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Abstract

Statically verifying properties of imperative programs is a very developed
field with many different techniques and tools. The automated verification
of functional programs however is not so developed. Work in this area often
relies on the proof to be created by the programmer, with the tool simply
checking its correctness. This requires considerable work on the part of the
user, as well as a strong knowledge of logic and proof specification .

In this report we present ‘Zeno’, a tool for statically verifying properties of
functional programs without any input from the programmer. Programs,
and the properties we wish to prove, are expressed in Function Logic, a
language we have created for this purpose, and theorems of which can then
be proven or disproven by our tool. The method for these proofs, and the
fundamental rules underlying it, are also described here. In addition we give
an encoding of the functional language Haskell into Function Logic, which
we have also implemented in Zeno.

What sets Zeno apart from existing methods is its ability to infer interme-
diary lemmas necessary for a proof. In particular we provide an automated
proof of the idempotence of list reversal, using only the definition of the
reversal function, with an interesting lemma proven in the process.
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Chapter 1

Introduction

Software bugs are estimated to cost the global economy over $100 billion
dollars every year. Such bugs could be described as programs violating a
certain property in a certain situation, and while the situation was obviously
not anticipated, the property might well have been. It is often the case that
the developers will know the properties that their program is supposed to
fulfil, and lack only the tools to prove that they will always be upheld.

There are many existing tools for checking properties of functional programs
by enumerating inputs to these properties, examples being QuickCheck[10]
and SmallCheck[32]. These tools do not conclusively prove a property, only
that a property holds for a certain finite set of values. Zeno, on the other
hand, seeks to give a mathematically sound proof that a property can never
be violated, for any input it might be given. This approach is known as static
property checking, as opposed to the dynamic property checking employed
by tools such as QuickCheck.

It is unfortunate however that full static verification is doomed to incom-
pleteness from the start. Proving non-trivial properties of Turing com-
plete language such as Haskell has been shown to be undecidable by Rice’s
theorem[31], so this is a field that can never be entirely solved.

A simple example function, given in Figure 1.1, defines the equality over
lists. There are certain properties we now may wish to prove about this
equality function, to make sure it behaves as an equality should. Examples
of such properties are given in Figure 1.2.
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Figure 1.1 Haskell equality function over lists

listEq :: Eq a => [a] -> [a] -> Bool

listEq [] [] = True

listEq (x : xs) (y : ys) = (y == x) && (listEq xs ys)

listEq _ _ = False

Figure 1.2 Useful properties of the equality of lists

∀xs[a] : listEq xs xs Reflexivity

∀xs[a].∀ys[a] : listEq xs ys⇐⇒ listEq ys xs Symmetry

∀xs[a].∀ys[a].∀zs[a] : listEq xs ys ∧ listEq ys zs⇒ listEq xs zs Transitivity

1.1 Contributions

In this report we detail the following three contributions.

Function Logic
A formal logic for describing functional programs alongside properties
we wish to prove about them, along with a set of rules for proving or
disproving these properties.

Function Logic Tableau
A formal method that structures the application of the rules of Func-
tion Logic in such a way that a human or computer can algorithmically
construct a proof or disproof of a property. An advantage of Function
Logic Tableau over existing proof methods is the ability to infer inter-
mediary lemmas necessary to complete a larger proof.

Zeno
A tool implementing Function Logic Tableau which is able to discover
and output proofs or disproofs of reasonably complex properties about
functional programs. In particular Zeno is able to prove the idempo-
tence of the reverse function over lists without any information other
than the function definition, a proof which requires three human pro-
vided lemmas when performed in existing tools. More than that, it
provides us with another property of list reversal that it discovers dur-
ing the proof (this proof is evaluated fully in Section 7.1.1). Zeno also
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provides an encoding of Haskell into Function Logic, so that Haskell
program properties may be solved using the tool.

1.2 Overview of the Report

The report is organised as follows. In Chapter 2 we give a background to
program verification in general. In Chapter 3 we describe what features of
functional languages, and specifically Haskell, we address, giving a precise
formal definition of the functional language we operate over, called Haskell-
Core. In Chapter 4 we formalise Function Logic, the underlying representa-
tion that Zeno solves theorems in, and the basis of our approach, along with
a formal encoding of Haskell-Core into Function Logic. In Chapter 5 we
describe the specific method in which Zeno utilizes Function Logic, called
Function Logic Tableau. In Chapter 6 we outline the implementation of
Zeno and describe how one uses the tool. In Chapter 7 we evaluate the suc-
cess of Zeno in proving properties, along with some examples of properties
it was able to prove, and some it couldn’t. In Chapter 8 we explain various
ways in which Zeno and Function Logic could be extended to provide more
functionality. We finish the report with some concluding remarks in Chapter
9.

12



13



Chapter 2

Background

In this chapter we give a brief introduction to program verification in general,
along with a description of existing work that has been done in this field.

2.1 Hoare logic

The most widely used method for specifying program properties to be ver-
ified is Hoare logic, invented by C.A.R. Hoare in 1969[21], the central
feature of which is the Hoare triple:

{P} C {Q}

Here, P and Q are formulas in formal logic1 about the program state and C
is a command that can be run within the program. The formula P , known
as the precondition, is an assertion about the state the system will be in
before C is executed. The formula Q, known as the postcondition, is an
assertion about the state the system will be in after C is executed. In this
way we can describe, in formal logic, the effect that a command running
within a program should have. A common naming convention is to say that
C requires P and ensures Q. See Figure 2.1 for examples of Hoare triples,
the last of which is an example of an invariant, a property which does not
change upon execution of a command (so Q⇒ P ).

1Usually first-order logic with equality and arithmetic.
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Figure 2.1 Example Hoare triples

{x > 0} x := x+ 1 {x > 0}

{x > y} if z > 0 then x := x+ z else x := x− z endif {x > y}

A system which verifies Hoare logic must prove that if the precondition P
holds then the execution of the command C will make the postcondition Q
hold. Such a system might also check that any time the command C is run
the precondition P must hold.

Figure 2.2 Real world Hoare logic in Spec#

public void incrementX()

requires x >= 0; \\ Precondition

ensures x > 0; \\ Postcondition

{

x = x + 1; \\ Method body

}

2.2 Types of verification

The two main types of program verification are static and dynamic. Fur-
thermore, it is my opinion that both of these types then have two subtypes,
which I will call automated and manual.

Figure 2.3 Examples of verification types

Static Dynamic

Automated Boogie QuickCheck

Manual Isabelle/HOL Unit Testing

2.2.1 Dynamic verification

Dynamic verification refers to checking properties of a program against a
set of example data. Preconditions of a method are checked against its
arguments and the program state when it is called and postconditions are
checked against its return value and the program state when the method
returns. Dynamic verification is largely simple to implement, though issues
can arise in conditions that crash or fail to terminate, and so break a pro-
gram that might otherwise have been correct. The main shortcoming of this
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method is that it is only capable of falsifying properties, rather than proving
them. It certainly allows one to test that properties hold for many different
input values, but never for all of them2.

Manual dynamic verification is when the user manually enters any test data
to be used to test the program’s properties. Unit testing frameworks, such
as JUnit for the Java language are the most prolific form of manual dy-
namic verification. The programmer creates unit tests which will run certain
commands on the program, testing the outcome to see if it matches given
properties. In addition, the assert statement found in many imperative lan-
guages, which will check a property as and when the code is actually run,
is also a form of manual dynamic verification, which is known as run-time
verififcation.

A tool performing automated dynamic verification will test program prop-
erties against an algorithmically generated set of example data. This al-
lows for a much greater range of values to be tested with much less effort
from the programmer. A good example of this is the Haskell framework
QuickCheck[10], discussed in Section 2.7, which will test a boolean func-
tion against a series of randomly generated inputs to see if it ever returns
False. Automated dynamic verification is very difficult for any programs
with nondeterministic external input or mutable global state, as it is very
difficult to automatically simulate such an interaction, or generate such a
state.

2.2.2 Static verification

The second type of verification is static verification. This consists of proving
properties of a program for all possible instances and inputs, and is sub-
stantially more difficult than dynamic checking. Indeed, Rice’s theorem[31]
states that for any non-trivial property of partial functions, there is no
general and effective method to decide whether an algorithm computes a
partial function with that property. This means that full static verification
of a Turing Complete language is an undecidable problem, and so can never
be completely solved. It is also known as compile-time verification, as it
does not involve the actual execution of the program code.

Manual static verification is when the proofs of any properties to be checked
are written by the programmer and the tool merely proves their validity.
One such manual static verification tool that exists for functional languages
in Isabelle/HOL[36]. This tools allows one to express functional programs
in a form of ML and then construct formal proofs of their properties, which

2If your properties can take an infinite number of input values as ours can.
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Isabelle will check for correctness. Isabelle/HOL is discussed more fully, and
with examples, in Section 2.9.1.

Automated static verification is when the properties to be verified are ex-
pressed in simple formulas and the verifier must infer the proof of these for-
mulas for itself. This is the type of verification done by the tool Boogie[5],
which the Spec#[6] language uses for its static verification. One can also
translate their properties and programs from any imperative language into
the intermediary language BoogiePL, which can then be statically verified
by the Boogie tool.

2.2.3 Hybrid verification

One solution to the undecidability of static verification versus the incom-
pleteness of dynamic verification is to combine the two. Checking proper-
ties statically wherever possible and checking them dynamically otherwise.
One version of this approach is called “Hybrid type checking”3 by Cormac
Flanagan[17], and refers to the combination of automated static verification
and run-time manual dynamic verification. This is the approach of many
verification systems for imperative lanugages, including Spec#.

2.3 Implications of verifying a functional language

2.3.1 Simpler Contracts

Pure functional programming is programming without side-effects. The only
inputs that need to be considered are the parameters to the function, and
the only effect of the function is to produce its output. Unlike imperative
programming there can be no reading or writing of global state. A function
in a purely functional program is a mathematical mapping between types,
nothing more.

2.3.2 Recursive Types

Recursivly typed variables can have infinitely many different values, and in
a language with lazy evaluation such as Haskell may actually be infinite in
size at runtime. Any property of a function that takes a recursive type as an
argument must be proven for all of these infinite possible inputs. Looking at

3The usage of “type checking” here refers to the verification of properties expressed
through refinement types.
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the example Haskell code given in Figure 2.4 we can see that the datatype
Nat represents the countable infinity of the natural numbers, and that add

can therefore accept an infinite number of different arguments.

Figure 2.4 Haskell definition of the natural numbers and their addition

data Nat = Zero | Succ Nat

add :: Nat -> Nat -> Nat

add Zero y = y

add (Succ x) y = Succ (add x y)

It is also the case that pointers or references in imperative languages can
allow for potentially infinite constructs. The difference however, is that it
is acceptable that a static verification tool for an imperative language not
to be able to reason about the contents4 of any references an object may
hold. Most properties you would wish to prove only concern the internal
state of the object itself, and the effects of any methods that mutate it. In
functional programming though, all but the most trivial properties must be
proven over recursive data structures, and it would be unacceptable to have
a tool incapable of dealing with them.

One method of reasoning about recursive data structures is with structural
induction. Structural induction is the application of proof by induction
applied to recursive data structures. Using Nat from Figure 2.4 as an
example, and attempting to prove the arbitrary property P℘(Nat): If we
have a proof of this property for Zero (so P (Zero)), and by assuming a
proof for an arbitrary n of type Nat we can find a proof of (Succ n) (so
∀nNat.P (n) ⇒ P (Succ(n))), then we have the proof for all of the natural
numbers (so ∀nNat.P (n)). This is expressed formally with the sentence of
second-order logic in Figure 2.5.

Figure 2.5 Axiom of structural induction over Nat

∀P℘(Nat) · P (Zero) ∧ (∀nNat · P (n)⇒ P (Succ(n)))⇒ ∀nNat · P (n)

4Many such tools can verify whether a pointer references a valid location, but not what
the data at the location is.
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2.3.3 Higher Order Functions

In functional programming an argument to a function can itself be another
function. Any function that takes another function as an argument in this
way is known as a higher-order function. It is generally accepted that the
best way to write Haskell code is using higher-order functions, and so we
should endeavour to be able to verify properties about function-typed ar-
guments. As an example take the function f (Int→Int)→Int that we wish to
verify will always return a positive value if its argument function always
returns a positive value, as formally specified in Figure 2.6.

Figure 2.6 Simple property of the f function

∀gInt→Int · (∀iInt · g(i) > 0)⇒ f(g) > 0

2.3.4 Polymorphism and Type Classes

Another feature of the Haskell type system is polymorphism, allowing us to
quantify over the type of all types, also known as the type Set. Polymorphic
types are represented by lower-case letters in Haskell type definitions. There
is an implicit forall statement at the beginning of every such polymorphic
type but it is not incorrect to state it explicitly. Indeed, the following three
types for the map function are equivalent, with the first two in Haskell and
the third in formal logic:

1. map :: (a -> b) -> [a] -> [b]

2. map :: forall a b . (a -> b) -> [a] -> [b]

3. map∀a
SetbSet:(a→b)→[a]→[b]

There are also polymorphic types, ones which include one or more polymor-
phic arguments in their type declaration. One common example is the type
of lists [a], which is polymorphic in the type of its members.

Haskell’s type classes bring further complication to polymorphism. These
are subsets of Set as defined by a set of operations that can be performed on
them. A simple example is the type class Eq of all types that can be equated,
that is to say they have an equality operation (==) :: a -> a -> Bool

defined for them. This type class is shown in Figure 2.7, along with an
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Figure 2.7 The Eq type class
class Eq a where

(==) : a -> a -> Bool

instance Eq Nat where

Zero == Zero = True

Zero == (Succ _) = False

(Succ _) == Zero = False

(Succ x) == (Succ y) = x == y

instance of Eq for the type Nat which was given in Figure 2.4. The use of
instance in this way effectively adds Nat to the set Eq.

There are many type classes for which certain implicit rules exist over the
functions they are defined for. A good example of this is the type class
Monoid, for monoidal types (shown in Figure 2.9). One such rule for monoids
is that mempty is the identity element. This means that if we give mempty as
one of the arguments to mappend, the function will return the other argument
unchanged. This property is formally expressed in Figure 2.8.

Figure 2.8 Identity of monoidal types

∀MMonoid.∀mM : mappend x mempty = mappend mempty x = x

Figure 2.9 The Monoid type class

class Monoid a where

mempty :: a

mappend :: a -> a -> a

This property is expressed informally in the Haskell documentation, but at
no point is it actually formally verified for any Monoids. Any tool that is
able to statically reason about type class functions might be able to officially
verify this property, and the informal type class properties of the rest of the
Haskell standard libraries.
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2.4 Automated theorem proving based verification

Most program verification tools that use Hoare logic style pre and post
conditions perform static verififcation by encoding the program and any
conditions as a logic and using an automated theorem prover to find a proof
of this theorem, or to generate a counter-example if the theorem is not valid.

Given a Hoare triple {P} C {Q} we can then attempt to find a proof that:
The encoding of the program C into logic, given as [[C]], means that the
precondition implies the postcondition, over all possible inputs. So the en-
coding [[{P} C {Q}]] becomes ∀~x : [[C]] ⇒ (P ⇒ Q), or the equivalent
∀~x : (P ∧ [[C]]) ⇒ Q, where ~x represents all free variables in the formula.
An example of this is given in Figure 2.10. Note that as variables in logic
are immutable we must create the new variable x2 to represent the value of
x after assignment in this example.

Figure 2.10 Encoding Hoare triples to logic

{x > 0} x := x+ 1 {x > 0}

gives

∀x.∀x2 : ((x > 0) ∧ (x2 = x+ 1))⇒ (x2 > 0)

2.4.1 Satisfiability Modulo Theories

The most common type of automated theorem prover that is used to stati-
cally verify programs is a Satisfiability Modulo Theories or SMT solver.
Instead of finding a generalised proof of the validity of a formula, an SMT
solver instead attempts to search for an assignment to all its variables, such
that the formula becomes true; it attempts to find a model which satisfies
the formula.

This proof search is augmented by the use of background theories, which give
it the general rules needed to solve problems quickly. Examples of which
are: The theory of integers, the theory of real numbers, and theories relating
to data structures such as arrays and lists.

As an SMT solver only attempts to satisfy a formula this means that it
will only find one model for our encoded Hoare triple, instead of proving
it is correct for all models. It is the case however that if the negation of
a formula is unsatisfiable, then the formula is valid. So we can negate the
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formula of our encoded Hoare triple, giving ¬(P∧[[C]]⇒ Q), or equivalently
P ∧ [[C]] ∧ ¬Q. If this now cannot be satisfied by the SMT solver then the
properties are valid. Conversely, if the SMT solver is able to find a model
that satisfies this negated formula, then this model is a counter-example to
the properties we are trying to prove.

SMT-LIB

The standardized format for expressing SMT formulas is SMT-LIB, as
described in the “The SMT-LIB Standard”[34] documentation. This format
can be recognized by all of the major SMT solvers such as Yices[14] and
Z3[12]. In fact, the speed at which a solver can, for various SMT-LIB files,
give a model or declare them unsatisfiable, forms the basis of an annual
competition between SMT solvers5. In Figure 2.11 we have an example of
such an encoding.

Figure 2.11 Encoding a property into SMT-LIB

{x > 0} x := x+ 1 {x > 0}

encodes to

(x > 0) ∧ (x2 = x+ 1) ∧ ¬(x2 > 0)

which gives the following SMT-LIB code

(benchmark hoare

:extrafuns ((x Int) (x2 Int))

:assumption (>= x 0)

:assumption (= x2 (+ x 1))

:formula (not (> x2 0))

)

Now, if we feed this into the SMT solver Z3[12] it informs us that the formula
is unsatisfiable, so this Hoare triple is valid. However, if we were to alter
the post-condition to one that is invalid, say x2 > 1, Z3 is able to find the
model x -> 0; x2 -> 1, giving us the exact counter-example for our now
invalid properties.

5http://smt-comp.org
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Unsuitability of SMT for functional program verification

The SMT-LIB standard does not on its own admit the definition of recur-
sive datatypes, but there are extensions for various SMT solvers to support
them. Unfortunately, the only way we can reason with recursive functions
in classical logic is with quantifiers, and SMT solving becomes undecidable
in the presence of quantifiers.

One example of such reasoning is in Figure 2.12, which shows the definition
of the addition function for natural numbers, implemented in SMT-LIB
with the :datatypes extension for the Z3 solver. However the usage of this
definition in any formula will render its satisfiability unknown.

