
MEng Individual Project Report

HIGH PERFORMANCE PARALLEL DESIGN BASED ON
SESSION PROGRAMMING

Nicholas Ng (cn06@doc.ic.ac.uk)
Department of Computing
Imperial College London

Supervisor
Nobuko Yoshida (yoshida@doc.ic.ac.uk)

Second Marker
Wayne Luk (wl@doc.ic.ac.uk)

cn06@doc.ic.ac.uk
yoshida@doc.ic.ac.uk
wl@doc.ic.ac.uk

2

Contents

1 Introduction 11
1.1 This project . 13

1.2 Contributions . 13

2 Background 15
2.1 Pi-calculus . 15

2.1.1 Asynchronous π-calculus . 15

2.2 Session types . 17

2.2.1 Syntax of session calculus . 17

2.3 Multiparty session types . 19

2.4 Session programming with SJ . 20

2.4.1 Branching . 22

2.4.2 Iteration . 23

2.4.3 Delegation . 24

2.4.4 Non session-based alternatives . 24

2.4.5 Related work . 25

2.5 Axel . 25

2.5.1 Hardware arrangement . 25

2.5.2 Software . 26

2.5.3 Performance . 28

2.6 Parallel Algorithms . 28

2.6.1 N-body simulation . 28

2.7 Summary . 30

3 Design and Implementation 31
3.1 Design goals . 31

3

4 CONTENTS

3.2 Session Java on Axel . 32

3.2.1 Overall design . 32

3.2.2 Application topology and session typing 34

3.3 SJ with FPGA . 36

3.3.1 The need for cross-language features 36

3.3.2 Java Native Interface . 37

3.3.3 Java Native Access . 37

3.3.4 Problems encountered . 38

3.4 C-translation of SJ n-body implementation . 39

3.4.1 Why would this work? . 40

3.4.2 A SJ primitives library for C . 40

3.4.3 Shortcomings of the library . 42

3.5 Summary . 42

4 Correctness Proof of N-body Implementation 43
4.1 Session calculus with multichannel in/outwhile 43

4.2 Syntax . 44

4.3 Operational semantics . 44

4.4 Type system . 46

4.4.1 Duality . 47

4.4.2 Typing environment . 48

4.4.3 Typing rules . 48

4.5 Subject reduction . 52

4.5.1 Well-formed topology . 53

4.5.2 Subject congruence theorem . 54

4.5.3 Subject reduction theorem . 56

4.6 Progress property . 60

4.7 Correctness proof for n-body simulation . 61

4.7.1 N-body simulation in session calculus 61

4.8 Summary . 62

5 Testing and Evaluation 63
5.1 Alternative designs . 63

5.1.1 SJ and acceleration hardware allocation 63

5.1.2 Communication medium . 64

CONTENTS 5

5.2 Pre-implementation tests: inner product . 65

5.2.1 JNA direct mapping . 65

5.2.2 JNA interface mapping and direct mapping 66

5.2.3 Execution in CPU and FPGA . 66

5.3 Benchmarks . 68

5.3.1 Benchmark methodology . 69

5.3.2 Benchmark results . 69

5.3.3 Comparing with Axel’s implementation 73

5.3.4 Benchmark results conclusion . 73

5.4 Summary . 74

6 Conclusion 75
6.1 Future work . 76

Bibliography 78

A Appendix 83
A.1 Java Native Interface (JNI) example . 83

A.2 Java Native Access (JNA) example . 84

A.3 Comparison of SJ and C-translation implementation 86

A.4 SJ + FPGA speedup over SJ implementation . 89

6 CONTENTS

Abstract

Session programming is a programming model based on the theory of session types,
a typing system for π-calculus. Session types is developed to model structured in-
teraction between processes and correctly typed process will have the property of
communication safety. Session Java (SJ) is a full implementation of session types in
Java. In this project, We aim to introduce the session programming model to Axel, a
heterogeneous cluster with both FPGAs and GPUs as hardware accelerators to design
communication safe parallel algorithms.

We give an implementation of a parallel algorithm, n-body simulation, on the Axel
cluster, using SJ and FPGAs. We also give a translation of our SJ n-body simulation
into C to get a higher performance. We find good performance improvements in both
implementations, without compromising safety property of our program.

Finally, we present a formalisation of two new multichannel SJ primitives for
parallel programming. We use the formalisation to prove the correctness of our n-
body implementation and generalise the proof to a ring topology used by parallel
algorithms in SJ.

7

8 CONTENTS

Acknowledgements

I would like to thank the following people, without whom this project might not be as successful.
My supervisor, Dr. Nobuko Yoshida for her enthusiasm and guidance throughout the project, my
second marker, Prof. Wayne Luk for his constructive advices and feedback on the project, Andi
Bejleri for the crash course on session types, Brittle Tsoi for his help on FPGA and the Axel
cluster, Olivier Pernet for his insights and advices to the direction of the project, Raymond Hu for
advices and support on SJ, Wilhelm Kleiminger for moep and proofreading my final report, and
finally, my family for their support and love throughout my four years at university.

9

10 CONTENTS

Chapter 1

Introduction

In 1965, Gordon Moore predicted that the number of transistors on a chip doubles about every
two years [25]. 45 years later, Moore’s Law remained valid and is generalised to describe the
performance growth of microprocessors. Until recent years, microprocessor manufacturers have
enjoyed performance increase simply by cramming more transistors on a single microprocessor.
As the cost of performance rose to an unfeasible level due to power consumption, to keep up with
Moore’s Law, research and development on computer architecture turned towards parallelising
techniques on existing hardware. Multicore processor architecture rose in popularity, today it is
easy to find dual-, quad-, even hexa-cores on a single processor dice, and we are expecting to see
processors with as much as 80-cores in the next few years [22].

On a much bigger scale, another type of parallel architecture is computer clusters. It is a form
of distributed computing, where multiple standalone cluster nodes are connected and computation
jobs are shared between the nodes. Each node can work on their partition of jobs in parallel.
From outside the cluster, the jobs submitted to the cluster are completed as if a single computer is
used. As a cluster can be built using commodity hardware, it is a cost-effective way of building
supercomputers.

Parallel models of computing has shown it self as a promising direction to higher performance
computer architecture.

Another trend that saw a lot of interest lately is the use of hybrid architectures to achieve high
performance. Instead of using a centralised computation model based on the CPU, parts of com-
putations are delegated to other specially designed hardware which can perform the computation
more efficiently.

Field Programmable Gate Array (FPGA) is a type of reconfigurable integrated circuit. FP-
GAs can be configured to represent software instructions directly in hardware during runtime. On
CPUs, all instructions need to go through the fetch-decode-execute cycle before they can be ex-
ecuted. Implementations in FPGAs do not require the fetch-decode phase since the instructions
are already represented in the hardware circuit. As a result, FPGAs are much more efficient than
CPUs in computation-heavy tasks. Also because the computations are done in hardware circuit,
pipelined instructions can be executed in parallel as a physical property of electric circuits.

11

12 CHAPTER 1. INTRODUCTION

A modern GPU can double as a many-core general purpose processor. A GPU has hundreds
of processing cores which are very capable at floating point computation, as they are usually used
for graphics calculations. Common Unified Device Architecture (CUDA) and ATI’s Stream are
software frameworks that allow the use of the GPU cores for non-graphical computations. This
is known as General Purpose computation on Graphics Processing Units (GPGPU). Compared
to traditional CPUs where support for Single Instruction Multiple Data (SIMD) is limited to the
Streaming SIMD Extensions (SSE) instruction set which can work on at most four single precision
floating point number in parallel, the GPU can work on hundreds of data in parallel in the GPU
cores.

The performance edge in parallel architectures do not come without its own problems. Par-
allel programming is a much less understood model than traditional serial programming model.
Some of the problems were solved by the implicit programming model, where programmers do
not need to understand parallel programming and parallelisation is done implicitly in hardware or
by compiler optimisations. The advantage of this technique is a guarantee of a certain degree of
parallelism and the correctness of the parallelised section since most of the optimisations are rather
conservative. On the other hand, this approach might not always give the optimal result if a there
exists specific ways to parallelise the code as the programmer do not have control over the implicit
optimisations. The alternative, explicit parallelism comes typically in form of message-passing.
Often, small trivial mistakes in the program will result in parallel synchronisation issues, race
conditions, or deadlocks. Combined with the interleaving of executions, parallel programming in
this model cannot guarantee communication safety and is difficult to identify problems as the exe-
cution sequence can be undeterministic. For years, computer science theorists seek to understand
parallel programming model and search for solutions by formalising and modelling concurrent
processes. Amongst the more active researches, the Actor model and process algebras, such as
Calculus of Communicating Systems CCS [23] and its successor π-calculus [24, 29], are fields
that found most success. With a model of processes interactions, it is much easier to understand
the properties of concurrent systems to prevent the issues common in parallel programming.

Session types [8, 14, 35] were developed as a typing system for π-calculus. Interactions be-
tween parties are conducted over private channels called sessions. A session type specifies the
sequence and typing of interactions in the session. Session types captures the fact that communi-
cating parties must have a compatible typing between them. For example, if a sender intends to
send an integer, the receiver must be expecting to receive an integer as well; otherwise there would
be problem. By analysing the session typing of communicating processes and making sure only
compatible processes can start a session, we are able to show that communication safety property
holds for session-typed processes - deadlocks are not possible. If a parallel system is modelled in
π-calculus is shown to be type-safe by session types, we are confident to say that the system is
communication safe.

Session types as a typing system alone cannot be used directly as a design tool. Session Java
(SJ) [17] is an implementation of session types as an extension of Java. It is designed to be a
non-intrusive addition to Java and integrates well with the object oriented setting. SJ brought
the full theoretical session programming framework to a programming language in common use.
It is a powerful tool for programmers that can ensure session compatibility within the program-

1.1. THIS PROJECT 13

ming language, without first modelling interactions in the pure theoretical framework, to create
communication safe code.

1.1 This project

This project aims to explore ways of applying session programming to heterogeneous clusters,
which uses acceleration hardware such as FPGAs or GPUs.

We wish to demonstrate uses of session-type based Java to design parallel algorithms which
are communication safe, efficient and easily readable on our target platform. We also aim to
generalise and extend our approach to other similar platforms so designs on these platforms can
also make use of session programming.

1.2 Contributions

In this report we document our findings and results on applying session programming to design
parallel algorithms on heterogeneous clusters. We made the following contributions:

• Introduced an architecture for high performance parallel application design with session
Java (SJ) using heterogeneous hardware (§3.2).

• Implemented a parallel n-body simulation in SJ accelerated by FPGA on a heterogeneous
cluster (§3.3), with full sets of benchmark results to compare the performance with and
without acceleration hardware (§5.3). Our implementation using SJ and FPGA yields up to
2 times speedup in the best performance.

• Implemented a C library that can be used for session programming in the C program-
ming language (§3.4.2), and a C implementation of n-body simulation translated from SJ
to demonstrate the use of the library (§3.4). The translated code has on average 5 times
speedup over SJ implementation.

• Presented a formalisation and first correctness proof of a pair of new multichannel SJ prim-
itives - inwhile and outwhile in SJ, designed to implement parallel algorithms. (§4.1)
The two primitives can represent parallel topologies more naturally and were shown to be
more efficient than its single-channel counterpart.

• Proved our implementation of n-body simulation deadlock free, using the formalisation of
the new multichannel SJ primitives (§4.7).

Report organisation

The report contains six chapters and each chapter is organised as follows:

14 CHAPTER 1. INTRODUCTION

• Chapter 2: Background will cover the background theories behind session types and session
Java. We will also introduce our target platform, a heterogeneous cluster called Axel which
contains FPGAs and GPUs as processing elements.

• Chapter 3: Design and Implementation will give the design and implementation details of
the main result of the project, an implementation of n-body simulation using SJ and FPGA.
We will also include a version of the implementation translated from SJ to C, which is more
suitable for deployment on high performance clusters.

• Chapter 4: Correctness proof of n-body implementation will detail an extension to the ses-
sion type introduced in [35] to include multichannel inwhile and outwhile SJ primitives
used for parallel programming in SJ. We will then show a correctness proof of our n-body
implementation based on the updated session type.

• Chapter 5: Testing and Evaluation will discuss and evaluate alternative designs and compare
benchmark results of different implementations of n-body simulation.

• Chapter 6: Conclusion will conclude our findings of the project and outline potential future
works.

Chapter 2

Background

In this chapter we will discuss fundamental background theories of which session programming
is based on. This includes π-calculus (§2.1) - the process calculi which is the modelling basis for
session programming, session types (§2.2) - the typing system of π-calculus for sessions-based
communication and an introduction to session Java (§2.4) which is the main programming tool we
are going to use in the project.

Next, we will introduce the target platform for the project (§2.5) - Axel, a heterogeneous
cluster with Field Programmable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs)
as acceleration hardware.

Finally, we will briefly look at the current parallel programming model of Axel and session
Java to implement our choice of parallel algorithm - n-body simulation (§2.6).

2.1 Pi-calculus

π-calculus [24] is a process calculus proposed by Milner, Parrow and Walker as a successor to
Calculus of Communicating Systems (CCS) as a model to study concurrent mobile systems. It
uses message passing and is distinguished from CCS by its use of names in messages rather that
values in CSS. The difference between value passing and name passing is that only name passing
allows sending and receiving of channel names as messages, so channels can be ‘reconfigured’ at
run time. This makes π-calculus more expressive and suited for mobile processes [29]. There are
many variants of π-calculus for different applications, due to the notational differences in differ-
ent domains. π-calculus and its variants lie a foundation for modelling communication systems,
from simple asynchronous π-calculus and spi calculus for session types and cryptography [13]
respectively, to more advanced calculi such as 3π for developmental and systems biology [5].

2.1.1 Asynchronous π-calculus

Asynchronous π-calculus is the simplest variant of π-calculus and is the variant which session type
(§2.2) is based on.

15

16 CHAPTER 2. BACKGROUND

P,Q ::= processes

0 nil process

P | Q parallel composition of P and Q

(νa)P generation of a with scope P

!P replication of P

ū〈v〉 output of v on channel u

u(x).P input of distinct variables x on u, with continuation P

Fig. 2.1: Syntax of asynchronous π-calculus

Syntax

The main difference between full π-calculus and asynchronous π-calculus is asynchronicity. This
means after an output action, there is no continuation and the process terminates when the mes-
sage is delivered. Communication with asynchronous π-calculus is therefore deadlock free. Asyn-
chronous communication can be used to simulate synchronous communication, and is common in
distributed systems. Fig. 2.1 shows the syntax of asynchronous π-calculus.

Reduction rules

ā〈v〉 | a(x).P → P{v/x} [COM]
P → P′

P | Q → P′ | Q
[PAR]

P → P′

(νa)P → (νa)P′
[RES]

P≡ Q → Q′ ≡ P′

P → P′
[STRUCT]

Fig. 2.2: Base reduction rules of asynchronous π-calculus

Reduction is the method for processes in π-calculus to interact. If reduction is not possible, no
action can be performed.

It should be noted that in π-calculus interactions between processes are initiated by parallel
composition; with processes alone, π-calculus and the reduction rules are meaningless.

2.2. SESSION TYPES 17

P ::= request a(k) in P session request

| accept a(k) in P session acceptance

| k![ẽ];P data sending

| k?(x̃) in P data reception

| k� l;P label selection

| k�{l1 : P1[] · · · []ln : Pn} label branching

| throw k[k′];P channel sending

| catch k(k′) in P channel reception

| if e then P else Q conditional branch

| P | Q parallel composition

| 0 inaction

| (νu) P name/channel hiding

| def D in P recursion

| X [ẽk̃] process variables

e ::= c constant

| e+ e′ | e− e′ | e× e | not(e) | . . . operators

D ::= X1(x̃1k̃1) = P1 and · · ·and Xn(x̃nk̃n) = Pn declaration for recursion

Fig. 2.3: Session calculus syntax from [35]

2.2 Session types

A session is a predefined sequence of exchanging messages otherwise known as a protocol. Ses-
sion types were developed as a typing system of the π-calculus for use by communication-based
concurrent programming languages with basic communication constructs. The theory of session
types is defined in terms of session calculus based on asynchronous π-calculus, originally intro-
duced by Honda et al. [14] and their work was subsequently revised by Yoshida and Vasconce-
los [35] which became the basis of session Java. Session calculus is a building block of session
types, where session type defines compatible sessions in terms of session calculus.

2.2.1 Syntax of session calculus

Basic constructs Processes exchange messages by pairs of send and receive actions. Data send-
ing and receiving are the basic constructs in session type, along with inaction process, parallel
composition of processes and name restriction (ν). These basic constructs can be directly trans-
lated to asynchronous π-calculus.

18 CHAPTER 2. BACKGROUND

accept a(k) in P = request a(k) in P

k![ẽ];P = k?(x̃) in P

k� l;P = k�{l1 : P1[] · · · []ln : Pn}
throw k[k′];P = catch k(k′) in P

0 = 0

Fig. 2.4: Dual actions

Label branching Label branching is a feature in session calculus for structured external choice.
Without label branching, it is not possible for sessions to exhibit different behaviour on different
conditions or they will be incompatible. Thus the use of session calculus and session types will be
very limited and only useful in serial and simple communications, if choices are not possible.

Label branching is done by sending and receiving a label, and based on the content of the
label, the session type following the selection action can be different as long as the session type of
the counterpart participant remains compatible with the receiver after sending the said label.

Session delegation Because of the name-passing property of π-calculus, it is possible to pass
more information and use the sessions more flexibly. This allows sessions to be passed to other
processes as a parameter via a channel, subprocesses can use the received session as a session
rather than a value. By offloading parts of responsibilities of the parent process to the subprocesses,
we can distribute processing to lower level or smaller processes, without sacrificing the advantages
of using session-types because all delegated processes also follow a subset of session-type from
the top level. Most importantly, the top-level process does not need to be informed about the
delegation which allows a higher level view when designing distributed systems with session types.

Duality We mentioned the importance of interaction in the previous section (§2.1.1). A correct
session type for two interacting process requires the sessions in the same channel to be ‘associated
with complementary behaviours’ [14, Definition 5.2], this important requirement provides the
theoretical basis for communication safe processes. In the syntax given in Fig. 2.3, complementary
actions are shown in Fig. 2.4; these pairs of actions, when composed together, will reduce without
getting stuck. A sound type system will not cause stuck errors if the implementation is correct.

As an example of session type, Example 1 is definition of a simple sum server system that adds
and returns the sum of two numbers in SumServer supplied by SumClient. This will be be used
in subsequent sections to demonstrate the similarities and difference between session type and its
derivatives.

2.3. MULTIPARTY SESSION TYPES 19

G ::= Global types
| p→ p′ : 〈U〉.G Message
| p→ p′ : {lk : Gk}k∈K Branching
| µx.G Recursion
| x Type variable
| G i Application
| end Null

Fig. 2.5: Global types and type reduction from [34]

Example 1.

