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Abstract

We show that for finite n ≥ 3 the class of representable cylindric algebras RCAn cannot
be axiomatised by canonical first-order formulas. So, although RCAn is known to be
canonical, which means that it is closed under canonical extensions, there is no axioma-
tisation where all the formulas are preserved by canonical extensions. In fact, we show
that every axiomatisation contains an infinite number of non-canonical formulas.

The proof employs algebras derived from random graphs to construct a cylindric algebra
that satisfies any number of axioms we want, while its canonical extension only satisfies
a bounded number. We achieve this by relating the chromatic number of a graph to the
number of RCAn axioms satisfied by a cylindric algebra constructed from it.

Finally, we outline a strategy to further generalise the proof to extend the result to
variations of cylindric algebras, such as diagonal-free algebras.
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1
Introduction

“I do believe that the calculus of relations deserves much more attention than
it receives. For, aside from the fact that the concepts occurring in this calculus
possess an objective importance and are in these times almost indispensable in any
scientific discussion, the calculus of relations has an intrinsic charm and beauty
which makes it a source of intellectual delight to all who become acquainted with
it.”

Alfred Tarski [1941, p. 89]

Algebraic logic is a branch of mathematical logic that studies logic with algebraic means.
Within this area, cylindric algebras are an attempt to algebraise first-order logic. They
are abstract approximations of algebras of α-ary relations for an ordinal α, that satisfy
certain axioms laid down by Tarski. They are equipped with a number of operations:
Apart from the boolean operations, these include constants called diagonal elements,
which are like equality, and unary operators called cylindrifications, which are like exis-
tential quantification. For finite α, these algebras have a close connection to first-order
logic with α variables.

An important question within this area is which cylindric algebras are isomorphic to
genuine algebras of relations, called cylindric set algebras. This subclass is called the
α-dimensional representable cylindric algebras RCAα. Many researchers have improved
the understanding of this class in the last 50 years. The relationship to the canonical
extension of an algebra, a cylindric algebra built from the ultrafilters of the elements, is
of particular interest. In an unpublished proof, Monk showed that if a cylindric algebra
is representable, then so is its canonical extension. In this project we show that this
is only barely so, by proving that there is no axiomatisation of RCAn for finite n ≥ 3
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where all but finitely many formulas that hold on a cylindric algebra, also hold on its
canonical extension. Moreover, we attempt to extend this result to the diagonal-free
version RDfn of RCAn. This adds to the body of evidence that RCAn is rather difficult
to characterise.

In the following we will give a brief overview of the field and explain where the project
is placed within it. We will then give motivation and explain why the result is useful.
Finally, we will give an intuitive idea of the most important notions needed to understand
the result and give a high level sketch of the proof.

1.1 Background to the Field

The project is located in the field of algebraic logic, the study of logic with algebraic
means. Algebraisations of logics provide alternative semantics that allow the utilisation
of pre-existing mathematical theory for the study of the logic. The field was created
by Boole, De Morgan, Peirce and Schröder in the nineteenth century. Best known in
this area are most likely boolean algebras, which are algebras of unary relations and
correspond to propositional logic. Peirce and Schröder also established the theory of
binary relations, which was much later revived by Tarski who studied these as relation
algebras. Tarski and Jónsson generalised them into boolean algebras with operators.
Cylindric algebras are a special case of these, which were developed by Tarski and his
students Louise Chin and Frederick Thompson to algebraise first-order logic.

Representable cylindric algebras have been studied extensively. The two main positive
results for RCAα are the proof of Tarski [1955] that shows that it is a variety, that is it
can be axiomatised by equations, and an unpublished proof by Monk that shows RCAα

is canonical. The class RCA0 is just the class of boolean algebras. For α = 1, 2 the class
RCAα is very well behaved, in particular both RCA1 and RCA2 are finitely axiomatised.
The finite set of axioms for RCA2 is due to Henkin [Henkin et al., 1985]. However,
for α ≥ 3 there are a number of negative results known about it. Monk [1969] showed
that there is no finite axiomatisation of RCAα. This result was strengthened by Andréka
[1997], who showed that the number of variables needed for an equational axiomatisation
is unbounded. At the same time Venema [1997] showed, using a result from Hodkinson
[1997], that there is no axiomatisation containing only Sahlqvist formulas.1 So this class
seems to be rather hard to characterise.

This project strengthens the previous negative results by showing that RCAn for finite
n ≥ 3 is only barely canonical. More precisely, we prove that every axiomatisation of
RCAn for finite n ≥ 3 must contain infinitely many non-canonical formulas. We will see
in Section 1.3 what this means.

The representable diagonal-free algebras differ from cylindric algebras only in not having

1Sahlqvist formulas are well known formulas from modal logic with interesting properties; in particular
they are canonical.
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the diagonal elements. They have been introduced by Tarski and correspond to first-
order logic without equality [Henkin et al., 1985, pp. 183ff]. We outline a strategy
to extend the result to these algebras. An alternative algebraisation of first-order logic
without equality are polyadic algebras, that were invented by Halmos [1962]. We believe
that similar techniques can be used to extend the result to polyadic algebras.

There are some similar results. Representable relation algebras were shown by Hod-
kinson and Venema [2005] to be only barely canonical. Furthermore, Goldblatt and
Hodkinson [2007] extended the result in Hodkinson and Venema [2005] and proved that
the McKinsey–Lemmon logic is only barely canonical as well.

1.2 Motivation

This is primarily a theoretical contribution to the field of algebraic logic. We answer an
open question from [Hirsch and Hodkinson, 2009, Remark 7.6] and outline a strategy
to prove a conjecture from Kurucz [2010]. The result implies that any equational ax-
iomatisation of RCAn contains infinitely many equations that are non-Sahlqvist, which
strengthens Venema [1997]. It also implies that there is no finite axiomatisation, which
was shown by Monk [1969]. Our result enhances the understanding of cylindric algebras
within algebraic logic and contributes to the study of canonicity within model theory.

In a more general sense, we hope that the result will inspire new research by pointing out
the limits of representable cylindric algebras. In the same way Turing’s and Church’s
negative answer to Hilbert’s Entscheidungsproblem did not end all endeavours in first-
order logic, but led to the search and study of decidable fragments, we hope that our
result will motivate the discovery of interesting subvarieties of representable cylindric
algebras. And just as the method of reduction was applied in entirely different areas,
such as complexity theory, we believe that a very important contribution of this project
is the further development of the employed method, which uses random graphs and
relates them to algebras.

Finally, beyond the field of algebraic logic, cylindric algebras have been shown to have
applications in many areas of computer science. There are connections to databases
[Bussche, 2001] and the semantic web [Goczy la et al., 2009]. There is also a close
relationship to the modal logics between Kn and S5n for n ≥ 3 [Hirsch et al., 2002].
Moreover, there is a strong connection between cylindric algebras and relation algebras.
Representable relation algebras have very similar properties to RCAn (for n ≥ 3) and
have been shown to have applications in the navigation of XML documents [Marx,
2005], interval algebras used in artificial planning [Allen, 1983] and point based versions
of these, interval temporal logics [Hodkinson et al., 2008], and the well known branching
time temporal logic CTL∗ [Bauer et al., 2002].
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1.3 Contribution

We explain the contribution by giving a high level overview of the proof. First, we give
an intuitive idea of the most important notions needed to understand the result:

• cylindric algebras (CA) – abstract approximations of algebras of relations that
have a close connection to first-order logic;

• representable cylindric algebras (RCA) – a subclass of cylindric algebras that
correspond to cylindric set algebras, concrete algebraic structures built from sets;

• axiomatised – a class of algebras is axiomatised if it is fully defined by a set of
formulas;

• canonical extension – each algebra A embeds into a specific (unique) algebra
Aσ with some useful properties built from the ultrafilters of A, called the canonical
extension (cf. the canonical model in modal logic);

• canonical class – a class is called canonical if it is closed under canonical exten-
sions;

• canonical formula – a formula is called canonical if whenever it holds on an
algebra A, it also holds on its canonical extension Aσ (e.g. Sahlqvist formulas);

• chromatic number – the smallest number of colours needed to colour a graph
so that any two adjacent nodes have a different colour;

• random graph – Erdös famously constructed graphs with arbitrary minimum
cycle length and chromatic number using probabilistic methods. Here we use an
enhanced version of these graphs by Hodkinson and Venema [2005] that allows us
to fix the chromatic number and have a lower bound for the length of odd cycles
in the graph.

In the following we explain the result. As mentioned before, we do know that for n ≥ 3,
the class of representable cylindric algebras of n dimensions RCAn is a variety, so it
can be axiomatised (by equations). We also know that no finite amount of first-order
formulas is sufficient. However, RCAn is canonical, so if an algebra satisfies all the
axioms of an axiomatisation, then so does its canonical extension. The open question
that this project addresses is whether there is an axiomatisation where each single axiom
– by itself – holds on the canonical extension of an algebra if it holds on the algebra.
Somewhat surprisingly, we show that such an axiomatisation does not exist. In fact, with
a few modifications to the argument outlined here, we will show something stronger: that
every axiomatisation must contain infinitely many axioms that are not preserved by the
canonical extension. We will furthermore describe an approach, that, by making the
proof outlined here more general in certain points, extends the result to variations of
cylindric algebras, such as diagonal-free algebras.

We now give a simplified high level overview of the proof. We consider cylindric algebras
of finite dimension at least 3, so in the following n is a finite number ≥ 3. We show
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this by demonstrating that the assumption that such an axiomatisation exists leads to
a contradiction. In the following we assume (for a contradiction) that there is a set of
canonical axioms T that axiomatises RCAn, so that all of the axioms of T hold on the
canonical extension of an algebra whenever they hold on the algebra itself.

Although we study RCAn in this report, we will mostly deal with cylindric algebras that
are not representable. We are interested in algebras that satisfy some, but not all of the
axioms. By considering a set of universal axioms Σ = {γ0, γ1, . . . } where the axioms
gradually get stronger, i.e. γi implies all the γj with j ≤ i, we obtain a way to ‘measure’
representability of an algebra by the number of axioms satisfied by the algebra.2 This
allows us to study what happens if an algebra is not representable.

A cylindric algebra fails to be representable, if one of the (universal) formulas does not
hold. This happens if there is a number of ‘bad’ elements, that, when substituted for the
bound variables, makes the formula false. Without loss of generality, this means that
we can partition the unit of the algebra into ‘bad’ elements. The source for this ‘bad
partition’ in our proof is graphs: a graph for our purposes has a ‘bad partition’ if there
is a finite colouring of the vertices so that no two adjacent vertices have the same colour.
The smallest number of colours needed is called the chromatic number. The main idea is
to construct cylindric algebras from graphs so that an algebra is ‘more representable’ if
the graph it is constructed from has a higher chromatic number and vice versa. This lets
us control the ‘representability’ using the chromatic number, which is easier to handle
and allows us to use the whole repertoire of graph theoretic theorems. Most of the hard
work of the proof lies in establishing this connection.

To prove the connection between the chromatic number of a graph and the ‘representabil-
ity’ of the cylindric algebra constructed from it, we generalise a result from Hirsch and
Hodkinson [2009] that shows that the chromatic number is infinite if and only if the
algebra is representable. We do this by introducing algebra-graph-systems. These are
3-sorted structures that basically capture the relationship between a graph, the power-
set boolean algebra of the graph, and the algebra constructed from the graph. We then
define a theory U that collects all the first-order definable properties of such structures
built from graphs. A feature of such systems is that they allow us to talk about a rela-
tivised ‘chromatic number’ for them. We can now prove that algebra-graph-systems that
have infinite chromatic number are exactly the algebra-graph-systems with representable
algebra. This proof is done by generalising some of the steps of the proof in Hirsch and
Hodkinson [2009] by showing that they also hold for the algebra-graph-system obtained
from a general graph; we call this the generalisation technique. Using that for any finite
n, the statement ‘the chromatic number is greater than n’ is expressible in first-order
logic, we now have that U and a set of formulas that expresses infinite chromatic number
has the same models as U with the axiomatisation Σ. As illustrated in Figure 1.1, it
now follows by first-order compactness that the chromatic number of a graph Γ and the

2We can obtain such an axiomatisation by taking the conjunction of any axiom with the previous
axioms or by considering a concrete axiomatisation with that property, e.g. the one from Hirsch
and Hodkinson [1997].
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chromatic number representability

Figure 1.1: The chromatic number of a graph Γ and the ‘representability’ of the algebra
A(Γ) built from it ‘drag’ each other along.

number of representability axioms satisfied by the algebra A(Γ) from the graph ‘drag’
each other along, that is, each can be made as large as we want by increasing the other
sufficiently.

Using this connection, we will obtain a contradiction by building an algebra that can
satisfy an arbitrary number of axioms from Σ, while its canonical extension only satisfies
a bounded number. To carry out this construction we use direct and inverse systems
of graphs and algebras. We need a sequence of rather eccentric graphs to do this.
Erdös [1959] showed the existence of finite graphs of arbitrary chromatic number and
minimum cycle length. Defying intuition, the existence of such graphs demonstrated
that the chromatic number is a global rather than a local property of a graph. Another
important feature of these graphs is that if we consider an inverse system Γ0,Γ1, . . .
of such graphs with fixed (arbitrarily high) chromatic number and increasing minimum
cycle length, their inverse limit will have a chromatic number of just two. This is because
the inverse limit won’t contain a cycle of finite length, so a standard result (2.4.5) tells
us it will be two-colourable. We obtain a direct system of algebras, by constructing a
cylindric algebra from each of these graphs. The direct limit of this system of algebras
will have the same (high) ‘chromatic number’, in the algebraic sense, as each of the
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graphs. So this appears to be a good source for a contradiction and we want a connection
between the direct limit of the algebras and the algebra from the inverse limit of the
graphs.

Luckily, a consequence of our generalisation of a theorem of Goldblatt [1993] gives us
exactly the connection we need; it shows that the algebra from the inverse limit of
the graphs is isomorphic to the canonical extension of the direct limit of the algebras
from the graphs. Recall that we write Aσ for the canonical extension of an algebra A.
Figure 1.2 shows the setup for the relationship:

Figure 1.2: Relationship between algebras built from direct and inverse systems.

Having certain surjective maps between the graphs, we define the algebras and obtain
embeddings ‘in the other direction’. The theorem now relates the limits of these inverse
and direct systems in the way we need. So we have a way to build an algebra A of
arbitrarily large chromatic number, in the algebraic sense, while its canonical extension
Aσ has a chromatic number of just 2. This gives us our contradiction.

In a little more detail, by following the arrows in Figure 1.3 on the next page, we see how
we obtain the contradiction: Recall that the inverse limit of an inverse systems of random
graphs as above will be two-colourable. Using repeated applications of compactness we
get that the sentence that says that the chromatic number is greater than two, θ2, is
implied by one of the axioms γs, which is implied by a set of canonical formulas Ts,
which is implied by a formula γs+ . Lastly, we can find a k such that the encoding of the
chromatic number θk implies γs+ . So we set the chromatic number of the graphs to a
number greater than k, such as k+ 1. This finally gives us the contradiction: Following
the trail of implications with this system of graphs, we get that the chromatic number
of the inverse limit is greater than two.
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Figure 1.3: Illustration of the last part of the proof.
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1.4 Structure of the Report

Chapter 2 The project draws from many areas of mathematics and theoretical com-
puter science. The aim of this chapter is to make the report as self contained as possible
by providing the background material needed. The chapter is best used as a reference
when reading the proof.

Chapter 3 This chapter contains the proof of the main theorem. It is split into four
sections. In Algebras from Graphs we show how algebras can be constructed from graphs
and introduce the important notion of algebra-graph-system, that allows us to gener-
alise the ideas from Hirsch and Hodkinson [2009]. In Networks and Patch systems we
introduce further notions that help us study representability and prove some results
that we need. In Chromatic Number & Representability we prove a relation between the
chromatic number of a graph and the number of RCAn axioms satisfied by the algebra
built from it. Finally, in Direct & Inverse Systems of Algebras and Graphs we use direct
and inverse systems to prove the main result, as sketched above.

