
ImperialRJ: Exploring First-Class Relations

in Object-Oriented Languages

Raoul-Gabriel Urma
ru107@doc.ic.ac.uk

Supervisor: Prof. Sophia Drossopoulou
scd@doc.ic.ac.uk

Department of Computing
Imperial College London

June 20, 2011

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Sophia
Drossopoulou, for her amazing support. You have inspired me and I am very
grateful you had the patience to teach me. I hope to have the chance to work
with you on other interesting projects in the future!

My great thanks to Dr Stephanie Balzer, Dr Michael Huth and Professor
Alan Mycroft for the useful discussions and help with this project.

I would also like to thank Dr Nathaniel Nystrom and Professor Andrew
Myers for answering my emails about Polyglot and for the discussions about
programming languages.

Finally, I would like to thank my parents and friends for their continuous
encouragements and support throughout the year.

Abstract

The concept of relation is central to object-oriented development. It is explic-
itly defined in object-oriented modelling; however, it is not part of mainstream
object-oriented programming languages. This lack of support leaves program-
mers to use language primitives to express them.

In this report, we provide a detailed study of first-class relationships in
object-oriented languages. We investigate earlier work linking object-oriented
techniques and relationships as well as explore the available design space. We
discuss issues with aliasing, sets of tuples, types in the presence of covariant
overriding and come up with extents, a novel feature which allows for sets of
tuples as first-class entities.

In addition, we present ImperialRJ, a programming language we developed,
which extends Java with first-class relationships. ImperialRJ introduces new
constructs to work with relationships in a simple and safe way. We provide its
formal definition and discuss its implementation.

We conclude by analysing the problems with implicit relationships in popular
Java applications and explain how first-class relationships in ImperialRJ tackle
these issues.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Contributions . 4
1.3 Report Structure . 5

2 Background 6
2.1 Relations . 6

2.1.1 Mathematical Representation 6
2.1.2 Modelling Representation 8

2.2 Relationships in Programming Languages 12
2.2.1 Terminology in Literature 14
2.2.2 Existing Work . 14

2.3 Language Extensions . 22
2.3.1 JastAddJ . 22
2.3.2 Polyglot . 25
2.3.3 SwapJ . 31

3 Design Space of First-Class Relationships 38
3.1 Language Design Requirements 38
3.2 Terminology . 39
3.3 Exploring The Design Space . 39

3.3.1 First-Class Extents . 41
3.3.2 First-Class Tuples . 43
3.3.3 State and Processing Ability 46
3.3.4 Encapsulation . 48
3.3.5 Aliasing . 49
3.3.6 Duplicates . 50
3.3.7 Arity . 51
3.3.8 Relationship Constraints 51
3.3.9 Relationship Operations and Querying 53
3.3.10 Relationship Persistence 55
3.3.11 Relationships Inheritance 59

4 ImperialRJ: The language 65
4.1 Example . 65
4.2 Formal Definition . 67

4.2.1 Overview . 67
4.2.2 Syntax . 68

1

4.2.3 Type System . 70
4.2.4 Operational Semantics . 73

5 ImperialRJ Implementation 77
5.1 Syntax choices . 78
5.2 Grammar . 78
5.3 Abstract Syntax Tree Structure 79
5.4 Semantic Analysis . 80

5.4.1 Type Checking . 80
5.4.2 Constraint Checking . 81

5.5 Code Generation . 82
5.5.1 Java Relationship Library 82
5.5.2 Mapping ImperialRJ to Java 84

5.6 Testing . 86
5.6.1 Java Relationship Library 86
5.6.2 Validation of ImperialRJ 87

6 Evaluation of First-Class Relationships with ImperialRJ 89
6.1 Issues with Implicit Relationships 89
6.2 Boiler Plate Code . 90
6.3 Navigation . 91
6.4 Querying . 92
6.5 Encapsulation . 93
6.6 Consistency . 94
6.7 Rigidity . 95

7 Conclusion 96
7.1 Achievements . 96
7.2 Further Work . 96
7.3 Reflection . 97

A University Example Java Output 99

B Test Cases 102

Bibliography 124

2

Chapter 1

Introduction

Object-oriented languages have existed for decades but the fundamental con-
cepts defining the object-oriented paradigm are still not completely under-
stood [1]. According to Alan Kay, the meaning of object-oriented programming
is all about messaging between different objects [2]. To this end, there exist
several modelling techniques [3, 4, 5] to design object-oriented systems and help
represent explicitly relationships between objects.

However, most object-oriented languages lack support for explicit relation-
ships between objects and this is why programmers are left to use language
primitives such as references to express them. In other words, the semantics of
relationships from the software design are not preserved to the software imple-
mentation. As a result, the information about object relationships is scattered
across the code, the coupling of the system is increased and the code is more
complex and less maintainable.