SumServer = accept a(k) in k?(x̃) in k?(ỹ) in k![x+ y];0
SumClient = (νk) request a(k) in k![42];k![77];k?(result) in 0

SummingSystem = (νa) SumClient | SumServer

2.3 Multiparty session types

Session types introduced in §2.2 describes communication between two parties. When a com-
munication involves more than two participants, the communication can be modelled by multiple
binary sessions between any two of the participants. All communications between any two partic-
ipants can be guaranteed compatible and error free by the safety property of binary session type.
However, binary sessions cannot prevent interleaving of sessions in a communication with mul-
tiple binary sessions. Interleaving sessions might allow incorrect communication logic or cause
problems such as deadlocks because the execution sequence is not determined at design time.

This will be a problem when using binary session types in a system where different partici-
pants of communication are implemented by different parties, and each party is given a protocol
specification which they code according to. The final product will be correct in the local view but
could be incorrect in the global view because the parties do not have the information of the global
session type. Therefore to design a correct multiparty protocol, no assumption of execution order
should be made and the communication of different participants should be specified explicitly.

The basic constructs of a multiparty session type are almost identical to binary session type,
but add a global type (Fig. 2.5) on top of the endpoint (or local) session type. The global type
specifies the global progress of the communication, and projects to endpoint session type for each
of the participants.

Global session types provide a theoretical basis to prove that a communication is correct in
the global view, where the participants and order of communication are defined explicitly in the
design. The projection of global type to local type will ensure such properties are preserved after
the operation.

20 CHAPTER 2. BACKGROUND

2.4 Session programming with SJ

Session types are a basis for session-based programming, but do not describe a standalone pro-
gramming language. As a result, session types and the object-oriented programming language
Java are combined to create Session Java (SJ) [17, 31] 1. SJ is an extension of Java and thus
the syntax of SJ is identical to Java, with extra primitives for session programming. This is best
illustrated with a simple example:

1 public class Server {
2 // Session declaration
3 final noalias protocol p_server {
4 sbegin.?(int).?(int).!<int>
5 }
6 public run(int port) {
7 final noalias SJServerSocket svr;
8 final noalias SJSocket sock;
9 try (svr) {

10 svr = SJServerSocketImpl.create(p_server, port);
11 try (sock) {
12 sock = svr.accept();
13 int x = sock.receiveInt(); int y = sock.receiveInt();
14 sock.send(x + y);
15 } catch (...) {}
16 } catch (...) {}
17 }
18 }
19

20 public class Client {
21 // Session declaration
22 final noalias protocol p_client {
23 cbegin.!<int>.!<int>.?(int)
24 }
25 public run(String host, int port) {
26 final noalias SJService svc
27 = SJService.create(p_client,host,port);
28 final noalias SJSocket sock;
29 try (sock) {
30 sock = svc.request();
31 sock.send(42); sock.send(77);
32 int result = sock.receiveInt();
33 } catch (...) {}
34 }
35 }

Listing 2.1: SJ sum server/client

1Currently, Session Java is only an implementation of binary session type and extension for multiparty session type
is planned.

2.4. SESSION PROGRAMMING WITH SJ 21

We now look at the SumServer/SumClient example again to show a basic communication
system with SJ. A session calculus version was given in Example 1 in the previous section.

1. A client sends two numbers to the server

2. The server replies with the sum of the two numbers received

The communication primitives of SJ are similar to conventional socket programming (request,
accept, send, receive), except for the protocol code block. The protocol defines the session
typing of the program, introduced in the previous section (§2.2). With the session type of the
program defined, it is possible to [17]:

1. Ensure the implementation conforms to the specified protocol by static checks at compile
time.

2. Check that the two communicating programs are compatible, by a duality check of the
protocol at the start of communication.

3. Simplify checking protocol correctness by abstracting away implementation details and
checking only the session type.

Table 2.1 shows the relationship between protocol and Java code, which allows the communi-
cation safety checks mentioned above.

Protocol SJ code Line
sbegin accept() Starts a server session 9
cbegin request() Starts a client session 23
!<datatype> send() Sends an object with datatype 24
?(datatype) receive()2 Receives an object with datatype 10

Table 2.1: Session type and the corresponding Java code

Below we list three scenarios in the SumServer example that can demonstrate the benefits of
the safety checks:

The protocol is correct but the implementation does not conform to the protocol If the
implementation of SumServer receives three integers instead of two as stated in the protocol, the
SJ compiler will throw an exception.

The protocol and implementation are both correct but the protocols are not dual of each
other If SumServer replies with the result at the end of the execution, and SumClient is not
receiving the final result, ie. Server: sbegin.?(int).?(int).!<int> and Client: cbegin.!<int
>.!<int>. When the connection between the two processes is established, an incompatible session
exception is thrown.

2receiveInt() is a shortcut to receive an int

22 CHAPTER 2. BACKGROUND

A logic error exists in the protocol design If SumServer sends a result before receiving any
values, and SumClient is also compatible with the server, ie. Server: sbegin.!<int>.?(int).?(
int) and Client: cbegin.?(int).!<int>.!<int>. The same applies to analysing problems with
distributed deadlocks, where the processing of the values is less important than the main source
of problem - communication primitives. With SJ the developer can reason about the problem in
the protocol level, eg. “Because the result is sent before the numbers are received and processed,
therefore changing the arguments to SumServer do not influence the result” without necessarily
understanding the operation done on the two arguments. Also because of the conformance check,
we can be assured that the code implements the protocol without looking at the code to find the
problem.

In session types and π-calculus, a new channel is ‘generated’ or ‘restricted’ by using the op-
erator ν channelname. In session programming, this corresponds to the action of creating a new
Socket. The socket will contain transmission between the participants of communication once it
is created. The send and receive object methods of the socket, and in session calculus you can
only input and output on a given channel.

2.4.1 Branching

When programming conditional statements, often different choices will branch to different be-
haviours of the program. To model that, label branching in session type is used:

Protocol SJ code
!{

LABEL0:session0, sock.outbranch(LABEL0) { code0 } Send LABEL0
LABEL1:session1, sock.outbranch(LABEL1) { code1 } Send LABEL1
... } ...
?{ sock.inbranch {
LABEL0:session0, case LABEL0: { code0 } Receive LABEL0
LABEL1:session1, case LABEL1: { code1 } Receive LABEL1
... } ... }

Table 2.2: Branching in session programming

Table 2.2 shows the receiving and sending of labels. The code blocks ?{} and !{} represent
receive label and send label respectively. Sending of labels is usually used in conjunction with
conditional statements, for example in Listing 2.2.

1 final noalias protocol p_hwc {
2 cbegin.!{LOWER:?(int), UPPER:?(String)}
3 }
4 ...
5

6 if (userInput.equalsIgnoreCase("lower")) {
7 sock.outbranch(LOWER) {

2.4. SESSION PROGRAMMING WITH SJ 23

8 System.out.println("LOWER branch; Server replies with #"
9 + sock.recieveInt());

10 }
11 } else {
12 sock.outbranch(UPPER) {
13 System.out.println("UPPER branch; Server replies with "
14 + (String) sock.receive);
15 }
16 }

Listing 2.2: Example usage of label sending

2.4.2 Iteration

Iteration in session programming translates to replication in π-calculus. In π-calculus processes
can be repeated and this forms the loop-body of an iteration. Iteration is not part of the session cal-
culi defined in [35] but will be formalised in this report. By using an explicit looping construct that
is similar to normal Java programming (outwhile/inwhile vs. while), the reasoning of iteration
is thus simpler to the programmer. Table 2.3 shows the syntax of outwhile and inwhile. The
only difference between the two is outwhile controls the looping condition, and inwhile reacts
passively. The iteration construct therefore also work as a synchronisation mechanism between
the sessions. To implement iteration with the same semantic in MPI, the single line code might be
expanded to 3:

1 // outwhile(condition)
2

3

4 while (condition) {
5 MPI.COMM_WORLD.Barrier();
6 /* outwhile code */
7 MPI.COMM_WORLD.Send(
8 condition, ...);
9 }

Listing 2.3: outwhile in MPJ Express

1 // inwhile()
2 MPI.COMM_WORLD.Recv(
3 condition, ...);
4 while (condition) {
5 MPI.COMM_WORLD.Barrier();
6 /* inwhile code */
7 MPI.COMM_WORLD.Recv(
8 condition, ...);
9 }

Listing 2.4: inwhile in MPJ Express

Protocol SJ code
![session in iteration]* s1.outwhile(condition){ ... }

s1.outwhile(s2.inwhile; condition){ ... }
?[session in iteration]* sock.inwhile(){ ... }

Table 2.3: Iteration in session programming

3Example uses syntax of MPJ Express, a Java MPI implementation

24 CHAPTER 2. BACKGROUND

Note that the alternate form of outwhile that uses inwhile as condition is a new SJ primitive
for implementing parallel algorithm. The formalisation and proofs will be given in §4.1.

2.4.3 Delegation

Sessions can be delegated to other components, to expression delegation of session in the protocol,
we simply replace the type of the message by a session, as shown in Table 2.4. delegated session
in the table represents the session type of the initialised SJSocket and of rcvdSession. If we look
closely the primitives of session delegation is identical to ordinary send and receive in SJ, except
the content is a session rather than a usual data type (but lends itself to the Java Object model
where every type is a subtype of Object). Session delegation is an important tool to distribute
tasks.

Protocol SJ code
!<session> sock.send(delegateSJSocket) Send a session
?(session) SJSocket session = sock.receive() Receive a session

Table 2.4: Session delegation in session programming

2.4.4 Non session-based alternatives

The implementation of SJ is most similar to that of the MPI standard (§2.4.4) in terms of commu-
nication model (message passing) and design. There are also other distributed message passing
system such as Java Remote Method Invocation RMI, but the design and uses are in a different
domain compared to SJ.

Message-Passing Interface (MPI)

MPI is a message-passing library interface specification [26] and is commonly used in the high
performance computing field for message-passing based parallelism.

Using MPJ Express, an implementation of the MPI standard in Java, it was shown in [3] that
there are many similarities between the two but the main differences are:

MPI has more features SJ does not have multicast-type message send primitive, but theory for
multiparty session type §2.3 have been developed for future implementation [15] in SJ.

MPI is a low level protocol which makes it prone to communication mismatch or deadlocks due
to explicit message passing [3]. A communication mismatch in MPI such as a MPI Send without a
corresponding MPI Recv, will not cause problem until some point in the execution. Scenario 2 of
safety check examples above will will cause MPI but not with SJ. In a distributed database system,

2.5. AXEL 25

it would require a rollback on all previous calculations. SJ’s safety properties (§2.4) will prevent
the incompatible sessions from starting.

SJ has high level session abstraction so the code is more structured and more readable than
MPI, this gives the programmer an advantage to focus on more important communication/protocol
details.

SJ is not an external library SJ was designed to be a full object-oriented programming lan-
guage. Implementations of MPI are external libraries since it is only a communications standard.
As a domain-specific language, syntax for tasks common to communications programming can be
built into the syntax and will be more natural to use, despite the small difference between Java and
SJ. Examples include the try-channel syntax to catch exceptions from within a specific channel
(line 8 in Listing 2.1), and the different forms of outwhile/inwhile as a session-type specific
looping technique.

Taking the example of outwhile and inwhile in Listing 2.3 and 2.4 again, the iteration feature
in MPI is less readable than in SJ because the special iteration syntax is not found in MPI.

2.4.5 Related work

Implementation of session types had been developed for other languages such as Haskell [27,
28]. Other work on session-type with C-like languages [6, 10] does not take the direction of
implementing the full session type system. SJ is the first practical session-type based object-
oriented programming language.

2.5 Axel

Axel [32] is a heterogeneous computer cluster built at Imperial College. The cluster consists of 18
computing nodes, and each of the nodes contains a x86 CPU, a number of Graphics Processing
Units (GPU) and most of the nodes contain a Field Programmable Gate Array (FPGA) device.
FPGAs and GPUs are used on Axel as hardware accelerating components.

Axel is the target platform for this project. We wish to deploy SJ on the cluster and use session
programming to improve parallel design. Below is an overview of hardware and software currently
on the cluster.

2.5.1 Hardware arrangement

NNUS clusters and UNNS clusters There are two ways of grouping hardware accelerators (or
Processing Elements, PE) in a heterogeneous cluster, namely Nonuniform Node Uniform Systems
(NNUS) and Uniform Node Nonuniform Systems (UNNS).

26 CHAPTER 2. BACKGROUND

Node Node Node

FPGA

FPGACPU

CPU

GPU

GPU

Cluster communication

Fig. 2.6: Nodes in a generic UNNS cluster

In a UUNS cluster, each node of the cluster hosts a single type of PEs. In the example of
Fig. 2.6, three nodes of the cluster hosts CPUs, GPUs and FPGAs respectively. For nodes that
hosts non-CPU PEs, special hardware are needed to control the nodes because they cannot run
ordinary operating systems. Examples of UUNS clusters are SRC-7 MapStation and RASC server
from SGI [32].

Node

FPGA GPU

CPU

Node

FPGA GPU

CPU

Node

FPGA GPU

CPU

Cluster communication

Fig. 2.7: Nodes in a generic NNUS cluster

On the other hand, in a NNUS cluster, each node of the cluster contains different PEs (thus
Nonuniform Node). The PEs of the NNUS cluster example in Fig. 2.7 shown to be on the same
node are CPU, FPGA and GPU. All nodes in the cluster have the same arrangement. This makes
it easy to put together commodity hardware and build a cluster (eg. Beowulf clusters)

Axel is a NNUS heterogeneous cluster, meaning that each node in the cluster will contain
different types of PEs. Each node on Axel can be used as an independent x86 PC equipped with
hardware accelerators (FPGA board and GPUs). The details are shown in Fig. 2.8.

2.5.2 Software

All the nodes in the cluster run a standard Ubuntu Linux (amd64 architecture). The following
software and frameworks are installed to program different hardware components of Axel:

2.5. AXEL 27

�� ��

�� ���� ��
Computing node

nVidia Tesla GPU

Xilinx FPGA card

Multicore CPU

System memory

Graphics memory

FPGA memory

Ethernet/Inter-node communication

Infiniband/FPGA communication

Fig. 2.8: Axel’s NNUS arrangement

CPU The CPUs are standard multicore x86 CPUs and GCC is used with OpenMPI4 to produce
executables to run on the CPU. The main use of the CPU in a complete Axel application is
to coordinate communication between computing nodes using MPI, but it can also be used
for general CPU based computation.

nVidia GPU All the GPU used are nVidia Tesla cards, designed for high performance comput-
ing rather than general graphics rendering. nVidia provides the Common Unified Device
Architecture (CUDA) framework for GPU programing. CUDA is is the standard General-
Purpose computing on Graphics Processing Unit (GPGPU) framework for nVidia products
and provides a C-like environment for the Tesla GPU platform [7].

FPGA Xilinx ISE 10.1 is used for development of hardware logic for FPGA hardware compila-
tion to the FPGA devices, and all the runtime access to the FPGA devices are done in a very
low-level memory mapped I/O and DMA, via a vendor supplied library, exposing an API in
a C programming environment.

The compilation and execution of an Axel application is not done in a single executable. The
application consists of a CPU-part that initialises the data and distributes to the GPU-part and
the FPGA-part of the application. The workload split is described in an XML file for maximum
flexibility, which is first read by the CPU-part to segment the data. It is possible to setup the
application such that the CPU will do part of the calculation but it is usually used exclusively for
I/O coordination and inter-component/inter-node communication. A map-reduce framework is
used in the cluster for parallel programming where segments of calculations are ‘mapped’ to the
computing elements (eg. FPGA, GPU cores) and the results are ‘reduced’ and collected by the I/O
handling code running on the CPU which, in turn, ‘reduces’ the results to the master node which
started off ‘mapping’ the input on each computing node.

4An implementation of MPI in C, see §2.4.4 for details of MPI

28 CHAPTER 2. BACKGROUND

2.5.3 Performance

CPUs are designed for general purpose computation, and because of the underlying von Neuman
architecture, the CPU works like an instruction interpreter and follows a fetch-decode-execute
cycle to execute stored instructions. It is thus very flexible, but sacrifices the performance in a
computation heavy program, where most of the execution time was spent on fetch and decode
instead of the more important execute step.

Until recently, GPUs are used solely as graphics rendering hardware. With the increasing
demand of modern gaming software and high throughput graphics calculations on display cards,
the graphics manufacturers moved from using fixed numbers of dedicated vertex and pixel shaders
to unified shaders. This allows a dynamic allocation of graphics hardware for different purposes
and higher utilisation of the graphics hardware. GPU becoming less specific to graphics processing
gave rise to GPGPU, where GPUs can be used for non-graphics calculations in a limited way. The
advantage of GPGPU is the number of graphics processing cores available. These cores can do
only a small number of tasks at one time but with multiple cores processing is done in parallel.
Typical gaming GPUs come with a few hundred processing cores.

FPGAs essentially allow hardware execution of computer programs. As there is no need to
interpret or decode the program code and can be executed directly in hardware, compared to the
interpreted code model of CPU, there is less wastage of resources. Most important of all, FPGA
can be easily reconfigured to carry other tasks unlike immutable dedicated hardware accelerators.

With the reasons stated above, GPUs and FPGAs are much more suited to the use cases of
parallel high performance computing. Results of benchmarks [32] showed that utilising all the
components gives a much better performance than using the components individually, where the
magnitude of acceleration is in the descending order of FPGA, GPU and CPU.

On the GPU-only version and the multithreaded CPU version, the execution time of an n-body
simulation of 81902 particles in a single time step is 1.1 times and 3.5 times slower than 10-core
FPGA version respectively. In the heterogeneous version which uses both GPU and FPGA in a
processing node, the workload is load balanced by assigning 2/3 of workload to FPGA and 1/3 to
GPU, this gives the overall speedup of 2.1 times over the FPGA-only version.

2.6 Parallel Algorithms

2.6.1 N-body simulation

N-Body simulations are systems to simulate particle movement and interaction due to gravitational
forces action on each other.

Each particle in the n-body simulation has a position, vector velocity and mass. In each time
step, the positions and velocity of the vectors are recalculated using the velocity and acceleration.
The base algorithm is shown in the algorithm below (from [2]).

1 for (i = 0; i < N; i++) {
2 for (j = 0; j < N; j++) {

2.6. PARALLEL ALGORITHMS 29

3 if (j != i) {
4 rx = p[j].x - p[i].x;
5 ry = p[j].y - p[i].y;
6 rz = p[j].z - p[i].z;
7

8 dd = rx*rx + ry*ry + rz*rz + EPS;
9 d = 1 / sqrtf(dd * dd * dd);

10

11 s = p[j].m * d;
12

13 a[i].x += rx * s;
14 a[i].y += ry * s;
15 a[i].z += rz * s;
16 }
17 }
18 }

Listing 2.5: An algorithm for n-body simulation

N-body algorithm is highly parallelisable because every particle in the algorithm does not
interfere with the content of other particles during the calculation in a time step. The calculation
for each article can be done individually in parallel by different computing components.