Figure 2.12 Recursive datatypes in Z3

(benchmark addition

:datatypes ((Nat Zero (Succ (pred Nat))))

:extrafuns ((add Nat Nat Nat))

:assumption (forall (?x Nat) (= (add Zero ?x) ?x))

:assumption (forall (?x Nat) (?y Nat)

(= (add (Succ (pred ?x)) ?y) (Succ (pred (add ?x ?y)))))

)

2.4.2 Tableau methods

A popular method for automated theorem proving is with the use of tableaux.
A tableau is a tree structure that represents the proof of a logical theorem,
such that this proof could be generated in a systematic way by a computer
algorithm. Tableaux are created by placing the theorem we are trying to
prove at the root node and then generating new branches beneath it with
a set of formal rules. If a node at a descendent branch satisfies a certain
property then it is said to “close”, meaning that a proof has been found
down this branch. If every branch of a tree closes then the entire tree is
closed and the proof was successful.

As an example we will describe the construction of a Semantic Tableau[30],
used for proving the unsatisfiability of a propositional formula. This method
uses as its branching rules the inference rules of classical propositional logic.
Each node contains a single propositional formula which is true at that node.
All the formulas in the parents of a node are also true at that node. A branch
closes if it contains both a node with A, and one with ¬A, for any formula
A, as we have then found a contradiction.

We start with the formula we are trying to prove unsatisfiable at the root
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node: (¬A∨B)∧A∧¬B. We then apply the (∧) inference rule to derive a
single new branch node with ¬A ∨B. We then apply the (∨) inference rule
which generates two new branches, one for ¬A and one for B. Each branch
represents a different possibility that could be true in above the formula.
Down the left branch we can use (∧) again to get the node A, which means
we can immediately close the branch as it contains both A and ¬A. Down
the right branch we can use the (∧) rule on the head node to get ¬B,
which means we can also close this branch. So now we have a tableau in
which every branch is closed, meaning we have proven the original formula
unsatisfiable.

This example is given fully in Figure 2.13.

Figure 2.13 Example of a Semantic Tableau

(¬A ∨B) ∧A ∧ ¬B

¬A ∨B

¬A

A

B

¬B

2.5 Verification of imperative programs

While verifying functional programs is still an undeveloped field, the veri-
fication of imperative programs is currently very popular. There is a large
market for verifying of critical pieces of software, and most of the world’s
software is written in imperative code.

There are many languages and tools for expressing and verifying impera-
tive program properties, both statically and dynamically. Examples include
ESC/Modula3, ESC/Java, .NET Code Contracts, Boogie, and Spec#. How-
ever the approach of these are all very similar, so I will only go into one in
detail.
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2.5.1 Spec#

One popular language for research into program contract verification is Mi-
crosoft’s Spec#[6], a superset of the C# language extended with various
constructs for expressing logical properties. In Figure 2.2 we can see an
example of pre and post conditions on the method incrementX using the
requires and ensures keywords respectively.

In Figure 2.14 we see an example of Spec# that with an object invariant
stating that its field x should always be positive. In this case the Spec#
compiler is able to statically verify that this invariant will always hold.

Figure 2.14 Spec# example

using System;

namespace N

{

class C

{

int x = 1;

invariant x > 0;

public void AddToX(int y)

requires y >= 0;

{

x = x + y;

}

}

}

However, if we modify the precondition of AddToX to requires y >= -1,
or remove the precondition entirely, then we are informed by the Spec#
compiler that this method might break the object invariant. So the verifier
is able to statically detect the potential violation of the invariant.

Spec# Architecture

Spec# utilizes Flanagan’s hybrid verification (see Section 2.2.3), generating
an application with dynamic runtime checking after attempting to statically
verify any properties. The compiler uses the tool Boogie[5], also developed
by Microsoft, to perform its static verification. Indeed, Boogie will verify any
program compiled to Microsoft’s .NET executable bytecode (CIL), where
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properties you wish to verify are expressed as metadata within the bytecode.
See Figure 2.15 for a diagram of this process.

Figure 2.15 Spec# architecture

2.6 Dana Xu’s ESC/Haskell

In her PhD thesis “Static Contract Checking for Haskell”[39], Dana Xu
outlines a method for the static verification of Hoare logic style pre and
post conditions for Haskell functions, called Extended Static Checking for
Haskell, or ESC/Haskell. Her contracts are written in the same style as in
Haskell function type assignment, but instead of the type there is a property
about that the value given at that type position. This property is of the
form { x | P }, where x is a variable name given to that argument and P

is a boolean property about it. More specifically P is any Haskell expression
of type Bool.

In Figure 2.16 we have an example taken from her paper[39] of an increment
function with a contract that states it must take a positive value and return
a value greater than the input:
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Figure 2.16 Example contract in ESC/Haskell

{-# CONTRACT inc :: {x | x > 0} -> {r | r > x} #-}

inc :: Int -> Int

inc x = x + 1

2.6.1 Verifying ESC/Haskell

Xu’s method for the verification of her ESC/Haskell is as follows. Contracts
for functions and the functions themselves are translated from Haskell into
her own functional language H in such a way that every execution that
would lead to a contract violation is replaced by the term BAD. An algorithm
is then used to simplify the H-expression in an attempt to eliminate all
unreachable paths. This algorithm will unroll function calls where possible
in order to remove them. If the term BAD no longer exists in the expression
then the contract is verified, or syntactically safe. Any path which returns
BAD without relying on the result of a function call represents a violation of
the contract and by following the values along that path we can construct
this counter-example. Paths that both contain a function call and return
BAD have an unknown result. See Figure 2.17 for a flowchart of this process.

One important result of Xu’s thesis is the soundness and completeness of
the formalization of her contracts into the H language. Given the functional
expression e and the contract t, she uses the statement e ∈ t to mean either e
diverges or it is a crash-free expression satisfying the contract t. She defines
e . t as the projection of e and t into her language H and proves:

(e . t) is crash-free⇐⇒ e ∈ t

Where crash-free refers to the inability to reach the term BAD.

Xu’s theorem is very useful, it shows us that given a sound and complete
simplification algorithm her entire verification process is sound and com-
plete. Obviously by Rice’s theorem a complete simplification algorithm is
unobtainable but if one could identify a case in which this algorithm must
be incomplete then we have found a case in which all static verification must
be incomplete, by the Turing Completeness of H.

One important side-note is that Xu’s engine itself does not deal with arith-
metic inequality. She instead uses the SMT solver Simplify6 to handle veri-
fication problems relating to the comparison of integers and real numbers.

6Previously a popular SMT solver, Simplify has recently been superceeded by solvers
such as Z3
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Figure 2.17 ESC/Haskell flowchart

2.7 QuickCheck

For the automated dynamic checking of Haskell code there is the popular tool
QuickCheck[10]. Given a function that returns type Bool, QuickCheck will
generate multiple random inputs for that function and report if any caused
the function to return False.

In order to generate random data for the function its input must be of a
type that is an instance of the type class Arbitrary, which specifies how
to generate random values for that type. Most Haskell built in types have
predefined instances of Arbitrary defined by the QuickCheck developers.

2.8 Jean Goubault-Larrecq’s Sequent Calculus

Gerhard Gentzen developed the first sequent calculi LK and LJ in 1934[18],
to study the technique of natural deduction on classical and intuitionistic
logic respectively. It, and the theories surrounding it, admit automatable
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techniques for deciding the validity of logical theories.

More recently however, Jean Goubault Larrecq has extended this calculus
with equality, free constructors and, importantly, structural induction[19].
He goes on to describe a tableux method by which one may soundly construct
proofs of formulas in his calculus. This method, along with the theory behind
it, could potentially be adapted as a proof method for functional languages.

2.9 Manual static verification

While automated theorem proving for higher-order logic is an incredibly
complex task, it is much easier to simply check the proofs that humans have
created. That is to say you express every logical rule and the structure
in which it was used, along with any intermediary lemmas, and the proof
assistant will verify that this is indeed a valid proof.

2.9.1 Isabelle/HOL

Isabelle/HOL[36] is HOL (Higher Order Logic) running on top of the proof
assistant Isabelle. Isabelle itself is a tool that allows one to formally check
proofs such that you know them to be sound, and remove any possibility
of human error. Using Isabelle/HOL we can specify functional programs,
using a form of ML, and develop proofs of their properties.

In Figure 2.18 we give an example of the proof of a function property in
Isabelle/HOL, specifically that the length of one list appended to another is
the sum of the length of each list. Isabelle/HOL has a reasonably powerful
automated theorem prover built in, as after we have specified we want to
perform proof by structural induction on the variable xs (using apply (

induct_tac xs)) it can complete the rest of the proof for us (using apply

(auto)).
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Figure 2.18 List application length proof in Isabelle

theory Length

imports Datatype

begin

datatype list

= Empty ("[]")

| Cons nat list (infixr "#" 64)

primrec app :: "list => list => list" (infixr "++" 65)

where

"app [] ys = ys" |

"app (x # xs) ys = x # (app xs ys)"

primrec length :: "list => nat"

where

"length [] = 0" |

"length (x # xs) = Suc (length xs)"

lemma lengthApp [simp]:

"length (xs ++ ys) = (length xs) + (length ys)"

apply (induct_tac xs)

apply (auto)

done

Haskabelle

Haskabelle[37] is a tool for the conversion of Haskell source code into the
higher-order logic syntax used by Isabelle/HOL. Having converted your pro-
gram you can then use Isabelle to prove any properties you wish about it.

The shortcoming of Haskabelle however is that is requires users to know how
to use Isabelle, in addition to the obvious inconvenience of converting and
moving between two different sets of source code. In addition Haskabelle
can only check existing proofs, rather than inferring proofs for itself, which
is further effort for the programmer, especially with proofs needing to be
rewritten if one changes a small part of the source code.

2.10 Summary of existing verification methods

• Satisfiability modulo theories based methods, although the most
popular technique for imperative program verification, have shortcom-
ings with respect to functional programming which may be impossible
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to overcome. Namely their inability to easily reason over recursive
datatypes, which are one of the most central features of functional
languages. Therefore, this project would either have to employ a dif-
ferent strategy, or focus on the enhancement of an existing SMT solver.

• Dana Xu’s ESC/Haskell gives a good theoretical basis for statically
verifying functional code. Unfortunately, the strength of her method
rests on her simplification algorithm. It is at this stage that the prob-
lem of function calls, and hence recursion in general is dealt with by
an unrolling technique. It is my opinion that a method that focuses
on structural induction should instead be used.

• QuickCheck is a very useful method for disproving properties of
Haskell programs, but can never be really trusted to ensure that they
are correct. If a technique such as this is to be used it should be in tan-
dem with one that can positively verify programs, so that properties
can be proved either way.

• Proof checkers such as Isabelle/HOL provide a method by which
human intelligence can be utilized in program verification. However
these methods rely almost entirely on the ability of the user to con-
struct such proofs themselves, something which developers may be
neither willing nor able to do. One useful compromise might be to use
these methods to augment an automated approach, with a tool pos-
sibly querying the user should there exist a proof step that it cannot
solve.
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Chapter 3

Haskell

In this chapter we start by describing formally the subset of Haskell that
is addressed by our tool (Section 3.1), referred to as Haskell-Core (HC)
(Section 3.2), along with its typing and operational semantics. We finish by
discussing the extent to which Zeno tackles non-terminating programs and
infinite data structures (Section 3.3).

3.1 Restrictions

It is important to note that we have not addressed all of the Haskell language
in our tool. Our restrictions are on the types of the functions our tool can
address, which are limited to function types and user-defined datatypes. If
you wish to prove a property of a function there can be no polymorphism
or primitives in its type, or anywhere in inside the function definition. In
Figure 3.1 we give examples of function types that our valid or invalid in
our method, where Nat is a user defined datatype.

Figure 3.1 Valid and invalid function types

id :: a -> a Invalid (polymorphism)
(+) :: Num a => a -> a -> a Invalid (polymorphism)
factorial :: Int -> Int Invalid (primitive Int type)
add :: Nat -> Nat -> Nat Valid
fixNat :: (Nat -> Nat) -> Nat Valid
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3.1.1 Why no primitive types?

Our approach deals with inductive proofs of recursive functions over recur-
sive datatypes. Primitively types and functions over them are very inefficient
when represented recursively. The unsigned integers, which we can repre-
sent as we did the natural numbers (Figure 2.4), are given as an example in
Figure 3.2.

Figure 3.2 Unsigned integers as recursive Haskell datatypes

data UInt = Zero | Succ UInt

Zero + y = y

(Succ x) + y = Succ (x + y)

If we were to use this definition and calculate 1000 + x somewhere in a
function it would require up to one thousand function calls, and in our
proof method would require over a one thousand step proof.

Signed integers and floating point numbers are even more complex. Espe-
cially so when you consider fixed precision types, such as Int, which are not
recursive and in fact have a finite number of different values.

For these reasons, and to reduce the complexity of our approach in general,
we are not addressing Haskell’s primitive types.

3.1.2 Why no polymorphism?

Polymorphically typed variables are interesting as they cannot case analysed
or have induction performed on them. They represent an arbitrary type
that we know nothing about. We believe however that the properties we are
trying to prove, such as the idempotence of list reversal, are just as complex
when proven over a non-polymorphic version of a type.

In our proofs over lists (Section 7.1) we have used lists of natural numbers as
a specific non-polymorphic case. For these proofs we could replace the type
Nat with any other in the type definition of the list and the proof would be
identical.

We would endeavour to add support for polymorphism in a future version
of our tool, but for now we have left it out to simplify our research.
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3.2 Haskell-Core (HC)

The full definition of Haskell[24] is large and intricate; designed to be written
and read by humans with many of its intricacies largely redundant from an
operational point of view. To parse and analyse Haskell would be a large
engineering task in itself and mostly tangental to the aims of our project.

The Glasgow Haskell Compiler1 (normally abbreviated GHC), operates by
compiling Haskell down to a much more primitive syntax, called GHC-core.
This represents the “pure” functional program that underlies your Haskell
code. Our tool will therefore use GHC to parse the Haskell code it is given
and utilize the generated GHC-core format for its purposes.

As GHC-core is part of a real world tool it still has some unnecessary com-
plexity from a formalisation point of view, in addition to features which are
outside the scope of our project, so we will not use a direct representation
when formalising our method. We have instead used a smaller syntax which
we call Haskell-Core (HC).

3.2.1 HC Syntax

Haskell-Core is defined over a set of variables V = {x, y, ...}, functions F =
{f, g, ...}, and constructors K = {K,J, ...}. The set S = V ∪K∪F is the set
of all symbols, members of which are referred to with the letter s. An HC
program (P ) consists of a list of bindings of function names to expressions
(E), a set of type definitions (∆), and a global type environment (Γ). This
is formalised with the grammar in Figure 3.3. The description of the type
definitions and environment is given in Section 3.2.2.

1http://haskell.org/ghc
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Figure 3.3 Syntax of Haskell-Core (HC)

Program

P ::= 〈 (f = E)∗,∆,Γ 〉

Expression

E ::= s Symbol

| (E1 · E2) Application

| λx.E Abstraction

| let f = E1 in E2 Definition

| case E of (κi → Ei)
∗ Pattern matching

Constructor term

κ ::= (κ · x) Constructor term application

| K Constructor

One noteworthly omission from GHC-core in HC is that of literals: constant
strings and numbers one finds in most programs, like 3, an integer literal, and
"Hello World", a string literal. These are members of primitive datatypes,
that have no natural representation as a recursive datatype, and so we they
have not been addressed in our project (see Section 3.1.1).

Another feature left out is the usage of types as expressions, in order to bind
the type of a polymorphic function. As an example, the expression id 3 in
Haskell is actually id Int 3, as the polymorphic type a for id :: a -> a

must first be bound to Int before it can be given an Int argument. These are
a feature of polymorphism which is not covered by our project (see Section
3.1.2).

3.2.2 HC Typing

Types in HC are ranged over by simple type names T = {A,B, ...} and
defined over T , which is either a simple type or arrow/function type, as
defined in Figure 3.4.
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Figure 3.4 Types in HC

T ::= (T1 → T2) Arrow/Function Type

| T Simple Type

The typing of an HC program is given over type definitions ∆ and a type
environment Γ.

Type definitions (∆)

The type definitions give the constructors for each type variable.

∆ ∈ (T → ℘(K))

Type environment (Γ)

The type environment defines the type of all local symbols.

Γ ∈ (S → T )

HC Expression Typing Rules

The rules in Figure 3.5 define the type of an HC expression under its pro-
gram’s type definitions and type environment. ∆,Γ ` E : T means the
expression E has type T under the type defintions in ∆ and type environ-
ment Γ.
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Figure 3.5 Rules for typing HC expressions

T = (Γs)

∆,Γ ` s : T

∆,Γ ` E1 : (T1 → T2) ∆,Γ ` E2 : T1

∆,Γ ` (E1 · E2) : T2

∆,Γ ∪ {x 7→ T1} ` E : T2

∆,Γ ` (λx.E) : (T1 → T2)

∆,Γ ` f : T1 ∆, (Γ ∪ {f 7→ T1}) ` E2 : T2

∆,Γ ` (let f = E1 in E2) : T2

∀(κi → Ei) ∈ C :
[∆, (Γ ∪ (typecons (∆(leftmost κi)) κi)) ` Ei : T ]

∆,Γ ` (case E of C) : T

The function leftmost returns the inner left-most expression of an applica-
tion expression and is defined in Figure 3.6.

Figure 3.6 Definition of leftmost

leftmost : E → E

leftmost E = E

leftmost (E1 · E2) = leftmost E1

The function typecons returns the typing of every variable in the constructor
term κ, by recursing on the type of the constructor (T ). This is defined in
Figure 3.7.

Figure 3.7 Definition of typecons

typecons : κ→ T → Γ

typecons K T = ∅
typecons (κ · x) (T1 → T2) = (typecons (κ, T2)) ∪ {x 7→ T1}
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3.2.3 Operational semantics of HC

The execution of HC programs is defined by the HC reduction operation
on expressions in a program P :

P→HC ⊆ E × E

The inference rules defining the behaviour of
P→HC are given in Figure 3.8.

See the earlier Figure 3.6 for the definition of leftmost.

Note that
P→HC can be applied anywhere inside an expression rather than

just on the outermost expression. So the E in case E of C could be reduced
before reducing the rest of the case expression.

