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Abstract

In music production, software synthesizers are used to create many of the sounds heard in
songs today. They present the user with many different parameters to control the sound
they produce. In this project we use a Genetic Algorithm to optimize a synthesizer model
to match an input sound file, in order to automate the programming of a synthesizer.
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Chapter 1

Introduction

In the world of Music production, synthesizers have become a mainstay for creating
sounds ever since the commercial release of the Moog in 1967. With the growing market of
software synthesizers there is a staggering number of synthesis techniques being explored,
giving a wide array of possible sounds.

For a producer aiming to synthesize a particular sound, the programming of each option
and parameter can take a very long time. Additionally the producer must have deep
knowledge about how the synthesizer works, which can be very hard to comprehend in
a world of so many models. There is even a market for pre-programmed synthesizer
configurations, known as presets [1].

The problem this project seeks to solve is the automatic programming of a software
synthesizer to match a recorded sound. We achieve this using a genetic algorithm to
optimize the many parameters in parallel. Our motivation is twofold:

e The reproduction of sounds — approximating a real life sound with a synthesizer
to avoid the painstaking sampling process. We aim to emulate both real world
instruments and other synthesizers. By recreating a sound we can resynthesize it at
other pitches, so even if only one note exists as a sample, we can recreate it across
the entire desired pitch range.

e The exploration of sounds — traversing the potential soundscape of a synthesizer
in a partially directed manner. In this case the algorithm does not need to provide
a 100% match to the target sound to give a useful output — partial matches are
still interesting sonic material for a music producer to work with, as they may have
some features from the real world instruments whilst sounding new and fresh.

We build upon previous works that use frequency modulation synthesis to match sounds
and explore further with more features typically found in a synthesizer. Particularly,
previous works investigated only matching a steady-state sound, whilst we are interested
in now matching a sound’s evolution over time.

1.1 Contributions

In this report we complement the state of the art in sound resynthesis with the following
contributions:



e We apply the GA technique to reproduce sounds that evolve over time, where earlier
systems did not

e We present some problems encountered in the system’s development and describe
how they were overcome

e We show two techniques, normalization and regulatory genes, that improve the
speed at which sounds can be matched in such a system

e We optimize a fitness function used in previous literature by parametrizing and
then optimizing it

e We evaluate our system and show its limitations, and make suggestions towards
future work that could result in a system that could ‘match any sound’

1.2 Report Outline

We start with the background in Chapter[2] detailing the state of the art in both synthesis
techniques and previous work towards resynthesizing using a genetic algorithm.

Chapter [3] then follows, presenting an overview of our entire system. We expand upon
this in detail in both the synthesizer and genetic algorithm parts in Chapters [ and
respectively, also covering implementation problems that were solved.

In [6] we present the results of our experimentation to optimize the system and quantify
improvements we have made over past systems.

We provide an evaluation of the system in Chapter [7| and finish with a conclusion in
Chapter |8 with suggestions of further work to be undertaken.

A glossary is provided in Appendix 1.



Chapter 2

Background

In this Chapter we detail some necessary background knowledge from the two key areas
— synthesizers and genetic algorithms. We then outline three previous works that use a
GA to optimize a synthesizer for resynthesis and discuss their drawbacks to justify our
motivation.

2.1 Synthesis techniques

The world of synthesizers has exploded in terms of technology ever since the ‘Moog’
became commercially available in 1964 [9]. Many different techniques have been explored,
and the digital realm has offered consideration of a wide range of models beyond those
possible in analogue. We present here a few techniques that are necessary to understand
this project.

The most basic model of synthesis is an oscillator that generates a repeating waveform
— sine, sawtooth and square waves are the easiest to generate. For a sine wave, the level
of the signal x at time ¢ can be expressed as x(t) = Asin(wt), where A is the amplitude
and w the frequency. Most synthesis models will use one or more oscillators as starting
points.

Additive Synthesis is based upon the concept of the Fourier series, which states that
any sound can be represented by the summation of only sine waves, or partials. Therefore
additive synthesis focusses on creating a sound ‘from the ground up’, adding together
sine wave partials at their respective amplitudes until the desired timbre is achieved. In
theory, an exact match of any sound can be achieved, if enough partials are used. This
is similar to the way an organ works with stops, each stop representing the addition of
extra partials. An example is shown in Figure 2.1]

As real-world tones tend to vary their harmonic content over time, each partial may have
its own amplitude envelope, changing its volume over time from the onset of the note.
Any sound can be represented this way — a sine wave requires just one partial, whilst
white noise would be the addition of infinite partials at all frequencies.

Subtractive Synthesis is an alternative to additive synthesis, in which a complex wave-
form is taken and then filtered to remove some of its partials. An example of this would be
feeding a sawtooth generator through a low pass filter to emulate a stringed instrument,
as in Figure 2.2 The perfect sawtooth wave is an infinite summation of the harmonic

9
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Figure 2.1: Generating a tone by adding 3 partials together
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Figure 2.2: Sawtooth wave with upper partials reduced by a low pass filter

series, whilst a stringed instrument is physically limited to which partials are present.
Using a low pass filter like this dampens the upper partials and removes some of the
‘synthetic’ qualities of the sound.

Often this idea of filtering the sound path is used in combination with other synthesis
techniques that generate complex waveforms, removing frequency content that is un-
pleasant /unrealistic to ‘smooth over’ the sound. There are thus many different synthesis
techniques that can be combined with subtractive synthesis in this way.

Frequency Modulation Synthesis is based upon the combination of two waveforms
by setting one to frequency-modulate the other, such as in Figure [2.3] This produces
complex extra harmonics with a sidebanding effect.

For one sine wave frequency-modulated by another, the sample at time t is given [3]
as:

x(t) = Asinjat + I sin(w;t)] (2.1)
For the modulator sine wave there are two parameters; its index I; and ratio w;. FM

VAVAVAVAVAVA

modulator

VAVAVA /MAWAAWALWN

carrier

Figure 2.3: Carrier sine frequency-modulated by sine. For equation I, =1 and
w; = 2
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is efficient for real time synthesis of complex spectra. Unlike additive synthesis, only a
few sine functions are required to produce many partials. Research in the Audio En-
gineering Society in 1994 states that “FM has deservedly become recognized as one of
the most efficient methods of digitally generating musical sounds with rich harmonic
components” [15].

Dual Frequency Modulation, or DFM, is a particular application of Frequency Mod-
ulation. A OHz carrier sine is modulated by two different sine waves with individual
frequency ratios and modulation indices.

The DFM formula can be obtained from a simplification of the FM formula for two
modulators:

x(t) = Asin[l; sin(wit) + I sin(wat)] (2.2)

As opposed to ‘plain” FM with a single modulator, much richer harmonic textures can
be produced. It is a very efficient method of obtaining complex spectra with just four
parameters: [y, Is, wy, and we. Indeed it has been stated that “Theoretically, we may
synthesize any kind of sound by tuning and tweaking these parameters” [17].

2.2 Dynamic Spectra in FM Synthesis

For an FM carrier, the timbre it produces can be easily modified by changing the index of
one of its modulators (I; in Equation [3]. By smoothing this change over time with
an envelope, we can model the natural change in timbre that most instruments produce
over the course of a note.

This harmonic change is not as finely controlled as is possible in additive synthesis, where
each harmonic may have its own amplitude envelope, but it allows complex changes to
be defined in simple terms. Experiments in imitating real-world instruments show FM
seems to provide enough control to create a good impression.

As we saw above in Equations and the modulation index, or I value, of each
modulator scales how much it affects the carrier. As a modulation index changes, the
partials it creates increase and decrease in accordance with the Bessel function [3]. Whilst
this would seem to give control, reflected side frequencies stack up and the change of the
index becomes less predictable with some frequencies rising or decreasing in amplitude.
Figure shows the effect of changing the modulation index on the partials present for
one carrier and one modulator.

It is this unpredictable, intuition-based behaviour of FM synthesis that we believe makes
it ideal for adaptation using a genetic algorithm.

2.3 ADSR envelopes

As explained earlier, real instruments do not generate steady-state tones, but evolve over
the duration of the note. This evolution is often imitated in synthesis using envelopes to
alter synthesis parameters in relation to time since the onset of a note.

