SocketEventWorker function) initially
suspends itself. Once it resumes and discovers there is work, it copies the waiting
event list by copying the head pointer (this is the critical section) – it then iterates
through the list, calling each callback function (unless the context is marked as
cancelled). Once there is no longer any work (the pointer to the list of waiting
events is NULL), the thread sleeps until more work is ready.

Latency concerns

With multiple threads, especially on a uniprocessor, the delay, or latency, between
posting an event or AIO response to an event delivery thread and the worker thread
being scheduled by the processor may impact on the application’s performance.
This latency may be the result of extra event worker threads being active at once,
along with a thread scheduler that is focused on throughput, rather than latency.
The load balance between the main application’s thread and the worker thread
may not always be even as a result; CPU-intensive parts of the main thread, where it
does not spend any time waiting for I/O and uses up its entire timeslice, may cause
a backlog of events in an event worker thread if it is never scheduled (this includes
the socket poller thread may also take or require a large portion of CPU time with
high network traffic). High latency is of concern to responsive applications using
asynchronous I/O.

To illustrate this, I ran a short experiment on an otherwise quiescent unipro-
cessor system, noting the number of cycles (using rdtsc, see Section 6.2.3) that
passed between the event being fired and delivered in an asynchronous context
and, in synchronous blocking I/O, the packet being made available on the list of
socket data and the application copying the data to read. The results are available
in Figure 5.7. This shows that currently, as the number of processors per system
is fairly low, latency is still an important issue. If we do have enough processors
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Figure 5.7: The cycles consumed in the system between the received data arriving at the
socket and being delivered to telnet. telnet has the ability, due to the asynchronous
properties of the protocol, to receive packets in a non-blocking synchronous or asynchronous
manner. The synchronous I/O has less active threads running at once, which may be the
issue in the asynchronous I/O’s increased latency.

so the event worker thread of a process is always running, we would have a much
lower average latency per event.

One solution to this latency when there is a large backlog on the global event de-
livery thread is to spawn a new event delivery thread for a particular socket. This
is a simple measure that I have incorporated into the event API: sockets with many
events can call SocketEventCreateThread to spawn a separate worker thread
at any time – however, only at most one event worker thread can be spawned per
socket.

5.6 Discussion

Overall, one of the main advantages of a userspace network stack is being able to
provide much closer coupling with the application to improve performance. By pro-
viding interactivity and adaptability through events and the networking profiling
functionality, this implementation proves it is possible to use events in a construc-
tive way to couple the application and network stack.

However, I believe this to be a proof-of-concept implementation, there is plenty
more scope for other data to be incorporated into the TCP/IP stack, but it requires
inventive uses of the stored statistics in order to realize performance gains. Most of
the data stored in the network statistics, especially the port-related data, is either
not used by the network stack when a related socket is next created, or it is not used
to its full potential. I would investigate further the possibility of storing network
data in a separate service that stores and analyzes socket data – this would pro-
vide information about other hosts across the system and avoid partitioning useful
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information into per-process network statistic files.
More testing, especially stress testing, should also be performed on the event

layer. The only tests we have performed with sockets have involved at most 4 or
5 sockets – it would be interesting to see if the event concept was still viable with
many sockets (say at least hundreds) generating many events. A wider range of
TCP events (along with several UDP events), a more specific language to specify
subscriptions, and perhaps introducing composite events would increase the adapt-
ability of the network stack. More research into what information the application
can provide the TCP stack (apart from crude notifications such as TcpSetTransferSize)
would also improve stack performance by incorporating more types of information.

5.7 Summary

This chapter covered how we used the userspace architecture of the network stack
to add innovative new features, such as protocol events, application hints, persis-
tent profiling information and asynchronous I/O, as part of achieving the goal of
feedback between the application and network stack. After examining the current
research, we noted that contemporary event-based network stacks signalled events
using heavyweight processes, no other network stack kept persistent statistics, and
asynchronous socket I/O was not well supported across all operating systems. We
then covered how the network stack collected statistics, stored them to disk after
program exit, and used the output data to optimize future runs or allow the user to
inspect networking data by host and port using nprof.

Moving, we outlined the techniques used for adaptation in the network stack;
after summarizing current adaptive technologies present in TCP, we explain how
the application can influence the network stack’s operation through application
hints and profiling data. In this relationship, data also flows the other way; net-
work stacks post events – several TCP events now available are described, along
with the means of subscription to these events. Finally, we covered asynchronous
I/O and the means to deliver all these events, before discussing storing these statis-
tics in a centralized service to share with other applications, among other things.
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Chapter 6
Performance

We now evaluate the completed network stack implementation. In this chapter, we
begin by quantitively comparing the implementation against other similar operat-
ing system network stacks, using a series of benchmarks.

When inspecting the performance of the network stack implementation, it is
important to note that there is no comprehensive performance measurement (and
non-invasive) framework for the Whitix operating system to measure cache-related
performance (such as cache misses) or support for high-performance timers. In
spite of this, we used a number of existing timers to measure performance, mainly
metrics involving CPU cycles (latency is a derived function of this) and throughput.

6.1 Background

Research into what constitutes high networking performance and the benchmark-
ing of various network layers is widespread and involves all layers of the network
subsystem1 to optimize the operation of individual components, with much of the
researching focusing on TCP and the various congestion control algorithms. There
are a number of studies evaluating the performance of the overall networking sub-
system, which, due to time constraints on the project, is the most feasible method
of obtaining the most performance information within a general framework.

Perhaps the most comprehensive study is "Performance Characterization of the
FreeBSD Network Stack" by Hyong-youb Kim and Scott Rixner (2005) [33]. They
analyzed the behavior of high-performance web servers in the FreeBSD 4.7 oper-
ating system along three axes: packet rate, number of connections and communi-
cation latency. They used low overhead non-statistical profiling by employing the
performance counter events available in all modern CPUs to count events such

1See http://www.csm.ornl.gov/~dunigan/netperf/netlinks.html for a directory of
network performance related links.
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Figure 6.1: Figure of tasks generally performed by the network stack. There are three main
actors in the system: the hardware timer, the user application and the network interface
card (through its interrupt routine).

as L2 cache misses2 and TLB misses. Such misses involve an access to main mem-
ory, and since memory latencies are now equivalent to several hundred processor
cycles, the amount of time processors must now wait for main memory data affects
throughput.

This project is not the first benchmark of network channels, though it is the
first within a wider and more complete framework of a multithreaded userspace
network stack. In 2008, Evgeniy Polyakov tested his implementation of network
channels and a proof-of-concept userspace network stack. His bandwidth figures
and CPU usage figures were impressive (see Figure 6.2). Using a third of the
CPU time, it achieves three times the maximum bandwidth when sending small
packets.[13] The difference is less clear when sending or receiving large packets –
Polyakov has not implemented zero-copy I/O in his network channel patch.

6.2 Method

6.2.1 Caveats

Because there is no other implementations of a TCP/IP network stack on Whitix,3

it will not be possible to perform a direct comparison of network stacks using the
same operating system. This means only a comparison against the network stacks
of other operating systems, such as Windows, Linux and the BSDs, is possible.
There are caveats to this however.