Figure 3.8 Definition of the operational semantics of HC

((λx.E1) · E2)
P→HC E1[E2/x] let f = E1 in E2

P→HC E2[E1/f ]

(κ→ E2) ∈ C (leftmost E1) = (leftmost κ)

case E1 of C
P→HC case E1 of {κ→ E2}

case (E1 · E2) of {(κ · x)→ E3}
P→HC case E1 of {κ2 → E3[E2/x]}

case K of {K → E} P→HC E

(x = E) ∈ P

x
P→HC E

If our representation of HC is correct it it implies that if P is the equivalent

HC program of a Haskell program compiled to GHC-core, and E1
P
�HC E2

and there is no E3 such that E2
P→HC E3 then the in the Haskell program

for P the execution of E1 will give the result E2. Where E1
P
�HC E2 means

E1 reduces to E2 under P in zero or more steps.

3.2.4 HC Examples

In Figure 3.9 we give the Haskell function for addition of the natural (Peano)
numbers, along with their definition as a recursive datatype. In Figure 3.10
we have the HC program for this Haskell code.
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Figure 3.9 Haskell definition of natural numbers and their addition

data Nat = Zero | Succ Nat

add Zero y = y

add (Succ x) y = Succ (add x y)

Figure 3.10 HC definition of the natural numbers and their addition

Eadd = λx.λy.case x of { Zero→ y, Succ x′ → Succ (add x′ y) }

∆add = { Nat 7→ (Zero, Succ) }

Γadd = { add 7→ (Nat→ (Nat→ Nat)),

Zero 7→ Nat,

Succ 7→ (Nat→ Nat) }

Padd = 〈 { add = Eadd },∆add,Γadd 〉

3.3 Non-termination and infinite values

As Haskell is a Turing Complete language we can express functions that will
not terminate for certain arguments. Hence HC can have expressions that
do not converge with respect to its operational semantics. Non-termination
is a complex issue in itself so in the work detailed here we have given a
method that is only defined for functions that always converge. Note that
when a function throws an error it is in fact converging to an error value, so
this is not an issue.

Haskell also allows one to create infinitely large values by allowing the def-
inition of a value to refer to itself. As an example, Figure 3.11 defines the
infinitely large natural number infinity.

Figure 3.11 Infinity

infinity = let x = Succ x in x
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Structural induction, as used by our tool, is no longer sound for these “re-
cursive” values, and deals only with finitely large variables. This is because
structural induction is a specific form of well-founded induction, using the
well-founded ordering of definite sub-terms (see Figure 4.7). However, this
ordering is no longer well-founded in the presence of infinite data structures.
Taking as an example the code in 3.12, a set containing the values a and
b does not have a minimal element, as each member is a sub-term of the
other.

Figure 3.12 Mutually recursive data structures

data D = K D | C D

a = K b

b = C a
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Chapter 4

Function Logic

Function Logic (FL) is our attempt to create a logic into which functional
programs could be translated, and any properties we wish to prove about
them be expressed.

Detailed in this section is the syntax of Function Logic (Section 4.1) along
with its semantics (Section 4.2) and typing (Section 4.3), along with some
examples of formulas in FL (Section 4.4). We then give a quick definition of
sub-terms in FL (Section 4.6) and use this in a description of well-formedness
for FL formulas (Section 4.7).

We follow on by explaining the necessity of constrained equality in the con-
ditions of FL sentences (Section 4.5). We then give the formal inference
rules by which one can prove a property to be true in Function Logic (Sec-
tion 4.8), and then give two example derivations created using these rules,
one of a proof and the other of a disproof (Section 4.9). We finish off by
describing a complete encoding of Haskell-Core into Function Logic (Section
4.10).

Given a Haskell Program H and a property we wish to prove about it ϕγ ,
Zeno will first translate H into an FL formula ΦH before then applying the
FL rules in a systematic way in order to try and prove that ΦH implies ϕγ .
This will show whether the definition of the Haskell program implies the
given property to be true.

4.1 FL Syntax

Function Logic is the underlying representation that our tool attempts to
solve formulas in. It is defined over a set of variables V = {x, y, ...}, functions
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F = {f, g, ...}, and constructors K = {K,J, ...}. The set S = V ∪ K ∪ F is
the set of all symbols, members of which are referred to with the letter s.
This is exactly the same as in the definition of HC (Section 3.2.1). The full
syntax of FL is described in Figure 4.1. Note that we will often abbreviate
τ1 = τ2 ← ∅ to τ1 = τ2. Note also that bracketing is often simplified and
term application symbols removed, as they would be in a real functional
language, so ((f · (g · x)) · y) · z) might be given as f (g x) y z.

Figure 4.1 Syntax of FL

Formula

Φ ::= ϕ∗ Set of sentences

Sentence

ϕ ::= τ1 = τ2 ← X Conditional equality

| ∀xT .ϕ Quantifying a variable

Conditions

X ::= (τ
⇀
= κ)∗ Pattern matching

Term

τ ::= (τ1 · τ2) Term application

| s Variable, function or constructor

Constructor term

κ ::= (κ · x) Constructor term application

| K Constructor symbol

4.2 FL Semantics

Given in Figure 4.2 is our encoding [[ϕ]]FLFOL of FL sentences into first-
order logic, ignoring all typing rules and equality axioms. Note that

⇀
= is

just equality that has had its right argument restricted to constructor terms.
Note also that (←) represents logic implication and therefore sentences (ϕ’s)
are just clauses with exactly one positive literal, and whose only predicate
is equality. [[X]]FLXFOL is the auxiliary encoding for conditions.
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Figure 4.2 Encoding of FL sentences into first-order logic

[[∀xT .ϕ]]FLFOL = ∀xT : [[ϕ]]FLFOL

[[τ1 = τ2 ← X]]FLFOL = ∀{x | (τ
⇀
= κ) ∈ X ∧ x ∈ κ}.([[X]]FLXFOL ⇒ (τ1 = τ2))

[[X1 ∪X2]]FLXFOL = [[X1]]FLXFOL ∧ [[X2]]FLXFOL

[[{ τ ⇀
= κ }]]FLXFOL = τ = κ

4.3 FL Typing

The definition of types in FL along with type definitions (∆) and type
environments (Γ) is the same as that in HC, and is detailed in Section
3.2.2.

The two rules in Figure 4.3 define the type of an FL term in the given type
environment.

Figure 4.3 Typing terms in FL

T = (Γs)

Γ ` s : T

Γ ` E1 : (T1 → T2) Γ ` E2 : T1

Γ ` (E1 · E2) : T2

4.4 FL Examples

Given in Figure 4.4 is the Haskell function add encoded in Function Logic
in two equivalent ways, the first without conditions and the second with. In
Figure 4.5 is the type environment and definitions for either version of add.
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Figure 4.4 Definitions of the addition function in FL

Φadd1 = { ∀vNat.(add Zero v) = v,

∀uNat.∀vNat.(add (Succ u) v) = (Succ (add u v))}
Φadd2 = { ∀uNat.∀vNat.(add u v) = v ← {u ⇀

= Zero},
∀uNat.∀vNat.(add u v) = (Succ (add u′ v))← {u ⇀

= (Succ u′)}}

Figure 4.5 Typing for the addition function in FL

∆add = { Nat 7→ { Zero, Succ } }

Γadd = { add 7→ (Nat→ (Nat→ Nat)),

Zero 7→ Nat,

Succ 7→ (Nat→ Nat)}

4.5 Why constrain equality in conditions (
⇀
=)?

This section addresses the question as to why equality at the head of a
sentence is between two arbitrary terms, but in a condition is constrained to
having a constructor term to its right, along with various conditions about
acyclicity in the definition of well-formedness.

The reason for this is that, even though the encoding in first-order logic
transforms (

⇀
=) into equality, it is actually a representation of the pattern

matching found in functional languages. When we say τ
⇀
= (K x) we mean

that the execution of τ converges to constructor K, where the first argument
is bound to x. We are not checking whether the first argument is equal to
some given x, but defining x to be the value of this argument. The value
for x can therefore not be defined anywhere else in a well-formed sentence.

This restriction greatly simplifies proving properties, as every condition can
be fulfilled using the case-completion or induction rules (see Section 4.8.7
and Section 4.8.8 respectively).
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4.6 Subterms in FL

In Figure 4.6 we give the rules governing the operator ⊆st, which defines
the sub-terms of a term. For example x ⊆st (f (g x) (h y)), and (g x) ⊆st
(f (g x) (h y)) but also (f (g x) (h y)) ⊆st (f (g x) (h y)).

Figure 4.6 Subterms in FL

τ ⊆st τ
τ ⊆st τ1

τ ⊆st (τ1 · τ2) τ ⊆st (τ2 · τ1)

In Figure 4.7 we give the definition of definite sub-terms, that is to say terms
that are in the arguments of a term, but not in any of their arguments’
arguments, and not the term itself. So x 6@st x and x 6@st (f (g x)), but
x @st ((f x) y). It is worth noting that this relationship is the well-founded
ordering using for our structural induction step in Section 4.8.8.

Figure 4.7 Subterms in FL

τ2 @st (τ1 · τ2)

τ @st τ1

τ @st (τ1 · τ2)

4.7 Well-formedness for FL

Not all sentences in FL are well-formed. The relationship
⇀
= is analogous to

pattern matching in HC, meaning that all variables on the right are defined
by those on the left, and hence are dependent upon them. This transitive
dependence relationship between variables cannot be cyclic at any point or
an attempt at a proof using such a formula may result in an infinite loop.
X ` x . x′ means x defines x′ in the set of conditions X and is defined in
Figure 4.8.

Figure 4.8 Variable dependence relationship for well-formedness

x ⊆st τ x′ ⊆st κ (τ
⇀
= κ) ∈ X

X ` x . x′
X ` x . x′ X ` x′ . x′′

X ` x . x′′
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A well-formed constructor term κ satisifies wf(κ), as defined in Figure 4.9.
Informally wf(κ) means that κ does not contain any variable more than
once, so all the variables of a constructor term should be unique. The
reason for this is that when we say (f x)

⇀
= (K y z) we are defining (f x)

to return a value of constructor K, where y and z bind to the values of the
arguments of K. That is to say (f x) defines what y and z are. If we were
instead to say (f x)

⇀
= (K y y) we are saying that (f x)

⇀
= (K y z) and that

y = z, which adds an unconstrained equality as a condition. This problem
is explained further in Section 4.5.

Figure 4.9 Well-formedness for constructor terms

wf(K)

wf(κ) x /∈ κ
wf(κ · x)

A well-formed sentence ϕ satisfies wf(ϕ), as defined in Figure 4.10, and
Figure 4.12. Note that the function leftmost returns the inner left-most
symbol of a term and is given in Figure 4.11.

Figure 4.10 Well-formedness for unquantified FL sentences

∃f ∈ F : (f = (leftmost τ1) ∨ (f = (leftmost τ2)))

∀(τ ⇀
= κ) ∈ X : (wf(κ) ∧ (∀x ⊆st τ, x′ ⊆st κ : X 0 x′ . x))

wf(τ1 = τ2 ← X)

In Figure 4.10, ∃f ∈ F : (f = (leftmost τ1)∨ (f = (leftmost τ2))) enforces
that at least one side of the equality being defined has a function symbol
as its inner leftmost. Meaning that the equality defines the behaviour of
a function. Otherwise we are defining the behaviour of a variable or a
constructor, which is either meaningless or contradictory.

X 0 x′ . x means we cannot show that X ` x′ . x. This enforces the
anti-symmetry and hence acyclicity of . within the sentence.

Figure 4.11 leftmost symbol of a term

leftmost s = s

leftmost (τ1 · τ2) = leftmost τ1
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Figure 4.12 Well-formedness for quantifying FL sentences

n ≥ 0 ϕ = ∀xT11 .∀xT22 ...∀xTnn .τ1 = τ2 ← X

wf(ϕ) ∀(τ ⇀
= κ) ∈ X : x /∈ κ @i ∈ [1..n] : x = xi

wf(∀xT .ϕ)

In Figure 4.12 we define that a well-formed sentence can only quantify over
variables that do not exist in a constructor term in one of its conditions. It
also does not quantify a variable it has already quantified.

It is important to note that Function Logic that has been translated from
Haskell-Core will automatically be well-formed. Well-formedness may even
allow an encoding from FL back into HC, but we have not investigated this.
It is fairly easy to see though that Function Logic that is not well formed
will have no natural representation in HC.

4.8 FL Rules

In this section we define the rules one can apply in order to derive a proof
or disproof in Function Logic.

Proof in FL is represented as implication:

∆,Γ,Φα `FL ϕγ

This is equivalent to the following classical formula under the type definitions
∆ and environment Γ:

(
n∧
i=1

[[ϕi]]
FL
FOL

)
⇒ [[ϕγ ]]FLFOL

where Φα = {ϕ1, ϕ2, ..., ϕn}

As in classical implication, Φα is referred to as the antecedent (or assump-
tion), and ϕγ as the consequent (or goal).

In addition to proving formulas we can also create disproofs using these
rules. A disproven FL implication is expressed as:

∆,Γ,Φα 0FL ϕγ
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This represents the following classical formula:

(
n∧
i=1

[[ϕi]]
FL
FOL

)
⇒ ¬[[ϕγ ]]FLFOL

where Φα = {ϕ1, ϕ2, ..., ϕn}

In the case of a universally quantified equality property a disproof would
indicate that we have found an instance of its variables that falsifies the
equality.

It it worth noting that if we have failed to find a proof in FL we have not
necessarily found a disproof, or vice-versa. There is no excluded middle in
FL as there is in classical logic.

The following rules represent the steps one can perform in order to prove or
disprove an FL implication.

4.8.1 Cumulative transitivity

Just as with implication in classical logic, implication in FL is cumulatively
transitive, both for proof and disproof. This is formally defined in Figure
4.13.

Figure 4.13 Cumulative transitivity of FL implication

(cut1)
∆,Γ,Φα `FL ϕ1 ∆,Γ, (Φα ∪ {ϕ1}) `FL ϕ2

∆,Γ,Φα `FL ϕ2

(cut2)
∆,Γ,Φα `FL ϕ1 ∆,Γ, (Φα ∪ {ϕ1}) 0FL ϕ2

∆,Γ,Φα 0FL ϕ2

4.8.2 Quantifiers

The (∀I) (read “forall introduction”) rules, defined in Figure 4.14, allows
you to add a quantifier to a proven or disproven consequent, as long as the
variable quantified does not exist in the antecedent.
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Figure 4.14 Quantifier introduction in FL

(∀I1)
∆, (Γ ∪ {x 7→ T}),Φα `FL ϕ x /∈ vars(Φα)

∆,Γ,Φα `FL ∀xT .ϕ

(∀I2)
∆, (Γ ∪ {x 7→ T}),Φα 0FL ϕ x /∈ vars(Φα)

∆,Γ,Φα 0FL ∀xT .ϕ

(∀E) (read “forall elimination”), defined in Figure 4.15, allows you to remove
a quantifier and instantiate it with any term. From this rule we can create
a specific instance of a universally quantified sentence.

Figure 4.15 Quantifier elimination in FL

(∀E)
Γ ` τ : T

∆, (Γ ∪ {x 7→ T}), (Φα ∪ {∀xT .ϕ}) `FL ϕ[τ/x]

4.8.3 Adding and removing conditions

(fulfil) allows you to remove a condition from a sentence as long as the
condition is true in the rest of antecedent, as defined in Figure 4.16.

Figure 4.16 Fulfilling conditions in FL

(fulfil)
∆,Γ, (Φα ∪ {τ1 = τ2 ← (X ∪ {τ ⇀

= κ}), τ = κ}) `FL τ1 = τ2 ← X

(expand), defined in Figure 4.16, specifies that one can replace a constructor
term (κ) with an arbitrary term (τ) by adding a condition (τ

⇀
= κ), as long

as κ is well-formed and does not create a cycle in the conditions, and every
variable in the constructor term does not exist in the rest of antecedent, i.e.
its value is not constrained in any way. See Section 4.7 for the definition of
X 0 x′ . x and wf(κ).
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Figure 4.17 Expanding sentences in FL

(expand)

(κ ⊆st τ1 ∨ κ ⊆st τ2) wf(κ)
∀xτ ⊆st τ.∀xκ ⊆st κ : X 0 xκ . xτ ∀x ⊆st κ : x /∈ vars(Φα)

∆,Γ, (Φα ∪ {τ1 = τ2 ← X}) `FL τ1[τ/κ] = τ2[τ/κ]← X[τ/κ] ∪ {τ ⇀
= κ}

4.8.4 Equality

In Figure 4.18 we have the various rules surrounding equality in FL.

Figure 4.18 Equality rules for FL proof

(eq-reflexive)
∆,Γ,Φα `FL τ = τ

(eq-symmetric)
∆,Γ, (Φα ∪ {τ1 = τ2}) `FL τ2 = τ1

(eq-transitive)
∆,Γ, (Φα ∪ {τ1 = τ2, τ2 = τ3}) `FL τ1 = τ3

(eq-left)
∆,Γ, (Φα ∪ {τ1 = τ ′1, (τ1 · τ2) = τ3}) `FL (τ ′1 · τ2) = τ3

(eq-right)
∆,Γ, (Φα ∪ {τ2 = τ ′2, (τ1 · τ2) = τ3}) `FL (τ1 · τ ′2) = τ3

4.8.5 Disproof

The first disproof rule defined here is for two terms in which both of their
left-most symbols are constructors, but different constructors, defined in
Figure 4.19. For example Zero is trivially unequal to Succ x for any value
of x. The function leftmost is defined earlier in Figure 4.11.
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Figure 4.19 Base unequality in FL

(unequal1)
K = (leftmost τ1) J = (leftmost τ2) K 6= J

∆,Γ,Φα 0FL τ1 = τ2

The second disproof rule is for two application terms for which one side
is identical, but the other side is provably unequal. This we have named
“recursive unequality”, and is given in Figure 4.20. Succ (Succ Zero) 6=
Succ Zero, i.e. 2 6= 1 is a trivial example of this. It would also give
(f Zero) Zero 6= (f (Succ x)) Zero.