Current Implementation on Axel On Axel, the implementation is a straightforward translation
of the algorithm, by looping over each particles. The i-loop is split evenly to different nodes and
the j-loop is partitioned for FPGA and GPU to compute. The results are then distributed using the
MPI AllToAll function to other nodes.

Implementation in SJ In SJ, due to the lack of a multicast-type send, the algorithm cannot be
implemented directly. Instead, the n-body algorithm is implemented in 3 parts using a ring topol-
ogy [3]. The Master process forwards initial data to a number of Worker processes, which is
chained together and the last Worker process connects to the Master process to complete the ring.
Since the session type of the first and last worker that communicates directly to the Master pro-
cess, the last Worker is slightly different from other Workers, we need to further distinguish them
from other worker components. The Worker processes will carry out most of the computation.

In each iteration the data is forwarded to each Worker through the chain, and adds the results
of previous iteration to the data set to be forwarded to the next Worker and continues until all
nodes have received set of particles from other nodes once. When the data is seen by all Workers,
the positions of each particles are updated using the overall velocities and acceleration acting on
each particles.

30 CHAPTER 2. BACKGROUND

2.7 Summary

In this chapter we have introduced a theoretical framework for modelling structured communi-
cations in concurrent systems. Session calculus, a process calculi based on the asynchronous π-
calculus and its typing system - session types, forms the basis of a session programming. Session
typing ensures that only compatible processes can establish a session and guarantees communica-
tion safety.

We then described a full implementation of session-based programming language Session Java
(SJ), combining Java with sessions.

Next we detailed the target platform for our project, Axel, a cluster with FPGAs and GPUs
as acceleration hardware. We also included a comparison of performance between the different
components in existing implementations to see a general picture.

Finally, we finished the backgrounds by looking at the differences in parallel programming
model of the existing n-body algorithm implemented in Axel and SJ.

Chapter 3

Design and Implementation

In this chapter we will first look at an overall design of parallel applications with SJ on Axel
(§3.2), then an implementation of the n-body simulation with SJ on the Axel cluster using CPU
and FPGA (§3.3).

Next, we will present a translation of our n-body implementation in SJ to C (§3.4). We will de-
tail the main contribution of the translation, a SJ communication primitives library for C (§3.4.2).
The C translation brings session typed SJ programs to C, which is a much more suitable target
language and programming environment for high performance computing.

3.1 Design goals

The aim of the project is to develop an approach for designing parallel high performance appli-
cations on heterogeneous clusters with session programming. The main criteria we considered
were:

Efficiency Existing implementations of parallel algorithms on heterogeneous clusters are very
efficient. We aim to keep the performance of our designs as close to current implementations
as possible, while getting the advantages of session programming.

(Communication) Safety Session types were designed such that a communication between in-
compatible sessions will not begin and programs will behave according to its predefined
protocol. It is difficult to verify correctness of complex parallel applications design, but ses-
sion types and their safety property can guarantee the programs are free from incompatible
interaction patterns.

Readability Session programming is a high level description of communication. Existing par-
allel design processes on clusters typically involves using low level libraries and working
close to the metal. The instructions to develop for these libraries are verbose and require
very explicit instructions (eg. MPI, §2.4.4) for simple tasks, which obfuscates the more
important details of process communication. In contrast, the high level SJ abstracts most

31

32 CHAPTER 3. DESIGN AND IMPLEMENTATION

of the implementation in the runtime system such as the transport medium (TCP vs. UDP
vs. shared memory) and puts the focus on communication. Design errors can be identified
easily with help of session typing §2.2 and automatic type-checking with SJ §2.4.

However, readability in session programming is a property that comes from structured code
and the high level of abstraction and cannot be easily quantified by numerical metrics.

Before we commence our discussion on design and implementation of SJ applications on Axel,
we should point out that Axel is an example of NNUS cluster (§2.5.1 contains details of two kinds
of cluster arrangement). While our design is targeted to Axel specifically, in theory the design
principals can be generalised and applied to NNUS clusters with similar architecture.

3.2 Session Java on Axel

In this section we will discuss the design and the overall architecture for SJ applications to run on
Axel.

3.2.1 Overall design

Session Java is an extension of Java. Features of object oriented programming are available in SJ
and allow us to create structured and easily reusable code.

The main processing elements on the Axel cluster are CPUs, GPUs and FPGAs. In the initial
phase of development, we first implement our choice of algorithm in pure SJ. This allow us to
identify any problems with the communication design before involvement of the new hardware,
and familiarise with the facilities available on Axel.

Class organisation

By organising classes into suitable packages and class hierarchy, we reduced the efforts needed
when implementing for FPGAs or any other acceleration hardware. This is possible because ac-
celeration hardware do not participate in the flow-control of the algorithms. Typically complicated
and computation heavy sections of an algorithm are isolated to a single function. The function will
then be implemented on acceleration hardware, and no changes to the other parts of the program
are required.

FPGA: do one thing and do it well It is uncommon to delegate multiple tasks during a single
execution on one piece of acceleration hardware. Suppose two different tasks are implemented on
the same piece of hardware, and the two tasks are executed in parallel. Tasks and programs are
mapped to the physical hardware on FPGAs. When #1 of the two tasks are being executed, only
a portion of the hardware is used - the rest of the hardware will be idle because they are designed
to run task #2. Therefore we are not fully utilising the hardware every time the hardware is used.

3.2. SESSION JAVA ON AXEL 33

+void: computeForces(...)

+void: computePrositions(...)

abstract

NBody

CPUNBody

+void: computeForces(...)

Body

−NBody nbodyImpl

+void: run(...)

Tail

−NBody nbodyImpl

+void: run(...)

−NBody nbodyImpl

Head

+void: run(...)

+void: computeForces(...)

FPGANBodyJavaNBody

Fig. 3.1: Simplified UML diagram of our system

Despite FPGAs are known for the ability to reconfigure at runtime, it is a lengthy process and
offers no practical advantage if we need to switch between tasks and reconfigure constantly.

In the class diagram shown above, NBody class can be replaced by the main component of
other algorithms. This will allow different algorithm to use the same class structure for their
implementation, such as an implementation of inner product we will detail in next chapter in §5.2.

NBody The abstract class contains all functions used by the algorithm. This class should be
replaced by a similar class that contains all core functionalities when implementing other
algorithms.

JavaNBody, CPUNBody, FPGANBody These classes are solid implementations of the NBody
class. The main functions will take the input values and map them on different hardware or
software implementations, then return the results as a Java array. The process is transparent
to the caller.

Head, Body, Tail classes contain code to set up the topology of the application and SJ com-
munication between nodes of the cluster.
Head is the component that runs on the first node and act as the initiator.
Body is the worker component and can be chained together with other Body nodes.
Tail is the last worker component that connects Body with Head on the other side of the
ring. More details on the sessions of the components will be given in the next subsection.
§3.2.2

All of the classes take a constructor of class NBody to select the implementation to use. This
allows combinations such as FPGANBody/Head, CPUNBody/Body or JavaNBody/Tail to be
constructed flexibly and easily.

This design uses the well-known design patterns of strategy and template method [12]. The
two patterns help separating communication from the algorithm body, and make it easier to reuse

34 CHAPTER 3. DESIGN AND IMPLEMENTATION

1 public abstract class NBody {
2 public abstract void computeForces(...);
3 ...
4 }
5

6 public class JavaNBody extends NBody {
7 public void computeForces(...) { ... }
8 ...
9 }

10

11 public class Head {
12 NBody nbody; // set by constructor or injected
13 public void algorithmBody(...) {
14 ...
15 nbody.computeForces(...);
16 ...
17 }
18 }

Listing 3.1: Strategy/template method pattern

the same algorithm outline and implement it in different hardware. Listing 3.1 outlines how the
classes are used.

3.2.2 Application topology and session typing

The implementation of a n-body simulation follows a similar ring topology as described in §2.6.1,
the only difference is the addition of initial hardware set-up and tear-down phases at the end of
execution.

Session interaction

The structure we are going to describe is not limited to n-body simulations and can be adapted
to any algorithm that uses a ring topology. Fig. 3.2 shows the interaction between the node and
Table 3.1 gives the session declaration in each of the nodes.

We have covered the meanings of components of SJ protocols in §2.4, and we will revisit
the declaration shown here in the next chapter (§4.7.1).

Partitioning of data

The input data is uniformly partitioned into n parts, where n is the number of cluster nodes in the
simulation at execution time. Each node is responsible for outputting the particle positions of its
allocated set of particles, and will keep track of their velocities and acceleration components at
each steps of calculation.

3.2. SESSION JAVA ON AXEL 35

loop for

particles

times

receivesendsend

send

receive

receive

outwhile outwhileinwhile inwhile

request accept

request

request accept

Particle[] Particle[]

Particle[]

TailHead Body

Fig. 3.2: Interaction between Head, Tail and a single Body node

Node Session between SJ session declaration (protocol)
Head Head Tail cbegin.![?(Particle[])]*

Head Head Body cbegin.?(int)![!<Particle[]>]*

Body Body i−1 Body i sbegin.!<int>.?[?(Particle[])]*
Body Body i Body i+1 cbegin.?(int).![![Particle[]]]*

Tail Body Tail sbegin.!<int>.?[?(Particle[])]*
Tail Head Tail sbegin.?[!<Particle[]>]*

Table 3.1: SJ session declaration for ring topology

The numbers in Fig. 3.3 represent the node number which the particles are from. In the initial
round, velocities and acceleration components of each particle are calculated against each other in
the same node.

Next, each node forwards the initial set (or the received set after the initial round) of particle
positions to the adjacent node. Since velocities and acceleration components can be accumulated,
when a set of particles is received, each node can immediately update the velocities and accelera-
tion of their own set of particles without keeping a copy of the received particles.

After 3 rounds, all nodes will have seen all the particles and can perform calculations to update
the positions of the particles they were allocated. With n nodes participating in the simulation, the
calculate-and-forward step is repeated for n− 1 steps instead of 3 in our example above in order
for all nodes to see all particles at once.

36 CHAPTER 3. DESIGN AND IMPLEMENTATION

x−coordinate

y−
co
o
rd
in
a
te

(0,0)

Node 3

Node 4

Node 2

Node 1 Node/partition # Initial Round 1 Round 2 Round 3
Node 1 (Head) {1} {1,4} {1,4,3} {1,4,3,2}
Node 2 (Body) {2} {2,1} {2,1,4} {2,1,4,3}
Node 3 (Body) {3} {3,2} {3,2,1} {3,2,1,4}
Node 4 (Tail) {4} {4,3} {4,3,2} {4,3,2,1}

Fig. 3.3: Partitioning of data and calculation for 4 nodes

3.3 SJ with FPGA

After looking at the general architecture of SJ parallel applications on Axel, in this section we will
detail an implementation of the n-body simulation using FPGA.

3.3.1 The need for cross-language features

As we have described in the introduction of the Axel cluster §2.5.2, the development environment
for all of the heterogeneous components of Axel is C. However SJ is based on Java, and cannot
use executables or shared libraries in C (or other native code) directly.

Java is an interpreted programming language that runs in the Java Virtual Machine (JVM). By
design, the underlying architecture of the hardware is abstracted by the JVM completely, mak-
ing Java a very portable language but it is not possible to access the memory or execute native
instructions directly.

We also have the following considerations in programming language choice:

• Java is not as fast as native compiled languages such as C/C++ in most scenarios [30].

• SJ is a communication based language, the most important feature are its communication
capabilities and safety properties.

• FPGAs and GPUs can be accessed by libraries supplied by vendor, but only C APIs and
C-based development environments are available.

Combining the best points of SJ and acceleration hardware, we should delegate all communi-
cation and I/O coordination to SJ and all computation-related tasks to acceleration hardware for
its performance.

In this design, SJ/Java will have to inter-operate with native libraries to access and control the
acceleration hardware.

3.3. SJ WITH FPGA 37

Alternative 1 It is certainly possible to take an extreme and approach this problem by re-
implementing SJ and create a new session-types based language in C/C++. Despite the perfor-
mance advantage, this will be a lot more involved than extending Java to SJ. C/C++ does not
come with the rich set of readily usable network and datastructure libraries found in Java and upon
which SJ depends heavily on. For the purpose of high performance computing, this would be the
best option. In the next section we will present a C-translation of SJ built around the concept of a
session-type based C/C++ programming language.

Alternative 2 The other end of the extreme is to translate all hardware drivers to Java so SJ
can initiate computations from within the JVM. In the case of GPU, we will be translating the
complete CUDA framework to Java. Some current unofficial implementations exists [18, 19]; and
for FPGA, none of the vendors provide Java APIs for control and access. Moreover, ways of
accessing system memory are very limited in Java. The design of Java is to prevent this mode
of operation to decouple applications running in the JVM from the underlying hardware. This
method is not easily generalisable.

Alternative 3 With the reasons above combined, the remaining option is to mix Java and C using
a suitable bridging library. This way SJ can be used in its natural form, and hardware drivers and
shared library code written in C can be used as it is designed. The bridging library should handle
type conversions and data access between the two sides.

3.3.2 Java Native Interface

With Java Native Interface (JNI), applications written in languages other than Java can be ac-
cessed by Java using an interface understandable by the JVM. The user will write native code and
export selected native subroutines via JNI. This is the standard native programming environment
supported by the Java specification, and provides very fine grain control for data shared between
the two sides. An example is given in the appendix §A.1.

3.3.3 Java Native Access

Java Native Access (JNA) [20] is an API built on top of JNI and takes on Java-C bridging in a very
different approach. It does not require any boilerplate code in the native language, and therefore
can use existing native libraries without modifications at the cost of performance.

JNA uses libffi to analyse the structure of the shared library at runtime. FFI stands for
Foreign Function Interface, the purpose of FFI is to convert calling conventions and coordinate
between programming languages [11]. JNA also came with a basic type-mapping infrastructure
to allow data exchanged between the two sides. In addition to primitive type mappings, the library
also maps Structure class to C-struct, and Java arrays (non-contiguous in memory) to C arrays
(contiguous). An example is given in the appendix §A.2.

38 CHAPTER 3. DESIGN AND IMPLEMENTATION

SJ/Java CJNI JNASJ/Java C

accessing to interact with the JVMJNIEnv

Fig. 3.4: Platform integration using JNI and JNA. JNA has a much cleaner interface than JNI

The above short introduction we showed that JNA is more flexible than JNI, where JNI forces
a very tight integration between JVM and native platform.

For our implementation, we have chosen JNA over JNI because the bridging code has very
little to do with session programming. Using JNA allows much more rapid prototyping to check
correctness of communication. In JNA, we could simply load a different hardware driver if the
underlying hardware is changed, as long as the interface of the compiled code remains the same.

In the next section §3.4 we will see a version of the implementation translated from SJ to C,
which takes advantage of the shared library being an isolated component from Java.

3.3.4 Problems encountered

During the implementation, we encountered some problems and limitations

Java send buffer Java TCP sockets, which is what SJ uses when running on the cluster, is non-
blocking. The sockets are made non-blocking by queueing the values to send in a send
buffer. However, when the buffer is full, the semantics of Java TCP sockets became block-
ing. While there is a way to change the send buffer size, the send buffer size has a hard upper
limit of 131071 bytes. Setting the send buffer size above this value will not change the ac-
tual buffer size. This caused some problems when trying to benchmark the performance of
any SJ implementations using a very high number of particles.

This problem was addressed recently (and indirectly), by a new TCP socket implementation
that uses custom TCP send and receive queues for events-based session programming [16].

JNA data conversion In C and most native languages, arrays are represented by contiguous
blocks of main memory. In Java, array elements can be distributed all over the Java mem-

3.4. C-TRANSLATION OF SJ N-BODY IMPLEMENTATION 39

1 for (i = 0; i < particlesPerNode; i++) {
2 for (j = 0; j < particlesPerNode; j++) {
3

4 ri = receivedParticles[j].x - particles[i].x;
5 rj = receivedParticles[j].y - particles[i].y;
6 m = receivedParticles[j].m
7

8 if (ri != 0) {
9 ai += (ri < 0 ? -1 : 1) * G * m / (ri * ri);

10 }
11

12 if (rj != 0) {
13 aj += (rj < 0 ? -1 : 1) * G * m / (rj * rj);
14 }
15 }
16

17 particleVelocities[i].ai += ai;
18 particleVelocities[i].aj += aj;
19 }

Listing 3.2: algorithm for SJ implementation’s n-body simulation

ory space for efficient management of free space. JNA allows force creation of contiguous
blocks of memory in Java, only then the piece of memory can be passed to a native function.

Our implementation of n-body simulation receives an array of Particles in each iteration
and passes the array to a native function to process. Since the array is received as a Java
object, the memory is not contiguous. In order to pass the array to the native functions,
the array needs to be copied to another contiguous-memory array in every iteration. This
overhead could not be eliminated.

3.4 C-translation of SJ n-body implementation

This section will present a translation of the described in the previous section (§3.3). The motiva-
tion behind this translation is performance. When using a bridging library between two languages
with completely disjoint language runtime, there is always overhead associated with the conver-
sion between data formats. Also, we have discussed in previous sections (§3.3) that acceleration
hardware libraries are provided in a C programming environment, it would be much more con-
venient if we could use session programming in a C environment. However, we also noted that
the standard C do not have a comprehensive networking and datastructure library as in Java, and
difficulties of building a completely new programming language based on C similar to how SJ is
built on top of Java.

Our proposed solution is a C library that provide networking primitives available in SJ to C.
The primitives made available to the programmer should have the same or very similar semantics

40 CHAPTER 3. DESIGN AND IMPLEMENTATION

as their counterpart in SJ. For example, SJ’s send primitive is non-blocking. The library should
similarly implement a non-blocking send in the library. This library would be a step forward
towards a session-types based C programming language we discussed in previous section (§3.3.1).

It should be reminded that the library is not designed to be used directly. The purpose of the
library is to provide a building block of SJ programs translated to C, usage of the library does not
automatically imply communication correctness if not translated from SJ.

3.4.1 Why would this work?

C/C++ shares a very similar language syntax. For basic language constructs and flow-control,
conversion between the two languages are trivial. When the source SJ program uses a SJ primitive,
the target C program will use one of the primitives provided in our library. This forms a backbone
of our translated C program, as translation will be line by line, the sequence of invoking the SJ
primitives will be identical in the translated version.