2In the tested CPUs, an L2 cache miss would result in an access to main memory. The addition of an
L3 cache, available in most modern multicore CPUs, would affect this particular measurement

3The closest equivalent is a simple implementation of local sockets. That probably can now be
replaced with a local implementation of network channels, or data channels
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Sending
Object Packet size Bandwidth CPU Usage

Netchannels 128 27-28 MB/sec 20-30%
Sockets 128 7-8 MB/sec 80-90%

Netchannels 4096 27-28 MB/sec 20-30%
Sockets 4096 30-31 MB/sec 30-40%

Receiving
Netchannels 128 70-71 MB/sec 80-90%

Sockets 128 24-25 MB/sec 80-90%
Netchannels 4096 73-74 MB/sec 80-90%

Sockets 4096 79-80 MB/sec 80-90%

Figure 6.2: Evgeniy Polyakov’s benchmark of network channels versus Linux kernel sockets.
His implementation of the network channel I/O copies the data to and from userspace. It is
likely the cost of copying the packets into and out of the kernel is the dominating factor for
large packets.[13]

Much of the performance benchmarks concerning the network stack, especially
a multithreaded one as in Whitix, also indirectly measure the performance of
other operating system components. For example, performance benchmarks of a
multithreaded web server would indirectly measure the throughput and latency of
the filesystem, disk I/O and thread scheduler components. However, recent studies
have shown that a modern, high-performance web server spends over 80% of its
time within the network subsystem of an operating system,[33] and, so long as the
rest of the system is quiescent and the served files are cached in main memory, the
difference should be minimal. If in general this is not the case, we can perform
relative comparison in terms of performance gains in the Whitix network stack
against network stacks in other operating systems.

6.2.2 Procedure

A number of test were performed with the echoserv implementation available in
Whitix, which echos back packets it is sent. Depending on a startup option, it cre-
ates a TCP or UDP server socket; for TCP sockets, it echos back any packets it is sent
until the connection is closed. Unfortunately, unlike other operating systems, there
is not a comprehensive framework available in Whitix for performance evaluation
and profiling; I have not developed an API for retrieving the performance counters
available in modern CPUs, unlike other operating systems.

To measure system performance, I measured the cycle counts for each opera-
tion. I measured the different layer counts separately and varied the packet size,
(from the smallest possible to the largest possible packet size on a standard Eth-
ernet local area network) keeping all other variables constant. The system was
otherwise quiescent, with no other connections and no firewall rules added. I mea-
sured the best-case operation, even though there are many slower paths through
the transmission and receive code.
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For the send operation, the different stages of packet construction and transmis-
sion, as depicted in Figures 6.4, 6.5 and 6.8, are:

• TCP/UDP. The cycles spent in userspace constructing the packet to transmit.
Timed from the SocketSend method for each socket type. For TCP, I made
sure to only trigger the immediate send path, (i.e. not a path where the
packet is added to the transmission list) where the data buffer is sent as a
single packet using TcpDoSend during the call to TcpSocketSend.

• IP. I timed both the IP header construction performed in userspace (in IpBuildHeader)
and the header modification (in Ipv4Write) and added both counts to ob-
tain the total cycles spent building the IP header and calculating the packet
checksum.

• Ethernet. I timed EthBuildHeader, which includes a call to ArpGetLinkAddress
– I ignored any outlying figures that suggested a ARP request was sent by
ArpGetLinkAddress, focusing instead on the common case where the hard-
ware destination address would be found in the cache.

• Driver. I timed the NetDeviceSend function. Obviously the time spent
in the driver will differ between Linux drivers, but a rough idea of how long
transmission takes in the driver will indicate whether or not it is the dominant
factor in transmission.

For the receive operation, depicted in Figures 6.6, 6.7 and 6.9, since normal
header parsing did not take place in the kernel, I decided to divide the receive
operation into a different set of layers:

• Inspection This is all of NetRecv the majority of Ipv4RecvBuffer, where
the important contents of the IP header, such as the source and destination
port for UDP and TCP, are copied to temporary variables for the matching
process.

• Matching This is the cycles taken to match a packet with a channel, using
the protocol hash function and ChannelSearchList. Since the system was
quiescent, the only operation that is really timed is the hash function (since
the only channel will be at the head of the list). To improve profiling, I should
investigate under different system loads.

• Copying This is the cycles it takes to find a free receive buffer, set up the
header and copy the data from the temporary buffer to the header. The
majority of the cycles should be spent copying the data.

• TCP/UDP The overhead for the userspace network stack to receive the packet.
Note for TCP this is the cycles it takes to return from SysPoll, read in the
packet using IpRecvNb, and place any data in the packet on the data list
for the TCP socket.
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6.2.3 Timers

As Whitix lacks a profiling framework, this means that the only two means of mea-
suring performance are the Intel 8253 programmable interval timer available in
modern CPUs, and the Time Stamp Counter (TSC), a 64-bit register that counts
the number of ticks since reset and is present on all Intel processors since the
Pentium. There are disadvantages with both methods. With the PIT, the timing res-
olution on Whitix (since it is used for the scheduling quantum) is relatively coarse-
grained, at 10ms – this means that events shorter in duration than 10ms will be not
be timed. If we do repeat it many times, this also means the approximation error
of the sample will be quite large.

As an alternative, the TSC initially appears to be a convenient method of re-
trieving CPU timing information. In the age of multicore and hyperthreaded power-
saving CPUs and hibernating operating systems (lowered CPU clocks due to power
saving is a concern with operating systems other than Whitix), the TSC can give
varying results. However, since we are essentially running the benchmarks with the
system at maximum performance, hibernation or low-clocked power-saving CPUs
should not be an issue. The varying cycle count of the TSC (which due to out-of-
order processors scheduling the execution of the rdtsc at different times) can be
ignored by averaging the results.

6.3 Experimental testbed

I ran the benchmarks described in the previous section in two environments. Whitix
was run off a CD-ROM drive and requests were run before benchmarking to en-
sure that both the programs and the pages to be benchmarked were available in
memory – as a result, hard-drive and CD-ROM-drive speed were irrelevant when
benchmarking. They were:

1. Development laptop. Intel Core Duo T2300 processor (1667 Mhz), 1GB
of DDR2 SDRAM with a Broadcom BCM4401-B0 100Base-TX Ethernet inter-
face, connected to the local area network by a 100BaseT Ethernet connection.
The Core Duo processor has a unified L2 cache and separate L1 instruction
and data caches. Each L1 cache in the processor is a two-way set associative
32KB cache with 64 byte lines, and the unified L2 cache is a shared 2MB
cache with 64 byte lines.

2. Virtualbox virtualisation environment. This was the main machine used
for testing the Whitix networking subsystem. On my development laptop
(the above machine), the software emulates a 1600Mhz Intel processor
with 256MB RAM and a AMD PCnet-PCI II (Am79C970A) Ethernet inter-
face, sending packets over the Ethernet interface described in the previous
setup.4

4Because of the way virtual machines run guest operating system code on the local computer, the
virtual machine interacts with the host system’s cache in a complex and involved way.
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c y c l e s = r d t s c () ;

for ( i = 0; i < TIMES ; i++)
r e t = device−>ops−>send ( device , b u f f e r ) ;

c y c l e s2 = r d t s c () ;
KePr in t ( "%u , %u c y c l e s \n " , buf fe r−>length , (DWORD) ( cyc les2−c y c l e s )/TIMES) ;

Figure 6.3: NetDeviceSend annotated with cycle measurements. To average results, we
sent TIMES packets to take the mean of the cycle timings, including outlying measurements
in the final figures.