Figure 4.20 Recursive unequality in FL

(unequal2)
∆,Γ,Φα 0FL τ1 = τ2

∆,Γ,Φα 0FL (τ1 · τ) = (τ2 · τ)
∆,Γ,Φα 0FL (τ · τ1) = (τ · τ2)

4.8.6 Instantiating constructors

The induction and case completion rules (Sections 4.8.8 and 4.8.7 respec-
tively) make use of the instantiate function, which creates a fully instan-
tiated constructor term from a constructor by recursing on its type and
adding arguments as it goes. Along with the instantiated constructor term
it returns a type environment giving the types of all the arguments of the
new constructor term. This function is defined formally in Figure 4.21.

Figure 4.21 instantiate function for constructors

instantiate : K → T → (κ× Γ)

instantiate K A = (K, ∅)
instantiate K (T1 → T2) = (κ · x,Γ ∪ {x 7→ T1})

where (κ,Γ) = instantiate (K,T2)

As an example, we have the instantiation of the two constructors of the
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natural numbers (Zero and Succ) in Figure 4.22.

Figure 4.22 Example usage of the instantiate function

instantiate Zero Nat = (Zero, ∅)
instantiate Succ (Nat→ Nat) = ((Succ · x), {x 7→ Nat})

4.8.7 Case Completion

(complete-case1), defined in Figure 4.23, states that if an implication is
proven for every possible value of a term, then it holds in general.

Figure 4.23 Rule for proof by case completion

(complete-case1)

Γ ` τ ′ : A
∀K ∈ (∆A) :

[
∆, (Γ′ ∪ Γ), (Φα ∪ {τ = κ}) `FL ϕ

where (κ,Γ′) = (instantiate K (ΓK))
]

∆,Γ,Φα `FL ϕ

(complete-case2), defined in Figure 4.24, states that if an implication is
disproven for every possible value of a term, then it is disproven in general.

Figure 4.24 Rule for disproof by case completion

(complete-case2)

Γ ` τ ′ : A
∀K ∈ (∆A) :

[
∆, (Γ′ ∪ Γ), (Φα ∪ {τ = κ}) 0FL ϕ

where (κ,Γ′) = (instantiate K (ΓK))
]

∆,Γ,Φα 0FL ϕ

(counterexample), defined in Figure 4.25, states that if a disproven im-
plication holds for one paticular binding to a free variable, then it holds
in general. As the variable does not exist in the antecedent, there are no
rules governing its value, so it could be assigned to the constructor term
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(κ) that validates the disproven implication. This constructor term κ is the
counterexample we have found to the property we are trying to prove.

Figure 4.25 Finding a counterexample in FL

(counterexample)

A = (Γx) x /∈ vars(Φα)

∃K ∈ (∆A) :
[
∆, (Γ′ ∪ Γ), (Φα ∪ { x = κ }) 0FL ϕ

where (κ,Γ′) = (instantiate K (ΓK))
]

∆,Γ,Φα 0FL ϕ

4.8.8 Induction

The (induction) rule, given in Figure 4.26, defines proof by structural
induction on recursive datatypes in FL.

To inductively prove that τ1 = τ2 we take an arbitrary τ ′, a term in either
τ1 or τ2, and prove every inductive case for it. An inductive case being a
substitution of τ ′ for one of the constructors of its return type into τ1 = τ2,
given as an inductive assumption the substitution of τ ′ for the recursive
cases of that constructor into τ1 = τ2.

Figure 4.26 Structural induction in Function Logic

(induction)

(τ ′ ⊆st τ1 ∨ τ ′ ⊆st τ2) Γ ` τ ′ : A
∀K ∈ (∆A) :[

∆, (Γ′ ∪ Γ), (Φα ∪ { (τ1 = τ2)[x/τ ′] | x ∈ xs }) `FL (τ1 = τ2)[κ/τ ′]

where

(κ,Γ′) = (instantiate K (ΓK)) xs = {x ∈ dom(Γ′) | (Γ′ x) = A}
]

∆,Γ,Φα `FL τ1 = τ2

For each constructor of the same type (A) as the subterm (τ ′) we have
its instantiation (κ) and the typing of all its variables (Γ′). xs is the list
of all recursively typed variables of that constructor, that is all variables
that have the same type as the type of the constructor (A). For each of
these recursively typed variables we can add an inductive hypothesis (τ1 =
τ2)[x/τ ′]. Note that the variables in the new constructor term generated by
instantiate can be ones already existing in the antecedent, indeed this fact
is necessary for the proof given in Figure 4.29.
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As an example we will describe an inductive step on the variable x in the
sentence add x Zero = x. In Figure 4.27 we give the assignments to every
variable in our (induction) inference rule, to better highlight how this rule
is applied. As one can see there are two new implications that must be
proven in order to complete this rule, corresponding to the two constructors
for Nat (Succ and Zero). The first branch is the “base case”, κ = Zero,
where we must prove ∆,Γ,Φα `FL add Zero Zero = Zero. The second
branch is our “inductive case”, κ = (Succ x′), for some new x′. As x′ is
of the same type as x it can be rewritten for x and added as an inductive
assumption (add x′ Zero = x′) to the antecedent. This means we must prove
∆, ({x′ 7→ Nat} ∪ Γ), (Φα ∪ {add x′ Zero = x′} `FL add (Succ x′) Zero =
(Succ x′) for this branch.

Figure 4.27 FL induction example

(x ⊆st (add x Zero) ∨ x ⊆st x) Γ ` x : Nat

∀K ∈ { Zero, Succ } :

[ K = Zero ][
∆, (∅ ∪ Γ), (Φα ∪ ∅) `FL add Zero Zero = Zero

where

(κ,Γ′) = (Zero, ∅) xs = ∅
]

[ K = Succ ][
∆, ({x′ 7→ Nat} ∪ Γ), (Φα ∪ {add x′ Zero = x′} `FL add (Succ x′) Zero = (Succ x′)

where

(κ,Γ′) = (Succ x′, {x′ 7→ Nat}) xs = {x′}
]

∆,Γ,Φα `FL add x Zero = x

4.9 Example derivations in FL

In this section we give a proof, using the above rules, that shows the def-
inition for add (Figure 3.9) implies that add Zero x = x for any x, i.e.
∆add,Γadd,Φadd `FL ∀xNat.add Zero x = x. Using the same antecedent we
also give a disproof of add x x = x, i.e. ∆add,Γadd,Φadd 0FL ∀xNat.add x x =
x. See Section 4.4 for the definitions of ∆add, Γadd and Φadd ≡ Φadd1 .

In Figure 4.28 we have trivially correct implications created using (∀E)
(Figure 4.15). In our main proofs we can then use cumulative transitiv-
ity (Figure 4.13) to augment our antecedent. That is to say we have that if
∆add,Γadd,Φ

′
add `FL ϕγ then ∆add,Γadd,Φadd `FL ϕγ , and if ∆add,Γadd,Φ

′′
add 0FL

ϕγ then ∆add,Γadd,Φadd 0FL ϕγ .
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Figure 4.28 Simple implications to augment our antecedent

∆add,Γadd,Φadd `FL add Zero Zero = Zero

∆add,Γadd,Φadd `FL add (Succ x′) Zero = Succ (add x′ Zero)

∆add,Γadd,Φadd `FL add (Succ Zero) (Succ Zero) = Succ (add Zero (Succ Zero))

∆add,Γadd,Φadd `FL add Zero (Succ Zero) = Succ Zero

Φ′
add = Φadd ∪ { add Zero Zero = Zero,

add (Succ x′) Zero = Succ (add x′ Zero) }

Φ′′
add = Φadd ∪ { add (Succ Zero) (Succ Zero) = Succ (add Zero (Succ Zero)),

add Zero (Succ Zero) = Succ Zero }

The derivation for our example proof is given in Figure 4.29 and the example
disproof in Figure 4.30. Note that we have used (eq) to represent multiple
applications of the equality rules, combined with cumulative transitivity
where necessary. Also, (ref) is shorthand for the rule (eq-reflexive),
and (uneq) for the application of the unequality rules.

One thing to note is that in our disproof of add x x = x the values introduced
by the application of (counterexample) give us a counterexample to our
property, i.e. x = (Succ Zero).

56



F
ig

u
re

4
.2

9
P

ro
of

ex
a
m

p
le

u
si

n
g

F
L

ru
le

s

(∀
I1
)

(c
u
t
1
)

(i
n
d
u
c
t
io
n
)

(e
q
)

(r
e
f
)

∆
a
d
d
,Γ
a
d
d
,(

Φ
′ ad
d
∪
{x

=
(S
u
cc
x
′ )
})
` F

L
(S
u
cc
Z
er
o
)

=
(S
u
cc
Z
er
o
)

∆
a
d
d
,Γ
a
d
d
,(

Φ
′ ad
d
∪
{x

=
(S
u
cc
x
′ )
})
` F

L
a
d
d
x
Z
er
o

=
x

(e
q
)

(r
e
f
)

∆
a
d
d
,Γ
a
d
d
,(

Φ
′ ad
d
∪
{x

=
Z
er
o
})
` F

L
Z
er
o

=
Z
er
o

∆
a
d
d
,Γ
a
d
d
,(

Φ
′ ad
d
∪
{x

=
Z
er
o
})
` F

L
a
d
d
x
Z
er
o

=
x

∆
a
d
d
,Γ
a
d
d
,Φ
′ ad
d
` F

L
a
d
d
x
Z
er
o

=
x

∆
a
d
d
,Γ
a
d
d
,Φ

a
d
d
` F

L
a
d
d
x
Z
er
o

=
x

∆
a
d
d
,Γ
a
d
d
,Φ

a
d
d
` F

L
∀x
N
a
t
.a
d
d
x
Z
er
o

=
x

F
ig

u
re

4
.3

0
D

is
p

ro
of

ex
a
m

p
le

u
si

n
g

F
L

ru
le

s

(∀
I2
)

(c
u
t
2
)

(c
o
u
n
t
e
r
e
x
a
m
p
l
e
)

(c
o
u
n
t
e
r
e
x
a
m
p
l
e
)

(e
q
)

(u
n
e
q
)

∆
a
d
d
,Γ
a
d
d
,(

Φ
′′ ad
d
∪
{x

=
(S
u
cc
x
′ )
,x
′

=
Z
er
o
})

0 F
L
S
u
cc

(S
u
cc
Z
er
o
)

=
(S
u
cc
Z
er
o
)

∆
a
d
d
,Γ
a
d
d
,(

Φ
′′ ad
d
∪
{x

=
(S
u
cc
x
′ )
,x
′

=
Z
er
o
})

0 F
L
a
d
d
x
Z
er
o

=
x

∆
a
d
d
,Γ
a
d
d
,(

Φ
′′ ad
d
∪
{x

=
(S
u
cc
x
′ )
})

0 F
L
a
d
d
x
Z
er
o

=
x

∆
a
d
d
,Γ
a
d
d
,Φ
′′ ad
d
0 F

L
a
d
d
x
Z
er
o

=
x

∆
a
d
d
,Γ
a
d
d
,Φ

a
d
d
0 F

L
a
d
d
x
Z
er
o

=
x

∆
a
d
d
,Γ
a
d
d
,Φ

a
d
d
0 F

L
∀x
N
a
t
.a
d
d
x
Z
er
o

=
x

57



4.10 Mapping HC to FL

Defined in Figure 4.10 is our encoding of HC expressiongs into FL formulas,
where [[〈τ, xs,X〉;E]]HCFL defines the encoding of HC expression E giving the
value for τ under the conditions in X with free variables xs.

The typing of HC is identical to that of FL so there is no need to explictly
encode it.

Figure 4.31 Encoding HC to FL

[[P1 ∪ P2]]HCFL = [[P1]]HCFL ∪ [[P2]]HCFL

[[{f = E}]]HCFL = [[〈f, ∅, ∅〉;E]]HCFL

[[〈τ, xs,X〉; s]]HCFL = {τ = s← X}

[[〈τ, xs,X〉;λx.E]]HCFL = [[〈(τ · x), ({x} ∪ xs), X〉;E]]HCFL

[[〈τ, xs,X〉; (E1 · E2)]]HCFL = {τ = (E1 · E2)← X}
where term(E1 · E2) holds

[[〈τ, xs,X〉; (E1 · E2)]]HCFL = [[〈τ, xs,X〉; let f1 = E1 in let f2 = E2 in (f1 · f2)]]HCFL

where f1 and f2 are fresh function symbols

and term(E1 · E2) does not hold

[[〈τ, xs,X〉; case s of ∅]]HCFL = ∅

[[〈τ, xs,X〉; case s of {κ→ E} ∪ C]]HCFL = [[〈τ, xs,X ∪ {s ⇀= κ}〉;E]]HCFL ∪ [[〈τ, xs,X〉; case s of C]]HCFL

[[〈τ, xs,X〉; case E of C]]HCFL = [[〈τ, xs,X〉; let f = E in case f of C]]HCFL

where f is a fresh function symbol

[[〈τ, xs,X〉; let f = E1 in E2]]HCFL = [[〈τ, xs,X〉; (let f = (λx.E1) in E2[(f · x)/f ])]]HCFL

where x ∈ E1 and x ∈ xs

[[〈τ, xs,X〉; let f = E1 in E2]]HCFL = [[〈τ, xs,X〉;E2]]HCFL [E1/f ]

where @y : y ∈ E1 ∧ y ∈ xs
and term(E1) holds

[[〈τ, xs,X〉; let f = E1 in E2]]HCFL = [[〈g, ∅, ∅〉;E1]]HCFL ∪ [[〈τ, xs,X〉;E2[g/f ]]]HCFL

where @y : y ∈ E1 ∧ y ∈ xs
and term(E1) does not hold

and g is a fresh function symbol

The predicate term(E), defined in Figure 4.32, holds when something is a
simple term expression, containing only variables (x) and application (E1 ·
E2). Note that if term(E) does hold then E is both HC code and an FL
term, and hence can be used interchangeably as such.
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Figure 4.32 Defining a term

term(x)

term(E1) term(E2)

term(E1 · E2)

Something we have left out of our encoding was ensuring the fresh function
symbols created were in the type environment, so we will assume that any
function symbols we needed were there to begin with.

An issue with this representation is that Haskell, and so HC, has a notion
of local variable scoping within an expression, whereas FL does not. This
means that the same name can be used for different variables deeper in
the expression if it is redefined with a lambda abstraction, case statement
binding or a let expression. We can fix this by assuming this encoding will
be used on HC expressions that have every variable is uniquely named,
which is a trivial transformation for any HC expression.

One could also infer that the implicit cast from HC variables to FL ones
will take into account which variable is which, rather than just relying on
their names. Indeed from an implementation point of view this last method
is easy, since variables have an underlying unique identifier independent of
their name.
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Chapter 5

Function Logic Tableau

In this chapter we detail Function Logic Tableau, a method in which we
adapt the FL implication proof rules into an algorithm that our Zeno tool
implements. An algorithm that takes an FL implication (∆,Γ,Φα `FL ϕγ)
and attempts to prove or disprove it.

A tableau method generates a tree representing a proof according to certain
rules. If a branch of the generated tree fulfils certain properties then it is
said to “close”, and represents a successful proof for that branch. If every
branch of a tree closes then the whole tree closes and the entire proof is
successful. For a set of inference rules it could be seen as a tree representing
an upside-down derivation. Tableau methods are detailed more fully in
Section 2.4.2.

In this chapter we first describe what a node of an FL tableau looks like
and what it represents (Section 5.1). We then explain how one takes the
implication we are trying to prove and creates the head node of the tableau
from it (Section 5.2). Then we describe the two rules we can apply at
any node of the tree to generate new branches, equality (Section 5.3) and
induction (Section 5.4). We then detail how we can close a branch having
found a proof or disproof (Section 5.5), along with an full example of an FL
tableau proof (Figure 5.12). We finish by describing the exact search space
that an FL tableau generation algorithm must search through (Section 5.6).

An FL tableau starts with a list of sentences, the antecedents, and a sentence
to prove or disprove, the goal, which both become the root node of the
tableaux.

It is important to note that all the tableaux rules are the inverse of an FL
implication inference rule. As you more down the tree you move up the
derivation.
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5.1 Tableau nodes

Each node in the FL tableau contains a list of sentences that are true at
it and every child node (antecedents), and a goal sentence that is yet to
be proven. Each of the antecedents are labelled so that proof can be more
easily followed. An example node is given in Figure 5.1.

Figure 5.1 An FL tableau node

(label1) antecedent1
...
(labeln) antecedentn

goal
===================

As a running example in this chapter we will be proving:

∆add,Γadd,Φadd `FL ∀xNat.add x y = x← {y ⇀
= Zero}

This has the starting root node in Figure 5.2. The definitions of ∆add, Γadd
and Φadd can be found in Section 4.4. Our antecedents here are the sentences
found in Φadd.

Figure 5.2 Starting node of our example tableau

(add1) ∀vNat.(add Zero v) = v

(add2) ∀uNat.∀vNat.(add (Succ u) v) = (Succ (add u v))

∀xNat.add x y = x← {y ⇀
= Zero}

=======================================================

Depending on the node itself, or those beneath it, a goal can be proven true
or disproven.

5.2 First steps

Although we have already described what the starting node of the tableau
is, there are a few starting changes we must make to it before it can be used.
To begin with we must remove all of the universal quantifiers from the goal

61



and instantiate them to be a new variable not existing in the antecedent, by
the reverse of (∀I).

For our example we have instantiated x to x for simplicity (Figure 5.3).

Figure 5.3 Instantiating our goal variables

(add1) ∀vNat.(add Zero v) = v

(add2) ∀uNat.∀vNat.(add (Succ u) v) = (Succ (add u v))

add x y = x← {y ⇀
= Zero}

=======================================================

We then take all the conditions of goal sentence and add them to the list of
antecedents at the root node (giving them a label of our choosing), since we
can assume them to be true when proving the goal. More formally this can
be done using (fulfil) (Figure 4.16) with (cut) (Figure 4.13). Our final
and usable starting node for our example is given in Figure 5.4.

Figure 5.4 Adding our goal conditions to our antecedents

(add1) ∀vNat.(add Zero v) = v

(add2) ∀uNat.∀vNat.(add (Succ u) v) = (Succ (add u v))
(cond1) y = Zero

add x y = x
=======================================================

5.3 Applying equality

At any tableau node we can apply one of the antecedent sentences using an
equality rule to generate a new goal. How this is applied depends on the
nature of the antecedent sentence.

In the simplest case the antecedent has no quantifiers and no conditions,
so it can just be applied as is, creating a single descendent branch (Section
5.3.1).

