
Listen

Simplifying web-based applications through
actor-oriented programming and

publish/subscribe messaging

Imperial College London
Department of Computing

15th June 2010

Samir Talwar
samir.talwar06@imperial.ac.uk

Supervisor
Prof. Alexander L. Wolf

a.wolf@imperial.ac.uk

Abstract

The idea behind Listen was originally to create a web framework that sup-
ported user-created extensions and plugins. More than that, it was intended
to make these extensions not just easy to develop, but also easy to sup-
port, and reward developers who provide hooks that allow others to work
seamlessly within their websites.

As web applications become part of our everyday lives, it becomes increas-
ingly difficult to predict the necessary functionality to keep users happy. Si-
multaneously, integrating all the possible use cases into one application tends
to bloat it, making it very difficult to present a clean interface to the user.
The concept of extensible interfaces in desktop application development has
existed for a long time, but is not possible in the majority of web applications.

Listen changes this by using the actor model to aid developers in splitting
software up into discrete, independent processes which communicate over
a publish/subscribe messaging architecture. Because any process, includ-
ing an externally-developed one, can subscribe to a specific message topic,
extensions that interface with existing functionality to seamlessly integrate
themselves into the main application can be easily created, providing more
features without the clutter and delivering a better user experience.

Acknowledgements

I would like to state my appreciation toward my supervisor, Professor Alexan-
der Wolf, and my second marker, Dr. Cristian Cadar, for providing me with
their most welcome support, as well as listening and offering constructive
feedback to my ramblings in their respective offices. Their well-placed com-
ments amidst my deluge of random thoughts helped keep me on the right
path, and for that, I am incredibly grateful.

I must also express thanks to my partners in crime, the men and women of
Imperial College’s Department of Computing that slaved over their projects
as I slaved over mine, keeping me sane throughout the process. I wish you
all luck in the years ahead.

Contents

1 Background 8
1.1 Actors . 8
1.2 Messaging . 12

1.2.1 Message Queues . 12
1.2.2 Publish/subscribe . 13
1.2.3 Existing Solutions . 14

1.3 Model-View-Controller . 16
1.4 Client-Side Programming . 17

1.4.1 Comet . 18
1.4.2 HTML5 . 21
1.4.3 Accessibility . 22

1.5 Community-Driven Development 23

2 Design 26
2.1 Introduction . 26
2.2 Messaging . 26

2.2.1 Message Structure . 27
2.2.2 Topics . 27
2.2.3 Brokers . 30
2.2.4 Special Topics . 31
2.2.5 Security . 32

2.3 Clients . 32
2.4 The Web Server . 33

2.4.1 Loading processes . 34
2.4.2 Static files . 34
2.4.3 Messaging . 35
2.4.4 Configuration . 35

2.5 Processes . 36
2.5.1 Dependencies . 37
2.5.2 Community-Driven Processes 37

6

3 Using the Framework 40
3.1 Server Processes . 40
3.2 Client Processes . 43

4 Evaluation 46
4.1 Usability . 46

4.1.1 The Application . 46
4.1.2 Configuration . 47
4.1.3 User Interface . 47
4.1.4 Communication . 50
4.1.5 Logging . 51

4.2 Extensibility . 53
4.2.1 Basic Functionality . 53
4.2.2 Security . 54
4.2.3 Server Processes . 54

4.3 Performance . 55
4.3.1 Varying the Server . 56
4.3.2 Varying the Client . 57
4.3.3 Varying the Message Frequency 58

4.4 Reliability . 61

5 Conclusion 64
5.1 Future Work . 64

Bibliography 66

7

Chapter 1

Background

Listen is a web application architecture based on the actor model: each ap-
plication consists of lightweight, independent processes that communicate
through message passing. These processes run concurrently on the server as
well as each individual client—the web browsers used to access the appli-
cation websites—and transmit information through a standardised protocol
which can send messages not only between the client and the server, but
also to other servers. By splitting applications in this way and implementing
a very loosely coupled communication system, Listen tackles a number of
areas, including:

• concurrent programming

• multi-tier broadcast communication

• reusable, task-oriented code

• community-driven extensions

These features culminate in a framework which allows anyone to construct
a web application quickly and easily. In addition, any user with a develop-
ment background can modify the resulting site to better fit their specific
needs, creating an open structure that leverages the power of communities
to build a better web.

1.1 Actors
The actor model was initially created by Carl Hewitt, Peter Bishop and
Richard Steiger as an architecture for artificial intelligence programming with
the understanding that all forms of control and data flow can be represented

8

as messages. Actors were influenced by languages such as Smalltalk and
Lisp, which lend themselves well to building compositions from small chunks.
Similarly, actors, in their most pure form, are composed entirely of messages
to other actors:

Data structures, functions, semaphores, monitors, ports, de-
scriptions, Quillian nets, logical formulae, numbers, identifiers,
demons, processes, contexts, and data bases can all be shown
to be special cases of actors. All of the above are objects with
certain useful modes of behavior. Our formalism shows how all
of the modes of behavior can be defined in terms of one kind of
behavior: sending messages to actors.

Hewitt, Bishop and Steiger, A Universal Modular ACTOR
Formalism for Artificial Intelligence [1]

This sort of methodology lends itself to the development of new domain-
specific languages which treat actors as part of the language. One such
example is ActorScript, a theoretical language developed recently by Hewitt,
in which every entity is an actor [2].

Most, however, take a more practical approach. Erlang, for example, is
a functional language developed by Joe Armstrong for Ericsson that uses
actors to implement concurrent programming. Listing 1.1 is a very simple
program that demonstrates a few of the features actors have to offer.

Even this relatively simple program shows evidence of a number of bene-
fits of the actor model. Our two actors, or “processes”, as Erlang terms them,
are ping and pong, which are spawned by the run function and, using the !
operator, send messages to each other containing a reference to the sender.
Both processes are idle until they receive a message, but when one does, it
sends a message to the other, which fires a message back, and so on, until
Count messages have been sent. During this, they print a line with each mes-
sage, and so the result of calling run(3). would be six lines of alternating
“Ping!” and “Pong!”.

As each actor maintains its own state, they are completely insulated from
the global program, allowing the script interpreter to optimise the threading
to suit the current execution. Locks are also avoided—explicit synchronisa-
tion is often not necessary, as processes do not share data, and waiting for a
result can usually, if not always, be modelled as a message receipt function.

Fortunately for the majority of web developers working in object-oriented
and imperative paradigms, the actor model is not limited to the domain of
functional languages. Scala, for example, is a multi-paradigm language that

9

1 −module(pingpong) .
2
3 % This makes our th r ee f unc t i on s p u b l i c .
4 −export ([run /1 , ping /1 , pong/1]) .
5
6 run (Count) −>
7 % Create two ac tor o b j e c t s c a l l e d `Ping ` and `Pong ` ,
8 % ins t ance s o f the `ping ` and `pong ` .
9 Ping = spawn(pingpong , ping , [Count]) ,
10 Pong = spawn(pingpong , pong , [Count]) ,
11 % Send `Ping ` a message con ta in ing a r e f e r ence to `Pong ` .
12 Ping ! {pong , Pong} ,
13 % End on a high note .
14 true .
15
16 % I f we ' re on the l a s t one , we ' re done : re turn t rue .
17 ping (0) −> true ;
18 % Otherwise , l e t ' s go .
19 ping (Count) −>
20 receive
21 % I f we ge t a message r e f e r r i n g to a `pong ` ins tance :
22 {pong , Pong} −>
23 % Write "Ping ! " to the conso l e .
24 i o : fw r i t e ("Ping ! \n") ,
25 % Send tha t in s tance a message con ta in ing a
26 % re f e r ence to t h i s `ping ` ins tance .
27 Pong ! {ping , s e l f ()} ,
28 % Recurse − s t a r t l i s t e n i n g f o r messages again .
29 % Decrement the counter − when we h i t 0 , we s top .
30 ping (Count − 1)
31 end .
32
33 % Works the same way `ping ` does .
34 pong (0) −> true ;
35 pong (Count) −>
36 receive
37 {ping , Ping} −>
38 i o : fw r i t e ("Pong ! \n") ,
39 Ping ! {pong , s e l f ()} ,
40 pong (Count − 1)
41 end .

Listing 1.1: A simple Erlang program that creates two actors.

10

provides the actor model as a library. Due to the simplicity of the language
and its ability to define new operators, utilising it makes Scala feel as if the
entire language were actor-based. Extensions have also been written for a
number of other languages, including Stage [3], a framework that implements
actors on top of Python. In both cases, such a fusion allows developers
to switch between imperative, object-oriented, functional and actor-based
programming as and when they need, allowing for maximum expressibility.

In all cases, the threading model is one of the key strengths of an archi-
tecture based upon message passing. By idling processes when they aren’t
executing code, a single thread can handle a number of them. By creating
a thread pool which can grow and shrink as necessary, Erlang can handle
several million processes without issue [4].

Implicit concurrency is not the only benefit of actors. As shown above,
processes in Erlang can send messages containing references to themselves or
other processes, allowing for very loose coupling. Processes can spawn other
processes, send messages to them and receive messages in turn, even if the
process is not known to exist at compile time. In this respect, they behave
in similar ways to languages that use an object-oriented paradigm, where
due to inheritance, it is possible to extend a program such that classes may
handle other classes that did not exist at the time of writing the program.
This also allows for easy unit testing, as each actor is an island which can be
loaded on its own and probed from all sides without ever having to invoke
others.

Finally, actors are generally intended to be very lightweight. By limiting
an actor to one small aspect of the overall program, the entire program
becomes very modular, allowing developers to easily change one part without
breaking the rest. In addition, due to the dynamic nature of messages, even
compiled languages only need to replace the changed segments, with the
rest remaining untouched—Erlang even provides support for hot-swapping
modules, so developers can install new functionality without ever stopping
the program. Adding features to a program is also fairly simple—simply
create a new actor and connect it to the rest of the system via message
hooks.

Any system can be represented as a set of actors. Throughout this report,
we will use a basic email software as an example to demonstrate function-
ality. One can think of a web-based email application as being made up
of a number of discrete pieces of functionality. The server side consists of
the processes that transfer email across domains, as well as storage and user
management. Meanwhile, the client handles user interaction—accepting new
emails to send, displaying existing emails, displaying folders (or labels, in the
case of Google’s Gmail) and contacts and providing the user with the ability

11

to manipulate them. Each one of these could be represented as one or more
actors, depending on the aim of the developer, and as they are completely
separate, be distributed amongst any number of servers.

With all these features in mind, actors could be the perfect base unit for
modular, extensible websites.

1.2 Messaging
A large part of the actor model consists of passing messages between pro-
cesses. With this in mind, it is important to decide on a correct paradigm
such that messages are effectively delivered across a multi-tier system.

1.2.1 Message Queues

One approach taken by component-oriented systems is that of the message
queue, in which a queue is created for each thread or process. Messages are
sent asynchronously from one process to another, where it is added to the
queue to be processed at a later time. This approach is common in event-
based applications, where messages trigger event handlers. Using a queue
means that messages will be processed in the same order they arrived, causing
a deterministic result, and will not be missed (assuming infinite buffer length
and perfect communication avenues). The Windows event loop, used in all
Win32 applications, uses such a queue to notify applications of all system-
and user-driven events [5]. Asynchronous event messages such as these are
not based on a request-response mechanism, despite being fairly analogous to
the traditional models of “user acts, program responds”, but instead follow a
model that whilst more complex to design, allows for message handlers that
work concurrently with the rest of the system.

Typically, such message queuing systems are implemented as independent
software, creating queues for all compliant applications. The queue manager
will sort and deliver messages to the correct queues, and may even store
messages in the case of a disconnected application. More advanced systems
will accept metadata as part of the message that defines how it is handled,
ranging from security policies to the exact delivery mechanism to be used.