11
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Figure 2.4: Effect of changing the modulation index on the partials present

[Note duration |

Attack Decay Sustain Release

Figure 2.5: The general shape of an ADSR envelope over time

A simple and very popular enveloping method is the ADSR envelope model [5], standing
for ‘Attack, Decay, Sustain, Release’. It is a method of describing the evolution of a
synthesis parameter over time, most commonly applied to the amplitude. Whilst quite
simplistic, the limited control it provides is often ‘good enough’ for the human ear.

Each of the four stages of the ADSR is controlled by a parameter. The ‘attack’ value is
how long the attack phase takes before the envelope reaches its peak. The ‘decay’ value
is how long the envelope takes to fade from peak to the ‘sustain’ level, which is given as
a fraction of the peak value. The ‘release’ value is how long the envelope takes to fade to
0, after the note has been released. The shape of the envelope in its four stages can be

seen in Figure

When applied to the amplitude of a note, the envelope will start at —oodB and peak at
0dB, but in other applications base and amplitude parameters are added to control the
envelope’s effect. Synthesizers typically offer many envelopes for control, on amplitude,
filter frequency, pitch, timbre, etc.

The ADSR model is flexible at achieving a variety of different envelope shapes. By
setting the attack to 0 and having a low sustain level, percussive-style envelopes can be
made. With a sustain level of 100%, the decay phase can be eliminated, as is in wind
instruments.

12
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Figure 2.6: Sonic spectrum of a constant Vuvuzela note

2.4 Spectra and Spectrograms

The Fast Fourier Transform, or FFT, applied to audio signals converts a time-
amplitude sample to a frequency-amplitude sample [2], or spectrum. It efficiently mea-
sures the presence of different frequency bands across the given sample. For speed the
sample size is normally given as a power of 2.

The spectrum of a sound at a given point in time can be considered its ‘shape’ — it
is a much more effective visual representation of a sound than the waveform, as two
waveforms can sound the same but look completely dissimilar due to phase differences in
the constituent partials. An example spectrum is shown in Figure [2.6

One thing to note about the FFT is that it is not a perfect frequency-amplitude reference
of the sound, due to the finite nature of the material analysed. A pure sine wave should
only have presence in a single frequency bin, but it will leak into the surrounding bins.
This can be seen in Figure — a Vuvuzela tone is only made of only a few distinct
partials, but these are not manifested as pure lines but instead are spikes with a wide
base. This blurring means that algorithms using the FFT are limited to the accuracy of
their detection.

To analyze the changing frequency content of a sound over time, windowing is performed.
This means dividing the sound into power-of-2 size windows and analysing their spectra
individually. A large amount of overlap is used between the windows to reduce boundary
artifacts and obtain more detail in the time domain. The different spectra over the
duration of the signal are combined into a spectrogram.

The spectrogram of a sound can be considered its overall ‘fingerprint’, and allows us to
examine a sound’s characteristics in many ways. An example spectrogram is shown in
Figure 2.7 There is a trade-off when forming spectrograms though; the window size
affects the time and frequency resolutions. A larger window provides more accuracy in
frequency information (which frequencies are present at what magnitude), whilst a shorter
window will provide more accuracy in time (when frequencies appear in the sound).

13
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Figure 2.7: Waveform of male voice saying ‘Imperial College’ side-by-side with its spec-
trogram

2.5 Genetic Algorithms

A genetic algorithm is a search technique for problems with a large search space, abstract-
ing evolution in the natural world [I2]. It is often used where a normal search algorithm
would be impractical and no straightforward approach is obvious. It does not guaran-
tee an optimal solution, but converges towards one. The general Genetic Algorithm is
outlined here, but there are many variations.

The first step is to represent potential solutions as a ‘Gene’ sequence, similar to DNA
as used in nature. This involves encoding the parameters in a concise, sensible manner
so that a single data structure can be used. At the most basic level this is done with
bitstrings — long binary strings which are interpreted by splitting them up into the relevant
fields, as shown in Figure[2.8] They are only suitable for problems where there are a fixed
number of parameters.

Bitstring

01001001‘0000#1111101‘1 1010000

73 0 125 208

Figure 2.8: A bit string with values for 4 parameters

A population of many solutions is considered at each point in the algorithm. In this way,
many different values are considered for each parameter in parallel. Typically the starting
population features randomly generated individuals, but sometimes a well-known good
selection is used.

At each stage of the algorithm, all the individuals are evaluated for fitness. This means
interpreting the genes to produce the ‘real solution’ it represents, and then using a fitness
function to calculate a fitness value for that individual. The fitness function must be
continuous and assign a value to any individual, as it is used to compare the popula-
tion.

Following this, a selection of the fittest individuals is performed, for example using a
roulette algorithm. This entails selecting individuals randomly in proportion to their

14
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Figure 2.9: One-point crossover in action

fitness over the sum fitness of the population. Thus fitter individuals have a higher
chance of being selected. Non-deterministic selection like this can be preferred in GAs
to prevent being caught in local mazima, where fitness is high compared to the similar
individuals, but not at a global maximum.

The selected individuals then breed to produce the next generation. Often they are
be paired up randomly to produce offspring until the population is re-filled with new
individuals. With bitstrings this can be done with one-point crossover — a random point
is selected and the bits selected from either parent on the two sides of the split point,
such as in Figure [2.9

The problem facing a breeding strategy is that it must avoid dividing successful parts
of an individual’s strategy whilst also allowing the inclusion of (possibly) better genetic
material from the other parent. Whilst one-point crossover is often used by default,
better performance often comes from more elaborate schemes [12]. There are many
other options, such as n-point crossover, probabilistic crossover, and tree-based schemes.
However, the simplest extension for the most gain is two-point crossover, as shown in

Figure 2.10]

0111010000

010010010000011111
1 0011(11001

011000100100000011

0100100001000000110111010000

Figure 2.10: Two-point crossover in action

After combination, mutation may be applied — randomizing a few genes — in order to avoid
stagnation of the ‘gene pool’. The new individuals then contain a variety of combinations
of previously successful sequences of genes, and have a chance at being even fitter.

The algorithm then loops, repeating the evaluation, selection, and breeding for each
generation. Termination can be set up to occur for an application-dependent condition;
either a ‘good enough’ fitness is found, a maximum generation count is reached, or any
other test that can ensure the usefulness of the solution. In some applications, an optimal
solution may be easily recognizable. The overall loop can be seen in Figure [2.11]

The Genetic Algorithm is not fixed, and a specialized GA can feature many different
problem-specific or experimental changes. Some of these include alternative represen-
tation schemes (e.g. trees), different selection algorithms, other breeding schemes, etc.
For example, the genes could be represented in a two-chromosome format, as in nature,
allowing each individual to carry more genetic information than it expresses.

15
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Figure 2.11: Summary of the Genetic Algorithm
2.6 Pre-existing Work

As far we have found, there are three prior published works that use a GA to optimize a
synthesizer model for resynthesis. They are all based around FM synthesis.

2.6.1 Tan, 1996

This paper [16] describes using a modification of the basic Genetic Algorithm known as
the Genetic Annealing Algorithm to optimize a simple DFM synthesizer to match sound
spectra obtained from steady-state waveforms of real-world instruments. It shows that
resynthesis via a GA is plausible, but has some drawbacks:

e Only the steady-state spectrum of the target sound is matched — not its time-based
evolution as represented by its spectrogram.

e The synthesizer model used features only a single DFM carrier which severely re-
stricts the types of sounds that can be matched.

e Most of the evolved individuals feature too many high partials, a side effect of using
purely FM synthesis — these could be eliminated by combining subtractive synthesis
with a low pass filter.

2.6.2 Lai, 2006

This paper [10] is a fresh reimagining of the concept as the authors seem unfamiliar with
the Tan paper. However it describes a very similar system with a few enhancements:

e The FM synthesis model uses more waveforms than sine waves, such as a sawtooth
waves.

e An enhanced fitness function is used with a weighted sum of two spectrum-comparison
metrics.

e The GA selection and crossover methods are investigated and shown to be good for
the problem domain.