If we have an antecedent sentence with no quantifiers but with conditions
we must create new branches in order to remove these conditions before we
can apply the sentence (Section 5.3.4).

If we have a quantified antecedent sentence we must remove these quantifiers
before we can apply it (Section 5.3.2).
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Sometimes it is advantageous to add conditions to an antecedent sentence
so that it can be applied more generally (Section 5.3.3).

We then show how many of the decisions a human would make in applying
equality can be inferred by the algorithm (Section 5.3.5).

5.3.1 Conditionless unquantified sentences

The most simple application of equality would be to use an unquantified
sentence with no conditions. When applying an unquantified sentence we
have to match the term we are rewriting exactly with a sub-term of one
side of the sentence we are applying. This is a combination of the various
equality rules in Figure 4.18.

In our example we will apply our unquantified rule (cond1) from left to right
on the variable y in the left hand side of our goal, giving us the next node
in the tableau as shown in Figure 5.5. Note that at the beginning of next
goal we put the name of the rule we applied.

Figure 5.5 Applying (cond1) to our goal

(add1) ∀vNat.(add Zero v) = v

(add2) ∀uNat.∀vNat.(add (Succ u) v) = (Succ (add u v))
(cond1) y = Zero

add x y = x
=======================================================

[cond1] add x Zero = x
======================

If the new branch closes with a proof then this node also closes with a
proof, by the equality rules (Figure 4.18) and cumulative transitivity (cut1)
(Figure 4.13). If the new branch closes with a disproof then this node also
closes with a disproof, by the equality rules and (cut2) (Figure 4.13).

5.3.2 Quantified sentences

When we have quantifiers infront of a sentence we need to bind these vari-
ables to a term before the sentence can be used. Formally this is done using
(∀E) (Figure 4.15). for a quantified variable xT we choose any term of type

63



T , and replace all instances of that variable in the sentence with the term
chosen.

In our example, from the antecedent (add1) ∀vNat.(add Zero v) = v we can
choose v to be Zero, and get the new antecedent add Zero Zero = Zero. We
will also create a new version of (add2) using instantiation, this time picking
u to be a new x′, and v to again be Zero. Both these new antecedents are
shown in Figure 5.6. Note that we have placed the name of the antecedent
from which this one was generated at the beginning of the line. Note also
that we are adding these antecedents to our existing node so that they can
be used in the next step.

Figure 5.6 Instantiating an antecedent

(add1) ∀vNat.(add Zero v) = v

(add2) ∀uNat.∀vNat.(add (Succ u) v) = (Succ (add u v))
(cond1) y = Zero

add x y = x
=======================================================

[add1] (add1.1) add Zero Zero = Zero
[add2] (add2.1) add (Succ x′) Zero = Succ (add x′ Zero)

[cond1] add x Zero = x
=======================================================

5.3.3 Adding conditions to unquantified sentences

The rule (expand) allows us to add a condition in order to create a sentence
that can be applied more generally. We can replace a constructor term (κ)
in a sentence with any other term (τ) as long as we add a condition to that
effect (τ

⇀
= κ). This also requires that every variable in the constructor term

does not exist elsewhere in the antecedent (at this node or higher up the
tree), and that adding this condition does not remove the well-formedness
of the sentence. For a more detailed description please see the definition of
(expand) in Figure 4.17.

As an example take our previously generated antecedent:

(add1.1) add Zero Zero = Zero

We can replace our first Zero constructor term with x, by adding the con-
dition that x

⇀
= Zero. In this way we have expanded the sentence so it can
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be applied more generally. We can also create another useful antecedent
from our (add2.1) rule, replacing Succ x′ with x by adding the condition
x
⇀
= Succ x′, notice that x′ must not exist in the antecedent for this step

to be valid. These new antecedents are depicted in Figure 5.7. Notice that
we have combined the previous variable instantiation step and this step into
one.

Figure 5.7 Expanding antecedents with conditions

(add1) ∀vNat.(add Zero v) = v

(add2) ∀uNat.∀vNat.(add (Succ u) v) = (Succ (add u v))
(cond1) y = Zero

add x y = x
=======================================================

[add1] (add1.1) add x Zero = Zero← x
⇀
= Zero

[add2] (add2.1) add x Zero = Succ (add x′ Zero)← x
⇀
= Succ x′

[cond1] add x Zero = x
===============================================================

5.3.4 Removing conditions from sentences

If a sentence has conditions they must be fulfilled in order to use the sentence
in an equality rule. To fulfil a condition on the value of a term τ we branch
at this node, with a separate branch for every possible value of τ . That is
to say a branch for every possible constructor term of the type of τ . Each
of these possible branches will have this assignment to τ , i.e. τ = κi added
to its antecedent. For a formal method of generating each constructor term
please see the definition of instantiate in Figure 4.21. Notice that we can
choose any term we like to branch on.

As κ is a constructor term, one of these τ = κi will fulfil τ
⇀
= κ, that is to

say there will be a κi which is equal to κ up to renaming of variables (we
can just choose variable names such that they are equal), and hence in this
branch the condition can be removed.

For our example we have branched on the possible values of x, giving us a
branch x = Zero and a branch x = Succ x′, notice that we have chosen
the variable x′ so it matches the condition of (add2.1). We can now apply
our (add1.1) and (add2.1) rules on the goal down the new branches where
they are applicable. The tableau we have after this step in our example is
given in Figure 5.8. Notice that we have named each of the new antecedents
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(casex), though there is no strict naming convention and one can name new
antecedents in whatever way seems most appropriate.

In this case we have branched in such a way that a rule can be applied down
each branch, and though this saves time and space it is not a requirement of
the branching rule. Indeed one can branch on the different values of a term
without even having a condition to satisfy in mind.

Figure 5.8 Branching to apply conditional antecedents

(add1) ∀vNat.(add Zero v) = v

(add2) ∀uNat.∀vNat.(add (Succ u) v) = (Succ (add u v))
(cond1) y = Zero

add x y = x
=======================================================

[add1] (add1.1) add x Zero = Zero← x
⇀
= Zero

[add2] (add2.1) add x Zero = Succ (add x′ Zero)← x
⇀
= Succ x′

[cond1] add x Zero = x
===============================================================

(casex) x = Zero

[add1.1] Zero = x
================

(casex) x = Succ x′

[add2.1] Succ (add x′ Zero) = x
==============================

This branching generalises (complete-case1), (complete-case2) and
(counterexample), depending on the result of each branch, and the na-
ture of τ . See Section 4.8.7 for the definitions of these rules.

• By (complete-case1), if every branch is proven true then this node
is proven true.

• By (complete-case2), if every branch is proven false then this node
is proven false.

• By (counterexample), if τ is a variable symbol that does not exist
in the antecedent of this or any higher node, then the disproof of a
single branch entails the disproof of this node.
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5.3.5 Removing choice

Removing quantifiers and generating conditions require that we in some way
choose what values to instantiate the quantifed variables to, or what term
to replace constructor terms with. Described here is a method to generate
these from any antecedent sentence and the goal sentence it is to be applied
to.

We do this by creating a unifier that will rewrite the antecedent term to
match the goal subterm. We then check whether this is a valid unifier and
if so we use it to determine how to add conditions and instantiate variables
correctly. This method is described in detail in the rest of this section.

First we choose which side of the antecedent we are applying to the goal,
and which sub-term of the goal we are applying it to. As an example we will
apply the left hand side of the antecedent ∀uNat.∀vNat.(add (Succ u) v) =
(Succ (add u v)), i.e. (add (Succ u) v), to the sub-term add x Zero of the
goal add x Zero = x.

We must now unify these two chosen terms together. For this we use a
recursive unification function unify, returning which sub-terms must be
replaced with which in order that the two terms become equal. See Figure
5.3.5 for the Haskell source of our unify function.

Figure 5.9 Haskell function that generates the unifier of two terms

unify :: Ord a => Term a -> Term a -> Set (Term a, Term a)

unify t1 t2 =

let (t1_func : t1_args) = flattenTerm t1

(t2_func : t2_args) = flattenTerm t2

in if (t1_func == t2_func) && (length t1_args == length t2_args)

then Set.unions (zipWith unify t1_args t2_args)

else Set.singleton (t1, t2)

where flattenTerm :: Term a -> [Term a]

flattenTerm (App f a) = flattenTerm f ++ [a]

flattenTerm t = [t]

So for our example we have unify (add (Succ u) v) (add x Zero) which
returns the set {(Succ u), x), (v, Zero)}.

Now that we have the unifier set we must check to make sure it is a valid
unifier. If the unifier is invalid then we cannot apply this antecedent in this
way to the goal. Valid unifiers fulfil two conditions:
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1. They are one to many, that is no value recurs on the left side of the
product set that is the unifier. So the set {(x, y), (x, z)} is not a valid
unifier since x exists twice on the left side. This is necessary as we
are applying the unifier to the antecedent term in order to make it
match the goal sub-term we unified it with. If the unification is not
one-to-many is is not a valid mapping, and so cannot be applied as
such. It should be noted that the left side of the unifier represents the
sub-terms of the antecedent expression we are matching.

2. They contain no invalid unifications, a unification being one of the
(τ × τ) pairs in our unifier. An invalid unification is one that fulfils
any of these four properties:

(a) Has a constructor term on both sides. A constructor term in this
context being one that has a constructor as its left-most symbol.
This is invalid as we are unifying a constructor with a constructor,
which will only ever be different constructors based on how the
unification algorithm works, and so are fundamentally unequal.
So (K y, ((J x)(f z))) is invalid for this reason.

(b) Has a function term on the left hand side. A function term being
one that has a function as its left-most symbol. This is invalid
because we are matching a function with another arbitrary term,
and so this introduces an unconstrained equality as a condition.
See Section 4.5 for why this is a bad thing. So ((f x), y) is invalid
for this reason.

(c) Has a variable symbol on the left hand side that is not univer-
sally quantified in the antecedent sentence. The reasoning for
this is that we cannot replace a variable that is not universally
quantified.

(d) Has a not well-formed constructor term on the left hand side.
This is because to deal with a constructor term on the left hand
side we introduce a new condition to the antecedent sentence by
the (expand) rule (Figure 4.17), which requires this property. All
of the variables in the constructor term must also be universally
quantified as we will be renaming them to fresh variables in the
expanding process.

Now we know our unifier is valid we have to use it to convert the antecedent
sentence into one that can be applied to our goal sub-term. How we apply
each unification depends on its left hand side:

• If it is a variable we simply apply this unification (x, τ) as a renaming
[τ/x] on the antecedent sentence.
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• If it is a constructor term we are applying the (expand) rule so we
first rename all of the variables in the term to be fresh, then apply the
renaming [τ/κ] to the antecedent sentence, and then finally add the
unification as a condition (τ

⇀
= κ).

• By the definition of a valid unifier these are the only two options the
left hand side can be.

See Figure 5.3.5 for a formal definition of how each unification is applied.

Figure 5.10 Applying a unification to an FL sentence

applyUni : ϕ→ (τ × τ)→ ϕ

applyUni ϕ (x, τ) = ϕ[τ/x]

applyUni (τ1 = τ2 ← X) (κ, τ) = (τ1[τ/κ′] = τ2[τ/κ′]← X[τ/κ′] ∪ {τ ⇀
= κ′})

where κ′ = freshen κ

Now we should have an unquantified antecedent sentence where one side
is equal to the sub-term of the goal sentence we were aiming to apply it
too. In our example we will have converted our antecedent sentence from
∀uNat.∀vNat.(add (Succ u) v) = (Succ (add u v)) into (add x Zero) =
(Succ (add x′ Zero))← x

⇀
= Succ x′, where we had Succ x′ = freshen (Succ u)

generating fresh variable x′. This can easily be applied to our goal add x Zero =
x, giving us (Succ (add x′ Zero)) = x when x = Succ x′.

5.4 Applying induction

At any node we can either apply an equality, or we can apply induction.
To apply induction we first pick a sub-term of our goal sentence (τ) as
our inductive term. We then branch on every possible constructor value
for τ such that every recursively typed variable in the constructor value
(variables with the same type as τ) are added as an inductive hypothesis
to that branch. See the definition of the (induction) rule in Figure 4.26
for a more formal defintion, in addition to the definition for instantiate for
generating constructor terms in Figure 4.21.

If every branch of an inductive step closes with a proof, then this node closes
with a proof. Note that induction can only be used to generate a positive
proof, its usage is not defined for the creation of a disproof.

69



In our running example we will ignore the case-completion branching step
we took in Figure 5.8 and instead apply induction on the term x of our goal
add x Zero = x. The two constructor terms x could be are still Zero and
Succ x′ for some new x′. In the Zero branch we simply add the antecedent
x = Zero and continue the proof as with case-completion. In the Succ x′

branch though we have x′ as a recursive variable, since it is of type Nat, so
we can add (add x Zero = x)[x′/x] ≡ (add x′ Zero = x′) as an inductive
hypothesis down this branch in addition to x = Succ x′. This inductive step
is shown in Figure 5.11.

Figure 5.11 Applying an induction step

(add1) ∀vNat.(add Zero v) = v

(add2) ∀uNat.∀vNat.(add (Succ u) v) = (Succ (add u v))
(cond1) y = Zero

add x y = x
=======================================================

[add1] (add1.1) add x Zero = Zero← x
⇀
= Zero

[add2] (add2.1) add x Zero = Succ (add x′ Zero)← x
⇀
= Succ x′

[cond1] add x Zero = x
===============================================================

(I1) x = Zero

[add1.1] Zero = x
================

(I1) x = Succ x′

(I1H1) add x′ Zero = x′

[add2.1] Succ (add x′ Zero) = x
==============================

Notice we have labelled the inductive assignments I1 to show that they are
the antecedent of the first inductive step we have performed. The label I1H1

denotes the first inductive hypothesis of the first inductive step. Remember
that labelling need only be unique within each branch, so multiple branches
could each contain a rule I1 or I1H1.

5.4.1 Inferring auxiliary lemmas through induction

When we perform a successful induction step we are proving a sentence to
be true for any input given. Performing induction on a node of the tree
that is not the root node means we are proving a sentence that was not our
original goal, so we have proven a lemma auxiliary to our proof.
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An important part of our induction method is the ability to pick an arbi-
trary subterm, rather than just a variable, allowing non-trivial lemmas to be
generated on the way to a proof. Furthermore, the ability to have multiple
induction steps performed down the tree enables you to prove properties of
arbitrary complexity in the same tableau, rather than relying on sub-proofs
of these lemmas. To illustrate this further we would draw your attention to
the various proofs created using Function Tableau, either by us or Zeno, in
Chapter 7.

5.5 Closing branches

Now that we have described the application of various rules to alter the goal
sentence, we must have a way of deciding when a goal has been proven or
disproven.

5.5.1 Proving a branch

The rule we apply for proof is just (eq-reflexive) (Figure 4.18) which
corresponds to the reflexivity of equality, and means we can close a branch
with a proof if the left and right hand sides of a goal are equal. So goals like
x = x, (Succ x) = (Succ x) and (f (g x) y) = (f (g x) y) mean we have
proven this branch. To show a proven branch we place a > to the left of the
node.

To demonstrate our proof rules we will complete our running example of a
proof for ∆add,Γadd,Φadd `FL ∀xNat.add x y = x ← {y ⇀

= Zero} in Figure
5.12. Note that this tableau corresponds almost exactly with the derivation
we gave earlier in Figure 4.29.
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Figure 5.12 Full proof of the identity of zero under addition

(add1) ∀vNat.(add Zero v) = v

(add2) ∀uNat.∀vNat.(add (Succ u) v) = (Succ (add u v))
(cond1) y = Zero

add x y = x
=======================================================

[add1] (add1.1) add x Zero = Zero← x
⇀
= Zero

[add2] (add2.1) add x Zero = Succ (add x′ Zero)← x
⇀
= Succ x′

[cond1] add x Zero = x
===============================================================

(I1) x = Zero

[add1.1] Zero = x
================

>
[I1] Zero = Zero
================

(I1) x = Succ x′

(I1H1) add x′ Zero = x′

[add2.1] Succ (add x′ Zero) = x
==============================

[I1H1] Succ x′ = x
==================

>
[I1] Succ x′ = Succ x′
=====================

5.5.2 Disproving a branch

The two rules we apply for disproof are (unequal1) (Figure 4.19) and (un-
equal2) (Figure 4.20). We will refer you to the definitions of these rules for
how they work, but they allow us to disprove goals such as Succ (Succ Zero) =
Succ Zero, and (f Zero) Zero = (f (Succ x)) Zero. To show a disproven
branch we place a ⊥ to the left of the node.
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5.6 Search space

The FL tableau method requires that one make a number of choices at each
node as to what rule to apply, and how to apply it. Unfortunately we have
not found any intelligent way of determining which choice to make at each
node, so the implementation of our tool can only check every possibility at
every node.

Obviously if we have already found a proof/disproof there is no need to
check the rest of the search space, but this still leaves us with an algorithm
with a worst-case run-time that is exponential in the number of steps the
proof/disproof requires.

The choices to be made at each node break down as follows:

• Choose to apply an equality rule with an antecedent. This means we
must also choose which antecedent to apply and which sub-term of the
goal to apply it to.

• Choose to apply induction. This means we must also choose which
sub-term of the goal to apply induction on.

All of these choices are from a finite set but they still represent a lot of
different possibilities at each node. Induction in particular can add new
antecedents through induction hypotheses and so creates more ways to apply
equality in any branches beneath it.
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Chapter 6

Zeno

In this chapter we describe the overall structure and usage of the Zeno tool.
First we give an broad overview of Zeno (Section 6.1). We then show how
Function Logic can be represented in a file format (.flf) for Zeno to load and
for Haskell to be translated into (Section 6.2). Next we describe how Zeno
translates Haskell code into FL along with how we represent lemmas to be
proven within our Haskell (Section 6.3). We then give the command line
options for running the Zeno tool oneself (Section 6.4). Finally we explain
the format in which Zeno outputs the proofs that it generates, along with
some example proofs found by Zeno (Section 6.5).

6.1 Overview

Zeno consists of two main parts, the mapping of a Haskell/HC program to
a Function Logic formula, and the attempted proof or disproof of properties
with respect to an FL formula using our FL tableau method.