3.4.2 A SJ primitives library for C

Table 3.2 compares the equivalent primitives in the two languages:

C SJ
server socket(port) SJServerSocketImpl.create(p, port)

client socket(host addr, port) SJService.create(p, host, port)
accept connection(node) node.accept()

Included in client socket() node.request()
send int(node, value)1 node.sendInt(value)

inwhile(nodes[], nodes count) <node1,node2,..>.inwhile{}
outwhile(cond, node[], nodes count) <node1,node2,..>.outwhile(cond) {}

Table 3.2: C and SJ session primitives

In the section where we introduced JNA (§3.3.3), we have briefly discussed that shared li-
brary2 to access FPGA can be reused without modifications. In most use cases, the shared library
will provide a single function that takes input data and forward them to the FPGA. For n-body sim-
ulation, the main function in the shared library is compute forces(...) shown in Fig. 3.5.

The translation do not need to worry about any new interface to access the acceleration hard-
ware.

The syntax for inwhile and outwhile above shows slightly different syntax between the two
languages. C-version of both constructs are typically used in conjunction with a while loop. The

1send is implemented for all primitive types
2shared library refers to the native code component in the SJ/FPGA implementation, compiled as a shared object

(.so)

3.4. C-TRANSLATION OF SJ N-BODY IMPLEMENTATION 41

shared library to access FPGA

void compute_forces(...)

JNA

SJ implementation
C translation of SJ impl.

same interface

Fig. 3.5: Shared library used from both SJ/JNA and C

reason for the difference is because as a library external to the programming language, we are
unable to modify the syntax of the language without going into parser of the compiler. We can,
however, use C preprocessor macros to use a more familiar syntax. Listing 3.3 shows the usages
of inwhile and outwhile in C.

1 #define OUTWHILE(COND, MOEP, NR_OF_MOEP) \
2 while(outwhile((COND), (MOEP), (NR_OF_MOEP)))
3 #define INWHILE(MOEP, NR_OF_MOEP) \
4 while(inwhile((MOEP), (NR_OF_MOEP)))
5 ...
6

7 outwhile_sfds[0] = next_fd;
8 outwhile_sfds[1] = tail_fd;
9 loop_index = 0;

10 while (inwhile(loop_index < iter_count, outwhile_sfds, 2)) { ... }
11 // OUTWHILE(loop_index < iter_count, outwhile_sfds, 2) { ... }
12

13 inwhile_sfds[0] = prev_fd;
14 inwhile_sfds[1] = head_fd;
15 while (inwhile(inwhile_sfds, 2)) { ... }
16 // INWHILE(inwhile_sfds, 2) { ... }

Listing 3.3: C inwhile and outwhile

In addition to the control flow and communication primitives, the library also has support for
error handling in form of UNIX signal handlers. The C language do not have try-catch or simi-
lar system for exceptions. In SJ, runtime errors in sessions such as network error will throw an
exception and all communicating processes will receive a SJFIN exception and terminate imme-
diately. The library keeps track of all active connections in each process. If any of the connections
encountered a problem, the process will force close all the active connections from its side. The
other ends of the connections will then receive a SIGPIPE signal and promptly close all active
connections. The signal is then propagate to all other connected processes until all processes are
terminated.

42 CHAPTER 3. DESIGN AND IMPLEMENTATION

1 #include <signal.h>
2 #include "sighandlers.h"
3 ...
4 int main(int argc, char *argv[])
5 {
6 signal(SIGPIPE, &sigpipe_handler);
7 signal(SIGSEGV, &sigsegv_handler);
8 ...
9 }

Listing 3.4: Error handling in translated C

To use the signal handlers provided, users only need to set the signal handlers to those provided
by the library (header sighandlers.h) as shown in Listing 3.4.

Another consideration when designing the library is to make the translated C version have
the same structure as the SJ version. For example, socket options when creating TCP sockets are
completely hidden from the user. The options exposed to the user are the same as in Java version.
Listing A.7 and A.8 shows the outline of the two versions without variable declarations and other
unimportant details. The SJ implementation can almost map to the C-translation line by line.

3.4.3 Shortcomings of the library

The library is not a complete implementation of the full SJ. Session delegation and higher-order
session manipulation is not possible with our library. The main reason is we lack a representation
of sessions, which we omitted when we design our library for translating a session-based language
to a non session-based language, rather than to add sessions to C.

3.5 Summary

In this chapter, we have discussed the details of our n-body implementation in SJ on the NNUS
heterogeneous cluster Axel.

We looked at both the application architecture such as class layout and the session interaction
pattern between the nodes in a ring-topology. We also looked at rationale to use a cross-language
library Java Native Access (JNA), with a short introduction to the usage.

Finally we showed a manual translation of the SJ program to C, and a library that provides SJ
primitives to C. The library contains a collection of light weight SJ primitives that mimics the SJ
implementation, and can be a building block for an automatic SJ-to-C translator.

Chapter 4

Correctness Proof of N-body
Implementation

In this chapter we will look at the formalisation of multichannel inwhile and outwhile prim-
itives in SJ. The new primitives are designed for programming parallel algorithms in SJ, and had
not been formalised in session calculus previously.

With the new formalisation, we will prove that our implementation of n-body simulation in
SJ is communication safe from a global view and generalise the proof to algorithms with similar
design and topology as our implementation.

We will first present an updated session calculus (§4.1) to include the new SJ primitives, where
will will look at the syntax (§4.2), followed by the operational semantics (§4.3) and the type system
(§4.4). Finally, we will look at subject reduction (§4.5) which will be used to prove communication
safety property (§4.6)

4.1 Session calculus with multichannel in/outwhile

We will now present an extension of the session calculus to include the multichannel inwhile
and outwhile SJ primitives used in parallel algorithms design with SJ. The original inwhile
and outwhile primitives described in [3, 17] only operates in a single session channel. Synchro-
nisation of outwhile loop condition between multiple session channels are not possible without
re-opening the last session in each iteration of outwhile loop.

The multichannel constructs are the key components of parallel design with SJ, and parallel
topologies can be expressed more naturally. Fig. 4.1 shows how the constructs improve ring
topology design, first introduced in [21], and is used in our n-body implementation.

43

44 CHAPTER 4. CORRECTNESS PROOF OF N-BODY IMPLEMENTATION

Fig. 4.1: Comparison of ring topology in unichannel and multichannel inwhile and outwhile

4.2 Syntax

The syntax of the updated session calculus with multichannel inwhile and outwhile is shown
in Fig. 4.2.

The process definition is modified to include an Err process which represents a while condition
mismatch in an inwhile/outwhile composition. while condition mismatch is further explained
in the operational semantics §4.3.

Single channel inwhile and outwhile is sometimes written in the calculus as k.inwhile{Q }
and k.outwhile(e){ P }. This syntax is a shorthand for 〈k〉.inwhile{Q } and 〈k〉.outwhile(e){ P }.

4.3 Operational semantics

The operational semantics are based on the reduction relation→, and the reduction rules are given
in Fig. 4.5. The session calculus is π-calculus extended with session primitives [14], so definition
of structural congruence≡ is similar to π-calculus. Fig. 4.3 lists the structural congruence rules in
our updated session calculus. An additional structural congruence rule in this calculus is 0;P≡ P,
which allows continuation in sequential composition (Definition 1 below).

To keep session reasoning simple, we introduce evaluation contexts. Evaluation contexts iso-
late subprocesses and allow subprocesses to reduce independent of influences external to the con-
text. Our evaluation contexts are defined as:

E[] := [] | E[];P | E[] | P | (νu) E[] | def D in E[]

If the head subprocess P in E[P] can be reduced using the reduction rules, then there is a dual
head subprocess Q in E[Q] that can be reduced [8]. This simplifies the reduction rules and allows
us to avoid including explicit reduction rules such as sequential composition (P;Q). The resulting
reduction rules are shown in Fig. 4.5.

We have defined reduction rules for inwhile and outwhile such that they can reduce on their
own. In particular, a single outwhile can generate an infinite number of k† [b] without constraints.
Suppose the loop condition is true in the first run of the outwhile. Since outwhile can reduce
without constraints, outwhile can reduce again, and the loop condition in this iteration is false.

4.3. OPERATIONAL SEMANTICS 45

P ::= 0 inaction

| T prefixed process

| P ; Q sequential composition

| P | Q parallel composition

| (νu) P name/channel hiding

| Err error

T ::= request a(k) in P session request

| accept a(k) in P session acceptance

| k![ẽ] data sending

| k?(x̃) in P data reception

| k� l label selection

| k�{l1 : P1[] · · · []ln : Pn} label branching

| throw k[k′] channel sending

| catch k(k′) in P channel reception

| if e then P else Q conditional branch

| X [ẽk̃] process variables

| def D in P recursion

| 〈k1 . . . kn〉.inwhile{ Q } n≥ 1 multichannel inwhile

| 〈k1 . . . kn〉.outwhile(e){ P } n≥ 1 multichannel outwhile

| k † [b] (b ∈ true,false) (runtime syntax)

e ::= c constant

| 〈k1 . . .kn〉.inwhile n≥ 1 inwhile expression

| e+ e′ | e− e′ | e× e | not(e) | . . . operators

D ::= X1(x̃1k̃1) = P1 and · · ·and Xn(x̃nk̃n) = Pn declaration for recursion

Fig. 4.2: Session calculus syntax with multichannel inwhile and outwhile

This gives us k.outwhile(e){ P } | k † [true] | k † [false] | k.inwhile{ Q } which causes us
problems because we do not know which k † [b] to compose with inwhile.

This differs from our implementation where the while loop synchronises nodes and delivers
loop conditions in order. To correctly reflect the actual behaviour of multichannel inwhile and
outwhile constructs in the calculus, we have an extra constraint that inwhile rules have prece-
dence over outwhile . This way, loop conditions holders, k † [b] will prevent the sessions from
continuing without first consuming k † [b] with a matching inwhile.

46 CHAPTER 4. CORRECTNESS PROOF OF N-BODY IMPLEMENTATION

P≡ Q if P≡α Q

P | 0≡ P P | Q≡ Q | P (P | Q) | R≡ P | (Q | R)
(νu) P | Q≡ (νu) (P | Q) if u 6∈ f u(()Q)

(νu) 0≡ 0
def D in 0≡ 0

(νu) def D in P≡ def D in (νu) P if u 6∈ f u(()D)

(def D in P) | Q≡ def D in (P | Q) if d pv(()D)∩ f pv(()Q) = /0

def D in (def D′ in P)≡ def D and D′ in P if d pv(()D)∩d pv(()D′) = /0.

0; P ≡ P

Fig. 4.3: Structural Congruence

E[] := [] | E[];P | E[] | P | (νu) E[] | def D in E[]

Fig. 4.4: Evaluation context

4.4 Type system

The type system in this section is designed to guarantee communication safety and progress prop-
erty with the new syntax and operational semantics. The full type syntax is given in Fig. 4.6.

Sorts contain the standard types and the pair of dual sessions 〈α,α〉.

Partial session types are session types that does not include the end type. Partial session types
are distinguished from completed session types so that they can be sequentially composed.

Completed session types are types that end with end or are equal to ⊥.

In above syntax, ![α] and ?[α] are session delegation and session receive respectively. This
makes use of the name-passing property from π-calculus that allows sending and receiving of
channels (or sessions in the session calculus). The same typing syntax is used for ordinary type
sending and receiving (![S̃], ?[S̃]). Iteration types (?[τ]∗ and ![τ]∗) are introduced for inwhile and
outwhile respectively. With iteration types, the partial type definition τ can be repeated for a
number of times until the outwhile condition is no longer true.

In the syntax given, &{l1 : τ1, . . . , ln : τn}.end ≡ &{l1 : : τ1.end, . . . , ln : τn.end}. This equiva-
lence ensures all partial types τ1 . . .τn of label selection choices ends and are compatible with each
other in the completed session type (and vice versa).

ε is an empty type, and it is defined so that ε;τ≡ τ and τ;ε≡ τ. The two equivalences allows
us to continue reducing when one of the two processes P;Q reduces to empty.

4.4. TYPE SYSTEM 47

E1[accept a(k) in P1] | E2[request a(k) in P2] → (E1[P1] | E2[P2]) (k is fresh) [LINK]

E1[k![ẽ]] | E2[k?(x̃) in P2] → E1[0] | E2[P2[c̃/x̃]] (ẽ ↓ c̃) [COM]

E1[k� li;P] | E2[k�{l1 : P1[] · · · []ln : Pn}] → E1[P] | E2[Pi] (1≤ i≤ n) [LABEL]

E1[throw k[k′]] | E2[catch k(k′) in P2] → E1[0] | E2[P2] [PASS]

E[if e then P else Q] → E[P] (e ↓ true) [IF1]

E[if e then P else Q] → E[Q] (e ↓ false) [IF2]

def D in (E[X [ẽk̃]]) → def D in (E[P[c̃/x̃]]) (ẽ ↓ c̃,X(x̃k̃) = P ∈ D) [DEF]

E[〈k1 . . . kn〉.inwhile{ P }] | k1 † [b1] | . . . | kn † [bn] → E[P;〈k1 . . . kn〉.inwhile{ P }]
(∀i ∈ 1..n,bi = true) [INWHI1]

E[〈k1 . . . kn〉.inwhile{ P }] | k1 † [b1] | . . . | kn † [bn] → E[0]
(∀i ∈ 1..n,bi = false) [INWHI2]

E[〈k1 . . . kn〉.inwhile{ P }] | k1 † [b1] | . . . | kn † [bn] → E[Err]

(∃ i, j bi = true∧ b j = false∧1≤ i, j ≤ n) [INWHI3]

E[〈k1 . . . kn〉.outwhile(e){ P }] → E[P;〈k1 . . . kn〉.outwhile(e′){ P }] | k1 † [b1] | . . . | kn † [bn]

(∀i ∈ 1..n,bi = true) (E[e] → E[true]) [OUTWHI1]

E[〈k1 . . . kn〉.outwhile(e){ P }] → E[0] | k1 † [b1] | . . . | kn † [bn]

(∀i ∈ 1..n,bi = false) (E[e] → E[false]) [OUTWHI2]

P≡ P′ and P′ → Q′ and Q′ ≡ Q ⇒ P → Q [STR]

P → P′ ⇒ E[P] → E[P′] [EVAL]

Fig. 4.5: Reduction rules

4.4.1 Duality

To ensure communication compatibility, all session types have a dual-type in a well-typed pro-
gram.

A simple example is ![bool].end and ?[bool].end. The two session types are dual so that
sending of a bool matches with receiving of a bool. If the typing of the receiver is changed to
?[bool]; ?[bool].end then there is a communication mismatch after the first receive. Session types
can ensure such incompatibilities between two communicating parties does not happen. Fig. 4.7
is complete list of dual-types in our type system.

48 CHAPTER 4. CORRECTNESS PROOF OF N-BODY IMPLEMENTATION

Sort S ::= nat | bool | 〈α,α〉
Partial session type τ ::= ε | τ; τ

| ?[S̃] | ?[α] | &{l1 : τ1, . . . , ln : τn} | ![τ]∗ | x
| ![S̃] | ![α] | ⊕{l1 : τ1, . . . , ln : τn} | ?[τ]∗ | µx.τ

Completed session type α ::= τ.end | ⊥

Runtime session type β ::= α | α
† | †

Fig. 4.6: Type syntax

ε = ε τ; τ = τ; τ α† = α
†

![S̃] =?[S̃] ⊕{l1 : τ1, . . . , ln : τn}= &{li : τi . . . , ln : τn} ![τ] =?[τ]

?[S̃] =![S̃] &{l1 : τ1, . . . , ln : τn}=⊕{li : τi . . . , ln : τn} ?[τ] =![τ]

![τ]∗ =?[τ]∗ x = x τ.end = τ.end

?[τ]∗ =![τ]∗ µx.τ = µx.τ ⊥=⊥

Fig. 4.7: Dual types

4.4.2 Typing environment

The typing environment is defined in Fig. 4.8.

Γ ::= /0 | Γ · x : S | Γ ·X : S̃α̃

∆ ::= /0 | ∆ · k : α | ∆ · k : †

Fig. 4.8: Typing environments

Γ is the standard environment that maps variables to sort types.

∆ is the runtime environment that contains session to session type mappings and the typing for
k † [b], which holds inwhile and outwhile loop conditions.

4.4.3 Typing rules

Most of the typing rules remained the same as in [35] The major changes between the two version
are

4.4. TYPE SYSTEM 49

Γ ` 1.nat Γ ` true,false.bool
Γ ` ei .nat

Γ ` e1 + e2 .nat
[NAT],[BOOL],[SUM]

Γ ` P.∆ · k : ε.end
Γ ` P.⊥ Γ ·a : S ` a.S

Γ; ∆ ` e.S
Γ; ∆,∆′ ` e.S

[BOT],[NAMEI],[EVAL]

∆ = {k1 : ε.end, . . . ,kn : ε.end, k′1 : ⊥, . . . ,k′m : ⊥}
Γ ` 0.∆

[INACT]

Γ ` a. 〈α,α〉,Γ ` P.∆ · k : α

Γ ` request a(k) in P.∆

Γ ` a. 〈α,α〉,Γ ` P.∆ · k : α

Γ ` accept a(k) in P.∆
[REQ],[ACC]

Γ; /0 ` ẽ. S̃
Γ ` k![e].∆ · k : ![S̃].end

Γ · x̃ : S̃ ` P.∆ · k : α

Γ ` k?(x̃) in P.∆ · k : ?[S̃]; α
[SEND],[RCV]

Γ ` P1 .∆ · k : τ1.end · · · Γ ` Pn .∆ · k : τn.end
Γ ` k�{l1 : P1[] · · · []ln : Pn}.∆ · k : &{l1 : τ1, . . . , ln : τn}.end

[BR]

Γ ` P.∆ · k : τ j.end
Γ ` k� l .∆ · k : ⊕{l1 : τ1, . . . , ln : τn}.end

(1≤ j ≤ n) [SEL]

Γ ` throw k[k′].∆ · k : ![α] · k′ : τ.end
[THR]

Γ ` P.∆ · k : β · k′ : α

Γ ` catch k(k′) in P.∆ · k : ?[α]; β
[CAT]

Γ; /0 ` e.bool Γ; ∆ ` P.∆ Γ; ∆ ` Q.∆

Γ ` if e then P else Q.∆
[IF]

Γ; ∆ ` e.bool Γ ` P.∆ · k1 : τ1.end · · · · · kn : τn.end
Γ ` 〈k1 . . . kn〉.outwhile(e){ P }.∆ · k1 : ![τ1]∗.end · · · · · kn : ![τn]∗.end

[OUTWHI]

Γ; ∆ ` Q.∆ · k1 : τ1.end · · · · · kn : τn.end
Γ ` 〈k1 . . . kn〉.inwhile{ Q }.∆ · k1 : ?[τ1]∗.end · · · · · kn : ?[τn]∗.end

[INWHI]

Γ ·a : S ` P.∆

Γ ` (νa) P.∆

Γ ` P.∆ · k : ⊥
Γ ` (νk) P.∆

[NRES],[CRES]

Γ; /0 ` ẽ. S̃
Γ ·X : S̃α̃ ` X [ẽk̃].∆ · k̃ : α̃

[VAR]

Γ ·X : S̃α̃ · x̃ : S̃ ` P. k̃ : α̃ Γ ·X : S̃τ̃ ` Q.∆

Γ ` def X(x̃k̃) = P in Q.∆
[DEF]

Γ ` P.∆ Γ ` Q.∆′

Γ ` P; Q : ∆;∆′
Γ ` P.∆ Γ ` Q.∆′

Γ ` P | Q.∆◦∆′
[SEQ],[CONC]

Fig. 4.9: Typing rules

50 CHAPTER 4. CORRECTNESS PROOF OF N-BODY IMPLEMENTATION

1. Abandoning the use of Θ for mapping from variables to basis (ie. X : S̃α̃), and use Γ instead
for the mapping (see Typing environment definition above §4.8).