16
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Figure 2.12: Output from Yong’s program showing matching of an oboe

The work gathers inspiration from several sources in both the GA and synthesis literature
and proves it benefits from the extra techniques. However it is fairly brief and the results
shown are fairly biased — they present an ‘exact match’ but it is for a sound that was
generated by the synthesizer to begin with. Other drawbacks include:

e The synthesizer model used is very simple and uses only one FM carrier.

e The fitness function presented has some controlling parameters, but these are only
selected arbitrarily and not investigated.

e A larger variety of sounds needs testing.

2.6.3 2007, Yong

This project [I7] presents a system implemented in Matlab based upon a combination of
the Tan and Lai papers. The DFM synthesizer model used is based upon the Tan paper,
and the GA and fitness functions employed from the Lai paper.

The key extension in this work is that multiple DFM carriers are used at once, enabling
richer spectra to be produced. Each DFM carrier is encoded separately in the genes, and
each individual may have between 1 and 20 such carriers. This allows a large range of
sounds to be recreated with more accuracy.

Yong has made the Matlab code available, and we have tested it and found it to be
generally effective. An example run takes a few minutes to produce a sound that nicely
approximates a tone from an input file. It also outputs the spectrum of the input and
output sounds so one can visually compare the accuracy, such as in Figure 2.12

This work still falls under our major criticism of the other two though — it is only con-
cerned with matching a single sonic spectrum, not an overall spectrogram. This step
deletes most of the information present in a wave file, and cannot match the important
evolving characteristics of a sound. At the end of the report Yong highlights this failure
by showing the matching of a cat meow sound. Whilst a cat meow has a definite tonal
quality, reducing it to a single spectrum overlays all the differently pitched parts of the
sound at once, giving it a similar fingerprint to noise, and so the GA fails at matching
it.

Therefore we make this one of the main targets for improvement in our project.

17
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Chapter 3

Outline

In this Chapter we describe the basics of our system, before presenting the details in
Chapters [4] and [} We also discuss implementation choices and recognize some draw-
backs.

3.1 Overall View

Figure |3.1] gives an overall view of the system — it should look familiar as it expands the
basic GA pattern as presented in Section

3.2 Synthesizer Model

We implement a synthesizer that combines FM and subtractive synthesis models. We
copy the Yong work by using multiple DFM carriers as the basis for the synthesis. The
subtractive side comes from adding a low pass filter in the signal path — this is intended
to cut down the large number of high partials that DFM synthesis can generate.

Following the research from Chowning on Dynamic Spectra [3], we add the scope for
dynamic spectra with independent ADSR envelopes on the index of each modulator, in
each DFM carrier. This allows them to change their modulation index over time, and
with each envelope taking its own shape there is a lot of scope for complex evolving
textures that can match the target sound.

We also have ADSR envelopes applied to the filter’s cut-off frequency, pitch control, and
overall amplitude. This gives the synthesizer a lot of scope to produce sounds with evo-
lutions over time. Figure [3.2] summarizes the entire signal path of the synthesizer.

3.3 Genetic Algorithm

Most of the GA outline is described in Figure[3.1] We use a random initial population and
loop over evaluation, selection, and breeding until we reach the terminating generation.
We implement the fitness metric and selection method suggested in the Lai paper [10],
but with extensions.

19



configuration

l
synthesizer
) |
e sound
Initialize J l

Target sound
to spectrogram

Pre—process]

et T T AT ith
Randomly ST e
Evaluate Selection Breed
spectrogram n-tournament Two-point
comparison method Crossover

Loop until generation X

Figure 3.1: An overall view of the system
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Figure 3.2: Arrangement of the components in the synthesizer model
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Individuals in the population represent a synthesizer configuration by a series of 64 float-
ing point and integer ‘genes’. We evaluate the fitness of such a member by constructing
the synthesizer with the represented configuration, recording its output, and comparing
this spectrogram with the spectrogram of the target sound.

We use a spectrogram comparison function as suggested by Lai et al., which combines
two different metrics in a weighted sum. It produces an error value, not a fitness value,
so the GA works in terms of minimization rather than maximization. We detail this in
Section and work to optimize the weighting of the metrics in Section [6.4]

Selection is done with an n-tournament selector, again at the suggestion of the Lai paper;
however we improve it with elitism. The GA is set to terminate after a fixed number of
generations.

3.4 Missing Detail

The ‘missing detail’ that prevents 100% automated sound resynthesis is pitch detection.
Because the synthesizer must take an input note to work at, we need the pitch of the
target sound to properly resynthesize it — but the waveform doesn’t directly give us this
information. The Yong work deals with this problem by taking an argument of the pitch
to resynthesize at alongside the target waveform, meaning the user must know the pitch
the target sound is at.

Whilst there is scope for adding an automatic pitch detection algorithm, of which many
exist, we do not implement it. Fully automated resynthesis is not the focus of this
project, so it would only be a matter of convenience to add it. In most cases we have
prior knowledge of a target sound’s pitch anyhow.

Therefore we take the pitch of the target sound as a second argument alongside its
waveform.

3.5 Implementing in Java

The project is implemented in Java, using two high quality libraries to provide the basics
for both parts — Minim [7,[0] for the synthesizer and JGAP [13] for the GA. Both provide
steady bases in their respective areas, and will be described in more detail in the respective
chapters.

Whilst an implementation might run faster in a machine-code-target language such as C,
or taken less coding in a scripting language such as Python, Java was chosen based on
this rationale:

e It is relatively fast in comparison to scripting languages, even audio-specific
languages such as LAPSDA. Although it runs in a virtual machine this has seen big
improvements in recent years so it can nearly match the speed of machine-specific
code on many tasks.

e The object-orientated architecture is good for dealing with the many synthe-
sizer instances that need to be dealt with in parallel, plus the save/load object
capabilities would make storing configurations in files easy.

21



e It is cross-platform so the end result is not limited to a single operating system.

e The libraries available for both the synthesizer and GA parts provide ground-
level features that speed up development considerably.

22



Chapter 4

Synthesizer Model

In this Chapter we give a detailed description of the synthesizer model as implemented
in Section show how we record and analyse the output sounds in Section and
then detail difficulties overcome in the synthesizer design in Sections [4.3] and [4.4]

4.1 Structure

The synthesizer can be viewed as an isolated system that converts pitch data into audio
data, as shown in Figure 4.1l To represent pitch we use a basic form of the MIDI format
— a standard data type for representing musical information. For audio we write to a
floating point data buffer. Minim provides the conversion from MIDI to frequency and
takes the floating point audio data to the speakers for output.

The synthesizer is implemented as a single unit with defined interfaces so that it can be
easily integrated with the GA — it has no awareness of where its MIDI data comes from or
where its audio output goes to. We can easily play it live with manual keyboard control

or automatically record its output for a given note.

In the following subsections we elaborate on the internals of the audio synthesis process
as helped by the Minim library and then show the entirety of the synthesis chain.

Synthesizer

MIDI =iy Litch Synthesis e Audio

o AN

Figure 4.1: The basics of the synthesizer system
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4.1.1 Universal Generators

The Minim library presents a modular signal-generating interface using its UGen ( ‘Univer-
sal Generator’) superclass. All data passing is handled by Minim and each UGen can take
input from others by defining public inputs. A UGen only need implement the abstract
method uGenerate(float[] channels) to define its output on a per-sample basis — for
example, the most basic UGen that outputs a constant value is implemented as:

package ddf.minim.ugens;

public class Constant extends UGen {
private float value;

public Constant( float val ) {

super ();
value = val;
}
@Override
protected void uGenerate( float [] channels ) {
for(int i = 0; i < channels.length; i++) {
channels|[ i | = value;

}
}
}

We build our signal path out of many different UGen classes — although there are many
provided with the library, we only use a few with adaptation and create the rest from
scratch.

4.1.2 UGen Chain

The following UGens are used in the synthesizer:

1. Glide — glides towards a target frequency in a given time. Designed for manual
monophonic playback of synthesizer.

2. ADSRRepeatable — provides an ADSR envelope that can be restarted. Adapted
from the included ADSR code that would not allow restarting and thus prevented
the synthesizer being used to play more than one note.

3. ValuePlusADSRPercentage — takes a value input and scales it percentagewise
by the amplitude of its ADSRRepeatable envelope.