Figure 6.4: Transmit cycles on VirtualBox. The VirtualBox cycle counts (using rdtsc)
for the various stages. Since the network device is emulated by VirtualBox, the driver cycle
counts will are not an accurate representation of the real timings for the device.

Although VirtualBox may seem like a poor benchmarking environment, mea-
suring performance with hardware virtualisation is important, because such envi-
ronments are possibly how many will first evaluate the Whitix operating system, as
well as being a popular way to run many operating systems.

6.4 Analysis

The results depicted in the supplied graphs and tables are useful for judging the
CPU time taken between different layers of the networking subsystem. Although
not directly useful as a comparison between operating systems or environments (or
at least not as useful as instruction counts, cache misses or latency timings would
be), we can judge what the limiting factor of optimization may be, and compare
how long each network stack spends in each layer, comparing with studies such as
[23] and [33].

From the results above, we can determine which layers are constant with re-
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Figure 6.5: Transmit cycles on laptop. The laptop cycle counts (rdtsc) for the various
stages.

Figure 6.6: Receive cycles on VirtualBox. The VirtualBox cycle counts (rdtsc) for the
various stages.
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Figure 6.7: Receive cycles on laptop. The laptop cycle counts (rdtsc) for the various
stages.

Environment Packet size Driver Ethernet IP TCP Total

VirtualBox

42 4117 804 1043 1454 7418
55.5% 10.8% 14.0% 19.6%

850 7658 805 1810 2610 12883
59.4% 6.25% 14.0% 20.3%

1514 13815 805 2532 3021 19543
67.5% 4.12% 12.3% 15.5%

Laptop

42 910 631 810 1522 3873
12.3% 16.3% 20.9% 39.2%

850 1134 632 926 1669 4361
26.0% 14.5% 21.2% 38.3%

1514 1381 635 1142 1750 4908
28.1% 12.9% 23.3% 35.7%

Figure 6.8: Summary of the cycles consumed sending small, medium and large TCP pack-
ets on Virtualbox and the development laptop. The two sets of figures are not comparable
between environments generally.
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Environment Packet size Inspection Matching Copying TCP Total

VirtualBox

42 361 183 443 1154 2141
16.9% 8.55% 20.7% 53.9%

850 360 184 638 1757 2939
12.2% 6.26% 21.7% 59.8%

1514 362 183 930 2004 3479
10.4% 5.26% 26.7% 57.6%

Laptop

42 290 123 398 1036 1847
15.7% 6.66% 21.5% 56.1%

850 294 123 564 1621 2603
11.3% 9.00% 21.7% 62.3%

1514 290 124 798 1855 3007
9.64% 4.12% 26.5% 61.7%

Figure 6.9: Summary of the cycles consumed receiving small, medium and large TCP
packets on Virtualbox and the development laptop (in the best case). The driver cycles
spent receiving the packet are not included.

gards to packet size, and which layers scale well or badly when the packet size is
increased. These performance results will be useful for directing future optimiza-
tion, and comparing how different layers scale to increased packet sizes compared
to other network stacks.

6.4.1 Send

From the graphs, we can see that network channels scale well to larger packets,
mainly because we perform no copying from userspace to the kernel to transmit.
Figure 6.4 shows that most of the cycles are spent transmitting the packet – it also
scales poorly compared to other layers involved in transmission. The cycles spent
in the Ethernet layer, which comprises resolve network addresses and constructing
a small hardware header (neither vary with the packet length), is constant for all
packet sizes. Figure 6.5 shows a similar set of cycles count by layer, except that
a lot less processor time is spent in the driver layer compared to the VirtualBox
environment – the TCP implementation takes the most cycles on the laptop.

Inspecting the table in Figure 6.8, we observe that for larger packets, the cycles
spent in the driver and in the userspace TCP implementation are the dominating
factor, at least in the VirtualBox environment. On the laptop, the picture is much
less clear; the TCP stack performs much better (the caches do not have to be shared
with other processes as in the VirtualBox environment) – the focus for optimization
here would focus on the IP layer, which takes up 10% more of the processing time
than on the VirtualBox environment.

Because there is no dynamic allocation when sending a packet, the cycles spent
transmitting a packet compares favorably with the network stacks in other operat-
ing systems. More work is needed to compare performance, especially CPU usage
and bandwidth, between the Whitix implementation and others.
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6.4.2 Receive

Receiving a packet has a similar workload – the inspection and matching stages are
constant, since they only depend on the packet type and the number of channels in
the system. Although we could not take driver measurements (as the current cycle
counts were obtained by creating a special field in the NetBuffer structure, which
is not present before packet receive), the receive results indicate most of the cycles
spent receiving a packet involves the driver and TCP (and UDP) code.

Figure 6.6 shows that most of the time spent handling a TCP packet is in the
TCP implementation in the userspace network stack. The UDP receive, which only
involves reading the buffer from the channel and performing a checksum over the
entire packet, takes much less cycles, although the two transport protocols domi-
nate the processing time in a typical packet receive. The graph depicting the receive
cycles on the laptop, Figure 6.7, shows similar results – in both graphs, inspection
and matching take constant time, regardless of the size of the packet (matching is
dependent on the number of channels registered to that protocol – in our example,
there were no others).

What the cycles consumed receiving table shows, in Figure 6.9, is that 20-25% of
the time receiving a TCP packet is spent copying the packet to the channel buffers.
This copy, with the correct design, may be unnecessary – if allocate pages to rep-
resent receive buffers and copy the data from the network card into them, we can
use the virtual memory of the operating system to remap the network channel’s
first free buffer (page) to point to that received page. If we can achieve that, we
will be able to receive a packet in three quarters of the time, as well as improving
cache performance greatly. Otherwise, in general, in both environments, most of
the processor time is spent processing the TCP packet.

6.5 Summary

In this chapter, we first summarized the current techniques for general network
stack benchmarking, focusing on the FreeBSD 4.7 study in particular. After a sur-
vey of previous network channel benchmarks, which delivered impressive through-
put and CPU usage figures, we outlined a method for measuring this userspace
network stack that involved a TCP and UDP echo server receiving and sending
packets.

However, there were caveats in the experimental method, including the lack
of a comprehensive profiling framework available in Whitix. After detailing the
experimental testbed, we ran the experiments and produced an analysis of the
relative performance and scalability of the userspace network stack. We offered
comparisons to other network channel implementations and potential areas of op-
timization.

112



Chapter 7
Evaluation

In this chapter, we evaluate and compare the project’s implementation against other
stacks in a qualitative manner, based on metrics such as flexibility and adaptability,
correctness and stability, functionality and usability and scalability. We also consider
each level of this userspace network stack, and compare against the counterparts
in other network stacks. After discussing each area, we propose ways to improve in
the various areas, and conclude by summarizing the strong and weak areas of this
project’s implementation, as well as its successes.

