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Abstract

Stock exchanges, sensor networks and other publish/subscribe systems need to deal with high-
volume streams of real-time data. Especially financial data has to be processed with low latency
in order to cater for high-frequency trading algorithms. In order to deal with the large amounts
of incoming data, the stream processing task has to be distributed. Traditionally, distributed
stream processing systems balanced their load over a static number of nodes using operator
placement or pipelining.

In this report we propose a novel way of doing stream processing by exploiting scalable cluster
architectures as provided by IaaS/cloud solutions such as Amazon’s EC2. We show how to
implement a cloud-centric stream processor based on the MapReduce framework. We will then
design a load balancing algorithm which allows a local stream processor to request additional
resources from the cloud when its capacity to handle the input stream becomes insufficient .
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Chapter 1

Introduction

Today’s information processing systems face formidable challenges as they are presented with
new data at ever-increasing rates [19]. In response, processing architectures have changed with
a new emphasis on parallel architectures at the on-chip level. However, research has shown
that an increase in the number of cores cannot be seen as a panacea. As cores increase in
number and speed, communication becomes increasingly a bottleneck [4]. Alternative solutions
like clusters are still preferred for high performance applications. So while the traditional PC
has seen advances in multi-core architectures, much of this effort is complemented by a move
from local to cloud processing. Cloud-based computing seeks to address the issue that while in
most cases today’s computational resources are idling, they may still not be adequate in peak
load situations. By sharing resources and requesting more power when needed, we can overcome
these bottlenecks. The result should improve both latency and reduce the cost to the user. This
projects seeks to evaluate a novel way of load balancing data intensive stream processing queries
into a scalable cluster. The goal is to exploit the scalability of a cloud environment in order deal
with peaks in the input stream.

Cloud computing has certainly been one of the most hyped trends of the last few years. The
result is that companies of tacked this name to a variety of different service offerings. This
makes it difficult to come up with a single, concise definition. Kunze and Baun [27] have derived
a good definition from Ian Foster’s definition of grid computing [24]:

Cloud computing uses virtualised processing and storage resources in conjunction
with modern web-technologies to deliver abstract, scalable platforms and applications
as ondemand services. The billing of these services is directly tied to usage statistics.

We can distinguish between three applications of Cloud Computing: Infrastructure as a service
(IaaS), Platform as a service (PaaS) and Software as a service (SaaS) [27]. IaaS describes a
service that offers computational resources for distributed applications. The infrastructure is
flexible enough for the user to run his own operating system and applications. The adminis-
tration of the system lies mostly with the user. PaaS takes some of the administration away
from the user and allows some (limited) programming of the resources. An example for this is
Google’s App Engine. Finally, and probably most exposed to the general public are SaaS appli-
cations. These are offerings such as Apples MobileMe and Google’s email and text processing
applications. They offer little to no customisation but the convenience of storing data off-site.
We are interested in applying IaaS services to the computation of financial algorithms.

Recent years have seen a massive increase in algorithmic trading. Billions of pounds are traded by
software [40]. More than a quarter of all equity trades at Wall Street come down to algorithms

1



2 Chapter 1. Introduction

with little to no human intervention [21]. Financial markets emit hundreds of thousands of
messages per second [31]. The exchanges have responded to the demand. The delay between
the time a trade is placed and filed at the Singapoore exchange for example has dropped to
around 15 milliseconds and other exchanges are following suit [33]. An algorithmic trading
systems must therefore process real time data streams with very low latency to in order to stay
competitive. The arms-race over ever faster responses to changing market conditions necessitates
highly scalable stream processing systems.

Stream processing systems are fundamentally different to ordinary data processing systems.
Streams are often too large, too numerous or the important events too sparse [29]. This means
data has to be processed on the fly by pre-installed queries. In most cases only a small number
of tuples is interesting to the trader. The job of a stream processing system is to find these and
make them available in a manner similar to traditional publish/subscribe systems.

A number of systems have emerged to deal with these problems. The distributed systems com-
munity coined the term Complex Event Stream Processing for evaluating the output of sensor
networks. A similar approach taken by database vendors such as Oracle is simply called Event
Stream Processing. The difference between the two is that the former advocates a publish/-
subscribe approach [20], whereas the database vendors promote SQL and distributed databases.
Current systems distribute the query over a number of nodes [13], thus focussing on the com-
plexity of the query itself. We feel that these techniques are too rigid to dynamically scale in
a cloud environment. Instead we have chosen to extend the MapReduce paradigm to enable
streaming queries.

MapReduce is based on ideas from functional programming. Two functions, map and reduce
take over the task of implementing the query. This technology has been successfully employed
by Google [19] and others [10] [25] [35] and is supported in by various IaaS providers [5] [6] [7].
As MapReduce has orginally been designed for batch-processing, it will have to undergo some
changes to be applied to stream processing. Recently, a first step towards streaming MapReduce
has been made with the Hadoop Online Prototype (HOP) [18]. We will build on this work to
show how a MapReduce stream processor can be implemented.

The choice to use the MapReduce framework is motivitated by our goal to provide efficient load
balancing into the cloud. As we will show later in this report, the data rate of a stream is
likely to vary a lot. From our data set, we found the highest demand on the stream processor
occurs in the morning, presumably as many trades are carried over from the previous day. The
whole trading session lasts 6.5 hours. This is only just over a quarter of a day. Most trading
is done on work days. To provide resources 24/7 would not be economical [16]. Instead we
opt to design a load balancing algorithm which dynamically responds to bursts in the input
stream and relieves the strain on a small-scale, local stream processor by out-sourcing some of
the computation to the cloud. The MapReduce implementation on the cloud should then scale
as more computational power is required.
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1.1 Contributions

In this report we seek to complement the current state of the art in stream processing techniques
with the following contributions:

1. Streaming extension for the Hadoop framework We will design and implement the
network components necessary to run a streaming MapReduce query on top of the Hadoop
framework.

2. MAPS: A Lightweight MapReduce framework written in Python. Starting from
the origins of MapReduce in functional programming, we describe the design and imple-
mentation of a simple MapReduce stream processor written in Python. The design draws
from the lessons learned while working on the Hadoop framework.

3. Loadbalancing strategies to use the cloud in an existing stream processing setup. We
show the design and implementation of a minimal version of a single node MapReduce
stream processor and how its resources can be complimented by our cloud implementation
with two load balancing strategies.

(a) Always-on approach: The cloud’s resources are always used to complement the local
stream processor.

(b) Adaptive approach: The cloud’s resources are used on-demand to assisst the local
stream processor.

4. We will evaluate the benefits and limitations of MapReduce for stream processing
applications. We will compare our two cloud-based stream processing solutions. Taking
the results into account, we will conclude by evaluating our loadbalancing techniques with
respect to their ability to assist a local stream processor.

1.2 Outline of this report

In Chapter 2 we will look at existing stream processing solutions, cover the background for our
MapReduce implementation and discuss some existing load balancing strategies. We will finish
with a short introduction to the financial concepts behind our streaming queries. Having laid
the theoretical foundations, Chapter 3 shows how the HOP/Hadoop framework can be extended
to process streaming queries. Building on the experiences from the Hadoop stream processor,
Chapter 4 focuses on the design and implementation of a custom prototype for a MapReduce
stream processor. With a cloud-based solution in place, Chapter 5 focuses on the design of
suitable load-balancing algorithms. In Chapter 6, we will evaluate the MapReduce paradigm in
the context of financial queries. We will conclude this report by looking at the performance of
the load balancing algorithms designed in Chapter 5.
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Chapter 2

Background

The goal of this project is to enable stream processing in the cloud by using a scalable MapReduce
framework. In addition, we are going to evaluate a load balancing algorithm which allows us
to utilise the resources of an IaaS provider on-demand. For the purpose of implementation and
evaluation we will use a set of local nodes in the college’s datacentre. However, since this is a
homogeneous cluster, the results should be easily transferable to a real IaaS service. In order to
introduce this ultimate goal of running the MapReduce stream processor with an IaaS provider,
we introduce Amazon’s EC2 offering in §2.2.5.

We will start this chapter with a short detour into finance to gain an insight into possible areas
of applications of a stream processor and to explain the reasoning behind Put/Call parities -
our chosen test query.

After this, we will formally introduce the MapReduce algorithm as designed by Google [19]. The
MapReduce algorithm enables data processing on a large number of off-the-shelf nodes. This
means that it has now become a focal point of any discussion on cloud computing in general. We
will discuss its limitations and why we have initially chosen one of its variations (see §2.3.4) to
be part of our implementation. We will then introduce Sawzall, an effort by Google to create a
domain specific language for MapReduce and proceed to Hadoop, an open-source implementation
of the MapReduce framework. After having laid the algorithmic foundations, we will discuss
the underlying infrastructure. Having covered the basics of MapReduce and the underlying
platforms, we will concentrate on the current state of the art in stream processing systems and
discuss why we have chosen to follow the rather novel path of utilising the MapReduce paradigm.
We will conclude this chapter by looking at techniques currently employed in load-balancing and
explain how these are applicable to our problem.

2.1 Financial Algorithms

As laid out in the introduction, the financial services industry constitutes a major area of
application for stream processing. In our tests we are planning to use stream processing in the
cloud to compute financial equations. We have a set of financial data available. This set contains
the quotes for options at various stock exchanges for a single day. In order to formulate a sensible
query, we must understand the rationale behind the financial data given. In the following we will
discuss the concepts behind put and call options as well as the concept of futures trading. At the
moment, we are aiming to deploy a single query over the MapReduce network. We must thus
formulate a query which makes sense both under the MapReduce as well as financial paradigms.

5



6 Chapter 2. Background

2.1.1 Foundations

Options An options contract can be described as follows. Farmer Enno sells investor Antje
the right to buy next year’s harvest at a specific strike price. Obviously, neither knows the
actual value of the harvest. Enno produces biofuel. Now say the economy dips into recession
the following year and substitute goods such as oil become cheaper. Then Enno’s biofuel will
drop in price as well and Antje is going to drop her option. She has lost the commission and
any other associated fees. However, if the economy is well and Enno has an exceptional harvest,
Antje will exercise her option. The price of the option is below the actual market price. Antje
will be able to sell the fuel at a premium.

Futures In contrast to options, futures are binding contracts over the purchase of a good.
If Antje buys a futures contract on Enno’s harvest, she is obliged to buy it at the spot price.
This guarantees Enno a specific price for his harvest and insures Antje against rising costs. Our
dataset only includes options data and thus we will not discuss futures any further. Below we
define a few financial terms necessary for the further discussion.

Short selling A buyer borrows a position (eg. shares) from a broker, betting its price will
fall. The broker receives a commission. The buyer immediately sells the position (going short).
With prices falling, the buyer can now re-acquire the position and return it to the broker. The
buyer has made a profit of the difference between the initial sell and final buy actions minus the
commission. The buyer makes a loss if prices rise as he has to buy at a premium to his initial
sell price.

Long buying This is the opposite to short selling and describes buying positions and betting
that prices will rise in future.

Bonds Bonds are similar to shares. Shareholders are owners of the company and shares can
be held indefinitely. Bondholders are creditors of the company and bonds are usually associated
with a due date. This time period is called maturity. As shares usually pay dividends, bonds
have an associated interest rate called coupon.

2.1.2 Put and call options

In options trading we distinguish two types of financial produces. Put and Call options. Put and
call options are short selling and long buying applied to options. If Antje thinks that the price
of Enno’s harvest will decrease in future, she can buy a put. A put means that Antje is going
short on the right to buy Enno’s harvest. Should the weather outlook dictate a higher price
for the option, Antje will have to buy back the option at a premium and therefore lose money.
However, if prices of biofuel seem likely to fall, Antje is most likely to be able to buy back the
option at a cheaper price and return it to the broker at a premium. In options trading, the seller,
previously referred to as broker is called writer. Obviously, the writer’s profit is maximised if
the buyer chooses not to exercise the option.

A call option is the name for acquiring the right to buy shares of stock at a specific strike price
in the future. In the above paragraph on options, we have described this simple case of options
already.



2.1. Financial Algorithms 7

2.1.3 Arbitrage opportunities

Put-call parity

Put-Call parity is a relationship between put and call options which mainly applies to Euro-
pean options1 [12]. This concept is important for valuing options but can provide a arbitrage
opportunity.

Portfolio A We define the following variables for the put:

• K Strike price at time T

• S Share price on day of expiry (unknown constant at time T)

Now, assume we have a portfolio with a single put position at strike price K (short option) and
a single share at time T . Should the (unknown) share price S, be the same or exceed K, the
value of our portfolio is S as we do not wish to exercise the option. Should the strike price,
however, be greater than S we would like to exercise the option and our portfolio is worth the
value of the put, K − S plus the value of the share S: K − S + S = K.

Portfolio B For the call we define the following variables:

• K K bonds each worth 1 unit (constant value)

• S Share price on day of expiry (unknown constant at time T)

A portfolio with a single call position (normal option) and K bonds (each worth 1) is worth the
same as A if their strike price and expiry are the same. K always remains the same. Like above
if at time T , the strike price K is less than the (unknown) share price S, we wish to exercise
the right to buy stock at K and make a profit of S −K. The total value of our portfolio in this
case is S. If the strike price K is greater than S, we will chose not to exercise the option and
therefore have a portfolio worth K. This shows that at time T , both portfolios have the same
value regardless of the relationship between T and S.

If one of the portfolios was cheaper than the other, then there would be an arbitrage opportunity
since we could go long on the cheaper one and go short on the more expensive one. At the
expiration T the portfolio will have zero value. But any profit made before is kept.

Relation to our project For our purposes, when we talk about ”put-call parity”, we simply
wish to find out if we can find two markets with a put and a call options at the same strike price
and with the same expiry date. As we do not have any information about the rest of the market,
we cannot evaluate the financial formulae using prices for bonds, shares and dividend/coupon
payments. We envisage that the full implementation will be possible in a system using multiple
queries.

1option cannot be exercised before expiration
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2.2 Cloud computing

2.2.1 MapReduce

MapReduce was first introduced by Google in 2004 [19]. It is a framework designed to abstract
the details of a large cluster of machines to facilitate computation on large datasets. The
inspiration for the MapReduce concept was taken from functional programming languages such
as Haskell. Nowadays, many companies have implemented their own MapReduce frameworks.
Open source implementations exist. In the following we will describe how MapReduce works
and how it can be applied to our task.

Google File System (GFS) MapReduce works by distributing tasks over a large number
of individual nodes. Therefore, the implementation is often accompanied by a distributed file
system. In the original Google implementation this is GFS [19], the Google File System. GFS
is particularly suited for MapReduce as the framework assumes that files are large and updated
through concatenation rather than modification. In GFS, files are divided into chunks of 64MB
each and then distributed across several chunk servers [39]. Replication is used so that we can
recover from failures such as a machine becoming disconnected from the network.

How it works The main goal of MapReduce is to prevent the user from creating a solution that
requires a lot of synchronisation. All synchronisation is done within the MapReduce framework.
This way we avoid the pitfalls induced from race conditions and deadlocks. We can focus on the
actual computation of values. In order to simplify data handling, the programming model also
specifies the input and output as sets of key/value pairs.

The MapReduce algorithm then follows a divide and conquer approach to compute a set of
output pairs for a given set of input pairs. This is done through two functions: Map and
Reduce. Using the divide and conquer approach, the master node distributes the input tuples
over the set of worker nodes by splitting the problem into a smaller sub problems. The map
phase can form a tree structure in which problems are recursively split into smaller sub-problems
before being passed to the reduce phase. Similarly, the output of the reduce phase can be fed
back into the system and start another map reduce iteration. The necessary work is done within
the MapReduce library.

In Haskell notation, one would describe the map and reduce functions in the following way:

map :: (key_1, value_1) -> [(key_2, value_2)]

reduce :: (key_2, [value_2]) -> [value_3]

The map function takes a (key, value) pair and produces a list of pairs in a different domain.
The framework takes these pairs and collates values under the same key. The resulting pair
of (key, [value]) is then processed by the reduce function to produce output values in a
(possibly) different domain. The original C++ implementation uses string inputs and outputs
and leaves it to the user to convert to the appropriate types. The following map and reduce
functions illustrate how the MapReduce framework can be used to count the occurrences of each
word in a large set of documents.

This example mirrors the working of the map and reduce functions. For each word, the map
function emits a tuple with the word as the key and the number 1 as its value. As the reduce
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1 def map (name , document ) :
2 for word in document do
3 EmitIntermediate (w, 1)
4

5 def reduce (word , par t ia lCount s ) :
6 r e s = 0
7 for pc in par t ia lCount s :
8 r e s = r e s + pc
9 Emit ( r e s )

Listing 2.1: MapReduce Example

function is operating on all values of a single key, it just sums up the 1’s from each individual
word and returns the total number of appearances. The partialCounts variable is an iterator
which walks over the output from the map function as written to the distributed file system.

Besides the map and reduce functions we further have an input reader which reads from the
file system and produces the input tuples for the map function. These tuples are split into a
set of M splits and processed in parallel by the worker nodes. The partitioning for the reduce
nodes is similar. We specify a partitioning function like hash(key) mod R to do this. The
partitioning function is used to split the data into R regions when buffered data from the map
tasks is written to stable storage. The master is notified and then notifies the reduce tasks to
start working. Because the hash function can map multiple keys to one region, we need to sort
the data at the reduce node before we can process region R. Finally an output writer takes
the output of the reduce function and writes it to stable storage.

In some cases it is advisable to put a combiner function in between the map and reduce stages to
limit the amount of data passed on to the network layer. This can be seen in the word counting
example, where given the input language of the documents is English, there will be a lot of
("the", 1) pairs emitted. The combiner function acts like the reduce step, the difference being
that the algorithm writes its output to an intermediate file, whereas the output of the reduce
step is written to the final output file.

As is tradition with Google, MapReduce clusters typically consist of large clusters of commodity
PCs networked via ordinary switched Ethernet. Network failures are common, therefore, the
algorithm has to be very failure tolerant. By ensuring that individual operations are independent,
it is easy to reschedule map operations in case of failure. However, we must be more careful
when output of a failed map has already been partially consumed by a reduce operation. In this
case the reduce has to be aborted and rescheduled, too.