4. ZeroHzFMCarrier — FM class we implement to provide the DFM functionality.
The class contains a list of source UGens that it controls and then performs zero-hz
frequency modulation on their sum.

5. SinePlusADSR — our own sine wave oscillator class that includes an ADSRRe-
peatable to change its amplitude.
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6. Summer — a built-in class that is used to add together several other UGens’ out-
puts.

7. MoogFilter — a built-in class that implements the ‘Moog-style’ low-pass filter,
providing input control for its cut-off frequency. This is a 24dB/Oct low-pass filter
that is generally considered ‘more musical’ than a plain low-pass filter.

8. ValuePlusADSR - our own control class that provides a constant value that
is then modified an absolute amount by the amplitude of its ADSRRepeatable
envelope.

Figure 4.2| shows the total structure of the UGen chain as used in the implementa-
tion.

4.1.3 Configuration

The synthesizer has a large number of parameters to be configured — a total of 64 in the
final implementation. One of the problems faced in Java is providing values for all these
in a constructor, as it is impossible to take 64 arguments to a method.

We use a custom configuration class that provides the storage of floating point/integer
values for each parameter in a hashmap. The interface allows the discernment between
the two data types and the provision of constraints and default values for each parameter.
We can then configure the synthesizer by constructing it with such an object, and save a
configuration by saving this object using Java’s ObjectOutputStream class.

Because of the genetic dependence on the parameters, it is only in section that we
will present the entire list of parameters configurable in the synthesizer.

4.2 Recording and Analysing

To link the synthesizer with the GA we need to record its output. Minim handles passing
the output to speakers, but provides no recording method. However, the UGen interface
makes redirecting the output simple.

We use a recording class that repeatedly calls the synthesizer’s output UGen to uGenerate
one sample at a time and store this in a float[] array. We then have the synthesized
sound in a manipulatable form, and can save it as a wav file or analyze it.

We also implement code to generate a spectrogram from such an audio buffer, so that we
can analyse both target and resynthesized sounds. We use Minim’s FFT code to generate
a single spectrum at a time, in power-of-2 size windows. We use a 75% window overlap to
obtain more detail in the time domain and reduce boundary artifacts. Figure 4.3| shows
an example spectrogram generated from an oboe recording.

4.3 Envelope Mess

Early versions of the system featured entirely autonomous ADSR (Attack, Decay, Sus-
tain, Release) envelopes for the amplitude, filter, pitch, and independent FM modulator

25



Pitch Control  Pitch.Env.

Pitch Input —)[ Glide ]—)[ValuePlusADSRPercentage)—) /
pitch

[ADSRRepeatableJ

FM Synthesis Amp.Env.

/ ZeronFMCarrier): —)( Summer ]—)(ADSRRepea,table]—) /
1T

pitc
[(SinePlu-sADSR))

(1 or 2 per carrier))

(up to 5)

Filter

P T

T frequency
(ValuePlusAD SRJ
Filter Env.
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Figure 4.3: The spectrogram of an oboe note
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Figure 4.4: Illustration of the ‘messy’ effect of many randomly generated ADSR envelopes
interacting together

indices, but this proved to be a bad idea. The output sounds were extremely complex and
the GA found convergence hard, even for simple sounds such as a sine wave — because of
the complexity of evolving many different envelopes at once, the correct attack/decay/re-
lease timings were rarely found.

Multiple unsynchronized ADSR envelopes are very ‘messy’ because they create extremely
complex sounds with essentially no fixed character. With many different envelopes being
modelled at once, the attack phase is only over after the last one finishes its attack phase
— even if the others have started or passed their decay phase already, as indicated in
Figure 4.4 This also applies to the decay and release phases, leading to a single long
envelope effectively monopolizing the overall sound of the synthesizer.

As most of the real world sounds do not rely on complex harmonic evolutions in their
attack phase, we found this model to be overkill. It was simplified to the following;:

e There is only one value for each attack, decay, and release that cover all the en-
velopes.

e Fach envelope maintains its own sustain value — as some parameters may need to
stay high whilst others should disappear after the decay phase.

e The FM modulator index envelopes were given ‘models’ to select between — see next
section.

After this simplification the GA had much better performance optimizing the synthesizer
parameters.

4.4 Evolving Spectra

As shown in the background section [2.2], changing the index of a modulator in FM causes
rich and varied changes in the resultant spectra. For this reason ADSR envelopes are
applied to the indices of each modulator in the synthesizer. However, the ADSR model
is enhanced to allow a wider variety of spectral evolutions.

The effect of changing a modulation index is not particularly well defined, but can be
estimated intuitively [3]; both increases and decreases can be used to model the harmonic
change of certain sounds over time. Thus the envelope applied to the modulation index
should work for both increases and decreases at any phase.
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Figure 4.5: The three ADSR models applied to modulation indices

We allow each index to take one of three ADSR envelope models:

e Low to High — the envelope starts at 0, peaks at 1, and ends back at 0 after the
release phase.

e High to Low — the envelope starts at 1, peaks at 0, and ends back at 1 after the
release phase.

e High to High — the envelope stays at 1 for all of the start, peak, and post-release
parts — however, it still falls to its sustain value.

Thus the index ADSR envelopes are controlled by only two parameters — the model
(from 1 to 3), and the sustain value (from 0.0 to 1.0 amplitude). They use the global
attack/decay /release times, as fixed above. The models are illustrated in Figure .
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Chapter 5

Genetic Algorithm

In this Chapter we cover details of the genetic algorithm, which we implement with the
JGAP library. We detail the types of Genes in Section [5.1], the Fitness Function in Section
[.2] and genetic operations in Sections and We then expose the genome in Section
.6l and detail the termination in Section On the way, we cover two additions we
made to significantly improve the GA over previous works, in Sections and [5.8

5.1 Genes

In the JGAP framework we define a Genome for the population — a template which all
individuals conform to consisting of an ordered array of gene objects. Each gene object
has a datatype (Integer, Floating Point, etc.) and constraints (e.g. a Minimum) that
JGAP uses to make sure random individuals are valid to the problem domain.

Effectively, JGAP uses a bitstring implementation with the crossover points limited to be
on the boundaries between the individual numbers, which is known to improve conver-
gence when using complex number representations such as floating points [11]. Because
of this the framework presents only a limited number of gene types, of which we use only
Floating Points and Integers, with Booleans stored as integers constrained to either 0 or
1.

The genome is automatically derived from the synthesizer model, which exposes its pa-
rameters as either integers or floats. We have utility functions to map from synthesizer
configurations to genes and back, meaning JGAP can work with genes and the respective
synthesizer can be easily determined. An example section of the genome is presented in
Figure [5.1

Decay Length § Pitch Env. On gPitch Env. Amt.§ Num. Carriers

Float Integer Float Integer
0,4] seconds 0/1 [-50.0,100.0] [1,5]

Figure 5.1: An extract of the genome
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The following sections elaborate on the internals of the GA and provide justification for
design choices made for the Genome before we present the entirety of the Genome in

Section (.6

5.2 Fitness Function

Inside the JGAP framework the fitness function must accept a genome and turn it into
a fitness value. We do this by comparing the spectrograms of the target and synthesized
sounds to estimate how well they match.

We pre-process the target sound and store its spectrogram. Then for each individual
genome in the population, we can calculate a fitness value with a multiple-step proce-
dure:

1. Chromosome — Synthesizer Configuration
The Gene values presented in an individual’s Chromosome are reinterpreted as a
configuration for the synthesizer.

2. Synthesizer Configuration — Synthesizer Instance
The synthesizer class is instantiated and prepared for playback.

3. Synthesizer — Waveform
The synthesizer has its output redirected to a wavebuffer and is played at the input
MIDI note pitch, for a length of time to match the target sound. This is done much
faster than realtime playback.

4. Waveform — Spectrogram
The waveform is converted to a spectrogram using the given transform window
length.

5. Spectrogram — Fitness Value
The spectrograms of the synthesized and target sounds are compared using the
below formulaeto arrive at a fitness value.

The fitness formula itself is taken from the Lai paper [10] which was also used in the
Yong work [17]. It uses a weighted sum of two metrics that are used to compare different
characteristics of spectrograms — Spectral Norms and Spectral Centroids.