7.1 Flexibility and adaptability

The flexibility and adaptability provided by the asynchronous event and interac-
tivity layer (Chapter 5) allows for a much wider range of diagnostic and perfor-
mance feedback algorithms to be incorporated into both client and server appli-
cations. Aside from academic proof-of-concept implementations of events for the
TCP protocol using listener processes (see Section 5.1), there are no equivalent set
of features in competing network stacks, mainly due to their kernel-based design.
Event distribution to many sockets using an asynchronous notification mechanisms
such as signals would not scale very well.

Although the set of events provided by the TCP implementation is fairly small,
and their use by applications may fall short of a truly interactive relationship, the
framework for specifying, registering and delivering events to sockets is easily ex-
tensible to more events and protocols. We have demonstrated this through a num-
ber of implementations in client applications such as ftp, httpd and telnet,
and although some I/O events may not be suitable for interactive applications (see
Section 4.6.2), generally the profiling, adaptability and feedback features, with
more work, would improve application performance to an even greater degree
with imaginative uses of the events.

Perhaps the only major thing missing from the implementation is a framework
for filtering events by value when registering, in order to decrease the event work-
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load. For example, if an application wants to register an interest in the TCP re-
transmission timeout event, it can do so by calling TcpRetxTimerOutRegister.
If however, it only is interested in situations where the retransmission timeout is
excessively high (to display indicating poor network connectivity as a message to
the user), it must receive all the retransmission timeout events and performs its own
filtering. In that respect, the event mechanism is not as flexible as desired.

7.2 Correctness and stability

In the absence of a framework for formal testing (such as verification and valida-
tion) and testing to ensure complete code coverage, and due to time constraints on
the project, it was not possible to devise a comprehensive automated test suite for
every one the four main sets of components of the networking subsystem. However,
different methods were used for different layers; for example, unit testing suited
testing the system call interface and memory management of the channel layer, but
was ineffective in comprehensively testing the Linux Driver Layer.

The testing of low-level networking involved a number of different techniques,
but the focus was mainly on automating testing at the higher levels and indirectly
testing the packet transmission and receiving functionality. Since the Linux drivers
used in the Linux Driver Layer were already well tested (since many of the drivers
have been in the kernel tree for a number of years and their core functionality can
be assumed to be well-tested) and there was a strict API to conform to when coding
the layer, most of the testing of the layer was informal and comprised sending
packets of different sizes and at different rates as part of general use of the layer.

The other components of the low-level networking layer, apart from packet send
and receive, was the network device manager and hardware address cache. Again,
since the input to the functions in this layer was assumed to stay relatively con-
stant (for example, the NetDevRegister function would always be called from
register_netdev in the LDL and would always register an Ethernet driver from
the b44 or pcnet32 Linux drivers), I did not focus on testing this layer much
under different inputs. To improve stability and correctness, more verification of
the passed net_device structure should take place with a wider range of Linux
drivers.

The unit testing (the chan_test program) performed for the network chan-
nel layer was sufficient to improve the code quality of the memory management
and channel management components greatly, and as a result was a success in
terms of improving system stability and correctness. An initial suite of tests written
after the first iteration of the channel object was created uncovered a number of
bugs that would have laid dormant had I only tested with the default flags. Writing
automated tests for such a widely-used layer saved a lot of time later on when I
began to develop the userspace network stack on top of the network channel layer.

The userspace network stack was well-tested by the range of applications
that I developed, many of which functioned as basic tests of a class of sockets
and transmission and receiving using the socket (c.f. ping). This also tested the
protocol classifier code indirectly. Sending and receiving UDP and ICMP packets

114



CHAPTER 7. EVALUATION 7.2. CORRECTNESS AND STABILITY

was tested with a variety of packet sizes, but once I verified (using Wireshark)
that the output of the implementation was correct, I considered the UDP and ICMP
functionality complete (in terms of the project’s scope) and did not see a benefit in
writing further automated unit or regression tests.

Overall, my main concerns about correctness lie with the TCP implementation
in the userspace network stack. It is relatively complex compared to the rest of the
userspace network – in fact, the size of the TCP implementation in lines of code is
larger than the rest of the network stack combined. The core functionality involves
multithreading and multiple thread synchronization adds to the complexity and so
makes it much harder to automatically test. Include the fact it was developed and
built upon much later in the project than the other components, and it becomes
clear that the implementation may have stability and correctness issues that the
TCP automated test suite (tcp_test is described in Section 4.7) and the mock
unreliable connection (which randomly drops packets) in the TcpHandleData
function may not uncover.

The verification of the state machine performed by running tcp_test for au-
tomated testing (not complete) and, during general use, "sniffing" the TCP packet
exchanges between the Whitix network stack and other hosts using Wireshark, was
satisfactory for general use. Considering other aspects of the implementation, test-
ing for deadlock conditions and multithreading bugs in the TCP polling thread will
be more difficult due to their unreliable nature and the random delays of network
packets.

In many ways, the event handling and profiling subsystem of the userspace
network stack were well-tested by general application use, even though no auto-
mated testing took place. I tested each of the asynchronous events implemented,
including all of the TCP events (Section 5.5.2) and the AioReceive event in dif-
ferent programs. This was one area where using the protocol sniffer Wireshark was
useful for certain classes of events; we can verify that the remote window changed
events fires when and only when the remote window size in a received packet
changes easily. (It is harder to verify the retransmission timeout event firing pat-
tern, but retransmission timeouts can be simulated in software anyway).

The most effective testing method overall for this project was the automated
unit and regression testing performed for the TCP and network channel compo-
nents, followed by in particular, verification of the network stack output by protocol
sniffers such as Wireshark. Although it is relatively expensive in terms of time and
effort, the benefit gained from ensuring, under most conditions, the correctness
of possibly the two most complex and widely-used layers was key to the overall
stability of the project.

With a larger timescale for the project, I would extended the automated testing
to other areas of the networking subsystem. My focus would still remain on the
complex parts of the system; the advantage is that testing networking functionality
can easily be done using by running software on other hosts. Tackling the multi-
threading bugs that may be present in the various components would require a lock
debugging suite and dependency modelling (illustrating why correct multithreaded
software is so difficult to achieve), but the stability of such a core component may
be worth the price in terms of time and effort.
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7.2.1 Comparisons

The automated test suites present in Whitix compare favorably with those in Linux
and the BSDs.1 The Linux Test Project, which is a body of regression tests designed
to evaluate the behavior of the Linux kernel, includes a large number of tests for
application programs such as ssh, ping and rcp (included as shell scripts), in-
ternal networking functionality such as iptables (the standard firewall) and the
Network Filesystem (NFS).2 No equivalent exists in the Whitix test framework yet.

Crucially, there appears to be no test of the socket layer at a system call level
in the Linux Test Project, and no automated testing of UDP, TCP or ICMP. In this
respect, the small TCP test suite tcp_test is superior, and its high-level design
could be adopted for automated testing of the network stack in Linux. The only
similar project, and one that tests at a lower-level than my test suite, is the TCP/IP
Regression Test Suite (TIRTS), a set of a programs that tests the state machine
correctness (1) and the transmission reliability3 (2) of a host by constructing a
series of raw packets to see if the host meets the requirements of the TCP RFC
793.4 However, unlike tcp_test, it does not verify the other local socket’s state.