There are some well-known message queues that operate synchronously.
For example, the web itself is based on a blocking request-response mecha-
nism in which the browser makes a request—sends a message—asking for a
specific web page, and receives a reply a short period of time later. During
the interval, no other communications are being made. However, this is only

12

true of single requests: in all other situations, asynchronous message passing
results in a smoother, albeit more complicated experience.

Message queues can easily be applied to actors, and are indeed the method
by which Erlang functions. Processes are idle by default, and “wake up” when
messages are received. If another message is sent while the first is still being
processed, it is added to the message queue, and the process will remove each
message in turn and handle it. When there are none left, it returns to an
idle state until the next message is received.

Perhaps the most obvious example of a message in the actor-based email
system explained earlier is the email itself. For the user to send an email,
he would open the composer, an actor in itself, write the email and send it.
On sending, the composition actor would send the contents of the email in a
message to an actor on the server which handles email sending.

1.2.2 Publish/subscribe

Message queues provide a reliable, non-blocking mechanism to convey infor-
mation between processes, but they do not by themselves allow broadcasting
to more than one receiver. Messages are passed by the middleware between
any number of processes, but each message is addressed directly to the in-
tended recipient. This is useful in many message-based applications, but in
a framework where the eventual application is unknown, can be somewhat
of a limiting factor. Workarounds involve sending several messages—one to
each intended recipient—but this can place an unnecessary burden upon the
sender, forcing it to keep a list of recipients for each type of message. Because
of this tight coupling, any new processes will require changes in many exist-
ing processes, hugely increasing the amount of work necessary to introduce
new features to an application.

One of the most popular and well-understood methods of creating a “one-
to-many” messaging architecture is the publish/subscribe (pub/sub or simply
pubsub) paradigm. In this, the roles are reversed: the sender no longer decides
who the recipient of a message is. Instead, it simply publishes messages to a
“topic”. Any process can subscribe to the same topic and will automatically
receive any messages published to it. A middle-man—a broker—handles
the messages, maintaining lists of subscribers for each topic and forwarding
messages to the correct recipients. This results in a very loose coupling
between sender and receiver, contrary to the direct message passing system
detailed above, which allows for easy development of new features that can
easily integrate themselves with the rest of the system, simply by subscribing
and publishing to existing topics.

13

The publish/subscribe interaction paradigm provides subscribers
with the ability to express their interest in an event or a pattern
of events, in order to be notified subsequently of any event, gen-
erated by a publisher, that matches their registered interest. In
other terms, producers publish information on a software bus (an
event manager) and consumers subscribe to the information they
want to receive from that bus.

Eugster, Felber, Guerraoui and Kermarrec, The many faces of
publish/subscribe [6]

There is no language-integrated facility for publish/subscribe messaging
in any programming language. Such functionality must be integrated as a
library or part of a framework. This is because when sending messages, the
situation is somewhat more complicated. In our email example, the email-
sending service would subscribe to a topic—preferably something descriptive
such as “send-emails”. The composer would then publish the message to
“send-emails” and the broker would deliver it to all subscribers.

1.2.3 Existing Solutions

More traditional enterprise messaging solutions include WebSphere MQ [7],
from IBM, and ActiveMQ [8], an Apache Foundation project. These fall
under the umbrella of Message-Oriented Middleware (MOM), which provide
various messaging frameworks to abstract away the complexity inherent in
distributed, heterogenous applications. MOM software tends to be language-
independent, yielding an API which can be accessed regardless of platform
or programming language, and almost always implementing both point-to-
point and publish/subscribe messaging paradigms at the very least. However,
they are also based upon a server-to-server model rather than spanning both
servers and clients, which tend to be situated behind many network layers
and cause connectivity problems for anything that does not expect it. In
addition, clients—standard desktop and laptop computers—are also geared
towards general-purpose computing and multi-tasking, and tend to be far less
powerful than the server counterparts on the other side of the connection.

Interestingly enough, middleware such as ActiveMQ tends to lend itself
well to service-oriented architectures (SOA). There is no one definition for
SOA, but the majority lean toward a set of services that are loosely con-
nected through an underlying network architecture. Yvonne Balzer outlines
some of the guiding principles of SOA projects as “reuse, granularity, mod-
ularity, composability, and componentization” [9], and also states the need

14

Publisher

Hub

Subscriber

Publisher

Hub

Subscriber

PubSubHubbub rssCloud

1. Ping
2. Fetch

3. Deliver

1. Ping

2. Ping

3. Fetch

Figure 1.1: The PubSubHubbub and rssCloud publishing models

for services to be orthogonal and non-repetitive—some of the qualities also
implicit in the actor model. Where they differ is in strictness: services,
as defined by SOA, communicate through well-understood public interfaces,
whereas actors may or may not implement event handlers for any conceiv-
able message. More than this, SOA also guides the project itself, defining
particular methods of progressing the architecture, dealing with third-party
services and optimising relations between IT and the core business. In this
sense, it is targeted in a similar way to the middleware it often uses, aiming
to be an enterprise-level tool that helps build concrete requirements before
implementation commences.

Publish/subscribe adheres well to Internet-based technologies, and as
such, a number of protocols have also been designed to implement it across
the web. Two of the most recent are PubSubHubbub and rssCloud, which
define the architecture in terms of a publisher, a subscriber and a “cloud”
or “hub”. The difference between the two protocols, shown in figure 1.1,
embodies the key debate among pub/sub creators: PubSubHubbub deliv-
ers content as it updates, whereas rssCloud simply delivers a link, leaving
synchronisation to the discretion of the subscriber.

Both PubSubHubbub and rssCloud are designed in order to push Atom
and RSS feeds, respectively, directly to a consumer, rather than having the
consumer poll a producer on a regular basis as is currently the norm. As such,
their choice of distribution mechanism is more fitting for an author-to-reader

15

relationship—The XML-based models are too heavy for fast, lightweight ap-
plications, and demonstrate a desire to publish news, blog posts and the like,
rather than fuel inter-process communication.

The solution to a tiered messaging model seems to be somewhere in be-
tween all these different approaches. Traversing the client-server connection
reliably and effectively is a tricky problem that may require a new paradigm,
drawing on elements of existing protocols and tools in order to abstract away
cross-tier communication in favour of an interface that behaves the same,
whether running in a client-side script in a browser or an executable on a
web server.

1.3 Model-View-Controller
Over the years, web development has matured to encompass a broad variety
of design methodologies and patterns, allowing developers and designers to
devise sites that reach realms of complexity never dreamed by the pioneers
of the World Wide Web. By developing architectural patterns that abstract
away the intricacies of HTTP and web servers in favour of an altogether
simpler and more powerful set of tools, time is no longer being spent on
making sites work, and is instead focused on the formulation of entirely new
ideas. Stemming from this, frameworks have been designed to allow even
the most novice programmer to not only create a website, but one that is
modular, extensible and scales well.

One of the most prominent architectures used in web development today
is Model-View-Controller (MVC), originally developed as a class library for
Smalltalk–80 in order “to bridge the gap between the human user’s mental
model and the digital model that exists in the computer.” [10] While at Xerox
PARC, Trygve Reenskaug developed a paradigm that allowed for many-to-
many relationships between the model, which is responsible for data handling
and manipulation, and the view, which deals with the user interface and data
representation to the user, giving developers and designers the ability to show
information to the user in many different ways without a lot of duplicated
code. In addition, a single controller can display any number of views at a
time to the user, providing a composite UI design that can be reorganised as
new features emerge without much effort at all.

The primary concern of the controller is to relay information between
models and views. In this regard, it can be seen as superfluous—theoretically,
it should be possible for models and views to communicate directly. In-
deed, many websites use a concept derived from MVC named Model-View-
ViewModel (MVVM), which they use with the Windows Presentation Frame-

16

work. In MVVM, the “ViewModel” replaces the controller. The actual ar-
chitecture does not change, but the new naming convention better portrays
the aim—the ViewModel simply acts as a bridge between the view and the
model, exposing no additional functionality but simply allowing view devel-
opers to write user interfaces entirely in XAML, an XML-based presentation
markup language. This extra layer encompasses the communication logic
through data binding, separating the UI and business logic code out so de-
signers can create views without having to know how to deal with the models,
and programmers can do the same in reverse [11].

However, the controller also plays the role of the entrance point to the
application, dynamically querying for data through the models and deciding
which views to show upon request. Pushing all data through the controller
also allows for input validation to be handled separately from the actual
business logic in the model, which can aid in keeping the code base leg-
ible. Removing the controller from the equation could potentially cripple
the architecture; directly transferring information between views and models
should not be complicated, but in order to completely remove it, a new entry
point must be decided upon and shown to be just as useful and simple to
understand.

We can draw lines fairly easily between the different subsystems in our
fictional email software to demonstrate the MVC divide. Everything running
on the client falls under the domain of the View, and the storage aspects
of the server are clearly part of the Model. The Controller, then, would
be the aspects that allow the user to manipulate information: sending and
receiving email and manipulating those that are already on the server, as well
as auxiliary data such as contacts. On a publish/subscribe system, the broker
acts as a ViewModel, directing information between views and models.

1.4 Client-Side Programming
In order to build processes that run on the client, part of the framework must
be developed in a way that is compatible with the client-side environment.
Essentially, this means that the code must run in a browser—it must be
written in JavaScript. Generating a GUI on the server would defeat the point
of having client-side processes: in order to fully exploit the actor model, the
entire user interface must be generated programmatically on the client.

While methods familiar to JavaScript programmers may be viewed as
unorthodox by those unfamiliar with the language, especially those coming
from the object-oriented world, it is actually very powerful, allowing for a
very expressive yet minimalist coding style. A forced resemblance to Java

17

often throws new developers off:

JavaScript’s C-like syntax, including curly braces and the clunky
for statement, makes it appear to be an ordinary procedural lan-
guage. This is misleading because JavaScript has more in com-
mon with functional languages like Lisp or Scheme than with C
or Java.

Douglas Crockford, JavaScript: The World’s Most
Misunderstood Programming Language [12]

Developer aversion aside, client-side scripting still has some problems.
The first occurs when attempting to implement a messaging system: once
a web page has loaded, the connection is closed, and the client no longer
has an active connection to the server. Further connections can be opened
through an XMLHttpRequest, but even those will only remain open for a short
period of time. Almost since the inception of the web as a mechanism for
communication, rather than static delivery, people have sought out solutions,
resulting in plenty being developed over the years. For decent client-server
messaging, a bidirectional communication layer is necessary.

1.4.1 Comet

One answer to this comes in the form of Comet, an umbrella term created
by Alex Russell, president of the Dojo Foundation, for a grouping of sev-
eral existing technologies which all attempt to reject polling in favour of an
emulated push mechanism. It is also known by other terms, including “slow
loading”, “HTTP server push” and “Reverse Ajax”, which lend some insight
into the mechanisms behind it.

Comet works by establishing either an HTTP stream—a long-lived HTTP
connection—or a long polling mechanism. In both cases, the client connects
to the server, as the reverse is not possible over HTTP, and the connection
is maintained for the lifetime of the application. This can be considered the
reverse of Ajax calls (hence the name “Reverse Ajax”), which are executed
once for each data request, and can only go from client to server and back:
because of the long-lived connection, either side can send information to the
other without difficulty.

Figure 1.2 demonstrates the benefits of a Comet-based model—it enables
the server to push messages out as necessary, rather than requiring the client
to poll repeatedly as in a traditional AJAX-based application. Because of
the benefits brought by this at very little cost, the Comet style of delivering
server messages is now prevalent among web applications.