For a spectrogram f, we define f,(w,b) to be the magnitude of their Fourier Transform
at window w and bin b. We compare two spectrograms f, and f,, for the synthesized
and target sounds respectively. Let W be the number of Fourier Transform windows
to compare, which is the maximum number of either sound as the synthesized sound is
created to be the same length as the target. Let B be the number of bins used in the
Fourier Transform, which is half the total window length for audible sound [2].

The Spectral Norm formula is given as:

B

N(a,b) :ZZ|fm(w7b)_fy(w7b)|2 (5.1)

w=1 b=1
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Which is intuitively the sum of the absolute difference squared for each point of the
transforms. This is a typical measure of the difference between two sounds and helps
the GA hone in on correct sounds as the error for missing or including a harmonic that
should not be present increases the with the square of the difference.

The Spectral Centroid formula is given as:

_ Zszl fa(w,b) X b

Cla,w 5
(o) > bt Ja(w, D)

(5.2)

for a single sound a at a single window w. The centroid measure is also called the
brightness, as a larger spectral centroid corresponds to an emphasis on higher frequency
components, which results in a brighter sound. In practice we compare the sum of the
absolute difference between the two sounds across all windows, Cy;¢(a, b).

These two metrics are added as a weighted sum:

1 1
error(a) = EN(G’ b) + §Cdif(a, b) (5.3)

As this is an error term, the GA works in term of minimization rather than the traditional
maximization process.

This sum is taken at the suggestion of the Lai paper, but there is no rigorous proof as to
why it is the ideal weighting at % and % We later run experiments to find the optimum
weighting, in Section

5.3 Selection Method

The selection mechanism used is a tournament strategy as suggested in the Lai paper [10],
but with elitism as an extension as it improves the performance of GAs [12].

The n-tournament selection method creates small tournaments between n random indi-
viduals from the population. The fittest in the tournament gains the right to breed, and
the winners from two tournaments are combined into a new individual with two-point
crossover. Tournaments continue until the new population is full again.

The method is meant to simulate real world natural selection where individuals compete
to breed, but only against a limited set of others as opposed to the global population. The
restricted tournament size means the fit individuals that come out top are not necessarily
amazing relative to the entire population, but are definitely better than some. Thus fresh
combinations of genetic material are more likely than in a selection mechanism that overly
favours the globally fittest individuals.

At the suggestion of the Lai paper, the tournament size is set to 5. However they again
provide no backing as to why this is the ideal number, so we experiment with this to try
and find the optimum in Section [6.5]

Elitism is added, copying the top individuals directly into the next population. This
preserves the best individuals, protecting their highly fit traits from being deleted due to
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Figure 5.3: The combined elitism and tournament methods

crossover. This occurs before the tournament process, but the fit individuals are left in
the pool so they can also be selected for tournaments.

Elitism adds a stronger ‘forward crank’ to the genetic algorithm by preventing the
crossover operation from destroying the best configurations that have been discovered.
However it can also lead to local minima being exacerbated, but the mutation is designed
to deal with this.

5.4 Genetic Operators

The individuals are combined with two-point crossover, which is believed preferable to
one-point crossover as the combination of different carrier properties from individuals
is desired. JGAP does not manipulate raw bitstrings, but only allows crossover on the
boundaries between the independent genes, so we preserve the sanity of the values.

Mutation is applied to all individuals after the selection and crossover process, with a
mutation rate p defining the chance of a particular gene being mutated and replaced with
a new random value. For each individual, each gene has a random probability evaluated
with p = i for the gene to mutate; thus about 1 in every u genes is mutated. We set p
to 200 at the recommendation of [12].
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Figure 5.4: Unnecessary pitch envelope use in an individual that remained highly fit due
to its correct second-half

5.5 Regulatory Genes

Initial runs of the GA were promising, but the generated synthesizer patches were not
very well aligned with the target sounds’ envelopes. This was especially clear in sounds
that have no envelope, such as a sustained synthesized pitch.

For example, Figure |5.4| shows the spectrogram of a resynthesized sound that was an
attempt to match a pure sawtooth wave. The second half is mostly correct, but the start
has a very excessive use of the pitch envelope parameter to generate a large bend which
is not present in the target sound. If the pitch envelope amount was set to 0% in this
same individual, it would be a very good match at almost twice the fitness.

The problem was that the probability of the GA finding the optimum pitch envelope — 0%
— was low, as when mutated it could fall anywhere in the [—50, 100] range. This problem
also extended to the other envelopes for the amplitude, filter, and modulation indexes.
For example, some sounds feature no attack phase for any of these parameters, but it
would still persist throughout the population due to the low probability of becoming
‘turned off” and set to 0.

The solution was to add regulatory genes, a suggestion found in [12]. In nature, genes
form a complex network of control, with regulatory genes affecting the expression of other
genes, which is what leads to cells differentiating their types. Adapting this concept to
our GA meant adding genes that control whether or not another gene takes effect.

The regulatory genes added were, in JGAP terms, integer genes which take either 0 or 1.
When constructing the synthesizer these are treated as a boolean value controlling the
expression of their target gene. For example, if the pitch envelope on/off regulatory gene
is off, the pitch envelope amount is set to 0; but if it is on, the pitch envelope amount is
derived from the respective gene. Two of the regulatory genes added are demonstrated

in Figure

The following is the full list of regulatory genes implemented:
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I 3

Pitch Env. On jPitch Env. Amt.
0/1 -50,100] %
I 3
Attack On Attack Length
0/1 [0,4] seconds

Figure 5.5: Regulatory genes in the genome

Attack Phase On/Off

Release Phase On/Off

Pitch Envelope On/Off

Filter Envelope On/Off

Number of Carriers Active

e Per Carrier : Number of Modulators Active

The ‘Number of Carriers’ gene is the highest-level regulatory gene, as it affects a lot of
genes at once. Whilst each individual contains configuration parameters for the maximum
of 5 carriers, only the number specified by the number of carrier genes will ever be active.
Thus a 1-carrier individual is mostly carrying ‘junk’ genes which encode for the spare 5
carriers — a parallel to the human genome which is estimated to be 95% ‘junk’, encoding
for unexpressed proteins.

Following this addition, accuracy improved greatly. The resynthesized sounds stopped
featuring the pitch envelope when unnecessary, as well as no attack/release phases for
non-fading sounds.

5.6 Full Genome

Table [5.6] shows the entire listing of the final genome used. For floating point genes
we show decimal points in the value ranges, whilst for integers only round numbers are
shown. The per-carrier section is repeated for each of the five carriers; the per-modulator
section is repeated two times for each modulator

With 4 genes per modulator, 2 modulators per carrier with an extra 2 genes each, and 5
carriers with a further 14 global genes, the genome has a total size of ((4x2)+2)x5+14 =
64. However not all take effect in each individual as regulatory genes come into effect,
turning off modulators, carriers, and/or envelopes.
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Name & Effect Range
Attack On/Off — regulatory gene for attack [0,1]

Attack — length of attack phase [0.0,4.0] seconds
Decay On/Off — regulatory gene for decay [0,1]

Decay — length of decay phase [0.0,4.0] seconds
Amplitude Sustain — level amplitude sustains at [0.0,1.0]

Pitch Envelope On/Off — regulatory gene for pitch | [0,1]

envelope

Pitch Envelope Amount — range of pitch envelope | [-50.0,100.0] %

as percentage, where -50% gives -1 octave and +100%
gives +1 octave

Filter Frequency — base frequency for filter

[30.0,20000.0] Hz

Filter Resonance — resonance factor for filter

[0.1,0.5]

Filter Envelope On/Off — regulatory gene for filter
envelope

[0,1]

Filter Envelope Amount — scales the effect of the
filter envelope

[-10,000.0Hz,10,000.0] Hz

Filter Envelope Sustain — the sustain value for the | [0.0,1.0]
filter envelope ADSR model

Number of Active Carriers — out of the total pos- | [1,5]
sible 5, how many should be active

Per Carrier :

Carrier’s Amplitude — volume multiplier applied | [0.0 to 1.0]
to signal generated by carrier

Carrier’s Active Modulators — either 1 or 2, gives | [1,2]

the possibility to use a single modulator instead of

the 2 in the DFM model

Per Modulator (Per Carrier) :