7.3 Functionality and usability

Is the current networking implementation adequate for both client and server ap-
plications? For client applications, such as ftp and telnet, the APIs provided
are adequate to for a simple equivalent implementation, and since most of the
functions called in these programs are the basic socket I/O functions such as send,
recv, close (and their Whitix equivalents), we can consider the APIs provided
to be sufficient for these class of programs. Other functionality provided in the
BSD Socket API, such as the functionality to retrieve the local and remote endpoint
address via getsockname and getpeername, will be trivial to implement anyway.

In terms of server applications, such as high-performance web servers, the
polling quirks described in Section 4.4.6 and the lack of a high performance and
change notification API (such as epoll in Linux), as well as only one thread used
to poll all sockets for new TCP data, may negatively impact upon performance
or make it harder to implement a server to handle many clients simultaneously.
However, the ability to easily provide a new direct memory access API (as de-
scribed in Section 4.8) will easily decrease latency and avoid unnecessary copies.
To summarize, if we wish to make this networking subsystem usable by very high-
performance servers, we must develop a high-performance socket buffer API and
I/O event notification event facility. Our solution, as described earlier, has the po-

1Since Windows has a closed development process, the only diagnostic tools that are known about
are the Network Diagnostic Framework, but this is mainly focused on helping users to diagnose network
problems at runtime. It is likely however that they run a large range of automated test suites internally.

2The body of test cases can be found at http://ltp.cvs.sourceforge.net/viewvc/ltp/
ltp/testcases/network

3Transmission reliability is the host’s ability to handle segments with out-of-order sequence numbers.
4The code for the TCP/IP Regression Test Suite can be found at http://code.google.com/p/

tirts/, and short technical documentation at http://wiki.freebsd.org/NanjunLi
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tential to surpass other network stacks in performance if these two features are
implemented.

In terms of the end-user functionality provided, they are no significant differ-
ences between the interface to networking applications, utilities and internal sys-
tem configuration presented to the user in Whitix. All of the standard tools can be
implemented using the new networking subsystem, and essentially their new func-
tionality, while affecting performance, does not result in any functional changes to
core features; this means that adoption of the system by end-users will be aided by
a wealth of transferable knowledge from other Unix-like operating systems.

Missing features in the network channel layer are few and far between. Sev-
eral features, as summarized in Section 3.9, that may be needed by a more com-
plete implementation of a network stack include the ability to receive multiple
streams of packets. As one more example, some protocols supports a notion of
out-of-band data – a mechanism to retrieve more than one stream of data, perhaps
at the network channel level, will need to be added for completeness. Overall,
in terms of widely-used functionality, the network channel layer is complete, and
most of the work will involve adding mechanisms to support rarely-used features
of TCP or diagnostic elements of ICMP.

The implementation is lacking in other areas in terms of end-user functional-
ity, such as a comprehensive set of commands to manage Ethernet devices (config-
uring hardware MTUs and so forth) in a similar fashion to ipconfig in Linux or
the BSDs, but I judged this to be outside the scope of building the network stack –
many of the configuration options are purely diagnostic or of little direct use (such
as configuring the medium type used by an Ethernet card) anyway. A more com-
plete implementation would provide this, along with more options for diagnostic
tools such as ping, dhcp and dns.

7.4 Scalability

Would the network stack scale to multiple processors and a much more intensive
workload? In many ways this is the most important objective of the project; we
began by initially arguing in Section 1.1.2, among other points, that the use of
locking and poor cache performance in current network stacks would not scale
well to systems with many more processors than today. Although we could not
directly test this when evaluating performance (as Whitix does not support SMP
currently), we can evaluate the implementation against the project objectives and
the initial design to evaluate whether the network stack would indeed scale.

In the low-level networking subsystem, with regards to packet transmission,
the only place where locking may still be an issue is inside the driver itself, and
the queuing of packets in the Linux Driver Layer. Some locking must take place
between different transmission contexts to avoid hardware corruption of packets.
The implementation of the LDL has not addressed multiprocessor locking5 – as a
result, this may be the bottleneck on network transmission in future many-core

5IrqSaveFlags and IrqRestoreFlags are used to disable preemption and interrupts on the
local processor, but obviously would not work on a multiprocessor system.
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systems (as it is one of the few common locks continually accessed by every packet
transmission context) and so may scale poorly as a result. More work is needed, by
perhaps employing an alternative to spinlocks, such as a readers-writer lock.[2]

The network channel layer is, in my opinion, more scalable than competitors
in distributing packets to the rest of the network stack. By distributing the process
of channel matching into sets of channel lists, and in turn removing any linked lists
from packet distribution, we have created a scalable layer, both improving cache
performance (at least in theory) and removing widely-taken locks by partitioning
channels into lists and using static arrays of buffers, structures that fit into one
cache line and utilizing simple bit operations such as test and set. Overall, we have
improved scalability and partitioned many of the locks in existing network stacks
into individual network stack and process contexts.

The main issue in the userspace network stack with regards to scalability is the
handling of incoming and outgoing socket data. There is little state shared between
sockets (apart from the common socket array), so locking is not too big a concern,
but the ability to dynamically create new threads for polling particular sockets
based on workload would be much more scalable. Currently only one global thread
polls all TCP sockets, so the ability to create new TCP data handler threads for a
socket or group of sockets based on workload would address any scalability issues
present.

Thinking along different lines from purely processor and memory scalability,
the events and asynchronous I/O component of the network stack has not been
thoroughly stress-tested with a large number of connections, asynchronous I/O
events or protocol events. However, handling a large number of events quickly and
responsively is partly a result of the event handling implementation, but mostly
a result of the priorities of the scheduler (whether it is focused on throughput or
interactivity). Although the likelihood of thousands of events occurring per second
is slim, further work needs to be done on constructing workloads and optimizing
both the event handling and the thread scheduler to deal with processing, or adding
a lightweight userspace threads implementation customized for event handling.

Overall, I believe as the number of processors per system increases and further
work is done on the Whitix network subsystem to address any locks, this implemen-
tation will prove to be much more scalable than others. However, lacking useful
performance counters for cache misses and locks taken, we cannot assert this cur-
rently with performance data. Future work should however focus on the common
locks in low-level networking and scaling events and asynchronous events to thou-
sands of sockets, and verify improvements with performance benchmarks and scal-
ability tests, perhaps on environments such as PlanetLab (a testbed for computing
networking research); in general, more stress tests are needed at the higher lev-
els in user-space, and a focus on reducing the number of cache misses and shared
cache lines through careful design and locking is needed at the kernel level.
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7.5 Summary

Overall, and taking into account that the Whitix networking subsystem is at the
stage of a proof-of-concept compared to the much more established network stacks
of Linux, Windows, and the BSDs, the entire networking subsystem compares fa-
vorably with other implementations. Although we lack some of the breadth in low-
level configuration of network interfaces, the low-level networking layer, through
the help of the Linux Driver Layer, supports packet transmission and receiving al-
most every Ethernet device available today, which is no mean feat, and its raw
performance is respectable compared to others. Amid some concerns about stabil-
ity and multiprocessor locking, the performance and functionality of the current
low-level layer implementation is suitable for future work.