Chapter 4 Here we lay out a strategy to generalise the result of Chapter 3 to a wider
class of algebras from graphs. We believe that this approach will lead to a generalisation
of the result to RDfn and possibly other variations of cylindric algebras.

Chapter 5 We will discuss the results and some choices made for the proof. Lastly, we
will list a number of open questions that this report did not answer.

1.5 Notation

We use the following notational conventions. Throughout the report, n is a fixed finite
positive integer and n is at least 3. We identify a non-negative integer m with the set
{0, 1, . . . ,m−1}. If V is a set, we write [V ]n for the set of subsets of size n of V. We write
ω for the first infinite ordinal number. We omit the brackets in function applications
when we believe it improves readability. With αU , where α is an ordinal, we denote the
set of functions from α to U , so an α-ary relation on U is a subset of αU . To keep the
syntax similar to the finite case, we write xi for x(i) if x ∈ αU and i < α. For definitions
we use ‘:=’ to make clear what side is being defined.
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2
Background

This chapter provides, except for some very elementary material, all the necessary back-
ground needed to understand the statement and proof of the main theorem of this
project. Depending on prior knowledge, it may be a good idea to use this chapter as
a reference when reading the proof in the next chapter, instead of reading this chapter
completely before the next one.

The project draws from many different areas of theoretical computer science and math-
ematics. We have to assume some knowledge, but the aim is to make this report as
self contained as possible. We will state important definitions and results from model
theory, algebraic logic, including some universal algebra and graph theory. Some of the
results that are important or more unusual will be proved. Moreover, we will state and
prove a version of Ramsey’s theorem.

2.1 Model Theory

We assume that the reader is familiar with first-order logic. We will first recall some
important definitions for later reference, then explain the notions of elementary, variety
and axiomatisation, which will be used in the later part. Lastly, we will state the
compactness and completeness theorems of first-order logic and prove a consequence
that will be very useful for this project.
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2.1.1 Syntax and Semantics

We will roughly follow Hodges [1997] in introducing the syntactical notions.

Definition 2.1.1. A signature L is a collection of relation symbols, function symbols
and constant symbols, each associated with a finite arity. The size of the signature |L|
is the smallest infinite cardinal number that is greater than or equal to the number of
symbols in L.

Remark. In the following we assume a countably infinite set of variables.

Definition 2.1.2. An L-term is either a variable, a constant from L, or, if f is a function
symbol with arity n and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

Definition 2.1.3. An L-formula is defined as follows.

• If P is an n-ary relation symbol from L and t, u, t1, . . . , tn are terms, then P (t1, . . . , tn)
and t = u are L-formulas. They are said to be atomic.

• If ϕ, ψ are L-formulas and x a variable, then ¬ϕ, ϕ ∧ ψ and ∃xϕ are L-formulas.
Furthermore, we define the following abbreviations:

– ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ);

– ϕ→ ψ := ¬ϕ ∨ ψ;

– ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ);

– ∀xϕ := ¬∃x¬ϕ;

– > := ∀x(x = x)

– ⊥ := ¬>.

Definition 2.1.4. The subformulas of a formula ϕ are defined as follows.

• If ϕ is atomic, then ϕ is the only subformula.

• If ϕ is of the form ¬ψ or ∃xψ, then ϕ and the subformulas of ψ are subformulas.

• If ϕ is of the form ψ1∧ψ2, then ϕ and the subformulas of ψ1 and ψ2 are subformulas.

Definition 2.1.5. An occurrence of a variable x is bound if it is in a subformula of the
form ∃xϕ. Otherwise the occurrence is free. The free variables of a formula are the
variables with free occurrences. A formula with no free variables is called a sentence. A
theory is a set of sentences.

Remark. We will assume a formal proof system, such as Hilbert systems or natural
deduction, in the following. We do not make this formal here, as it will not be needed
for the project.

Definition 2.1.6. If T is a theory and ϕ a formula, we write T ` ϕ if there is a formal
proof that given some ψ1, . . . , ψn ∈ T , shows ϕ. If Σ is a theory, we say T ` Σ if T ` σ
for all σ ∈ Σ.
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Definition 2.1.7. A theory T is called consistent if and only if T 6` ⊥.

We now introduce the central semantic notions: structure and model.

Definition 2.1.8. If L is a signature, an L-structure is a tuple M = (D, I), where D
is a non-empty set called domain and I is an interpretation function defined for each
symbol in L.

• The interpretation of an n-ary relation symbol R in L is an n-ary relation RM on
D.

• The interpretation of an n-ary function symbol f is a function fM from Dn to D.

• The interpretation of a constant c is an element cM in D.

An L-structure is called an algebra if L does not contain any relation symbols.

Remark. To keep notation concise we will often write M for the model and for its domain
D. If the signature is clear from the context, we will sometimes drop the preceding L−.

Definition 2.1.9. Let M be an L-structure and V a set of variables. Then a map
h : V →M is called an assignment of the variables in V .

Definition 2.1.10. Let M be a structure, h an assignment and ϕ be a formula. Extend
h, so that it also sends constants c ∈ L to their interpretation in D. Moreover, if
t1, . . . , tn are terms or variables, we define hf(t1, . . . , tn) = f(ht1, . . . , htn) for function
symbols f .
We say M,h |= ϕ (ϕ is true in M under h):

• If ϕ is of the form t1 = t2, then M,h |= ϕ if and only if ht1 = ht2.

• If ϕ is of the form P (t1, . . . , tn) for a relation symbol P , then M,h |= ϕ if and only
if (ht1, . . . , htn) is in the interpretation of P .

• If ϕ is of the form ¬ψ, then M |= ϕ if and only if M,h 6|= ψ.

• If ϕ is of the form ψ1∧ψ2, then M,h |= ϕ if and only if M,h |= ψ1 and M,h |= ψ2.

• If ϕ is of the form ∃xψ, then M,h |= ϕ if and only if there is some assignment hx
such that hx �(V \ {x}) = h �(V \ {x}) and M,hx |= ψ.

Definition 2.1.11. Let T be a theory and M a structure. We say M |= T (M is a
model of T ), if M |= ϕ for all ϕ ∈ T .

Definition 2.1.12. An elementary class C is a class of structures such that M |= T if
and only if M ∈ C for some theory T . In this case we say T axiomatises C. In the special
case where C is a class of algebras and there is a T that only consists of equations, we
call C a variety.

Definition 2.1.13. Let L be a signature and M1,M2 be L-structures. A homomorphism
is a function g : M1 →M2 with the following properties:
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1. If c ∈ L is a constant, then g(cM1) = cM2 .

2. If R ∈ L is an n-ary relation symbol and (a0, . . . , an−1) ∈ RM1 for a0, . . . , an−1 ∈
M1, then (ga0, . . . , gan−1) ∈ RM2 .

3. If f ∈ L is an n-ary function symbol and a0, . . . , an−1 ∈M1, then g(f(a0, . . . an−1)) =
f(ga0, . . . , gan−1).

If there is a homomorphism h : M2 → M1 such that h ◦ g = idM1 and g ◦ h = idM2 we
call g an isomorphism.

The following property will help us simplify some of the proofs later.

Definition 2.1.14. Let A be an algebra. Then A is simple if |A| > 1 and for any
algebra A′ of the same signature, any homomorphism ϕ : A → A′ is either trivial or
injective.

2.1.2 Completeness and Compactness

In this section we will present some essential results that will be useful later, in particu-
lar first-order completeness, compactness and the Downward Löwenheim-Skolem-Tarski
Theorem (see e.g. Chang and Keisler [1990] for proofs). Moreover, we will prove a
consequence of compactness that is crucial for the main proof.

Theorem 2.1.15 (Completeness Theorem). Let Σ be a set of sentences of L. Then Σ
is consistent if and only if Σ has a model.

Theorem 2.1.16 (Downward Löwenheim-Skolem-Tarski Theorem). Every consistent
L-theory T has a model of size at most |L|.

Theorem 2.1.17 (Compactness Theorem). A set of sentences Σ has a model if and
only if every finite subset of Σ has a model.

The following corollary will be used extensively in the proof:

Corollary 2.1.18. Let T1, T2 be theories so that every model of T2 is a model of T1. If
S1 ⊆ T1 is finite, then there is a finite subset S2 ⊆ T2 such that S2 ` S1.

Proof. Suppose for a contradiction the statement does not hold. Then, for any finite
subset U of T2, we have that U∪{

∨
ϕ∈S1
¬ϕ} is consistent and hence by the completeness

theorem has a model. By compactness it follows that T2 ∪ {
∨
ϕ∈S1
¬ϕ} is satisfiable,

which means that T1 ∪ {
∨
ϕ∈S1
¬ϕ} is satisfiable as well. But this is impossible since

S1 ⊆ T1.
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2.2 Ramsey’s Theorem

The following theorem was originally stated and proved by Ramsey [1930], but we give
a variation of the original statement with our own proof here.

Theorem 2.2.1 (Ramsey’s Theorem). If S is a finite set, n < ω and f : [N]n → S a
function, then there is an infinite subset M ⊆ N such that f �[M ]n is constant.

Proof. This is a proof by induction over n. If n = 1, this is just the pigeonhole principle.

So let k ≥ 1 and assume the statement holds for n = k. Let f : [N]k+1 → S be
any function. First define x0 = 0 and f0({r1, . . . , rk}) = f({x0, r1, . . . , rk}) for distinct
x0 < r1, . . . , rk ∈ N. Then we can apply the induction hypothesis to f0 and get an
infinite subset M0 ⊆ N so that f0 is constant on [M0]k.

We now choose x1 = minM0. Note that x1 > x0, since f0 was defined for distinct
non-zero numbers. We can now define f1({r1, . . . , rk}) = (f �M0)({x1, r1, . . . , rk}) for
distinct x0 < r1, . . . , rk ∈ M0 and continue in the same way as before, obtaining a
sequence of infinite sets

M0 ⊇M1 ⊇M2 ⊇ . . .

and the increasing sequence of their minima

x0 < x1 < x2 < . . . ,

where xi+1 ∈Mi for i < ω. We also know that fi is constant on [Mi]
k and thus constant

on [Mj]
k for i ≤ j < ω. By the pigeonhole principle there will be an infinite subsequence

fi1 , fi2 , . . . so that all the fij (j < ω) map to the same constant value in S. So if we let
M = {xi1 , xi2 , . . . }, then f �[M ]k+1 is constant.

2.3 Algebraic Logic

Algebraic logic is the study of logic with algebraic means and was invented in the nine-
teenth century by Boole, De Morgan, Peirce and Schröder. Peirce and Schröder also
began to develop the theory of binary relations, which was much later expanded by
Tarski who studied these as relation algebras. Tarski and Jónsson generalised them into
boolean algebras with operators. Cylindric algebras are a special case of these, which
were developed by Tarski and his students Louise Chin and Frederick Thompson to
algebraise first-order logic [Andréka et al., 1991].

We will develop the theory of cylindric algebras – which are central to this project –
beginning by looking at boolean algebras, then studying the general case of boolean
algebras with operators. Finally, we will introduce cylindric algebras and their diagonal-
free variation.
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2.3.1 Boolean Algebras

Boolean algebras are the algebraic counterparts of propositional logic. We will see that
they are isomorphic to algebras of unary relations. Here we give model theoretic defini-
tions similar to Hirsch and Hodkinson [2002].

Definition 2.3.1. W e denote by LBA the functional signature with constants 0, 1, a
unary function symbol ‘−’ and a binary function symbol ‘+’.

Remark. We will usually use the same symbol to denote the universe of the structure
and the structure itself. The following abbreviations will be convenient:

• a ≤ b means a+ b = b,

• a < b means a ≤ b ∧ ¬(a = b) and

• a · b is short for = −(−a+−b).

Definition 2.3.2. An LBA structure B = (B, 0, 1,+,−) is a boolean algebra if it satisfies
the following for all a, b, c ∈ B:

(B1) (a+ b) + c = a+ (b+ c)

(B2) a+ b = b+ a

(B3) 0 + a = a

(B4) a+ a = a

(B5) a+ (−a) = 1

(B6) −(−a) = a

(B7) −1 = 0

(B8) a · (b+ c) = a · b+ a · c

An important notion is that of an atom.

Definition 2.3.3. Let B be a boolean algebra. An element 0 6= b ∈ B is called an atom,
if there is no non-zero element beneath it, i.e. if a < b =⇒ a = 0. If for every element
0 6= a ∈ B there is an atom b such that b ≤ a, the algebra B is called atomic.

The following notions of filter and ultrafilter are essential for this project.

Definition 2.3.4. Let B be a boolean algebra. A filter F ⊆ B is a non-empty subset
of the domain such that for any s, t ∈ B:

1. If t ≥ s and s ∈ F , then t ∈ F .

2. If s, t ∈ F , then s · t ∈ F .
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A filter is called principal if it is of the form {b ∈ B | b ≥ a} for some a ∈ B. An
ultrafilter U is a filter that is proper, i.e. U 6= B, and not strictly contained in any other
proper filter. We denote the set of all ultrafilters of B with B+.

The following property of ultrafilters is very useful.

Definition 2.3.5. Let B be a boolean algebra. We say that a subset S ⊆ B has the
finite intersection property if for any s1, s2, . . . , sn ∈ S we have s1 · s2 · · · sn 6= 0.

Theorem 2.3.6 (Boolean prime ideal theorem). Let B be a boolean algebra and S ⊆ B
a subset with the finite intersection property. Then S is contained in an ultrafilter of B.

Remark. The Boolean prime ideal theorem cannot be proved directly from the axioms
of ZF set theory and is in fact strictly weaker than the axiom of choice.

We will need the following equivalent characterisation of an ultrafilter.

Lemma 2.3.7. Let B be a boolean algebra and µ a filter of B. Then µ is an ultrafilter
of B if and only if for any b ∈ B, either b ∈ µ or −b ∈ µ.

Proof. Let µ ⊆ B be an ultrafilter of B and let b ∈ B such that b 6∈ µ. Then there is no
a ∈ µ such that a ≤ b, because otherwise b ∈ µ. But this means that for every a ∈ µ,
we have a · −b 6= 0, since

a · −b = 0 =⇒ a = a · 1 = a · (b+−b) = a · b =⇒ a ≤ b.

So µ ∪ {−b} has the finite intersection property and is thus by the boolean prime ideal
theorem (2.3.6) contained in an ultrafilter ν. But ν ⊇ µ, so −b ∈ ν = µ.

For the converse, let ν be a filter that contains either b or −b for every b ∈ B. We
just have to show that ν is maximal. But this is clearly true: Suppose we add a single
element that is not already in the filter, say a ∈ B \ ν and add it to get ν ′. Then ν
already contained −a, and hence we have a,−a ∈ ν ′. But a · −a = 0, and hence ν ′ = B.
So ν ′ is not a proper filter.

Lemma 2.3.8. An ultrafilter µ ⊆ B is principal if and only if it contains an atom.

Proof. It is easy to see that if µ contains an atom a, we have µ = {b ∈ B | b ≥ a}, which
is principal.

Conversely, assume µ is principal, i.e. µ = {b ∈ B | b ≥ c} for some c ∈ B. Suppose for
a contradiction that c is not an atom. Then there is a non-zero element d ≤ c that is
not contained in µ. So by Lemma 2.3.7 we have that −d ∈ µ. But by the definition of
µ this means c ≤ −d, and hence d ≤ −d. So 1 = d+−d = −d, and thus d = 0. This is
a contradiction to the assumption that d is non-zero. So µ must contain an atom.
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Lemma 2.3.9. Let B be a boolean algebra and µ ⊆ B an ultrafilter. If

b1 + · · ·+ bn ∈ µ bi ∈ B,

then µ contains at least one of the bi.

Proof. If µ contains none of the bi, it contains all the complements and hence their
product, i.e. −b1 · · · · · −bn ∈ µ. But this is the complement of b1 + · · ·+ bn.

Fields of sets are a more concrete way to think about boolean algebras, and in fact every
boolean algebra is isomorphic to one of these.