18

Figure 1.2: Alex Russell’s illustration of the differences between Ajax and
Comet [13]

19

HTTP streaming One of the oldest forms of push via HTML and JavaScript
is HTTP streaming, mentioned above, which comes in one of two main forms.
The original is page streaming via a hidden inline frame (<iframe>) element,
embedding a second HTML document inside the first. This inner document
consists of chunked data, and as such is not closed until the server chooses
to end the connection. It requires no scripting to initialise, but the server-to-
client payload consists of either client-side code or a link to a server-hosted
script file inside <script> tags, which obviously require scripting to be avail-
able in order to execute. Simple though hidden iframes might be, they also
have a few problems, one of which is simply that in all web browsers, the page
appears never to finish loading, as the inner document is never ended. This
can cause confusion, potentially stopping mainstream users from interacting
with the website and therefore making the technique unusable.

With the advent of XMLHttpRequest and Ajax, the process of request-
ing additional information could be performed entirely in scripts, instead of
altering the content of the page. By opening a long-lived Ajax connection,
a client can receive data from the server in any form (for example, XML
or JSON), parse them and act based on their contents. Because Ajax con-
nections are notified through the onreadystatechange event every time the
state of the response is updated, they can react instantly to new occurrences.

Long polling The alternative to streaming is more closely related to “nor-
mal” behaviour: a request is made and a single response is accepted and
processed. However, upon receipt, a new request is made to the server which
can receive more data. This practice of always maintaining a connection to
the server, coupled with the fact that the server can delay responding if it so
chooses, is known as long polling. Being closer to the traditional web model,
it evidences less side effects and tends to be more reliable in older browsers
than HTTP streaming. As such, it is more commonplace, and people speak-
ing about Comet without specifying which method they are using are often
referring to this one.

There are two methods of long polling. One uses XMLHttpRequests to
establish the connection, and the other requests a script via a <script> tag.
Other than this, they work in the same way: the client requests updated
information from the server via one of the two methods. When the server
state changes, it replies with the update (which can be either data or code,
in the case of the developer using an XMLHttpRequest, or only code, if he or
she used a <script> tag) and the connection is closed. A new connection
is created immediately, and another update is requested. Meanwhile, the
data that has just been received is processed by the browser, either through

20

client-side code that parses and acts upon the data, or in the case of the data
being executable code, by running it directly.

More information on Comet can be found in the technical report, “A
Comparison of Push and Pull Techniques for Ajax” [14].

1.4.2 HTML5

Relatively recently, the web standards committees, including theW3C, started
work on a new version of HTML: HTML5. The actual markup language itself
bears no relevance to bidirectional communication, but the HTML5 specifica-
tion does define a number of new scripting APIs. Two of these are especially
relevant, as they provide a standard way to create long-lived connections
between the client and the server.

Server-Sent Events

Part of the HTML5 specification defines an API for “server-sent events”—
essentially, a standardised protocol for HTTP push. The implementation is
fairly simple for web developers: simply create an EventSource object in
JavaScript which connects to a page on the server. Following this, register
an event listener—a JavaScript function which handles the data sent from
the server as it arrives. The API takes care of the rest, leaving the developer
with a very simple yet effective implementation:

1 var source = new EventSource (' updates . c g i ') ;
2 source . onmessage = function (event) {
3 alert (event . data) ;
4 } ;

The server output is also very simple. In this case, the text prefixed by
data: is accessed through event.data in the code above.

1 data : This i s the f i r s t message .
2
3 data : This i s the second message , i t
4 data : has two l i n e s .
5
6 data : This i s the th i rd message .

These examples were sourced from the W3C specification [15].

21

Web Sockets

In the same vein as EventSource lies the WebSocket interface. However,
whereas the former provides an easy mechanism for server-to-client com-
munication, web sockets embody a full-duplex communications layer—both
the client and the server can send information over the same connection.
The client is notified of messages immediately through the onmessage call-
back, making real-time communications possible. While this is possible using
Comet, having an API dedicated to the purpose should not only simplify the
process greatly, but also standardise it, resulting in much greater browser
penetration and eventually allowing developers to write client-side code with-
out having to provide a fallback to what some would consider little better
than a hack.

Due to the hugely different nature of web sockets when compared to
other browser-based communications, data is not transferred over HTTP,
but rather through a new protocol, conveniently termed the Web Sockets
protocol. While it should make for more efficient traffic and simpler code
in the long run, currently, implementations are scarce. The same is true of
both the WebSocket and EventSource interfaces: as they are new additions
to HTML, there are no browsers that support either in their latest stable ver-
sions, though progress is being made to implement them in future releases—a
beta version of Google Chrome now supports Web Sockets [16], and a basic
extension to the Apache HTTP Server entitled mod_pywebsocket has been
created for testing purposes. Using these HTML5 features in any website is
now possible, but hardly recommended, as less than a percentile of of web
users will be able to use them. Consequently, if a developer chooses to design
for server-sent events or web sockets, a fallback must be implemented in the
form of a current Comet implementation.

1.4.3 Accessibility

As mentioned earlier, the entire GUI of an application with hot-swappable
processes must be generated dynamically on the client, rather than running
on the server. This can cause problems among certain users which have no
easy solution. For example, the website w3schools recorded information that
suggests that between five and ten percent of users do not have JavaScript
enabled [17], which would leave the user staring at a blank page. An error
message can be provided, but this is not very helpful for the average user,
and even less so for those who deliberately disable JavaScript for security or
performance reasons.

This reliance on JavaScript will also play havoc with users with accessi-

22

bility issues, especially those that have to use a screen reader or similar in
order to read and interact with a page. In 2008, Aaron Cannon conducted
a case study on how screen readers deal with JavaScript [18], and his re-
sults were troubling. Not only did JAWS or Window Eyes, two of the more
prevalent screen readers, fail to process new information as it is triggered by
JavaScript, but perhaps more importantly, they sometimes fail to trigger the
required events upon certain user actions. Such behaviour could make a rich
Internet application inoperable, alienating a not-inconsequential portion of
the its user base.

Developing methods to minimise the risk of inaccessibility is beyond the
scope of this project. However, it is worth noting that work is being done as
part of the Web Accessibility Initiative in the form of the Accessible Rich In-
ternet Applications project (WAI-ARIA). Its web page states that it provides
authors with:

• Roles to describe the type of widget presented, such as “menu,” “treeitem,”
“slider,” and “progressmeter”

• Roles to describe the structure of the Web page, such as headings,
regions, and tables (grids)

• Properties to describe the state widgets are in, such as “checked” for a
check box, or “haspopup” for a menu.

• Properties to define live regions of a page that are likely to get up-
dates (such as stock quotes), as well as an interruption policy for those
updates—for example, critical updates may be presented in an alert
dialog box, and incidental updates occur within the page

• Properties for drag-and-drop that describe drag sources and drop tar-
gets

• A way to provide keyboard navigation for the Web objects and events,
such as those mentioned above

WAI-ARIA Overview [19]
Making Ajax and Related Technologies Accessible

1.5 Community-Driven Development
Open-source software has had a long history of community-driven develop-
ment. Often, patches are introduced not by the developers, but by irritated

23

users who simply want them in the program now, rather than in a year’s
time. However, whether those patches are ever officially accepted and folded
into the project or not is entirely at the discretion of its owner, who can
sometimes be indifferent or at odds with the contributor in question. Fork-
ing the project is always a possibility, but requires a lot of maintenance, as
changes to the original usually have to be made in the fork too.

An interesting solution to this problem of diverging interests is perhaps
most evident in the Mozilla Firefox web browser. Instead of introducing
features as the community demands them, the actual browser is kept quite
lean. Missing or additional functionality is not introduced to the Firefox
source at all, but rather developed as an extension which the browser loads at
runtime. Not only does this mean that the experience can be customised on a
per-user basis, but it has also fostered a huge community of developers who,
between them, have created tens of thousands of add-ons for the browser,
ranging from simple teaks to existing functionality to large-scale programs
in their own right [20]. In this regard, the browser has become a form of
operating system in itself. Some of these add-ons have inspired changes
in Firefox itself, and still others have been merged directly into the source
code, with only a few tweaks. In these cases, the software has been positively
influenced by the community, with add-on developers fulfilling a need that
was not taken care of or possibly even recognised by the project organisers.

One of the goals of this project is to create a way for users to contribute to
web applications, fostering growth and using the power of the community to
build new features, all without direct involvement of the original application
creators. To this end, the ability to create and modify processes must be
provided, potentially in the form of other “core” processes, deploying them
on either the client or the server as necessary, and providing a means for any
user to customise the application to their own desires, rather than bowing to
the whims of a developer that may not have considered their use-case at all.

In the case of our email application, the users may find that the developers
have not considered all the ways in which people use email. Some treat their
inbox as their calendar, others as their to-do list, and still more use it to
run their businesses. Some aim for “Inbox Zero”, filing everything away in
the correct folders, and others take the approach fostered by Gmail, letting
the search functionality take care of finding a specific message. It would be
very difficult for the application creators to cater for every use case, but by
allowing the very same users to create plugins that take care of the specific
piece of functionality they need, they can diversify their potential market
while still focusing on their core competencies.

There are, unfortunately, security implications in letting users create
server-side processes. Because they are not user-specific, they cannot be

24

turned off on a per-user basis—there is only one instance of the process.
Consequently, malicious users could create or modify processes that interact
with all users in order to diminish or destroy the user experience. As the
processes are running on the server, they could even access the database in
order to retrieve sensitive information and relay it back to the creator. How-
ever, this is not to say the feature is useless: this is a proof-of-concept, and
while it might allow any user to edit processes, other frameworks based on
the same ideas would be perfectly within their rights to be more discerning,
only allowing trusted users to create server-side processes. In addition, there
is an upside too: by providing functionality to build the processes in the first
place, any one developer can introduce a feature to an application which di-
rectly improves it for a large subset of its users, potentially driving it forward
faster than even its own development team could hope to imagine.

25

Chapter 2

Design

2.1 Introduction
The ultimate goal of this project is Listen, a software framework which allows
a developer to easily create a web application. Each application is built by
connecting independent processes on both the client and the server using
a messaging infrastructure that abstracts away the separation between the
layers—messages can be sent to any process, including those on different
servers or even in entirely separate applications.

2.2 Messaging
As explained in the introduction, the messaging architecture is based upon
the publish/subscribe paradigm. Each and every process can subscribe to a
topic through the requisite message broker, and any message published to
a topic will be delivered, barring communication errors such as a dropped
network connection, to every process that has subscribed to it.

The architecture exposes an API that abstracts away the concept of
clients and servers, such that any process, anywhere, can publish a message
that will reach all subscribers of the message topic. The delivery mechanism
should not be determined by the process, but by the broker, depending on
the topic. Assuming an object-oriented paradigm, every process is initialised
with a reference to its local broker, and can simply call the publish method,
providing the destination topic and payload as parameters.

26

site1.example.com

Server
Broker

Client
Broker

Server
Process 1

Server
Process 2

Client
Process A

Client
Process B

site2.example.org

Server
Broker

Client
Broker X

Server
Process 3

Server
Process 4

Client
Process C

Client
Process D

Client
Broker Y

Client
Process E

Client
Process F

Figure 2.1: Example architecture diagram

2.2.1 Message Structure

A message is simply the combination of a destination topic and payload data.
The data is encoded in JSON, a standard interchange format, rigorously
defined [21] and natively produceable and parseable by both Python and
JavaScript.

To avoid duplicate messages, a Universally Unique Identifier (UUID)
[22] is attached to each message data payload under the key “__id”. This is
used to track messages and ensure that when a client delivers a message to the
server, if it receives the same message back, it can be immediately dropped.
When the server handles a message, it also attaches its own hostname and
port (under “__host” and “__port” respectively) so clients on other servers
can distinguish topics between servers.