The network channel layer provides probably the most convincing set of rea-
sons for adopting the new networking architecture. Its scalability, stability and high
performance mean that, even if the network stack itself is kept in the kernel, it is
worth porting to other operating systems as a comprehensive replacement for the
linked lists of network packets in other architectures. Any gaps in functionality,
such as those described in Section 3.9, can be easily addressed and are not limited
by the initial design.

The userspace network stack, although not complete to the standard of com-
peting implementations (especially with regards to TCP), functions as an accept-
able host on the wider Internet and is stable and correct enough to function in
general use. The UDP and ICMP datagram protocols can be regarded as fairly
complete, with work needed solely on the TCP implementation, in areas such as
retransmission, state machine correctness and reliability. We discovered that the
functionality offered by the lower level easily satisfied the needs of the protocol
implementations in the userspace network stack.

The implementation of asynchronous I/O and events in the stack worked
well as a proof of concept; general use of the layer may be unsuitable unless we
can show large performance gains and the ability to handle large number of events
and sockets simultaneously. However, the functionality supplied by the AIO and
event component is not found in such breadth in any other network stack, and this
can be judged to be a validation of moving the network stack to userspace. Along
with the interactivity API, the layer transforms the userspace network stack into
an adaptable and flexible component of the userspace network stack.

In summary, and including the performance results detailed in the previous
chapter, the ideal applications for this network stack would include both client
and server applications, especially high-performance servers with varying network
conditions. The latency and throughput gain between conventional sockets and the
new network channel-based design would only become apparent with a large work-
load per application – however, the decreased CPU usage, illustrated by Polyakov’s
results (and if able to run those types of comparisons, we would possibly improve
upon those results), would be useful for any application. Environments where our
implementation may be questionable would be public servers where users are able
to log in and run their own programs – the minimal possibility of fooling the kernel
network channel layer into transmitting attack packets may be a risk for certain
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high-security organizations.
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Chapter 8
Conclusion

Throughout this report we have shown that our alternative design for the network
stack, one of the key components in any operating system, increases performance
and security, decreases latency and increases packet throughput for a whole range
of applications. Moving the network stack into userspace brings with it a number
of advantages, including more persistent and interactive networking that adapts to
the needs of particular applications. We conclude the following:

• There is a faster means of moving packets of data through the networking
subsystem. We adapted and implemented an alternative kernel object, the
network channel, to move data through the network stack with low latency
and minimal kernel-level code, while preserving most of the existing seman-
tics of packet transport. (Chapter 3)

– We saw how network channels are superior to other socket alternatives,
and how the shared memory between userspace and the kernel allowed
for zero-copy I/O, while avoiding many security concerns.

– We explored the channel’s innate high cache performance, and due to
the static nature of the network channel’s buffers and the small amount
of work required to allocate and free those buffers, we hypothesized
that the design would be much more scalable than the linked lists used
to store socket data in current network stacks.

– Replacing sockets with network channels allowed us to push packet pro-
cessing out to userspace, and enabled us to create a fully-featured net-
work stack in userspace. A minimal amount of privileged code was
required to classify incoming packets and route outgoing packets in the
kernel.

• It is possible to create a high performance userspace network stack, with the
protocol processing and state in a shared library, with the benefit of increased
stack flexibility and system-wide security. (Chapter 4)
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– Aside from certain issues involving file descriptors, such as polling, we
noted how our network stack implementation included all the major
features of complex protocols like TCP, with congestion control, retrans-
mission and flow control. We outlined the implementation’s support for
datagram protocols such as UDP and ICMP.

– We discussed the multithreaded design of the TCP implementation, and
how it provided a base for flexible events and low-latency responses to
transport-level messages in the protocol, while obeying the traditional
socket semantics in Unix.

– We described the two socket APIs available for Whitix: the native API
and POSIX API, and explained how the native API offered a framework
for interactive next-generation features such as event subscription and,
in the future, zero-copy I/O to the application.

• Network stack adaptability, and the use of profiling data from previous
runs of a networked program, is a viable technique for optimizing bandwidth
usage and improving latency. Even a small amount of statistical output from
a previous run can lead to a large relative increase in performance, for only
a small time cost at socket creation and the program start. (Chapter 5)

– The userspace architecture of our novel network stack was used to add
features such as protocol events, application hints, persistent profiling in-
formation and asynchronous I/O, as part of achieving the goal of feed-
back between the application and network stack.

– The automatic collection of statistics by the network stack was covered,
along with the mechanisms for categorizing the data and storing it to
disk at program exit. We described how this profiling output was used to
inspect network usage and automatically incorporated into future runs
of the application, along with application hints. These are innovative
functions not part of contemporary kernel-based network stacks.

– Events, asynchronous notifications about a socket, can now be posted to
an application if requested. TCP events, such as retransmission timeout
or round-trip time change, can be subscribed to through the native API.
We also added the capability for asynchronous I/O using the new event
framework.

8.1 Scale and schedule

The project’s scale was relatively large for a six month development process (see
Table 8.1 for breakdown of lines of code by component). By far the largest com-
ponent in terms of lines of code was the userspace network stack (including the
applications and utilities developed for it). However, reviewing my schedule, the
layer that I spent the most amount of time researching was the network channel
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layer, to investigate competing implementations, and the adaptability and interac-
tivity layer.

The network channel layer, by my estimates, took the longest to develop – plan-
ning the architecture of the layer, the various features, and constantly reviewing
it for stability, security, performance and scalability involved a large design effort.
The fact that the generic channel layer, at 418 lines, is relatively small and yet
fully-featured is a testament to the succinct design of the layer.

With a longer development schedule, I would have been able extend the adapt-
ability and interactivity layer and supplement the range of TCP events with events
from other protocols – the total number of lines in that layer may double in a
more complete implementation. The AIO layer may look tiny, but most of the asyn-
chronous logic is placed in the TCP packet receive code – the generic layer merely
manages the list of AIO contexts present in a socket.

8.2 Future work

The remainder of this chapter discusses improvements to the current implementa-
tion and extensions for particular parts of the networking subsystem. This project
functions as a small overview of the eventual potential of network channels in
Whitix. We also note any design considerations and potential compromises com-
pared with the current design.

8.2.1 Merging shared memory and message queues

Currently, the only protocol suite that uses the new network channel objects is the
TCP/IP suite of protocols. Unix domain sockets or IPC sockets, used by an appli-
cation for local inter-process communication (without the overhead of a network-
ing protocol). These sockets use the filesystem or a separate special namespace for
named endpoints. Currently, the communication between two local endpoints uses
buffers in kernel memory.

With network channels, it should be possible to arrange the internal channel
memory management so that, for two local endpoints A and B, the send buffers
of A correspond to the receive buffers of B. For this to work correctly, the send
and receive headers for each buffer must exactly match (the total cost in memory
would be very small).1 If this is possible, then essentially we will have an object
that corresponds to structured shared memory, which happens to map to both local
and remote endpoints efficiently.

Following the above point, we could possibly look towards unification of local
and remote endpoints and names; the application would specify what class of trans-
port it needed (reliable, in-order delivery or packet-based transport), along with a
name of an endpoint, and let an intelligent network stack handle the data trans-

1An alternative design might involve a special header structure for local IPC, that uses most of the
network channel infrastructure, however, it would mostly likely lead to a lot of duplicated code and
mechanisms.