Definition 2.3.10. Let X be any set. A field of sets over the base X is an LBA algebra
F = (F, ∅, X,∪, \), where ∅ 6= F ⊆ ℘(X) is closed under ∪ and X \ ·.

Remark. Note that this is a boolean algebra, with + corresponding to ∪, − to \, 1 to
X and 0 to ∅.

Definition 2.3.11. A boolean algebra is said to be representable if it is isomorphic to
a field of sets. The isomorphism is then called a representation.

Theorem 2.3.12 (Stone’s representation theorem). Every boolean algebra is repre-
sentable.

Proof. Let B be a boolean algebra. We need to show that B is isomorphic to a field of
sets. Consider the field of sets

F = (℘(B+), ∅, B+,∪, \)

and the map
h : B → F, b 7→ {µ ∈ B+ | b ∈ µ}.

We will show that B is isomorphic to a subalgebra of F . So we need to check that h is
an injective homomorphism. To check that it is a homomorphism, we need h to preserve
0, 1,+ and −. We have for a, b ∈ B:

h(0) = {µ ∈ B+ | 0 ∈ µ} = ∅,
h(1) = {µ ∈ B+ | 1 ∈ µ} = B+,

h(a+ b) = {µ ∈ B+ | a+ b ∈ µ}
= {µ ∈ B+ | a ∈ µ} ∪ {µ ∈ B+ | b ∈ µ} (?)

= h(a) + h(b).

The line marked with (?) follows from Lemma 2.3.9. We also have

h(−a) = {µ ∈ B+ | −a ∈ µ} = B+ \ {µ ∈ B+ | a ∈ µ} = −h(a).
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This follows from Lemma 2.3.7.

It is left to show that h is injective. By Theorem 2.3.6, every non-zero element is
contained in an ultrafilter. So we certainly have kerh = 0:

h(a) = 0 =⇒ {µ ∈ B+ | a ∈ µ} = ∅ =⇒ a = 0.

Now suppose h(a) = h(b) for some a, b ∈ B. Then, using that h is a homomorphism we
have

h((a · −b) + (b · −a)) = h(a) · −h(b) + h(b) · −h(a) = 0.

So (a · −b) + (b · −a) = 0. It follows

a · −b = 0 =⇒ a = a · 1 = a · (b+−b) = a · b
b · −a = 0 =⇒ b = b · 1 = b · (a+−a) = a · b

}
=⇒ a = b.

From the proof of Theorem 2.3.12 we can extract an important concept.

Definition 2.3.13. Let B be a boolean algebra. Then we call Bσ = (℘(B+), ∅, B+,∪, \)
the canonical extension of B.

Remark. It is easy to see that every finite boolean algebra is isomorphic to its canonical
extension.

Example 2.3.14. Let B be a boolean algebra built from three atoms a, b, c. It contains
the eight elements 0, 1, a, b, c,−a,−b,−c. Then it is easy to see that we must have
a + b = −c, a + c = −b and b + c = −a. The ultrafilters are the principal ultrafilters
generated by a, b, c:

µa = {a,−c,−b, 1},
µb = {b− a,−c, 1},
µc = {c,−a,−b, 1}.

So we get the following representation of B:

0
h7→ ∅,

a
h7→ {µa},

b
h7→ {µb},

c
h7→ {µc},

−a h7→ {µb, µc},

−b h7→ {µa, µc},

−c h7→ {µa, µb},

1
h7→ {µa, µb, µc}.
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The representation is illustrated in Figure 2.1.

∅

{µb}{µa} {µc}

{µa, µb} {µa, µc} {µb, µc}

{µa, µb, µc}

Figure 2.1: The canonical extension of B with the inclusion relation.

2.3.2 Boolean Algebras with Operators

The concept of a boolean algebra can be generalised by adding additional operators. By
restricting these operators in certain ways, we can prove many useful things about them
[Blackburn et al., 2001].

Definition 2.3.15. Let B = (B, 0, 1,+,−) be a boolean algebra and n < ω. A function
Ω : Bn → B is called an n-ary operator on B if it satisfies the following for any
b0, . . . , bn−1 ∈ B:

1. If bi = 0 for one of the i < n, then Ω(b0, . . . , bn−1) = 0.

2. For any b, b′ and i < n we have

Ω(b0, . . . , bi−1, (b+ b′), bi+1, . . . bn−1) = Ω(b0, . . . , bi−1, b, bi+1, . . . bn−1)

+ Ω(b0, . . . , bi−1, b
′, bi+1, . . . bn−1)

Definition 2.3.16. Let B be a boolean algebra, and O a set of operators. Then we call
(B, 0, 1,+,−,Ω : Ω ∈ O) a boolean algebra with operators (BAO).
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Just as in the BA case, we can work with atoms in BAOs.

Definition 2.3.17. Let L be the signature of a BAO, containing the signature of boolean
algebras LBA and function symbols Ω. Define La to be the relational signature that
contains for each n-ary function symbol Ω ∈ L \LBA an (n+ 1)-ary relation symbol RΩ.
A structure of La is called atom structure.

Definition 2.3.18. Let B be an atomic BAO of signature L. Then L contains the
signature of boolean algebras LBA and function symbols Ω. The atom structure of B,
denoted AtB, is the atom structure that has the atoms of B as a domain and the
relations defined by:

AtB |= RΩ(a0, . . . , an−1, b) ⇐⇒ B |= b ≤ Ω(a0, . . . , an−1).

for each n, n-ary operator Ω and atoms a0, . . . , an−1 ≤ b.

Interestingly, after reducing the algebra to its atom structure, it is possible to gain most
of it back.

Definition 2.3.19. Let L be a BAO signature and La the corresponding relational
signature (as in Definition 2.3.18). Let A be any La structure. The complex algebra of
A is defined to be

CmA = (℘(A), ∅, A,∪, \,ΩCmA : Ω ∈ O)

where ΩCmA is defined in the following way: If s0, . . . , sn−1 ⊆ A and Ω ∈ L is an n-ary
function, we have

ΩCmA(s0, . . . , sn−1) = {a ∈ A | A |= RΩ(a0, . . . , an−1, a) for some ai ∈ si}.

Just as in the BA case, we can define the canonical extension. We use the ultrafilters to
get an atom structure from the BAO.

Definition 2.3.20. Let L be a functional signature containing LBA and B a BAO of L.
We define the ultrafilter structure B+ to be the La structure which has the ultrafilters of
B as domain and, for any n-ary function symbol Ω ∈ L an (n + 1)-ary relation symbol
RΩ such that for any µ0, . . . , µn−1, ν ∈ B+

B+ |= RΩ(µ0, . . . , µn−1, ν) ⇐⇒ Ω(µ0, . . . , µn−1) ⊆ ν.

Definition 2.3.21. Let B be a BAO. The canonical extension Bσ of B is defined to
be CmB+. A class C of BAOs is said to be canonical if it is closed under canonical
extensions, that is, B ∈ C =⇒ Bσ ∈ C. A formula is called canonical if its truth value
is preserved by canonical extensions, i.e. A |= ϕ =⇒ Aσ |= ϕ.

Remark. Stone’s representation theorem (2.3.12) can be extended to show that we can
embed a BAO B into its canonical extension Bσ.
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Direct & Inverse Systems of BAOs

We introduce the notions of direct and inverse system from universal algebra to prove
an important relationship between direct limits of algebras and inverse limits of their
atom structures, adapting [Grätzer, 2008, pp. 128ff.]. We do not need the definitions in
their whole generality, so we simplify them for their application here.

Definition 2.3.22. A direct system of algebras S is defined to be a triplet of the following
objects:

1. A directed, partially ordered set (I,≤) called the carrier of S; that is for all i, j ∈ I
there is k such that i ≤ k and j ≤ k.

2. An algebra Ai for each i ∈ I.

3. A homomorphism ϕij : Ai → Aj for each i ≤ j, where ϕii is the identity map for
each i ∈ I and ϕjk ◦ ϕij = ϕik for all i ≤ j ≤ k.

Definition 2.3.23. Let S be a direct system of algebras with carrier I. Let ≡ be the
equivalence relation over the disjoint union

⊔
i∈I Ai such that x ≡ y for x ∈ Ai, y ∈

Aj, i, j ∈ I if and only if there is k ∈ I such that i, j ≤ k and ϕikx = ϕjky.

If f is an r-ary function defined on the algebras and [x0], . . . , [xr−1] are elements of the
direct limit ([xi] denoting the equivalence class of xi), we define f([x0], . . . , [xr−1]) :=
[f(x′0, . . . , x

′
r−1)], where the x′i are all elements of the same Aj for some j < ω and xi ≡ x′i

for all i < r. This is well defined and gives an algebraic structure on S/≡.

This algebra S/≡ is called the direct limit of S, denoted lim−→S.

Remark (1). In the particular case where I = ω, Ai ⊆ Aj for i ≤ j and the ϕij are the
natural embeddings, the direct limit is essentially the union of the algebras: lim−→S =⋃
i<ω Ai.

Remark (2). Note that the natural embedding Ai → lim−→S is a homomorphism.

Remark (3). We will sometimes write lim−→Ai if it is clear which direct system we are
talking about.

The dual notion of a direct limit is that of an inverse limit.

Definition 2.3.24. An inverse system of atom structures S is defined to be a triplet of
the following objects:

1. A directed, partially ordered set (I,≤); that is for all i, j ∈ I there is k such that
i ≤ k and j ≤ k.

2. An atom structure Bi for each i ∈ I.

3. A homomorphism ϕji : Bj → Bi for each i ≤ j, where ϕii is the identity map for
each i ∈ I and ϕji ◦ ϕkj = ϕki for all i ≤ j ≤ k.
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Definition 2.3.25. Let S be an inverse system of atom structures with carrier I. Then
the inverse limit consists of those elements of the product

∏
(Bi | i ∈ I) for which we

have a connection between the entries via the homomorphisms, that is

lim←−S = {x ∈
∏
i∈I

Bi | xi = ϕjixj for all i ≤ j in I}.

The relational structure on lim←−S is defined as follows. If R is a relation defined on the
atom structures and x1 = (x1j : j ∈ I), x2 = (x2j : j ∈ I), . . . , xr = (xrj : j ∈ I) are
elements of the inverse limit, we define R(x1, . . . , xr) iff R(xij, . . . , xij) for all i = 1, . . . , r
and j ∈ I.

Remark. We will sometimes write lim←−Ai if it is clear which inverse system we are talking
about.

2.3.3 Cylindric Algebras

Cylindric algebras are particular instances of BAOs. They were introduced by Tarski
together with his students Louise Chin and Frederick Thompson to algebraise first-order
logic. The definitive book on it was published by Henkin et al. [1971]. We will mainly
follow this, but also use an introduction by Maddux in Andréka et al. [1991], a survey
paper by Monk [2000] and the chapter on cylindric algebras in Hirsch and Hodkinson
[2002].

A cylindric algebra is a BAO with two kinds of operators, the cylindrifications ci that
behave like ∃ and the diagonals dij that are like equality.

Definition 2.3.26. A cylindric algebra C of dimension α, where α is an ordinal number,
is a BAO

C = (C, 0, 1,+,−, ci, dij)i,j<α
where dij are nullary operators and ci are unary operators, such that the following are
satisfied for any a, b ∈ C and i, j, k < α:

(C0) (C, 0, 1,+,−) is a boolean algebra;

(C1) ci0 = 0;

(C2) x ≤ cix;

(C3) ci(x · ciy) = cix · ciy;

(C4) cicjx = cjcix;

(C5) dii = 1;

(C6) if k 6= i, j, then dij = ck(dik · dkj);

(C7) if i 6= j, then ci(dij · x) · ci(dij · −x) = 0.
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The class of all cylindric algebras of dimension α is denoted CAα.

Example 2.3.27. This is a motivational example taken from Henkin et al. [1971]. Let
L be a signature, and let Σ be an L-theory. Let F be the set of all first-order formulas
written with variables vi, i < ω, and define an equivalence relation on F . For any two
first-order formulas ϕ, ψ ∈ F :

ϕ ∼ ψ ⇐⇒ Σ ` ϕ↔ ψ.

Now define the operations on the equivalence classes. Define 0 to be [⊥], 1 to be [>],
and +,−, ci in the following way:

−[ϕ] = [¬ϕ],

[ϕ] + [ψ] = [ϕ ∨ ψ],

ci[ϕ] = [∃viϕ].

It is easy to see that these are well defined. Then

(F/∼, 0, 1,+,−, ci, [vi = vj])i,j<ω

is a cylindric algebra of dimension ω that corresponds to first-order logic. We can now
work on formulas using algebraic operations.

Just as for BAs, we would like to have corresponding concrete structures; cylindric set
algebras will play that part. Their theory was developed in Henkin et al. [1985]; Monk
[2000] gives a more recent introduction. There is a notion of representation for CAs as
well, but – unlike BAs – not all CAs have a representation.

Definition 2.3.28. Let α be an ordinal, U a non-empty set, and V = αU . Define

1. Dij = {x ∈ V | xi = xj} for i, j < α.

2. CiX = {x ∈ V | ∃y ∈ X∀j < α(j 6= i→ yj = xj)} for i < α and X ⊆ V .

If V is closed under intersection, union, complement, Ci and contains all the Dij, then
the following is a cylindric set algebra:

(℘(V ), ∅, V,∪, \, Ci, Dij)i,j<α.

Remark. It can easily be checked that a cylindric set algebra satisfies (C0)–(C7) and is
thus a cylindric algebra.

Definition 2.3.29. A cylindric algebra is said to be representable if it is isomorphic to
a subalgebra of a product of cylindric set algebras. The isomorphism is then called a
representation. The class of all representable cylindric algebras of dimension α is called
RCAα.

Example 2.3.30. This example shows that we have a natural representation for the
algebras from the previous Example 2.3.27. Let L be a signature and let Σ be a set of
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L-formulas containing m free variables v1, . . . , vm. Let M be an L-structure. With each
first-order formula ϕ we associate the set Xϕ of all the tuples (x1, . . . , xm) ∈ Mn that
are satisfying assignments for ϕ.

This gives a one-one correspondence between the equivalence classes from the last ex-
ample [ϕ] and the sets of assignments to the variables Xϕ: Given any formula ψ, we
have [ϕ] = [ψ] if and only if Xϕ = Xψ. The operations +, ·,− from Example 2.3.27
correspond naturally to the set operations ∪,∩, \, and the constants 0 to ∅, 1 to Mm.
Note that the ‘extra’ operations ∃vi correspond to the cylindrification Ci, and that Dij

corresponds to the equation vi = vj. So we have a natural representation for the algebras
from the previous example.

The following theorem from [Henkin et al., 1971, Theorem 2.7.40] will allow us to prove
that certain algebras we define are cylindric:

Theorem 2.3.31. Let α be an ordinal and A = (V,Dij, Ci)i,j<α a cylindric atom struc-
ture. Then CmA is a cylindric algebra if and only if the following five conditions hold
for all i, j, k < α:

(i) Ci is an equivalence relation on V ;

(ii) Ci|Cj = Cj|Ci, where | denotes composition of the relations;

(iii) Dii = V ;

(iv) Dij = Ck(Dik ∩Dkj) if i, j 6= k;

(v) Ci ∩ (Dij ×Dij) ⊆ Id if i 6= j.

2.3.4 Diagonal-free Algebras

One aim of this project is to extend our result for cylindric algebras to diagonal-free
algebras. They differ from cylindric algebras only in not having the diagonal elements.
They have been introduced by Tarski and correspond to first order logic without equality
[Henkin et al., 1985, pp. 183ff].

Definition 2.3.32. A diagonal-free algebra B of dimension α, where α is an ordinal
number, is a BAO

B = (B, 0, 1,+,−, ci)i<α
where the ci are unary operators satisfying (C0)-(C4) of the axioms for cylindric algebras
given in Definition 2.3.26. The class of all diagonal-free algebras of dimension α is
denoted Dfα.