2. Introducing the new typing rules [OUTWHI] and [INWHI], which corresponds to our new
constructs.

3. Rules do not have a continuation after ; (sequential composition). This is because we in-
troduced evaluation contexts earlier (§4.3), and ; will not appear in the head subprocess
(eg. E[P;Q] will be written E[P];E[Q]). We also have a new typing rule for sequential
composition [SEQ] for this reason.

The rules [NAT], [BOOL], [SUM], [NAMEI], [EVAL] are basic language constructs (numbers,
booleans, inductive definition of numbers, variables and evaluation of expressions).

[INACT] represents inaction, and has a ‘end’ typing.

[REQ], [ACC]; [SEND], [RCV] are pairs that represent establishment of session and value/name
exchange respectively.

[BR], [SEL] are label branching and selection. Each of the branches have a subtype τi, and
when the branches finishes, the whole typing &{l1 : τ1, . . . , ln : τn} and ⊕{l1 : τ1, . . . , ln : τn} ends.

[THR], [CAT] are called session delegation, which comes from π-calculus where channels can
be passed as names and use as channels. In the P following a catch, the process has a typing
received from the throwing side.

[IF], [NRES], [CRES], [VAR], [DEF] are conditionals, name restriction, channel restriction, vari-
able process and recursive process definition respectively. Note that in [IF], ∆ to prove e is set to /0

to prevent trouble with its channel when inwhile is used as an expression.

[OUTWHI], [INWHI] are the main focus of this work. It represents multichannel inwhile and
outwhile. (It would be easier to understand with n= 1, which makes it a simple inwhile/outwhile
loop)

Finally, [SEQ], [CONC] are sequential composition and parallel composition respectively. They
will be introduced in detail next as Definition 1 and 2.

Definition 1. Sequential composition of session type are defined as [8]:

τ; α =

{
τ.α if τ is a partial session type and α is a completed session type
⊥ otherwise

∆; ∆
′ = ∆ \ dom(∆′) ∪ ∆

′ \ dom(∆) ∪ {k : ∆(k) \ end; ∆
′(k) | k ∈ dom(∆)∩dom(∆′)}

The first rule concatenates a partial session type τ with a completed session type α to form a
new (completed) session type. The second rule can be decomposed to three parts:

1. ∆ \ dom(∆′) extracts session types with sessions unique in ∆

2. ∆′ \ dom(∆) extracts session types with sessions unique in ∆′

4.4. TYPE SYSTEM 51

3. {k : ∆(k) \ end; ∆′(k) | k ∈ dom(∆)∩ dom(∆′)} modifies session types with a common
session k in ∆ and ∆′ by removing end type from ∆(k) and concatenates the modified ∆(k)
(which is now a partial session type) with ∆′(k) as described in the first rule.

Example 1. Suppose ∆ = {k1 : ε.end, k2 : ![nat].end} and ∆′ = {k2 : ?[bool].end, k3 : ![bool].end}
. Since k1 is unique in ∆ and k3 is unique in ∆′, we have

∆\dom(∆′) = {k1 : ε.end} and ∆
′\dom(∆) = {k3 : ![bool].end}

A new session type is constructed by removing end in ∆(k2), so the composed set of mappings is

∆; ∆
′ = {k1 : ε.end, k2 : ![nat]; ?[bool].end, k3 : ![bool].end}

Definition 2. Parallel composition of session and runtime type is defined as:

∆◦∆
′ =∆ \ dom(∆′)∪∆

′ \ dom(∆)∪ {k : β◦β
′ | ∆(k) = β and ∆

′(k) = β
′}

where β◦β
′ :

α◦† = α†

α◦α = ⊥
α◦α

† = ⊥†

The parallel composition relation ◦ is commutative as the order of composition do not impact the
end result.

The rule can be decomposed into three parts:

1. ∆ \ dom(∆′) which extracts session and runtime types with sessions unique in ∆

2. ∆′ \ dom(∆) which extracts session and runtime types with sessions unique in ∆′

3. {k : β◦β′|∆(k) = β and ∆′(k) = β′} has three cases

• If one of the β is a †, combine the session type with the † to form an intermediate
runtime type α†.

• If βs are duals, combine the types to ⊥. This covers cases for parallel compositions
that does not involve runtime types.

• If one of the β is an intermediate runtime type α†, and the other β is the dual of α,
combine the types to ⊥ but mark the result as an intermediate runtime type ⊥† since
the † has not been consumed.

Example 2. Suppose ∆ = {k1 : ![bool].end, k2 : ![nat].end, k3 : ?[nat].end} and
∆′ = {k1 : ?[bool].end, k2 : ![bool].end, k4 : ![bool].end}. Since k3 is unique in ∆ and k4 is unique
in ∆′, the two sessions are included in ∆ ◦ ∆′ without modification. With ∆(k1) = ∆′(k1) and
∆(k2) 6= ∆′(k2), k1 maps to bottom and k2 is omitted. Therefore

∆◦∆
′ = {k1 : ⊥, k3 : ?[nat].end, k4 : ![bool].end}

52 CHAPTER 4. CORRECTNESS PROOF OF N-BODY IMPLEMENTATION

4.5 Subject reduction

Next we are going to present subject reduction theorem. Subject reduction will enable us to reduce
global composition of processes under a well-formed ring topology (defined in Definition 1), such
as our implementation of n-body simulation. The main proof can be found in page 57.

Before we go into details of subject reduction theorem, we will begin with auxiliary results
for later proofs to build on. The proofs presented here are based on [35] with modifications and
additions to fit our updated type system with multichannel inwhile and outwhile.

The Weakening Lemma represents adding of mappings to the typing environment. Formally:

Lemma 1 (Weakening Lemma). Let Γ ` P.∆.

1. If X 6∈ dom(Γ), then Γ ·X : S̃α̃ ` P.∆.

2. If a 6∈ dom(Γ), then Γ ·a :S ` P.∆.

3. If k 6∈ dom(∆) and α =⊥ or α = ε.end, then Γ ` P.∆ · k :α.

Proof. For the first two sequent, simple induction of the derivation tree can show that X and a do
not interfere with the typing. For 3, we note that in [INACT] and [VAR], ∆ contains only ε.end and
⊥.

The Strengthening Lemma represents removal of mappings from the typing environment,
given that they do not change the typing of a process. Formally:

Lemma 2 (Strengthening Lemma). Let Γ ` P.∆.

1. If X 6∈ f pv(P), then Γ\X ` P.∆.

2. If a 6∈ f n(P), then Γ\a ` P.∆.

3. If k 6∈ f c(P), then Γ ` P.∆\ k.

Proof. Start from ∆ = /0, the by induction over all session constructs, showing all three sequent
hold.

The Channel Lemma states that if a channel is free in a process then it will have a typing in
∆, otherwise the typing can only be one of the end types that cannot react with other channels.
Formally:

Lemma 3 (Channel Lemma). 1. If Γ ` P.∆ · k : α and k 6∈ f c(P), then α =⊥,ε.end.

2. If Γ ` P.∆ and k ∈ f c(P), then k ∈ dom(∆).

Proof. A simple induction on the derivation tree for each sequent.

4.5. SUBJECT REDUCTION 53

We omit the standard renaming properties of variables and channels, but present the Substitu-
tion Lemma for names. Note that we do not require a substitution lemma for channels or process
variables, for they are not communicated.

Lemma 4 (Substitution Lemma). If Γ · x :S ` P.∆ and Γ ` c :S, then Γ ` P[c/x].∆

Proof. By induction on the derivation tree.

We write ∆ ≺ ∆′ if we obtain ∆′ from ∆ by replacing k1 : ε.end, ...,kn : ε.end (n ≥ 0) in ∆ by
k1 :⊥, ...,kn :⊥. If ∆≺ ∆′, we can obtain ∆′ from ∆ by applying the [BOT]-rule zero or more times.

4.5.1 Well-formed topology

We now introduce the notion of well-formed ring topology. These are the conditions which a
correctly designed parallel algorithm based on a ring topology must satisfy.

Definition 1. A process is under a well-formed ring topology if:

P1 = 〈k1,2,k1,n〉.outwhile(e){ Q1[k1,2,k1,n] }
Pi∈{2..n−1} = ki,i+1.outwhile(〈ki−1,i〉.inwhile){ Qi[ki,i+1,ki−1,i] } 2≤ i≤ n−1

Pn = 〈k1,n,kn−1,n〉.inwhile{ Qn[k1,n,kn−1,n] }
and Γ ` Q1 .{k1,2 : T1,2, k1,n : T1,n}

Γ ` Qi .{ki,i+1 : Ti,i+1, ki−1,i : T ′i−1,i}
Γ ` Qn .{k1,n : T1,n

′, kn−1,n : Tn−1,n
′}

Γ ` Q1 | Q2 | . . . | Qn .{k̃ : ⊥̃}
with Ti, j = T ′i, j

P1 P2 P3

TailBodyHead

Fig. 4.10: Ring topology for 3 processes, arrow shows direction of outwhile

We also define a well-formed intermediate ring topology, which are the conditions that should
hold when the reduction involves the runtime type † as intermediate steps.

54 CHAPTER 4. CORRECTNESS PROOF OF N-BODY IMPLEMENTATION

Definition 2. A process is under a well-formed intermediate ring topology if:

P1 = 〈k1,2,k1,n〉.outwhile(e){ Q1[k1,2,k1,n] }
Pi∈{2..n−1} = ki,i+1.outwhile(〈ki−1,i〉.inwhile){ Qi[ki,i+1,ki−1,i] } | ki−1,i † [b] b ∈ {true,false}

Pn = 〈k1,n,kn−1,n〉.inwhile{ Qn[k1,n,kn−1,n] } | k1,n † [b] | kn−1,n[b] ∀b = true or ∀b = false

and Γ ` Q1 .{k1,2 : T1,2, k1,n : T1,n}
Γ ` Qi .{ki,i+1 : Ti,i+1, ki−1,i : T ′†i−1,i}

Γ ` Qn .{k1,n : T1,n
′†, kn−1,n : Tn−1,n

′†}

and Γ ` Q1 | Q2 | . . . | Qn .{k̃ : ⊥̃†}
with Ti, j = T ′i, j

4.5.2 Subject congruence theorem

Theorem 1. Subject congruence is defined by

Γ ` P.∆ and P≡ P′ implies Γ ` P′ .∆

Proof. Case P | 0≡ P. We show that if Γ ` P | 0.∆, then Γ ` P.∆. Suppose

Γ ` P.∆1 and Γ ` 0.∆2.

with ∆1 ◦∆2 = ∆. Note that ∆2 only contains ε.end or ⊥, hence we can set: ∆1 = ∆′1 ◦{k̃ : ˜ε.end}
and ∆2 = ∆′2 · {k̃ : ˜ε.end} with ∆′1 ◦∆′2 = ∆′1 ·∆′2 and ∆ = ∆′1 ·∆′2 · {k̃ : ⊥̃}. Then by the [BOT]-rule,
we have:

Γ ` P.∆
′
1 · {k̃ :⊥̃}

Notice that, given the form of ∆ above, we know that dom(∆′2)∩dom(∆′1) · {k̃ : ⊥}) = /0. Hence
by applying Weakening, we have:

Γ ` P.∆
′
1 ·∆′2 · {k̃ :⊥̃}

as required.

For the other direction, we set ∆ = /0 in [INACT].

Case P | Q≡ Q | P.◦ relation is commutative by the definition of ◦ (Definition 2)

Case (P | Q) | R≡ P | (Q | R). To show (P | Q) | R≡ P | (Q | R), where

Γ ` P.∆1 Γ ` Q.∆2 Γ ` R.∆3

We assume (∆1 ◦∆2)◦∆3 is defined
Suppose k : β1 ∈ ∆1 and k : β2 ∈ ∆2, then we have

4.5. SUBJECT REDUCTION 55

β1 = α β2 = †
β1 = α β2 = α

β1 = α β2 = α
†

β1 = † β2 =⊥

Now suppose k : β3 ∈ ∆3,
if β1 = α β2 = †, then β3 = α

(β1 ◦β2)◦β3 = ({k : α}◦{k : †})◦{k : α}= {k : ⊥†}
≡β1 ◦ (β2 ◦β3) = {k : α}◦ ({k : †}◦{k : α}) = {k : ⊥†}

if β1 = α β2 = α, then β3 = †

(β1 ◦β2)◦β3 = ({k : α}◦{k : α})◦{k : †}= {k : ⊥†}
≡β1 ◦ (β2 ◦β3) = {k : α}◦ ({k : α}◦{k : †}) = {k : ⊥†}

in all other cases, k /∈ dom(∆3) and therefore no parallel composition is possible.

Case (νu) P |Q≡ (νu) (P |Q) if u 6∈ f u(Q). The case when u is a name is standard. Suppose u is
channel k and assume Γ ` (νk) (P | Q).∆. We have

Γ ` P.∆′1 Γ ` Q.∆′2
Γ ` P | Q.∆′ · k :⊥

with ∆′ · k :⊥ = ∆′1 ◦∆′2 and ∆′ ≺ ∆ by [BOT]. First notice that k can be in either ∆′i or in both.
The interesting case is when it occurs in both; from Lemma 3(1) and the fact that k 6∈ f c(Q) we
know that ∆′1 = ∆1 · k : ε.end and ∆′2 = ∆2 · k : ε.end. Then, by applying the [BOT]-rule to k in P,
we have Γ ` P.∆1 · k :⊥, and by applying [CRES] we obtain Γ ` (νk) P.∆1. On the other hand,
by Strengthening, we have Γ `Q.∆2. Then, the application of [CONC] yields Γ ` (νk) P |Q.∆′.
Then by applying the [BOT]-rule, we obtain Γ ` (νk) P | Q.∆, as required. The other direction is
easy.

Case (νu) 0≡ 0. Standard by Weakening and Strengthening.

Case def D in 0≡ 0. Similar to the first case using Weakening and Strengthening.

Case (νu) def D in P≡ def D in (νu) P if u 6∈ f u(D). Similar to the scope opening case using
Weakening and Strengthening.

Case (def D in P) | Q ≡ def D in (P | Q) if d pv(D)∩ f pv(Q) = /0. Similar with the scope
opening case using Weakening and Strengthening.

Case 0;P≡ P. We show that if Γ ` 0;P.∆, then Γ ` P.∆. Suppose

Γ ` 0.∆1 and Γ ` P.∆2.

with ∆1;∆2 = ∆. ∆2 only contains ε.end or ⊥, by definition of sequential composition (Definition
1), ∆(k) = ∆1(k).∆2(k) = ε.∆2(k) = ∆2(k) as required.

56 CHAPTER 4. CORRECTNESS PROOF OF N-BODY IMPLEMENTATION

4.5.3 Subject reduction theorem

Theorem 2. The following subject reduction rules hold for a well-formed ring topology.

Γ ` P.∆ and P → P′ implies Γ ` P′ .∆
′ such that

∆(k) = α⇒
{

∆′(k) = α

∆′(k) = α†

∆(k) = α†⇒
{

∆′(k) = α

∆′(k) = α†

Under a well-formed intermediate ring topology

Γ ` P.∆ and P →∗ P′ implies Γ ` P′ .∆
′ such that

∆(k) = α⇒
{

∆′(k) = α

∆′(k) = α†

∆(k) = α†⇒
{

∆′(k) = α

∆′(k) = α†

Proof. We assume that

Γ ` e.S and e ↓ c implies Γ ` c.S (4.1)

and prove the result by induction on the last rule applied.

Case [LINK] (accept a(k) in P1) | (request a(k) in P2) → (νk) (P1 | P2). Suppose Γ `
(accept a(k) in P1) | (request a(k) in P2).∆. Then the assumption is derived from:

Γ ` a. 〈α,α〉 Γ ` P1 .∆′1 · k : α

Γ ` accept a(k) in P1 .∆′1
and

Γ ` a. 〈α,α〉 Γ ` P2 .∆′2 · k : α

Γ ` request a(k) in P2 .∆′2

and [BOT] with ∆′i ≺ ∆i, [CONC] with ∆1 ◦∆2 = ∆′, and [BOT] with ∆′ ≺ ∆. Then applying [BOT]
to P1 and P2, we have:

Γ ` P1 .∆′1 · k : α

Γ ` P1 .∆1 · k : α
and

Γ ` P2 .∆′2 · k : α

Γ ` P2 .∆2 · k : α

Then we apply [CONC] to P1 and P2 to obtain:

Γ ` P1 .∆1 · k : α Γ ` P2 .∆2 · k : α

Γ ` P1 | P2 .∆′ · k : ⊥

Now applying [CRES] and [BOT], we are done.

Case [COM] (k![ẽ];P1) | (k?(x̃) in P2) → P1 | P2[c̃/x̃] with ẽ ↓ c̃. The assumption is derived
from:

Γ ` ẽ. S̃ Γ ` P1 .∆′1 · k : α

Γ ` k![ẽ];P1 .∆′1 · k : ![S̃]
and

Γ · x̃ : S̃ ` P2 .∆′2 · k : α

Γ ` k?(x̃) in P2 .∆′2 · k : ?[S̃];α

and [BOT] with ∆′i ≺ ∆i, [CONC] with ∆1 ◦∆2 · k :⊥ = ∆′, and [BOT] with ∆′ ≺ ∆. Then by (4.1),
we know Γ ` c̃. S̃. By applying Substitution Lemma, we have:

Γ ` P2[c̃/x̃].∆
′
2 · k : α

4.5. SUBJECT REDUCTION 57

Now the application of [BOT] and [CONC] to P1 and P2[c̃/x̃], then by [BOT], we complete this
case.

Case [STR]. By Subject-Congruence.