2.2.2 Topics

Topics are hierarchical: they can be nested, and subscribing to a topic that
is an ancestor of others will result in all messages addressed to any descen-
dant being received. For example, /messaging/text and /messaging/photo
are separate topics and can be subscribed to and published separately, but
subscribing to /messaging will result in the process receiving all messages
addressed to all three topics, as well as any other descendants of /messaging.

With a hierarchical nature, topics can easily be represented as URLs.
Aside from helping people understand them, this also provides some use-
ful qualities: primarily, the ability to reference topics on other domains.
For example, in an application located at site1.example.com, the topic

27

/messaging/text is equivalent to //site1.example.com/messaging/text
or even http://site1.example.com/messaging/text. However, on an-
other server, using /messaging/text refers to the local topic. To communi-
cate with site1.example.com, the process needs to qualify the topic path
with the domain name, publishing or subscribing to //site1.example.com/
messaging/text.

Topics are maintained in a tree structure in the brokers, with subtopics
acting as branches of their parents. For example, the topic /example is
treated as the parent of /example/one and /example/two. This makes it
easy to deliver deeply-nested messages, as one simply needs to break the topic
into segments and traverse the tree accordingly, delivering to each subscriber
registered with every node of the tree on the way. If a node does not exist
before a process attempts to subscribe to it, it is created.

Given a system laid out in the form portrayed in figure 2.1, the following
gives an example of how such a system would convey messages. For a visual
guide to the finished subscription structure, refer to figure 2.2 and figure 2.3,
which show the topic hierarchy as a tree, with subscriptions in set notation
beside each node.

1. Server Process 1 subscribes to the topic /test/one

2. Client Process A subscribes to the topic /test/one

3. Client Process B subscribes to the topic /test/two

4. Server Process 1 publishes a message to the topic /test/one
It is delivered to Server Process 1 and Client Process A
It is not delivered to Client Process B

5. Server Process 3 subscribes to the topic /test/one

6. Client Process C publishes a message to the topic /test/one
It is delivered to Server Process 3 only
/test/one is separate on each server

7. Server Process 2 subscribes to the topic /notthetest/other

8. Client Process D subscribes to the topic //site1.example.com/test/two

9. Server Process 3 publishes a message to //site1.example.com/
test
It is delivered to all subscribers of both /test/one and /test/two:
Server Process 1, Client Process A, Client Process B and Client
Process D

28

10. Client Process E subscribes to the topic //site1.example.com/
test

11. Client Process F subscribes to the topic /test/two

12. Client Process B publishes a message to the topic /test/two
It is delivered to all subscribers of /test and /test/two: Client Pro-
cess B, Client Process D and Client Process E
It is not delivered to Client Process F, as F has subscribed to
/test/two on site2.example.org

As URIs, topics should follow the syntax laid out in RFC 3986 [23]. In
addition, they must be in one of the following formats:

• http://example.com/path/to/topic

• //example.com/path/to/topic

• /path/to/topic

/

/test{E} /notthetest

/test/one

{1, A}

/test/two

{B, D}

/notthetest
/other

{2}

Figure 2.2: The final server broker subscription structure on
site1.example.com.

29

/

/test

/test/one

{3}

/test/two

{F}

Figure 2.3: The final server broker subscription structure on
site2.example.org.

2.2.3 Brokers

For each application, there are (at least) two brokers: one running on the
server, and one running on each client, inside the web browser. Processes
receive a reference to the broker local to their system on startup, and can
use it to publish messages and subscribe to topics.

Each broker maintains a tree of topics as described in subsection 2.2.2. At
each node of the tree, it stores a set of subscriptions to that particular topic,
which is altered whenever a process subscribes or unsubscribes. Then, when
a message is published, the tree is traversed according to the topic, and at
each step, all subscribers are sent a copy of the message. On the server, these
subscribers can be processes running on the server itself, or clients or other
applications on behalf of their processes. However, each client only keeps a
record of local subscribers. As all messages (aside from messages explicitly
marked as local to the client) are delivered to the server for forwarding,
recording subscribers from other systems is unnecessary, as this information
will simply be a duplicate of that on the server.

The client must also notify the server when the subscription status of a
topic changes. To avoid unnecessary messages, it only sends a subscription

30

request when a particular topic gains its first subscriber, and conversely,
only sends an unsubscription request when it loses its last. Servers sending
subscription and unsubscription requests to other servers behave in the same
way.

2.2.4 Special Topics

All forms of specialised messaging can be implemented as a special form of
topic. We have opted to use certain prefixes to denote specific actions to
the broker. This allows us to transfer messages between brokers (especially
between the client and server) and easily parse them. As the special prefixes
are all symbols, they should not interfere with normal use.

The prefix being used should form the first part of the topic in ques-
tion. For example, when subscribing to the topic /example/topic, the
topic should be of the form /+/example/topic or http://example.com/
+/example/topic.

Subscription (+) The + prefix represents a subscription. This is unlikely
to be used by the processes themselves, as for clarity, there should be dedi-
cated methods to handle this.

Unsubscription (-) Similar to +, the unsubscription prefix, -, represents
a process unsubscribing from a topic.

External Subscription (++ and --) To allow brokers to easily differenti-
ate subscriptions inside the same application from those to external sites, two
+ or - characters should be used when connecting to external sites. This is to
avoid ambiguity: /+//example.com/example/topic and /+/example.com/
example/topic look very similar, but only the first is an external subscrip-
tion: the latter just uses “example.com” as the first segment of the topic.
Using /++//example.com/example/topic makes this more obvious.

Server-only messaging ($) There may be occasions where messages only
need to be delivered to the server and not the clients. In these cases, the $
prefix should be used.

Client-only messaging (ˆ) Sent from a client, the messages should only
be delivered to subscribers on that client. Sent from a server, the messages
should be delivered to all clients of that server, but not subscribed processes
on the server.

31

Direct client messaging (˜) In the case where messages must be sent
directly to one client, the ˜ prefix can be used. Each client has a public-
facing identifier (explained in section 2.3), which can be used to specify
the intended recipient. For example, to send a message to a client with
an ID of f47ac10b-58cc-4372-a567-0e02b2c3d479, the topic would be
//̃f47ac10b-58cc-4372-a567-0e02b2c3d479/example/topic.

2.2.5 Security

It was originally intended that the message broker itself did not currently
limit either publishing or subscribing—any process, on any domain, should
theoretically have been able to work with any topic. However, after writing
applications for the framework, it became clear that limiting messages to
specific recipients would be necessary at some point. With this in mind, the
server- and client-only messaging prefixes, as well as direct client messaging,
was introduced. Using these, messages with sensitive data can be restricted
to only trusted recipients, and the brokers will ensure that no other process,
benign or not, will ever see their contents.

2.3 Clients
While there is only one server instance per application, there can be an
unlimited number of clients—one for each browser window open. Each client
can be running any number of processes, and each one has a broker running.

Clients sending messages to the server simply establish an AJAX-style
connection, using the topic as the URL, and transmit the message. Servers
connecting to other servers work in the same way. The client opens an HTTP
POST request to the topic in question. For example, to publish to the topic
/x/y/z, a connection is opened to http://example.com/x/y/z. Special
topics—subscriptions, etc.—receive no special treatment in this situation.
The message data is encoded as JSON and passed in the request body. Only
one message is sent at a time, as they are delivered by the client-side broker as
soon as the message is published. The server-side broker, which runs within
the web server, then distributes the message to every subscriber, including
other clients via the mechanism described above.

In rare cases, messages may be sent at a rapid pace, making establishing
an HTTP connection for each one very expensive. This is handled auto-
matically by the broker—if the rate of messaging becomes too high, it will
switch to another mechanism, connecting to the special topic /_ and sending
a group of messages all at once. The messages are formatted such that each

32

takes up two lines, the first being the topic and the second, the data. They
are then concatenated together, separated by a new line, and sent. This
proved to dramatically decrease the bandwidth and processing power needed
to send a large amount of messages in a short space of time.

To aid the server and other clients in identifying clients and directing
messages to the correct recipient, each client possesses a public ID, sent
with every message, as well as a private ID, known only to itself and the
server. They are allocated by the server using cookies. These identifiers
are UUIDs [22], randomly generated according to the UUID 4 specification.
As there are 2122 = 5.3 × 1036 possibilities, given sufficient entropy and a
uniform distribution in the random number generator, to say that clashes
are extremely improbable would be an understatement.

Initially, our plan was to use a single ID for everything. However, when
direct messaging was introduced, it became clear that there would need to
be two. The private ID is used by the server to match up browser requests
with its in-built representation of clients. If it were made public, one client
could disguise itself as another very simply, and so another public ID was
created, which processes can use to send direct messages.

2.4 The Web Server
In order to handle the interactions required by this new messaging architec-
ture, we needed to develop a server capable of parsing and delivering them
to the correct recipients. A number of possibilities were considered, but our
chief need was for a quick development schedule that freed up time for ex-
perimenting as much as possible with the framework. We therefore decided
to create a complete web server.

Python 3 was our final choice for this, as it has various classes and func-
tions in its own standard library that make it very easy to develop a program
handles HTTP requests. While not backward-compatible with Python 2,
there is a helpful conversion tool that migrates Python 2 scripts to Python
3 fairly effectively. In addition, there are a number of improvements made
in Python 3 which directly affect the creation of the web server: most no-
tably, the revamping of the http.server and urllibmodules, which provide
excellent support for serving web pages and dealing with dynamic URLs.

Along with the server, we have also provided a command-line script that
will execute it. The configuration file that accompanies execution can be
specified on the command line, and the server can be closed simply by press-
ing Ctrl+C. As this particular server is a proof-of-concept, it cannot be run
as a daemon.

33

2.4.1 Loading processes

While the developer can specify processes to be loaded by the server ex-
plicitly through the configuration file (covered in subsection 2.4.4), ideally,
this should be automatic. To this end, the server will enumerate all Python
files in the application/server directory and all JavaScript files in the appli-
cation/client directory. The JavaScript files are easy to process: the list is
simply sent as part of the index page and the browser requests each one indi-
vidually. Because of the way JavaScript works, each process can be injected
directly into Listen and run immediately.

Python works a little differently. First of all, each process exists as a class
in a separate module, which must be loaded explicitly. Unlike JavaScript,
which has no namespaces, Python maintains a strict separation between
modules, and so next, the class name must be discovered. Unfortunately,
due to Python’s affinity for duck typing (if an object looks like an instance
of a type, it should be treated as such—subclassing is not strictly necessary),
iterating through the module’s classes and finding one that subclasses the
ServerProcess class is not an option. Instead, we look for a callable object
(either a function or a class) with the message, start and stop functions—
the basic definition of a process. This is still not perfect, as the aforemen-
tioned callable object could return a new instance of a process without actu-
ally being the process, but it is impossible to tell without calling the object,
which may cause unwanted side effects. Once the process is found, we simply
instantiate it.

2.4.2 Static files

The web server firstly handles static files such as the process code, as well as
HTML and CSS required for a web browser to render the application. These
files are delivered upon request: when the user directs his browser to the root
address of the application (http://example.com or similar), an HTML page
is served. This page is customisable by the developer, but by default it has
no body. The head contains the page title (the name of the application), and
links to the application JavaScript and CSS files that contain the framework
code and the application processes and styles. The paths of the files are
not the actual locations, but virtual paths that the web server recognises as
being “special”. When the browser requests to download each one of these,
the path is interpreted and the correct file is delivered.