Definition 2.3.33. Let α be an ordinal, U a non-empty set, and V = αU . Define

CiX = {x ∈ V | ∃y ∈ X∀j < α(j 6= i→ yj = xj)} for i < α and X ⊆ V.



26 CHAPTER 2. BACKGROUND

If V is closed under intersection, union, complement and Ci the following is a diagonal-
free set algebra:

(℘(V ), ∅, V,∪, \, Ci, )i<α.

Definition 2.3.34. A diagonal algebra is said to be representable if it is isomorphic to a
subalgebra of a product of diagonal-free set algebras. The isomorphism is then called a
representation. The class of all representable cylindric algebras of dimension α is called
RDfα.

The following notion of <n-dimensional and the theorem by Johnson will aid us in
extending our result from cylindric algebras to diagonal-free algebras [Johnson, 1969,
Theorem 1.8]:

Definition 2.3.35. An element a of a cylindric algebra A is called <n-dimensional if
there is some i < n such that cia = a.

Theorem 2.3.36. Let n < ω and A ∈ CAn be an n-dimensional cylindric algebra that is
generated by its <n-dimensional elements. Then A is representable if the diagonal-free
reduct A− of A is an n-dimensional representable diagonal-free algebra.

2.4 Relevant Graph Theory

The proof will use graph theory to connect the notion of chromatic number to certain
properties of cylindric algebras. We will give the relevant definitions here, roughly
following Diestel [2006].

Definition 2.4.1. A graph G = (V,E) is a pair of a set of vertices V and edges E ⊆ [V ]2,
i.e. E is an irreflexive and symmetric binary relation on V .

Definition 2.4.2. Let G = (V,E) be a graph. A subset of vertices U ⊆ V is called
independent if there are no x, y ∈ U such that {x, y} ∈ E. The chromatic number of
G, denoted χ(G), is the smallest number k < ω such that V can be partitioned into k
independent sets. If there is no such number we say χ(G) =∞.

Definition 2.4.3. Let G = (V,E) be a graph. A path of length n in G is a non-empty
subgraph H = ({v1, . . . , vn}, E) ⊆ G where the vi are distinct and connected by edges,
i.e. {v1, v2}, . . . , {vn−1, vn} ∈ E. If n ≥ 3 and we also have {vn, v1}, then H is called a
cycle in G. of length n. We will call a cycle of odd length an odd cycle and a cycle of
even length an even cycle. The minimum cycle length in a graph G is called the girth,
denoted g(G). If there is no cycle in G, then g(G) is defined to be ∞.

We will make extensive use of products of graphs.

Definition 2.4.4. Let G be a graph and n < ω. Then we write G × n for the graph
that contains n disjoint copies of G with all possible edges between distinct copies.
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Remark. It is easy to see that χ(G× n) = χ(G) · n if χ(G) is finite and ∞ otherwise.

The following proposition is not needed in the actual proof, but is here to help illustrate
why Erdös graphs and their refinements are so useful for us. It is a standard result, but
we provide our own proof here as it is different from what can usually be found in the
literature.

Proposition 2.4.5. A graph G = (V,E) has chromatic number ≤ 2 if and only if it
contains no odd cycle.

Proof. ( =⇒ ) Suppose χ(G) ≤ 2. If χ(G) = 1, there are no edges between any of the
vertices, so there is no odd cycle. If χ(G) = 2, there is a partition of V into independent
sets A,B, i.e. V = A ∪ B. Suppose there is an odd cycle v1, . . . , v2n+1 for some n ≥ 1.
Assume without loss of generality that v1 ∈ A. Certainly v2 ∈ B, v3 ∈ A, etc., so
v2n+1 ∈ A. But then {v2n+1, v1} ∈ E, although both v1, v2n+1 ∈ A, which contradicts
the fact that A is independent.

( ⇐= ) Assume G contains no odd cycles. We will certainly have a chromatic number
of ≤ 2 if all the unconnected components of G have a chromatic number of ≤ 2, so we
can assume that G is connected, i.e. we can choose a vertex v so there is a path from v
to every vertex in G \ {v}.

Now define two sets A,B ⊆ V . Firstly, we put v ∈ A. We define the distance d(v1, v2)
between two distinct vertices v1, v2 to be the length of a shortest path between them.
and define every vertex in V \ {v} with an odd distance from v to be in B and with
an even distance to be in A. Note that this partitions V , as there cannot be a shortest
path from v that is of both even and odd length, and V is connected, so V = A ∪B.

We have to show that A and B are both independent. Suppose for a contradiction that
we have an edge between two vertices a1, a2 ∈ A. Consider shortest paths p1, p2 from v
to a1, a2 respectively. Clearly, the intersection of the paths p1 ∩ p2 is not empty, as it
contains at least v. Let w ∈ p1 ∩ p2 be the vertex with shortest distance to a1. Since p1

is a shortest path w is uniquely determined.

Now we show that w is also closer to a2 than all the other vertices in p1 ∩ p2. Suppose
for a contradiction a vertex w′ ∈ p1∩p2 has shortest distance to a2 and w 6= w′. Assume
without loss of generality that d(v, a1) ≥ d(v, a2). Then, since w and w′ lie on both
shortest paths, we have

d(v, w) + d(w, a1) = d(v, a1) ≥ d(v, a2) = d(v, w) + d(w, a2)
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and therefore

d(w, a1) ≥ d(w, a2)

= d(w,w′) + d(w′, a2)

≥ 1 + d(w′, a2)

= d(a2, a1) + d(w′, a2)

≥ d(w′, a1).

We obtain d(w, a1) ≥ d(w′, a1), which is not possible because d(w, a1) < d(w′, a1).

There is a shortest path of either even or odd length from v to w and hence, since w was
taken from shortest paths, odd or even shortest paths from w to both a1 and a2. Either
way, this is an odd cycle, containing w, the path from w to a1, and the path from a2 to
w. The same argument works for B. Thus χ(G) ≤ 2.

Now we mention some results about particular graphs that will be used for the proof.
First we borrow the notion of a p-morphism from modal logic for graphs:

Definition 2.4.6. Let G,G′ be graphs and f : G→ G′ a surjective homomorphism. If
for each edge {x′, y′} of G′ and x ∈ f−1(x), there is y ∈ f−1(y) such that {x′, y′} is an
edge of G, then we call f a surjective p-morphism.

From the following proposition, an important theorem about the existence of certain
graphs is deduced, that we will also state [Hodkinson and Venema, 2005, pp. 4583–
4584].

Proposition 2.4.7. Let c ≥ 3 and k ≥ 1 be integers and let β, β+ be real numbers such
that 0 < β < β+ < 1. Let G be a finite graph with n vertices, no independent set of
size > nβ/k and no odd cycles of length < c. Then there is a finite graph G+ with n+

vertices such that:

1. there is a surjective p-morphism ρ : G+ → G;

2. G+ has no independent set of size > n+β+/k;

3. G+ has no odd cycles of length ≤ c.

Theorem 2.4.8. Let k ≥ 2. There are finite graphs G0, G1, . . . and surjective p-
morphisms ρi : Gi+1 → Gi for i < ω such that for each i:

1. Gi has no odd cycles of length ≤ i,

2. χ(Gi) = k.

To illustrate why these graphs are so useful for us, consider an inverse system G0, G1, . . .
of such graphs with increasing lower bound for odd cycles 0, 1, . . . and fixed chromatic
number χ(Gi) = k. Note that their inverse limit will not have an odd cycle of finite
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length. So by Proposition 2.4.5, it has a chromatic number of just 2. The chromatic
number of the inverse limit can be scaled up by adding complete graphs of a certain size
to all the Gi. This feature will be used in the proof of the main theorem.
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3
Axiomatisations of Representable

Cylindric Algebras

The goal of this chapter is to show that there is no canonical axiomatisation of the class
of representable cylindric algebras RCAn for finite n ≥ 3. In fact, we will show that
there is no axiomatisation containing only finitely many non-canonical sentences.

To do this, we will construct algebras from graphs in Section 3.1 and develop some theory
for them in Section 3.2. This will allow us to prove that the number of RCAn axioms
satisfied by these algebras is related to the chromatic number of the graph in Section 3.3.
Assuming an axiomatisation with only finitely many non-canonical formulas, we use
direct and inverse systems in Section 3.4 to build an algebra that satisfies an arbitrary
number of axioms, while its canonical extensions only satisfies a bounded number and
thus obtain a contradiction.

3.1 Algebras from Graphs

Here we will describe how to obtain cylindric algebras from graphs. The first step is
given by the following definition, which constructs a cylindric atom structure from a
graph (cf. [Hirsch and Hodkinson, 2009, Definition 3.5]).

Notation. If ∼ is an equivalence relation on n and i < n, we will write ∼i for the
restriction of the relation to n \ {i}.
Definition 3.1.1. Let Γ be a graph. Then the atom structure

At(Γ) = (V,Dij,≡i)i,j<n
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is defined as follows:

1. V consists of pairs (K,∼), where K : n → Γ × n is a partial map and ∼ an
equivalence relation on n that satisfies the following:

a) If |n/∼| = n, then dom(K) = n and im(K) is not independent.

b) If |n/∼| = n− 1, then there is a unique class {i, j} of size 2 with i < j < n,
dom(K) = {i, j} and K(i) = K(j).

c) Otherwise, i.e. if |n/∼| < n− 1, K is nowhere defined.

2. Dij = {(K,∼) ∈ V | i ∼ j} for i, j < n.

3. (K,∼) ≡i (K ′,∼′) if and only if K(i) = K ′(i) and ∼i = ∼′i for i < n.

Remark. It is helpful to think of K as a map from sets containing n − 1 pairwise non-
equivalent elements to vertices in the graph. Note that if two elements i, j are equivalent,
then either K(i) and K(j) are both undefined, or K(i) = K(j). We will write K(i) =
K(j) in both cases.

Definition 3.1.2. Let ∼ be an equivalence relation on n and i < n. Then ∼ is said to
be i-distinguishing if j 6∼ k for all distinct j, k ∈ n \ {i}.

Remark. Note that if (K,∼) ∈ At(Γ), then K is defined on i < n if and only if ∼ is
i-distinguishing.

We can now obtain the algebra from the atom structure and show that it is indeed a
cylindric algebra, using a proof from [Kurucz, 2010, Claim 3.4 and (4)].

Definition 3.1.3. Let Γ be a graph and At(Γ) the atom structure from Γ. Then we
write A(Γ) for the algebra CmAt(Γ).

Proposition 3.1.4. Let Γ be a graph. Then any subalgebra of A(Γ) is an n-dimensional
cylindric algebra.

Proof. Recall that CAn is a variety. This means that it is closed under subalgebras. So
the result follows from Theorem 2.3.31 if we show the following:

(i) for every i < n, ≡i is an equivalence relation and Dii = V ;

(ii) for all i, j < n, ≡i and ≡j commute;

(iii) for all i, j, k < n with i 6= j, k 6= i, j and for all (K,∼) ∈ V we have that (K,∼) ∈
Dij if and only if there is (K ′,∼′) ∈ Dik ∩Dkj such that (K,∼) ≡k (K ′,∼′);

(iv) for all i, j < n with i 6= j and (K,∼), (K ′,∼′) ∈ Dij we have (K,∼) = (K ′,∼′) if
(K,∼) ≡i (K ′,∼′);

The proofs of (i) and (ii) are straightforward, but lengthy. We omit them here.
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(iii) Take i, j, k < n such that k 6= i, j and i 6= j and arbitrary (K,∼) ∈ V . Suppose
(K,∼) ∈ Dij. Then i ∼ j and K(k) is undefined. Let K ′ = ∅ and ∼′ such that ∼k = ∼′k
and k ∼′ i ∼′ j. Then (K ′,∼′) ∈ Dik ∩Dkj and (K,∼) ≡k (K ′,∼′).

Conversely, let (K ′,∼′) ∈ Dik ∩Dkj such that (K,∼) ≡k (K ′,∼′). Then i ∼′ k ∼′ j and
∼′k = ∼k, so i ∼ j and thus (K,∼) ∈ Dij.

(iv) Take i, j < n such that i 6= j and (K,∼), (K ′,∼′) ∈ Dij. Then i ∼ j, i ∼′ j and
∼i = ∼′i and thus ∼ = ∼′. By definition either all of K(i), K(j), K ′(i), K ′(j) are defined
and equal, or none of them is defined. Hence K = K ′.

This establishes a relation between graphs and cylindric algebras. However, we need to
study this relationship in a more abstract setting.

Definition 3.1.5. We denote by LAGS the signature with three sorts (A,G,B) and the
following symbols:

1. function symbols 0, 1,+,−, dij, ci for i, j < n (with the obvious arities that make
A into an algebra with cylindric signature);

2. function symbols 0, 1,+,− (that make B into a boolean algebra);

3. a binary relation symbol ≡i on A for each i < n;

4. a binary (edge) relation symbol E on G (so that G is a graph);

5. a binary relation symbol H on G;

6. a binary relation symbol ∈ between the elements of G and B;

7. a function symbol Ri : A → B for each i < n;

8. a function symbol Si : B → A for each i < n.

We need to pick out certain elements, so that all the elements beneath are i-distinguishing
and thus have K(i) defined on them.

Definition 3.1.6. Let A be a cylindric algebra. For i < n, define

Fi =
∏

j<k<n,j,k 6=i

−djk.

Remark. Clearly, for a cylindric algebra from a graph A(Γ), Fi is just the element over
all the i-distinguishing atoms.

Definition 3.1.7. Let Γ be a graph and M(Γ) be the 3-sorted LAGS structure

(A(Γ),Γ× n, ℘(Γ× n)).

In addition to the usual operations defined on the three sorts, the following operations
relate the sorts to each other:
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• The relation ∈ denotes membership of elements of Γ × n in the sets that are
elements of ℘(Γ× n).

• We have H(x, y) if and only if there is ` < n, such that x, y ∈ Γ× {`}.

• For a, b ∈ A(Γ) we have a ≡i b if and only if a and b are both atoms and ≡i holds
on these atoms in the atom structure At(Γ).

• Finally, we have Ri(a) = {K(i) | (K,∼) ∈ Fi · a} and Si(B) = {(K,∼) ∈ Fi |
K(i) ∈ B}.

We now define a theory that helps us talk about the subclass of all the LAGS-structures
similar to the ones derived from graphs.

Definition 3.1.8. Define U to be the set of first-order LAGS-sentences true in all LAGS-
structures M(Γ) for graphs Γ. An LAGS-structure M that is a model of U is called an
algebra-graph-system.

Remark (1). This definition ensures that every first-order statement that holds for alge-
bras from graphs, also holds in any algebra-graph-system. This will allow us to prove
first-order statements for algebra-graph-systems, by just showing they hold for algebras
from graphs. We will refer to this approach in the following as generalisation technique.

Remark (2). Note that in any algebra-graph-system (A,G,B), the algebra A is cylindric.
This follows by the generalisation technique, as we know from Proposition 3.1.4 that an
arbitrary algebra from a graph will satisfy all the axioms for cylindric algebras.

Recall from Definition 2.3.20 that we can obtain the ultrafilter structure A+ from a
cylindric algebra A. The relation ≡i on µ, ν ∈ A+ is then defined to be

µ ≡i ν ⇐⇒ ciµ = {cia | a ∈ µ} ⊆ ν.

It will be convenient to have several equivalent ways to talk about ≡i in an ultrafilter
structure from the algebra part of an algebra-graph-system.

Lemma 3.1.9. Let M = (A,G,B) be an algebra-graph-system and µ, ν ∈ A+. Then the
following are equivalent for all i < n:

(i) µ ≡i ν,

(ii) {cia | a ∈ µ} = {cib | b ∈ ν},

(iii) for each a ∈ µ and b ∈ ν there are atoms x, y ∈ A such that x ≡i y and x ≤ a and
y ≤ b.