We start in most cases with a Haskell file (.hs) which Zeno can parse using
the GHC API in order to get its GHC-core representation. As GHC-core
is a more complex version of our Haskell-Core (Section 3.2) we remove the
functions that are not valid HC and then use an implementation of our
HC to FL encoding (given in Figure 4.10) to generate FL code. This FL
code is represented in the FL file format, which Zeno can then parse and
attempt to solve using our FL tableau method (Chapter 5). Note that we
could have generated our FL file in another fashion, perhaps with a mapping
from another functional language, or by hand-writing it. In Figure 6.1 we
have a flow chart of this process.
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All of our tool is implemented in Haskell, and we used the Happy1 parser
generator to create a parser for FL files. We believe it is noteworthy that the
FL tableau solving engine of our tool amounts to only 354 lines of regularly
formatted Haskell code.

Figure 6.1 Flow chart of the Zeno tool

6.2 Function Logic files (.flf)

In order that problems from other languages could be solved by Zeno we
created an external file format with which to express FL formulas and their
associated types and typing. It is into this file format that Haskell programs
are compiled and it is these files that Zeno loads and solves lemmas from.

The EBNF grammar for the FL file structure is given in Figure 6.2.

1http://www.haskell.org/happy/
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Figure 6.2 EBNF grammar for FL files

FL ::= (Stmt ‘.’)∗

Stmt ::= ‘variables’ TypedNames

| ‘functions’ TypedNames

| ‘type’ Name ‘=’ TypeCons

| ‘axiom’ Name Sentence

| ‘lemma’ Name Sentence

Type ::= Name

| ‘(’ Type ‘->’ Type ‘)’

Term ::= Name

| ‘(’ Term Term ‘)’

TypedNames ::= TypedName (‘,’ TypedName)∗

TypedName ::= Name ‘:’ Type

TypeCons ::= Name+ (‘|’ Name+)∗

Sentence ::= Equality (‘:-’ Equality+)?

Equality ::= Term ‘=’ Term

FL files don’t only have to be parsable by this grammar to be valid, they
must also correspond to well-formed FL, as defined in Section 4.7, and which
is checked by Zeno when it loads a file.

In Figure 6.3 we have given an example of a well-formed FL file containing
the datatype of the natural numbers (type Nat) and the addition function
on the naturals (add). It also has three lemmas, two true and one false. The
first (addZero) expresses that Zero is the identity when given as the second
argument to add. The second lemma (addSym) expresses the symmetry of
the addition function. The final lemma (addSelf) expresses that adding
something to itself does not change its value, which is provably false. This
FL file is the direct encoding of the Haskell file given in Figure 6.4.
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Figure 6.3 Function Logic file example

type Nat = Succ Nat | Zero.

functions

add : (Nat -> (Nat -> Nat)).

variables

x : Nat,

x’ : Nat,

y : Nat.

axiom add1

((add x) y) = y :- x = Zero.

axiom add2

((add x) y) = (Succ ((add x’) y)) :- x = (Succ x’).

lemma addZero

((add x) Zero) = x.

lemma addSym

((add x) y) = ((add y) x).

lemma addSelf

((add x) x) = x.

There were two important design decisions made in creating the FL file
format. The first of which was typing variable names globally as per the
variables keyword, rather than typing them at the head of each FL axiom
and lemma, as is done in the formal definition of FL . The reason for this
was to remove clutter and repetition from the definition of axioms/lemmas
as well as providing some naming consistency across the FL file. This means
that if you see x defined as a natural number then you know it will always
be a natural number wherever it is used.

The second design decision was to give a name to every axiom and lemma in
the file. These names exist so that when a proof or disproof is generated by
Zeno it can be more easily followed, as every equality step can be labelled
with the name of the axiom or lemma which was applied. When Haskell
code is encoded into FL these names are automatically generated from the
name of the function, as in Figure 6.3.
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6.3 Translating Haskell files to Function Logic files

The translation of a Haskell file (.hs) to a Function Logic file (.flf) first
requires that we parse the Haskell code, for which we have employed the
open-source Glasgow Haskell Compiler2 API. This API outputs a format
called GHC-core, which is a greatly simplified representation of the functions
in a Haskell program, along with any datatypes defined. As GHC-core is a
super-set of our own formal language Haskell-Core (HC), defined in Section
3.2, we can easily remove any functions from our GHC-core representation
that are not valid HC.

Now that we have the HC code representing our Haskell file we can apply
the HC to FL encoding given in Figure 4.10. All functions that are not
lemmas (see Section 6.3.1) are simply translated into axioms in our FL file
and named using the name of the function, with a different number after
each name if the function has multiple axioms representing it.

6.3.1 Representing lemmas in Haskell code

Rather than have Haskell files translated into FL and then require the pro-
grammer to add their lemmas to the FL file manually we created a method
whereby lemmas could be expressed in the Haskell file iteself for automatic
translation by the Zeno tool.

This is useful in two respects. The first is that it means a programmer does
not have to understand the FL syntax in order to use the Zeno tool, they
need only understand Haskell. Secondly, without this feature every time we
change our Haskell code and have to retranslate it to FL we would lose the
description of all these properties and have to re-enter them into the new
FL file.

Lemmas are added by defining a top-level function which returns a value of
the Lemma datatype. The Lemma datatype is provided in the Zeno library
module and has a single constructor Equals, which takes two parameters of
the same type and expresses an equality between these two parameters. Any
variable taken as an input to the function returning the Lemma type is then
a universally quantified variable in the resulting FL code. For convenience
we have added the infix operator === which corresponds to the Equals

constructor for the Lemma datatype.

When encoding HC into FL Zeno will search through for any functions
that return type Lemma and translate them into lemmas rather than axioms,
using the name of the function as the name of the lemma.

2http://haskell.org/ghc
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In Figure 6.4 we have the Haskell code defining the datatype for the natural
numbers (Nat) and their addition function (add), along with a few lemmas
about addition. This translates to the FL file given previously in Figure
6.3. As you can see the name of the function that returns the Lemma type is
used as the name of the produced FL lemma.

The Zeno library module contains nothing but the definition for Lemma and
=== and is shown in Figure 6.5.

Figure 6.4 Symmetry of addition in Haskell

module Add where

import Zeno

data Nat

= Succ Nat

| Zero

add :: Nat -> Nat -> Nat

add Zero y = y

add (Succ x) y = Succ (add x y)

addZero :: Nat -> Lemma Nat

addZero x = (add x Zero) === x

addSym :: Nat -> Nat -> Lemma Nat

addSym x y = (add x y) === (add y x)

addSelf :: Nat -> Lemma Nat

addSelf x = (add x x) === x

Figure 6.5 Zeno library module

module Zeno where

data Lemma a = Equals a a

(===) = Equals
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6.4 Using Zeno

Zeno is a command line tool, with a few options that are explained below:

-f filename This option allows us to supply Zeno with a FL file (.flf) to
load and prove properties about.

-hs filename This option allows us to supply Zeno with a Haskell file (.hs)
to translate into FL which it then automaticaly loads as if it were
given with a -f option.

-g lemma We can use this option to choose which lemma in the FL file
Zeno should attempt to prove (our goal lemma).

-fl When this flag is set it means Zeno should output the FL it has loaded
before printing any proof information. If we use this flag without a
goal given the output will just be the FL file. We can use this to
convert Haskell code to FL code, for example zeno -hs test.hs -

fl > test.flf will output the encoding of the Haskell file test.hs

as FL to the file test.flf.

-i number This option allows us to specify the number of inductive steps
Zeno is allowed to perform in its proof search. If we do not give a
value it defaults to zero.

-e number This option allows us to specify the number of equality steps
Zeno is allowed to perform in its proof search. If we do not give a
value Zeno will start at 1, then iteratively increment the value if a
proof/disproof is not found. Without this option specified a Zeno
proof search may not terminate.

-l lemma With this option we can supply Zeno with an auxiliary lemma
to assume to be true and use in its proof search. This parameter can
be given multiple times, corresponding to multiple lemmas.

Examples of invoking Zeno from the command line are given in the next
section (Section 6.5).

6.5 Proof output

The proofs/disproofs that Zeno outputs are textual representations of the
corresponding FL tableau that Zeno has generated. For the definition of an
FL tableau please see Chapter 5. Listed below are individual facts about
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the proof output and are best read in context with a Zeno proof, like the
one in Figure 6.6.

• Each line represents the goal to be proven at that step. The label
at the beginning of each line is the axiom/lemma that was applied in
order to get to this line from the previous one. The only exception
to this is the first line, which is always labelled with [Goal], as it
represents what we are trying to prove overall.

• Multiple branching in the tableau, by the application of case-completion
or induction rules, is represented by indentation and boxes around each
branch.

• Inductive steps are labelled as [In], where [I1] is the first inductive
step, [I2] the second, and so on. Application of an inductive hypothe-
sis is labelled as [In Hyp], where [I1 Hyp] is an inductive hypothesis
of the first inductive step.

• If a line is disproven it will have a not before it.

• Along with the proof, the output contains a list of lemmas that were
proven along the way, where each lemma corresponds to a successful
inductive step in the tableau. In this list of lemmas, the variable
upon which induction was performed is replaced with the symbol !x
to highlight how induction took place.

• It will also show the lemmas that were used in the proof/disproof, and
the number of equality and induction steps that Zeno had to make
and the number of seconds that the process took.

• New variables introduced by Zeno in the proof process are prefixed by
a ? symbol to differentiate them from those defined by the user.

A simple Zeno proof, that add x Zero = Zero for all x : Nat, is given in
Figure 6.6. It is an exact representation of the formal FL tableau proof
given in Figure 5.12. This was generated with the command zeno -hs Add

.hs -g addZero -i 1. In this, and the next two examples, the file Add.hs

corresponds to that given in Figure 6.4.

A more complex Zeno proof, in this case the proof of the symmetry of
addition expressed by the lemma addSym in Figure 6.3, is given in Figure
6.7. This was generated with the command zeno -hs Add.hs -g addSym

-i 2.

A disproof found by Zeno, that add x x = x, is given in Figure 6.8. This
was generated with the command zeno -hs Add.hs -g addSelf -i 0.
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Figure 6.6 Zeno’s proof of addition with zero

[Goal] ((add x) Zero) = x

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I1] ((add (Succ ?yd)) Zero) = (Succ ?yd)

| [add2] (Succ ((add ?yd) Zero)) = (Succ ?yd)

| [I1 Hyp] (Succ ?yd) = (Succ ?yd)

| True

/////////////////////////////////////////////

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I1] ((add Zero) Zero) = Zero

| [add1] Zero = Zero

| True

///////////////////////////////

Lemmas proven:

((add !x) Zero) = !x

Lemmas used: none

Equality steps: 3

Induction steps: 1

Computation time: 0.000 sec
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Figure 6.7 Zeno’s proof of the symmetry of addition
[Goal] ((add x) y) = ((add y) x)

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I1] ((add (Succ ?yd)) y) = ((add y) (Succ ?yd))

| [add2] (Succ ((add ?yd) y)) = ((add y) (Succ ?yd))

| [I1 Hyp] (Succ ((add y) ?yd)) = ((add y) (Succ ?yd))

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I2] (Succ ((add (Succ ?fe)) ?yd)) = ((add (Succ ?fe)) (Succ ?yd))

| [add2] (Succ ((add (Succ ?fe)) ?yd)) = (Succ ((add ?fe) (Succ ?yd)))

| [add2] (Succ (Succ ((add ?fe) ?yd))) = (Succ ((add ?fe) (Succ ?yd)))

| [I2 Hyp] (Succ ((add ?fe) (Succ ?yd))) = (Succ ((add ?fe) (Succ ?yd)))

| True

////////////////////////////////////////////////////////////////////////

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I2] (Succ ((add Zero) ?yd)) = ((add Zero) (Succ ?yd))

| [add1] (Succ ((add Zero) ?yd)) = (Succ ?yd)

| [add1] (Succ ?yd) = (Succ ?yd)

| True

////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////////////////////

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I1] ((add Zero) y) = ((add y) Zero)

| [add1] y = ((add y) Zero)

| [add1] y = ((add y) Zero)

\\\\\\\\\\\\\\\\\\\\

| [add1] Zero = Zero

| True

////////////////////

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [add1] (Succ ?le) = ((add (Succ ?le)) Zero)

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I2] (Succ (Succ ?me)) = ((add (Succ (Succ ?me))) Zero)

| [add2] (Succ (Succ ?me)) = (Succ ((add (Succ ?me)) Zero))

| [I2 Hyp] (Succ (Succ ?me)) = (Succ (Succ ?me))

| True

///////////////////////////////////////////////////////////

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I2] (Succ Zero) = ((add (Succ Zero)) Zero)

| [add2] (Succ Zero) = (Succ ((add Zero) Zero))

| [add1] (Succ Zero) = (Succ Zero)

| True

///////////////////////////////////////////////

/////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////

Lemmas proven:

((add !x) y) = ((add y) !x)

((add !x) (Succ ?yd)) = (Succ ((add !x) ?yd))

((add (Succ !x)) Zero) = (Succ !x)

Lemmas used: none

Equality steps: 7

Induction steps: 2

Computation time: 5.725 sec
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Figure 6.8 Zeno’s disproof of self-addition

not [Goal] ((add x) x) = x

| not [add2] (Succ ((add ?ce) (Succ ?ce))) = (Succ ?ce)

| not [add1] (Succ (Succ Zero)) = (Succ Zero)

| True

Lemmas used: none

Equality steps: 2

Induction steps: 0

Computation time: 0.016 sec
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Chapter 7

Evaluation

In this chapter we will evaluate the usefulness and overall success of our
tool. First we enumerate a few interesting proofs and disproofs that it was
able to find (Section 7.1). We then demonstrate problems that our tool
is theoretically able to solve but the complexity of which is too high to
demonstrate a fully automated proof (Section 7.2). Then we will give some
problems it was unable to solve and examine the reason for this shortfall
(Section 7.3).

In all of these sections we will often give the equivalent proofs found using the
proof verifier Isabelle/HOL[36]. Note that we have not used Haskabelle[37]
to create this Isabelle code directly from the Haskell source, but have man-
ually transcoded it. Note also that we have often used (#) to represent the
list Cons operator, rather than the (:) used by Haskell, as Isabelle/HOL
does not parse (:) correctly.

My supervisor, Professor Sophia Drossopoulou, runs half of a course enti-
tled “Reasoning about Programs” for first year students. Her half details
the proof of inductive properties of functional programs and a few of the
properties proven here are those set as exercises for students.

The Zeno proofs listed here were produced using both 3GHz cores of a
Intel R© Core 2TM Duo E68501.

1http://ark.intel.com/Product.aspx?id=30785
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7.1 Solved Problems

7.1.1 Idempotence of list reversal

A function is idempotent if applying it twice to a value returns the original
value, that is to say fA→A is idempotent if ∀xA : f (f x) = x. The idem-
potence of list reversal is therefore that the reverse of the reverse of a list
is equal to the original list. This is intuitively true2, but finding a formal
proof of this is not simple.

This was a very important problem for me as it is the tutorial example given
for proving Higher Order Logic formulas in the Isabelle/HOL manual[36].
The proof in Isabelle also requires three lemmas to be input by the user, so
is obviously non-trivial.

In Figure 7.1 we have the Haskell source that represents this problem, where
the function app is list appending and the function rev is list reversal.

Figure 7.1 Idempotence of list reversal in Haskell
data Nat = Zero | Succ Nat

data List = Empty | Cons Nat List

app :: List -> List -> List

app Empty ys = ys

app (Cons x xs) ys = Cons x (xs ‘app‘ ys)W

rev :: List -> List

rev Empty = Empty

rev (Cons x xs) = (rev xs) ‘app‘ (Cons x Empty)

revIdm :: List -> Lemma

revIdm xs = (rev (rev xs)) === xs

Proof in Zeno

In Figure 7.2 we have the encoding of this Haskell code into a FL file.

2Except for infinite lists, but these are not discussed in our method (see Section 3.3)
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Figure 7.2 Idempotence of list reversal in FL

functions

rev : (List -> List),

app : (List -> (List -> List)).

variables

xs : List,

ys : List,

x : Nat.

type Nat = Succ Nat | Zero.

type List = Cons Nat List | Empty.

axiom rev1

(rev Empty) = Empty.

axiom rev2

(rev ((Cons x) xs)) = ((app (rev xs)) ((Cons x) Empty)).

axiom app1

((app Empty) ys) = ys.

axiom app2

((app ((Cons x) xs)) ys) = ((Cons x) ((app xs) ys)).

lemma revIdm

(rev (rev xs)) = xs.

Proving revIdm in Zeno requires two inductive steps and nine equality steps
giving the proof shown in Figure 7.3. Note that I have reformatted it slightly
so that it fits more nicely onto the page.
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Figure 7.3 Zeno’s proof of the idempotence of reverse

[Goal] (rev (rev xs)) = xs

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I1] (rev (rev ((Cons ?yd) ?zd))) = ((Cons ?yd) ?zd)

| [rev2] (rev ((app (rev ?zd)) ((Cons ?yd) Empty))) = ((Cons ?yd) ?zd)

| [I1 Hyp] (rev ((app (rev ?zd)) ((Cons ?yd) Empty))) = ((Cons ?yd) (rev (rev ?zd)))

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I2] (rev ((app ((Cons ?ee) ?fe)) ((Cons ?yd) Empty))) = ((Cons ?yd) (rev ((Cons ?ee) ?fe)))

| [app2] (rev ((Cons ?ee) ((app ?fe) ((Cons ?yd) Empty)))) = ((Cons ?yd) (rev ((Cons ?ee) ?fe)))

| [rev2] ((app (rev ((app ?fe) ((Cons ?yd) Empty)))) ((Cons ?ee) Empty)) =

((Cons ?yd) (rev ((Cons ?ee) ?fe)))

| [rev2] ((app (rev ((app ?fe) ((Cons ?yd) Empty)))) ((Cons ?ee) Empty)) =

((Cons ?yd) ((app (rev ?fe)) ((Cons ?ee) Empty)))

| [I2 Hyp] ((app ((Cons ?yd) (rev ?fe))) ((Cons ?ee) Empty)) =

((Cons ?yd) ((app (rev ?fe)) ((Cons ?ee) Empty)))

| [app2] ((Cons ?yd) ((app (rev ?fe)) ((Cons ?ee) Empty))) =

((Cons ?yd) ((app (rev ?fe)) ((Cons ?ee) Empty)))

| True

////////////////////////////////////////////////////////////////////////////////////////////////

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I2] (rev ((app Empty) ((Cons ?yd) Empty))) = ((Cons ?yd) (rev Empty))

| [app1] (rev ((Cons ?yd) Empty)) = ((Cons ?yd) (rev Empty))

| [rev2] ((app (rev Empty)) ((Cons ?yd) Empty)) = ((Cons ?yd) (rev Empty))

| [rev1] ((app Empty) ((Cons ?yd) Empty)) = ((Cons ?yd) (rev Empty))

| [app1] ((Cons ?yd) Empty) = ((Cons ?yd) (rev Empty))

| [rev1] ((Cons ?yd) Empty) = ((Cons ?yd) Empty)

| True

//////////////////////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////////////////////////////////////////////

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I1] (rev (rev Empty)) = Empty

| [rev1] (rev Empty) = Empty

| [rev1] Empty = Empty

| True

////////////////////////////////

Lemmas proven:

(rev (rev !x)) = !x

(rev ((app !x) ((Cons ?yd) Empty))) = ((Cons ?yd) (rev !x))

Lemmas used: none

Equality steps: 9

Induction steps: 2

Computation time: 78.565 sec

Notice that Zeno has discovered one auxiliary lemma in its proof, corre-
sponding to the inner induction step [I2]. Remember that !x is the symbol
for the variable that induction was performed on. The auxiliary lemma Zeno
has found is that the reverse of a list (!x) with a single element appended
to the end (?yd) is the same as the reverse of that list with the element
concatenated at the start ((Cons ?yd)(rev !x)).