So far we have assumed that the map and reduce operations are independent. This restriction
allows us to make full use of the distributed system as these operations can all be executed in
parallel without any significant locking overhead. The restriction is that the data has to be
available to the processing units without any significant delay. In the original implementation,
a reduce task for example needs all the data for a particular key to be presented at the same
time. To be able to process streams efficiently, we need to get rid of this restriction. As this
restriction was implemented using a write to the distributed file system GFS, we need to stream
data from mappers to reducers instead. The details of this are discussed in §2.3.4.

Criticism / Evaluation Our choice in favour of MapReduce is motivated by the ease of use
of its programming model and the tight integration with the cloud paradigm. The MapReduce
design provides natural support for scalability with its mappers and reducers. However, there
has been some criticism voiced over its implementation. Notably, David DeWitt and Michael
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1 count : t ab l e sum of i n t ;
2 t o t a l : t ab l e sum of f l o a t ;
3 sum of square s : t ab l e sum of f l o a t ;
4 x : f l o a t = input ;
5 emit count <− 1 ;
6 emit t o t a l <− x ;
7 emit sum of square s <− x ∗ x ;

Listing 2.2: Sawzall Example

Stonebraker, two proponents of distributed databases have criticised MapReduce for its lack of
expressiveness [22]. They argue that the programming model is outdated and not able to utilise
any of the performance improvements known from traditional databases such as indexing. We
argue that although DeWitt and Stonebraker are right on the limited expressiveness, they miss
the point on the purpose of MapReduce. MapReduce is an excellent way to process a large
amount of data that comes in a relatively unstructured form. Once we have processed the data,
we can store it in relational tuples and evaluate it further using a traditional database approach.
The two approaches are therefore complimentary, a result that Stonebraker et al. acknowledge
in a later paper [36]. They refer to the pre-processing stage as extract-transform-load tasks
and call them a MapReduce speciality. In our project we will evaluate relational tuples as we
expect the difference between MapReduce and distributed database systems to be negligible in
single-query environments.

2.2.2 Sawzall

DeWitt and Stonebraker also criticised MapReduce for its lack of high level query language.
Recently, there have been several efforts to remedy this. Sawzall is a domain specific procedural
language developed by Google to lie on top of the MapReduce framework. This language takes
the MapReduce approach further to make sure that its programmers write parallel code. It uses a
set of aggregators “to capture many common data processing and data reduction problems” [34].
As Sawzall is an interpreted language, we might think this would pose a significant constraint in
a high performance environment. However, as the algorithms mainly spend time on I/O and the
underlying methods are implemented natively, this does not incur any significant penalty. The
increase in performance when adding machines is almost linear. As we need more control over
the communication between the hosts to implement our stream processing paradigm, we cannot
use Sawzall to program the cloud infrastructure. However, this is an interesting approach and
it might be considered to extend Sawzall to enable stream processing as the authors suggest.

The following simple Sawzall program (Listing 2.2) takes as input a set of records containing
one floating point number each. It then produces three results. The total number of records,
the sum of all the floating point values and the sum of the squares of the floating point numbers.

This looks very similar to the map phase as we have seen in the discussion of MapReduce
in §2.2.1. Here we define three aggregators: count, total and sum of squares. By defining
these aggregators as sum tables we tell Sawzall what the reduce part of MapReduce should be
doing. By pre-defining the aggregators, Sawzall relieves the programmer of the reduce task
but also somewhat limits the expressiveness of map reduce. However, the upside is that the
aggregators can now be implemented natively. Furthermore, the parallelism is hidden from the
user. Aggregators have to be commutative, associative and efficient for distributed programming.
Extending the set of aggregators is therefore difficult.
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Evaluation Sawzall is a very interesting approach to take MapReduce more en par with
traditional database systems. By designing a domain specific language it is possible to further
abstract and simplify parallel programming. At this stage, Sawzall is not yet able to express
streaming queries. However, we will keep MapReduce DSL approaches in mind for further
projects.

2.2.3 Hadoop

Hadoop is the umbrella project for several Apache projects which have the aim to provide a
reliable platform for distributed computing. The Hadoop project can be split into two parts.
The first is an implementation of MapReduce. Although the framework is written in Java, it
accepts MapReduce tasks written in other languages [1]. Similarly to Google’s Sawzall effort,
the Hadoop project also includes Pig [28], a high level data-flow language to describe parallel
processes. Pig’s compiler produces a chain of MapReduce operations. The language layer is
called Pig-latin. The second part of the Hadoop implementation is the Hadoop Distributed File
System (HDFS), a file system, similar to GFS as employed in MapReduce [19]. Both HDFS and
GFS are optimised for batch processing.

Figure 2.1: Hadoop implementation

Architecture

Fig.2.1, shows the organisation of a Hadoop installation. The master node is called JobTracker
and waits for incoming jobs. The jobs are split into tasks and assigned to worker nodes - called
TaskTrackers. A TaskTracker has a fixed number of slots to run map and reduce tasks. The
execution of these is managed by the TaskTrackers themselves. The JobTracker uses a heartbeat
protocol to keep record of free slots on the TaskTrackers and to schedule new tasks [18].

Hadoop job submission

A new MapReduce job is submitted through the JobClient interface. The JobClient provides
facilities to monitor the MapReduce cluster, submit jobs and view their status. When a job is
submitted to the JobTracker via the JobClient, the following steps are executed [2]:

1. Checking input and output configuration.

2. Computing the InputSplit2 values for the job.

2Input files are split up prior to the distribution over the mappers
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3. Copying the job’s jar and configuration to the MapReduce system directory on the file
system.

4. Submitting the job to the JobTracker and monitoring its status.

Evaluation Hadoop is available on as cloud images and a standalone application and therefore
interesting to our project. This and the amount of supporting tutorial material for Hadoop
convinced us to choose it for the MapReduce implementation. In its original design it does not
allow for streaming MapReduce. This limitation is covered in §2.3.4.

2.2.4 Remote Procedure Calls

As distributed systems like Hadoop have to communicate intermediate results and to coordinate
their behaviour, they need a reliable way to communicate. In Hadoop, a lot of inter-process
communication is done using RMI, the Java version of a Remote Procedure Call (RPC). RPC
is a technology to lookup functions outside the address space of the current process [30]. This
could mean a function on the same node, implemented by a class running in a different process,
or code running on a different machine altogether. In either case, once the function has been
bound by the RPC framework on the local machine, a call behaves (almost) exactly like you
would expect it to on a local machine.

Implementation

A remote procedure call initialised and executed through message-passing [39]. The client node
first sends a request to the server process containing a unique identifier for the function to be
called. In order to find the server implementing the function, the calling process might either
broadcast a message on the local network or request a list of implementations from a well known
name server. In the latter case, it is necessary for the server process to register its implementation
first. Once the client has completed the lookup phase for the particular function, it is bound to
a local stub and can be used by the rest of the program. On the server side, a daemon ensures
that all communication request are dealt with by either spawning a new thread or picking one
from a pre-initialised thread pool.

Serialisation

RPC libraries can easily deal with most basic data types such as integers and strings. However,
if we wish to call methods on complicated objects by reference, we need to make sure that the
remote host is aware of these objects first. We need to serialise the object [39]. Serialisation
of an object such as a linked list means traversing all the pointers and essentially flattening
the datastructure such that it can be either saved to disk or transmitted over the network.
Flatting complex datastructures is not always an easy task as we must follow all references
without looping forever due to back edges in the graph. Furthermore, we cannot merely send
the contents of the objects over the network as any pointer variables will not have the same
meaning on a remote host. The solution to this problem is called pointer swizzling. In our
example of a linked list, we would for example introduce a new field to every node holding a
unique identifier. We can then set the pointer to the next node to its identifier rather than
the address in memory. This process can be easily reversed at the other side. However, there
is an cost associated with this operation. Thus, serialisation should not be used extensively
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when communicating in an environment where runtime is critical. When applicable, simpler
datastructures should be used.

Java RMI

Remote method invocation (RMI) is Java’s implementation of the RPC protocol. Instead of
publishing information on a single method with a nameserver, the callee registers its remote
object with the RMI-Registry under a unique identifier [37]. The client program can now query
the RMI-Registry with this identifier to get a reference to the remote object. This reference has
to be an implementation of its remote interface. The remote interface defines the methods that
are guaranteed to be implemented by the remote object. The client can now call the methods
on the remote object as published by the remote interface. It is possible for the method headers
of the remote object to contain references to interfaces. Any class implementing these interfaces
may then be used on the remote host including class definitions from the caller. This means
that Java gives the user the opportunity to dynamically load new code as part of a RMI call.
In order to make sure that this is not exploited for malicious use, a security manager is always
installed as part of the RMI implementation. Any special requests have first to be granted by
the designer of the server application.

2.2.5 Amazon EC2

Despite having chosen to implement our stream processor on cluster nodes in the college, our
ultimate aim is to run stream processing on an IaaS platform such as Amazon EC2. The decision
to develop and test locally has been purely a development one. However, as all our machines
are single-purpose and only used for this project, our setup is not too dissimilar to a “cloud”.
The participating nodes are running the same specifications. In fact, the EC2 technology is
available as part of the Ubuntu Eucalyptus packages and can be integrated into an Ubuntu
server installation. It could thus be easily installed on our test cluster.

Amazon’s EC2 offering, introduced in 2006 [11], was one of the first commercial cloud infras-
tructures. EC stands for Elastic Cloud. Customers are allowed to create an Amazon Machine
Image. This image is used to start a virtual machine on the Amazon cluster. The infrastructure
allows customers to start and terminate new virtual machines as required by the application,
hence the term elastic. Additional nodes can be accessed within minutes. This ease of use
makes it very interesting for our purposes of load balancing. Amazon charges by the hour or
the data transfer rate. Further charges are possible. The various virtual machines instances as
of December 2009 are shown below. These instances are based on the notion of EC2 Compute
Units. The units mirror equivalent capacity of physical hardware. It is possible to specify the
geographical location of the servers in order to optimize network latency and fault tolerance.

1. Small Instance (Default) 1.7 GB of memory, 1 EC2 Compute Unit (1 virtual core with
1 EC2 Compute Unit), 160 GB of local instance storage, 32-bit platform

2. Large Instance 7.5 GB of memory, 4 EC2 Compute Units (2 virtual cores with 2 EC2
Compute Units each), 850 GB of local instance storage, 64-bit platform

3. Extra Large Instance 15 GB of memory, 8 EC2 Compute Units (4 virtual cores with 2
EC2 Compute Units each), 1690 GB of local instance storage, 64-bit platform



14 Chapter 2. Background

The Amazon CloudWatch service gives information about the current load on the system. This
information can be accessed via a web service or web APIs. Unfortunately, this service incurs
a charge for the number of monitoring instances used. However, the CloudWatch service is
necessary for using the auto scaling feature of EC2. Auto-scaling enables us to specify triggers
which cause Amazon to add or remove instances automatically.

Persistent storage on EC2 systems is provided using the Amazon Simple Storage (S3) service.
The EC2 implementation itself only stores temporary data. If an instance is rebooted, this data
is lost. As this can happen explicit via an API call or a failure in the system, we cannot ensure
fault-tolerance without a form of persistent storage. Google’s MapReduce algorithm requires a
distributed file system to store the intermediate results. The S3 service makes data available
directly to the EC2 instances and over the network via http. This makes it suitable for ordinary
MapReduce. For low latency access, we must use S3 and EC2 services in the same area. There
is no extra cost for S3 to EC2 bandwidth. Despite its advantages and close link to the original
MapReduce idea, the distributed file system is more of an obstacle towards efficient stream
processing as both input and output should be written to sockets rather than to stable storage.

2.3 Stream processing

In this section we are covering several research prototypes of stream processing, ranging from
single node implementations to distributed versions. The goal of the project is to focus on the
load-balancing between the front-end node and the processing power of the cloud. In this light,
we will evaluate the state of the art and rationalise our decision to use a MapReduce framework
to do stream processing in a cloud environment.

2.3.1 Mortar

Logothethis and Yocum have developed Mortar - “A distributed stream processing platform for
building very large queries” [29]. The Mortar platform focuses on applications with thousands
of distributed sources. It takes into account unreliable sources and adverse network connections.
Mortar is designed to manage streaming queries across large federated systems3. The Mortar
infrastructure takes over the task of creating and removing operators as well as organising the
data flow between them. For this reason, one of the main contributions of the above paper is
to provide robust overlay networks to run queries. Mortar also addresses the problem of time
synchronisation between the different nodes. Stream processing cannot work without reliable
time information as the timestamps used for windows become useless. Mortar differentiates
itself from the other approaches shown here, as not only are the data-supplying nodes involved
in the processing, but the designers want them to be the only ones to do the work. Logothetis
and Yocum speak of scoped queries in this context. We now discuss the overlay networks and
routing algorithm employed by Mortar.

Overlay network The overlay networks in Mortar are static. The authors justify this by
the claim that in federated systems, machines are rarely added or removed. They can only
become unavailable for a short time. It is assumed that there is personnel in charge of the
sites which quickly rectifies any problems. However, in order to deal with failures, multiple
static trees are created and operators are connected across them. The static aggregation trees
in the Mortar framework are build such that the majority of nodes is close to the root node.

3Federated systems typically include heterogeneous hardware and different authorities
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This is necessary to ensure the latency bounds required by streaming applications. Once the
primary tree is built, the sibling trees are derived through successive random rotations of internal
subtrees. The authors have confirmed by empirical observation, that this is unlikely to change
the clustering.

Dynamic tuple striping The routing scheme proposed by Logothetis and Yocum is called
dynamic tuple striping. Dynamic striping is a multi-path routing scheme. Routing is done up
the trees towards the root. Since scoped queries are used, each node needs to know about all
live parents for locally installed queries. These are found using a heartbeat protocol. Children
are updated in the same way. Tuples are routed through a parent only if this moves them closer
to the root. The algorithm first tries to use the parent on the tree on which the tuple arrived.
If this fails, it tries a parent on a different tree which must not be further away from the root as
the current tree. This avoids cycles. However, if no further progress could be made, a tuple is
allowed to move down to a child and try a different path. As this now introduces the possibility
to incur cycles, a time to live field is introduced (TTL) to restrict the number of tries.

Evaluation Mortar has somewhat limited applicability to our cloud approach. As our chosen
platform is homogeneous and under a single administration we have eliminated most of the
problems stemming from federated systems. Indeed, the implementation of our chosen stream
processor should be modifiable to run on virtual machines which might be added or removed
during the computation. This form of scalability is not what the authors of Mortar envisaged.
Mortar is a very reliable platform for applications such as sensor networks with a large number
of data providing nodes. In these cases an overlay network is justified. In our case, however, it
violates the low latency requirements. Applying Mortar to stream processing in a cloud setting
would require too many modifications.

2.3.2 STREAM

STREAM is a data stream management system (DSMS) developed by the University of Stan-
ford [9]. Ordinary database management systems (DBMS) deal with one-time queries. Network
monitoring, financial analysis and sensor networks, however, emit a continuous stream of data.
Thus in addition to ordinary relations, we have bags of tuple, timestamp pairs, called streams.
Streams can only be handled by continuous queries. The STREAM project aims to fill this
gap. The prototype DSMS [9], supports a “large class of declarative continuous queries over
continuous streams”. It evaluates the queries by translating the declarative queries into a phys-
ical query plan. This plan is then processed by the DSMS. A query plan consists of operators,
queues and synopses.

Operators Arasu et al. have developed the Continuous Query Language (CQL) [9]. CQL
looks very much like an extension to SQL. There are three types of operators: relation-to-
relation, relation-to-stream and stream-to-relation. The relation-to-relation operators are the
well-known SQL operators. The stream-to-relation operators are more interesting. They offer
the ability to turn the continuous stream into a relation which can be modified by ordinary
relational algebra. The stream-to-relation operators are following the sliding window concept.
A tuple-based sliding window is expressed using [ROWS N] after the steam identifier. This returns
a relation with the last N tuples/rows in the stream. The [Range N] parameter gives a time-
based sliding window. The relation returned includes all tuples with more than N timesteps in
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1 Select IStream (∗ ) From S [Rows 100 ] Where S .A > 10
2 Select IStream (∗ ) From S [Rows Unbounded ] Where S .A > 10
3 Select IStream (∗ ) From S [ Range 10 ] Where S .A > 10
4 Select IStream (∗ ) From S [Now] Where S .A > 10

Listing 2.3: New operators in CQL

the past. The abbreviation [Now] returns the window with N = 0; i.e. only tuples that have
the same timestamp as the clock of the DSMS are returned. Examples are shown in Listing 2.3.

The last type of stream-to-relation operators is a little more complex. A partitioned sliding
window, takes a set of attributes over which it splits the input stream into separate substreams
[Partition by A,...,Z ROWS N]. N specifies the number of rows used in this process. The
individual windows are combined using the SQL union operator to generate the output relation.
If we want to turn the output relation back into a stream, we can use relation-to-stream operators.

CQL defines three relation-to-stream operators. Istream or insert stream, contains all the tuples
inserted into the relation. Every time a new tuple is added to the relation, it is forwarded to the
stream (unless it is a duplicate). Dstream or delete stream, contains all the tuples deleted from
the relation. Like for the insert stream, deleted tuples are forwarded to the stream. Rstream or
relation stream contains all tuples in the relation at all time instants. The first line of Listing
2.3 therefore selects 100 rows from the stream S, turns it into a relation, selects all tuples where
S.A > 10 and returns these as a stream.

Queues As queries are converted to physical query plans, we need queues between the opera-
tors. Queues are connecting the operators and can be empty. Due to the nature of the processing,
queues have to be read in non-decreasing timestamp order. Only this way, an operator can be
sure that all the necessary data is present to close the window and begin processing.

Synopses Synopses are associated with operators and further describe the data. An example
given by Arasu et al. is that of a windowed join of two streams. In this case the synopsis are
a hash table for each of the input streams. A synopsis can be shared amongst multiple operators.

Evaluation The STREAM project has led the way in the field of stream processing. The
expressiveness of CQL is great and the available optimisations manifold. Arasu et al. [9] identify
operator reuse and replication as two performance enhancing components of placement algo-
rithms. This is because in large static queries certain sub-queries are often replicated leading
to a waste of resources if we were to re-instantiate the operators for these queries. These op-
timisations and the full-fledged implementation of stream processing make STREAM a good
reference for our project. We are trying to take the work done in the database community to
the MapReduce world. Note, we are not aiming to achieve the expressiveness of CQL. We are
focussing on simple interfaces and scalability.