Proof. (i) =⇒ (ii). Suppose µ ≡i ν. Note that cicia = cia for any a ∈ A, as this is
true for algebras from graphs, first-order definable and thus in U by the generalisation
technique. So for any a ∈ µ, we have by the definition of ≡i for algebras from graphs
that cicia = cia ∈ ν. This shows {cia | a ∈ µ} ⊆ {cib | b ∈ ν}.
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Conversely, if b ∈ ν, then cib ∈ ν by the generalisation technique, and hence −cib 6∈ ν.
Note that we also have ci(−cib) = −cib 6∈ ν, so we have −cib 6∈ µ. But then cicib = cib ∈
µ and therefore {cia | a ∈ µ} ⊇ {cib | b ∈ ν}.

(ii) =⇒ (iii). Suppose {cia | a ∈ µ} = {cib | b ∈ ν}. Choose arbitrary a ∈ µ and b ∈ ν.
Then cib ∈ µ, so cib · a ∈ µ and in particular cib · a 6= 0. Now it is true in algebras from
graphs that for any non-zero element c ∈ A, there is an atom x ∈ A such that x ≤ c
(that is, the algebra is atomic). So by the generalisation technique, there is an atom
x ∈ A such that x ≤ cib · a. Then x ≤ a and x ≤ cib.

For algebras from graphs the following is certainly true:

∀x : A∀b : A(atom(x) ∧ x ≤ cib→ ∃y : A(atom(y) ∧ y ≡i x ∧ y ≤ b)).

So there is an atom y ∈ A such that y ≡i x and y ≤ b in our model M as well.

(iii) =⇒ (i). Assume that µ 6≡i ν, so there is a ∈ µ such that cia 6∈ ν. Then −cia ∈ ν.
Take any atoms x, y ∈ A such that x ≤ a and y ≤ −cia. Then, because the following is
true by the definition of ci for algebras from graphs:

∀a : A∀x, y : A(atom(x) ∧ atom(y) ∧ x ≤ a ∧ y ≤ −cia→ x 6≡i y),

we conclude that x 6≡i y. This shows that (iii) does not hold.

Recall from Definition 2.1.14 that a cylindric algebra A is simple if |A| > 1 and for any
algebra A′ with cylindric signature, any homomorphism ϕ : A → A′ is either trivial or
injective. We will see that the algebra part of an algebra-graph-system is simple, which
means its representation, if it does exist, is just an embedding into a single cylindric set
algebra.

Definition 3.1.10. Let C be a class of BAOs of the same signature L. Then an L-term
d satisfying

d(a) =

{
1 if a > 0,

0 if a = 0.

for each a ∈ A ∈ C, is called a discriminator term.

Proposition 3.1.11. The class {A(Γ) | Γ a graph} has a discriminator term.

Proof. We are going to show that c1 . . . cn−1cn−1 . . . c1 is a discriminator term. Let Γ be
a graph and let {(K,∼)} ∈ A(Γ) be an atom. Recall that

ci{(K,∼)} = {(K ′,∼′) | K(i) = K ′(i),∼i = ∼′i}.

For 1 ≤ i < n, define Ki : n → Γ × n to be the partial function given by Ki(0) =
Ki(i) = K(i) (possibly undefined) and undefined for j 6= 0, 1. Also define ∼i to be the
(unique) equivalence relation on n satisfying ∼ii = ∼i and 0 ∼i i. Note that this is a
valid atom, so (Ki,∼i) ∈ At(Γ), and (K,∼) ≡i (Ki,∼i).
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This can be done multiple times, and writing Kij for (Ki)j and ∼ij for (∼i)j, we get:

(K,∼) ≡1 (K1,∼1) ≡2 (K12,∼12) ≡3 · · · ≡n−1 (K1...(n−1),∼1...(n−1)).

Let (L,≈) = (K1...(n−1),∼1...(n−1)). The above shows that (L,≈) ∈ cn−1 . . . c1{(K,∼)}
and (K,∼) ∈ c1 . . . cn−1{(L,≈)}.

Recall that n ≥ 3, so we have K1 and K12.1 By the definition of K1, the value of K1(2)
is undefined. But this means that K12, . . . , K1...(n−1) are all nowhere defined. So L does
not depend on K. Also, ≈ is just n× n, so it does not depend on ∼. It follows that for
any atom x ∈ A(Γ), we have

x ∈ c1 . . . cn−1{(L,≈)} ⊆ c1 . . . cn−1cn−1 . . . c1{(K,∼)}.

So c1 . . . cn−1cn−1 . . . c1{K,∼} = 1.

Finally, let 0 6= a ∈ A(Γ). We know that A(Γ) is atomic, so there is an atom x ≤ a.
Now

1 = c1 . . . cn−1cn−1 . . . c1x ≤ c1 . . . cn−1cn−1 . . . c1a.

Also, c1 . . . cn−1cn−1 . . . c10 = 0. So d(x) = c1 . . . cn−1cn−1 . . . c1x is a discriminator term
for algebras from graphs.

Corollary 3.1.12. In every algebra-graph-system M = (A,G,B), the cylindric algebra
A and all its subalgebras are simple.

Proof. Let D be a subalgebra of A, A′ an algebra with cylindric signature and ϕ : D →
A′ a homomorphism. It follows from Proposition 3.1.11, by the generalisation technique,
that A has a discriminator term d(x), and thus D as well.

Suppose ϕ is not injective, i.e. there are distinct a, b ∈ D such that ϕa = ϕb. Then
(a− b) + (b− a) 6= 0 and therefore

1 = ϕd((a− b) + (b− a))

= d(ϕ((a− b) + (b− a)))

= d((ϕa− ϕb) + (ϕb− ϕa))

= d((ϕa− ϕa) + (ϕa− ϕa))

= d(ϕ(a− a) + ϕ(a− a))

= d(0)

= 0.

Thus ϕ is trivial if it is not injective.

Lemma 3.1.13. Let A ∈ RCAn be a representable cylindric algebra. If A is simple,
then it has a representation that is an embedding into a single cylindric set algebra.

1This is the only place where we explicitly use the assumption that n ≥ 3.
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Proof. There is a representation h : A →
∏

k∈K Sk, where K is an index set and for each
k ∈ K, Sk is a non-empty base set and

Sk = (℘(Snk ),∪, \, ∅, Snk , Dk
ij, C

k
i )i,j<n

Because h is injective and |A| > 1, the index set K 6= ∅. So choose ` ∈ K and let π be
the projection of

∏
k∈K Sk onto S`. Then π◦h is certainly a homomorphism and because

π ◦ h(1) = Snk 6= ∅ = π ◦ h(0),

it is non-trivial. But because A is simple, π ◦ h is injective and thus a representation
that is an embedding into a single cylindric set algebra.

3.2 Networks and Patch systems

In this section we will present and adapt some useful tools from Hirsch and Hodkinson
[2009], that will help us study representability. This will prepare us for the next section,
where results from here will help us to play games on algebras to prove results about
representability and the chromatic number.

First recall Fi from Definition 3.1.6. We can show that:

Lemma 3.2.1. Let M = (A,G,B) be an algebra-graph-system and i, j < n. Then
Fi · dij ≤ Fj.

Proof. It is enough to show that this is true for algebras from graphs, as this is clearly
a set of first-order formulas. Let Γ be a graph and consider Fi, Fj, dij ∈ A(Γ). If
(K,∼) ∈ Fi · dij, then (K,∼) ∈ Fi ∩ Dij. Since (K,∼) ∈ Fi, we know that it is i-
distinguishing and since (K,∼) ∈ Dij, we know that i ∼ j. So (K,∼) is j-distinguishing
as well and (K,∼) ∈ Fj

Definition 3.2.2. Let M = (A,G,B) be an algebra-graph-system and let i < n. An
ultrafilter µ of A is called i-distinguishing if and only if it contains Fi.

Remark. This is clearly equivalent to µ not containing any of the djk for distinct j, k ∈
n \ {i}.

Definition 3.2.3. Let M = (A,G,B) be an algebra-graph-system, let µ be an ultrafilter
of A and let i < n. For an ultrafilter µ of A, write µ(i) for the set {Ri(a) | a ∈ µ} ⊆ B.

Lemma 3.2.4. Let M = (A,G,B) be an algebra-graph-system and i < n. Then:

(i) If a ∈ A and a ≤ Fi, then Si(Ri(a)) ≥ a.

(ii) If B ∈ B, then Ri(Si(B)) = B.

(iii) Ri is surjective for all i < n.
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Proof. It is again sufficient to show that this is true for algebras from graphs. Let Γ be
a graph and consider the structure M(Γ) from Definition 3.1.7.

(i) Let (K,∼) ∈ a be arbitrary. Recall that

Ri(a) = {K(i) | (K,∼) ∈ a · Fi}.

So K(i) ∈ Ri(a) and because (K,∼) ∈ Fi, we also have

(K,∼) ∈ {(K ′,∼′) ∈ Fi | K ′(i) ∈ Ri(a)} = Si(Ri(a)).

This shows a ≤ Si(Ri(a)).

(ii) Let B ∈ B. First note that

Ri(Si(B)) = {K(i) | (K,∼) ∈ Si(B)} = {K(i) | (K,∼) ∈ Fi, K(i) ∈ B} ⊆ B.

For the converse, let p ∈ B and let i 6= j < n. Define ∼ to be the (unique) i-
distinguishing relation with i ∼ j and define K by

K(i) = K(j) = p, K(k) undefined if k 6= i, j.

Then (K,∼) is certainly a valid element of At(Γ) contained in Fi and therefore (K,∼) ∈
Si(B). But then p = K(i) ∈ Ri(Si(B)). This shows B ⊆ Ri(Si(B)).

(iii) By (ii), the pre-image of each B ∈ B contains Si(B) ∈ A.

Lemma 3.2.5. Let M = (A,G,B) be an algebra-graph-system and let µ be an i-
distinguishing ultrafilter of A. Then:

(i) The projection µ(i) is an ultrafilter on B.

(ii) If j < n and dij ∈ µ, then µ is also j-distinguishing and µ(i) = µ(j).

(iii) If ν is also an ultrafilter of A, then µ ≡i ν if and only if ν is i-distinguishing and
µ(i) = ν(i).

Proof. (i) Firstly, ∅ 6∈ µ(i): If a ∈ µ, then a 6= 0, so Ri(a) 6= ∅, because the following is
clearly true for algebras from graphs:

∀a : A(0 < a ≤ Fi → Ri(a) 6= 0).

Let Ri(a) be an element of µ(i) such that a ∈ µ. The following are certainly true for
algebras from graphs:

∀a, b : A(a ≤ b→ Ri(a) ≤ Ri(b)), (?)

∀A,B : B(A ≤ B → Si(A) ≤ Si(B)).
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So, if Ri(a) ≤ B ∈ B, then, by Lemma 3.2.4, a ≤ Si(Ri(a)) ≤ Si(B). So Si(B) ∈ µ
and hence, again by Lemma 3.2.4, B = Ri(Si(B)) ∈ µ(i). This shows that µ(i) is closed
under supersets.

Now let Ri(a), Ri(b) ∈ µ(i) be be such that a, b ∈ µ. So a · b ∈ µ. By (?), we have
Ri(a) · Ri(b) ≥ Ri(a · b) ∈ µ(i). We showed that µ(i) is closed under supersets, so
Ri(a) ·Ri(b) ∈ µ(i). This shows that µ(i) is a filter.

Finally, take any B ∈ B. The following certainly holds in algebras from graphs:

∀B : B(Si(B) + Si(−B) = Fi).

Hence Si(B) + Si(−B) = Fi, which is contained in µ because µ is i-distinguishing. So
one of Si(B) and Si(−B) is in µ and by Lemma 3.2.4(ii) one of B,−B is in µ(i). Thus
by Lemma 2.3.7 µ(i) is an ultrafilter of B.

(ii) This is obvious if i = j, so suppose i 6= j. Assume dij ∈ µ. Then Fj ∈ µ, because of
Lemma 3.2.1 and dij · Fi ∈ µ. So µ is also j-distinguishing.

For the second part of the claim, let Ri(a) be an element of µ(i) for some a ∈ µ. Define
b = a · dij ∈ µ. Then, by Lemma 3.2.1, b ≤ Fj. We need the following statement that is
obviously true for algebras from graphs:

∀a : A(a ≤ dij → Ri(a) = Rj(a)).

It follows that Ri(b) = Ri(b). Now, again using (?), we have

Ri(a) ≥ Ri(b) = Rj(b) ∈ µ(j).

Thus µ(i) ⊆ µ(j) and because these are ultrafilters by (i) we have µ(i) = µ(j).

(iii) ( =⇒ ) Assume µ ≡i ν. From the definition it follows that ciFi ∈ ν. In algebras
from graphs ciFi = Fi, so we have Fi ∈ ν and ν is i-distinguishing. Now let Ri(a) ∈ µ(i)
such that a ∈ µ. Moreover, cia ≤ ciFi = Fi, and cia ∈ ν. Note the following holds for
all algebras from graphs:

∀a : A(Ri(a) = Ri(cia)).

So Ri(a) = Ri(cia) ∈ ν(i). Thus µ(i) ⊆ ν(i) and because these are ultrafilters by (i), we
have µ(i) = ν(i).

(⇐= ) For the converse let ν be an ultrafilter of A such that Fi ∈ ν and µ(i) = ν(i).
Let a ∈ µ, b ∈ ν. Then

Ri(a) ∈ µ(i) = ν(i) 3 Ri(b)

and thus Ri(a) ·Ri(b) 6= 0. Now we need the following statement:

∀a, b : A(Ri(a) ·Ri(b) 6= 0→ ∃x, y : A(atom(x) ∧ atom(y) ∧ x ≡i y ∧ x ≤ a ∧ y ≤ b)).

This is true for algebras from graphs because we can just take atoms x = (K,∼) ∈ a,
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y = (K ′,∼′) ∈ b such that (K,∼), (K ′,∼′) ∈ Fi and K(i) = K ′(i). By definition this
gives us x ≤ a, y ≤ b and x ≡i y. Because this is true for algebras from graphs, it is also
true for the structure M. This allows us to apply Lemma 3.1.9(iii) to get µ ≡i ν.

3.2.1 Ultrafilter Networks

In this section we introduce approximations to representations, so called ultrafilter net-
works. They will be part of the game to construct representations.

Definition 3.2.6. Let X be a set and i < n and v ∈ Xn.

1. For w ∈ Xn, we say v ≡i w if vj = wj for all j < n, j 6= i.

2. Denote by v[i/j] the tuple w ∈ Xn defined by w ≡i v and wi = vj.

3. If vj 6= vk for all distinct j, k ∈ n \ {i}, then v is called i-distinguishing.

Definition 3.2.7. Let M = (A,G,B) be an algebra-graph-system. A partial ultrafilter
network over A is a pair N = (N1, N2), where N1 is a set and N2 : Nn

1 → A+ is a partial
map that satisfies the following for any v, w ∈ Nn

1 :

1. For i, j < n, dij ∈ N2(v) if and only if vi = vj.

2. If i < n and v ≡i w, then N2(v) ≡i N2(w).

If N2 is total, we call N an ultrafilter network over A.

Remark. If N = (N1, N2) and M = (M1,M2) are both partial ultrafilter networks we
write N ⊆ M to denote N1 ⊆ M1 and M2 �N1 = N2. We will often write N for both
N1 and N2.

3.2.2 Patch Systems

The patch systems provide a way to assign ultrafilters of a graph to (n−1)-sized subsets,
or ‘patches’, of a set of nodes.

Definition 3.2.8. Let M = (A,G,B) be an algebra-graph-system. A patch system for
B is a pair P = (P1, P2), where P1 is a set and P2 : [P1]n−1 → B+ assigns an ultrafilter
of B to each subset of P1 of size n− 1. If |P1| < n− 1, then P2 = ∅.

Definition 3.2.9. Let M = (A,G,B) be an algebra-graph-system and P = (P1, P2) a
patch system for B. A set V = {v0, . . . , vn−1} ⊆ P1 of size n is called P-coherent if the
following is satisfied: For any Xi ∈ P2(V \ {vi}) (i < n), there are pi ∈ G with pi ∈ Xi

for each i < n, such that {p0, . . . , pn−1} is not an independent subset of G.