34

2.4.3 Messaging

Because of the nature of HTTP, transmitting messages from the server to
the client is more complicated than moving them in the other direction. The
client first establishes a long polling request over HTTP GET (described in
subsection 1.4.1) to the special topic /_. This connection is kept alive by the
server for a maximum of 60 seconds, during which it can be used to convey
a single message from the server to the client. After the message is sent, the
connection is immediately closed. After closing the connection, the client
establishes a new connection and the same process is repeated.

When transferring a message in this manner, the topic is unknown by the
client, and so cannot be represented in the HTTP headers. The response
body therefore starts with the topic, followed by a newline, and then the
data encoded as JSON.

As it is possible for messages to be sent in the intervening time between
the closing of one connection and the opening of the next, the server keeps a
record of clients that have recently held a connection. Any messages sent to
clients with recently-terminated connections will be held in a message queue
for a maximum of 60 seconds, and upon reconnection all messages will be
delivered in a single batch (in the same format as the client when delivering
more than one message at the same time), after which the connection will be
closed and the cycle will begin again.

2.4.4 Configuration

Because of the nature of applications, the server is, to an extent, configurable.
A sample application.config file (shown in listing 2.1) is provided which
demonstrates to the developer the potential options, but they are also listed
here.

Application name The title of the application, delivered to the web browser

Version The application version, currently unused

Host and port The application network location, so it knows how to ref-
erence itself

Virtual paths Alterations in paths, so the directory structure of the appli-
cation can be reorganised

Processes A list of processes to either disable or, if processes are disabled
by default, enable

35

Libraries Client-side libraries to include so processes can benefit from them
(jQuery is provided as an example)

Stylesheets Application stylesheets, so clients do not have to use JavaScript
to style elements

1 <?xml ve r s i on = '1.0 ' encoding='utf −8'?>
2 <con f ig>
3 <name>Example</name>
4 <vers ion >1.0</vers ion>
5
6 <host>l o ca l ho s t </host>
7 <port>80</port>
8
9 <paths>
10 <path v i r t u a l="app l i c a t i o n " phy s i c a l="app l i c a t i o n " />
11 <path v i r t u a l="system" phy s i c a l="system" />
12 </paths>
13
14 <proce s s e s>
15 <se rv e r enabled−by−de f au l t="true">
16 <proce s s name="example−d i s ab l ed " enabled=" f a l s e " />
17 </server>
18 <c l i e n t enabled−by−de f au l t="true">
19 </c l i e n t >
20 </proce s s e s>
21
22 <l i b s >
23 <c l i e n t >
24 <l i b name="jQuery" u r l="http :// ajax . goog l e ap i s . com/

ajax / l i b s / jquery /1/ jquery . min . j s " />
25 </c l i e n t >
26 </ l i b s >
27
28 <s t y l e s h e e t s >
29 <s t y l e s h e e t name="Sty l e sh e e t " u r l="/app l i c a t i o n . c s s " />
30 </s t y l e s h e e t s >
31 </con f ig>

Listing 2.1: A sample application configuration file.

2.5 Processes
As detailed in the background, processes are actors : independent entities
that maintain separate state from every other and communicate via messages.

36

Processes embody a task in the application: they are designed to handle one
part, and allow the others to deal with the rest.

On both the server and the client, an interface is provided. Application
developers can implement these interfaces in order to create processes which
can be immediately deployed to an application server. On the server, the
interface has been written in Python. For compatibility reasons, the client
interface has been written in JavaScript.

All server processes are launched by the application on startup, and run
until disabled or for the lifetime of the application. Similarly, all default
client processes (as opposed to community-created ones) are launched by the
client-side portion of the application as it is loaded by the browser. Every
process is initialised with a reference to the local broker, which they can use
to publish and subscribe to topics.

Client-side processes are responsible for generating the user environment.
Rather than have the server generating HTML, as is commonplace among
traditional web servers, the browser is served an HTML page with an empty
body, and processes can act in tandem in order to create a user interface
through DOM manipulation.

2.5.1 Dependencies

Sometimes, processes will depend upon other processes before they can start.
This can be specified on both the client and the server by assigning the static
dependencies field to a list of process names. If this is the case, both the
server and the client will attempt to load the processes in the correct order.
If a dependency that does not exist is specified or a dependency cannot be
loaded, all dependents will also fail to load.

2.5.2 Community-Driven Processes

Processes cannot only be created by the application developers; users of the
application can create external processes for the client, uploading them as
source code to the server to be stored and run. These client processes are
simply added to a list of optional modules which users can turn on and off.

With users able to enable and disable processes at will, the application
developer must have some control over his or her own internal client pro-
cesses. By simply omitting the functionality that stops the process, he can
signify to the application that the process is critical and should not be turned
off.

To allow developers to start working with the framework straight away,
the Switcher, Editor and Logger processes are distributed with the frame-

37

work. These processes should provide basic functionality that will be useful
in almost all applications. They are optional and replaceable, but easily en-
abled, and work straight “out of the box.” Together, they provide the user
with complete control over processes, allow them to monitor the messages
that are being sent and received, and allow them to create and run new ones.

38

Chapter 3

Using the Framework

While we have attempted to make the Listen framework as customisable as
possible in the short period of time we have had to create it, more important
was to make it as easy to use as possible. To this effect, developers can jump
right in and start making applications with only minimal configuration.

The only required pieces of information are the application title and ver-
sion, which can be changed as often as is necessary, and the web server host-
name and port. These are required so the client can contact the server, as
well as to aid in inter-server routing of messages. After setting this informa-
tion in the application.config file, which is provided complete with example
information, the developer is free to create processes on both the server and
the client.

Creating processes on the server is somewhat different from creating them
on the client, and so we will look at both individually.

3.1 Server Processes
Processes on the server are persistent: they launch as part of the server
initialisation and run until the server is terminated. Server processes are
created in their own thread. Listing 3.1 shows a basic server process, which
we will use to demonstrate the possible functionality.

The aptly-named begin method is the first we shall examine. In this
method, we initialise all variables that we will need throughout process lifecy-
cle, and subscribe to any topics necessary for the process to operate correctly.
In this case, we subscribe to just one: /primes/request. We will use this
topic to request the next prime number from the service. To do this, we use
the subscribe method. Alternatively, we can use the broker.subscribe
method, but the shortcut is provided for convenience. Subscription takes a

40

1 import system . s e r v e r . p roce s s
2
3 class Primes (system . s e r v e r . p roce s s . Se rve rProce s s) :
4 NEXT_PRIME_TOPIC = ' /primes /next '
5 REQUEST_TOPIC = ' /primes / r eque s t '
6
7 def begin (s e l f) :
8 s e l f . next = 2
9
10 s e l f . s ub s c r i b e (Primes .REQUEST_TOPIC)
11
12 def message (s e l f , top ic , data) :
13 i f t op i c . s t a r t sw i t h (Primes .REQUEST_TOPIC) :
14 s e l f . pub l i sh (Primes .NEXT_PRIME_TOPIC, {
15 ' next_prime ' : s e l f . next
16 })
17
18 s e l f . next += 1
19 while not Primes . is_prime (s e l f . next) :
20 s e l f . next += 1
21
22 @staticmethod
23 def is_prime (n) :
24 i f n <= 1 :
25 return False
26
27 for i in range (2 , n) :
28 i f n % i == 0 :
29 return False
30
31 return True

Listing 3.1: A basic server process that publishes the next prime number on
demand.

41

topic as a string—breaking it down, adding it to the correct list and notify-
ing any servers is all handled by the broker. Unsubscription works the same
way, using the unsubscribe method, which also takes the topic as its only
argument.

It is worth noting that begin has a corresponding end method, which
allows us to perform cleanup operations when the process is ended. This will
prove especially useful for processes that are connection-bound, such as those
that deal with databases or other network services, as it gives them room to
close connections and clean up any loose ends.

Now we have subscribed to a topic, the most important method, and
the only one that the developer is required to override, becomes useful. The
messagemethod is called, in the process thread context, every time a message
is received on a subscribed topic, and passed the topic and data as a string
and dictionary object respectively. It can then act upon the data, potentially
sending more messages if it deems them to be necessary.

As we can see, the messagemethod first checks the topic in order to decide
its execution. In this case, it is fairly pointless, as we are only subscribing to
the one topic, but in the event of multiple subscriptions, which are far more
common in larger applications, it becomes necessary. Due to the tree-like
nature of topics, it is also recommended that we check the start of the topic
and not the whole string, as messages targeted at subtopics should also be
handled in the same way.

Once the topic has been determined, this particular process publishes a
message. This is handled by the publishmethod, which takes two parameters—
the topic and the data, or message payload, which should be in the form of a
dictionary. If it is not, it will be encapsulated inside one, with the special key
“__value” holding the original data. The Primes process publishes a single
message to /primes/next with a dictionary holding a single value: the next
prime number. After doing this, we calculate the next prime number using
a very simple (and slow) algorithm. After all messages have been processed,
the thread is put into a waiting state until more messages are received, at
which point it will be woken up by the broker.

Developers may wish to perform additional tasks without waiting for a
message. Fortunately, it is fairly easy to spawn a new thread in Python and
have it execute a function. By placing the operation necessary in a loop that
stops when the process is ended, and sleeping for a certain period between
each iteration, it can be run in the background to perform maintenance, send
messages on a schedule or fire an event based on a countdown.

A more traditional mechanism might be a PHP page that, when re-
quested, responds with the next prime number. Aside from requiring some
sort of database to save state between requests, which our example would

42

also need if it wanted to persist after the server is shut down, it would also
require some way of recording the last number each client had requested.
Conversely, because we are broadcasting the number, we can assume that all
clients receive all numbers without any additional work. As can be seen from
the code sample, our processes can perform a range of very complicated tasks
in a way that is easy to understand, making it much easier for developers to
create message-based applications in very few lines of code.

3.2 Client Processes
Client processes function in a similar way, though the code used to create
them is somewhat different due to the different nature of JavaScript. Listing
3.2 shows a client counterpart to the server example explained above, which
requests the next prime number every second and waits for a response, then
prints it at the top of the web page.

Like the server process, the client provides begin and end methods to
allow the process to start up. Notice that unlike the server, we have pro-
duced an end method that completely cleans up everything we may have
produced. This is because unlike the server, users can activate and deac-
tivate processes on the client whenever they choose, without reloading the
page in their browser. They therefore need to be able to switch themselves
off at any given point.

The subscribe, unsubscribe and publish methods work just as they do
on the server. As an aside, we define self as this at the top of the process
definition to get around some of JavaScript’s quirks—because objects are not
class instantiations, we can get some unexpected (but rational) behaviour if
we use this inside nested classes. We should therefore use self to access
the three broker methods, just as we do on the server.

Our process starts by subscribing to /primes/next so it can receive prime
numbers as they are published. It then creates a container element to which
it can add numbers without disturbing any other processes. Finally, it sets
the requestNextPrime method to execute every second. This will publish
an empty message to /primes/request, causing the server process to push a
new prime number down the pipe, which is received by the client’s message
method. After validating the topic and data, it adds the number to the top
of the container. Assuming there are no other processes, this will also be the
top of the web page.