2.3.3 Cayuga

Cayuga is a publish/subscribe system which handles stateful subscriptions [20]. While ordinary
publish/subscribe systems deal with individual events, Cayuga extends to handling subscrip-
tions that involve relations between multiple events. This makes it ideal for handling complex



2.3. Stream processing 17

Number of concurrent subscriptions
few many

Complexity of subscription
low (trivial) pub/sub
high DSMS stateful pub/sub

Table 2.1: Trade-offs between pub/sub and DSMS (from Demers et al.)

streaming data such as sensor networks or stock exchanges. As an example, Cayuga can handle
sequences of events such as the following subscribe query taken from Demers et al. “Notify me
when the price of IBM is above $100, and the first MSFT price afterwards is below $25” ??. In
this case the stream processor has to store state in order to evaluate the query.

The authors compare Cayuga to Data Stream Management Systems (DSMS), which offer query
languages to the same effect, but fail to scale over a large number of subscriptions. The difference
between a traditional DSMS such as STREAM and Cayuga is shown in Table 2.1 [20]. Cayuga,
however, is still closely related to the database community. The query language called Cayuga
Event Language (CEL) is similar to SQL [20]. Like STREAM, Cayuga works with event streams
- temporally ordered sequences of tuples. However, instead of using a single timestamp, Cayuga
uses a start and end timestamp during which the event was active. This gives a duration as well
as a “detection time“ [13].

Cayuga includes unary relational algebra operators such as selection, projection and renaming.
It supports union, but it excludes Cartesian products and window join. These unrestricted joins
are less useful in a stream setting as they are not taking into account the timestamps of the
events. Instead Cayuga offers a sequencing and an iteration operator.

• Sequencing operator (;θ) The sequencing operator is a forward-looking combining join
that processes the event stream in sequence and tries to satisfy the filter predicate θ.

• Iteration operator (µξ,θ) The iteration operator allows more complex joins. Here ξ can
be any unary operator such as projection.

The implementation behind Cayuga is a single node system based on non-deterministic finite
automata. The approach used to evaluate queries is very similar to the one used in regular
expressions. CEL queries are compiled into state machines and then loaded into the query
engine via an intermediate XML format [13]. Predicates are mapped to edges and events are
affecting the state of the automaton. Like with regular expressions, an edge is only traversed
if the incoming event satisfies the predicate. If no edges are traversed, the event cannot satisfy
the query and is thus dropped.

Distributed Cayuga

Brenna et al. have developed a distributed version of Cayuga [13]. We will discuss two of the
techniques they used - Row/Column scaling and Pipelining.

Row/Column scaling A simple technique to scale query processing in stateless systems is
to spread the queries over n machines. This row is then replicated m times to form a n × m
matrix. Events now can be routed to any row. Usually the routing is done in a round-robin
fashion, however. This causes a problem with stateful queries. In order to make use of states
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we must route events to the same row. This is infeasible. Brenna et al. [13] propose two ways
of partitioning the workload.

The first technique is to partition the input event stream into several substreams of related
events. These substreams are then assigned to rows and processed individually. The partitioning
itself can be expressed as a Cayuga query and done by a separate machine.

The second technique is to partition the query workload. Thus instead of sending substreams
to the rows, each row receives a full copy of the input stream.

Pipelining Cayuga provides the possibility for queries to be split into sub-queries if the former
can not be run on a single machine. The output of one subquery to another is controlled via a
feature called re-subscription [13].

Evaluation Cayuga and the effort to run it over large distributed networks are two interesting
approaches. In the single node implementation Cayuga with its very expressive CEL language
makes a lot of sense. However, in the distributed case, the situation is more complicated. For
our project we are planning to start with a single query which means that the ideas concerning
row/column scaling are currently not applicable.

2.3.4 MapReduce Online

MapReduce Online enables ”MapReduce programs to be written for applications such as event
monitoring and stream processing“; it has been proposed in a technical report by Condie et al.
in 2009 [18]. In contrast to the original Google implementation of MapReduce [19], Condie et al.
propose a pipelined version in which the intermediate data is not written to disk. The prototype
for this concept is a modification of the Hadoop framework and called Hadoop Online Prototype
(HOP).

The first change the authors introduced into stock Hadoop is pipelining. Instead of writing data
to disk, it is now delivered straight from the producers (map tasks) to consumers (reduce tasks)
via TCP sockets. If a reduce task has not been scheduled yet, the data can be written to disk as
in plain Hadoop. The number of connections is also bounded to prevent creating too many TCP
connections. Combiners are facilitated by waiting for the map-side buffers to fill before they are
sent to the reducers. This enables us to pre-process the data before it is sent to the reducers.
The processed data is written to a spill file which is monitored by a separate thread. This
thread transmits the data to the reducers. The spill files enable simple load balancing between
the mappers and reducers as their size and number reflects the load difference in the system. If
spill files grow, we can adaptively invoke a combiner function on the side of the mapper to even
the load.

The Hadoop Online Prototype further allows for inter-job pipelining. It must be noted that it
is impossible to overlap the previous reduce with the current map function as the former has to
complete before the latter can start. However, pipelining reduces the necessity to store interme-
diate result in stable storage which could be costly. Condie et al. have extended Hadoop to be
able to insert jobs ”in order“. This helps to preserve dataflow dependencies. The introduction
of pipelining into Hadoop makes the system ready for running streaming applications.
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Evaluation The Hadoop Online Prototype is a very interesting approach for stream process-
ing. The changes over ordinary MapReduce implementations are subtle but powerful. However,
like all other technologies visited in this section, HOP does not automatically scale during run-
time. The number of map and reduce tasks is fixed. This impairs the ability of the MapReduce
implementation to cope with varying load. We have chosen to use Hadoop as a starting point
to design a stream processor utilising the MapReduce paradigm.

2.4 Load balancing

Load balancing is an integral part of our system’s design. A single stream processing node
should automatically move computation to the cloud when its own resources are not sufficient
anymore. In this project we aim to do this in a way which avoids an increase in latency and gives
a guarantee on QoS properties of the system. To find possible strategies to achieve this, we have
studied several load balancing strategies for webservers. First there are client side policies in
which the client decides which server to use. Client-side policies include NRT (network round-
trip-time) and latency estimated from historical data [14]. Selection algorithms are also based
on hop count or geographical distance. We are also interested in server side policies which use a
load index to determine how to route requests. Both are applicable as we run the local stream
processor and evaluate its load on the same machine. However, none of the research mentioned
in this section is 100 percent applicable to our situation. We are not aware of a load-balancing
solution that evaluates computational load at a single front-end node and moves the overhead
into a scalable cluster.

2.4.1 Load-balancing in distributed web-servers

Cardellini et al. discussed the state of the art in locally distributed web-server systems [15].
While our load-balancing or load-sharing algorithm is located at layer 7 (i.e. application layer of
the OSI model) this paper gives insights into routing at all layers. We are especially interested
in the discussion of a proxy for routing the requests (TCP gateway) and the discussion about
dispatching algorithms. In our use-case we are looking for a load sharing algorithm that smooths
out transient peak overload. This algorithm must be dynamic as we require it to have information
about the state of the system. Finally, we must decide between centralised and distributed
algorithms. As we will do the load balancing on the single machine serving as a controller to
the cloud computations and the initial worker node, we opt for a centralised algorithm here.

As mentioned in the article, fundamental questions are which server load index to use, when to
compute it and how this index is shared with the orchestrating server. Ferrari and Zhou found
that load indices based on queue length perform better than load indices based on resource
utilisation [23]. They define the load index as a positive integer variable. It is 0 if the resource is
idle and increases with more load. We must further acknowledge that there is no general notion
of load. For example the CPU might be idle in a heavily I/O bound process, while in other cases
processes are competing for CPU time. To summarise, the following load indices are mentioned
in Ferrari and Zhou [23].

• CPU queue length

• CPU utilisation

• Normalised response time4

4response time of job on loaded machine / response time on idle machine
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Evaluation Our load balancing exercise will mainly concentrate on the local node as for
the cloud this should be done by the MapReduce framework. This means that we can easily
calculate the normalised response time. If this time exceeds a certain threshold we can start
moving computational load to the cloud. Queue length is also a good indicator of load. In the
evaluation chapter of this report we shall look at both response time and queue length.

2.4.2 Locally aware request distribution

Pai et al. suggest a load balancing based on data locality [32]. In this system called LARD
(locally aware content distribution), a single frontend receives the requests from clients. These
requests are usually for static web content. This static content is stored on a number of back-end
webservers. Once the first request for a particular resource comes in, the front-end examines
it and routes it to the server with the least load. Any subsequent requests for this file are (if
possible) routed to the same server. This makes sure that this back-end server can efficiently
cache the data. Furthermore, it enables the design of a scalable storage system. We can spread
the data over multiple back-end servers with little replication. Each request will be routed to a
different server thus resulting in an efficient architecture. This works especially well for websites
as http is a connectionless protocol and for every file, a new connection is opened.

Figure 2.2: Structure of LARD system

In order to implement the LARD system, the front-end server has to examine the incoming
requests. In contrast to routing at OSI level 4, the front-end has to examine the request to know
which backend-server should deal with the request [32]. Furthermore, the front-end needs to
know about the individual loads at the backend. In their discussions, Pai et al. assume that the
front-end and the network have no degrading effect on the performance of the overall system.

Evaluation LARD is only remotely applicable to our stream processing application. LARD
is distributing the requests over servers in order to reduce cache misses. The only stable data in
our system are the queries. The streaming data must not be stored but processed immediately.
An additional complication is introduced by the fact that in our case the front-end takes part
in the processing. This breaks with the assumption that the performance is independent of the
front-end.

2.4.3 TCP Splicing

TCP slicing is a technique implemented in layer 7 switches to improve performance [17]. Like
the LARD protocol above, layer 7 switches are able to do URL aware redirection of HTTP
traffic. The benefits are the aforementioned cache hit rate and the ability reduce the need for
replication in the backend. In this scheme, the switch acts as a proxy and redirects incoming
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HTTP requests based on the URI in the GET request. Incoming requests are examined and
and the switch queries the right backend server for the response.

While layer 4 switching is based on port and IP, layer 7 switches work at the application layer.
As application data is only transferred once the connection has been established we cannot do
URI aware routing without first establishing a connection between the client and the switch.
This means that we need to establish two connections. The first connection is between the
client and the switch. The second connection is between the switch and the backend server.
The most common form of handling this problem is called TCP gateway. The TCP gateway
solution simply forwards the packets from the backend over the switch at the application layer.
However, this is unnecessary. Once we have established the connection between the client and
the switch and located the right backend server, any subsequent reply from the backend can
be forwarded over layer 4. This technique is called TCP splicing. Packets from the server to
the switch are translated to look as if they had passed through the application layer in the
TCP gateway protocol. As we do not have to examine the content but only to rewrite sequence
number addresses, this is relatively simple and can be done with little to no overhead. TCP
slicing is very effective for large files as the number of outgoing packets is much greater than the
incoming requests. But even for data as small as 1Kb, significant performance benefits can be
obtained [17].

Evaluation TCP slicing only concerns how the data is being handled by the switch. The
actual load balancing is not affected. This technique is very interesting for us as we will need to
redirect the output from the cloud to the clients. However, the response is likely to be shorter
than the incoming data (as discussed above). Furthermore, we cannot afford to create too much
overhead in the local server as we would like to use it for processing as well. An interesting case
arises when the amount of work done in the cloud eclipses the work done locally by a few times.
In this case, the local machine may become merely a coordinator and the TCP slicing solution
viable.

2.5 Summary

In this chapter we have covered the design principles of the MapReduce framework. We have
discussed the original paper by Google [19] and a streaming variant called HOP based on the
Hadoop framework [18]. We will be using the MapReduce paradigm to design a scalable stream
processor. The discussion on remote procedure calls (RPC) serves to give the necessary back-
ground for the custom MapReduce prototype introduced in Chapter 4. The short introduction
to Amazon’s EC2 should remind us of the ultimate goal which is to move the auxiliary stream
processor to an IaaS provider. We have reviewed the current state of the art in stream processing
and hinted why none of the existing systems are designed to be used on a cloud infrastructure.
This chapter was concluded with an overview of some existing load balancing techniques and
their limitations when applied to our specific situation. We are not aware of a load-balancing so-
lution which supports a single-node stream processor through an auxiliary, scalable, cloud-based
stream processor.
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Chapter 3

Stream Processing With Hadoop

In this chapter we will discuss our efforts to extend the MapReduce paradigm to continuous
queries. We will show the design and implementation process leading to a MapReduce stream
processor which can be run on a cloud infrastructure. We will start by showing how we can
extend Hadoop to accept a TCP stream as a data source. We will then discuss how the concept
of jobs can be extended to continuous queries. This chapter will be concluded with a discussion
on the architectural limitations of Hadoop as a stream processor. The evaluation of our results
will follow in Chapter 6.

3.1 From batch to stream processing

We have chosen Hadoop as the basis for our streaming MapReduce as it has already been adopted
in a range of industry projects [10] [25] [35]. The main advantage of this is that the acceptance
of a streaming solution is likely to be greater with this already proved software. Hadoop is
open-source software and therefore amenable for extensions and modifications.

The key to our evaluation of the MapReduce framework will be the guarantees given on latency
and the capability to scale efficiently as the load is increased.

Hadoop is designed for batch-processing. A typical Hadoop job takes hours and is run on
dozens of machines [19]. A query in a stream processing system must typically be executed in
seconds or milliseconds. Therefore, some modifications are necessary to adopt Hadoop for stream
processing. As discussed in the background section (see §2.2.3 and §2.3.4), we shall be using a
modified version of Hadoop, the Hadoop Online Prototype [18] (HOP), for our experiments.

There are two main tasks, we need to achieve before we can use Hadoop to process continuous
data streams:

1. Network I/O Hadoop needs to be able to forgo the distributed file system and read its
data straight from a network socket. Likewise, the output of the MapReduce operation
has to be written to a socket for delivery to the client.

2. Persistent queries Hadoop is designed to accept one job per input directory. We can
submit many jobs in succession, but there it is currently impossible to install a persistent
query.

23
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Figure 3.1: Hadoop dataflow on two nodes. InputFormat determines InputSplits and RecordReaders
(RR). Map tasks get their data from the RRs and pass them to the Partitioner for grouping prior to the
reduce stage. The reduced data is collected by RecordWriters as defined in the OutputFormat. Diagram
adapted from http://developer.yahoo.com/hadoop/tutorial/module4.html

3.2 Network I/O

Traditional Hadoop approach

Hadoop relies heavily on its distributed file system to provide the data to mappers and reducers
(Figure 3.1). Streaming applications could use the ZooKeeper [3] tools to control the distributed
file system and monitor changes. We could simply write a server which uploads incoming data
to the file system and a corresponding ZooKeeper task to act on any changes to the HDFS. With
our low latency constraint, however, we cannot afford to store the window on the distributed
file system data prior to processing. Use of the distributed file system would incur a significant
overhead in processing and prevent us from being able to give any sort of latency guarantee.
The distributed file system must be eliminated from the MapReduce cycle (Figure 3.1) in order
to accomodate streaming queries.

Stream server

The first step in making the HDFS obsolete is to extend the Hadoop framework to obtain input
splits from a network socket. The HOP implementation ensures that the intermediate data is
only stored if really necessary. The output stream is written to a socket as well. All data is
transient and the system completely stateless.

In order to implement the input and output streams, we need to introduce an additional stream
server into the HOP framework (Figure 3.2). The StreamServer is invoked once and then handles
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Figure 3.2: Hadoop dataflow with StreamServer component

the communication with the mappers and reducers. As the StreamServer and the MapReduce
job do not know the size of the window in advance, this information is communicated as part of
the control information of every window. This information can then be used with the split size
to create input splits for the mapper processes. Once a query is invoked, the mappers block until
data is available from the StreamServer. The result is then processed and handed over to the
reducers. Once the reducers have finished, the information is relayed back to the StreamServer
and communicated back to the invoker of the query.

3.2.1 Implementation of the changes

Listing 3.1 shows how the implementation of streaming queries has changed the way in which
we have to write a Hadoop MapReduce job. The changes have necessitated the development of
a new way of handling the input.

StreamInputFormat

Hadoop uses the JobConf class to assert which InputFormat has been chosen by the user (List-
ing 3.3). The InputFormat class tells the Hadoop framework where to get the input splits from.
In the original implementation this could be for example a file or folder on the distributed file
system or a distributed database. The InputFormat class is generated on the fly by reflection
from the JobClient. We therefore have to set its parameters using reflection, too. This can be
achieved by using a static method as shown on line 8 in Listing 3.1. As the the given InputFor-
mat classes do not contain provision for sockets, we have to create our own implementation. We
have done so in the form of a new StreamInputFormat class. Like the existing implementations,
StreamInputFormat is a factory for the RecordReader class (“RR” in Figures 3.2 and 3.1). The
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1 StreamServer . s t a r t S e rv e r (50002) ;
2 // Create a new job /query con f i gu r a t i on
3 JobConf conf = new JobConf ( StreamDriver . class ) ;
4 // Set the input to a stream
5 conf . setInputFormat ( StreamInputFormat . class ) ;
6 conf . setOutputFormat ( StreamOutputFormat . class ) ;
7 // Connect the stream to the StreamServer
8 StreamInputFormat . setInputStream ( conf , ” l o c a l h o s t ” , 50002 , 10000) ;
9 StreamOutputFormat . setOutputStream ( conf , ” l o c a l h o s t ” , 50001) ;

10 // Set the query
11 conf . setMapperClass ( StreamMapper . class ) ;
12 conf . setReducerClass ( StreamReducer . class ) ;
13 try {
14 JobCl ient . runJob ( conf ) ;
15 } catch ( Exception e ) {
16 e . pr intStackTrace ( ) ;
17 }

Listing 3.1: Driver method: The StreamServer component listens on a user-defined port. Instead of the
usual input format, based on the distributed file system, we introduce a new StreamInputFormat class
that handles the provision of key/value pairs to the mappers. As the mappers are dynamically requesting
the information, we cannot connect them directly to the input stream. Instead they are connected to
the StreamServer proxy, which handles the connection to the client. This is similar to the way in which
Hadoop handles input from a database system.

RecordReader gives the mappers access to the input data. In the original implementations, a
typical return value of the RecordReader’s next() method could be a line of output. For each
MapTask, we have a separate RecordReader.