Proof in Isabelle/HOL using lemmas

Given in Figure 7.4 is the Isabelle/HOL definitions of our app and rev

functions, almost exactly as given in the Isabelle/HOL tutorial[36]. Note
that the # operator is an infix version of the Cons and ++ is an infix version
of list append. These were kept to make the proof in Isabelle/HOL more
readable than the one in Zeno, which does not have the ability to display infix
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operators. One important change from the tutorial version is the removal
of polymorphism from the list type to make the proof more closely reflect
what is attempted in Zeno. Note that we do not need to define nat as it is
built into Isabelle.

Figure 7.4 Reverse/Append definitions in Isabelle/HOL
datatype list

= Empty ("[]")

| Cons nat list (infixr "#" 65)

primrec app :: "list => list => list" (infixr "++" 65)

where

"app [] ys = ys" |

"app (x # xs) ys = x # (app xs ys)"

primrec rev :: "list => list"

where

"rev [] = []" |

"rev (x # xs) = (rev xs) ++ (x # [])"

The proof of the idempotence of reverse as given in the Isabelle/HOL manual
is shown in Figure 7.5. It cannot complete the proof without the lemma
revApp, which itself cannot be proven without the lemmas appEmpty and
appAssoc.

Figure 7.5 Proof of the idempotence of list reversal in Isabelle/HOL

lemma appEmpty [simp]: "xs ++ [] = xs"

apply (induct_tac xs)

apply (auto)

done

lemma appAssoc [simp]: "(xs ++ ys) ++ zs = xs ++ (ys ++ zs)"

apply (induct_tac xs)

apply (auto)

done

lemma revApp [simp]: "rev (xs ++ ys) = (rev ys) ++ (rev xs)"

apply (induct_tac xs)

apply (auto)

done

lemma revIdm [simp]: "rev (rev xs) = xs"

apply (induct_tac xs)

apply (auto)

done
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The Isabelle/HOL tutorial quotes the necessary lemma to be revApp, which
is rev (xs ++ ys)= (rev ys)++ (rev xs). Zeno on the other hand found
the required to lemma to be rev((x # [])++ xs)= x # (rev xs). One
could consider Zeno’s lemma to be a specific case of the one required by
Isabelle. That is to say the case where ys = (x # Empty).

Indeed if we replace the revApp with the lemma found by Zeno we find
that Isabelle/HOL can still prove the lemma. In addition, this new version
revApp2 requires no auxiliary lemmas, so the proof becomes much shorter,
requiring only what is shown in Figure 7.6.

Figure 7.6 Simpler proof of revIdm in Isabelle/HOL

lemma revApp2 [simp]: "rev((x # []) ++ xs) = x # (rev xs)"

apply (induct_tac xs)

apply (auto)

done

lemma revIdm [simp]: "rev (rev xs) = xs"

apply (induct_tac xs)

apply (auto)

done

So Zeno has helped us find a shorter proof which can be checked to be correct
in Isabelle.
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Proof in Zeno using lemmas

Of course we can also augment the proof search in Zeno by giving it some
user provided lemmas. If we supply Zeno the lemma it found in the fully
automated proof, that is (rev ((app xs)((Cons x)Empty)))= ((Cons x)

(rev xs)), it can discover a new proof in a trivial amount of time and with
only four equality steps and one inductive step. Zeno’s output for this proof
is given in Figure 7.7, where we have called the given lemma revApp2.

Figure 7.7 revApp2 augmented list reversal idempotence proof in Zeno
[Goal] (rev (rev xs)) = xs

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I1] (rev (rev ((Cons ?yd) ?zd))) = ((Cons ?yd) ?zd)

| [rev2] (rev ((app (rev ?zd)) ((Cons ?yd) Empty))) = ((Cons ?yd) ?zd)

| [revApp2] ((Cons ?yd) (rev (rev ?zd))) = ((Cons ?yd) ?zd)

| [I1 Hyp] ((Cons ?yd) ?zd) = ((Cons ?yd) ?zd)

| True

//////////////////////////////////////////////////////////////////////

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I1] (rev (rev Empty)) = Empty

| [rev1] (rev Empty) = Empty

| [rev1] Empty = Empty

| True

////////////////////////////////

Lemmas proven:

(rev (rev !x)) = !x

Lemmas used: revApp2

Equality steps: 4

Induction steps: 1

Computation time: 0.031 sec
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We could also augment the proof search with the lemma that the Isabelle/HOL
tutorial gives us, which is (rev ((app xs)ys))= ((app (rev ys))(rev

xs)), but this only saves 25 seconds of time, one equality step and one
induction step, making Zeno much slower at lemma assisted proofs than
Isabelle. Zeno’s output for this is given in Figure 7.8

Figure 7.8 revApp augmented list reversal idempotence proof in Zeno
[Goal] (rev (rev xs)) = xs

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I1] (rev (rev ((Cons ?yd) ?zd))) = ((Cons ?yd) ?zd)

| [rev2] (rev ((app (rev ?zd)) ((Cons ?yd) Empty))) = ((Cons ?yd) ?zd)

| [revApp] ((app (rev ((Cons ?yd) Empty))) (rev (rev ?zd))) = ((Cons ?yd) ?zd)

| [rev2] ((app ((app (rev Empty)) ((Cons ?yd) Empty))) (rev (rev ?zd))) = ((Cons ?yd) ?zd)

| [rev1] ((app ((app Empty) ((Cons ?yd) Empty))) (rev (rev ?zd))) = ((Cons ?yd) ?zd)

| [app1] ((app ((Cons ?yd) Empty)) (rev (rev ?zd))) = ((Cons ?yd) ?zd)

| [app2] ((Cons ?yd) ((app Empty) (rev (rev ?zd)))) = ((Cons ?yd) ?zd)

| [app1] ((Cons ?yd) (rev (rev ?zd))) = ((Cons ?yd) ?zd)

| [I1 Hyp] ((Cons ?yd) ?zd) = ((Cons ?yd) ?zd)

| True

//////////////////////////////////////////////////////////////////////////////////////////

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I1] (rev (rev Empty)) = Empty

| [rev1] (rev Empty) = Empty

| [rev1] Empty = Empty

| True

////////////////////////////////

Lemmas proven:

(rev (rev !x)) = !x

Lemmas used: revApp

Equality steps: 8

Induction steps: 1

Computation time: 53.011 sec
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7.1.2 Length of lists

The problem solved in the section is whether the length of two lists ap-
pended to each other is the length of each list added together. We show this
proof as it is the first question on the “Structural Induction” tutorial of the
“Reasoning about Programs” course my supervisor gives.

The Haskell code for this proof is given in Figure 7.9, the FL code in Figure
7.10 and Zeno’s proof of the lemma lengthApp is given in Figure 7.11.

Figure 7.9 List application length Haskell code

module Length where

import Zeno

data Nat = Zero | Succ Nat

data List = Empty | Cons Nat List

app :: List -> List -> List

app Empty ys = ys

app (Cons x xs) ys = Cons x (xs ‘app‘ ys)

add :: Nat -> Nat -> Nat

add Zero y = y

add (Succ x) y = Succ (add x y)

length :: List -> Nat

length Empty = Zero

length (Cons x xs) = Succ (length xs)

lengthApp :: List -> List -> Lemma Nat

lengthApp xs ys =

length (xs ‘app‘ ys))

===

((length xs) ‘add‘ (length ys))
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Figure 7.10 List application length FL code

type Nat = Succ Nat | Zero.

type List = Cons Nat List | Empty.

functions

app : (List -> (List -> List)),

add : (Nat -> (Nat -> Nat)),

length : (List -> Nat).

variables

x : Nat,

y : Nat,

xs : List,

ys : List.

axiom app1

((app Empty) ys) = ys.

axiom app2

((app ((Cons x) xs)) ys) = ((Cons x) ((app xs) ys)).

axiom add1

((add Zero) y) = y.

axiom add2

((add (Succ x)) y) = (Succ ((add x) y)).

axiom length1

(length Empty) = Zero.

axiom length2

(length ((Cons x) xs)) = (Succ (length xs)).

lemma lengthApp

(length ((app xs) ys)) = ((add (length xs)) (length ys)).
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Figure 7.11 List application length proof in Zeno

[Goal] (length ((app !x) ys)) = ((add (length !x)) (length ys))

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I1] (length ((app ((Cons ?yd) ?zd)) ys)) = ((add (length ((Cons ?yd) ?zd))) (length ys))

| [app2] (length ((Cons ?yd) ((app ?zd) ys))) = ((add (length ((Cons ?yd) ?zd))) (length ys))

| [length2] (Succ (length ((app ?zd) ys))) = ((add (length ((Cons ?yd) ?zd))) (length ys))

| [length2] (Succ (length ((app ?zd) ys))) = ((add (Succ (length ?zd))) (length ys))

| [add2] (Succ (length ((app ?zd) ys))) = (Succ ((add (length ?zd)) (length ys)))

| [I1 Hyp] (Succ (length ((app ?zd) ys))) = (Succ (length ((app ?zd) ys)))

| True

/////////////////////////////////////////////////////////////////////////////////////////////

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [I1] (length ((app Empty) ys)) = ((add (length Empty)) (length ys))

| [app1] (length ys) = ((add (length Empty)) (length ys))

| [length1] (length ys) = ((add (length Empty)) (length ys))

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [length1] Zero = ((add (length Empty)) (length Empty))

| [length1] Zero = ((add (length Empty)) Zero)

| [length1] Zero = ((add Zero) Zero)

| [add1] Zero = Zero

| True

////////////////////////////////////////////////////////

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| [length1] (length ((Cons ?me) ?ne)) = ((add (length Empty)) (length ((Cons ?me) ?ne)))

| [length1] (length ((Cons ?me) ?ne)) = ((add Zero) (length ((Cons ?me) ?ne)))

| [add1] (length ((Cons ?me) ?ne)) = (length ((Cons ?me) ?ne))

| True

////////////////////////////////////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////////////////////////////////////

Lemmas proven:

(length ((app !x) ys)) = ((add (length !x)) (length ys))

Lemmas used: none

Equality steps: 6

Inductive steps: 1

Computation time: 15.793 sec

Having solved this with just one inductive step in Zeno we hypothesised that
the inductive tactic (induct_tac) and the automated prover tactic (auto)
in Isabelle would be able to do the proof, which was indeed the case. In
Figure 7.12 we have the successful proof. Note that we knew which variable
to perform induction upon only because we already had the proof from Zeno,
without Zeno this would have to be inferred by the user3.

3This might require the user to enumerate the entire search space of two...
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Figure 7.12 List application length proof in Isabelle

theory Length

imports Datatype

begin

datatype list

= Empty ("[]")

| Cons nat list (infixr "#" 64)

primrec app :: "list => list => list" (infixr "++" 65)

where

"app [] ys = ys" |

"app (x # xs) ys = x # (app xs ys)"

primrec add :: "nat => nat => nat"

where

"add 0 y = y" |

"add (Suc x) y = Suc (add x y)"

primrec length :: "list => nat"

where

"length [] = 0" |

"length (x # xs) = Suc (length xs)"

lemma lengthApp [simp]:

"length (xs ++ ys) = add (length xs) (length ys)"

apply (induct_tac xs)

apply (auto)

done

7.2 Partially Solved Problems

Described here are problems which we are able to solve myself with an FL
tableau, but which require too many steps for Zeno to be able to find them
in a reasonable amount of time, due to the exponential nature of its search
space.

7.2.1 Reverse of appended lists

In Isabelle’s proof of the idempotence of list reversal (see Section 7.1.1), it
makes use of the intermediary lemma revApp, presented below in Isabelle’s
syntax:

lemma revApp [simp]: "rev (xs ++ ys) = (rev ys) ++ (rev xs)"
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The Isabelle/HOL proof of this lemma requires two intermediary lemmas,
appEmpty and appAssoc, and is detailed in Figure 7.13. The definitions of
the various functions are as given in Figure 7.4.

Figure 7.13 revApp proof in Isabelle

lemma appEmpty [simp]: "xs ++ [] = xs"

apply (induct_tac xs)

apply (auto)

done

lemma appAssoc [simp]: "(xs ++ ys) ++ zs = xs ++ (ys ++ zs)"

apply (induct_tac xs)

apply (auto)

done

lemma revApp [simp]: "rev (xs ++ ys) = (rev ys) ++ (rev xs)"

apply (induct_tac xs)

apply (auto)

done

Unfortunately the number of steps and axioms in this proof mean that it
cannot be found by Zeno in a reasonable amount of time. We have however
found an FL tableau of this proof that Zeno would have eventually found,
which we have detailed in Figure 7.14 using a similar style to the one in
which Zeno outputs its proofs. Note that we have used the infix symbols #

for Cons and ++ for app, as well as simplified bracketing, to aid reading the
proof. The definitions for all the rules used can be found in Figure 7.2.
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Figure 7.14 Simplified FL tableau of the proof of revApp

[Goal] rev (xs ++ ys) = rev ys ++ rev xs

[I1] rev ((x # xs’) ++ ys) = rev ys ++ rev (x # xs’)

[rev2] rev (xs’ ++ ys) ++ (x # []) = rev ys ++ rev (x # xs’)

[I1 Hyp] (rev ys ++ rev xs’) ++ (x # []) = rev ys ++ rev (x # xs’)

[I2] ((z # zs) ++ rev xs’) ++ (x # []) = (z # zs) ++ rev (x # xs’)

[app2] (z # (zs ++ rev xs’)) ++ (x # []) = (z # zs) ++ rev (x # xs’)

[app2] z # ((zs ++ rev xs’) ++ (x # [])) = (z # zs) ++ rev (x # xs’)

[I2 Hyp] z # (zs ++ rev (x # xs’)) = (z # zs) ++ rev (x # xs’)

[app2] z # (zs ++ rev (x # xs’)) = z # (zs ++ rev (x # xs’))

True

[I2] ([] ++ rev xs’) ++ (x # []) = [] ++ rev (x # xs’)

[app1] rev xs’ ++ (x # []) = [] ++ rev (x # xs’)

[app1] rev xs’ ++ (x # []) = rev (x # xs’)

[rev2] rev (x # xs’) = rev (x # xs’)

True

[I1] rev ([] ++ ys) = rev ys ++ rev []

[rev1] rev ys = rev ys ++ rev []

[rev1] rev ys = rev ys ++ []

[I2] (z # zs) = (z # zs) ++ []

[app2] (z # zs) = z # (zs ++ [])

[I2 Hyp] (z # zs) = (z # zs)

True

[I2] [] = [] ++ []

[app1] [] = []

True

The auxiliary lemmas generated in this proof are the ones corresponding to
our two [I2] steps:

(!x ++ rev xs’) ++ (x # []) = !x ++ rev (x # xs’)

!x = !x ++ []

We can see that the second lemma is the exact appEmpty lemma required by
Isabelle for the proof in Figure 7.13. The first lemma is on close inspection a
very specific case of the appAssoc lemma. If we apply the definition of rev
to the rev (x # xs’) term we get the term below, which is more obviously
a specific case of appAssoc.
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(!x ++ rev xs’) ++ (x # []) = !x ++ (rev xs’ ++ (x # []))

We can in fact replace appAssoc with the more specific case found by the FL
tableau and Isabelle can still complete the proof, which is shown in Figure
7.15.

Figure 7.15 revApp proof in Isabelle/HOL v2

lemma appEmpty [simp]: "xs ++ [] = xs"

apply (induct_tac xs)

apply (auto)

done

lemma appAssoc2 [simp]:

"(xs ++ rev ys) ++ (x # []) = xs ++ rev (x # ys)"

apply (induct_tac xs)

apply (auto)

done

lemma revApp [simp]: "rev (xs ++ ys) = (rev ys) ++ (rev xs)"

apply (induct_tac xs)

apply (auto)

done

7.2.2 Flattening binary trees

The problem we have solved here is whether the number of nodes in a binary
tree is equal to the length of the list of the flattened tree. The Haskell
definition of this is given in Figure 7.16.

This problem, as specified in the given Haskell code but with a polymorphic
BTree type, is the only problem in the first coursework for the “Reasoning
about Programs” course my project supervisor sets. In the coursework we
are given the lemma about the length of appended lists found in Section
7.1.2 as an assumption, this lemma is called lengthApp in the Haskell code.

In Figure 7.17 we have the proof of this property using Isabelle/HOL. Notice
that we have added another lemma (addTail) on top of lengthApp, which
is required to complete the proof. It worth noting however that if we replace
our definition with Isabelle’s built in definition of addition then this lemma
is no longer required.

As we can see from the success of this proof Isabelle is as good as a first-year
at inductive reasoning. Unfortunately however, Zeno is not. It has yet to
generate a proof, even after spending much longer than the average first-
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year does on their coursework. However in Figure 7.19 we give a proof for
the coursework as an FL tableau (in something resembling Zeno’s output
style) without any lemmas, just the FL axioms for the function definitions
in Figure 7.18. Note that we have used the infix symbols # for Cons, ++ for
app and + for add, as well as simplified bracketing, all to aid in reading the
proof.
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Figure 7.19 FL tableau proof of the binary tree flattening problem

[Goal] numBEs ts = length (flatten ts)

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

[I1] numBEs (BTnode lhs x rhs) = length (flatten (BTnode lhs x rhs))

[numBEs2] Succ ((numBEs lhs) + (numBEs rhs)) = ...