124



CHAPTER 8. CONCLUSION 8.2. FUTURE WORK

port. In this respect, networked resources would then become location transparent
to the application.

8.2.2 More protocol suites

Would our userspace network stack work with other networking protocols? We
may have demonstrated that our userspace network stack provides (virtually) all
of the functionality of TCP/IP, a now-ubiquitous protocol suite, but can the same
mechanisms still work for others? It is hard to decide on another protocol suite
that would be worth the investment of time, but protocols based on Asynchronous
Transfer Mode (ATM),[41] a cell-based switching technique that uses time division
multiplexing, may be worth considering.

To judge whether our design and other protocols, including ATM, would be
compatible would require a deeper knowledge and research. Questions such as
"how would we represent a virtual circuit in userspace?" are pertinent. Most protocol
suites would probably be suitable, as they generally use a layered design based on
the OSI model, a model with finer distinctions than the TCP/IP model. Such a
layered design allows low-level packet code (the physical, data link and network
layers in the OSI model) to be placed in the kernel, with higher level layers (the
transport and session layers) to be handled by userspace code.

8.2.3 Stateful firewall

Although we have successfully implemented a basic packet filter (Section 3.7.1),
which accepts or rejects single packets based on user-defined rules, for the new net-
working subsystem, the main challenge of integrating a firewall into the network
channel layer lies in adding a knowledge of TCP (and, via heuristics, UDP connec-
tions) to the firewall and incorporating the part the packet plays in the connection
into the user-defined rules to create a stateful firewall.

The code to keep track of the connection state should be fairly small; as a
comparison, the userspace network stack’s TCP state machine comprises about 20%
of the total TCP codebase, and so stateful support for different connections would
only involve a couple of hundred lines of new code, for a much more expressive
firewall.

8.2.4 Remote network stack management

The Simple Network Management Protocol (SNMP) is a network protocol run-
ning over UDP that is used to monitor network-attached devices. It includes a set
of data objects of a variety of basic types, packaged as a management information
base (MIB) that describe the configuration of a system, including its network stack;
in many ways, the SNMP standard implicitly assumes a central implementation of
networking configuration. There are many different types of MIBs, but the ones
that would prove the most challenging to implement would be the TCP [53], IP
[56] and UDP [21] MIBs.
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For example, to implement the tcpCurrEstab SNMP object [see 53, page 6],
which is an integer containing the total number of established TCP connections in
the system. We need to collate this information from all the processes with active
network stacks in the system. We would either have to poll each network stack
for information via a userspace SNMP server process or make sure that each net-
work stack implementation exposed the relevant SNMP objects and statistics in a
standard way to the userspace SNMP application. Both methods make it harder to
implement an alternative network stack by requiring more information and mech-
anisms from an implementation.

8.3 Final comments

Overall, I believe the size of the project was an ambitious undertaking, but I have
established proof of concept implementations in enough areas to dispel many of
the preconceptions held about network channels and alternative network designs,
as well event delivery and AIO. The fact that the network stack is easily extensible
with user-level events and (relatively) low-latency asynchronous IO is ideal, and so
as a result has features lacking in other network stacks.

If I had been allocated twice the amount of time to do the project, I am sure
I would have delivered a much more fully-featured implementation that could
have competed with existing established network stacks. In the six months I have
worked on the project, I believe I have reached the point, however, where my im-
plementation is a viable base for future development, and various elements, such
as the userspace network, could easily be ported to other operating systems, thanks
to the layered design. More time would have been spent on automated testing and
performance evaluation – developing a simple performance framework would have
proved useful in generating useful data, such as statistics on cache misses.

So in conclusion, even though tough goals were set at the beginning of the
project, the implementation given here and my analysis is a success in terms of
exploring and achieving the objectives.
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Appendix A
Network statistics file format

The statistical output from the network stack is stored on disk at the filesystem
location specified in NetworkInitEx in the following format. As described in Sec-
tion 5.3, the file is divided into three parts, the header describing the structure sizes
and the number of structures in the file, the port entries, where protocol informa-
tion is aggregated over all the runs of the application, and the host entries, which
acts as a cache for connection information (such as the retransmission timeout) for
programs that regularly connect to the same set of hosts.

A.1 Header

Item Size (bytes) Comments
Magic number 4 Always has the value

0xDE23FA11
Number of port entries 4
Size of port entry structure 4
Number of host entries 4
Size of host entry structure 4
Maximum number of host en-
tries

4 Usually set by application or
general system configuration
value

Port entries variable
Host entries variable
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A.2 Port entries

Item Size (bytes) Comments
Port 2 Value is always a well-known

port i.e. <= 1024
Flags 2 Either PORT_SERVER (0) or

PORT_CLIENT (1), depending
on the port’s role in the com-
munication

Total bytes sent 4 All bytes sent in all runs of the
application since profiling be-
gan

Total packets sent 4 All packets sent in all runs of
the application since profiling
began

Total bytes received 4 All bytes received from all
hosts on the port

Total packets received 4 All packets received from all
hosts on the port

A.3 Host entries

Item Size (bytes) Comments
Address 4 Of the remote host.
Flags 4 Either HOST_SERVER (0) or

HOST_CLIENT (1), depending
on the host’s role in the com-
munication

Retransmitted bytes sent 4 Total number of bytes that
were retransmitted across all
ports to the host

Retransmitted packets sent 4 Total number of packets that
were retransmitted across all
ports to the host

Retransmit timeouts 4 The total number of retrans-
mission timeout events that oc-
curred

rto, rtt, mdev 12 The three variables used in the
estimation of round-trip time
and the retransmission timeout
value

minWin, maxWin, endWin 12 The minimum, maximum and
last receive window size of the
remote host
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System calls

B.1 SysChannelCreate

in t SysChannelCreate ( in t chnType , void∗ source , void∗ dest , s t ruc t
ChannelOptions∗ opt ions ) ;

The parameters have the following meaning:

• chnType. (in) The protocol that will be used to inspect and classify incoming
and outgoing packets. chnType is a 32-bit integer, with the high word speci-
fying the address family, such as IPv4, and the low word specifying the exact
protocol (TCP, UDP or ICMP). This is roughly equivalent to the domain and
type parameters of the socket system call in UNIX, except with the type
field depending on the protocol used.

• source, dest. (in/out) The exact format of these parameters depends on the
address family. For IPv4 channels, the data pointed to by the two pointers
has the following structure:

s t ruc t Ipv4EndPoint
{

ulong address ;
ushort por t ;

} ;

The protocol family specified in chnType determines the exact semantics of
the address and port fields. Generally, for all protocols that involve a source
and destination port, specifying a zero port will cause a ephemeral source
port to be allocated automatically by the Ipv4PortAllocate function in
net/ipv4/port.c.