StreamRecordReader

Our StreamInputFormat class returns a StreamRecordReader. The StreamRecordReader uses
a socket to connect to the StreamServer’s output proxy. This is done as soon as the Stream-
RecordReader is initialised. A call to the next() function will then return a tuple from the input
buffer. If the input buffer is empty, the call blocks. The StreamRecordReader stops providing
data once the current window has been exhausted. The MapTask is notified. Hadoop uses a
DataInput object to wrap around the InputStream. The DataInput class is used to tell the
RecordReader about the size of the next input. This is not necessary in our case as we control
the size of the output from the StreamServer’s output proxy ourselves. Once the MapTask
has received the data, the operation is the same as in the stock HOP/Hadoop implementation.
The output from the MapTasks is collected by an OutputCollector and distributed for the re-
duce phase. Once the reducers have finished their task, the data needs to be send back to the
StreamServer.

StreamOutputFormat

The StreamOutputFormat class is very similar in style to the StreamInputFormat. Instead of
a RecordReader, it contains a factory method to create a RecordWriter. Again, no provision
is given in the original implementation of Hadoop for writing output to a socket. We have
implemented a new class StreamOutputFormat which handles this. The StreamOutputFormat
provides a StreamRecordWriter which like the reader connects to a proxy at the StreamServer
to deliver its data. The data is then routed via the StreamServer back to the client. The param-
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Figure 3.3: UML class diagram depicting the InputFormat hierarchy

eters of the StreamOutputFormat are set via a static method and obtained by the MapReduce
framework using reflection.

StreamServer

The StreamServer acts as a proxy between the mappers and reduce and the client. We have
implemented separate threads to listen to incoming connections from the mappers and reducers.
These connections are transient. Every time a RecordReader or RecordWriter is created, the
connection has to be re-established. The connection is established from the RecordReader and
RecordWriter classes as the StreamServer is oblivious to the current state of the MapReduce
process. The StreamServer uses the parameters set by the static methods setInputStream()

and setOutputStream() to choose on which port to listen for incoming windows. The incoming
data is buffered and send to the mappers and reduces when requested. In a more low-level
implementation, we would use the StreamServer in conjunction with the TCP splicing ideas
mentioned in the background chapter (§2.4.3). However, this necessitates some continuity map
and reduce tasks. It is not possible to achieve this with the current design which sees the
RecordReaders and RecordWriters being re-instantiated for each iteration of the job. In the
next section we will discuss our efforts to solve this problem and install persistent queries.

3.3 Persistent queries

In addition to the changes introducing a networked input format format, mentioned above, we
must make sure that the jobs we install on the Hadoop cluster are persistent. We envisaged to
restart the job as soon as a window has been processed. Re-starting a query is relatively simple
- we can easily add another job to the JobTracker, using the same old configuration. In the
evaluation section, we will see how this affects the run time of our query. Regardless, we wish to
mention a few bottlenecks here as they tie in with the implementation of our stream processor.
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3.3.1 Restarting jobs

A persistent query can be constructed by continuously filing new jobs with the JobTracker.
This is very straightforwardly done in the Driver class of our MapReduce implementation. As
our StreamProcessor component stays running in the background, the mappers and reducers
simply continue querying it using the proxies as before. There are no changes needed in the I/O
design to accommodate persistent queries.

However, there is a certain penalty incurred by this operation. Even though we can re-use
the old job configuration, it has to go through the entire validation stage of the JobTracker.
Furthermore, we cannot permanently install queries on the TaskTrackers. This means that the
JobTracker will have to re-install the map and reduce tasks on the TaskTrackers with all the
administrative overhead of consulting the distributed file system. The problems associated with
this become more clear when we discuss the overhead of the Hadoop infrastructure.

3.3.2 Optimisation attempts

Central to the operation of the Hadoop MapReduce framework is the interface TaskUmbilicalProtocol.
This interface is implemented by the TaskTracker classes and used by the JobTracker to estab-
lish a remote connection. The protocol describes a daemon which polls a master node for new
map and reduce tasks. The TaskTrackers are thus transient in their operation. In the current
configuration, they need to ask for new map and reduce tasks using the protocol. This com-
munication is unnecessary in a stream processor, as queries are persistent. In order to optimise
the run time of the Hadoop framework for streaming queries, we needed to profile the operation
of running queries in a distributed environment. Hadoop offers the possibility to debug queries
in a single node environment using a LocalJobRunner. However, profiling the single node run
would not give us any insight in the distributed operation of the MapReduce framework.

Profiling and structural analysis

In order to obtain information on the bottlenecks, we extended Hadoop’s own logging mecha-
nism to show more detailed information on individual run times. Several runs with identical
configurations (10,000 identical tuples) showed huge discrepancies in runtime. While the ma-
jority of runs resulted in a runtime of approximately 10 seconds, approximately one in ten runs
showed a runtime of over 20 seconds. We were unable to exactly pinpoint the source of these
problems but we assume they are closely linked to the distributed file system.

With no reliable profiling information, we used code analysis tools to gain more insight into the
structure of the Hadoop project. As mentioned above, the task submission is done partly by Java
RMI calls. We hoped to identify the extend of the linkage between the different components.
The goal was to identify breaking points to separate out some of the book-keeping and to install
persistent queries on the TaskTrackers.

Unfortunately, Conventional source code analysis tools like STAN [8] did not help. The problem
with the Hadoop source code is that although structural analysis showed little entanglement
between classes, this is because of the fact that most communication is done via Java RMI
and the distributed file system. This meant that even though almost 11% of the source code
is concentrated in four files (Table 3.1), it is near impossible to find the real dependencies.
Consequently, any small change to the way in which jobs were handled ended in some other
component flagging an error. A lot of these dependencies are linked to the various monitoring
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Class ELOC1

hadoop.mapred.TaskTracker 2595
hadoop.mapred.JobTracker 2168
hadoop.mapred.JobInProgress 1940
hadoop.mapred.JobClient 1361
... ...
apache.org.hadoop (whole project) 86181

Table 3.1: Extract from STAN report on Hadoop 0.19.2 (including HOP and Streaming extensions)

and recovery procedures in place. These are clearly overhead and not necessary in lightweight
stream processing solution.

In the remainder of this chapter we will focus on the inherent overhead of the Hadoop platform
in order to find out what has got to be changed in order for a stream processor to run efficiently
on a MapReduce platform.

3.3.3 Hadoop overhead problems

As a batch processing system, Hadoop has a few bottlenecks that might cause problems when
we execute our streaming query. In the following section, we will discuss the implementation
choices made by the Hadoop project and how they affect our stream processor.

Fault tolerance

Hadoop ensures fault tolerance by using a heartbeat protocol between the JobTracker and the
TaskTrackers. If a ping to a TaskTracker fails for a period of time (default is one minute), the
JobTracker is going to invoke a recovery procedure. The JobTracker knows which map and
reduce task were installed on the faulty TaskTracker and will attempt to restart them on other
nodes. If the failed TaskTracker was in the map phase, the failed tasks will be re-executed on
another node. If the TaskTracker failed during the reduce phase, all reduce tasks allocated to
the faulty node will be re-spawned on other TaskTrackers.

This behaviour is welcome when executing a task running over many hours on a paid-for cluster
like EC2, when a failed node could possibly mean a restart of the whole job. However, in a stream
processor, the failure to compute the output for a single window is not our main concern. We
would rather drop the window in question and go on with the computation of the next one as
we would otherwise be out of sync with the stream and introduce unwanted delays. For this
reason, the fault tolerance mechanisms of Hadoop are counter-productive for our application.

Monitoring

Hadoop provides excellent resources for monitoring the state of a job. The state is continuously
queried and written to log files. Furthermore, the user can browse the distributed file system
using a web browser. All these control mechanisms incur computational and communication
overhead, that we cannot accept in a stream processing system. As a query is executed in

1Estimated lines of code
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seconds, or milliseconds, we do not need any information on its completion. This information
can be gathered by the client software.

The distributed file system is not envisaged to play a role in our stream processing system.
Therefore, any overhead due to its operation has to be deemed unnecessary. We will discuss
the impact of the remnants of the distributed file system in the next section. At this point we
must conclude that the monitoring as done by the Hadoop framework run against our ideas of
a stream processing system.

Interoperability

Hadoop allows running non-Java code instead of the mapper and reducer functions. This feature
is accessed using the Hadoop “Streaming” component - which unfortunately does not bear any
relation to the concepts discussed in this report. Ensuring compatibility with other languages
incurs overhead penalty on the start up of jobs and is likely to interfere with our low latency
guarantee.

Another aspect of compatibility is the fact that even though we can remove the distributed file
system from the data processing stage, we cannot entirely drop it due to the fact that it is also
used as a communication medium between the JobTracker and TaskTrackers for exchanging con-
figuration settings and the MapReduce code. Changes to the distributed file system architecture
are therefore only going to be possible with a near complete re-write of the Hadoop code base.
However, accepting the overhead of the distributed file system for these is difficult to justify
when we want to optimise the system for minimum delay. We must thus conclude that it will
be a major obstacle in using the Hadoop framework for stream processing applications.

Automatic scaling

Hadoop’s automatic scaling of map and reduce tasks is not build for the data common in stream
processing systems. A typical window in our financial data set contains only 10,000 tuples and
is worth about 800 kilobytes of data. The scaling process in Hadoop is relatively coarse-grained
and will thus result in queries where only a single TaskTracker is utilised. The problem with
the standard allocation is that it is exactly what the Hadoop creators have found to deliver
the best balance taking into account the overhead from the monitoring and fault tolerance
procedures mentioned above. Significantly lowering the split size in our model is likely to result
in a slowdown rather than a speedup. This could only be improved by increasing the complexity
of the map and reduce tasks. The MapReduce approach is to split more complicated tasks
into multiple chained MapReduce jobs. This, however, goes against our idea of decreasing the
overhead.

JVM management

Somewhat linked to Hadoop’s scaling mechanism is its management of JVMs2. With the default
setting, Hadoop starts a new JVM for every task. A configuration parameter can be used to
enable re-usage of JVMs for multiple tasks. However, JVMs are still spawned with every new
job submitted to the JobTracker. This introduces a considerable non-deterministic overhead. In
a stream processing system, the execution of a query must usually be completed in a fraction of
the time needed to spawn a new JVM. However, as the JVMs are central to the design of the

2Java Virtual Machine
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Hadoop framework, it is again difficult to remove them without upsetting the other components
of the system.

3.4 Lessons learnt

The extension of Hadoop has shown us that it is possible to use a MapReduce system to run
streaming queries. However, the legacy of the batch processing framework is to great to efficiently
implement a stream processor on top of the Hadoop framework. In order to install persistent
queries, that run without the overhead of the distributed file system and Hadoop’s monitoring
and recovery facilities, we would have to completely re-write the core of the Hadoop framework.
As the whole framework is build on the idea of distributing all data by utilising the distributed
file system, we have opted for another solution. In the next chapter we will show how we
have used the lessons learnt from implementing stream processing on Hadoop to build our own
distributed MapReduce stream processor.
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Chapter 4

MAPS: An Alternative Streaming
MapReduce Framework

A stream processor stands and falls with the latency at which it can process input windows.
If the number of incoming tuples exceeds the processing capacity of the stream processor, its
internal buffers fill up and data has to be dropped to ensure operation. Furthermore, client
processes which depend on the outcome of the installed queries may depend on the timely
delivery of results. The result of a query involving stock information becomes worthless as soon
as new data indicating a change in the stock price becomes available. These requirements make
a stream processor fundamentally different to other information retrieval and storage systems
such as web-servers and databases. Although the latter two are also concerned with a speedy
fulfilment of requests, the results of queries can be easily cached. Furthermore the data served
by a web-server or traditional database is a lot less volatile than a continuous stream of data.
Nevertheless, similar design considerations apply. In order to fulfil the low latency constraint, a
stream processor must be both lightweight and if possible tightly integrated into the underlying
architecture. Especially in a virtualised environment we must ask the question of how much
OS support is needed to sufficiently avoid any overheads from the layered architecture. Careful
consideration has also to be given to the complexity of the error handling and monitoring
procedures. Monitoring the progress of a query on a single window is not relevant as we expect
a result within milliseconds or seconds at most. Similarly, a failed query should not be restarted
as the input buffers will have filled up with new window data.

In the previous chapter we have discussed the design and implementation of the changes neces-
sary to run a stream processor on top of the Hadoop framework. We have noted that some of the
design decisions made for Hadoop run against our concepts of a lightweight stream processor.
In this chapter we will use these points to cover the design and implementation of MAPS, a
custom MapReduce prototype written in Python. The aim of this chapter is to show a minimal
implementation of the MapReduce concept. We will not show how this implementation can be
optimised to give a minimum-latency stream processor but rather develop a robust prototype
for evaluating the scalability of the MapReduce framework for continuous queries.

We will start by describing the design process of our prototype and explaining the similarities and
differences to the Hadoop platform. After that we will show how our design can be implemented
in the Python language. The evaluation of our new platform and a numerical comparison to
Hadoop is given in the Evaluation chapter (see §6.1.3).
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4.1 Motivation for Python as implementation language

Python cannot be regarded as being among the fastest programming languages in use today. It
is not even one of the faster interpreted languages. In fact, its performance is quite dismal when
compared to code compiled in C or even Java1. Nevertheless, it makes a lot of practical sense to
implement our MapReduce prototype in Python. An obvious point is the ease of development
and the ability to quickly change the structure of the framework to evaluate alternative ap-
proaches. It is very straightforward to exchange a module for another without having to worry
strict type hierarchies. Of course this might result in a run time error every now and then, but
for a system that is merely designed to evaluate a concept, this is acceptable. This is even less
of a problem as small modules can be quickly tested and deployed without having to implement
the whole application - a reason that is further aided by the fact that no compilation is needed to
execute the code. Python gives us a simple way to express the parts of the system that matter.
Whereas in Java we would need generics to express the fact that different formats are possible for
key/value pairs, the dynamical type system in Python relieves us of this task. We are thus able
to focus on the control flow among the modules on the master and slave nodes without having to
worry much about the format of the data exchanged. Above all other reasons, however, we have
chosen Python for its proximity to the functional programming paradigm behind MapReduce.
It makes sense to operate on lists rather than arrays when we discuss map and reduce functions.
In the background section, we have discussed how languages like Pig and Sawzall (§2.2.2) were
introduced to simply the developer’s task of writing MapReduce jobs. We feel that there is no
need for any of these if queries can be expressed in functional languages whose concepts lie at
the heart of MapReduce. Last but not least we wish to conclude this discussion by highlighting
a quote from Google’s Sawzall paper [34]:

It may seem paradoxical to use an interpreted language in a high-throughput en-
vironment, but we have found that the CPU time is rarely the limiting factor; the
expressiveness of the language means that most programs are small and spend most
of their time in I/O and native run-time code.

As the paper suggests, the complexity of our MapReduce framework lies not within its imple-
mentation but rather with the choices made with regards to data distribution, load balancing
and inter-process communication. Most time-critical libraries exhibited by the Python language
are written in C and do therefore merely involve a small marshaling overhead.

4.2 Design decisions

When designing our MAPS prototype we will focus on rebuilding the essential parts of the
Hadoop MapReduce system while leaving the non-essential overhead out. We will be re-
implementing the core MapReduce logic and forgoing any sort of reporting and advanced error
handling. For a discussion on the overheads of the Hadoop MapReduce implementation with
regards to stream processing consult the previous chapter.

To honour Hadoop’s division into JobTrackers and TaskTrackers, we will split the design into two
parts. First we will discuss the requirements for our master node, containing the StreamServer
and the job logic. Then we will go on to describe the implementation of our slave or worker
nodes. The master node will handle the incoming data and the load balancing over the worker

1http://shootout.alioth.debian.org/u32/benchmark.php?test=nbody&lang=all
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nodes. It will further deal with the addition and removal of slave nodes. There will be no
provision for re-starting failed jobs. All the communication with the client is done through the
master node. The worker nodes contain merely the logic needed to run the map and reduce
functions and to participate in the distributed sort in between the two phases.

4.2.1 Role of the JobTracker

Polling vs central allocation of input splits

In Hadoop, the role of the JobTracker is merely to accept incoming jobs, to distribute them over
the TaskTrackers and to provide accounting information to the calling process. Even though
the JobTracker is still somewhat involved in a mediating role, it is not directly involved in the
computation of the results. The job is set up using the JobClient and then send to the JobTracker
for distribution. Neither class is directly involved in the gathering of input data, the processing of
intermediate data and the output of the final result. In Hadoop, the data source is completely
decoupled from the actual computation. This has allowed us to quickly extend the existing
paradigm to allow streaming queries. However, it has also introduced additional overhead due
to the introduction of additional proxies to connect the InputReaders and OutputReaders to the
StreamServer. The upside of this distribution of control is an increased parallelism in the data
allocation to the TaskTrackers. The downside is additional control logic in both the StreamServer
component and the TaskTrackers. For our design, we have chosen to slightly modify the role
of the JobTracker. As shown in Figure 4.2, the JobTracker now deals with the splitting of the
input stream. The QueryHandler sub-module of the JobTracker then allocates the splits to the
TaskTrackers and calls their map and reduce functions.

Query installation

Instead of the TaskTrackers polling the JobTracker for new tasks, we have chosen to push the
query to all available TaskTrackers from the JobTracker. We have chosen this option as we are
dealing with continuous queries. It is unlikely that a query is changed during the run time of
our stream processor.

When we spawn a new TaskTracker, it remains idle until it receives a request from a JobTracker.
The first request by the JobTracker is a call to assert that the TaskTracker is live. It will then
attempt to move the code for the map and reduce functions over the network and install them
within the TaskTracker. This setup must take place before the first window arrives on the stream
processor. We do not at this stage plan to introduce functionality that enables changing the
queries in a running system. However, adding a new vanilla TaskTracker to the running system
should cause the JobTracker to install the query on this node to make it available for processing
as the next window comes in.

Query validation

Ideally, the JobTracker should validate the query before installing it on the TaskTrackers. The
map and reduce function must fit the interface with the TaskTracker (i.e. accept key/value pairs)
and each other (i.e. provide compatible key/value pairs). This concept is shown in Figure 4.1.
As we have chosen not to implement any error handling during the execution of queries, it is
paramount to make sure that only valid queries are installed on the TaskTrackers in the first
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Figure 4.1: Query validation. A functions have to fit to their partner and the framework.

place. To achieve this, the JobTracker checks if the supplied code correctly defines the mapper
and reduce functions as required by the TaskTrackers.