Modulator Index — defines the peak amplitude the | [0.0,10.0]

modulator operates at, referred to as its index in the
formulee

Modulator Ratio — the multiplication ratio of the
modulator’s pitch from the fundamental frequency

{0.25,05,1,2.3.4,5,6,7.8}

Modulator ADSR Model - selector for the ADSR | [1,3]
model used for this modulator’s index (as per Section

=)

Modulator Sustain — the sustain value for the | [0.0,1.0]

ADSR envelope applied to the index

Table 5.1: The full genome
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Figure 5.6: Normalization applied to a waveform
5.7 Termination Condition

As explained in the background Section [2.5] the generic GA does not define a termination
condition as it needs selecting on a per-application basis. For this system we choose to
terminate after a fixed number of generations — a very simple scheme, but we have a
rationale:

e Some sounds never converge that satisfyingly, so having a minimum error threshold
would not make sense

e Some sounds slowly converge forever, so stopping after convergence stops could still
lead to very long execution times

e A fixed, predictable runtime is desirable which no other termination condition can
provide

e Most sounds reach a satisfying convergence after 30 generations, as we will show in
Section

We later do an experiment to find the optimum cut-off generation, in Section |6.2

5.8 Normalization

First iterations of the system had problems matching the sound due to the challenge of the
amplitude. Because each carrier’s modulators have independent amplitudes and a non-
fixed number of carriers are active, the basic output of the synthesizer can fall in a wide
amplitude range. Thus a sound could be entirely correct in its frequency content but come
with the incorrect volume level — which adds a lot of error due to the Spectral Norms
metric as defined in equation [5.1 This problem was overcome by adding normalization
to all waveforms present in the GA.

Normalization is the process of stretching a waveform so that its peak amplitude matches
a target amplitude; when this is set to 1.0 it will make the entire range of the sound fall
within the [-1.0,1.0] range. We implement it by scanning the waveform for its maximum
absolute value, then dividing all values throughout. This can scale a sound up or down
in amplitude, and is demonstrated in Figure [5.6

When added to the GA this significantly improved performance. A normalized form of
the resynthesized sound is compared with a normalized form of the target sound. This
greatly reduces the error between similar sounds as the volume ratios are not required to
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accurately evolve, only the tonal quality. In addition, certain balances of partials are only
possible with low amplitude FM modulators, so the normalization process is necessary
to bring these up to the right level.

We quantify the improvement that adding normalization adds with experimental results
in Section [6.3

After adding this to the GA, it was necessary to extend the synthesizer, as a fit configu-
ration could also be excessively quiet or loud. We added a new volume scaling parameter
in the synthesizer which was set to the scaling factor from normalization so when played
back the whole synthesizer sound is itself normalized.
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Chapter 6

Experimentation

In this Chapter we experiment with our system to optimize our parameters and prove
the new features we have added are true improvements. In Section we describe
how we run our experiments, and then in Sections [6.2] [6.3] [6.4] and [6.5] we present our

experiments.

6.1 Experimental Setup

We run several experiments in the following sections, all of which run with the same base
and then we vary a parameter. The basic constants are:

e Population Size = 100

Number of Generations = 30 (this is chosen in )

Elitism Percentage = 10%
e Mutation Rate = 200 (1 in 200 genes will mutate)
e FFT Window Size for Spectrogram Analysis = 8192

Each experimental configuration is tested on a suite of 7 sounds which have been selected
because they are fairly approximable with the synthesizer and cover a range of complexity.
They are shown in table [6.1]

All experiments are repeated 5 times for each target sound and averaged to smooth out
the stochastic nature of the GA.

6.1.1 Distribution

Due to the circa 20 minute runtime per sound, we distribute our experiments across
multiple machines. The Java program is compiled to a JAR file and accepts parametric
arguments on the commandline. We then use a perl wrapper script to run the experiments
across the Condor distributed environment [4], performing many CPU-hours of tests at
once on the DoC computing pool.

With 7 sounds at 5 repeats, each experimental configuration takes 35 runs. With a mean
runtime of 6 minutes per 10 generations of 100 individuals, a typical experiment can
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Sound & Description

Detail +

Waveform
Overview

Sine Wave
continuous amplitude and pitch

Sawtooth Wave
continuous amplitude and pitch

Oboe Note
from BBC Orchestral Archive

Electric Organ Tone
produced by another FM Synthe-
sizer

Piano Note
from BBC Orchestral Archive

Detuned Synth Lead
produced by another synthesizer

Modified Square Wave
with a 2 second volume decay

AT

Table 6.1: All the test sounds used in our experiments
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easily require 9 hours of CPU time per data point. This might seem like an excess of
computing time to get our results, but a lot of averaging is required to find trends without
being affected by the stochastic nature of the GA.

6.2 Number of Generations

As explained in Section[5.7], the GA is set to terminate after a fixed number of generations.
However, choosing the cut-off point is not easy without data. We experiment by running
the GA for a long time and then choose the cut-off point from the results.

We run the standard test configuration as defined above for 100 generations. The results
for each test sound are plotted in Figure [6.1]

Analyzing the graph, we see each sound exhibiting the standard GA convergence curve
similar to an exponential decay, as we expected from background literature [12), [11]. Each
experiment tends towards the best possible resynthesis at 0 error, with each downwards
jump indicating a beneficial mutation spreading throughout the population.

Most of the sounds show only a small amount of improvement over their starting point,
reaching about 50 to 100 error. However as this is mean error it is slightly misleading,
and most of the sine wave runs end with a best individual error of only 1.0, a near-perfect
match. The sawtooth wave is an outlier on the graph, and its analysis is presented in

Subsection [6.2.1] below.

The termination generation for the experiments that follow is chosen to be 30 generations,
as this is where most of the sounds reach an acceptable error value. Excluding the
sawtooth wave, the mean error of the sounds is 75.6 at generation 30, which is within
22% of the mean error of 61.8 at generation 100.

6.2.1 Sawtooth Wave

Interestingly the sawtooth wave never reaches a very good error value and has the most
continuous improvement over time, which is believed to be because of its infinite series
of partials becoming slowly matched. The DFM equation that the synthesizer model
operates upon can only generate a finite number of partials, so no exact match is ever
possible. It appears though that over time the GA finds ways to add more and more of
those partials accurately.

Figure shows the results of one of the 100 generation runs compared with the target
sawtooth wave. The waveform and sound are very similar, but the spectra have a lot
of difference. The blue FFT of the pure sawtooth has many artifacts due to its infinite
nature — reflected frequencies and aliasing cause the appearance of extra features which
aren’t actually present in the pure tone [2].

Therefore the sawtooth is hard for the system to be matched with DFM, but this is due
to its infinite nature not being easily recognized by our similarity metric.
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Figure 6.1: 100 generations of convergence for the 7 test sounds
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Figure 6.2: Waveforms and spectrums of the target and resynthesized sawtooth wave
compared

6.3 Normalization

The GA implements normalization on both the target and resynthesized sounds to im-
prove the quality of matching, as explained in Section [5.8f We show here that it is a
valuable addition to the system by measuring performance with and without it.

We test the convergence rate both with and without normalization for the standard 7
test sounds and take the average of 5 repeats. The below table summarizes the mean
fitness of the population after 30 generations for both tests:

\ Without Normalization | With Normalization
’ Mean error at Gen 30 \ 176 100

Normalization clearly adds a better convergence to the GA, and the mean fitness across
generations is show in Figure [6.3, The mean error starts higher with normalization, but
converges at a faster rate, indicating the GA has a better ability to ‘discern’ between the
quality of individuals.

6.4 Balancing the Fitness Function

Recall that the error formula, Equation [6.1], is a two-part weighted sum of the error from
the norms and centroids formule, as taken from the Lai paper [10]. The paper shows that
a fitness function summing both error metrics is better than either individually. However
it only ever uses an equal weighting of % for each metric, but there is no evidence presented
in the paper that this is the optimal weighting. We aim here to find the perfect balance
for the weightings. We rewrite it as:

error(a) = aN(a,b) + (1 — a)Cys(a,b) (6.1)

This gives us a new parameter o we vary between 0 and 1 to find the optimal weighting
to help the convergence of the GA. We test values from 0 to 1 in increments of 0.1 and
record the minimum norms error NV and centroids error Cy; s for each configuration. Again

43



Mean Error

Comparing Normalization
450
= Without Normalization -+ With Normalization
400
350
300
250

200

150

p
L 4

L 4
*

L 4
4

100 -
50

0
1 23 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Generation

Figure 6.3: The performance increase from using Normalization in the Fitness Function
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Tournament Size | First Generation within 30% of Final Error
2 13
3 11
4 10
5 8
6 9
7 9
8 7

Table 6.2: Effect of Tournament Size on convergence

these results are averaged across the 7 sounds and 5 repeats for each. Figure shows
our findings.