One thing that seems missing from the client is the ability to spawn worker
threads. If the developer wishes for a function that executes on a timer, we
can use the native setInterval function, as we see in the example, to register

43

1 L i s t en . Proce s s e s . Primes = func t i on () {
2 var s e l f = t h i s ;
3
4 var NEXT_PRIME_TOPIC = ' /primes /next ' ;
5 var REQUEST_PRIME_TOPIC = ' /primes / r eque s t ' ;
6
7 var conta ine r ;
8 var r eque s t In t e rva l ID ;
9
10 t h i s . begin = func t i on () {
11 s e l f . s ub s c r i b e (NEXT_PRIME_TOPIC) ;
12 conta ine r = document . createElement (' u l ') ;
13 conta ine r . id = ' primes ' ;
14 document . body . appendChild (con ta ine r) ;
15 r eque s t In t e rva l ID = s e t I n t e r v a l (requestNextPrime , 1000) ;
16 } ;
17
18 t h i s . end = func t i on () {
19 s e l f . unsubscr ibe (NEXT_PRIME_TOPIC) ;
20 document . body . remove (conta ine r) ;
21 c l e a r I n t e r v a l (r eque s t In t e rva l ID) ;
22 } ;
23
24 t h i s . message = func t i on (top ic , data) {
25 i f (t op i c . sub s t r i ng (0 , NEXT_PRIME_TOPIC. l ength)
26 == NEXT_PRIME_TOPIC) {
27 i f (data . next_prime) {
28 printPrime (data . next_prime) ;
29 }
30 }
31 } ;
32
33 var requestNextPrime = func t i on () {
34 s e l f . pub l i sh (REQUEST_PRIME_TOPIC, nu l l) ;
35 } ;
36
37 var pr intPrime = func t i on (prime) {
38 var element = document . createElement (' l i ') ;
39 element . textContent = prime ;
40 conta ine r . i n s e r tB e f o r e (element , conta ine r . f i r s t C h i l d) ;
41 } ;
42 } ;

Listing 3.2: A basic client process that retrieves the next prime number from
the server once per second and displays it to the user.

44

a function for execution on a fixed period. However, if we need a function
to execute on each message, we can place the functionality (or a call to a
separate function) directly inside the call to message.

With only a few lines of code, we have embodied a request and response.
A large part of the code base on the client is, as we can see, concerned with
displaying the data it receives to the user. Coupled with a library such as
jQuery for presentation work, issues with client-side programming should
become far easier to solve, and with an easy way to convey information
back and forth between the server and the client, without worrying about
AJAX requests and server-to-client messaging (see subsection 1.4.1 for more
information), developers can quickly create useful applications. Rather than
focusing on the mechanisms of transporting information, they can more easily
see the bigger picture.

45

Chapter 4

Evaluation

Listen has three main goals. The first, and most important, is to provide
a simple framework that anyone can use. Secondly, it must be extensible,
allowing contributors to create extensions to applications the original devel-
opers would never have dreamed. Finally, it must be efficient and reliable: as
the underpinnings of an application, the framework must continue to operate
come hell or high water.

4.1 Usability
When designing the framework, a lot of care was put into making it as fric-
tionless as possible. While a basic understanding of the concepts is required,
there is no need to comprehend the inner workings of the broker, nor is it
necessary to spend hours configuring the server to achieve optimum results.
In this section, we will look at establishing a basic yet useful application. Us-
ability is difficult to quantify, but we will attempt to analyse the final result
in a manner that helps the reader decide upon the practicality of learning a
new framework such as this.

4.1.1 The Application

The application we are going to demonstrate is well-suited to a messaging-
based framework: it will be the simplest possible chat software. By the end,
a user will be able to send a message and have it appear, along with his or
her name, on the screens of every other user. In addition, new users will
instantly receive a log of the last few messages so they can jump straight
into the conversation.

46

4.1.2 Configuration

The first thing to do is configure the server. Unfortunately, it is not capable
of running without any information whatsoever, but only a few, simple things
are necessary.

1 <?xml ve r s i on = '1.0 ' encoding='utf −8'?>
2 <con f ig>
3 <name>Shout</name>
4 <vers ion >1.0</vers ion>
5
6 <host>l o ca l ho s t </host>
7 <port>80</port>
8 </con f ig>

Listing 4.1: Our application.config file.

The title and version are entirely up to the developer, and the host and
port constitute the socket that users will use to connect to the application.
This is necessary so we can communicate a return address when subscribing
to another application. This may not be necessary for our purposes, but
extension creators will need it.

4.1.3 User Interface

Constructing a user interface in Listen works in the same way as in any
other JavaScript application, with one or two exceptions. Because we do not
know how actors will behave until runtime, we cannot serve static HTML, but
must generate it dynamically. This can be difficult and time-consuming when
dealing with vanilla JavaScript, but fortunately, the framework provides full
support for libraries which make the process much easier. In this example,
we will be using jQuery, with which the reader should be familiar. The
jQuery file should be placed in the application/client/lib directory, or
a reference to an online version should be placed in the configuration file, as
can be seen in listing 2.1.

The user interface can be divided into two parts: receiving messages, and
sending them. We will deal with the former first, creating an interface for
incoming messages.

Incoming Messages

1 L i s t en . Proce s s e s . Incoming = function () {
2 // Necessary to avoid JavaScr ip t qu i r k s .
3 var se l f = this ;
4

47

5 // This i s our HTML element .
6 // We w i l l be p l a c i n g incoming messages in here .
7 s e l f . incomingBox = $ ('<div>') . a t t r (' id ' , ' incoming ') ;
8
9 // This i s c a l l e d when the proces s i s s t a r t e d .
10 s e l f . begin = function () {
11 // Add the box to the document .
12 $ (document . body) . append (s e l f . incomingBox) ;
13 } ;
14
15 // This i s c a l l e d when the proces s i s s topped .
16 s e l f . end = function () {
17 // Empty the box and remove i t from the document .
18 s e l f . incomingBox . ch i l d r en () . remove () ;
19 s e l f . incomingBox . remove () ;
20 } ;
21
22 // This func t i on w i l l be c a l l e d by our message method l a t e r .
23 function addMessage (name, contents , datet ime) {
24 // Use the curren t time i f one i sn ' t prov ided .
25 i f (! datet ime) {
26 datet ime = new Date () ;
27 }
28
29 // Create the e lements t ha t w i l l make up the message .
30 var timeElement = $ ('') . addClass (' time ') .
31 text (' [' + datet ime . hour + ' : ' +
32 datet ime . minute + '] ␣ ') ;
33 var nameElement = $ ('') .
34 addClass ('name ') .
35 text (name + ' : ␣ ') ;
36 var contentsElement = $ ('') .
37 addClass (' contents ') .
38 text (contents) ;
39
40 // Add the message to the box and s c r o l l to i t .
41 s e l f . incomingBox . append (
42 $ ('<p>') . addClass (' message ') .
43 append (timeElement) .
44 append (nameElement) .
45 append (contentsElement)
46) . s c ro l lTop (s e l f . incomingBox . he ight ()) ;
47 }
48 } ;

Listing 4.2: The first process, incoming.js.

This will create a box into which we can feed messages, and give those
messages CSS classes so we can style them later. Next, we need to manufac-

48

ture a way of sending messages out.
Outgoing Messages

1 L i s t en . Process . Outgoing = function () {
2 var se l f = this ;
3
4 // A t e x t input e lement f o r the user ' s name .
5 s e l f . nameBox = $ ('<div>') . a t t r (' id ' , 'name ') ;
6 s e l f . nameInput = $ ('<input>') . a t t r ({
7 ' id ' : 'name−input ' ,
8 ' type ' : ' t ex t ' ,
9 ' p l a c eho lde r ' : 'Your␣name '
10 // " p l a c eho l d e r " only works in HTML5−compat ib l e browsers
11 }) ;
12 s e l f . nameInput . append (outgo ingInput) ;
13
14 // A t e x t input e lement f o r the outgo ing message .
15 s e l f . outgoingBox = $ ('<div>') . a t t r (' id ' , ' outgoing ') ;
16 s e l f . outgo ingInput = $ ('<input>') . a t t r ({
17 ' id ' : ' outgoing−input ' ,
18 ' type ' : ' t ex t ' ,
19 ' p l a c eho lde r ' : 'Your␣message '
20 }) ;
21 s e l f . outgoingBox . append (outgoingInput) ;
22
23 s e l f . begin = function () {
24 // In s e r t the name box be f o r e the incoming box .
25 $ ('#incoming ') . b e f o r e (nameBox) ;
26
27 // In s e r t the outgo ing box a f t e r the incoming box .
28 $ ('#incoming ') . a f t e r (outgoingBox) ;
29 } ;
30
31 s e l f . end = function () {
32 // Clear any user input .
33 s e l f . nameInput . va l (' ') ;
34 s e l f . outgo ingInput . va l (' ') ;
35
36 // Remove the boxes .
37 s e l f . nameBox . remove () ;
38 s e l f . outgoingBox . remove () ;
39 } ;
40 } ;
41
42 L i s t en . Process . Outgoing . dependenc ies = [' Incoming '] ;

Listing 4.3: The second process, outgoing.js.

This works similarly to the previous listing—it simply creates two more

49

<div> elements and places text input elements inside them. It then positions
these boxes before and after the box created by our Incoming process. Inter-
esting to note is the last line, which states that this process depends on the
other. This ensures that it only loads if Incoming does, and that it will be
loaded afterwards, so we can be sure that the incoming messages box exists
before inserting our elements around it.
Stylesheets

Now we have our HTML set up, there is the small matter of styling it. This
requires a change to the configuration file: we must add the <stylesheets>
element, which can be seen in listing 2.1. Once added and altered to suit the
application, stylesheets can be placed in application/static ad nauseam.

With that, we have a user interface which can be seen by running the
server and browsing to the URL specified in the configuration file—in the
case of our example above, http://localhost/. In a straight comparison
with a traditional web application, the only real difference is the existence
of the end method, a tradeoff we made in order to drastically improve the
extensibility of the framework. The rest of the code would be very similar,
demonstrating the freedom Listen provides to simply get things done without
creating artificial barriers to progress.

4.1.4 Communication

Now we have a UI, we can start dealing with messages. The first thing to do is
establish a mechanism for sending them. This is where the framework starts
to become useful, encapsulating the complicated process of sending messages
to the server via AJAX in a convenient publish method, which ensures the
message is delivered not only to subscribed processes on the server, but all
other clients. Because the broker handles this, we don’t need to write any
server-side code to distribute the messages—we just need to add one function
to the outgoing process.

1 // Grab any user k eyp re s s e s i n s i d e the input e lement .
2 s e l f . outgo ingInput . keypres s (function (event) {
3 // I f the key pres sed i s Return or Enter , send the

message .
4 i f (event . keyCode == 0x0D | | event . keyCode == 0x0A) {
5 // Send the message to a l l s u b s c r i b e r s .
6 s e l f . pub l i sh (' /messages ' , {
7 name : s e l f . nameInput . va l () ,
8 contents : s e l f . outgo ingInput . va l ()
9 }) ;
10 }

50

11 }) ;

Listing 4.4: Sending messages (goes inside the Outgoing process).

In eight lines of code, we add an event to the input element that fires when
a key is hit, and if the key is an Enter or Return, we publish the message to
everyone listening.

Next, we need to display this message to all users. To receive it, we
just need to add one line to the Incoming process’ begin method: self.
subscribe(’/messages);. Once this is done, we can create a message
method which handles them simply by calling the addMessage function we
defined earlier.

1 s e l f . message = function (top ic , data) {
2 // Always check the t o p i c to make sure i t ' s the r i g h t
3 // one . Remember not to check i t d i r e c t l y , as i t cou ld
4 // be a sub t op i c o f the one we are i n t e r e s t e d in .
5 i f (t op i c . s ub s t r i ng (0 , 8) == ' /message ')
6 i f (data . contents) {
7 addMessage (
8 data .name | | '<unknown>' , // d e f a u l t name
9 data . contents ,
10 // We w i l l use the `datet ime ` a t t r i b u t e
11 // l a t e r . I t i s s imply the Unix timestamp
12 // o f the message .
13 data . datet ime ?
14 new Date(data . datet ime / 1000) :
15 null
16) ;
17 }
18 break ;
19 }
20 } ;

Listing 4.5: Receiving messages (goes inside the Incoming process).