4.2.2 Role of the TaskTrackers

A TaskTracker’s main responsibility in our architecture is to compute the results for the appli-
cation of the map and reduce on its input split. In addition, it is involved in the partitioning
of the results for the reduce phase by sorting the output of its map function. However, the
TaskTracker is always passive in its behaviour. The query and its invocations are pushed from
tasks in the JobTracker. The TaskTrackers contain no error handling and expect the query from
the JobTracker to have been validated. As their map and reduce tasks are invoked from the
JobTracker, they are also oblivious to the structure of the map reduce process. They are merely
work horses, designed to quickly return a result to the master for processing.

4.2.3 Possible extensions

The system is designed to easily cope with additions such as a variation in which the master
node handles the map tasks as well. This could be interesting when there is a big discrepancy
between the work done during the map and reduce phases. This shall, however, not be part
of our original design as distributing the input data helps us to conduct the necessary sort
in a distributed merge-sort fashion. Currently, we have only installed a single query on the
TaskTrackers. The architecture can be easily extended to allow for multiple, pipelined queries.
This can be interesting when a single MapReduce task is not expressive enough anymore. We
have ignored this for now due to the added overhead in communication. In Chapter 6, we will
discuss the parallel overhead in detail.

4.3 Components to be implemented

In this section we will describe the components which need to be implemented for our MAPS
framework. Figure 4.2 gives an overview of the components involved in a complete MapReduce
cycle. The JobTracker handles the distribution of the query. The QueryHandler is a subordinate
of the JobTracker which deals with creating the input splits and connecting to the TaskTrackers
to spawn the map functions. The OutputCollector takes the partial lists from the mappers and



4.3. Components to be implemented 37

Figure 4.2: Overview of our MAPS prototype

produces the grouped (key, [value]) pairs for the reducers. The final output is passed back
to the StreamServer via the JobTracker.

4.3.1 Master node

StreamServer Central to the design of the master node is the StreamServer, which han-
dles the incoming stream and provides windows for the mappers and reducers to process. The
StreamServer should listen on a TCP port, ready for any incoming connections. Once a connec-
tion is established and a window worth of data received, the StreamServer should forward the
data to the job on the JobTracker.

JobTracker The JobTracker is the focal point of our MapReduce implementation. It should
run independently of the stream server and ping the TaskTrackers at regular intervals. The Job-
Tracker must obtain information about live TaskTrackers from a name node. All communication
between the components of our framework is done using remote method invocation (RMI). A
process registers its methods with the name server to make them accessible to other processes
on the network. It is due to the invoker to make sure that the information on the name node is
current. The JobTracker must therefore keep a list of all active TaskTrackers.

QueryHandler (Module of JobTracker) Once a job is submitted from the StreamServer to
the JobTracker, the JobTracker hands control to the QueryHandler. During the map phase,
the QueryHandler is responsible for splitting the window into equally sized splits. The number
of splits is determined by the number of currently active TaskTrackers. To make sure that
the number of TaskTrackers does not change during this calculation, we do not allow adding
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new nodes during the execution of a query. We assume that the chances of a node failing are
negligible. If a node does fail, the current window will be dropped. Once the window has
been split into equally sized chunks, the QueryHandler will spawn worker threads to handle the
communication with the map functions on the TaskTrackers. These threads will remotely invoke
the map function and receive the sorted result.

OutputCollector (Module of JobTracker) When the result has been received, we must merge
the output lists to be able to generate the grouping for the reducers. In our implementation,
this is done by the OutputCollector. The OutputCollector merges the lists, groups them by key
and allocates a new set of splits based on the (key, [value]) pairs. These splits are then again
distributed to the TaskTrackers for the reduce phase. Once the reduce phase is completed, the
data is send via the JobTracker back to the StreamServer to be communicated to the client
node.

4.3.2 Slave nodes

TaskTracker During both the map and reduce frame, a TaskTracker called by the Query-
Handler will spawn a worker thread to run the requested function on the supplied input data.
As the TaskTrackers are invoked by an RPC call (see §2.2.4), the result is passed straight back
to the QueryHandler. Once the result has been computed, the TaskTrackers return to an idle
state and wait for further requests.

4.4 Implementation

In this section we will discuss the implementation of our prototype. First, we will the discuss
specifics regarding the threading model. We will then go on to explain how we deal with remote
object communication and how the MapReduce query is installed on the TaskTrackers

4.4.1 Helper threads

Figure 4.3 shows the class diagram of our MAPS implementation. Most of its components have
already been discussed in the previous section. In addition, we have introduced the MapRunner

and ReduceRunner classes on the JobTracker side and the MapTask and ReduceTask classes on
the TaskTracker side. These classes are threads associated with running the query on an input
split. On the JobTracker, these are communicating with the TaskTrackers. On the TaskTracker
they can be used to achieve further parallelism by splitting the input split a second time. The
MapTask is further responsible for handling the sorting of its input split prior to returning the
result back to the OutputCollector.

4.4.2 Inter-node communication - Python Remote Objects

We have chosen to communicate data and command information between the master node and
the slave nodes by remote procedure calls (RPC see §2.2.4). However, since Python is an object
oriented language, we are not registering functions but whole objects. The operation is the same.
We have decided to use the Pyro (Python Remote Objects) library to provide the framework
for these calls.
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Figure 4.3: UML class diagram depicting the high level organisation of our MAPS prototype

Pyro handles the pickling and unpickling (serialising and de-serialising) of data automatically,
which means that unlike in Java, no extra code is required. Another advantage of Pyro is
that it already delivers a name server. The name server broadcasts its information on the
network which makes the connection setup straightforward on simple networks. In order for it
to reliably work on a cloud infrastructure, we have to make sure that the network is such that
the clients can discover the name server. If this is not possible, we must set the details of the
nameserver per hand like in the Hadoop implementation and distribute configuration files with
the TaskTracker and JobTracker executables. All TaskTrackers register at the namenode using
a unique identifier preceded by tasktracker. No two TaskTrackers are allowed to register with
the same Uniform Resource Identifier (URI). The sub-string “tasktracker” makes sure that the
JobTracker recognises the tasktrackers as such.

The TaskTracker creates a daemon similar to the TaskUmbilicalProtocol in Hadoop (see line
8 in Listing 4.1). This daemon is connected to the TaskTracker implementation (line 11) and
registered with the name server (line 10). Once the request loop is started, the TaskTracker is
ready to serve any requests. In Listing 4.2 we show how a simple client can now connect to the
TaskTracker and execute its ping() method. Note, that the actual implementation is somewhat
more involved as we do not know the URI of the TaskTracker in advance.

4.4.3 Dynamic loading of modules

The distribution of the map and reduce functions is done by sending the source code over the
network from the JobTracker to the TaskTrackers. The query is then installed by a simple
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1 import Pyro . core
2 import Pyro . naming
3

4 class TaskTracker ( Pyro . core . ObjBase ) :
5 def ping ( s e l f ) :
6 return True
7

8 daemon=Pyro . core .Daemon ( )
9 ns=Pyro . naming . NameServerLocator ( ) . getNS ( )

10 daemon . useNameServer ( ns )
11 u r i=daemon . connect ( TaskTracker ( ) ,” t a s k t r a c k e r ” )
12 daemon . requestLoop ( )

Listing 4.1: Pyro Server (Example)

1 import Pyro . core
2

3 t a sk t r a ck e r = Pyro . core . getProxyForURI (”PYRONAME:// t a s k t r a c k e r ” )
4

5 i f t a sk t r a ck e r . ping ( ) :
6 print ” Success ! ”

Listing 4.2: Pyro Client (Example)

import statement (see Listing 4.3). The overhead of the transfer is negligible as the MapReduce
class is installed before the query is executed.

4.4.4 Query validation

As discussed above, the MapReduce query will be written as a Python class and loaded and
evaluated at runtime. In the absence of any checks, the MapReduce program will fail during
the execution of the query if the class does not contain the necessary methods (i.e. the mapper
and reducer functions). To remedy this, we have included a few sanity checks in our design
which make sure that the aforementioned methods are actually contained within the query
implementation (see Listing 4.4). This is necessary as Python is a dynamically typed language
which only checks types at run time. We therefore have to rely on our own checks to make
sure that the user has supplied the right function. At the moment we do not include any more
sophisticated checks which means that the distribution of MapReduce queries is a possible attack
vector for a malicious user. As this is merely a prototype implementation, we will leave proper
query validation for future work.

1 mapred = impor t (”mapred” ) . MapReduce ( )
2 methods = [ method for method in d i r (mapred) i f c a l l a b l e ( g e t a t t r (mapred , method) ) ]
3 i f (”mapper” in methods and ” reducer ” in methods ) :
4 print ” [ JobTracker ] MapReduce func t i on v a l i d a t e d . ”
5 else :
6 print ” [ JobTracker ] Error , miss ing MapReduce implementat ion . ”

Listing 4.4: Dynamic loading of MapReduce implementation module during run time

1 mapred = impor t (”mapred” )
2 s e l f . mapredimpl = mapred . MapReduce ( )
3 s e l f . maptask = MapTask( s e l f . mapredimpl )

Listing 4.3: Dynamic loading of MapReduce module and initialisation of MapTask during runtime
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4.5 Discussion

When we designed MAPS, the goal was to remove some of the overhead introduced by the
Hadoop framework (§3.3.3). Our design is not based on a distributed file system while still
enabling the user to distribute the map and reduce functions through a single point of entry.
We have compromised on speed by using remote procedure calls, staying true to the Hadoop
framework. For a more efficient implementation we would consider use a technology like MPI [26]
for distributing the data.

Besides the communication overhead, we acknowledge that the choice of the implementation
language has reduced the efficiency of our stream processor. The significance of this overhead
is set into perspective when we compare the run time of our custom implementation to Hadoop
in Chapter 6.

The evaluation must further show if our decision to centralise the distribution of input splits
has worked. We deem it to be unnecessary to have the TaskTrackers polling for new data. In
Hadoop, one of the reasons why this is done is because idle TaskTrackers can do speculative
execution of tasks, thereby avoiding the situation in which all TaskTrackers wait for the output
of a single one. The MapReduce algorithm has to synchronise the TaskTrackers in between
the map and reduce phases to do the grouping. With speculative execution, the impact of an
unresponsive TaskTracker could be remedied. In our implementation we will immediately see if
a TaskTracker is unresponsive. The window is dropped and the TaskTracker removed from the
pool for the next iteration. Speculative execution only introduces an additional overhead that
we cannot be prepared to take if we want to achieve a low latency response.
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Chapter 5

Load Balancing Into The Cloud

The second part of our project focuses on a solution to enable a local stream processor to utilise
the cloud infrastructure to guarantee a latency bound on the computation time. In this chapter
we will first describe the design and implementation of simple local MapReduce style stream
processor. We will then go on to design two load balancing strategies. First we will consider
an always-on approach in which the load is balanced between the local node and the cloud in
order to achieve a higher throughput overall. The always-on approach is not economical. In
fact, it raises the question why we would not move all processing to the cloud in the first place,
thereby eliminating the need for both the load balancer and the local processor. However, the
always-on load balancer can be used to find the best split between cloud processor and the local
node with respect to network bandwidth and the scalability of the query. A higher bandwidth
between the load balancer and the cloud or a more complex query will result in more windows
being processed by the cloud.

Building on these ideas we will introduce an alternative approach. In adaptive-load balancing,
the cloud is used as a backup system to deal with peaks in the load. We expect the local stream
processor to deal with the stream most of the time. However, when the incoming data exceeds
a certain rate, it has to begin to drop windows. At this point the adaptive load balancing
algorithm should begin to move computation to the cloud, thereby lowering the number of
windows dropped while ensuring the latency constraints are met. By only utilising the cloud
infrastructure to support the local processor on-demand, we can keep costs at a minimum.

5.1 Local stream processor

In the last chapter, we have described a distributed MapReduce framework written in Python.
This framework may be simplified to run on a single node. It is clear that any of the other
stream processors described in the background section are equally applicable here. However, an
implementation similar to our cloud architecture will result in more seamless load balancing as
we can standardise the input and output formats. In fact, we could simply re-use MAPS and
deploy it on a single node. Performance figures for this approach are given in the next chapter.
We have chosen to simplify our existing Python solution to accommodate the need for the load
balancer to run on the same node. We shall now describe how we simplified the design and the
effects of these changes on the processing of a single MapReduce query.

43
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Figure 5.1: Simplified local stream processor

5.1.1 Simplifications

As we do not need to communicate data with other nodes, there is no need for a remote method
invocation architecture. Furthermore, we do not need to distribute the query over a set of nodes.
We therefore drop the concepts of a JobTracker and its associated TaskTrackers. This makes it
possible to simplify handling of a request to a simple call to the MapReduce logic. Figure 5.1
shows the simplified stream processor. Like in the distributed framework, the MapReduce
code is contained in a single class file. The only difference is that this file is now part of the
stream processor architecture. This is acceptable since the overall design of the local stream
processor has become simple enough for the end user to manipulate. In fact, we dropped
any hints of load balancing within the local stream processor for this exercise. The threaded
reducers as implemented in the last chapter are deliberately omitted to deliver a bare minimum
configuration.

5.1.2 Query invocation

The process of starting a query on an incoming window remains the same. The StreamServer
component is still present in our single node implementation. The client will establish a connec-
tion with the StreamServer and send a window worth of data. Instead of calling the JobTracker
it will then directly invoke the MapReduce function. There is no need for an intermediate han-
dler due to the simplicity of the MapReduce framework. The only work done outside the map
and reduce functions are the sorting and grouping after the map phase. As we only have a single
node, the sorting mechanism designed in the last chapter is still applicable as a sort on a single
node results in the whole output to be ready for the reducer. We do not have to merge any
splits after the map phase. Once the query has been executed, the final result is passed back to
the StreamServer and send over the network back to the client.

5.2 Design

In this section we will show the design and implementation of our two load balancing solutions.
As the always-on solution contains only a subset of the features of our full adaptive load balancer,
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Figure 5.2: Diagram depicting the load balancer as a standardised stream processing interface. The
interface provided by the LoadBalancer to the client is the same as a stream processor’s. When the load
balancer is initialised, its threads connect to their respective stream processors. They request windows
as soon as these connections have been established. Once a result has been received, they notify the
LoadBalancer and ask for new data.

we will consider its design first. After that we will go on to explain in detail the extended version
which can switch between local-only and cloud-supported processing.

5.2.1 Always-on load balancing

This approach is the most similar to the LARD design discussed in §2.4.2. Instead of connecting
straight to either the local or the cloud stream processor, we connect via a proxy load balancer.
This load balancer sends windows alternatively to the local or the cloud stream processor1.
While sending the data, it also records the response time of the implementations. The ratio
between the response times, determines the internal buffer size (eg. if the cloud needs twice as
much time to return a result, the number of windows processed by the local node is doubled).
By using an internal buffer, the load balancer ensures that we do not receive earlier windows
after more recent ones as this would defeat the purpose of computing them in the first place.

The always-on load balancer starts dropping windows if even with full utilisation of both the
local processor and the cloud processor there is not enough computational power to ensure that
windows are processed in time. The input queue would have to be infinite. This is similar to the
load shedding discussed in the background chapter. Like above, the load balancing algorithm
recognises this case by monitoring the rate at which input tuples arrive and the occupation of
the job queue. If tuples arrive at a rate too great for the combined system to manage, they are
dropped to make sure that our (fixed size) queue is not exceeded. Information about dropped
tuples is written to a log file for later examination.

The algorithm

The load balancer is passive and does not send windows to the stream processors without
receiving a request first (see Figure 5.2). The exact implementation is discussed in the next
section. In Listing 5.1 we present a pseudo-code representation of the algorithm used to service
a request for new data.

In the always-on case, the input for the stream processors is never taken of the input queue.
Instead it is taken from the split buffer (lines 13 and 18). As mentioned above, the split buffer
reflects the ratio between the processing times of the cloud and the local stream processor. We
are using the buffer to make sure that we are processing windows in the correct order.

1One may argue that returning old windows at all makes no sense if more recent data is available. In this
report we assume that a client is interested in a certain range of fresh windows. In high frequency trading, this
could give a trader an idea of where the price of an asset is going.
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1 procedure get window ( source ) :
2 synchron ized ( s p l i t b u f f e r ) :
3 i f s p l i t b u f f e r i s empty do :
4 i f not i n i t i a l i s e d do :
5 add two windows to the s p l i t b u f f e r
6 i n i t i a l i s e d := true

7 else do :
8 l o c a l l a t e n c y := l o c a l t im e r . p rev iou s ( )
9 b u f f e r s i z e := ( c loud t imer . p rev iou s ( ) / l o c a l l a t e n c y ) + 1

10 add b u f f e r s i z e windows to the s p l i t b u f f e r
11

12 i f sou rce == l o c a l do :
13 window := s p l i t b u f f e r . take ( ) {Block ing c a l l }
14 s t a r t l o c a l t im e r
15 r e tu rn window
16

17 else i f sou rce == cloud do :
18 window := s p l i t b u f f e r . takeNewest ( ) {Block ing c a l l }
19 s t a r t c loud t imer
20 r e tu rn window

Listing 5.1: Pseudo code showing the handling of an incoming request for data in the always-on approach

When the system is booted, the split buffer is empty. A request for input data then fills it
with two elements only (line 5). We do not know the ratio between the cloud’s and the local
processor’s processing times, yet. Any subsequent calls, will have either one or both of these
values. The timers’ previous() functions make sure that if no times were recorded, we do get
values which allow us to eventually boot-strap a successful splitting.

At the moment, the algorithm only allows for two stream processors to take part in the load
balancing. Depending on the source field in the function call, either the local timer (line 14)
or the cloud timer (line 19) are started. This system can be extended to a larger number of
participants by using indices into an array of counters. The split can then be calculated by
normalising the array of run times such that all elements are greater than one.

Safety

The system is free of deadlocks. The only way for a thread to block is to wait on the split
buffer. By doing so, it releases the lock, so another process could fill the buffer. The two
processes servicing the stream processors are continuously calling get window() to ask for new
data. Therefore in order for both to block they would both have to reach line 12 with an empty
split buffer. Since neither has removed an element from the buffer since the beginning of the
method call, at least one of them must have seen the empty queue and filled it. But the queue
is empty - contradiction. As long as we do not have another thread accessing the queue, the
design is deadlock free.