The patch system P is said to be coherent if every set V ⊆ P1 of size n is P-coherent.
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Lemma 3.2.10. Let M = (A,G,B) be an algebra-graph-system and P = (P1, P2) a patch
system for B. Let V = {v0, . . . , vn−1} ∈ [P1]n and for each i < n, let Vi = V \{vi}. Then
V is P-coherent if and only if there exists an ultrafilter µ of A that is i-distinguishing
for all i < n and with µ(i) = P2(Vi) for each i < n.

Proof. Let P = (P1, P2) be the patch system for B and let V = {v0, . . . , vn−1} ∈ [P1]n.

( =⇒ ) Assume V is P-coherent. Write Ui = P2(Vi) ∈ B+ for each i < n. Define

µ0 =
⋃
i<n

{Si(B) | B ∈ Ui} ⊆ A.

To show that µ0 has the finite intersection property, it is sufficient to consider arbitrary
Bi ∈ Ui and prove that S0(B0) · S1(B1) · · ·Sn−1(Bn−1) 6= 0. By the P-coherence of
V , we can find pi ∈ Bi for each i < n such that {p1, . . . , pn−1} is not an independent
set. Now the following holds on algebras from graphs because there is an atom that is
i-distinguishing for all i < n and that will map to the non-independent set:

∀B0, . . . , Bn−1 : B

(
∃p0, . . . , pn−1 : G

(∧
i<n

pi ∈ Bi ∧
∨
i,j<n

E(si, sj)

)

→ ∃x : A

(
atom(x) ∧

∧
i<n

x ≤ Si(Bi)

))

We showed that the left hand side of the implication is satisfied, so the right hand side
gives us that µ0 has the finite intersection property. Now we can use Theorem 2.3.6 to
extend µ0 to an ultrafilter µ ofA. Since Fi = Si(B) ∈ µ, we have that µ is i-distinguishing
for all i < n. Moreover, if B ∈ Ui, then Si(B) ∈ µ, so B = Ri(Si(B)) ∈ µ(i). Therefore
P2(Vi) = Ui = µ(i).

(⇐= ) Assume µ is an ultrafilter of A that is i-distinguishing for all i < n and with
µ(i) = P2(Vi) for each i < n. Choose arbitrary Xi ∈ µ(i) for each i < n. For each i < n,
we can choose bi ∈ µ such that Ri(bi) = Xi. Let b =

∏
i<n(bi ·Fi) ∈ µ. Now the following

holds by definition in algebras from graphs:

∀x : A

(
atom(x) ∧

∧
i<n

x ≤ Fi →
∨
i,j<n

(∃p, q : G(E(p, q) ∧ p ∈ Ri(x) ∧ q ∈ Rj(x)))

)
.

So we can choose an atom x ∈ A such that x ≤ b. Then, by the above, we can also
choose v1, . . . , vn−1 with vi ∈ Ri(x) such that {v1, . . . , vn−1} is not independent. So V is
coherent.

We need this lemma to show that the next definition is well defined.

Lemma 3.2.11. Let M = (A,G,B) be an algebra-graph-system and N = (N1, N2) a
partial ultrafilter network over A. Then:
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(i) If v ∈ dom(N2) and i < n, then N2(v) is i-distinguishing if and only if v is
i-distinguishing.

(ii) If v ∈ Nn
1 is i-distinguishing, then v[i/j] is j-distinguishing and N2(v)(i) =

N2(v[i/j])(j).

(iii) Let i, j < n and v, w ∈ Nn
1 such that v is i-distinguishing, w is j-distinguishing

and {vk | i 6= k < n} = {wk | j 6= k < n}. Then N2(v)(i) = N2(w)(j).

(iv) If P = (N1, P2) is a coherent patch system and for each i < n we have N2(v)(i) =
P2({vj | i 6= j < n}) for all i-distinguishing v ∈ Nn

1 , then there is a total ultrafilter
network N+ = (N1, N

+
2 ) ⊇ N such that ∂N+ = P .

Proof. (i) We have that N2(v) 3 Fi if and only if it does not contain djk for j < k < n
and j, k 6= i. But this is true if and only if v is i-distinguishing by the definition of N2.

(ii) Let v ∈ Nn
1 be i-distinguishing and j < n. Let w = v[i/j]. Then w ≡i v and wi = vj.

So by the definition of ultrafilter network we have N2(v) ≡i N2(w) and dij ∈ N2(w). So
by Lemma 3.2.5(iii) we have N2(v)(i) = N2(w)(i) and by (ii) of the same lemma N2(w)
is j-distinguishing and N2(w)(i) = N2(w)(j).

(iii) Let i, j < n and v, w ∈ Nn
1 such that v is i-distinguishing, w is j-distinguishing and

{vk | i 6= k < n} = {wk | j 6= k < n}. Assume without loss of generality that i = j = 0
(by (ii) we can just replace v by v[i/0] and w by w[j/0]).

The proof is by induction on the highest number v, w disagree on: d(v, w) = max{k <
n | vk 6= wk}. If they agree on everything or d(v, w) = 0, then v ≡0 w, so N2(v) ≡i N2(w)
and Lemma 3.2.5(iii) gives us N2(v)(0) = N2(w)(0).

Assume now that d(v, w) = k > 0 and the claim holds if d(v, w) is less than k. Since
{v` | 0 6= ` < n} = {w` | 0 6= ` < n}, wk = vj for some 0 < j < n. Note that because w
is 0-distinguishing we must have j < k: otherwise we would have wj = vj = wk. Now
‘swap’ the k and j entries of v, that is define

v′ = v[0/k][k/j][j/0].

By (ii), N2(v)(0) = N2(v′)(0). Also v′k = vj = wk and v′` = w` for all ` > k. So v′ is also
0-distinguishing, {v′` | 0 6= ` < n} = {w` | 0 6= ` < n} and d(v′, w) < k. So, using the
induction hypothesis, we get N2(v)(0) = N2(v′)(0) = N2(w)(0).

(iv) We need to define a total function N+
2 : Nn

1 → A+ that agrees with N2 on dom(N2).
So we first put N+

2 (v) = N2(v) for all v ∈ dom(N2).

Now let v ∈ (Nn
1 \ dom(N2)). Write set(v) for {vi | i < n}. We will assign an ultrafilter

of A to v in the following way:



CHAPTER 3. AXIOMATISATIONS OF REPRESENTABLE CYLINDRIC ALGEBRAS 43

(a) If | set(v)| < n− 1, define

D =
∏

i<j<n,vi=vj

dij ·
∏

i<j<n,vi 6=vj

−dij.

By the generalisation technique, D is an atom (in an algebra from a graph it
would just be (∅,∼) where i ∼ j if and only if vi = vj). We define N+

2 (v) to be
the principal ultrafilter of A generated by D. Note that we have N+

2 (v)(i) = ∅ =
P2(set(v)) for all i < n.

(b) If | set(v)| = n − 1, there are unique i < j < n such that vi = vj. Define
Λ = Fi · Fj · dij and let

N+
2 (v) = {a ∈ A | Ri(a · Λ) ∈ P2(set(v))} ⊆ A.

It is easy to see that this is an ultrafilter of A, because P2(set(v)) is an ultrafilter
of B. By the generalisation technique, Ri(Λ) = B, so Λ ∈ N+

2 (v), and therefore
dij ∈ N+

2 (v) if and only if vi = vj. Moreover, if a ∈ N+
2 (v) and a ≤ Fi, then

Ri(a) ⊇ Ri(a · Λ) ∈ P2(set(v)) and hence, as both are ultrafilters, N+
2 (v)(i) =

P2(set(v)). By Lemma 3.2.5(ii), N+
2 (v)(j) = P2(set(v)) as well.

(c) If | set(v)| = n, then by Lemma 3.2.10 there is an ultrafilter µ of A that is i-
distinguishing for all i < n and with µ(i) = P2({vj | i 6= j < n}) for all i < n. We
define N+

2 (v) = µ.

We need to check that this defines an ultrafilter network. In all three cases we have for
all i, j < n:

dij ∈ N+
2 (v) if and only if vi = vj. (?)

Also, v is i-distinguishing if and only if N+
2 (v) 3 Fi for all i < n.

Furthermore, in all three cases we constructed the ultrafilters so that for i-distinguishing
v ∈ Nn

1 we have
N+

2 (v)(i) = P2({vj | i 6= j < n}). (??)

Now we check the second condition for ultrafilter networks. Assume v ≡i w. If v is
i-distinguishing, then so is b and by (??) we have

N+
2 (v)(i) = P2({vj | i 6= j < n}) = N+

2 (w)(i).

So by Lemma 3.2.5(iii) N+
2 (v) ≡i N+

2 (w).

Assume now that v is not i-distinguishing. Similar as in (a), we define

∆ =
∏

j,k 6=i,vj=vk

dij ·
∏

j,k 6=i,vj 6=vk

−dij.

By (?), ∆ ∈ N+
2 (v) and since v ≡i w, also ∆ ∈ N+

2 (w). Now take any a ∈ N+
2 (v) and
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b ∈ N+
2 (w) and choose atoms x, y ∈ A such that x ≤ a ·D and y ≤ b ·D. Since v is not

i-distinguishing, there are distinct j, k 6= i such that vj = vk. Thus the left product of
∆ is non-empty and the following holds for algebras from graphs:

∀x, y : A(atom(x) ∧ atom(y) ∧ x ≤ ∆ ∧ y ≤ ∆→ x ≡i y).

(Any atom (K,∼) in ∆ would have K undefined and the equivalence relation on n \ {i}
determined by the djk in ∆.) So by the generalisation technique, we have x ≡i y and by
Lemma 3.1.9 N+

2 (v) ≡i N+
2 (w). Thus N+ = (N1, N

+
2 ) is an ultrafilter network.

We also have N = (N1, N2) ⊆ (N1, N
+
2 ) = N+ and because of (??), ∂N+ = P .

The third part in the above lemma says that the ith projection is independent from
the ith coordinate and the order of the elements in the vector. So the following is
well-defined:

Definition 3.2.12. Let M = (A,G,B) be an algebra-graph-system and N = (N1, N2)
an ultrafilter network over A. We define ∂N to be the patch system (N1, P2), where

P2 : [N1]n−1 → B+,

{v0, . . . , vi−1, vi+1, . . . , vn−1} 7→ N2(v)(i)

for each i < n and i-distinguishing v ∈ Nn
1 .

3.3 Chromatic Number & Representability

Here we show that the chromatic number of a graph Γ and the number of representability
axioms satisfied by A(Γ) ‘drag’ each other along. We achieve this by proving that
U ∪ {γm | m < ω} and U ∪ {θk | k < ω} have very similar models and use compactness
to derive the desired result.

Recall from Definition 2.4.2, that the chromatic number of a graph is the size of the
smallest partition into independent sets, or ∞ if no such partition exists. Although the
chromatic number is in general not first-order definable, we can define it for algebra-
graph-systems with the following formula.

Definition 3.3.1. For each k < ω, we define the following LAGS-formula:

θk := ∀B0, . . . , Bk−1 : B

(∑
i<k

Bi = 1→ ∃p, q : G

(
E(p, q) ∧

∨
i<k

(p ∈ Bi ∧ q ∈ Bi)

))
.

Remark. If M = (A,G,B) is an algebra-graph-system, we will say an element B ∈ B is
an independent set, if there are no p, q ∈ B such that E(p, q).
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One direction can be proved without further help, apart from some of the machinery
from the last section and Ramsey’s theorem.

Proposition 3.3.2. Let M = (A,G,B) be an infinite algebra-graph-system. If M 6|= θk
for some k < ω, then A is not representable.

Proof. Suppose for a contradiction that A is representable although M 6|= θk. So by
Lemma 3.1.13 there is a representation h that embeds A into a single cylindric set
algebra S = (℘(Sn),∪, \, ∅, Sn, Dij, Ci)i,j<n with base set S.

Let N be the ultrafilter network with nodes S and N (s̄) = {a ∈ A | s̄ ∈ h(a)} ∈ A+.
This is a well-defined ultrafilter network. Furthermore, by Lemma 3.2.11 we can make
this into a well-defined and coherent patch system ∂N .

Now M 6|= θk means

M |= ∃B0, . . . , Bk−1 : B

(∑
i<k

Bi = 1 ∧ ∀p, q

(∧
i<k

p ∈ Bi ∧ q ∈ Bi → ¬E(p, q)

))

which says G is the union of k independent sets from B, as we certainly have ∀v : G(v ∈ 1)
in algebras from graphs. So G has finite chromatic number k and can be partitioned
into k independent sets from B, say B0, . . . , Bk−1.

SinceA is infinite and h is injective, S is infinite and therefore S as well. So we can choose
infinitely many distinct elements s0, s1, . . . from S. Now define a map f : [ω]n−1 → k
by letting f({i0, . . . , in−1}) be the unique j < k such that Bj ∈ ∂N ({si0 , . . . , sain−1

}).
By Ramsey’s theorem (2.2.1), we can choose the elements so that f is constant, say
f([ω]n−1) = c. Now consider the first n elements that were chosen {s0, . . . , sn−1}. Since
f is constant, Bc ∈ ∂N ({sj | i 6= j < n}) for all i < n. Because ∂N is coherent, we can
choose n elements p0, . . . , pn−1 ∈ Bc so that {p0, . . . , pn−1} is not an independent set.
But this is impossible since Bc is independent.

For the other direction we define a game that allows us to build a representation for
A(Γ) if Γ has infinite chromatic number.

Definition 3.3.3. Let M = (A,G,B) be an algebra-graph-system. A game G(A) is an
infinite sequence of ultrafilter networks

N0 ⊆ N1 ⊆ . . .

that were build by the following rules: The game begins with the (unique) one-point
network N0. There are ω rounds. In round t < ω, the current network is Nt and the
player ∀ chooses an n-tuple v ∈ N n

t , a number i < n and an element a ∈ A such
that cia ∈ Nt(v). The other player ∃ then has to respond with an ultrafilter network
Nt+1 ⊇ Nt such that there is w ∈ N n

t+1 with w ≡i v and a ∈ Nt+1(w). She wins the
game if she can play a network that satisfies these constraints in each round.
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Lemma 3.3.4. Let M = (A,G,B) be an algebra-graph-system. If ∃ has a winning
strategy in the game G(A), then A is representable.

Proof. By the downward Löwenheim-Skolem-Tarski theorem (2.1.16), there is a count-
able and elementary subalgebra A0 of A. Let N0 ⊆ N1 . . . be the game where ∀ plays
every possible move in A0 and ∃ uses her winning strategy in Gω(A) to respond. She
can do this because she only has to accept or reject at each move.

Define N =
⋃
t<ωNt. This is certainly an ultrafilter network, as all the Nt are ultrafilter

networks.

Now we can use N to define the following homomorphism for A0:

h : A0 → (℘(N n),∪, \, ∅,N n, DNij , C
N
i ))i,j<n

a 7→ {v ∈ Nn | a ∈ N (v)}.

Using that N (v) is an ultrafilter, it can be checked that this is indeed a homomorphism.
Recall from Corollary 3.1.12 that A0 is simple. So, since h(1) = Nn 6= ∅ = h(0), the map
h is injective. This shows that A0 is representable and because RCAn is an elementary
class, A is representable as well.

Remark. The converse of the lemma also holds, but is not needed here.

Lemma 3.3.5. Let M = (A,G,B) be an algebra-graph-system such that M |= {θk | k <
ω}. Then there is an ultrafilter of B that contains no independent sets.

Proof. Let µ0 ⊆ B be the set that contains all the B such that −B is independent.
Then µ0 has the finite intersection property: Suppose for a contradiction that for
B0, . . . , Bk−1 ∈ µ0 we have

B0 ·B1 · · ·Bk−1 = 0 =⇒ −(B0 ·B1 · · ·Bk−1) = 1

=⇒ (−B0) + (−B1) + · · ·+ (−Bk−1) = 1

But this means M 6|= θk. A contradiction. Thus µ0 has the finite intersection property
and, by the boolean prime ideal theorem (2.3.6), it can be extended to an ultrafilter µ,
which does not contain any independent set (because it contains the complement).