Case inwhile/outwhile for 3 processes (νk12,k23,k13) (P1 | P2 | P3). Assume well-formed ring
topology (Definition 1)

Case E[e]→ E[true]

By [OUTWHI1],

(νk12,k23,k13) (〈k13,k12〉.outwhile(e){ Q1[k13,k12] } |
k23.outwhile(k12.inwhile){ Q2[k12,k23] } |
〈k13,k23〉.inwhile{ Qn[k13,k23] })

→ (νk12,k23,k13) (k13 † [true] | k12 † [true] |
Q1[k13,k12]; 〈k13,k12〉.outwhile(e′){ Q1[k13,k12] } |
k23.outwhile(k12.inwhile){ Q2[k12,k23] } |
〈k13,k23〉.inwhile{ Q3[k13,k23] })

Γ ` (k13 † [true] | k12 † [true] | Q1;P1 | P2 | P3).{k12 : T12; ![T12]
∗ ◦ ?[T ′12]

∗†,

k13 : T13; ![T13]
∗ ◦ ?[T ′13]

∗†,

k23 : ![T23]
∗◦?[T ′23]

∗}

By [INWHI1],

(νk12,k23,k13) (k13 † [true] | k12 † [true] |
Q1[k13,k12]; 〈k13,k12〉.outwhile(e′){ Q1[k13,k12] } |
k23.outwhile(k12.inwhile){ Q2[k12,k23] } |
〈k13,k23〉.inwhile{ Q3[k13,k23] })

→ (νk12,k23,k13) (k13 † [true] |
Q1[k13,k12]; 〈k13,k12〉.outwhile(e′){ Q1[k13,k12] } |
k23.outwhile(true){ Q2[k12,k23] } |
〈k13,k23〉.inwhile{ Q3[k13,k23] })

Γ ` (k13 † [true] | Q1;P1 | P2 | P3).{k12 : T12; ![T12]
∗ ◦ ε.end†,k13 : T13; ![T13]

∗ ◦ ?[T ′13]
∗†,k23 : ![T23]

∗◦?[T ′23]
∗}

58 CHAPTER 4. CORRECTNESS PROOF OF N-BODY IMPLEMENTATION

By [OUTWHI1],

(νk12,k23,k13) (k13 † [true] |
Q1[k13,k12]; 〈k13,k12〉.outwhile(e′){ Q1[k13,k12] } |
k23.outwhile(k12.inwhile){ Q2[k12,k23] } |
〈k13,k23〉.inwhile{ Q3[k13,k23] })

→ (νk12,k23,k13) (k13 † [true] | k23 † [true] |
Q1[k13,k12]; 〈k13,k12〉.outwhile(e′){ Q1[k13,k12] } |
Q2[k12,k23]; k23.outwhile(true){ Q2[k12,k23] } |
〈k13,k23〉.inwhile{ Q3[k13,k23] })

Γ ` (k13 † [true] | k23 † [true] | Q1;P1 | Q2;P2 | P3).{k12 : T12; ![T12]
∗ ◦T ′†12; ?[T ′12]

∗,

k13 : T13; ![T13]
∗ ◦ ?[T ′13]

∗†,

k23 : T23; ![T23]
∗ ◦ ?[T ′23]

∗†}

By [INWHI1],

(νk12,k23,k13) (k13 † [true] | k23 † [true] |
Q1[k13,k12]; 〈k13,k12〉.outwhile(e′){ Q1[k13,k12] } |
Q2[k12,k23]; k23.outwhile(true){ Q2[k12,k23] } |
〈k13,k23〉.inwhile{ Qn[k13,k23] })

→ (νk12,k23,k13) (Q1[k13,k12]; 〈k13,k12〉.outwhile(e′){ Q1[k13,k12] } |
Q2[k12,k23]; k23.outwhile(true){ Q2[k12,k23] } |
Q3[k13,k23]; 〈k13,k23〉.inwhile{ Q3[k13,k23] })

Γ ` (Q1;P1 | Q2;P2 | Q3;P3).{k12 : T12; ![T12]
∗ ◦T ′†12; ?[T ′12]

∗,

k13 : T13; ![T13]
∗ ◦T ′†13; ?[T ′13]

∗,

k23 : T23; ![T23]
∗ ◦T ′†23; ?[T ′23]

∗}
Γ ` (Q1;P1 | Q2;P2 | Q3;P3).{k12 : ⊥†;⊥,k13 : ⊥†;⊥,k23 : ⊥†;⊥}

Case E[e]→ E[false]

By [OUTWHI2],

(νk12,k23,k13) (〈k13,k12〉.outwhile(e){ Q1[k13,k12] } |
k23.outwhile(k12.inwhile){ Q2[k12,k23] } |
〈k13,k23〉.inwhile{ Qn[k13,k23] })

→ (νk12,k23,k13) (k13 † [false] | k12 † [false] | 0 |
k23.outwhile(k12.inwhile){ Q2[k12,k23] } |
〈k13,k23〉.inwhile{ Q3[k13,k23] })

4.5. SUBJECT REDUCTION 59

Γ ` (k13 † [true] | k12 † [true] | 0 | P2 | P3).{k12 : ε.end◦ ?[T ′12]
∗†,k13 : ε.end◦ ?[T ′13]

∗†,k23 : ![T23]
∗◦?[T ′23]

∗}

By [INWHI2],

(νk12,k23,k13) (〈k13,k12〉.outwhile(e){ Q1[k13,k12] } |
k23.outwhile(k12.inwhile){ Q2[k12,k23] } |
〈k13,k23〉.inwhile{ Qn[k13,k23] })

→ (νk12,k23,k13) (k13 † [false] | 0 |
k23.outwhile(false){ Q2[k12,k23] } |
〈k13,k23〉.inwhile{ Q3[k13,k23] })

Γ ` (k13 † [true] | k12 † [true] | 0 | P2 | P3).{k12 : ε.end,k13 : ε.end◦ ?[T ′13]
∗†,k23 : ![T23]

∗◦?[T ′23]
∗}

By [OUTWHI2],

(νk12,k23,k13) (k13 † [false] | 0 | k23.outwhile(false){ Q2[k12,k23] } |
〈k13,k23〉.inwhile{ Q3[k13,k23] })

→ (νk12,k23,k13) (k13 † [false] | k23 † [false] | 0 | 0 |
〈k13,k23〉.inwhile{ Q3[k13,k23] })

Γ ` (k13 † [true] | k12 † [true] | 0 | P2 | P3).{k12 : ε.end,k13 : ε.end◦ ?[T ′13]
∗†,k23 : ε.end◦?[T ′23]

∗}

By [INWHI2],

(νk12,k23,k13) (k13 † [false] | k23 † [false] | 0 | 0 | 〈k13,k23〉.inwhile{ Q3[k13,k23] })
→ (νk12,k23,k13) (0 | 0 | 0)

Γ ` (k13 † [true] | k12 † [true] | 0 | 0 | 0).{k12 : ε.end,k13 : ε.end,k23 : ε.end}

Finally, apply [BOT].

The result can be extended to (P1 | . . . | Pn) by expanding the middle process from P2 to
Pi (2≤ i≤ n).

Case [PASS] (throw k[k′];P1) | (catch k(k′) in P2) → P1 | P2. The assumption is derived from:

Γ ` P1 .∆′1 · k : β

Γ ` throw k[k′];P1 .∆′1 · k : ![α];β · k′ : α

and
Γ ` P2 .∆′2 · k : β · k′ : α

Γ ` catch k(k′) in P2 .∆′2 · k : ?[α];β

and [BOT] with ∆′i ≺ ∆i, [CONC] with ∆1 ◦∆2 · k : ⊥ · k′ : α = ∆′ and [BOT] with ∆′ ≺ ∆. Note
that k,k′ 6∈ dom(∆1,∆2,∆

′
1,∆
′
2). By applying [BOT], [CONC] to P1 and P2, and then by [BOT], we

obtain the required result.

60 CHAPTER 4. CORRECTNESS PROOF OF N-BODY IMPLEMENTATION

Case [IF1],[IF2]. Trivial.

Case [DEF] def D in (X [ẽk̃] | Q) → def D in (P[c̃/x̃] | Q) with ẽ ↓ c̃ and X(x̃k̃) = P ∈ D. Sim-
plifying the recursive definition to the single case, we set D = (X(x̃k̃) = P). Then the assumption
is derived from:

Γ ·X : S̃α̃ · x̃ : S̃ ` P. k̃ : α̃

ΓX : S̃α̃ ` X [ẽk̃].∆
′
1 · k̃ : α̃ Γ ·X : S̃α̃;` Q.∆

′
2

Γ ·X : S̃α̃ ` X [ẽk̃] | Q.∆
′′ · k̃ : α̃ ∆

′′ ≺ ∆
′

Γ ` def X(x̃k̃) = P in (X [ẽk̃] | Q).∆
′ · k̃ : α̃

with ∆0 = ∆′ · k̃ : α̃, ∆′ = ∆′1 ◦∆′2 and ∆0 ≺ ∆. Note that ∆′1 contains only⊥ or ε.end. Then applying
Substitution Lemma to P, we have:

Γ ·X : S̃α̃ ` P[c̃/x̃]. k̃ : α̃

Notice that k̃∩dom(∆′1) = /0, since (∆′1 ◦∆′2) · k̃ : α̃ is defined. Then by Weakening, we have:

Γ ·X : S̃α̃ ` P[c̃/x̃].∆
′
1 · k̃ : α̃

Now by [CONC], we have
Γ ·X : S̃α̃ ` P[c̃/x̃] | Q.∆

′′ · k̃ : α̃

Finally by [BOT] (∆′′ ≺ ∆′), then by [DEF], we obtain:

Γ ` def X(x̃k̃) = P in (P[c̃/x̃] | Q).∆
′ · k̃ : α̃

Then we can apply [BOT] to obtain ∆, as desired.

4.6 Progress property

We can now model any process (composition of processes) that uses a ring topology, and show that
they are deadlock free if they conform to our definition of well-formed topology (Definition 1).
An exception is when there are shared names in the process P, composition with other processes
might change the well-formed topology property of the process thus making our deadlock-free
claim invalid.

The proof uses subject reduction theorem proven above (§4.5.3).

Theorem 1. Suppose Γ ` P.∆ and P is under a well-formed topology without shared names Then
P is deadlock free

ie. Suppose P →∗ P′ then
{

either P′ ≡ 0
or ∃Q (P′ → Q)

Proof. Let P be a process under well-formed topology and do not have shared names. Given the
typings are correct, under subject reduction, no process will reduce to a deadlock state so P is
deadlock free in all cases we have shown in above proof.

4.7. CORRECTNESS PROOF FOR N-BODY SIMULATION 61

P1 P2

P3

c3 c2

c1

Tail

BodyHead

Fig. 4.11: Shared channels c1,c2,c3 between 3 n-body processes

4.7 Correctness proof for n-body simulation

In Table 3.1 from the previous section, we have shown the session declarations of the ring topology
used in our n-body implementation.

4.7.1 N-body simulation in session calculus

Fig. 4.11 shows the shared channels between the processes in the n-body simulation. The pro-
cesses can be represented in session calculus by

P1 ≡ request c1(k12) in request c3(k13) in k12?(int) in 〈k12,k13〉.outwhile(e){ Q1 }
P2 ≡ request c2(k23) in accept c1(k12) in k23?(int) in k12![int];k23.outwhile(k12.inwhile){ Q2 }
P3 ≡ accept c2(k23) in accept c3(k13) in k23![int];〈k13,k23〉.inwhile{ Q3 }

Q1 ≡ 〈k12,k13〉.outwhile(e){ k12![Particle[]] | k13?(Particle[]) in 0 }
Q2 ≡ k23.outwhile(k12.inwhile){ k23![Particle[]] | k12?(Particle[]) in 0 }
Q3 ≡ 〈k13,k23〉.inwhile{ k13![Particle[]] | k23?(Particle[]) in 0 }

The typing of the processes are

Γ ` P1 .{k12 : ?[int]; ![![![Particle[]].end]∗]∗.end, k13 : ![![?[Particle[]].end]∗]∗.end}
Γ ` P2 .{k23 : ?[int]; ![![![Particle[]].end]∗]∗.end, k12 : ![int]; ?[?[?[Particle[]].end]∗]∗.end}
Γ ` P3 .{k13 : ?[?[![Particle[]].end]∗]∗.end, k23 : ![int]; ?[?[?[Particle[]].end]∗]∗.end}

Reduction

To prove that the our program, ((νk) 12,k23,k13)(P1 | P2 | P3) is deadlock free, it needs to satisfy
the preconditions laid out in progress property (§4.6).

62 CHAPTER 4. CORRECTNESS PROOF OF N-BODY IMPLEMENTATION

• Process is under a well-formed topology

• Process do not have shared names

We first inspect the typing of the process from the end,

Γ ` (k12![Particle[]] | k13?(Particle[]) in 0).{k12 : ![Particle[]].end, k13 : ?[Particle[]].end}
Γ ` (k23![Particle[]] | k12?(Particle[]) in 0).{k23 : ![Particle[]].end, k12 : ?[Particle[]].end}
Γ ` (k13![Particle[]] | k23?(Particle[]) in 0).{k13 : ![Particle[]].end, k23 : ?[Particle[]].end}

When the three processes are composed, all of the sessions have a dual, satisfying the conditions
for Q1,Qi,andQn in Definition 1

Γ ` Q1 .{k1,2 : T1,2, k1,n : T1,n}
Γ ` Qi .{ki,i+1 : Ti,i+1, ki−1,i : T ′i−1,i}
Γ ` Qn .{k1,n : T1,n

′, kn−1,n : Tn−1,n
′}

and Ti, j = T ′i, j.

Given above, the subprocesses Q1, Q2, Q3 is under a well-formed topology by matching the
structures in the definition.

We can also show that the processes P1, P2, P3 are under a well-formed topology, after the
sessions are established with request and accept pairs and node information exchange (send
and receive of a single int). Shared names do not exist in the process after the link phase.

Therefore, by progress property, the n-body implementation is deadlock free.

4.8 Summary

In this chapter we formalised the multichannel inwhile and outwhile construct in session cal-
culus. An updated session calculus and session typing system is presented. We have also included
a proof for subject reduction of inwhile outwhile, and by that shown a well-formed ring topol-
ogy will have progress property and never deadlocks.

Chapter 5

Testing and Evaluation

In this chapter we will first discuss some failed attempts (§5.1) and testing results (§5.2) that
influenced the current design of SJ applications on Axel.

Then we will look at the benchmark results of our n-body implementation with SJ comparing
our results to non-session based message passing solution such as MPJExpress (§5.3.2). We will
also look at the performance of our C translation, and compare the results with ordinary SJ and SJ
with FPGA (§5.3.2).

5.1 Alternative designs

5.1.1 SJ and acceleration hardware allocation

Current design The current design of applications on cluster maps 1 SJ executable to 1 hard-
ware accelerator. Multiple SJ executables can be run on a single node to use multiple hardware.
Such as node using both FPGA and CPU shown in the example Fig 5.1. This approach is very
simple and the class design can be minimalistic, with implementations for specific hardware en-
capsulated in a single class. eg. FPGAHead is a Head node that uses FPGA. CPUBody is a Body
node that uses C on CPU. JavaTail is a Tail node that uses SJ/Java on CPU. We can execute the
three nodes to have a hybrid execution with FPGA and SJ.

SJ as a coordinator We have previously considered using a single SJ application running on a
node to be a coordinator between hardware accelerators and other nodes. This structure can allow
dynamic load balancing if the hardware accelerators are of different performance (eg. coordinating
both a GPU and a FPGA connected to the same node), especially since SJ will be in a central
position that overlooks all aspects of inter-node and inter-component communications.

Typically there will be a single complicated function that we wish to accelerate. In the case of
our n-body simulation, the said function is computeForces(). If a SJ program controls more than
one hardware accelerators, then it would make sense to have computeForces() transparently

63

64 CHAPTER 5. TESTING AND EVALUATION

FPGA

!{FPGA:..,GPU:..}

label selection

SJ coordinator

GPU

Node Node

GPUFPGA

SJ SJ

Fig. 5.1: Left: SJ as a coordinator, Right: current design

handle load balancing between the hardware accelerators based on their workload or performance.
There might be a chance to exploit some advanced session programming constructs such as label
selection if the communication between hardware accelerators and main SJ components is also
session-typed.

The reason this is ultimately not implemented is because the lack of advantage over ordinary
method call. We currently only have a single type of hardware accelerator implemented (FPGA),
and the performance compared with native implementations are far from good; or in other words,
we do not have spare performance for features such as a load balancer. In the current toolchain
from Axel’s SDK, input values are partitioned to different hardware components based on a static
XML configuration file. This has worked well so far on applications built for Axel, with [32]
showing good results with a 1/3 GPU and 2/3 FPGA manual partition.

Dynamic load balancing based on SJ, however, remains a novel idea for future work.

5.1.2 Communication medium

Explicit SJ communication The original proposal was to introduce label selection to the accel-
erator - CPU communication, so in our main SJ program we can demonstrate using two labels for
the two compute tasks, computeForces() invoked in every iteration and computePositions()
invoked in every completed ring to update the positions of the particles. Because of reasons out-
lined in 3.2.1 that FPGA is more suitable to accelerate a single task, we instead. Seeing that there
are no extra benefits on using explicit communication in accelerator - CPU link, we reverted to
using an implicit (class based method call) communication between CPU part and FPGA part as
in current design.

However if SJ as a coordinator were implemented, most likely the communication medium
will be in SJ.

Shared memory between SJ and hardware accelerators This was attempted but was later
abandoned. There are many advantages in using shared memory (SHM) to share data between

5.2. PRE-IMPLEMENTATION TESTS: INNER PRODUCT 65

FPGA

main SJ

SJ

main SJ

FPGA

JNA/JNI

SHM

Fig. 5.2: Left: using SJ to share data, Right: using shared memory to share data

two different processes. Shared memory is efficient, and is the method which data is exchanged
between C code and FPGA in the Axel SDK [32, 2]. Some parts of FPGA memory is mapped to
main memory to pass simple function arguments (such as size of array FPGA should expect) and
o kick start the computation on FPGA.

If Java have a robust mechanism to access shared memory directly, this will save us a lot of
effort (and overhead) passing data as function arguments, then through a cross-language library
(JNA) to communicate with the FPGA. As expected from the design principals of Java, SHM with
the host operating system is not possible without the use of Java Native Interface (JNI), because
of the closed nature of the Java Virtual Machine. This offers no obvious advantage over our JNA-
based solution.

5.2 Pre-implementation tests: inner product

At the initial stage of the project, we wish to run a simple algorithm to check that all the libraries
work as intended and the communication and the overall design are correct.

Two of the main features we wished to examine were methods of using JNA and the magnitude
of overhead when using JNA to access native functions.