5.2.2 Adaptive load balancing

The structure of the adaptive load balancing algorithm is similar to the always-on approach.
As described in the previous section, we monitor the size of the queue at the front end node
to decide how to make use of the cloud’s resources. An overview of the proposed architecture
is shown in Figure 5.3. Input windows are received by the StreamReader and appended to the
input queue in the QueueManager. Depending on the state of the load balancer, these windows
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Figure 5.3: Diagram depicting the proposed architecture of our adaptive load balancer.

Figure 5.4: State diagram depicting our on-demand load balancer

will then be allocated straight to the local stream processor or allocated via the split buffer to
the cloud and the local stream processor. The output from both stream processors is send to
the output queue in the QueueManager. The StreamWriter drains the output queue and sends
the data over the network back to a client.

States

The state transition diagram of our on-demand load balancing algorithm is shown in Figure
5.4. It contains four basic states. In the initial state, the load balancer is idle. Once a window
worth of data is received, it is appended to the queue and a state transition to local-only stream
processing occurs. As long as the queue size remains constant, the local node can cope with
the demand and no state change occurs. If the queue becomes empty, we fall back into the idle
state.
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If the queue becomes full (ie tuples arrive at a rate too high for the single node to cope), we
move to the cloud-and-local state in which both, the local node and the cloud processor handle
the input. Again, as long as the queue size remains constant, we stay in this state. A decreasing
queue means that we have superfluous processing power. Therefore this event causes us to return
to the local-only state.

In the event that the queue should fill up even though we use all available resources, we move
to the overloaded state. In this state, the load balancer drops windows in order to cope with
the load. Only when no more windows are dropped and the queue size stabilises, do we return
to the previous state.

The algorithm

Listing 5.2 shows the get window() function for the adaptive load balancer. It is very similar
to the one of the always-on approach. In order to change the state we obtain a lock on the split
buffer (line 2). The split buffer is only filled if we are in the cloudAndLocal state (line 3). If no
previous measurements for the performance of the cloud have been obtained (i.e. initialised
== false), the buffer is filled with two elements only (line 5). Otherwise we compute the input
split (lines 8-10). The input split is equal to the number of times the local processor can process
a window before the result from the cloud is returned2.

A request from the cloud is then serviced from the split buffer or send to sleep if no data is
availabe (i.e. cloud processing is not enabled). A request from the local node needs to check the
state (line 15) to find out if its request is serviced by the main input queue or the split buffer.

The state of the load balancer is changed from the QueueManager via the two callback functions
shown in Listing 5.3.

Safety

The algorithm is free of deadlocks. To prove this, we show that it is impossible for both the
cloud and the local processor to wait on the split buffer at the same time. Let us consider the
case in which the split buffer is empty and we are in the localOnly state. The cloud is blocked
on the split buffer. We must ensure that the call from the local processor does not block. The
call can only block if we are in the cloudAndLocal state as the request would otherwise be served
directly from the input queue (else branch at line 20). Due to the synchronized statement,
there are only two possible places during the execution of get window() where a state change
could occur. This is either before the first line of the function or at any time after line 23. Note
that it is possible (albeit unlikely) for multiple state changes to occur. The code after line 23
is very similar to the always-on implementation and behaves in the same way. Note that the
synchronized is not needed as the takeNewest() method needs to obtain this lock anyways.

Now let us show that the take() call on line 16 can never block. For it to block, we must be in
the cloudAndLocal state and the split buffer must be empty. As we have the lock on the split
buffer since line 1, no other process could have changed the state or the contents of the buffer
(compare Figure 5.3). Therefore we must have seen the empty buffer and the cloudAndLocal
state at line 3. We would have acted and filled the buffer, but the buffer is empty. Contradiction.
Therefore, we cannot block on line 16.

2Due to constraints in the network bandwidth, the cloud currently takes longer to process a window - see
§6.2.5



5.2. Design 49

1 procedure get window ( source ) :
2 synchron ized ( s p l i t b u f f e r ) :
3 i f s p l i t b u f f e r i s empty and s t a t e = cloudAndLocal do :
4 i f not i n i t i a l i s e d do :
5 add two windows to the s p l i t b u f f e r
6 i n i t i a l i s e d := true

7 else do :
8 l o c a l l a t e n c y := l o c a l t im e r . p rev iou s ( )
9 b u f f e r s i z e := ( c loud t imer . p rev iou s ( ) / l o c a l l a t e n c y ) + 1

10 add b u f f e r s i z e windows to the s p l i t b u f f e r
11

12

13 i f sou rce == l o c a l do :
14 {Combined proce s s ing , need to ac c e s s bu f f e r l i k e in the always−on case }
15 i f s t a t e == cloudAndLocal do :
16 window := s p l i t b u f f e r . take ( ) {Block ing c a l l }
17 s t a r t l o c a l t im e r
18 r e tu rn window
19 {Local−only proce s s ing , we can ac c e s s the main queue}
20 else do :
21 s t a r t l o c a l t im e r
22 r e tu rn window from input queue
23

24 i f sou rce == cloud do :
25 window := s p l i t b u f f e r . takeNewest ( ) {Block ing c a l l }
26 s t a r t c loud t imer
27 r e tu rn window

Listing 5.2: Pseudo code showing the handling of an incoming request for data in the adaptive approach.
Note how the cloud accesses the newest element in the buffer, whereas the local nodes process the queue
in regular FIFO order.

1 procedure notify window dropped ( ) :
2 synchron ized ( s p l i t b u f f e r ) :
3 s t a t e := cloudAndLocal
4

5 procedure not i fy queue empty ( ) :
6 synchron ized ( s p l i t b u f f e r ) :
7 i f s p l i t b u f f e r i s empty and s t a t e = cloudAndLocal do :
8 s t a t e := loca lOn ly

Listing 5.3: Pseudo code showing the callback functions used by the QueueManager in the adaptive
approach

As long as more than a single element is added to the split buffer, fairness is also given as the
call from the cloud will eventually wake up to a filled buffer.

Note Deadlocks could still occur if the communication between the QueueManager and the
callback methods is not properly coordinated. If the QueueMAnager obtains a lock on the
(main) input queue and then called either notify window dropped() or notify queue empty()

we will deadlock if we are in the localOnly state and a simultaneous call to get window() has
progressed past the synchronized statement. Therefore we must not lock the input queue during
the callbacks.



50 Chapter 5. Load Balancing Into The Cloud

5.3 Implementation

In this section we will discuss details specific to our implementation of the design discussed
above. We will explain our choice of data structures as well as give some more detail on the
components of our system.

The load balancer acts as a proxy to our actual stream processors. It is therefore vital, that
its overhead is kept at a minimum. If the local stream processor is too slow, we can utilise
the cloud. However, if the load balancer cannot keep up with the data stream, we must drop
windows. For this reason, we have decided to deviate from our pattern and to implement this
component in Java. All the communication between the nodes is done using TCP sockets and
no remote method invocation is needed as part of the load balancer. As the interface for the
cloud and local stream processors is the same, the load balancer can essentially treat them in
the same manner. Furthermore, it is possible to extend the existing system to handle multiple
local processors as well as multiple clouds.

As the components and algorithms used in the always-on approach are a subset of the adaptive
load balancer, we will only discuss the implementation of the latter in this section. The always-
on case can be easily obtained by modifying the AdaptiveLoadBalancingAlgorithm component
to include the algorithm shown in Listing 5.1.

5.3.1 Concurrent data structures

In the design process we have referred to blocking queues. In our implementation we have chosen
to use the ArrayBlockingQueue<E> and LinkedBlockingQueue<E> from java.util.concurrent
for this task. These classes give use bounded and unbounded queues respectively. Both handle
thread safe addition and removal of elements. Most importantly, the queues behave in a FIFO
(first in - first out) fashion and block if no elements are available.

5.3.2 Logging

We used the Java Logger from java.util.logging.Logger to log progress within our load balancer.
The output was redirected to a file. In Chapter 6 we will examine this file using standard UNIX
utilities like grep and awk. To prepare for the analysis, we therefore made sure that any logged
messages contained their origin as well as a time stamp.

5.3.3 Components to be implemented

In Figure 5.3 we have shown a high level view of our solution. Figure 5.5 shows the main classes
participating in the process. We will now examine these in more detail. The solution is held
together by a main class which takes as input the size of the input queue and constructs the
other parts of our load balancer. In our description of the components involved, we will try to
go through the aforementioned diagrams from top to bottom, starting with the interface to the
client (StreamServer) and finishing with the interface to the stream processors.
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Figure 5.5: Class diagram depicting the organisation of our load balancing solution

StreamServer

The StreamServer component can be compared to its namesake in the Python and Hadoop
stream processor implementations. It is responsible for managing the connection to the client.
In order to fulfil this task, it creates two threads - StreamReader and StreamWriter - to serve
the input and output streams respectively.

StreamReader The StreamReader is a thread which listens for incoming tuples. Once a
window of data has been collected, it is send to the QueueManager. It is the responsibility
of the QueueManager to decide how to deal with it. The StreamReader does not wait on the
QueueManager and returns immediately to servicing the input stream.

StreamWriter The StreamWriter is a thread which allows the client to connect on a different
port. We have separated the handling of input and output for the load balancer such that it
becomes possible for the output of the loadbalancer to be forwarded to a different host. We
assume that the originator of the stream is not necessarily the same as the subscriber (eg. a
stock exchange and a bank respectively). The StreamWriter calls the QueueManager and blocks
on the OutputQueue if no data is available.

QueueManager

The QueueManager has jurisdiction about the input and output queues. It handles the dropping
of windows if the size of the input queue is about to be exceeded. The oldest window is dropped
from the queue and the new window appended. The QueueManager uses the callback function
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notify window dropped() defined in the QueueEventsListener interface (see below) to make
the algorithm aware of this event. Likewise, the notify queue empty() callback is used when
the input queue has been exhausted. This enables the load balancing algorithm to evaluate the
possibility of scaling back to local-only processing. The QueueManager gives the algorithm the
possibility to obtain a single window from the input queue. Alternatively, it is possible to request
a list of n windows. In the latter case, the QueueManager will return min(size(inputQueue), n)
windows. This call is used when the algorithm tries to fill its split buffer.

The QueueManager also deals with the output queue. The collect() method from the load
balancing algorithm is re-directed here. As mentioned above, the output queue is read by the
StreamWriter and forwarded back to the client.

LoadBalancingAlgorithm

LoadBalancingAlgorithm is the interface describing the responsibilities of our algorithm. It ex-
tends QueueEventsListener, OutputCollector and StreamProvider. The QueueEventsListener

describes callback methods which can be used by the QueueManager to inform the algorithm if
windows have been dropped or the queue has been drained empty. This information is needed
by the LoadBalancingAlgorithm to make decisions about the next state. The OutputCollector
and StreamProvider interfaces are linked to the callbacks from the classes implementing the
StreamConnector interface (see below discussion). They allow the stream server to query the
algorithm for windows to process and to contact it with the output data.

LoadCoordinator The LoadCoordinator class connects to the QueueManager and creates the
instance of the load balancing algorithm to deal with the callbacks from the stream processors.
It connects the callback from the QueueManager to the LoadBalancingAlgorithm.

AdaptiveLoadBalancingAlgorithm This is a concrete implementation of the LoadBalancing
Algorithm interface and the algorithm shown in Listing 5.2 and the callbacks of Listing 5.3.
The state is implemented using an enum type. The internal buffer is constructed from a
ArrayBlockingQueue<E> as mentioned previously. It is using the WindowDelayTimer custom
timer implementation to compute the size of the internal buffer.

WindowDelayTimer The WindowDelayTimer class is used by the load balancing algorithm
to get information about the latency of our stream server implementations. When we start
processing on either the cloud or the local node, we start the timer using its start() method.
A call to the stop() method returns the time spent processing. The time is obtained using the
System.nanoseconds() method. The class further delivers the time previously recorded using
the previous() method. An average of the last 5 (a different number can be specified in the
constructor) times can be obtained by the average() method. We prefer this to the previous()
implementation as it gives us a better estimate on the latency of the next window.

Stream connectors

The StreamConnector interface describes a thread to handle the connection to a stream server.
We have two concrete implementations: PersistentStreamConnector and TransientStreamCon-
nector. As mentioned previously, these threads connect to the stream server and then call upon
the load balancing algorithm to provide input data.
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PersistentStreamConnector This class maintains a single connection to the StreamServer
of our stream processors (cloud or local). This connection is kept alive for as long as the load
balancer is running. This is the most efficient way to connect the load balancer to the stream
processors in a connection-oriented protocol.

TransientStreamConnector This class can be used to connect to a stream processor which
ends the connection after the computation of a single window. It automatically re-connects to
be ready for the transmission of the next window.

5.4 Discussion

In this chapter we have shown how to design an adaptive load balancing algorithm to handle the
distribution of work between a local stream processor and the cloud implementations described
in the previous chapters. We have chosen Java as our implementation language to make sure
that the overhead from the load balancer is as small as possible. We have deliberately moved
the control flow of load balancing to the stream connectors. Their calls to the get window()

function drive the computation of results. This allows us to extend the algorithm to run on
more than a single cloud and local node.

We have shown how our always-on and adaptive algorithms are safe with respect to deadlocks.
It remains to be seen if the coarse locking had an impact on the performance. As we noted
during the discussion of the safety of the adaptive algorithm, we must add at least 2 windows
to the split buffer in order for the cloud to have the chance of getting a window to process. It
will be interesting to see how the sizes of both the input queue and the split buffer behave.

In the next chapter we will assess the performance of our load balancing solution in regard to
its ability to reduce the number of windows dropped as well as its impact on the latency of the
combined system.
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Chapter 6

Evaluation

In this chapter, we will start by evaluating our MapReduce implementations for stream pro-
cessing on a cloud infrastructure. We will be looking at the theoretical foundations of parallel
algorithm design and show measurements for both Hadoop and MAPS.

We will evaluate our two load balancing solutions. First, we will try to understand how we can
utilise the cloud’s resources to give an always-on enhancement to the local stream processor.
We will then go on to test our dynamic load-balancer and its capabilities to amortise peaks in
the load on the local machine.

Notation

In our evaluation of the algorithms, we will make use of the big-oh notation to provide an upper
and lower bound on their sequential and parallel run time. We shall use Θ(g(n)) such that for
any f(n) ∈ Θ(g(n)), f is bounded both above and below by g asymptotically. Furthermore, we
shall use the following formula to calculate the speedup of a parallel computation, where Sp is
the speedup of the parallel implementation over the sequential one. T1 denotes the time spend
by the sequential algorithm. T2 denotes the time spend by the parallel algorithm on p machines.

Sp =
T1

Tp

From the above equation, it becomes obvious, that the best possible speedup is Sp = p/(1+pδ),
where δ stands for the the communication overhead per processor. We will assume super-linear
speedup is not possible in our implementation. Following from this assumption, we will try to
ignore where possible, the impact the memory hierachy has on our simulations.

We will measure the efficiency of our parallel/MapReduce implementation by the following
function, where p denotes the number of processors:

Ep =
Sp

p
=

T1

pTp

The efficiency of the parallel algorithm shows how well we utilise the extra resources. Normally,
we are not able to obtain a speedup equal to p when using p processors due to δ, the communi-
cation overhead per processor. The efficiency measures the fraction of time a processing unit is
usefully employed [26].

55
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6.1 Stream processing in the cloud

Before we analyse the results of our simulations, we will establish the theoretical foundations for
the analysis of the scalability of our MapReduce solution. This should give us an indication of
how well our implementation should perform and where to expect bottlenecks in performance.
We are mostly interested into the amount of work necessary to keep the MapReduce nodes busy.

6.1.1 The Put/Call parity problem

In our analysis, we will refer to the complexity of the sequential put/call parity algorithm. The
exact operation of this algorithm is described below. The meaning of the financial vocabulary
is explained in the background chapter.

The algorithm

The query used over our data set finds pairs of exchanges with the same strike price and expiry
data for put and call options. All data refers to a single stock. The data is stored as a plain text
file of tuples. Each tuple contains 16 comma-separated values of which only five are of interest
to us.

1. Strike price

2. Expiration day

3. Expiration year

4. Exchange identifier

5. Expiration month code1

The first step is to re-order the input tuples to obtain the (key, value) pairs, where

key = (StrikePrice, Expiration Day, Expiration Year)

value = (ExchangeIdentifier, ExpirationMonthCode)

The list [(key, value)] of key value pairs is then grouped by key to give the the (key,

[value]) tuples for the reduce function. The reduce function operates on one of these tuples.

Thus, we will ignore the key and focus on finding pairs of exchanges with corresponding put and
call options. For this we start with the first value in the list and compare it to all other values.
If the value was a put option, we are looking for any matching call options and vice versa. Once
the first entry has been compared to the remainder of the list, we continue with the next entry.
Duplicates are ignored. The complexity of this operation is of the order Θ(n2). This operation
is repeated for every key. The paired exchanges are attached to the keys and returned as a list
of (key, [parity]) pairs, where

parity = [((ExchangeIdentifier_1, ExpirationMonthCode_1),

(ExchangeIdentifier_2, ExpirationMonthCode_2))]

The output of the map function is concatenated to give the final output of the algorithm.

1also tells us if option is put or call
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Sequential complexity

The time complexity of the above algorithm is Θ(n2). This can be found by breaking the
algorithm down into three phases:

1. Map phase The algorithm iterates over the input window and reorders the individual
key/value pairs. Each of these permutations takes a fixed number of steps m. The upper
and lower bound on the run time of the map phase is therefore Θ(n).

2. Sort phase The sorting algorithm is an adapted version of CPython’s build-in sort func-
tionality. The only extension is a customised comparison function which takes a fixed
amount of time. The run time of the sort phase is therefore bound by the CPython
implementation2 - Θ(nlog(n)).

3. Reduce phase The grouping by key takes n steps, as the whole array has to be traversed.
However, the run time is dominated by looping over the groups and finding the parities.
There is a maximum of n groups, namely if no key occurs more than once. In this case, the
reduction takes n steps. The other extreme case is if there is only a single key. This time,
the computation of the parities takes two nested loops and therefore n2 steps. The upper
bound on the complexity of the reduce phase is Θ(n2). However, looking at the format
of the key, this case is unlikely. We expect to see options with different strike prices
in our data set, for example. Taking this into account, the complexity can be revised.
Assuming that we have m unique keys. With n tuples, this leaves an average of n/m
tuples per group. Traversing all groups and computing the parities gives us a complexity
of m(n/m)2 ⇒ Θ(n2/m).