Remark. The converse of Lemma 3.3.5 also holds, but is not needed here.

Proposition 3.3.6. Let M = (A,G,B) be an algebra-graph-system. If M |= {θk | k <
ω}, then A is representable.

Proof. By Lemma 3.3.4 it is sufficient to show that ∃ has a winning strategy in the game
G(A). Suppose we are in round t and the current network is Nt. According to the rules,
the player ∀ chooses a ∈ A, i < n and v ∈ N n

t . The other player ∃ now has to respond
with a network Nt+1 ⊇ Nt that contains w ∈ N n

t+1 such that v ≡i w and a ∈ Nt+1(w). If
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there is w ∈ N n
t with v ≡i w and a ∈ Nt+1(w), she can just respond with the unchanged

network Nt. So we assume in the following that there is no such w.

Step 1. Let Nt+1 = Nt ∪ {z}, where z 6∈ Nt is a new node. We will first try to find an
ultrafilter for the tuple w, defined by w ≡i v and wi = z. To help ∃ win the game, the
ultrafilter should contain a. We achieve this by showing that the following set has the
finite intersection property:

µ0 = {a} ∪ {−dij | i 6= j < n} ∪ {cib | b ∈ Nt(v)}.

Let ∆ =
∏

j 6=i−dij. We can show that ci(a ·∆) ∈ Nt(v): Clearly, by the generalisation
technique, ∆ +

∑
j 6=i dij = 1. Therefore, cia = ci(a ·∆) +

∑
j 6=i ci(a · dij). If ci(a ·∆) 6∈

Nt(v), then there is j 6= i such that ci(a · dij) ∈ Nt(v). Now let v′ = v[i/j]. Then,
since v ≡i v′ and by the definition of ultrafilter networks, Nt(v) ≡i Nt(v′). So by
Lemma 3.1.9, ci(a · dij) ∈ Nt(v′) as well. By the construction of v′, we have vi = vj and
therefore dij ∈ Nt(v′). Thus dij ·ci(a ·dij) ∈ Nt(v

′). In algebras from graphs we certainly
have

∀a : A(dij · ci(a · dij) = a · dij).

Hence, by the generalisation technique, a · dij ∈ Nt(v
′), and therefore a ∈ Nt(v

′). But
we assumed that no such tuple exists in N n

t , so we must have ci(a ·∆) ∈ Nt(v).

If µ0 would not have the finite intersection property, then there would be b0, . . . , bm−1 ∈
Nt(v) such that a ·∆ · cib0 · · · cibm−1 = 0. But then

a ·∆ ≤ −(cib0 · · · cibm−1) = (−cib0) + · · ·+ (−cibm−1)

=⇒ ci(a ·∆) ≤ (ci−cib0) + · · ·+ (ci−cibm−1) = (−cib0) + · · ·+ (−cibm−1).

But this implies that (−cib0) + · · ·+ (−cibm−1) ∈ Nt(v), which is impossible since all of
the bj, j < n are in Nt(v). Thus µ0 has the finite intersection property.

So, by the boolean prime ideal theorem (2.3.6), player ∃ can choose an ultrafilter µ of
A that contains µ0. By construction and Lemma 3.1.9, we have µ ≡i Nt(v). Moreover,
µ satisfies the following

djk ∈ µ ⇐⇒ wj = wk (?)

for all j, k < n, because we have wi 6= wj, −dij ∈ µ and for j, k 6= i,

wj = wk ⇐⇒ vj = vk ⇐⇒ djk ∈ Nt(v) ⇐⇒ djk = cidjk ∈ µ.

Therefore, N ′ ⊇ Nt with nodes Nt ∪ {z}, N ′(w) = µ and N ′(x) undefined for tuples
containing z other than w, is a valid partial ultrafilter network.

Step 2. ∃ also needs to define ultrafilters for all the remaining new tuples containing z.
This can be done with the help of the patch system P = (Nt+1, P2), defined as follows.
We will again write set(w) for {wk | k < n}.

• For each set of old nodes V ∈ [Nt]n−1, we define P2(V ) = ∂Nt(V ).
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• For each j < n, define Wj = {wk | j 6= k < n}. For the Wj of size n − 1, she
has to define P2(Wj): If |Wi| = n− 1, then because Wi ⊆ Nt, she already defined
P2(Wi) = µ(i).

Now consider the j 6= i with |Wj| = n − 1. We showed in (?) that µ is j-
distinguishing if w is, so µ(j) is an ultrafilter in that case. So we define P2(Wj) =
µ(j). Note that this is well defined, because if there is k 6= i, j such that Wk = Wj,
then wj = wk, and thus by (?) djk ∈ µ and by Lemma 3.2.5, µ(i) = µ(j).

• For the remaining W ∈ [Nt+1]n−1 that contain z, but that are not contained in
set(w), we construct the following ultrafilter. Recall that we have an equivalence
relation H on G with exactly n equivalence classes, that satisfies the following for
algebras from graphs:

∀x, y : G(¬H(x, y)→ E(x, y)). (†)

So by the generalisation technique, the same is true for H on G. Furthermore, also
by the generalisation technique, each of equivalence classes is contained in B, since
we have the following for algebras from graphs:

∀x : G∃B : B(x ∈ B ∧ ∀y : G(H(x, y)→ y ∈ B)).

Call these equivalence classes G1, . . . Gn.

Now each of the µ(j) for j 6= i contains exactly one of the Gk, so there must be
at least one G` that is not contained in any of the µ(j). We are given that M |=
{θk | k < ω}, so by Lemma 3.3.5 there is an ultrafilter ν of B containing G` and
no independent sets. We define P2(W ) = ν for all the remaining W ∈ [Nt+1]n−1.

For each j < n, we certainly have N2(u)(j) = P2({uk | j 6= k < n}) for all j-
distinguishing u ∈ Nn

t ∪ {w}. So the only thing left to check is that P is a coherent
patch system. Let U = {u0, . . . , un−1} ∈ [Nt+1]m and write Uj for U \ {uj} for each
j < n. We need to check that U is P-coherent:

• If z 6∈ U , then U ⊆ Nt and U is P-coherent because ∂Nt is coherent.

• If U = set(w), then U is P-coherent by Lemma 3.2.10.

• In the case where z ∈ U , and |U ∪ set(w)| = n− 1, we can find j, k < n such that
z ∈ Uj = U ∩ set(w), Uk 6⊆ Nt and Uk 6⊆ set(b). Then, by the above, G` ∈ P2(Uk).
Moreover, by the choice of `, there is m 6= `, such that Gm ∈ P2(Uj).

Take any Xr ∈ P2(Ur) for each r < n. Now we can choose pr ∈ Xr, for each r < n,
with pj ∈ Xj ·Gm and pk ∈ Xk ·G`. Since l 6= m and therefore H(pj, pk) does not
hold, we have E(pj, pk) by (†). Thus {p0, . . . , pn−1} is not independent.

• In the remaining cases, z ∈ U and |U ∪ set(w)| < n − 1. Then there are distinct
j, k < n such that z ∈ Uj, Uk 6⊆ Nt and Uj, Uk 6⊆ set(w). So by the above, we have
P2(Uj) = P2(Uk) = ν.



CHAPTER 3. AXIOMATISATIONS OF REPRESENTABLE CYLINDRIC ALGEBRAS 49

Take any Xr ∈ P2(Ur) for each r < n. Then Xj, Xk ∈ ν, and thus Xj ·Xk ∈ ν and
therefore not independent. So there are pj, pj ∈ Xj ·Xk such that E(pj, pk). For
the other s 6= j, k just choose any ps ∈ Xs. Then {p0, . . . , pn−1} is not independent.

This shows that P is coherent. Now Lemma 3.2.11(iv) gives us that there is an ultrafilter
network Nt+1 ⊇ N ′ such that ∂Nt+1 = P . So we have Nt+1 ⊇ Nt, with w ≡i v, and
a ∈ µ = Nt+1(w). So ∃ is able to respond to any move made by ∀ – she has a winning
strategy.

Recall that RCAn is a variety. This means that there is an equational axiomatisation of
it, which in particular only involves universal quantifiers. Noting that the conjunction of
universal statements is universal, we can obtain an axiomatisation Σ = {γ0, γ1, . . . } of
RCAn where the axioms gradually get stronger, i.e. γi implies all the γj with j ≤ i. Fix
such an axiomatisation in the following.2 We are now ready to prove the main theorem
of this section:

Theorem 3.3.7. The following statements are true:

(i) For all k < ω there is m < ω such that if Γ is an infinite graph and A(Γ) |= γm,
then χ(Γ) > k.

(ii) For all m < ω there is k < ω such that if Γ is a graph and χ(Γ) > k, then
A(Γ) |= γm.

Proof. First note that if Γ is a graph and χ(Γ) is finite, we have χ(Γ× n) = nχ(Γ), and
that χ(Γ) is infinite iff χ(Γ× n) is infinite.

(i) Let k < ω. From Proposition 3.3.2 we know that every infinite model of U ∪ {γm |
m < ω} is also a model of U ∪ {θk | k < ω}. Define the following theory to say a model
is infinite:

T∞ := {φi | i < ω} where φm := ∃p0, . . . , pm−1 : G

( ∧
i<j<m

pi 6= pj

)
.

By Corollary 2.1.18 of the compactness theorem, there is m < ω such that U ∪ {γm} ∪
T∞ ` θnk. Let Γ be an infinite graph and assume A(Γ) |= γm. Consider the structure
M(Γ) = (A(Γ),Γ× n, ℘(Γ× n)) and note that M(Γ) is infinite. Then we have M(Γ) |=
U ∪ γm ∪ T∞ and thus M(Γ) |= θnk. This means that Γ × n is not the union of nk
independent sets from ℘(Γ× n). Thus χ(Γ× n) > nk.

(ii) Let m < ω. From Proposition 3.3.6 we know that every model of U ∪ {θk | k < ω}
is also a model of U ∪ {γm | m < ω}. So again by Corollary 2.1.18, there is k < ω such
that U ∪ {θk} ` γm. Let Γ be a graph with χ(Γ) > k/n. Then χ(Γ× n) > k. Consider
the structure M(Γ) = (A(Γ),Γ × n, ℘(Γ × n)). Since χ(Γ × n) > k, Γ × n is not the

2This only shows the existence of such an axiomatisation. There are also concrete axiomatisations
with that property available, e.g. the one from Hirsch and Hodkinson [1997].
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union of k independent sets of ℘(Γ× n). So M(Γ) |= U ∪ {θk} and hence M(Γ) |= γm.
It follows that A(Γ) |= γm.

3.4 Direct & Inverse Systems of Algebras and Graphs

We will apply the results from the previous sections to build an algebra, using direct
and inverse systems, that satisfies an arbitrary number of axioms, while its canonical
extension only satisfies a bounded number.

Lemma 3.4.1. If there is an axiomatisation T of RCAn, that contains only finitely
many non-canonical formulas TNC ⊆ T , then there is s0 < ω, so that for all s < ω there
is s+ < ω such that for all cylindric algebras A with Aσ |= γs0 we have A |= γs+ =⇒
Aσ |= γs.

Proof. We can use Corollary 2.1.18 of the compactness theorem repeatedly to obtain the
result, because T and Σ have the same models. Firstly, there is s0 so that {γs0} ` TNC .
We also know that for s < ω, we can find a finite subset of canonical formulas Ts ⊆ T
such that Ts ∪ TNC ` γs. Moreover, there is s+ < ω, so that {γs+} ` Ts.

Now let A be a cylindric algebra such that Aσ |= γs0 . Then, if A |= γs+ , we have A |= Ts.
Because the formulas in Ts are canonical, we have Aσ |= Ts. Since Aσ |= γs0 , we also
have Aσ |= TNC . But we know if Aσ |= Ts ∪ TNC , then Aσ |= γs.

We are interested in the particular case where we have a direct system of BAOs A1 ⊆
A2 ⊆ . . . and an inverse system of the corresponding atom structures built from the
ultrafilters (A1)+, (A2)+, . . . . The following generalises a result from [Goldblatt, 1993,
p. 46] to BAOs.

Theorem 3.4.2. Let A1 ⊆ A2 ⊆ . . . be a direct system of algebras where the homomor-
phism is the natural embedding and the carrier is ω. For each i ≤ j < ω let ϕji be the
following map:

ϕji : (Aj)+ → (Ai)+, µ 7→ Ai ∩ µ.

Then {(Ai)+ | i < ω} with the family of maps ϕji is an inverse system of atom structures
and the inverse limit is isomorphic to the atom structure built from the ultrafilters of the
direct limit of the algebras:

lim←−{(Ai)+ | i < ω} ∼=

(⋃
i<ω

Ai

)
+

Proof. First we remark that Ai∩µ certainly is an ultrafilter of Ai, if j ≥ i and µ ∈ (Aj)+,
so the map ϕji is well defined. For Ω ∈ L\LBA, we will write Ωk for the interpretation in
Ak and Ωω for the interpretation in the direct limit. We write Rk

Ω for the interpretation
of the corresponding relation in (Ak)+ and Rlim

Ω for the interpretation in the inverse limit.
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We show that {(Ai)+ | i < ω} together with the ϕji, i ≤ j < ω is indeed an inverse system
of atom structures. Certainly, ω is a directed and partially ordered set. By assumption
we have a corresponding atom structure (Ai)+ for each i ∈ I. Fix i ≤ j < ω. To check
that ϕji is a homomorphism, consider an n-ary operator Ω ∈ L \ LBA. We then have
a (n + 1)-ary relation Rj

Ω on (Aj)+. Suppose (µ0, . . . , µn−1, ν) ∈ Rj
Ω. We need to check

that
(ϕjiµ0, . . . , ϕjiµn−1, ϕjiν) = (Ai ∩ µ0, . . . , Ai ∩ µn−1, Ai ∩ ν)

is in Ri
Ω. Suppose for a contradiction that (Ai∩µ0, . . . , Ai∩µn−1, Ai∩ν) 6∈ Ri

Ω. Then, by
definition, Ωi(Ai∩µ0, . . . , Ai∩µn−1) 6⊆ Ai∩ ν. So there is x ∈ Ωi(Ai∩µ0, . . . , Ai∩µn−1)
and x 6∈ Ai ∩ ν and since x is in Ai we have x 6∈ ν. But then

x ∈ Ωi(µ0, . . . , µn−1), x 6∈ ν.

But this means by definition that (µ0, . . . , µn−1, ν) 6∈ Rj
Ω, which contradicts the initial

assumption. So ϕji is a homomorphism. Moreover, we have that each ultrafilter µ ∈
(Ai)+ is a subset of Ai, so for each i ∈ I, ϕiiµ = Ai ∩ µ = µ, and ϕii is the identity.
Lastly, we have for an ultrafilter µ ∈ Ak that for all i ≤ j ≤ k < ω the following holds:

ϕji(ϕkjµ) = ϕji(Aj ∩ µ) = Ai ∩ Aj ∩ µ = Ai ∩ µ = ϕki(µ).

So we have an inverse system of atom structures.

Next we show that for each i ≤ j < ω, ϕji is surjective. If µ ⊆ Ai is an ultrafilter, then,
since Ai ⊆ Aj, by the boolean prime ideal theorem, it can be extended to an ultrafilter
µ′ in Aj. Now ϕjiµ

′ = µ.

Finally, we prove that the two limits of the systems are isomorphic. Write Aω for the
direct limit

(⋃
i∈I Ai

)
and A+ for the inverse limit lim←−{(Ai)+ | i < ω}. Define two maps

f : (Aω)+ → A+, µ 7→ (Ak ∩ µ : k < ω),

g : A+ → (Aω)+, µ̄ 7→
⋃
k<ω

µ̄k.