[I1 Hyp] Succ ((length (flatten lhs)) + (numBEs rhs)) = ...

[I1 Hyp] Succ ((length (flatten lhs)) + (length (flatten rhs))) = ...

[flatten2] ... = length ((flatten lhs) ++ ((x # []) ++ (flatten rhs)))

[app2] ... = length ((flatten lhs) ++ (x # ([] ++ (flatten rhs))))

[app1] ... = length ((flatten lhs) ++ (x # (flatten rhs))

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

[I2] Succ ((length (y # ys)) + (length (flatten rhs))) =

length ((y # ys) ++ (x # (flatten rhs)))

[length2] Succ ((Succ (length ys)) + (length (flatten rhs))) = ...

[add2] Succ (Succ (length ys + (length (flatten rhs)))) = ...

[I2 Hyp] Succ (length (ys ++ (x # (flatten rhs)))) =

length ((y # ys) ++ (x # (flatten rhs)))

[app2] ... = length (y # (ys ++ (x # (flatten rhs))))

[length2] Succ (length (ys ++ (x # (flatten rhs)))) =

Succ (length (ys ++ (x # (flatten rhs))))

True

//////////////////////////////////////////////////////////////////

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

[I2] Succ ((length []) + (length (flatten rhs))) =

length ([] ++ (x # (flatten rhs)))

[length1] Succ (Zero + (length (flatten rhs))) = ...

[add1] Succ (length (flatten rhs)) =

length ([] ++ (x # (flatten rhs)))

[app1] ... = length (x # (flatten rhs))

[length2] Succ (length (flatten rhs)) =

Succ (length (flatten rhs))

True

/////////////////////////////////////////////////////

[I1] numBEs BTempty = length (flatten BTempty)

[numBEs1] Zero = length (flatten BTempty)

[flatten1] Zero = length []

[length1] Zero = Zero

True

//////////////////////////////////////////////////////////////////////

The second induction step here corresponds to following lemma:

Succ (length !x + (length (flatten rhs))) =

length (!x ++ (x # (flatten rhs)))
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Which if we replace flatten rhs with an arbitrary term ys, and rename
x! to xs, we get:

Succ (length xs + length ys) = length (xs ++ (x # ys))

This is an interesting lemma in itself, and similar to the lengthAdd lemma
required by Isabelle. This further demonstrates our method’s ability to
generate the lemmas a human would otherwise have to infer in the proof
process.

7.3 Unsolved Problems

In this Section we detail a few problems that our FL tableau method is
unable to solve, even though a simple proof does exist, and present the
reason for these shortcomings.

7.3.1 A null list is empty

The Haskell function null returns True if given the empty list, and False

otherwise. However in its current incarnation FL tableau, and indeed any of
the FL rules underlying it, are unable to find a proof that null xs = True

implies that xs is the empty list. This problem is represented in FL with
the lemma nullEmpty in Figure 7.20. The proof in Isabelle/HOL is very
simple and is shown in Figure 7.21, where case_tac is the tactic of case
analysis, and ==> is logical implication.

The reason this proof cannot be found is that when Zeno branches on the
value of xs in the lemma it proves the case where xs = y # ys to be false,
as it shows xs not to be the empty list. It cannot infer as Isabelle does that
the condition null xs = True means that xs = y # ys is a contradiction,
and so this branch does not have to be considered. See Section 8.5 for our
proposal to fix this issue.

7.3.2 Non-standard recursion

Some functions recurse in such a way that neither Zeno nor Isabelle/HOL
can perform standard structural induction on them. Principally, they re-
quire a different well-founded ordering than simply the ordering of definite
subterms (@st) used by Zeno (see Figure 4.7).
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Take for example an alternative definition of the addition function over the
natural numbers (see Figure 3.9 for our original definition):

add :: Nat -> Nat -> Nat

add Zero y = y

add (Succ x) y = add x (Succ y)

This is a perfectly correct definition of add. It is in fact tail-recursive and
so one could consider it a preferable definition to our previous one from
a programmer’s standpoint. However it is impossible for our FL rules,
or Isabelle/HOL’s induction tactic, to create inductive proofs using this
definition. The Isabelle/HOL proof of the addZero lemma in Figure 7.22
fails, as does the equivalent FL proof attempt.

The reason for this is that we cannot simply use the well-founded ordering
of definite sub-terms @st (Figure 4.7), otherwise known as structural induc-
tion, on the first argument. We must use a new ordering that takes both
arguments of add into account. To demonstrate we will define a new and
trivially well-founded ordering @×st as:

(x′, y′) @×st (x, y)⇐⇒ (x′ @st x ∨ (x′ = x ∧ y′ @st y))

This ordering takes into account both arguments, and through this we can
prove that our new definition of add is equivalent to our original one:

∀xNat.∀yNat : (Succ x) + y = Succ (x+ y)

Note that we have used the infix notation (+) for the following proofs, and
that this represents our new definition of add.

The base case of (x, y) = (0, 0) is trivial so we have ignored it, but the
inductive case of (x, y) = (Succ x′, y) using our new well-founded ordering
is given in Figure 7.23.

Once we have that both definitions are equivalent we can use all the proofs
of the old definition for the new definition.
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Figure 7.16 Haskell code for the binary tree flattening problem
module BTree where

import Zeno

data Nat

= Zero

| Succ Nat

data List

= Empty

| Cons Nat List

data BTree

= BTempty

| BTnode BTree Nat BTree

app :: List -> List -> List

app Empty ys = ys

app (Cons x xs) ys = Cons x (xs ‘app‘ ys)

add :: Nat -> Nat -> Nat

add Zero y = y

add (Succ x) y = Succ (add x y)

length :: List -> Nat

length Empty = Zero

length (Cons x xs) = Succ (length xs)

flatten :: BTree -> List

flatten BTempty = Empty

flatten (BTnode lhs x rhs) =

(flatten lhs) ‘app‘ ((Cons x Empty) ‘app‘ (flatten rhs))

numBEs :: BTree -> Nat

numBEs BTempty = Zero

numBEs (BTnode lhs x rhs) =

Succ ((numBEs lhs) ‘add‘ (numBEs rhs))

lengthApp :: List -> List -> Lemma Nat

lengthApp xs ys =

(length (xs ‘app‘ ys)) === ((length xs) ‘add‘ (length ys))

coursework :: BTree -> Lemma Nat

coursework ts =

(numBEs ts) === (length (flatten ts))
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Figure 7.17 Isabelle/HOL proof of the binary tree flattening problem

theory BTree

imports Datatype

begin

datatype list

= Empty ("[]")

| Cons nat list (infixr "#" 64)

datatype btree

= BTempty

| BTnode btree nat btree

primrec app :: "list => list => list" (infixr "++" 65)

where

"app [] ys = ys" |

"app (x # xs) ys = x # (app xs ys)"

primrec add :: "nat => nat => nat"

where

"add 0 y = y" |

"add (Suc x) y = Suc (add x y)"

primrec length :: "list => nat"

where

"length [] = 0" |

"length (x # xs) = Suc (length xs)"

primrec flatten :: "btree => list"

where

"flatten BTempty = []" |

"flatten (BTnode lhs x rhs) =

(flatten lhs) ++ ((x # []) ++ (flatten rhs))"

primrec numBEs :: "btree => nat"

where

"numBEs BTempty = 0" |

"numBEs (BTnode lhs x rhs)

= Suc (add (numBEs lhs) (numBEs rhs))"

lemma lenApp [simp] :

"length (xs ++ ys) = add (length xs) (length ys)"

apply (induct_tac xs)

apply (auto)

done

lemma addTail [simp] : "add x (Suc y) = add (Suc x) y"

apply (induct_tac x)

apply (auto)

done

lemma flatLen [simp] : "numBEs ts = length (flatten ts)"

apply (induct_tac ts)

apply (auto)

done
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Figure 7.18 FL code for the binary tree flattening problem

type Nat = Succ Nat | Zero.

type List = Cons Nat List | Empty.

type BTree = BTNode BTree Nat BTree | BTEmpty.

functions

length : (List -> Nat),

app : (List -> (List -> List)),

add : (Nat -> (Nat -> Nat)),

flatten : (BTree -> List),

numBEs : (BTree -> Nat).

variables

x : Nat,

y : Nat,

xs : List,

ys : List,

lhs : BTree,

rhs : BTree,

ts : BTree.

axiom length1

(length Empty) = Zero.

axiom length2

(length ((Cons x) xs)) = (Succ (length xs)).

axiom app1

((app Empty) ys) = ys.

axiom app2

((app ((Cons x) xs)) ys) = ((Cons x) ((app xs) ys)).

axiom add1

((add Zero) y) = y.

axiom add2

((add (Succ x)) y) = (Succ ((add x) y)).

axiom flatten1

(flatten BTEmpty) = Empty.

axiom flatten2

(flatten (((BTNode lhs) x) rhs)) =

((app (flatten lhs)) ((app ((Cons x) Empty)) (flatten rhs))).

axiom numBEs1

(numBEs BTEmpty) = Zero.

axiom numBEs2

(numBEs (((BTNode lhs) x) rhs)) =

(Succ ((add (numBEs lhs)) (numBEs rhs))).

lemma coursework

(numBEs ts) = (length (flatten ts)).
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Figure 7.20 FL code for whether a null list is empty

type Nat = Succ Nat | Zero.

type Bool = True | False.

type List = Cons Nat List | Empty.

functions

null : (List -> Bool).

variables

x : Nat,

xs : List.

axiom null1

(null Empty) = True.

axiom null2

(null ((Cons x) xs)) = False.

lemma nullEmpty

xs = Empty :- (null xs) = True.

Figure 7.21 Isabelle/HOL proof that a null list is empty

theory Null

imports Datatype

begin

datatype list

= Empty ("[]")

| Cons nat list (infixr "#" 64)

primrec null :: "list => bool"

where

"null [] = True" |

"null (x # xs) = False"

lemma nullEmpty [simp]:

"null xs ==> xs = []"

apply (case_tac xs)

apply (auto)

done
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Figure 7.22 Failed Isabelle/HOL proof using tail-recursive add

theory Add

imports Datatype

begin

primrec add :: "nat => nat => nat"

where

"add 0 y = y" |

"add (Suc x) y = add x (Suc y)"

lemma addZero [simp]: "add x 0 = x"

apply (induct_tac x)

apply (auto)

...

Figure 7.23 Inductive case of addition definition equivalence

∀(x′′, y′′) @×st (Succ x′, y) :

(Succ x′′) + y′′ = Succ (x′′ + y′′) inductive hypothesis (7.1)

(x′, Succ y) @×st (Succ x′, y) definition of @×st (7.2)

(Succ x′) + (Succ y) = Succ (x′ + (Succ y)) ∀E on (7.1) with (7.2) (7.3)

(Succ (Succ x′)) + y = Succ ((Succ x′) + y) definition of (+) on (7.3) (7.4)

This is our inductive case so we are done. �
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Chapter 8

Extensions

In this chapter we will detail a few ways in which we would have applied
more work to our project to develop it further.

8.1 Soundness of FL

While we have yet to find a case of our tool producing an incorrect result
(proving a formula that is false, or disproving one that is true) this does
not preclude such a possibility. Before any further work is done to extend
our system it is very important that we first show our existing system to be
sound, and that every step it takes is correct with respect to its encoding
into first-order logic.

We would need to formally prove all our FL rules from Chapter 4 are sound,
and in particular that our (induction) rule (Section 4.8.8) is sound with
respect to the principle of well-founded induction on which it is based. Once
we have this we will have that our FL tableau method is sound, and hence
that Zeno itself is sound.

A good method of doing this would be to encode all of our rules into Isabelle
and create a verifiable proof of each.

8.2 Covering all of Haskell

Currently Zeno will ignore any functions typed polymorphically or involving
primitive types, but these are used used in almost all real Haskell programs
so should be addressable in future versions of our tool.
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Polymorphically typed variables are interesting as they cannot case analysed
or have induction performed on them. However we do not believe they would
be very difficult to add into FL, requiring only a few extensions to the type
system and a guard against using them in the induction and case-completion
rules.

Primitively typed variables we believe would be very difficult to add in
a useful way to our project, as they have no simple representation as a
recursive datatype, and operations on them are not efficient as recursive
functions. Taking integer addition as an example, if we calculate 100 + x
this may require up to one hundred applications of a recursive definition of
addition over recursively defined integers.

A trivial extension would be to deal with them as variables of a type we
cannot case-analyse or perform induction on, but then they are just ignored
rather than addressed.

Another method would be to send all problems involving primitive types to
an SMT solver (see Section 2.4.1). This was the approach taken by Dana
Xu in her method of functional program verification[39] (see Section 2.6).
The problem with this method is that it does not allow for Zeno’s proofs to
be integrated with proofs over primitive types, it just separates the two so
they can be solved individually.

8.3 Integration with an existing proof tool

As a standalone tool Zeno serves as a proof of concept for our FL tableau
method of functional program verification. To be useful though we believe
it should be integrated into an existing theorem proving tool as an augmen-
tation to its existing method of proof.

One interesting integration would be as a proof tactic for Isabelle/HOL.
This could, for example, shorten the tutorial example[36] of proving the
idempotence of list reversal from the one in Figure 7.5, to the one in Figure
8.1.

Figure 8.1 Zeno as a tactic in Isabelle/HOL

theorem revIdm [simp]: "rev (rev xs) = xs"

apply (zeno)

done

Another place we could integrate our FL tableau method would be an SMT
solver, allowing it to handle the style of proofs that Zeno tackles. The added
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advantage of this method is that it may allow the intermixing of SMT and
FL proofs, augmenting the power of the FL tableau and allowing it to
handle non-recursively typed values, such as integers.

8.4 Lemma generalisation

Zeno’s method of applying multiple inductive steps allows it to generate in-
termediary lemmas that could then possibly be reused in other proofs. One
problem with the lemmas that it outputs is they often represent a specific
version of a more general lemma, where the more general lemma would be
much more useful in future proofs. A good extension would therefore be
a method whereby the more specific intermediary lemmas could be gener-
alised.

As an example take the intermediary lemma found in the FL tableau proof
for the reverse of appended lists in Figure 7.3, written below in Haskell
syntax:

(xs ++ rev as) ++ [a] = xs ++ rev (a : as)

To generalise this we can first apply the definition of rev to rev (a : as),
giving:

(xs ++ rev as) ++ [a] = xs ++ (rev as ++ [a])

We can now generalise rev ys to be any variable of List type (which we
name ys), and generalise [a] to also be any variable List type (which we
name zs), giving us:

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

The new generalised lemma above is the associativity of list append, and
would be a much more useful lemma to have than the one we started with.

8.5 Tackling contradictory tableau branches

Currently the inability to recognise a contradiction in a branch means that
our FL tableau method cannot find certain proofs, as demonstrated with
the lack of a proof that a null list is empty in Section 7.3.1. To reiterate, our
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method is unable to prove that null xs = True implies that xs = Empty

(FL definition in Figure 7.20). It fails because when it branches on the
possible values for xs it finds the case when xs = (y : ys) to disprove the
property, even though we know that xs = (y : ys) is a contradiction when
null xs = True.

An extension to our FL rules that accounts for this would be something like
the following:

(contradiction)
∆,Γ,Φ1 0FL Φ2

∆,Γ,Φ1 ∪ Φ2 `FL Φ3

∆,Γ,Φ1 ∪ Φ2 0FL Φ3

This encapsulates the idea that from a contradiction we can prove anything,
and means in an FL tableau a contradictory branch can be ignored. Before
we add an antecedent to a branch we can check whether it can be disproven
by the current antecedents, and therefore that adding it would introduce a
contradiction.

8.6 Beautifying the proof output

The proofs that Zeno outputs are plain-text and hard to follow. One simple
improvement would be to remove all unnecessary bracketing, as it currently
contains every possible bracket.

Another feature we could add would be to output proofs in some markup
language that can be easily displayed. HTML would be a good choice as
we could then display the proof in a web-browser. We could have separate
proof branches be collapsable for easier reading, possibly with highlighting/-
colouring for different symbols or for different variable types.

A possible option would be to output proofs as a theorem in Isabelle/HOL.
This serves the extra purpose of making sure the proof we have produced is
sound in the absence of an overall soundness proof for our tool.

8.7 Reducing complexity

The run-time of a proof in FL tableau is, in worst case, exponential in the
length of the proof required. Unfortunately our current implementation in
Zeno seems to lead to exponential run-time in the average case, and many
proofs that can be done using an FL tableau on paper are unable to be
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found in a reasonable time. Zeno is in great need of more methods to trim
its search space, perhaps in such a way that we lose some proofs, but so that
most proofs can be found quickly.

As a side note if we implemented FL tableau as a non-deterministic algo-
rithm it would have run-time polynomial to the length of the proof. Obvi-
ously then a useful extension to this project would be a method that allows
non-deterministic polynomial time algorithms to be calculated determinis-
tically in polynomial time.
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Chapter 9

Conclusions

In Function Logic we believe we have found a nice representation of func-
tional programs, and a useful subset of logical properties we can express
about them. While it has many restrictions compared to first-order logic,
particularly the lack of negation and existential quantifiers, we believe a
great majority of program properties can be expressed in this way.

Function Logic Tableauu, and so Zeno, has what we consider to be one major
advantage and one major flaw:

• The advantage of our FL tableauu method is its ability to infer aux-
iliary lemmas by performing nested induction on arbitrary terms. It
can therefore complete complex proofs without any input from the
programmer. This is particularly useful when one is using many self-
defined functions, for which there will be no existing background lem-
mas defined.

• The disadvantage of FL tableau is that in worst case its complexity is
exponential in the length of the proof to be found. Most practical uses
of functional programming have very complex functions with many
auxiliary function calls. Proofs of properties over these functions would
be very deep, and so completely infeasible for Zeno. It is this issue that
places FL tableau more in the realm of automated theorem proving
than program verification.

It is our opinion that there is a a lot of scope for developing the work detailed
here, and that this method could one day allow for the fully automated proof
of complex theorems, if only when we have the computational power to make
it feasible.
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