Inner product was the algorithm used for this test, where all the computing nodes are first

loaded with ai i ∈ {1..n}. At each step,
n

∑
i=1

ai×bi where bi i ∈ {1..n} is received from a neighbour

node.

5.2.1 JNA direct mapping

The JNA project states that there are two methods of using the library. interface mapping and
direct mapping. The usage of the two methods are quite similar, and the developers of JNA

66 CHAPTER 5. TESTING AND EVALUATION

1 public class CPUInnerProduct extends InnerProduct {
2 public CPUInnerProduct() {
3 Native.register(System.getProperty("user.dir")+"/lib/libinp_cpu.so");
4 }
5

6 // Direct mapped function
7 public static native int innerproduct(int[] a, int[] b, int size);
8 }

Listing 5.1: JNA direct mapping example

library strongly encourages the use of direct mapping for high performance applications 1 because
of the lower native function calling overhead.

To tell the difference between the two methods, we should first remember that JNA analyses
native libraries at runtime.

For interface mapping, a Java interface needs to be supplied. For example, LibExample in-
terface in Listing A.2 specifies what JNA should expect in our supplied shared library. In our
example, the shared library is libexample.so in the calling directory. At runtime, JNA analyses
the Library interface and instantiate any new classes for our declared type. LibExample does not
use any external classes or datastructure, but it is common that some parameters map to a class
or C struct. For example, our implementation of n-body simulation uses a Particle class to
represent a particle.

Instead of providing a subclass of JNA’s Library interface, the direct mapping method allows
taking the function signature and declare them directly as a native static method, given there
is a build-in mapping between chosen primitives or arrays of primitives This is much more conve-
nient for simple datatype than normal interface mapping; However, this method do not support all
function parameter and return types. In particular, arrays of Pointer-based classes are not allowed
in direct mapped methods.

5.2.2 JNA interface mapping and direct mapping

Fig. 5.3 shows the performance when direct mapping was compared to interface mapping method
and native SJ. From the figure it can be seen that direct mapping has a slight performance edge
over interface mapping. CPU in the legend refers to computation code written in C and runs in
the CPU.

5.2.3 Execution in CPU and FPGA

Next, we compare the performance of running inner product in CPU and FPGA.

1https://jna.dev.java.net/#direct

https://jna.dev.java.net/#direct

5.2. PRE-IMPLEMENTATION TESTS: INNER PRODUCT 67

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 3 4 5 6 7 8 9

R
u
n
ti
m

e
 (

m
ill

is
e
c
o
n
d
s
)

Number of nodes

CPU Direct mapping
SJ

CPU Interface mapping

Fig. 5.3: JNA direct mapping shows better performance over interface mapping

In Fig. 5.4 FPGA shows a much worse performance than either SJ or CPU implementation.
This can be explained by the lack of complex operations and pipelinable operations. The calcu-
lation of inner product involves n multiplications and (n−1) summation steps, so it is of O(n) in
each node. Our main implementation to run on the cluster, the n-body simulation, calculates the
aggregate forces between a particle and other (n−1) particles. This is repeated for n particles, and
requires n× (n− 1) operations in total. N-body simulation is therefore more complex than inner
product at O(n2).

When a simple algorithm is implemented on the FPGA, it spends a low proportion of time in
computing the results, but a high proportion of time in the transfer of data to and from the FPGA
memory which is separate from the main memory. This might overweigh all benefits of using a
fast hardware accelerator, since in an ordinary microprocessor, the data can be accessed directly
and do not need the extra data transfer.

It is possible that with a big enough problem size, the total computation time in FPGA that
includes data transfer will be less than total computation time in microprocessor. But do remember
when the problem size is increased, the data transfer time will increase accordingly. If the total
computation time increases in a rate equal or lower than which a CPU scales, as we saw in Fig. 5.3,
then FPGA might not be a feasible solution for your task.

Nonetheless, the main reason for this test is to verify that FPGAs can be operated from SJ and
calculates results correctly. It had been shown in [32] that n-body is a viable algorithm to run on
FPGAs.

The conclusion of the initial testing with inner product is

68 CHAPTER 5. TESTING AND EVALUATION

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7 8 9

R
u
n
ti
m

e
 (

m
ill

is
e
c
o
n
d
s
)

Number of nodes

CPU Direct mapping
SJ

FPGA Direct mapping

Fig. 5.4: FPGA performance of innerproduct is much worse than JNA direct mapping and native SJ imple-
mentation

• Direct mapping, as the authors of JNA have suggested, yields better performance.

• It is necessary that the main computation function in the parallel algorithms to be sufficiently
complex to overcome the data transfer overhead

5.3 Benchmarks

This section contains all benchmark results and comparison between different implementations
with Axel and SJ.

Computation Communication
SJ Java SJ
SJ + C C with JNA SJ
SJ + FPGA FPGA with JNA SJ
MPJExpress Java MPJExpress
Translated C C TCP-sockets, translated from SJ

Table 5.1: Implementations which we will compare

5.3. BENCHMARKS 69

5.3.1 Benchmark methodology

The initial particles configurations came from the Dubinski 1995 data set available on http:
//bima.astro.umd.edu/nemo/archive/. Each node will load their partition of the particles,
the starting offset of the particle indices are calculated by the node’s position in the ring.

Head will be node0 and Tail will be node8, the number of particles each node loads is speci-
fied as a command-line argument.

This allows flexible assignment of number of particles to each node such that more particles
can be assigned to a node if the node runs on faster hardware.

For all implementations with SJ, 5 warm-up iterations are run before timing begins. This
allows the Java Just-in-time (JIT) compiler to optimise the code for a (marginally) better perfor-
mance.

To run the implementations, the SJ application is launched in each of the nodes involved in the
computation. We have put together sessionj-tools, a set of Perl scripts 2 to automatically resolve
hosts and port numbers of each component and connect the nodes in the correct order.

5.3.2 Benchmark results

SJ-based implementation

First we present the total runtime of three implementations of n-body simulation with SJ, some of
the results are shown in Table 5.2 and plotted on Fig. 5.5.

SJ A pure SJ implementation that does not involve the JNA library or acceleration hardware.

SJ + C An implementation that uses JNA library to bridge SJ with C. The main computation
function is implemented in C that runs on the CPU.

SJ + FPGA An implementation that uses JNA library to bridge SJ with C. The main computation
function marshals the data from SJ and forwards to and from the FPGA using DMA.

MPJExpress An implementation of the MPI standard in pure Java. This is our candidate for non-
session based message passing framework. In previous comparisons in [21], SJ performs
competitively with MPJExpress.

The graph in Fig. 5.5 shows that with an increasing number of particles, the performance of
the FPGA implementation starts to be more efficient than pure SJ. Runtime for the SJ + FPGA
combination overtook SJ when the total particle number is over 33000. We have discussed the im-
portance of the complexity of the algorithm and choosing suitable problem size in §5.2.3, this is
the point where the problem size is big enough for FPGA to be feasible. The best performance of

2Full details of the miniproject can be found on http://www.doc.ic.ac.uk/˜cn06/sessionj-tools/

http://bima.astro.umd.edu/nemo/archive/
http://bima.astro.umd.edu/nemo/archive/
http://www.doc.ic.ac.uk/~cn06/sessionj-tools/

70 CHAPTER 5. TESTING AND EVALUATION

Runtime (ms)
Implementation

SJ SJ + CPU SJ + FPGA MPJExpress

To
ta

ln
um

be
ro

fp
ar

tic
le

s

17600 6534 13861 9129 4450
19800 7845 15973 10064 5393
22000 10037 17750 11047 6896
24200 10808 19159 13801 8708
28600 13354 21571 14558 12497
30800 14819 24141 15627 15979
33000 17644 24057 15801 18747
35200 19567 23747 16602 22801
37400 21246 23310 17744 25900
39600 23750 25262 18055 27054
41800 26743 30150 18242 30266
44000 29522 32352 19145 30950

Table 5.2: A partial table of results showing the crucial point when runtime of SJ+FPGA implementation
overtakes SJ and MPJExpress

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 10000 20000 30000 40000 50000 60000 70000

R
u
n
ti
m

e
 (

m
ill

is
e
c
o
n
d
s
)

Number of particles

SJ + FPGA
SJ + CPU

SJ
MPJExpress

Fig. 5.5: Runtime results against number of particles in 11 nodes over 5 iterations

5.3. BENCHMARKS 71

SJ + FPGA is when the number of particles reach maximum in our benchmark, which received al-
most 2 times speedup compared to SJ implementation. (Fig. A.1 in the appendix shows a complete
graph of speedup against the same x-axis)

For the SJ + C version, the performance is worse than SJ. This is expected since the com-
munication in SJ + C version is identical to that of SJ version, and the calculation uses identical
hardware. The towards can only be explained by other minor factors such as JVM activities or
network latency.

Comparison with C-translation

While the performance of the SJ + FPGA arrangement fared well with the SJ counterpart, the
results of SJ implementations are dismal compared to a native C implementation as shown in
Fig. 5.6. Speedup compared to SJ is 7 times maximum, and the average speedup is 5 times.
Again, Fig. A.1 shows the speedup in more details.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 10000 20000 30000 40000 50000 60000 70000

R
u
n
ti
m

e
 (

m
ill

is
e
c
o
n
d
s
)

Number of particles

FPGA
SJ

C translation

Fig. 5.6: Comparison of SJ+FPGA and its C-translation

We need to keep in mind again that the two programming languages are very different in terms
of intended use and design, which we went into details in §3.3.1.

Sources of overhead Fig. 5.7 shows the flow of data during a call to the main computation
function, computeForces() in SJ. Inputs from SJ are passed to the shared library as arguments to
compute forces() in C. Inside compute forces(), inputs are written to and results read from
the FPGA’s memory. Then the results are forwarded back to the SJ computeForces().

72 CHAPTER 5. TESTING AND EVALUATION

calculation in FPGA
Writes input to FPGA Reads results from FPGA

dmaread()dmawrite()

C shared library: compute_forces()

Java: computeForces()

JNA type mappingsJNA type mappings

implicit operation explicit operation

Fig. 5.7: Flow of data between SJ and FPGA in a single computeForces() call

In comparing the runtime of SJ+FPGA version and C-translation, the differences between the
two are the time spent on conversion to and from the two languages since the communication
structure of the program are identical. The conversion includes data type and format translation,
as well as copying the data from JVM memory space to main memory.

Fig. 5.8 shows a comparison of time spent in the main computation (ie. compute forces()),
and time spent in computeForces() which includes all the aforementioned conversion overhead.
This microbenchmark was compiled using the same configuration as in the execution of Fig. 5.6.
Note that the numbers shown in the graph are average per call to computeForces().

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

2200
4400

6600
8800

11000

13200

15400

17600

19800

22000

24200

26400

28600

30800

33000

D
u
ra

ti
o
n
 (

m
ill

is
e
c
o
n
d
s
)

Number of particles

Time spent in computation only
Time spent in computeForces() in SJ

Fig. 5.8: Graph showing the actual execution time in FPGA and the execution time from SJ’s perspective

From Fig. 5.8, the overhead (ie. differences of the bars) overshadows the time spent on com-
putation. (green bars corresponds to outer box in Fig. 5.7, and red to inner box) Moreover, with the

5.3. BENCHMARKS 73

more particles used in the simulation, the efficiency shows a slow improvement. Interpolating the
results, if we can increase the input size indefinitely, the proportion of overhead would eventually
be small enough to be negligible. Whether using that input size is realistic is another question -
the duration of the calculation will be very long, judging from the results that computation time
with 33000 particles is about a third of the total function call time. The efficiency of this function
call is definitely less than 50%.

5.3.3 Comparing with Axel’s implementation

In [32], the implementation of n-body simulation for 81920 particles on FPGA is quoted to have
Tcomp = 5.62s and CPU Tcomp = 99.3s, a total of 17.7 times improvement on computation time.

While we wish to compare the performance of our implementation directly, we have a slight
difference in specific algorithm details. In this project, we have chosen to use a 2D n-body sim-
ulation, ie. particles in the universe we simulate all lies on a 2D plane. This choice is based on
previous SJ parallel algorithm works [3, 21]. In the Axel implementation, 3D n-body simulation
is used instead.

3D n-body simulation should be seen as an advantage for the FPGA implementation. As
shown in Listing 2.5, calculation on an extra axis can be parallelised giving a better performance
than CPU. If the parallel efficiency is 100%, we would be seeing 3 times speedup on 3D n-body
with FPGA but only 2 times speedup on a 2D n-body simulation.

The speedup we can get from SJ version is The speedup of is C-translation from SJ imple-
mentation is on average 5 (See Fig. A.1). and on Fig. 5.6 the results of C-translation interpolates
to about 20s. If we take into account the 2D/3D differences above, the runtime of Axel’s FPGA
implementation 5.62s×3/2 is still quite a lot faster than our c-translation.

It should be reminded that this implementation runs on a different configuration and runs a
simplified n-body simlulation algorithm. If the same FPGA implementation is used, the compar-
ison would be TCP sockets/Session sockets (c-translation) against MPI. We have shown that the
Java implementation of MPI, MPJExpress compares competitively with SJ implementation. If the
comparison environment is the same, it should be expected that similar results would hold for
C-translations and MPI.

5.3.4 Benchmark results conclusion

In conclusion, despite the performance improvement of SJ+FPGA over vanilla SJ implementation
of our n-body simulation, the biggest bottleneck of the design lies in the conversion library JNA.
The translation of SJ implementation to C has eliminated the need for such runtime conversion
library, and shows a much improved performance over versions of code that relies on Java, yet the
performance still could not match implementation with MPI using the Axel toolchain.

74 CHAPTER 5. TESTING AND EVALUATION

5.4 Summary

In this chapter, we had some discussion on previously planned and alternative application struc-
ture. Next, we looked at an inner product implementation, which it showed that the JNA direct
mapping method is a better way to build cross-language applications such as our implementa-
tion. Finally, we showed some benchmark data of SJ against different implementation of the same
n-body algorithm, most notably, SJ + FPGA combination, MPJExpress - a pure Java MPI imple-
mentation, and a manual C-translation of the SJ + FPGA implementation. Both of SJ + FPGA and
C-translation showed big improvements over native SJ, with SJ + FPGA at 2 times speedup and
C-translation about 5 times speedup. We also identified the overhead of the design, JNA library,
by comparing the duration of the main function call with the main computation time. It showed
that only less than a third of the function call was performing useful computation.

Chapter 6

Conclusion

In our design goals outlined in §3.1, we stated that our main design criteria are efficiency, safety
and readability. Using SJ, We have successfully shown that all the design goals are met:

Efficiency In our implementation of n-body simulation with SJ, the benchmark result shows with
hardware acceleration of FPGA the performance of the simulation are improved. (§5.3.2)

Safety As the n-body simulation is designed in SJ, it is free from communication errors. Fur-
thermore, we have proved that deadlocks Will not happen throughout the execution of the
application from the global view of our implementation. (§4.7)

Readability We use SJ as the main design instrument for our implementations on Axel. SJ is a
high level language that only exposes a minimal set of primitives for communications and
makes use of object-oriented features to structure program design. §2.4

We also looked at a version of our n-body simulation translated to C. §3.4 The implementation
shows potential of C as a target language for parallel designs in SJ. A SJ communication primitives
library in C was developed as a result of the translation. (§3.4)

We have formalised a multichannel inwhile and outwhile construct used for designing par-
allel algorithms. We also derived a definition for well-formed ring topology as part of the formal-
isation above, and delivered a deadlock-free property for all processes under the topology. This
involves a new mechanical proof technique that avoided the use of complex formalism such as
global type (multiparty session type) and shared input queue [16, 34] to model the multichannel
inwhile and outwhile semantics.

We wish formalisation of the multichannel SJ constructs will take SJ further in the field of
parallel programming, given the extra confidence of a deadlock free prove. The results of our
formalisation is built upon a lot of previous and ongoing session types research [4, 8, 9]. Partial
session types, sequential composition, well-formedness of process structures are all additions not
found in [35].

75

76 CHAPTER 6. CONCLUSION

6.1 Future work

• Multiparty session types for SJ. We have shown global communication safety with our
n-body simulation as a theoretical proof. If we have multiparty session types for SJ, we
would be able to show global communication safety by asserting the property from the SJ
framework without a separate proof.

• Automatic translator. The SJ primitives library in C and the manual C translation has
shown prospects of parallel design with a SJ based approach. Avoiding the huge overhead
of runtime translation between the two language and instead providing an SJ runtime in C is
a much preferred approach than mixing language. If further work can extend this approach
and automate the translation, we can have best of session types and HPC programming.

• Generalise approach to GPU. Of all the three computing elements available on Axel,
GPUs are the ones that we have not implemented a SJ version. As described in previ-
ous sections, our approach is designed to use with different hardware and implementations.
This will extend SJ to a wider range of acceleration hardware.

• Full Session C++. X10 programming language [33] from IBM is a research language for
parallel applications in the Partitioned Global Address Space (PGAS) family of languages.
PGAS is a parallel programming model that essentially aggregates distributed memory to a
global address space and exploits locality of reference in memory access for performance.
There are some interest from the SJ community to compare the two languages [3, 17].
However, an interesting feature from an implementator point of view in the language is
a multi language code generator in X10 compiler. X10 can generate Java code and C++
code in their compiler1. SJ uses the same polyglot compiler framework as the X10 project,
and it looks like it is possible to add a similar extension to the SJ compiler. If we are able to
develop a representation of sessions in C++, and incorporate this information in the runtime
environment, then we could possibly get a complete session-based C++ language.

• Integrating SJ into heterogeneous cluster toolchain As it stands, SJ cannot be used di-
rectly as a part of the Axel toolchain.

The toolchain uses MPI as the inter-node communication tool. All the code for each hard-
ware accelerator (eg. fpga.c, gpu.c, cpu.c) is compiled separately by their respective
building tool, then linked to a single executable by the MPI compiler mpicc. mpirun is then
invoked on the executable and the partitioning information (an XML configuration file we
briefly mentioned in §2.5.2) is supplied as part of the arguments.

To fit SJ into the toolchain, it is best that we use SJ as a communication tool to replace
MPI. The main application should be written in SJ, but since SJ/Java cannot perform a link
operation with natively compiled code, there are two possible ways to proceed:

1. Adopt the methods described in this project and use JNA to allow SJ code interoperate
with the precompiled executables. Alternatively go one step further by translating the

1http://docs.codehaus.org/display/XTENLANG/X10+Compiler+Overview

http://docs.codehaus.org/display/XTENLANG/X10+Compiler+Overview

6.1. FUTURE WORK 77

SJ code to C as in §3.4. Note that in this arrangement, the architecture described is
exactly SJ as a coordinator we discussed in §5.1.1.
Dynamic load balancing could be a feature in this arrangement, eliminating the need
to specify the partition split before execution.