From the description of the phases we have Θ(n) + Θ(nlog(n)) + Θ(n2/m) which leads to an
asymptotic run time of max(Θ(nlog(n)),Θ(n2/m)). The asymptotic run time is Θ(nlog(n))
only if m > n/log(n).

6.1.2 Theoretical analysis of the parallel algorithm

With the above sequential algorithm already being available in MapReduce form, it is easy to
find a parallel equivalent.

Map phase From the definition of the sequential algorithm, we know that it the map phase
takes n/p steps on p processors. Assuming that the whole input window is only available at a
single front-end node, we will need to transfer n/p tuples to each mapper. After this step, we
need to sort the data prior to the reduce phase.

Instead of transmitting the output of the map phase to a single node and sort it there, we
will use the fact that the data is already distributed over the mappers to do a distributed
sort. For this we sort the n/p elements locally, using the build-in sort functionality. This takes
Θ((n/p) log(n/p)) steps.

2http://wiki.python.org/moin/TimeComplexity
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Single node merge After the local sort, the data is transferred to a single node for merging.
Note, that we could further minimise the number of steps by joining input splits in parallel, but
we opted for the centralised version in our Python implementation for simplicity. The merging
is done in p − 1 rounds and takes a maximum number of

∑p−1

k=1

n
k

steps.
∑p−1

k=1

1

k
is the sum

is a harmonic number and equates to roughly ln(p). The complexity of the merging process is
therefore n ln(p).

Reduce phase Finally, after grouping the sorted data (n steps like in the sequential algo-
rithm), we partition the groups over the available nodes for the reduce phase. The scalability of
this operation is highly dependent on the input data. In the worst case, we have a single group,
induced by a single key. In this case, the parallel run time is n2 as in the sequential case. For
the average case, we assume again, that the number of groups is greater or equal to the number
of processing nodes and that groups are roughly the same size. This requirement is not strictly
necessary, as we can balance the load based on the length of the groups. Assuming that the
load balancing prior to the reduce phase gives us a perfect balance leads to Θ(n2/mp) steps for
our reduce implementation.

Without evaluating the communication overhead To yet, we have the following expression for
the parallel runtime:

Tp = To + n/p + (n/p) log(n/p) + n ln(p) + n2/mp

We now define the cost of our parallel algorithm to be:

Cp = pTp

In order for our algorithm to be cost-optimal, we need the cost to show the same asymptotic
growth in terms of the input as the sequential version. Substituting our parallel run time gives
an expression for the cost:

Cp = pTo + n + n log(n) − n log(p) + pn ln(p) + n2/m

Since n ≫ p we have n2/p > n log(n) > pn ln(p) and thus the asymptotically largest term of this
equation is max(pTo, n

2/m). Note that if the difference between p and n becomes too small, the
algorithm will not be cost optimal anymore. We will return to this problem when we evaluate
the run time of our MapReduce stream processors. As n2/m is equal to the cost of the sequential
algorithm, we must evaluate the To term now. Normally, we would assume that we are operating
over a normal TCP store-and-forward network. The communication overhead is thus given by
To = ts + (mtw + th)l. For simplicity let us however, adopt the simple cost model as given on
page 59 in Introduction to Parallel programming [26], which gives the communication cost as:

Tcomm = ts + twm

In this formula, tw denotes the time to transmit a word, m is the number of words and ts is the
start up time. As this expression does not take the connectedness of the network into account,
it can be applied to any network infrastructure. We chose this expression since the network
topology of a cloud cluster is not always known to the client. Our data contains on average
80 characters per tuple in ASCII encoding. Each tuple contains 20 words. For a window size
of 10,000 tuples, this makes 200,000 words or 781.25 kilobytes. In a random sample of 10,000
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Operation From To Time

Scatter JobTracker TaskTrackers/Mappers ts + tw × 10, 000 × 20
Gather TaskTrackers/Mappers JobTracker ts + tw × 10, 000 × 3
Scatter JobTracker TaskTrackers/Reducers ts + tw × 10, 000 × 3
Gather TaskTrackers/Reducers JobTracker ts + tw × 750

Total ts × 4 + tw × 260, 750

Table 6.1: Summary of communication times for our data set/MapReduce implementation on an idealised,
fully connected network

tuples, we have 30 distinct keys and with an average of 6 associated distinct quotes. The map
phase does not add or remove tuples but it does reduce their size to 3 words by ignoring the most
of the fields. We will assume that the total number of tuples is only reduced during the reduce
phase. It is difficult to give an exact number to the number of tuples (and their lengths) after
this phase. Our experiments have showed a lot of variation. However, a reasonable average is
around 3000 characters or 750 words. In any case the final communication step after the reduce
phase is unlikely to have much impact as its run time is several orders of magnitude lower than
the previous scatter and gather operations. The communication costs for each individual step
under the simplified cost model mentioned above is shown in Table 6.1.

We will assume that any machine can only send and receive data sequentially. This means
that regardless of the number of processors, a scatter operation over p processors is only com-
pleted when n elements have been transmitted. Assuming the start up time ts is negligible, the
total time taken for communication in our algorithm is 260,750 times the time to transmit a
single word. If the computation time (Θ(n2/m) as shown previously) on a single node is not
significantly higher than this value, the algorithm is not cost efficient and not scalable.

Commentary We have made a few assumptions in this section. In reality, the communication
overhead is likely to be greater than in the simple communication model as the cloud infrastruc-
ture is not fully connected. Furthermore, we might not be able to achieve perfect load-balancing
over the reduce nodes. Our analysis of the communication overhead gives us a good indication
about possible weaknesses of the MapReduce implementation when dealing with streaming data.

6.1.3 Hadoop vs Python MapReduce

Our very first experiment is to show that MAPS outperforms the Hadoop framework on stream-
ing tasks. Thereby, we aim to establish which one of the two stream processors shall be used
during the rest of this evaluation. In order to measure the response time of both the Hadoop and
Python implementation, we have written a simple Python script (StreamTester) which reads a
single predefined window from disk and relays it over the network to our stream processors. In
addition to sending the window, the script measures the time it takes from sending the first tuple
to the reception of the STOP signal from the stream processor. We will record multiple runs
with the same window data and choose the one with the lowest value for our evaluation. The
lowest value is chosen as it reflects the actual time needed for our computation. As our input
data and algorithm do not change during the experiment, any inconsistencies in the run time
must be attributed to external factors such as network congestion or other processes requesting
resources on our stream processors. The window data will be read from disk at the local node
and send over the network to the dedicated machines in the college data centre.
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Local Desktop (Development machine) Cloud machines

Processor Intel Core i7 920 @ 2.67GHz AMD Opteron 2346 HE @ 1.81GHz
RAM 3GB 4GB

Network Down 17Mb/s, Up 1Mb/s 3 100Mbit Fast Ethernet
OS OpenSuse 11.2 Ubuntu Jaunty (9.04)

Kernel 2.6.31.12-0.2-desktop 2.6.28-17-server

Table 6.2: Specifications of our test machines

Window size Time in seconds

100 5.387
1000 6.225
10000 9.241

Table 6.3: Delays for varying window sizes processed
by our streaming version of Hadoop, excluding start
up overhead. Measurements varied a lot. Figures
given are minimum values of 10 independent mea-
surements over an Internet connection.

Window size
Tasktrackers 100 1000 10000

1 0.175s 0.753s 6.310s
2 0.151s 0.665s 6.170s
3 0.200s 0.626s 5.951s
4 0.220s 0.610s 5.931s

Table 6.4: Delays for processing several different win-
dow sizes on MAPS with varying number of Task-
Trackers. Figures given are minimum values of 5
independent measurements over an Internet con-
nection.

Setup

For our tests, we have constructed a small cloud of four Quad-Core AMD Opteron machines
(see Table 6.2). These machines run at 1.8Ghz and have access to 4GB RAM. We will first test
the latency implied by sending the query over a standard Internet connection.

Henceforth, the term cloud shall refer to our cluster of machines in the
college data centre.

Results

Table 6.3 shows the performance of our extended Hadoop framework. Each measurement was
repeated several times with no significant variation. For this test, we have omitted the time it
takes for the job to be loaded on the TaskTracker. Nevertheless, the custom version (Table 6.4)
is still up to 30 times faster for 100 tuples and 32% faster for 10,000 tuples. Moreover, when we
take the start up into account, all three queries run at an average of 11 seconds on the Hadoop
implementation. This is due to the fact that the stream server can receive tuples whilst setting
up the MapReduce job. Notwithstanding these measurements, it is impossible to quantify the
run time of our Hadoop streaming queries as they fluctuate heavily. We have observed the same
query on the same data to deviate by as much as 10 seconds! The reasons for these problems
are described in §3.3.3. The unpredictability of these fluctuations, the drawbacks in the Hadoop
design and the considerably worse performance of its implementation has led us to adopt MAPS
for the rest of this evaluation.

Communication overhead

In §6.1.3, we have shown how important the communication overhead is for determining the
scalability of our cloud implementation. In attempt to minimise the latency between the
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Window size
Tasktrackers 100 1000 10000

1 0.142s 0.179s 1.602s
2 0.118s 0.148s 1.401s
3 0.150s 0.183s 1.366s
4 0.166s 0.195s 1.337s

Table 6.5: Delays for processing several different window sizes with varying number of TaskTrackers.
Figures given are minimum values of 5 independent measurements over a LAN connection.

StreamTester and the cloud, we will from now on send the query from within the same net-
work in which the cloud nodes are located. To evaluate the effects of this change, we will discuss
the implications of the round-trip-time (RTT) and show how the locality of the StreamTester
influences our results.

Round-trip time We have measured the round-trip time using the standard UNIX ping
utility. As some routers may drop ICMP packets or delay them, a ping does not always give an
accurate reflection of the RTT. However, it can give us a good indication of where the overhead
in our query comes from. Our experiments have given us an average round trip time of 15ms.
This means that any packet send from the local node to the stream server on the same network
is only acknowledged 15ms later. Sending an 8KB burst of data over a 100Mbps link gives us
a bandwidth delay product [38] of 1.5 × 106 bits. 8KB only utilise around 4.4 percent of our
channel’s capacity. This efficiency is too low for exploiting the network infrastructure. As can be
seen in Table 6.5, the round trip time is sufficiently high for having a real impact on the latency
of our response. Increasing the number of tuples by two orders of magnitude, does indeed help
as the results show.

Incidentally, the average round-trip time for a ping request from our local node over the Internet
to the nodes in the college data centre is 30ms. The difference to the round-trip time for the local
area network as discussed above is similar to the difference between the respective measurements
for 100 tuples in both cases.

Bandwidth The migration of the StreamTester to the same network as the cloud also shows
the impact of the channel bandwith on the response time. Since we have established that our
distributed MapReduce algorithm is only cost-optimal and sufficiently scalable if n ≫ p in , we
cannot work on windows smaller than 10,000 tuples. A comparison of the response time over
the Internet and the local area network yields the fact that at least 75% of the time is spend on
communication when receiving the input window over the Internet. This severely cripples any
chances of the cloud infrastructure to shine with scalability. The MapReduce implementation
can only be successful if we have a high bandwidth, low latency connection between the cloud
and the provider of the stream.

Scalability

Assuming that we have the network architecture as described in the previous section, we will now
evaluate the scalability of our MapReduce framework. Table 6.6 shows the speedups obtained
in from adding more TaskTrackers. For a window size smaller than 10,000 tuples, using more
than three nodes to compute the result causes a drop in performance. This is due to the com-
munication overhead mentioned above and the further addition of inter-process communication.
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Figure 6.1: Diminishing returns when adding more TaskTrackers at a constant window size

Window size
Tasktrackers 100 1000 10000

1 1.000 1.000 1.000
2 1.203 1.209 1.143
3 0.947 0.978 1.173
4 0.855 0.918 1.198

Table 6.6: Speedups obtained by our distributed
MapReduce implementation

Window size
Tasktrackers 100 1000 10000

1 100% 100% 100%
2 60% 60% 57%
3 - - 39%
4 - - 30%

Table 6.7: Efficiency of our distributed MapReduce
implementation

In these cases the n log n and np ln p terms become more dominant. In addition to the constant
overhead such as the communication start up times, these eclipse the actual computation time
and cause the response time to increase.

Figure 6.1 shows diminishing returns when we add more TaskTrackers but keep the window
size constant. An increase in the number of TaskTrackers causes the efficiency of the parallel
implementation to drop from 57% to 30% (Table 6.7).

Resource utilisation

We have monitored the resource utilisation using the top program. The following data is for the
second configuration (Table 6.5). The input stream is send and received on the same network.
When running two TaskTrackers, we have observed that the machine running the JobTracker
and a TaskTracker is loaded between 25% and 50%. This is expected as we have not enabled
the threading of map and reduce tasks. Only 2 cores are utilised. The machine running a single
TaskTracker only experiences between 10% and 25% load. This is due to the fact that much
of the time is spend doing I/O to send and receive the input window. When we increase the
number of TaskTrackers, their hosts’ CPU utilisation drops below 10%. This confirms our earlier
observations that the communication cost becomes a bottleneck.
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Window size
Tasktrackers 100 1000 10000

1 1.42ms 0.179ms 0.160ms
2 1.18ms 0.148ms 0.140ms
3 1.50ms 0.183ms 0.137ms
4 1.66ms 0.195ms 0.134ms

Table 6.8: Tuple latencies for processing several different window sizes with varying number of Task-
Trackers (LAN)

6.1.4 Conclusion

Our simulations have proved the suspicion that Hadoop’s overhead is too great for streaming
applications. However, we have showed that it is possible to scale MapReduce tasks over multiple
machines using our custom MAPS implementation. More available TaskTrackers lead to a
decrease in tuple latency (see Table 6.8). For an input window of 10,000 tuples, we could
decrease the tuple latency from 0.160ms to 0.134ms. This is a good value as the average latency
required for our data set is 1.29ms (6.2.2).

The calculations at the beginning of this chapter have showed that there is likely to be a bot-
tleneck due to the communication cost. Careful consideration has to be given to the number
of compute nodes in relation to the window size. The experiments have confirmed this. Using
more than 2 nodes to compute an input window consisting of 10,000 tuples yields no consider-
able benefits. For input windows smaller than 10,000 tuples, MapReduce is not feasible. The
communication and coordination overhead outweighs the benefits from parallelisation.

Increasing the window size to 100,000 tuples causes problems of its own. 100,000 tuples are
approximately 8MB. A transfer over a slow Internet connection would take too long to complete.
If the data is available on the same network, a larger input window might be an option. However,
this leads us to a big limitation of the MapReduce paradigm. Although we could pipeline the
incoming data straight into the MapTasks, we need to wait until the completion of the map
phase to be able to start the reduction. In our case and we assume that this is not an exception,
the map function is simple. Essentially, we are waiting for the network transfer to complete.
This limits our capabilities to efficiently overlay communication and computation.

In summary, the MapReduce approach is used best for large window sizes and computationally
intensive queries. The minimum requirement is for the computation complexity of the reduce
query to exceed the communication complexity. The second requirement is for the map function
to be complex enough to be efficiently pipelined with the incoming data. If these requirements
are not fulfilled, traditional stream processing systems are better suited to the task. Future
work should investigate how the MapReduce paradigm can be used to enhance existing stream
processors in these special cases.
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6.2 Loadbalancing into the cloud

In this section we will evaluate how the two load balancing schemes introduced in Chapter 5
perform in assisting the local stream processor through the added capacity of the cloud.

Our main goal is to find out how effective the load balancer is in smoothing out peaks in the
input stream. First, taking the network latency into account, we will find the optimal split
between the local stream processor and the cloud load balancer. This will be done using the
always-on approach discussed in §5.2.1. This split constitutes an upper bound on the extra
work which can be done in the combined stream processor. We will then measure and compare
the performance of the local-only stream processor to the adaptive load balancer which uses the
cloud’s resources to assist the local node when windows are being dropped.

6.2.1 Experimental setup

Figure 6.2 shows the setup of our experiment. The specifications of the nodes are given in
Table 6.2. The test stream is injected into the load balancer on the same node using the
StreamTester component. The load balancer connects to the local stream processor and to the
stream processor in the cloud. The output is send back to the StreamTester component. The
StreamTester is a combination of Python and shell scripts. It monitors the resource utilisation
of the local stream processor and the load balancer using the top utility. The output from top

is read every second. It is then piped to a python script which outputs an average value for
every 10 minutes worth of tuples4.

Figure 6.2: Our experimental setup. The local node is located at a different site to the cloud nodes.

As discussed in the previous chapter, the load balancer keeps a log about incoming and outgoing
data as well as dropped and processed windows. It records state changes and the latencies of the
local and cloud stream processors. This log file is post-processed using standard UNIX utilities
like grep and awk.

6.2.2 Analysis of the data set

Our dataset contains quotes for options on the Apple stock for a single day from 8am to 4pm.
The total size of the data set is 1.6GB. This is equivalent to 22,372,560 tuples. Each tuple is
timestamped. If we take the average tuple inter-arrival time as a measure, our stream processor
would have to process 777 tuples per second. This gives an average tuple latency constraint

4ie. independent of the playback speed of the component injecting the stream, we always have the same number
of values for CPU and memory utilisation.
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Figure 6.3: Arrival rate (Sampled every 10 minutes)
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Figure 6.4: Cumulative arrival rate (Sampled every 10 minutes)

of 1.29 milliseconds per tuple. The average is not characteristic of the actual distribution of
inter-arrival times. Figure 6.3 shows how the inter-arrival times are distributed over the data
set. The trading during the morning hours is more intensive. The reason for this could be trades
carried from the previous day; more likely, however, is an impact of the daily news. The inter-
arrival time drops constantly until it reaches a trough around midday. This is emphasised by the
gradient in Figure 6.4. The cumulative arrival rate shows almost a horizontal gradient after 200
minutes. The afternoon trading is relatively moderate compared to the morning. Only during
the last 45 minutes does the trading pick up a bit. This has implications for our load-balancer.
It is likely that it must immediately become active to deal with the surge in morning traffic. As
the day passes, we expect the local stream processor to take over and to deal with the stream
on its own.