The message brokers will take care of delivering the message—all we need
to do is display it. Note that we should also create an empty messagemethod
in the Outgoing process, as Listen requires every process to have a message
handler.

4.1.5 Logging

So far, we’ve been able to do everything on the client. However, some things
are not possible or work much better as a server process. These include
most request/response-based services and information delivery and storage
services, such as a logging service, email delivery as discussed in chapter 1 or

51

even serving rich media such as images, sound and video. We will therefore
create our logging service on the server as a Python script.

The service should work on a request/response basis, sending the last
10 messages out to anyone who asks. In order to do this, we will listen
on the /history topic for clients and send a list of messages straight back.
Simultaneously, we will be listening to messages and adding them to our log.

1 import time
2 import system . s e r v e r . p roce s s
3
4 class Logger (system . s e r v e r . p roc e s s . Se rve rProce s s) :
5 MAX_LOG_SIZE = 10
6
7 def begin (s e l f) :
8 s e l f . l og = []
9
10 s e l f . s ub s c r i b e (' /messages ')
11 s e l f . s ub s c r i b e (' / h i s t o r y ')
12
13 def message (top ic , data) :
14 i f t op i c . s t a r t sw i t h (' /messages ') :
15 # Store the message a r r i v a l time so i t can be
16 # accu ra t e l y r epre sen t ed when re−sen t .
17 data [' datet ime '] = in t (time . time ())
18
19 # Add the message to the l o g .
20 s e l f . l og . append (data)
21 i f l en (s e l f . l og) > MAX_LOG_SIZE:
22 s e l f . l og . remove (0)
23
24 e l i f t op i c . s t a r t sw i t h (' / h i s t o r y ') :
25 # Get the c l i e n t ' s ID so we can send i t d i r e c t l y .
26 # This saves every o ther c l i e n t from having to dea l
27 # with the messages .
28 c l i en t_ id = data [' __client_id ']
29 i f c l i en t_ id :
30 for message in s e l f . l og :
31 # '/^ ' i s a s p e c i a l t o p i c t ha t d i r e c t s
32 # messages to one s p e c i f i c c l i e n t .
33 s e l f . pub l i sh (
34 ' /^/ ' + c l i en t_ id + ' /messages ' ,
35 message)

Listing 4.6: The Logger process.

We then put the request in the begin method of the Incoming process
by publishing to /history after subscribing to /messages: self.publish
(’/history’, null); is all that is needed to make the request.

Listen is designed to make it easy as possible for services to send and

52

receive messages. With this functionality in place, it becomes very simple
to quickly add a new feature to a web appplication that seamlessly slots in,
enabling developers to quickly respond to their users’ requests with minimum
effort.

4.2 Extensibility
While responsive development is, from the users’ perspective, always a good
thing, a framework can only make it possible, not force it. To this end, Listen
sports the capability for community developers to create their own client-side
processes and add them to the application. The process is simple: in any
application in which the Editor is provided and enabled, a user can click it
at any point and bring up a text editor, which he or she can use to create
new JavaScript “files”, edit existing ones or delete them.

4.2.1 Basic Functionality

Practically, there is no difference between a client-side script created by the
original developers of the application and one created by the community. All
have access to the exact same APIs, are treated no differently by the broker
and can send and receive messages in the exact same way.

To create an entirely new process, all the user has to do is open the
Editor, create a new script, enter the code and save. It will be uploaded to a
managing server process, which stores it in an SQLite database on the server,
and then included in the HTML document header, which instructs the web
browser to download and execute the script. It is not added directly to the
document, as there may be a difference in execution if a script attempts to
evaluate the code.

Unlike the main client scripts, which are loaded immediately, all user
scripts are loaded on demand by the Switcher, which requests a list from
the server as soon as it is initialised. When the requisite box is checked,
the script is downloaded, the process is started and, assuming the code is
correct, the user will experience new, community-created features after just
two clicks. They can also disable scripts the same way. All enabled scripts
are remembered using cookies, so that if the page is refreshed or the browser
session ended, reloading the application will result in an environment that is
optimal for the user.

53

4.2.2 Security

While any user is able to create a new process from scratch, they are also
free to edit any existing community processes in the same way. Because
the framework does not authenticate users in any way, it cannot discern the
developer of an extension from any other user. As a result, all users are free
to edit and delete any script.

This has profound security implications. Because scripts are run auto-
matically by the client of anyone who has had them switched on in the past,
a malicious user could alter a process trusted by others to steal confiden-
tial information or destroy data. All users of that process would then be
vulnerable, with little to no recourse once impacted. This dangerous possi-
bility means that the Editor, as it stands, must be taken as purely a proof
of concept.

Certain features are necessary before the Editor should be allowed on a
public-facing website. First of all, while there is no problem with allowing a
user to view the source code of any community process—indeed, as JavaScript
is an interpreted language, any user who downloaded the script would be able
to read it—only the original developer should be able to change or delete
it. Secondly, there must be an versioning mechanism, in which the server
stores all versions of a process and serves the version last used by the user
unless they choose to update. This is necessary, as a manevolent user would
otherwise be able to create a useful process and then alter it to perform
functions against a user’s wishes.

Also useful, though not necessary, would be a comment or review system,
so that users can explain to others any possible issues stemming from the
lack of security in a specific process. Similarly, extension developers should
be able to provide a changelog with each version to explain why it has been
updated.

All of these features are built into the addon system in Mozilla Firefox,
which pioneered the use of user-installed extensions on the World Wide Web.

4.2.3 Server Processes

Listen does not currently have any capability for a user to add or change
a server process. This is partially due to the architecture of the server,
which makes it very difficult to add new processes or terminate existing ones
during execution. Because handles to the process are kept by the broker for
messaging purposes, fully removing a process from the system would be very
difficult. Reloading updated processes is also quite a complex task, due to
the way Python handles classes.

54

Community-created server processes would also be a large security risk,
even with all of the above in place. Due to the very nature of a server process,
it has access to all the data on the server. One could therefore be used to
misappropriate or manipulate information about all users, or even take down
the entire server by performing an internal denial of service or attacking the
file system. As there is only one instance running globally, users would not
have the ability to enable or disable said processes, and so could not trust
the application. These processes would be a huge liability, and while they
would be interesting from an academic standpoint, allowing a user to run
code on a live, public server would be disastrous.

4.3 Performance
In order to fully exercise the framework, a stress test was built. This simply
consisted of a pair of processes which could be instructed to publish any num-
ber of messages, as well as subscribing to the same topic in order to receive
them all. The purpose was not to test the fine control over messaging that
the framework affords the developer, but simply to overload and potentially
crash it.

To aid us in measuring the performance of the framework, the processes
are fully configurable. We created a client-side controller that presented us
with a form, allowing us to specify the number of messages per second and
the test length in seconds. Additionally, the processes both had the ability to
spawn any number of child processes, all of which send messages at the rate
specified, and receive every message sent from every process. This results
in exponential growth in the number of messages being received, hopefully
putting an enormous amount of stress on the brokers in order to fully test
their stability and performance.

To determine how the number of messages impacts performance, we ran
the stress tests a large number of times, individually varying the number of
server processes, client processes and messages per second. Each test was run
for 60 seconds, during which we monitored the CPU usage on the server and
the client nodes. We used five computers with Intel Core 2 Duo processors
clocked at 3.0GHz and 4 GiB of RAM to run the server and four clients,
all connected with Gigabit Ethernet to the same subnet. All clients were
running a fresh copy of Google Chrome, version 5, which, at the time of
writing, utilises the V8 JavaScript engine, currently one of the fastest [24].
This is not an accurate representation of a standard web application, and
should be far less intensive in the general case, but by increasing the number
of messages being sent proportionally, we came away with excellent results.

55

Given that α is the number of processes on the server, β is the number
of processes on the client, φ is the number of clients on the network and µ
is the number of messages sent each second, we can calculate the number of
messages sent and received across the network. The total number of messages
being sent in one second is expressed as µ(α + βφ). However, because each
message is broadcast to every process, the number of messages received in
the same time, assuming no latency, is µ(α + βφ)2. A small increase in the
number of processes can therefore place a large increase in load upon the
brokers.

4.3.1 Varying the Server

Our first test measured CPU usage as we varied the number of processes on
the server, keeping the number of client processes and messages per second
constant. We can see from the results in figures 4.1 and 4.2 that increasing
the number of server processes dramatically increases the amount of server
processing, but does not affect the client at all. This implies that the actual
messaging overheads are fairly small, and that the majority of processing
time is taken up by the background threads actually sending the messages.

0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 2 3 4 5 6 7 8 9 10

No. of Server Processes

0 Client Processes
1 Client Process
2 Client Processes
5 Client Processes
10 Client Processes

Figure 4.1: Server CPU Usage

56

0 Client Processes
1 Client Process
2 Client Processes
5 Client Processes
10 Client Processes

0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 2 3 4 5 6 7 8 9 10

No. of Server Processes

Figure 4.2: Average Client CPU Usage

4.3.2 Varying the Client

Measuring the CPU usage when varying the client further justifies our con-
clusions drawn from the above tests. From figures 4.3 and 4.4, we can see
that there is only a very slight increase in usage as we increase the number
of nodes, showing that the load is distributed fairly well across the network.
Even at the peak, with 400 messages being sent every second, the server
broker is coping fairly well, using only 30% of one CPU core to deliver all
the messages.

0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 2 3 4 5 6 7 8 9 10

No. of Client Processes

0 Server Processes
1 Server Process
2 Server Processes
5 Server Processes
10 Server Processes

Figure 4.3: Server CPU Usage

57

0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 2 3 4 5 6 7 8 9 10

No. of Client Processes

0 Server Processes
1 Server Process
2 Server Processes
5 Server Processes
10 Server Processes

Figure 4.4: Average Client CPU Usage

4.3.3 Varying the Message Frequency

For the final test, the number of processes on the server and client were kept
constant, and only one client was used. To achieve a useful result despite
the linear, rather than polynomial, proportionality between messages sent
and messages received, we increased the number of messages exponentially.
Both the server and the client behaved as expected: when the server was
running the test, the client was idle and the server’s CPU usage increased
steadily with the number of messages. However, when the tests were run on
the client, both the server and the client experienced increase processing as
the number of messages climbed. This is due to the differing behaviour of
server and client: while the server will only forward messages to subscribers,
the client will forward all messages to the server.

58

0%

50.0%

100.0%

150.0%

200.0%

1 10 100 1000 10000

Message Frequency (Hz)

1 Server Process
10 Server Processes
100 Server Processes

Figure 4.5: Server Only: Server CPU Usage

0%

50.0%

100.0%

150.0%

200.0%

1 10 100 1000 10000

Message Frequency (Hz)

1 Client Process
10 Client Processes
100 Client Processes

Figure 4.6: Client Only: Server CPU Usage

59

0%

50.0%

100.0%

150.0%

200.0%

1 10 100 1000 10000

Message Frequency (Hz)

1 Client Process
10 Client Processes
100 Client Processes

Figure 4.7: Client Only: Client CPU Usage

We also measured message delay: the number of messages being deliv-
ered within a second of being sent as a percentage of the total number of
messages. In this case, the client was perfect up to approximately 100 mes-
sages per second, after which it took a slight decline. However, it hit a hard
limit at approximately 238 messages per second when running one process,
after which it could do no more. Increasing the number of processes also
increased the limit, probably due to threading optimisations performed by
the Google Chrome V8 engine. This hard limit seems to be the maximum
that V8 can handle on the test hardware, perhaps due to minimum sleep
times. While further optimisations to the code could possibly increase this
limit, 238 messages per second should be far more than is necessary for any
application.