2. Session C++ we have just proposed would be an ideal candidate with both perfor-
mance and communication safety: A session types based language that can be used
natively with the heterogeneous components as an inter-component coordinator, and
a communication-safe message passing framework for inter-node communication.

78 CHAPTER 6. CONCLUSION

Bibliography

[1] C. Austin and M. Pawlan. Advanced Programming for the Java 2 Platform with CD-ROM.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[2] Axel project website. http://cc.doc.ic.ac.uk/projects/prj_axel/. Accessed on
2/6/2010.

[3] A. Bejleri, R. Hu, and N. Yoshida. Session-based programming for parallel algorithms:
Expressiveness and performance. In PLACES’09, 2009. http://www.doc.ic.ac.uk/

˜ab406/parallel_algorithms.html.

[4] A. Bejleri and N. Yoshida. Synchronous multiparty session types. Electron. Notes Theor.
Comput. Sci., 241:3–33, 2009.

[5] L. Cardelli and P. Gardner. Membrane computing and biologically inspired
process calculi. Slides available at http://www.lucacardelli.name/Talks/
2009-12-04PiintheSky(ImperialLecture).pdf, 2009. Accessed on 13/1/2010.

[6] P. Collingbourne and P. Kelly. Inference of session types from control flow. In FESCA,
ENTCS. Elsevier, 2008. To appear.

[7] CUDA homepage. http://www.nvidia.co.uk/object/cuda_what_is.html. Accessed
on 13/1/2010.

[8] M. Dezani-Ciancaglini, U. de’Liguoro, and N. Yoshida. On progress for structured com-
munications. In G. Barthe and C. Fournet, editors, TGC, volume 4912 of Lecture Notes in
Computer Science, pages 257–275. Springer, 2007.

[9] M. Dezani-Ciancaglini, S. Drossopoulou, D. Mostrous, and N. Yoshida. Objects and session
types. Inf. Comput., 207(5):595–641, 2009.

[10] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R. Larus, , and S. Levi.
Language Support for Fast and Reliable Message-based Communication in Singularity OS.
In EuroSys’06, ACM SIGOPS, pages 177–190, 2006.

[11] libffi: A Portable Foreign Function Interface Library. http://sourceware.org/libffi/.
Accessed on 30/5/2010.

79

http://cc.doc.ic.ac.uk/projects/prj_axel/
http://www.doc.ic.ac.uk/~ab406/parallel_algorithms.html
http://www.doc.ic.ac.uk/~ab406/parallel_algorithms.html
http://www.lucacardelli.name/Talks/2009-12-04 Pi in the Sky (Imperial Lecture).pdf
http://www.lucacardelli.name/Talks/2009-12-04 Pi in the Sky (Imperial Lecture).pdf
http://www.nvidia.co.uk/object/cuda_what_is.html
http://sourceware.org/libffi/

80 BIBLIOGRAPHY

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1995.

[13] A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. Information and
Computation, 148:36–47, 1999.

[14] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for
structured communication-based programming. In ESOP’98, volume 1381, pages 22–138,
1998.

[15] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In In
Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2008, pages 273–284. ACM Press, 2008.

[16] R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, and K. Honda. Type-safe eventful sessions in
Java. In ECOOP ’10, 2010. To appear.

[17] R. Hu, N. Yoshida, and K. Honda. Session-based distributed programming in java. In
J. Vitek, editor, ECOOP, volume 5142 of Lecture Notes in Computer Science, pages 516–
541. Springer, 2008.

[18] Jacuzzi homepage. http://jacuzzi.sourceforge.net. Accessed on 13/1/2010.

[19] JCUDA homepage. http://www.jcuda.org. Accessed on 13/1/2010.

[20] JNA homepage. https://jna.dev.java.net/. Accessed on 13/1/2010.

[21] Y. Kryftis. Session-based programming for message-passing-based parallel algorithms. Mas-
ter’s thesis, Imperial College London, 2009.

[22] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin. Programming the intel 80-core
network-on-a-chip terascale processor. In SC ’08: Proceedings of the 2008 ACM/IEEE con-
ference on Supercomputing, pages 1–11, Piscataway, NJ, USA, 2008. IEEE Press.

[23] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1989.

[24] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, i. Inf. Comput.,
100(1):1–40, 1992.

[25] G. Moore. Cramming more components onto integrated circuits. Proceedings of the IEEE,
86(1):82–85, Jan. 1998.

[26] MPI: A Message-Passing Interface Standard, Version 2.1. http://www.mpi-forum.org/
docs/mpi21-report.pdf, 2008. Accessed on 13/1/2010.

[27] M. Neubauer and P. Thiemann. An implementation of session types. In In PADL, volume
3057 of LNCS, pages 56–70. Springer, 2004.

http://jacuzzi.sourceforge.net
http://www.jcuda.org
https://jna.dev.java.net/
http://www.mpi-forum.org/docs/mpi21-report.pdf
http://www.mpi-forum.org/docs/mpi21-report.pdf

BIBLIOGRAPHY 81

[28] M. Sackman and S. Eisenbach. Session Types in Haskell: Updating Message Passing for the
21st Century. Technical report, June 2008.

[29] D. Sangiorgi and D. Walker. PI-Calculus: A Theory of Mobile Processes. Cambridge Uni-
versity Press, New York, NY, USA, 2001.

[30] The computer language benchmark game. http://shootout.alioth.debian.org. Ac-
cessed on 13/1/2010.

[31] SJ homepage. http://www.doc.ic.ac.uk/˜rhu/sessionj.html. Accessed on
13/1/2010.

[32] K. H. Tsoi and W. Luk. Axel: a heterogeneous cluster with FPGAs and GPUs. In FPGA
’10: Proceedings of the 18th annual ACM/SIGDA international symposium on Field pro-
grammable gate arrays, pages 115–124, New York, NY, USA, 2010. ACM.

[33] X10 homepage. http://x10-lang.org/. Accessed on 11/6/2010.

[34] N. Yoshida, P.-M. Deniélou, A. Bejleri, and R. Hu. Parameterised multiparty session types.
In C.-H. L. Ong, editor, FOSSACS, volume 6014 of Lecture Notes in Computer Science,
pages 128–145. Springer, 2010.

[35] N. Yoshida and V. T. Vasconcelos. Language primitives and type discipline for structured
communication-based programming revisited: Two systems for higher-order session com-
munication. Electr. Notes Theor. Comput. Sci., 171(4):73–93, 2007.

http://shootout.alioth.debian.org
http://www.doc.ic.ac.uk/~rhu/sessionj.html
http://x10-lang.org/

82 BIBLIOGRAPHY

Appendix A

Appendix

A.1 Java Native Interface (JNI) example

This example is a C program from the official JNI Tutorial [1, Chapter 5].

1 #include <jni.h>
2 ...
3

4 JNIEXPORT jbyteArray JNICALL Java_ReadFile_loadFile(JNIEnv * env, jobject jobj,
jstring name)

5 {
6 caddr_t m;
7 jbyteArray jb;
8 jboolean iscopy;
9 struct stat finfo;

10 const char *mfile = (*env)->GetStringUTFChars(env, name, &iscopy);
11 int fd = open(mfile, O_RDONLY);
12

13 if (fd == -1) printf("Could not open %s\n", mfile);
14 lstat(mfile, &finfo);
15 m = mmap((caddr_t) 0, finfo.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
16 if (m == (caddr_t)-1) {
17 printf("Could not mmap %s\n", mfile);
18 return(0);
19 }
20 jb = (*env)->NewByteArray(env, finfo.st_size);
21 (*env)->SetByteArrayRegion(env, jb, 0, finfo.st_size, (jbyte *)m);
22 close(fd);
23 (*env)->ReleaseStringUTFChars(env, name, mfile);
24 return (jb);
25 }

Listing A.1: Example C function that uses JNI from [1]

83

84 APPENDIX A. APPENDIX

JNI provides a complete mapping between native datatype and Java datatype, such as jstring
and jbyteArray. The JNIEnv *env pointer is the core feature of JNI, which gives the native

program access to the execution environment and data in the JVM. It also helps keeping track
of references for the automatic garbage collection mechanism amongst other metadata, therefore
ReleaseStringUTFChars is issued to notify the garbage collector before the function in Listing A.1
returns.

The Java Development Kit (JDK) comes with a tool javah to generate C header and stub
files as in Listing A.1, but working with code in JNI is still cumbersome and generally considered
difficult.

A.2 Java Native Access (JNA) example

1 /* gcc -shared -o libexample.so libexample.c */
2 int sum(int x, int y)
3 {
4 return x + y;
5 }

Listing A.2: Source of shared library libexample in C

1 package libexample;
2 import com.sun.jna.Library;
3

4 public interface LibExample extends Library {
5 int sum(int x, int y);
6 }

Listing A.3: Java interface for libexample

1 package libexample;
2 import com.sun.jna.Native;
3

4 public class Example {
5 public static void main(String args[]) throws Exception {
6 LibExample libexample = (LibExample) Native.loadLibrary(
7 System.getProperty("user.dir")
8 + "/libexample.so", LibExample.class);
9 System.out.println("Sum is "+libexample.sum(42, 77));

10 }
11 }

Listing A.4: Java code that uses the sum function in libexample

1 package SJExample;
2 import sessionj.runtime.*;
3 import sessionj.runtime.net.*;

A.2. JAVA NATIVE ACCESS (JNA) EXAMPLE 85

4

5 public class Client {
6 final noalias protocol p_client { cbegin.!<int>.!<int>.?(int) }
7

8 public void run(int port) {
9 final noalias SJService svc = SJService.create(

10 p_client, "localhost", port);
11 final noalias SJSocket sock;
12

13 try (sock) {
14 sock = svc.request();
15 sock.send(42);
16 sock.send(77);
17 int result = sock.receiveInt();
18 System.out.println("Server replies: "+result);
19 } catch(SJIncompatibleSessionException ise) {
20 System.err.println("[C] Non-dual behaviour: " + ise);
21 } catch(SJIOException sioe) {
22 System.err.println("[C] Communication error: " + sioe);
23 } finally { /* Close socket */ }
24 }
25

26 public static void main(String argv[]) throws Exception {
27 int port = Integer.parseInt(argv[0]);
28 Client client = new Client();
29 client.run(port);
30 }
31 }

Listing A.5: SJ code similar to Example class in the JNA-Java example

1 package SJExample;
2 import sessionj.runtime.*;
3 import sessionj.runtime.net.*;
4

5 import com.sun.jna.Native;
6 import libexample.LibExample;
7

8 public class Server {
9 final noalias protocol p_server { sbegin.?(int).?(int).!<int> }

10

11 public void run(int port) {
12 final noalias SJServerSocket svr;
13 final noalias SJSocket sock;
14

15 /**
16 * Get an instance of LibExample
17 */
18 String abspath = System.getProperty("user.dir")+"/libexample.so";

86 APPENDIX A. APPENDIX

19 LibExample libexample = (LibExample) Native.loadLibrary(
20 abspath, LibExample.class);
21

22 try (svr) {
23 svr = SJServerSocketImpl.create(p_server, port);
24 try (sock) {
25 sock = svr.accept();
26 int x = sock.receiveInt();
27 int y = sock.receiveInt();
28 int result = libexample.sum(x, y);
29 sock.send(result);
30 } catch(SJIncompatibleSessionException ise) {
31 System.err.println("[S] Non-dual behaviour: " + ise);
32 } catch(SJIOException sioe) {
33 System.err.println("[S] Communication error: " + sioe);
34 }
35

36 } catch(SJIOException sioe) {
37 System.err.println("[S] Communication error: " + sioe);
38 } finally { /* Close socket */ }
39 }
40

41 public static void main(String argv[]) throws Exception {
42 int port = Integer.parseInt(argv[0]);
43 Server server = new Server();
44 server.run(port);
45 }
46 }

Listing A.6: SJ code similar to Example class in the JNA-Java example

This is a full code listing of a JNA example, where the Java code invokes a function in a C
shared library (libexample) to add two numbers. libexample is similar to SumServer/Client
(Listing 2.1).

A.3 Comparison of SJ and C-translation implementation

This section compares SJ implementation and its C-translation of the same SJ implementation.
There is almost a line-by-line correspondence between the two versions.

1 //
2 //$ bin/body left-port body-host right-port input-size
3

4 ... // includes, macros
5

6 volatile uint32_t* fpgaReg;
7 volatile uint8_t* fpgaMem;
8

A.3. COMPARISON OF SJ AND C-TRANSLATION IMPLEMENTATION 87

9 int main(int argc, char **argv)
10 {
11 ... // Variable declarations
12

13 signal(SIGPIPE, &sigpipe_handler);
14 signal(SIGSEGV, &sigsegv_handler);
15

16 prepare();
17

18 // Protocol: cbegin.?(int).![![!<Particle[]>]*]*
19 next_fd = client_socket(argv[2], atoi(argv[3]));
20 // Protocol: sbegin.!<int>.?[?[?(Particle[])]*]*
21 prevnode_fd = server_socket(atoi(argv[1]));
22 prev_fd = accept_connection(prevnode_fd);
23

24 // # of nodes
25 recv_int(next_fd, &nr_of_nodes); // ?(int)
26 ++nr_of_nodes;
27 send_int(prev_fd, &nr_of_nodes); // !<int>
28

29 size = atoi(argv[4]);
30

31 particles = (particle_t *) malloc(sizeof(particle_t)*size);
32 temp_particles = (particle_t *) malloc(sizeof(particle_t)*size);
33 pvs = (particlev_t *) malloc(sizeof(particlev_t)*size);
34

35 init(particles, pvs, size);
36

37 outer_loop_index = 0;
38 OUTWHILE(inwhile(&prev_fd, 1), &next_fd, 1) {
39

40 // This round
41 memcpy(temp_particles, particles, size * sizeof(particle_t));
42

43 // Pump particles through the ring
44 OUTWHILE(inwhile(&prev_fd, 1), &next_fd, 1) {
45

46 // !<Particle[]>, Send particles into ring
47 send_particles(next_fd, temp_particles, size);
48 compute_forces(particles, temp_particles, pvs, size);
49 // ?(Particle[]), Receive from the other end of ring
50 recv_particles(prev_fd, temp_particles);
51

52 }
53

54 compute_forces(particles, temp_particles, pvs, size);
55 compute_positions(particles, pvs, outer_loop_index, size);
56

57 ++outer_loop_index;

88 APPENDIX A. APPENDIX

58 }
59

60 // These are done by SJ automatically
61 close_socket(prev_fd); close_socket(prevnode_fd); close_socket(next_fd);
62 free(particles); free(temp_particles); free(pvs);
63

64 finish(); // Finalise FPGA etc.
65

66 return EXIT_SUCCESS;
67 }

Listing A.7: C translation of SJ n-body Worker node

1 //session jc− cplib : ./ jna. jarsrc/nbody/Body.s j−dlib//
2

3

4 ... // imports, package declarations
5

6 public class Body {
7 // #nodes
8 final noalias protocol p_prev { sbegin.!<int>.?[?[?(Particle[])]*]* }
9 final noalias protocol p_next { ˆ(p_prev) }

10 NBody nbody;
11

12 public Body(NBody nbody) {
13 this.nbody = nbody;
14 }
15

16 public void run(...) throws ClassNotFoundException {
17 ... // Variable declarations
18

19 nbody.prepare();
20

21 try (prevNode) {
22 prevNode = SJServerSocketImpl.create(p_prev, listenPort);
23 try (prev,next) {
24

25 next = nextNode.request();
26 prev = prevNode.accept();
27

28 // # of nodes
29 nodeIndex = next.receiveInt();
30 prev.send(nodeIndex+1);
31

32 particles = new Particle[size];
33 pvs = new ParticleV[size];
34

35 nbody.init(particles, pvs, nodeIndex);
36

A.4. SJ + FPGA SPEEDUP OVER SJ IMPLEMENTATION 89

37 next.outwhile(prev.inwhile()) {
38

39 // This round
40 Particle[] tempParticles = new Particle[size];
41 System.arraycopy(particles, 0, tempParticles, 0, size);
42

43 // Pump particles through ring
44 next.outwhile(prev.inwhile()) {
45 next.send(tempParticles);
46 nbody.computeForces(particles, tempParticles, pvs);
47 tempParticles = (Particle[]) prev.receive();
48 }
49

50 nbody.computeForces(particles, tempParticles, pvs);
51 nbody.computePositions(particles, pvs, i);
52

53 ++i;
54 }
55 } catch (SJIncompatibleSessionException ise) {
56 } catch (SJIOException sioe) {}
57 } catch (SJIOException sioe) {
58 } finally { // Close socket
59 nbody.finish(); // Finalise FPGA etc.
60 }
61

62 }
63

64 }

Listing A.8: SJ n-body Worker

A.4 SJ + FPGA speedup over SJ implementation

Fig A.1 shows the speedup calculated from runtime results from Fig 5.5. We could see that the
speedup increases as we increase the problem size (number of particles).

90 APPENDIX A. APPENDIX

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10000 20000 30000 40000 50000 60000 70000

S
p
e
e
d
u
p

Number of particles

SJ + FPGA Speedup
C-translation Speedup

Fig. A.1: Speedup of SJ + FPGA, C translation vs. SJ in 11 nodes over 5 iterations

	Introduction
	This project
	Contributions

	Background
	Pi-calculus
	Asynchronous -calculus

	Session types
	Syntax of session calculus

	Multiparty session types
	Session programming with SJ
	Branching
	Iteration
	Delegation
	Non session-based alternatives
	Related work

	Axel
	Hardware arrangement
	Software
	Performance

	Parallel Algorithms
	N-body simulation

	Summary

	Design and Implementation
	Design goals
	Session Java on Axel
	Overall design
	Application topology and session typing

	SJ with FPGA
	The need for cross-language features
	Java Native Interface
	Java Native Access
	Problems encountered

	C-translation of SJ n-body implementation
	Why would this work?
	A SJ primitives library for C
	Shortcomings of the library

	Summary

	Correctness Proof of N-body Implementation
	Session calculus with multichannel in/outwhile
	Syntax
	Operational semantics
	Type system
	Duality
	Typing environment
	Typing rules

	Subject reduction
	Well-formed topology
	Subject congruence theorem
	Subject reduction theorem

	Progress property
	Correctness proof for n-body simulation
	N-body simulation in session calculus

	Summary

	Testing and Evaluation
	Alternative designs
	SJ and acceleration hardware allocation
	Communication medium

	Pre-implementation tests: inner product
	JNA direct mapping
	JNA interface mapping and direct mapping
	Execution in CPU and FPGA

	Benchmarks
	Benchmark methodology
	Benchmark results
	Comparing with Axel's implementation
	Benchmark results conclusion

	Summary

	Conclusion
	Future work

	Bibliography
	Appendix
	Java Native Interface (JNI) example
	Java Native Access (JNA) example
	Comparison of SJ and C-translation implementation
	SJ + FPGA speedup over SJ implementation