Unsurprisingly, when a = 0 and only the Centroids error is considered, the Norms error
remains very high; conversely when o = 1 the Centroids error is very high. It is also
clear the optimal weighting to minimize both error measures is not around 0.5, but more
around 0.8. Thus we use a = 0.8.

6.5 Finding the Optimum Tournament Size

The last parameter we experiment with is the tournament size used in the selector, as
detailed in Section [5.3] This was again copied from the Lai paper with no proof of its
optimality, where they suggest using a tournament size of 5.

We experiment with the tournament size between 2 and 10, using the optimal fitness
function as achieved above. We use the same test suite of 7 sounds for 5 repeats. Figure
6.5 shows our findings.

We note two things on this graph. Firstly a larger tournament size leads to faster con-
vergence, as the successive curves for larger tournament sizes fall underneath each other.
Secondly, the tournament size does not seem to affect the final generation’s error measure,
as all the curves have approximately the same value at generation 30, and the variation
between them seems random.

Table 6.5 shows our results re-arranged to show the speed of convergence. For each
tournament size we present the number of generations it took to reach within 30% of
the final error achieved at the 30th generation. There is a clear downwards trend as the
tournament size increases to faster convergence.

We conclude that a tournament size of 7 or 8 seems ideal. Because each individual
is evaluated independently before the tournaments, there is no performance hit from
increasing the tournament size. The main problem with increasing is that the GA becomes
more likely to converge to only local minima, rather than the globally best solution. This
is because with larger tournaments, fewer solutions can win, so the genetic material in
the population gets limited and specialized rapidly.
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Figure 6.4: The effect of changing « on the mean Norms and Centroids error measures
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Chapter 7

Evaluation

In this Chapter we evaluate the system, questioning how well it can resynthesize sounds
in Section [7.1] discussing the runtime in Section and evaluating against the goals we
set in the introduction in Section [Z.3l

7.1 Resynthesizing Sounds

The main question we must ask when evaluating the system is: how well can it reproduce
sounds? We analyse this in two ways below, statistically and perceptually, drawing upon
mathematical and human measurement of the sonic difference.

7.1.1 Statistical Difference

One of the problems in drawing any statistical measure of the overall resynthesized sounds’
similarity is that the only formula we have is the one used in the fitness function. If there
were a better measure, we would have used that instead. This makes our measurement
circular, as it is not really surprising that the GA finds sounds which are similar by the
same fitness function it uses.

Regardless, we can still draw conclusions from the mean error value the system typically
accomplishes. For our test suite we typically achieve an error between 50 and 70 for each
sound, indicating a fairly good match. Compared to early iterations of the system which
could never drop below 100, it is relatively accurate. Unfortunately, we cannot compare
our error measures with the Lai and Yong works as their implementations differ and use
a different scale to ours.

For the simplest sound, the sine wave, an error of around 1 can be obtained, indicating
a perfect match. However, as explored in Subsection [6.2.1] the basic sawtooth wave is
problematic to match, and at generation 30 still has an error of around 250.

7.1.2 Perceptual Difference

The best measure for such a system is in human perception — we ask: how similar are
the resynthesized sounds to a human listener? Although we cannot present any numbers
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for this measure, we believe that the similarity is definitely there. For example, in the
oboe analysis below we show that the harmonic fingerprint is imitated very well, and at
a basic level they sound the same to human listener, even though one can still tell the
difference.

Most of the perceptual difference is in the much finer details in the sound that cannot be
replicated by the synthesizer model. Sounds such as the resonance of a piano body, the
slight noise from wind instruments, or slight pitch variations due to vibrato are all missing
from the resynthesized sounds. This is typical of synthesizers though, and compared to
third party programs we believe our resynthesized sounds are favourable. Finding a
way to resynthesize perfectly would indeed be solving a large problem in synthesizers in
general — making them sound realistic.

One of the things that can mask the difference is not listening to a single note, but instead
playing back an entire melody with the resynthesized sound. When there is more motion
it is generally harder to tell the difference, as several pitches can be overlaid at once.

We aim to show off our demonstration sounds in the presentation.

7.1.3 Oboe

If we examine a successful sonic match, the Oboe, we can see how well the system
performs. This is a sound also matched in the Yong work [17], so we can compare the
output. The harmonic profile of the oboe is fairly constant throughout, so taking the
spectrum is a useful measure. Figure [7.I] shows waveform, spectrum, and spectrogram
details for both the target sound and its resynthesis.

The waveforms for the sounds appear fairly similar, indicating the same low-partials
presence and high-partials absence. The spectrum rigorises this detail, and proves that
they have very similar harmonic profiles. Indeed, it would only appear to be the slightly
noisy elements, the ‘filler’ on the spectrum between the partials, that the resynthesis is
missing. This is ‘breath’ noise made by the blown nature of the Oboe, sounds that the
FM synthesizer model cannot really replicate.

However, we have only considered the matching of the spectrum, which is the same
accomplishment that the three previous works achieved. To show our system has some
improvements, we must also analyse the time-based evolution of the sounds.

The amplitude envelope of resynthesis is fairly true to the original Oboe, as can be seen
in the full-scale waveform. The attack of the resynthesized sound is a little too long, but
the start of the oboe is more complex than a simple attack and we must consider that
the ADSR model only gives limited control. Overall the target sound is fairly complex
and ‘wavey’, so the smoother envelope in the resynthesis is a good approximation.

For the harmonic evolution, the resynthesis features more change than the original oboe
does, especially with a two high partials that appear and disappear. These add to the non-
oboe quality, but are fairly quiet and so do not have too much of an effect. Perceptually,
this adds a slight metallic, synthetic quality in the sound.

The oboe is one instrument in the woodwind family, and they all share the basic charac-
teristics. Because the oboe matches so well, we believe the rest of the family can also be
resynthesized well.
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Figure 7.1: For both Target and Resynthesized Oboe sounds: waveform detail, total
waveform, spectrum, and spectrogram

51



Target Resynthesis

Figure 7.2: A synthetic sound created by our synthesizer almost perfectly resynthesized

7.1.4 Self-Reproduction

As we have now noted, the DFM synthesizer model is not ideal for all sounds, and is not
even capable of accurately reproducing a sawtooth wave. However, there is one surefire
set of sounds it can reproduce, and that is those sounds made with the same synthesizer
model to begin with.

After some experimentation, we find that most sounds created by the synthesizer can be
resynthesized from their waveform in 30 generations. Often the end error measure for
the last individual is under 20. For example, Figure shows a random sound from the
synthesizer re-produced very accurately. The harmonic profiles are very similar and the
envelope matching is very accurate.

This is a slightly less useful application of the technique, but still has potential. For
example, a music producer listening to a published piece of music might want to use the
same synthesizer sound; if it was produced by this model it can be replicated very easily.
This result also promises that with a more complex synthesizer model, a wider range of
sounds could be matched to a lesser degree of error.

7.2 Runtime

A typical run of the system (a population of 100 for 30 generations) takes approximately
10-15 minutes on a laptop with an Intel Core 2 Duo processor. Note that the runtime is
linear with the length of the sound to be matched — a longer sound means more frames
in the spectrogram, meaning both synthesized sound generation and comparison take
longer.

This runtime is satisfactory, especially since it needs only be done once for a target sound
and runs offline. Of course the user can choose to run for fewer generations to decrease
the runtime at the sacrifice of some accuracy; conversely, as the GA seems to continue
converging beyond the 100th generation, the user could run for as long as wanted. On the
other hand, for potential commercial applications of the concept only runtimes of under
a minute would be acceptable — a music producer wanting to automatically program a
synthesizer would not want a long interruption to their creative flow.
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However, speed was never the primary aim of the project, as we were aiming more to
prove our concept. We believe that the system can be optimized to run a lot faster, and
provide some suggestions on how to do so in the conclusion Section [8.2]

7.3 Fulfilling Goals

In the introduction we stated that we are driven by two motivations — both the repro-
duction and exploration of sounds. We now analyse if the end result is useful to these
goals.