Interestingly enough, on the server, increasing the number of processes
actually decreases the total number of messages the server is able to send.
This is probably due to the large number of threads necessary to handle
the processes, resulting in a lot of processor time being dedicated to thread
management and context switching rather than actual execution.

60

0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 100 10,000 1,000,000

Messages Sent per Second

1 Server Process
10 Server Processes
100 Server Processes

Figure 4.8: Server Only: Messages Delivered on Time

0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 100 10,000 1,000,000

Messages Sent per Second

1 Client Process
10 Client Processes
100 Client Processes

Figure 4.9: Client Only: Messages Delivered on Time

4.4 Reliability
A fortunate side effect of these stress tests, originally intended to measure
performance, was that they initially broke the server. By driving it far beyond
what could be expected of it, we found some interesting bugs that would have
otherwise gone unnoticed. The majority were deadlocks, but there was also
some code that relied on a there being a relatively small number of messages
sent per second.

61

Originally, the client would deliver messages to the server as they were
published, creating a new HTTP request and sending the data instantly.
With large numbers of messages, this proved to be quite troublesome, as
the act of establishing HTTP requests is both processor-intensive and time-
consuming from a network perspective. This was therefore replaced with
a new mechanism that waits a minimum of 200 milliseconds between each
delivery, queueing up messages and sending them all at once if necessary.
With this in place, the client is now able to handle far more messages than
it could previously.

When attempting to send messages at a very high frequency, certain
threads within the server would occasionally find themselves hanging. Pro-
cesses would succumb to this due to a lock implementation which allowed
the process creator to replace certain locks with a sleep mechanism so that a
new thread would not have to be created in order to schedule functionality
on a timer. However, this resulted in odd behaviour at certain points, and
so it was removed in favour of a much simpler technique.

The broker was also hanging after prolonged periods of high stress. After
much investigation, it was determined to be caused by multiple locks in both
the broker, certain processes and the web server request handler all acting in
tandem. The behaviour was erratic, with no way to guarantee reproducing it,
and so could not be measured, but occured frequently enough at the higher
ends of the scale that testing became difficult. The problem was somewhat
ratified by replacing all the fine-grained broker subscription locks with one
coarse lock, which greatly improved the situation and had no real effect on
performance. However, there was still a small possibility of it freezing when
sending upwards of a few hundred messages per second across the network—
unlikely, but it would bring the entire system to a halt. The error was
traced to the broker blocking when responding to client requests, which can
potentially fail forever and never reply. This was fixed by dedicating a thread
to each client, resulting in a more stable and more efficient messaging system.

62

Chapter 5

Conclusion

In our evaluation, we identified the key benefits in using a messaging frame-
work such as Listen, as well as any potential costs it might incur. In addition,
we delivered an analysis of the framework’s stability and efficiency. Finally,
we provided a example showing some of its capabilities, as well as demon-
strating its simplicity.

Listen is clearly suited to message-based applications, such as the basic
chat program outlined in section 4.1. However, it can be used in a huge
variety of situations, as the request/response paradigm the web is based
upon can be represented within the publish/subscribe model. With that
in mind, the fact that it defaults to broadcasting information, rather than
keeping it private, lends itself well to applications of a more social nature,
encouraging communication between users as opposed to separating them.
If the increasingly large number of social web applications is any clue to the
direction the web is heading, this is an excellent position in which to be.

5.1 Future Work
There are many ways in which Listen could be extended to better serve the
needs of developers and users. Perhaps the most obvious is accessibility:
so reliant is the framework on client-side scripting, users with it disabled
will just see a blank web page. Listen could greatly benefit the capability
to provide static HTML to the browser, and trade AJAX requests for the
simple practice of serving web pages.

To this end, Listen would need the capability to simulate JavaScript ac-
tions. However, this can be avoided if the JavaScript were automatically
generated from a server-side script. If this script were written in Python,
code could be shared between the client and the server, massively decreasing

64

the learning curve of the framework and significantly cutting maintenance of
particular items, such as the broker and the stress test, which run on both.
This would require a UI-independent feedback mechanism—one that could
manipulate items on a web page through the DOM, alter HTML before send-
ing it to the browser or send messages to the client to do so, all dependent
on where the process is being executed and the type of request being made.

The core libraries provided—the Logger, Switcher and Editor—are fairly
basic, and lack the features needed to make them useful for more than demon-
stration purposes. The Editor, in particular, needs a large overhaul for the
reasons mentioned in subsection 4.2.2. This would almost certainly require
another library related to user authentication and management, bringing
even more functionality to the framework.

Due to time constraints, some decisions had to be made that favoured
a quick implementation over the best possible. One example was the web
server itself: written in Python because of its stellar library support and our
prior experience with the language, a lot of work has gone into making every-
thing work correctly and tracking down bugs. Given the time to learn and
implement a more complicated development process, the framework would
benefit from being integrated into a successful web server such as Apache
HTTPd, which has been proven to be reliable and efficient. In addition, it
would mean that the framework could be integrated with existing websites,
increasing the size of its potential userbase.

Finally, there is the choice of the language itself. Python is known by
many, is very popular and has libraries for any functionality a programmer
might possibly want. However, its imperative nature makes it ill-suited for
actor-based development. Porting Listen to an actor-based language such as
Erlang, or one with native support alongside more traditional features such
as Scala, could significantly improve the development process. However,
Erlang has little in common with JavaScript, and the disconnect between
them would increase the complexity of the framework. Simultaneously, while
Scala works fairly similarly to JavaScript in some cases, it is a new language
with its own teething problems. Every language brings both pros and cons
to the table, and while Python was not perfect, it also has a large number of
useful features not collectively found anywhere else.

65

Bibliography

[1] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor for-
malism for artificial intelligence,” in IJCAI, pp. 235–245, 1973.

[2] C. Hewitt, “ActorScript(TM): Industrial strength integration of lo-
cal and nonlocal concurrency for Client-cloud Computing,” CoRR,
vol. abs/0907.3330, 2009.

[3] J. Ayres and S. Eisenbach, “Stage: Python with Actors,” in IWMSE
’09: Proceedings of the 2009 ICSE Workshop on Multicore Software En-
gineering, (Washington, DC, USA), pp. 25–32, IEEE Computer Society,
2009.

[4] U. Wiger, “stress-testing erlang.” http://groups.google.com/group/
comp.lang.functional/msg/33b7a62afb727a4f, 2005.

[5] “About Messages and Message Queues.” http://msdn.microsoft.com/
en-us/library/ms644927.aspx.

[6] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, 2003.

[7] “WebSphere MQ.” http://www-01.ibm.com/software/integration/
wmq/.

[8] “Apache ActiveMQ.” http://activemq.apache.org/.

[9] Y. Balzer, “Improve your SOA project plans.” http://www.ibm.com/
developerworks/webservices/library/ws-improvesoa/, 2004.

[10] T. M. H. Reenskaug, “MVC.” http://heim.ifi.uio.no/~trygver/
themes/mvc/mvc-index.html.

66

http://groups.google.com/group/comp.lang.functional/msg/33b7a62afb727a4f
http://groups.google.com/group/comp.lang.functional/msg/33b7a62afb727a4f
http://msdn.microsoft.com/en-us/library/ms644927.aspx
http://msdn.microsoft.com/en-us/library/ms644927.aspx
http://www-01.ibm.com/software/integration/wmq/
http://www-01.ibm.com/software/integration/wmq/
http://activemq.apache.org/
http://www.ibm.com/developerworks/webservices/library/ws-improvesoa/
http://www.ibm.com/developerworks/webservices/library/ws-improvesoa/
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

[11] J. Gossman, “Introduction to Model/View/ViewModel pattern
for building WPF apps.” http://blogs.msdn.com/johngossman/
archive/2005/10/08/478683.aspx, 2005.

[12] D. Crockford, “Javascript: The world’s most misunderstood program-
ming language.” http://javascript.crockford.com/javascript.
html, 2001.

[13] A. Russell, “Comet: Low Latency Data for the Browser.”
http://alex.dojotoolkit.org/2006/03/comet-low-latency-
data-for-the-browser/, 2006.

[14] E. Bozdag, A. Mesbah, and A. van Deursen, “A comparison of push and
pull techniques for ajax,” CoRR, vol. abs/0706.3984, 2007.

[15] I. Hickson, “Server-Sent Events.” http://dev.w3.org/html5/
eventsource/, January 2010.

[16] Y. Fujishima, F. Ukai, and T. Yoshino, “Web Sockets Now Avail-
able In Google Chrome.” http://blog.chromium.org/2009/12/web-
sockets-now-available-in-google.html, 2009.

[17] “Browser Statistics.” http://www.w3schools.com/browsers/
browsers_stats.asp.

[18] A. Cannon, “JavaScript and screen readers.” http://northtemple.
com/2008/10/07/javascript-and-screen-readers, October 2008.

[19] “WAI-ARIA Overview.” http://www.w3.org/WAI/intro/aria.

[20] “Statistics Dashboard.” https://addons.mozilla.org/en-
US/statistics.

[21] D. Crockford, “Introducing JSON.” http://json.org/.

[22] P. Leach, M. Mealling, and R. Salz, “A Universally Unique IDentifier
(UUID) URN Namespace.” RFC 4122 (Proposed Standard), July 2005.

[23] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Iden-
tifier (URI): Generic Syntax.” RFC 3986 (Standard), January 2005.

[24] P. Gralla, “Safari 5 in depth: Has it sped past Chrome?.”
http://www.computerworld.com/s/article/9177990/Safari_5_
in_depth_Has_it_sped_past_Chrome_, June 2010.

67

http://blogs.msdn.com/johngossman/archive/2005/10/08/478683.aspx
http://blogs.msdn.com/johngossman/archive/2005/10/08/478683.aspx
http://javascript.crockford.com/javascript.html
http://javascript.crockford.com/javascript.html
http://alex.dojotoolkit.org/2006/03/comet-low-latency-data-for-the-browser/
http://alex.dojotoolkit.org/2006/03/comet-low-latency-data-for-the-browser/
http://dev.w3.org/html5/eventsource/
http://dev.w3.org/html5/eventsource/
http://blog.chromium.org/2009/12/web-sockets-now-available-in-google.html
http://blog.chromium.org/2009/12/web-sockets-now-available-in-google.html
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.w3schools.com/browsers/browsers_stats.asp
http://northtemple.com/2008/10/07/javascript-and-screen-readers
http://northtemple.com/2008/10/07/javascript-and-screen-readers
http://www.w3.org/WAI/intro/aria
https://addons.mozilla.org/en-US/statistics
https://addons.mozilla.org/en-US/statistics
http://json.org/
http://www.computerworld.com/s/article/9177990/Safari_5_in_depth_Has_it_sped_past_Chrome_
http://www.computerworld.com/s/article/9177990/Safari_5_in_depth_Has_it_sped_past_Chrome_

	Background
	Actors
	Messaging
	Message Queues
	Publish/subscribe
	Existing Solutions

	Model-View-Controller
	Client-Side Programming
	Comet
	HTML5
	Accessibility

	Community-Driven Development

	Design
	Introduction
	Messaging
	Message Structure
	Topics
	Brokers
	Special Topics
	Security

	Clients
	The Web Server
	Loading processes
	Static files
	Messaging
	Configuration

	Processes
	Dependencies
	Community-Driven Processes

	Using the Framework
	Server Processes
	Client Processes

	Evaluation
	Usability
	The Application
	Configuration
	User Interface
	Communication
	Logging

	Extensibility
	Basic Functionality
	Security
	Server Processes

	Performance
	Varying the Server
	Varying the Client
	Varying the Message Frequency

	Reliability

	Conclusion
	Future Work

	Bibliography