• options. (in/out, optional) This can be NULL if the caller does not want to
specify any particular options. In this case, sensible defaults for the number
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of send and receive buffers are supplied, and there are no special flags as-
signed to the channel. The exact structure of ChannelOptions is shown
below:

s t ruc t ChannelOptions
{

in t f l a g s ;
unsigned short sendBuffers , r e c v B u f f e r s ;

} ;

de f ine CHANNEL_IGNORE_ADDRESSES 0x01
#define CHANNEL_KEEP_SEND_BUFFERS 0x02

If the call is successful, a valid file descriptor is returned to the user, which can
be used in later file operations to transmit and receive data. On an error, one of the
standard UNIX error codes is returned.

B.2 SysChannelControl

in t SysChannelControl ( in t chnFd , in t code , void∗ data ) ;

The parameters have the following meaning:

• chnFd. The file descriptor returned by a previous call to SysChannelCreate.

• code. The operation to perform on the channel. There are currently three
values available:

#define CHANNEL_SET_FLAGS 0x01
#define CHANNEL_GET_FLAGS 0x02
#define CHANNEL_SET_INTERFACE 0x03

• data Dependent on the value of code. For the flag-related operations, data
is the address of an integer to read from or write to respectively. For CHANNEL_SET_INTERFACE,
it is the address of a string containing the human-readable name of the inter-
face: "Ethernet0" for example.

The function generally returns zero if successful, or one of the standard UNIX
error codes if unsuccessful.
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Usercode library functions

The network channel usercode library contains a number of functions, as described
in Section 3.4.2, that abstract away the low-level structure manipulation involved
in the operation of any class of network channel. Each function acts on the gen-
eral channel header (ChanUserHeader) or one of the two packet header types
(ChanSendHeader, ChanRecvHeader); there is no extra context stored or in-
voked by the usercode library.

As a result, the channel memory appears opaque to the userspace application;
the structure of any internal memory, like the ChannelInfo structure, is revealed
on a need-to-know basis. The function prototypes, which can be divided into three
categories, are shown below:

/∗ 1. A l l o c a t i o n map f u n c t i o n s ∗/
void∗ uChanSendBufferAlloc ( s t ruc t ChanUserHeader∗ header ) ;
s t ruc t ChanRecvHeader∗ ChanRecvBuffGet ( s t ruc t ChanUserHeader∗ header ) ;
void uChanSendBuffFree ( s t ruc t ChanUserHeader∗ header , s t ruc t

ChanSendHeader∗ send ) ;
void uChanRecvBuffFree ( s t ruc t ChanUserHeader∗ header , s t ruc t

ChanRecvHeader∗ recv )

/∗ 2. Header f u n c t i o n s ∗/
in t uChanRecvBuffLen ( s t ruc t ChanRecvHeader∗ header ) ;
void uChanRecvBuffSetPriv ( s t ruc t ChanRecvHeader∗ header , void∗ data ) ;
void∗ uChanRecvBuffGetPriv ( s t ruc t ChanRecvHeader∗ header ) ;
unsigned short uChanRecvBuffGetRead ( s t ruc t ChanRecvHeader∗ recv ) ;
void uChanRecvBuffAddRead ( s t ruc t ChanUserHeader∗ header , s t ruc t

ChanRecvHeader∗ recv , unsigned short add) ;
void uChanSendBuffSetPriv ( s t ruc t ChanSendHeader∗ header , void∗ data ) ;
void∗ uChanSendBuffGetPriv ( s t ruc t ChanSendHeader∗ header ) ;

/∗ 3. In fo rmat ion s t r u c t u r e f u n c t i o n s ∗/
void∗ uChanGetInfo ( s t ruc t ChanUserHeader∗ header ) ;

Each function in each category performs a different task, and each category can
be further categorized into whether the functions act on send or receive headers,
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which have a different structure, semantics and memory layout. The functions can
be summarized as follows:

1. Allocation map functions. These functions update the send and receive
allocation bitmaps (there is nothing to stop another data structure being sub-
stituted); the semantics differ depending on the type of buffer. For send
buffers, the order of allocation does not matter (although the order of trans-
mission might), but for receive buffers, the application should Get the oldest
unread buffer (following the semantics in Section 3.4). Once we are done
with a receive buffer, we should free it, and, if the application manages the
deallocation of send buffers itself, it should free the buffer once finished with
it.

2. Header functions. The internal structure of the send and receive header
are not exposed to userspace applications and libraries. The main reason for
doing this is that it would make it impossible to update or optimize either
header without recompiling every application (or, most of the time, the net-
work stack library) that has ever used network channels; this would decrease
the flexibility we would have if we wished to optimize the internal structure.

These functions get and set the various fields of the structure. There are
more fields in the receive header, because we store most of the context of a
received packet in userspace anyway. It is the opposite for send headers. One
use for the Chan*Buff*Priv functions is to build a retransmission list for
sent packets or a backlog for received ones.

3. Information structure functions. A pointer to the information structure
could easily be a parameter of the SysChannelCreate function. However,
since the information contained in ChannelInfo is key to the channel’s cor-
rect operation (including functions in the usercode library), and the fact that
the channel can be passed between processes, means that storing the chan-
nel’s context in the channel’s memory itself is preferable to passing a pointer
around different layers of code (such as between the usercode library and
the application)

138


	Introduction
	Motivation
	Adaptability and interactivity
	Multiprocessor systems and locking
	Cache performance

	Whitix
	Outline
	Hardware and the LDL
	Architectural overview
	Network drivers
	Driver and device setup
	Sending packets
	Receiving packets

	Linux Driver Layer
	Caveats

	Network device manager
	Hardware address cache
	Packet I/O
	Summary
	Network channels
	Background
	Design
	Possibilities
	Tradeoffs
	Architectural overview

	Channel management
	Setup
	Control
	Organization
	Destruction

	Memory management
	Memory layout
	Usercode library

	File emulation
	Packet classification
	Family matching
	Protocols: Matching packets to channels

	Routing
	Firewall

	Testing
	Discussion
	Summary

	Userspace networking
	Background
	Microkernel research

	Overview
	Network stack
	Architecture
	APIs
	Internal layers: channels and IP
	UDP and ICMP sockets

	TCP
	Design choices
	Possible TCP changes
	Sending packets
	Retransmission
	Receiving packets and the state machine
	Socket polling

	Utilities
	firewall
	nprof
	dhcp
	dns
	ping

	Applications
	ftp
	telnet
	httpd

	Testing
	Specific methods
	Application testing and summary

	Discussion
	Summary


	Dynamic protocols
	Background
	Adaptable and interactive protocols
	Statistics, profiling and adaptation
	Asynchronous I/O

	Architecture
	Statistics and profiling
	Categories
	Use

	Adaptation
	Current adaptive technologies
	Application hints
	Profiling data

	Events
	Design
	TCP
	Asynchronous I/O
	Event delivery

	Discussion
	Summary

	Performance
	Background
	Method
	Caveats
	Procedure
	Timers

	Experimental testbed
	Analysis
	Send
	Receive

	Summary


	Evaluation
	Flexibility and adaptability
	Correctness and stability
	Comparisons

	Functionality and usability
	Scalability
	Summary

	Conclusion
	Scale and schedule
	Future work
	Merging shared memory and message queues
	More protocol suites
	Stateful firewall
	Remote network stack management

	Final comments

	Bibliography
	Appendices
	Network statistics file format
	Header
	Port entries
	Host entries
	System calls
	SysChannelCreate
	SysChannelControl
	Usercode library functions