7.3.1 Sound Reproduction

As we have shown throughout, some sounds are much more reproducible than others; the
oboe works well, but the sawtooth wave not so much. However this is not necessarily
due to a weakness in the overall technique, only the synthesizer model employed. We did
quote Yong earlier in stating that DFM is theoretically able to reproduce any sound;
we have found on the way that this is not necessarily true in real-world application.

We cannot therefore reproduce any sound. As we have shown, the sounds that can be
reproduced the best are those that were produced with the synthesizer model itself to
begin with. This is not that surprising though.

Compared to the other works, we have extended sound reproduction to the time domain,
often succeeding at matching much of the harmonic evolution of sounds. This is the main
achievement of our project.

However, the sound reproduction is still limited; but usefully, the GA and fitness func-
tion seem extensible to other synthesizer models. We will suggest further work in the
conclusion that could extend the system to many sounds in the soundscape. Therefore,
whilst we have not hit the mark on being able to ‘reproduce any sound’, we have shown
the same GA-synthesizer model from previous works can be extended to time-evolving
sounds, and paved the way for future work.

7.3.2 Sound Exploration

As stated in the introduction, fully accurate reproduction is not the goal when exploring,
as sounds that are only partially similar are more desirable. We have achieved this as a
side effect of aiming for full reproduction.

Some sounds do not provide a very convincing resynthesis, such as the sawtooth wave,
but the matches still have potential for use. We can also create partial matched sounds
by stopping the GA early before full convergence takes place, creating synthesizer config-
urations that have started to match up the characteristics of the target without adding
every detail.

Additionally, the sounds reproduced are never 100% accurate either, due to limitations
from the synthesizer model.
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Therefore, whilst we did not strictly aim for an exploration system, our result is useful
in this regard.
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Chapter 8

Conclusion

In this Chapter we review all that we have covered in Section and suggest further
work that could enhance the sound-matching capabilities in future systems in Section

B2

8.1 Review

In this report we detailed our system that resynthesizes sounds using a Genetic Algorithm
to adapt a synthesizer model and described several innovations that we add on top of
previous work to improve convergence and quality of the sounds.

We gave background knowledge to the problem in Chapter [2| detailing concepts from
both synthesizers and genetic algorithms. We also described the three previous works on
the matter and pointed out their drawbacks upon which we wanted to build.

An outline of our system was presented in Chapter [3| with a diagram and a short descrip-
tion of both the synthesizer and GA parts. We also noted the detail that we chose to
exclude from the start — automatic pitch detection.

In Chapter [4 we detailed our synthesizer model, describing our implementation and giving
a diagram showing the audio flow. We also described two major problems that were
overcome in implementation, firstly with ‘Envelope Mess’ in Section [4.3] detailing how
we had to actually restrict our synthesizer so it made ‘more sensible’ sounds. We then
described our innovation in controlling the evolution of the FM modulators in Section

44

Following this we presented the details of our GA in Chapter 5] outlining its fitness func-
tion, selection method, and genetic operators. We then showed our use of regulatory
genes as an extension to the state of the art in and described how they improve con-
vergence. We also summarized how adding Normalization improved the fitness function

in Section (.8l

In Chapter [6] we showed our experimental findings. We first outlined how our experiments
were run on a distributed platform consuming hundreds of hours of CPU time, before
describing how we optimized the system for rapid convergence in Sections and In
Section we proved that adding Normalization definitely improves the fitness function,
and in Section[6.4 we improved the fitness function as drawn from the Lai paper [10].
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Figure 8.1: In this spectrogram of a piano note there is little variation between frames
in the blocked-out sustain phase, so only a single comparison would be necessary for this
range

We provided an evaluation of our system in Chapter [7] noting where it works well and
where it fails. We noted that there is a wide scope for further work, and now present our
suggestions.

8.2 Further work

There are many possible lines of investigation to follow from this work — here we suggest
three directions that seem promising.

8.2.1 Optimized/Co-Evolving Fitness Function

The runtime of the fitness function is linear with the length of the target sound, but it
could be optimized to run faster for most sounds. As many of the matched sounds reach
a steady state in their sustain phase, it is not necessary to compare every frame of the
spectrogram at this point.

For example, the spectrogram of a piano note in Figure [8.1] shows that the blocked-out
sustain phase does not have much variance from frame-to-frame. By pre-processing the
target sound, we could save the fitness function a lot of work by identifying ‘key frames’
in the sound and comparing only these. In this example, we would ignore perhaps 40%
of the frames, which cuts 40% of the runtime off of comparison.

This technique could be further improved by making the fitness function a ‘parasite’ in
a coevolution framework [14]. This would mean making the fitness function also subject
to genetic operations, allowing it to adapt over time to ‘prey’ on the weaknesses in the
general population. It could then focus on the parts of the sound that are generally badly
matched, forcing the evolution to adapt in these areas faster. The fitness function would
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then only need to evaluate a handful of spectrogram frames per generation, giving both
a speed increase and enhanced convergence.

8.2.2 Evolving Fitness Formula

In section we experimented with and optimized the weighting used in the fitness
formula suggested by the Lai paper [10]. It is likely that rather than using a fixed
weighting but allowing it to adjust itself per generation in a second co-evolution would
yield better performance, focussing the GA on different characteristics in the sound in
different generations.

Additionally, we note that the amplitude envelope is relatively poor at being matched,
in comparison with the tonality aspect of the synthesizer. An extra error metric based
purely upon the per-window amplitude difference of the target and resynthesized sounds
would likely help in the evolution of this — and this would add another weighting to the
fitness formula which would need optimizing.

8.2.3 More Complex Synthesizer Model

In Chapter |4 we outlined our synthesizer model and indicated DFM synthesis is the sole
technique used here. Whilst the Yong paper [17] indicated that “Theoretically, we may
synthesize any kind of sound by tuning and tweaking these parameters”, in practice it
has shown itself to not be so capable. For example, even the sawtooth wave is not very
well matched as we saw in Subsection [6.2.1]

A more complex synthesizer model is suggested for usage, although it would also bring
with it a more complex set of parameters requiring a longer time to evolve. From knowl-
edge of the commercially-available FM synthesizer ‘Operator’ [I] we suggest several
enhancements:

e Add modulator waveforms other than the sine, such as a sawtooth or square.
A sawtooth modulator on a sine carrier produces an extremely rich texture that
takes many sine modulators to reproduce.

e Allow the modulator/carrier structure to vary in more complex ways. Figure
[B.2]shows a comparison of possible structures of our synthesizer against ‘Operator’.
A more complex FM structure leads to a larger set of possible tonalities, but would
need a suitable genetic encoding.

e Add an LFO - a low frequency oscillator — that can modify another parameter
at a rate typically around 1-10Hz. For example, applied to pitch this can recreate
vibrato easily — a sonic feature that is unmatchable in the presented implementation.
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Figure 8.2: a) The only two possible carrier/modulator structures in our synthesizer
model b) 4 of the 19 structures possible in ‘Operator’; each using 3 modulators + 1
carrier
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Appendix A

Glossary

ADSR - Attack / Decay / Sustain / Release envelope model. Explained in Section
2.3

DFM - Dual Frequency Modulation synthesis technique. Explained in Section [2.1]
FFT - Fast Fourier Transform. Explained in Section

FM - Frequency Modulation synthesis. Explained in Section

GA - Genetic Algorithm. Explained in Section [2.5

JGAP - Java Genetic Algorithms Package - library used for basis of genetic algorithm.
Explained in Chapter [5}

LFO - Low Frequency Oscillator - a method used to add subtle modulation to a synthe-
sizer parameter. Explained in Subsection [8.2.3]

MIDI - Musical Instrument Digital Interface - format used to represent musical notes.
Explained in Section [.1]

Minim - Java-based audio library used for basis of synthesizer. Explained in Chapter

4l
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