6.2.3 Input parameters

The behaviour of our adaptive load balancing system is defined by four parameters. Input queue
and cloud on/off are variables of the load balancer. Stream synchronisation rate and playback
speed are parameters of the StreamTester component.
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Maximum size of input queue Specifies the size of the input queue at the load balancer. If
the queue has been filled up, we start dropping tuples and the cloud starts processing. If
it has been drained, processing switches back to local-only.

Cloud on/off Switches the cloud stream processor on and off.

Stream synchronisation rate Specifies at which intervals the elapsed CPU time is compared
to the current position in the stream. A higher value will lead to a burstier stream.

Playback speed Allows to adjust the rate at which the original stream is played back at.
Honours the timestamps of the tuples.

6.2.4 Measured properties

Below, we list the properties we measured for different combinations of the above variables. All
measurements were taken at the local node.

Tuples dropped/Percentage dropped The percentage of dropped tuples with respect to
the total number of tuples gives us an indication of the efficiency of the load balancer.

Window latency The combined stream processor should result in more tuples being processed.
We want to see how tuple/window latency is affected.

CPU/Memory requirements The cloud’s CPU utilisation has been discussed in the previous
section. For the load balancer, we are interested in the CPU and memory utilisation at
the local node.

Average size of input queue The average size of the input queue. This value should get
close to the maximum size if the local node is overloaded.

Average size of split buffer The average size of the split buffer.

6.2.5 Always-on: Finding the best split

In this experiment, we wish to evaluate the maximum number of windows which can be processed
when the load balancer is operated in always-on mode. The input window is fixed to 10,000
tuples and replayed, in order for the computational load to remain the same.

We expect the load balancer to quickly find a reasonable split. When interpreting the results,
we must take into account that it is running on the same machine as the local processor. The
cloud implementation will be slower than the local stream processor due to the communication
overhead for the transmission of the input window. We would therefore like to find out to which
extend the additional resources can be utilised when the cloud is part of a combined stream
processing system.

Figure 6.5(a) shows how the most efficient split is found after just 3-5 iterations. MAPS can
process a single window in roughly 6 seconds. The local node needs 0.6 seconds. This means
that for every 10 windows processed on the local node, 1 window is processed in the cloud. The
cloud helps the local node to process 9% more windows. This split can be somewhat improved
by using a higher bandwidth connection. As shown in §6.1.3, the cloud is able to process the
same window in 1.4 seconds. The new split would be 3-7. For every 7 windows processed on
the local node, we can process 3 windows in the cloud. The split could be further improved by
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Figure 6.5: Histograms depicting the load distribution between the local stream processor and the cloud
stream processor

using more powerful machines in the cloud. At the moment the result is skewed towards the
local node as its specifications are slightly better than those of the cluster nodes.

For Figure 6.5(b), we have moved the whole experiment to the cloud. The stream tester, load
balancer and local stream processor run on a dedicated node in the college data centre. The
cloud is left unchanged. The high bandwidth, low latency connection between the nodes on the
same network guarantees a 1-1 split. For the rest of the evaluation, we shall be using the first
setup (i.e. 10-1 input split).

6.2.6 Adaptive load balancing

We will now explore the performance of our adaptive load balancer. Figure 6.6 shows how
enabling the cloud stream processor helps the load balancer to reduce the number of dropped
windows by around 8% over the local-only solution. The benefits of the cloud’s capacity become
more clear when the synchronisation rate is increased. The increased synchronisation rate elim-
inates bursts which were not present in the original stream. When the StreamTester component
only synchronises with the stream every 10,000 elements, it is likely to very quickly fill the load
balancer’s input buffer. Furthermore, it often waits for quite a substantial time after a burst
and before it sends the next data. By synchronising more often, we can eliminate the effect of
both the bursts and the idle periods. In this section we will discuss the effect of the 4 input
parameters on the performance of the adaptive load balancer. We will start by conducting a
few preliminary experiments to fix suitable values for the input queue and synchronisation rate.
Building on those values, we will show how the cloud’s resources can help to improve on the
performance of the local stream processor.

Preliminary experiments

We consider our main variable to be the playback speed. Therefore we wish to start by measuring
the effect of the input queue and the synchronisation rate. The following measurements were
taken with the full adaptive load balancer. The playback speed was set to 13 times the original
speed. This reduces the original runtime of 6.5 hours to a run time of approximately 30 minutes.
At this speed, the load balancer will drop tuples.
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Figure 6.6: Chart depicting the effect of enabling the cloud stream processor for different synchronisation
rates (Playback speed: 13x, Synchronisation rate: every 1,000 tuples)
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Figure 6.7: Graphs showing the effect of the queue size (Playback speed: 13x, Synchronisation rate: every
1,000 tuples)

Maximum queue size As can be seen in Figure 6.7(a), the percentage of dropped tuples
falls sharply when increasing the size of the input queue from 10 to 20. Increasing the maximum
length of the queue from 20 to 30 does not give us much added value. From Table 6.9 we can
see why the effect of increasing the maximum size of the input queue beyond 20 is small. The
average size of the input queue is around 10 elements. Thus in the average case, 20 elements
are more than enough. In order to adequately serve the peaks in the load, the queue must be
substantially bigger. We have chosen to fix the maximum queue size to 20 for the rest of our
experiments.

Figure 6.7(b) shows the effect on average latency is very small. This is because of the massive
communication overhead incurred from our low-bandwith link. In order for the cloud’s added
resources to have a more positive effect on window latency, we need a more even split between
windows processed locally and windows processed on the cloud. Since the average window
latency does not give us any meaningful information in the current setting, we will forgo its
calculation and focus on the percentage of dropped windows after these preliminary experiments.
We can, however, already conclude that any window which is not dropped has a minimum latency
of around 0.6 seconds (with empty input queue) and a maximum latency of size(inputqueue)× 6

11



6.2. Loadbalancing into the cloud 69

Max. size of queue Avg. size of input queue Avg. size of split buffer

10 9.36 5.21
20 8.15 10.81
30 10.77 10.69

Table 6.9: Table depicting the effect of the input queue (Playback speed: 13x, Synchronisation rate:
every 1,000 tuples)
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Figure 6.8: Graphs showing the effect of the synchronisation rate (Playback speed: 13x, Size of input
queue: 20)

seconds (we can process 11 elements every 6 seconds).

Stream synchronisation rate In this experiment we are trying to find a suitable value for
the synchronisation rate. The goal is to eliminate the bursts and waiting periods not inherent
in the original stream. Synchronising the stream at a very fine granularity (ie. every tuple)
is not feasible as it would introduce a lot of unnecessary computation. We have run three
experiments at different synchronisation rates - every 10,000, 1,000 and 100 tuples. Increasing
the synchronisation rate beyond 10,000 does not make sense as our window size is set to 10,000
tuples.

Figure 6.8(a) shows the impact of the change in the synchronisation rate. Synchronising every
1,000 tuples gives us a drop rate of just over 6%. Increasing the synchronisation rate to every
100 tuples gives a drop rate of 5%. In order to minimise the overhead from synchronisation
we have chosen to synchronise every 1,000 tuples in the next experiments. Again, like with the
queue size above, Figure 6.8(b) shows that the latency stays between 0.8 seconds and 1 second
per window. We will consider latency no further after this.

Varying the playback speed

4x In the previous two experiments we have established sensible values for the maximum queue
size and the synchronisation rate. In the upcoming experiments these shall be set to 20 and
1,000, respectively. In the final part of this evaluation, we will vary the inter-arrival time of the
original data using our speed variable in order to measure its effect in terms of dropped windows
and CPU utilisation at the local node. Playing the available data at up to four times its original
speed does not put any strain on the adaptive load balancer. No windows are dropped and the
cloud’s resources are never requested. Figure 6.9 shows the CPU usage over the whole length
of the stream. The spikes in CPU usage can be explained with the spikes in the inter-arrival
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Figure 6.9: Graph showing the CPU utilisation at the local node when playing the stream at 4 times its
original speed

times shown in Figure 6.3. The average CPU utilisation never exceeds 60% which explains why
no windows were dropped.

16x When the stream is played at 16 times its original speed, 12% of the incoming windows
are dropped when using the adaptive load balancer and 14% when using only the local stream
processor. Figure 6.10 shows the CPU utilisation for the first 100 minutes into the stream.
As shown in Figure 6.3 and discussed previously, the tuple inter-arrival rate is highest in the
morning, so this part of the graph shows best how well our load balancer works.

The downward spikes occur due to the load balancer switching states from local-only to local-
and-cloud. The input queue is drained and processing is shared with the cloud. The CPU
utilisation goes up again when the right split has been found and the local stream processor is
fully occupied.
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Figure 6.10: Graph showing the CPU utilisation at the local node when playing the stream at 16 times
its original speed

Increased network bandwidth

For our final experiment, we have moved both stream processors and the load balancer to the
cluster nodes. This move is to simulate a high bandwidth, low latency connection between
the load balancer and the cloud. As discussed in §6.2.5, the best split between the local stream
processor and our MAPS framework for a window size of 10,000 tuples is 1-1. First we tested the
load balancer with only the local stream processor enabled. When we played the input stream
at 16x the original speed, the load balancer dropped 53% of the windows. A run with the MAPS
stream processor enabled, halved this value to 25%. Figure 6.11 shows the CPU utilisation at
all three participating nodes. The node running the local stream processor (LP) and the load
balancer (LB) is running at full capacity almost throughout the simulation. To avoid dropping
windows during the morning rush hour, it needs to continuously use the cloud nodes. Like in the
previous experiments, we have used two nodes in the cloud. The first is running the JobTracker
and a single TaskTracker. The second node is running a single TaskTracker only. From the
graph, we can see how the first node is fully utilised when the local node is overloaded. The
downward spikes occur as the input queue runs empty and the load balancer switches to local
only processing.

As a side note, Figure 6.11 also re-iterates the points made in §6.1.3 about the resource utilisation
of the MAPS framework. The node running the single TaskTracker is currently only utilising
around 10% of its capacity. Clearly, the JobTracker introduces an additional parallel overhead
which impairs the scalability of the framework.
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Figure 6.11: Graph showing the CPU utilisation at all three participating nodes when playing the stream
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LoadBalancer denote the processes running on the three nodes.
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Figure 6.12: Graph depicting the relationship between dropped windows and playback speed

6.2.7 Conclusion

Our experiments have shown that the load balancer is able to utilise nearly the full potential of
the MAPS framework. The split between the local processor and the cloud processor directly
reflects the different latencies. Figure 6.12 compares the percentage of dropped tuples for play-
back speeds ranging from 2x to 64x on our first setup using a low bandwidth internet connection.
It shows that whatever the speed at which we play the input, the adaptive load balancer drops
less windows when the processing on the cloud is enabled. The small difference is solely due to
the bandwidth constraints of our Internet connection. In §6.2.5 we have showed that a higher
bandwidth will result in a better split between the local and the cloud stream processor. §6.2.6
showed that this has a direct impact on the number of tuples dropped by the load balancer.
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The memory usage in all our experiments was very modest. When the local node is overloaded,
the input queue occupies roughly 30 megabytes of memory (all 20 slots are filled). However,
as Table 6.9 shows, the average size of the queue is smaller. 10 windows constitute roughly 15
megabytes of data. Likewise, the size of the split buffer will be around 10 as discussed previously.
It accounts for another 15 megabytes. These values were confirmed in our measurements with
an average memory utilisation of 11% for the load balancer process5.

In order to fully utilise the cloud’s resources we will still have to optimise our MAPS framework
or use a different stream processor. Further research into the average complexity of streaming
queries and window sizes has to be conducted if MAPS were to be chosen. Only if the query is
complex and the window sufficiently large, MAPS is able to scale in the cloud.

5Local node has 3 gigabytes of main memory
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Chapter 7

Conclusion

In this report have used a cloud-based stream processor to investigate load balancing strategies
to efficiently handle bursts in the input stream. We claim that utilising the cloud to handle peak
load situations can significantly reduce the costs of stream processing.

Previous stream processing systems have already discussed the parallelisation of queries [13] [29].
Mortar uses an overlay network and distributes the operators over a tree [29]. This helps to
deal with failures but does not make a distinction between normal and peak load. Cayuga’s
publish subscribe system allows queries to be pipelined [13]. Pipelining is dependent on the
query and not very scalable. The row/column scaling approach also mentioned in Logothetis
and Yocum [13] uses available resources in a round-robin fashion. This scales very well when the
queries are stateless. However, when queries are stateful, the input stream has to be split and
routed to the correct node. In this report we have chosen to adopt the MapReduce programming
model for our cloud stream processor to investigate an alternative approach which scales the
query over a number of machines based on the size of the input.

7.1 Project review

In the first part of this report we have shown how a MapReduce stream processing system can
be implemented on a homogeneous cluster. In the second part we have shown how a local stream
processor can utilise the cloud’s resources to deal with bursts in the input stream.

7.1.1 Contributions

Streaming extension for the Hadoop framework In §3 we have discussed the implemen-
tation of the extensions necessary to receive input from a stream in the Hadoop framework.
We have measured the performance of this solution and explained why its overheads currently
prohibit efficient stream processing.

MAPS: A Lightweight MapReduce framework Building on the experience from extend-
ing the Hadoop framework, we have designed and implemented MAPS, a lightweight MapReduce
framework written in Python (§4). We have showed how the elimination of the distributed file
system significantly reduces the parallel overhead and leads to a more stable run time. In our
evaluation of the system we have showed how the scalability of a query is closely linked to the
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complexity of its map and reduce functions as well as the size of the input window. These obser-
vations confirm previous work on distributed stream processing as operator placement (Mortar)
and pipelining (Cayuga) both depend on the query being split up for parallelisation.

Loadbalancing strategies In §5 we have discussed the design and implementation of two
related load balancing solutions which make use of cloud resources to relieve a local stream
processor.

By utilising our MAPS prototype on a cluster infrastructure, we have showed how our always-
on loadbalancer can increase the total number of windows processed by combining the cloud
and local stream processors. In the adaptive setting, our load balancer is able to utilise cloud
resouces on-demand to reduce the number of windows dropped.

In §6.2.5 we have showed how the efficiency of the MAPS cloud processor varies with the band-
width of the connection between the local node and the cloud. We have showed that the
bandwidth between the local node and the cloud is a more decisive factor for the number of
windows dropped than the latency of the connection.

7.2 Future work

7.2.1 Improving the efficiency of the MapReduce framework

In Chapter 4 we have motivated our choice for Python as implementation language. As our
MapReduce framework was merely a prototype, this choice was acceptable. In order to fully
utilise the potential of the cloud’s resources, we would develop a more efficient version in Java or
C. Subject to the technology made available by the chosen cloud provider, it would be sensible
to use an efficient message-passing framework like MPI in order to minimise the communication
cost. This is especially important as computation time on the cloud has monetary implications.

7.2.2 Pipelined MapReduce jobs

Cayuga’s pipelining approach can be easily applied to our MapReduce framework by allowing for
multiple, chained MapReduce jobs. Chaining multiple MapReduce jobs does not only potentially
help with scaling the query; it also allows us to write more expressive queries. However, careful
attention must be paid to the complexity of the individual queries in order to make sure it is
not dropping below a threshold where communication becomes a bottleneck.

7.2.3 MAPS scaling

The best number of TaskTrackers to use for a certain window size should be found automatically.
Currently, the MAPS framework uses as many TaskTrackers as are registered to the name server.
A future version of this framework must take the cost of computing data on the cloud as well as
the scalability of the query into account and decide an optimum value for the number of nodes
participating in the MapReduce process. MAPS supports threaded reduce tasks. Due to time
constraints, we have left their evaluation for future work. The MapReduce framework should
ideally not only scale over nodes but utilise all available processing power on each one of them
in an effort to reduce inter-node communication.
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7.2.4 Adapting Cayuga to scale on a cloud infrastructure

The evaluation has showed that MapReduce does not efficiently scale when small windows and
computationally less intensive queries are used. In order to make the best use of the cloud’s
capacity, we suggest to adapt the distributed Cayuga implementation for a cloud infrastructure.
Row/column scaling can be used to balance less complex queries. For more complex queries
and larger window sizes it may be considered to compile the CQL queries to MapReduce jobs.
Fusing Cayuga and MapReduce technology could possibly help to overcome the performance
bottlenecks arising from handling stateful queries.

7.2.5 Eliminating communication bottlenecks

Splitting the input stream Concerning the load balancer, further research into splitting the
stream closer to the source or subscribing both the local node and the cloud to the same input
stream should be conducted. If we can find a way to forgo the copying of data between the local
node and the cloud, we can significantly reduce the latency. An interesting aspect of this will
be the control flow between the local node and the cloud to coordinate which windows should
be processed on the two stream processors.

Query-aware load balancing The communication between the local node and the cloud
could be reduced by a query-aware loadbalancer which only send the elements of the tuples to
the cloud which are necessary for the computation of the MapReduce query. Essentially, the
load-balancer operates as a first instance map function to prepare the data for the cloud. In
our case the data is reduced from 20 to 3 words per tuple after the initial map function. If this
had been done by the load balancer, we could have significantly reduced the overhead from the
communication.

Window compression In addition, we could have further reduced the communication over-
head by compressing the input window. An input window may contain duplicates. More impor-
tantly, however, we might be able to take advantage of the fact that most of the data is numeric
and rather short. Sending a 2 digit number over the network using 2 chars is not efficient.

7.2.6 Parallel programming with language support - F#

Our MAPS implementation has showed that it is possible to write a distributed MapReduce
framework in a functional language. Microsoft’s F# programming language has parallel con-
structs already built in. Further work could look directly at distributing functional programs in
MapReduce style over a set of nodes. Tying in with the previous point, this could mean that
the low level communication is handled by fast native code while at the same time retaining the
benefits of an expressive functional programming language for designing the query.

7.2.7 Cost-benefit analysis

It is very important to conduct a proper cost-benefit analysis before any computation is moved
to the cloud. As mentioned in the introduction, it makes sense to use a cloud provider for stream
processing tasks when the servers are only needed a maximum of 6 hours a day and are not used
on weekends. In addition, when trying to achieve low-latency responses to market conditions,
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the location of the cloud nodes becomes important. EC2 nodes in North America will not be
suited to place trades at the HKEx in Hong Kong. However, if nodes in close proximity to the
stock exchanges are available, the cloud based solution becomes very attractive. While building
a new data centre in the vincinity of the market is infeasible, a cloud-based solution can be
implemented at a very small cost. Further research into the latency properties of existing cloud
solutions has to be conducted to quantify these benefits.
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