We will show that they are both homomorphisms and that f ◦ g = id and g ◦ f = id.
They are inverses. For µ ∈ (Aω)+ we have:

g(f(µ)) = g((Ak ∩ µ : k < ω))

=
⋃
k<ω

((Ak ∩ µ : k < ω))k

=
⋃
k<ω

(Ak ∩ µ)

= µ.
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For µ̄ ∈ A+ we have:

f(g(µ̄)) = f

(⋃
k<ω

µ̄k

)

=

(
Ak ∩

(⋃
k<ω

µ̄k

)
: k < ω

)
= µ̄.

It remains to show that f, g are homomorphisms. Let Ω ∈ L\LBA be an n-ary operator.
Suppose Rω

Ω(µ0, . . . , µn−1, ν) holds for some ultrafilters µ0, . . . , µn−1, ν ⊆ Aω. Then, by
definition,

Ωω(µ0, . . . , µn−1) ⊆ ν ⇐⇒ Ωk(Ak ∩ µ0, . . . , Ak ∩ µn−1) ⊆ Ak ∩ ν for all k < ω

⇐⇒ Rk
Ω(Ak ∩ µ0, . . . , Ak ∩ µn−1, Ak ∩ ν) for all k < ω

⇐⇒ Rlim
Ω (fµ0, . . . , fµn−1, fν)

Since g is the inverse of f , this shows that both f and g are homomorphisms. This
completes the proof, as we now have an isomorphism between (Aω)+ and A+.

Recall from Theorem 2.4.8, that for all 2 ≤ ` ≤ k < ω we can construct graphs Γ0,Γ1, . . .
in a way such that we have χ(Γs) = k and χ(lim←−Γs) = ` for finite s, and furthermore

Γ0

f10
� Γ1

f21
� . . . ,

where the fij are surjective p-morphisms.

Lemma 3.4.3. If Γ0,Γ1,Γ2, . . . are graphs and there is a family of surjective p-morphisms
{fji | j ≥ i} such that

Γ0

f10
� Γ1

f21
� . . . ,

then there is a family of surjective p-morphisms of atom structures {f̂ji | j ≥ i} such
that

At(Γ0)
f̂10
� At(Γ1)

f̂21
� . . . .

Proof. Let k < ` < ω. For each surjective p-morphism of graphs f`k there is a corre-
sponding natural map f̂`k defined as follows:

f̂`k : At(Γ`)→ At(Γk)

(K,∼) 7→ (f`k ◦K,∼).

To see that this map is a surjective p-morphism, we need to check the following:

(i) surjectivity;
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(ii) the forth property of the cylindrification relations, i.e. if we have i < n and
(K1,∼1) ≡i (K2,∼2) then f̂`k(K

1,∼1) ≡i f`k(K1,∼2);

(iii) the back property of the cylindrification relations, i.e. if we have i < n and
f̂`k(K

1,∼1) ≡i (J2,∼2), then there is (K2,∼2) such that f̂`k(K
2,∼2) = (J2,∼2)

and (K1,∼1) ≡i (K2,∼2);

(iv) diagonals are preserved, i.e. (K,∼) ∈ D`
ij ⇐⇒ f`k(K,∼) ∈ Dk

ij;

(v) that if (K,∼) ∈ At(Γ`), then f`k(K,∼) ∈ At(Γ).

To show (i) let (K ′,∼) ∈ At(Γk). If K ′ is not defined anywhere, we let K be undefined
everywhere as well. If there are i < j < n such i ∼ j and K ′(i) = K ′(j) is defined, there
is p ∈ Γ` × n such that f`k(p) = K ′(i). Define K(i) = K(j) = p and let K be undefined
for the remaining values in that case. Finally, if K ′ is defined on all values i < n, then
im(K ′) is not independent, so there are i < j < n such that there is an edge from K ′(i)
to K ′(j). Since f`k is surjective, there is a pi ∈ Γ` × n such that f`k(pi) = K ′(i). By the
back property of f`k, there is pj ∈ Γ` × n such that there is an edge between pj and pi
and f`k(pj) = K ′(j). For the remaining s 6= i, j, we can also find vertices ps ∈ Γ` × n,
such that f`k(ps) = K ′(s). Now define K(i) = pi. By construction, (K,∼) ∈ At(Γ`) in
all three cases and, moreover, we have f`k(K,∼) = (K ′,∼).

For (ii) we have for (K1,∼1), (K2,∼2) ∈ At(Γ`) and i < ω that

(K1,∼1) ≡i (K2,∼2)

=⇒ K1(i) = K2(i) and ∼1
i = ∼2

i

=⇒ f`k(K
1(i)) = f`k(K

2(i)) and ∼1
i = ∼2

i

=⇒ f̂`k(K
1,∼1) ≡i f̂`k(K2,∼2).

For (iii) we have for (K1,∼1) ∈ At(Γ`), (J2,∼2) ∈ At(Γk) and i < ω that

f̂`k(K
1,∼1) ≡i (J2,∼2)

=⇒ f`k(K
1(i)) = J2(i) and ∼1

i = ∼2
i .

Now take (K2,∼2) such that K2(i) = K1(i) and if j 6= i, we choose K2(j) from the
pre-image of f`k(J

2(j)) if J2 is defined for j, otherwise we make it undefined. Then we
have f̂`k(K

2,∼2) = (J2,∼2) and (K1,∼1) ≡i (K2,∼2).

To see that diagonals are preserved (iv) note that

(K,∼) ∈ D`
ij ⇐⇒ i ∼ j ⇐⇒ f̂`k(K,∼) ∈ Dk

ij.

Lastly, for (v), suppose (K,∼) ∈ At(Γ`) and |n/∼| = n. Clearly the domain of K is
preserved by f̂`k. Moreover, since the image of K is not independent, we have by the
forth property of f`k that the image of K ′ is neither. The other cases follow directly
from the definition of f̂`k.
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Theorem 3.4.4. The class of representable cylindric algebras RCAn has no axiomati-
sation containing only finitely many non-canonical formulas.

Proof. Suppose for a contradiction that T is a canonical axiomatisation of RCAn with
only finitely many non-canonical formulas TNC ⊆ T . Let s0 be the value from Lemma 3.4.1.
By Theorem 3.3.7, we can find ` < ω, so that for any algebra A(Γ) from a graph Γ with
χ(Γ) > ` we have A(Γ) |= γs0 . Let m = ` + 1. By Theorem 3.3.7 again, there is s < ω
such that for any algebra A(Γ) from an infinite graph Γ, A(Γ) |= γs implies χ(Γ) > m.
Let s+ be the value from Lemma 3.4.1 for this s. Now, again by Theorem 3.3.7, there
is k < ω, such that for any algebra A(Γ) from a graph Γ with χ(Γ) > k, we have
A(Γ) |= γs+ .

Now take graphs Γ0,Γ1, . . . from Theorem 2.4.8 such that χ(Γj) = k + 1 for all j < ω
and χ(lim←−Γj) = m and

Γ0

f10
� Γ1

f21
� . . . ,

where the fij are surjective p-morphisms. Given these graphs, using Lemma 3.4.3 it is
now easy to construct embeddings:

A(Γ0) ↪→ A(Γ1) ↪→ . . . .

Define A = lim−→A(Γs). Then, because χ(Γj) > k, we have A(Γj) |= γs+ for all j < ω. As
these are are universal formulas, they are preserved by direct limits, and we therefore
have A |= γs+ .

Moreover, from Theorem 3.4.2 we get

At(lim←−Γj) ∼= lim←−At(Γj)
∼= A+

and thus A(lim←−Γj) ∼= Aσ. We chose the graphs so that χ(lim←−Γj) = m > `. So
Aσ |= γs0 , and therefore by Lemma 3.4.1 Aσ |= γs. But then, since Aσ is clearly infinite,
m = χ(lim←−Γj) > m, a contradiction.
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4
Axiomatisations of Representable

Diagonal-free Algebras

In this chapter we will outline a strategy to generalise the result from the previous chapter
for representable cylindric algebras to representable diagonal-free algebras, the diagonal-
free version of RCA. There are several conceivable ways to achieve this extension. The
most obvious way would be to define diagonal-free algebras from graphs, and then try to
discover a modified route through the proof from the last chapter that does not require
the diagonals. We believe this is possible, but it would essentially duplicate the effort,
as we would need to re-prove most results. We think there is a more elegant way that
will not only be a unified approach for the cylindric and the diagonal-free cases, but
possibly simplify the proof for other variations of cylindric algebras as well.

The idea is to generalise the proof from the last chapter, so that it can deal with both
cylindric and diagonal-free algebras. The key result that we want to utilise for this is
Theorem 2.3.36 (by Johnson [1969]) that relates the representability of cylindric and
diagonal-free algebras. However, in order to apply the theorem we need to restrict
ourselves to cylindric algebras that are generated by their <n-dimensional elements.

In the following section we will provide some arguments in favour of our conjecture. We
think that all the machinery from the previous chapter will still work for models of a well
chosen subset of the theory U , that will give us generalised algebra-graph-systems. The
generalised algebras from graphs will be generated by their <n-dimensional elements,
and have the same connection to the chromatic number as the algebras in the previous
chapter. In the last section we will explain how these results can be used to prove the
theorem for representable diagonal-free algebras.
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4.1 Generalised Algebra-Graph-Systems

The algebras from graphs A(Γ) do not seem to be generated by their <n-dimensional
elements. So, using an idea from Kurucz [2010], we define a subalgebra that is generated
by its <n-dimensional elements.

Definition 4.1.1. Let Γ be a graph. Then we define A(Γ) to be the subalgebra of A(Γ)
generated by the elements {Si(B) | i < n,B ⊆ Γ× n}.

Proposition 4.1.2. A(Γ) is an n-dimensional cylindric algebra generated by its <n-
dimensional elements.

Proof. Firstly, by Proposition 3.1.4, A(Γ) is an n-dimensional cylindric algebra. Let
Si(B), for some i < n and B ∈ Γ× n, be an arbitrary element of A(Γ). Take (K,∼) ∈
Si(B) and (K ′,∼′) such that (K,∼) ≡i (K ′,∼′). Then, as K(i) is defined and K(i) =
K ′(i), the value at K ′(i) is defined as well. Thus (K ′,∼′) ∈ Fi and therefore (K ′,∼′) ∈
Si(B). This shows that ciSi(B) = Si(B).

This gives us the following:

Notation. We will write A− for the diagonal-free reduct of a cylindric algebra A.

Lemma 4.1.3. Let Γ be a graph. Then A(Γ) is a representable cylindric algebra if and
only if the diagonal-free reduct (A(Γ))− is a representable diagonal-free algebra.

Proof. If A(Γ) is a representable cylindric algebra, then we can obtain a representation
for (A(Γ))− by dropping the diagonals from the representation.

Conversely, suppose (A(Γ))− is a representable diagonal-free algebra. By Proposi-
tion 4.1.2 we know that A(Γ) is generated by its <n-dimensional elements. So A(Γ) is
representable by Theorem 2.3.36.

To continue with the proof we want (A(Γ),Γ × n, ℘(Γ × n)) to be an algebra-graph-
system, but this is not the case. However, we could define a subset U of the theory of
U to obtain generalised a algebra-graph-systems that would make it one. A first idea
would be to take all the universal sentences in U and ‘manually’ add all the sentences
involving existential quantifiers that we need. The rationale of this is that most of
the sentences needed in the proof were universal and that universal sentences would
automatically hold on subalgebras. However, we also required some sentences involving
existential quantifiers, so this approach does need some careful consideration. This
problem remains open.

We think that by using this more general approach, we would be able to prove the
main theorem of the previous chapter, Theorem 3.4.4, in the same way as done there.
Moreover, we think that we could prove the theorem for RDfn as well, giving us a unified
approach.
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4.2 Towards a Proof for RDfn

Here we will argue how the analogue of Theorem 3.4.4 for RDfn can be proved using the
setup from the previous section. We assume a universal axiomatisation Σ = {δ1, δ2, . . . }
of RDfn, similar to the axiomatisation Σ of RCAn. Unfortunately, we cannot use com-
pactness here as the signatures do not match. However, in this particular case we believe
that it may be possible to show the following:

Lemma 4.2.1. The following statements are true:

(i) For all k < ω there is m < ω such that if Γ is a graph and (A(Γ))− |= δm, then
A(Γ) |= γk.

(ii) For all m < ω there is k < ω such that if Γ is a graph and A(Γ) |= γk, then
(A(Γ))− |= δm.

Recall that one of the central results of the previous chapter was Theorem 3.3.7. With
all the above we believe that it should be possible to prove the following analogue for
diagonal-free algebras:

Theorem 4.2.2. The following statements are true:

(i) For all k < ω there is m < ω such that if Γ is an infinite graph and (A(Γ))− |= δm,
then χ(Γ) > k.

(ii) For all m < ω there is k < ω such that if Γ is a graph and χ(Γ) > k, then
(A(Γ))− |= δm.

Another important ingredient in the main proof is the result that we cannot have an
arbitrary gap between the number of axioms satisfied by the algebra and its canonical
extension. The analogue of 3.4.1 should also hold for diagonal-free algebras and can be
proved in the same way as it is done in the previous chapter:

Lemma 4.2.3. If there is an axiomatisation S of RDfn, that contains only finitely
many non-canonical formulas SNC ⊆ T , then there is s0 < ω, so that for all s < ω
there is s+ < ω such that for all diagonal-free algebras A− with (A−)σ |= δs0 we have
A− |= δs+ =⇒ (A−)σ |= δs.

These results should be enough to prove the analogue of the main theorem (3.4.4):

Theorem 4.2.4. The class of representable diagonal-free algebras RDfn has no axioma-
tisation containing only finitely many non-canonical formulas.

We believe that it is possible to fill in the gaps in the argument above and to provide
a full proof. Using the well known connection to modal logic, this would confirm the
following conjecture from Kurucz [2010]:

Conjecture. Any axiomatisation of a logic L in the interval between Kn and S5n must
contain infinitely many non-canonical formulas.
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5
Further Remarks and Open Questions

We have shown that there is no axiomatisation of representable cylindric algebras con-
taining only finitely many non-canonical formulas. There were already a number of
results known, that revealed RCAn is not so easy to grasp for finite n ≥ 3. In particular,
it had been established that there is no finite axiomatisation and no axiomatisation con-
sisting of Sahlqvist formulas. However, our result was still surprising as RCAn is known
to be canonical. It shows that RCAn is only barely canonical, and provides further
evidence that it is not easy to work with this class.

One of the main choices made for this report was to define the first-order theory U to
strengthen the results in Hirsch and Hodkinson [2009] using the generalisation technique.
At the time several other approaches were investigated: the modification of the game
used in Hirsch and Hodkinson [2009], the use of non-principal ultraproducts of algebras
from graphs, and lastly the use of an explicit theory and compactness. The chosen
approach turned out to be the best. Somewhat ironically this means that we used
a technique from logic (compactness) to prove a result about cylindric algebras, an
algebraisation of first-order logic that was invented to help prove results in logic.

We believe that similar techniques can be used to extend the result to polyadic algebras,
and possibly other algebraisations of logics. We have already presented a strategy to
further generalise the proof to deal with the representable diagonal-free algebras RDf
and hope to give a complete proof in a future publication. The result would also have
implications for modal logic: It would show that any axiomatisation of a logic L in the
interval between Kn and S5n must contain infinitely many non-canonical formulas.

More generally, the proof techniques used here, in particular the random graph construc-
tion and their correspondence to algebras, are likely useful in many areas of algebraic
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logic and can also be applied elsewhere. As mentioned in the introduction, we exploit
graphs as a source of ‘bad partitions’ for the algebras. The rich theory of graphs can
most likely provide more useful results, now that the link is established. We hope that
this report will further propagate the use of these methods.

A question that was not answered in this report is whether the result also holds for
RCAα with infinite α ≥ ω. This is very likely the case, but would require a different
approach.

Another open question is whether it is possible to change the signature of cylindric
algebras to obtain a class that is canonically axiomatised. This would immediately imply
that the class is canonical and might entail more positive properties. The existence of a
canonical axiomatisation is therefore a good characteristic to test for in new algebras. We
hope to inspire new research in this direction and to motivate the discovery of interesting
subvarieties of representable cylindric algebras.
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