Research tracing back to 1987 already identified this problem and described
the benefits for first-class relationship support in object-oriented languages [6].
Lately, there has been a new wave of interest for tackling object relationships
implementation [7, 8, 9, 10, 11, 12, 13].

1.1 Motivation

As of today, there still isn’t an unified model for supporting first-class relation-
ships. However, there exists several collections libraries [14, 15], which bring
sophisticated data structures that help make up for the lack of built-in rela-
tionship constructs. Nevertheless, these libraries were not built with supporting
relationships in mind but rather for providing more collections to the Java Col-
lection Library. As a result, these libraries aren’t complete, bring different
features and aren’t intuitive to deal with relationships. For example, they don’t
provide consistency constraints like multiplicity, simple navigation of relation-
ships and support for fields of relationships. Consequently, there isn’t a unified
model for the programmers to develop relationships, which leaves them with the
overhead of implementing different solutions using various libraries and language
constructs. For this reason, the code becomes less readable, less maintainable
and prone to unexpected behaviours.

First-class relationships can tackle this issue and bring additional benefits to

3

the programmer. First, they bring a unified and complete model to deal with
relationships within the language while at the same time help bridge the gap
between design and implementation. Consequently, they ensure correct relation-
ships implementation, help code readability and maintainability. In addition,
they enable more maintainable code by promoting re-usability of relationships
through relationship inheritance and covariant overriding of participants of a
relationship. Furthermore, built-in relationship language constructs leave the
opportunity to the compiler to optimise the internal implementation of how a
programmer uses a relationship in the code. Moreover, first-class relationships
can make refactoring of software easier in certain cases. For example, when
changing requirements affect the multiplicity of the relationship between two
entities from one to one to one to many. An implementation in the language
would require rewriting code using a new data structure whereas first-class re-
lationship are build to provide flexible multiplicity changes. Finally, first-class
relationships could also help program verification by setting built-in design by
contract style invariants on relationships and this way automatically ensuring
these constraints are valid at runtime [13, 16].

1.2 Contributions

In this report we detail the following five contributions.

Design Space of First-Class Relationships

An extended design space for developing languages supporting relationships
along with the issues and possible solutions involving certain design choices.

Formal Definition

A formal definition of ImperialRJ which extends an object-oriented language
with first-class relationships in order to provide a reference for further work.

ImperialRJ

The first implementation of a pilot language extending Java with first-class
relationships.

Evaluation of First-Class Relationships

A study of problems with the implementation of relationships in three popular
Java applications and validation of the benefits of first-class relationships using
ImperialRJ.

Polyglot

A tutorial written for researchers and students getting started with using Poly-
glot to modify or extend Java [17].

4

1.3 Report Structure

The report is structured as follows. In Chapter 2, we give a background to re-
lations in mathematics, modelling techniques and programming languages. We
follow by analysing earlier work linking object-oriented techniques with rela-
tionships. This section is optional and is not compulsory for the readers. Next,
we give an overview of the tools available to create extensions to Java and also
give a tutorial on how to use Polyglot for students and researchers. In Chapter
3, we explore the design space available to implement first-class relationships
in an object-oriented language together with the issues involving certain design
choices. In Chapter 4, we describe the formal definition of ImperialRJ. In Chap-
ter 5, we present the implementation of ImperialRJ. In Chapter 6, we validate
the benefits of first-class relationships by showing the problems of implicit rela-
tionships implementation in three popular Java applications and refactor them
to ImperialRJ. We finish the report with some concluding remarks in Chapter
7.

5

Chapter 2

Background

This chapter presents all the information necessary to understand the context
and implementations details of this project. Most of the second section analyses
earlier work in the field and is not required to read to understand most of our
work. The reader can come back to it later if necessary.

2.1 Relations

In this section we examine the concept of relations from a mathematical and
modelling point of view.

2.1.1 Mathematical Representation

We introduce the concept of relations [18] by providing a familiar example within
the university environment: a Student attends a Course. Given a set of stu-
dents S = {Raoul, Sophia, Noble} and a set of courses C = {Programming,
Logic} we can represent the ”attends” relation as a tuple (Student, Course).
For example: Raoul attends Programming is represented as (Raoul, Program-
ming), Noble attends OO as (Stephanie, OO), Sophia attends Programming as
(Sophia, Programming).

Note that often we use the logical notation R(x,y) to express (x,y) ∈ R. In
this case we could write attends(Sophia,Programming) instead of (Sophia,Programming)
∈ attends. In general, a relation R is defined over the sets S1, ..., Sn as a subset
of their cartesian product written R ⊆ S1 × ...× Sn.

Relations can be defined over an arbitrary number of sets and can therefore
be classified. For example, a relation over three sets is called a ternary relation,
a relation over four sets denotes a quaternary relation. The most common type
of relation though is the binary relation and is defined over the cartesian product
of two sets. The example we gave earlier about a Student ”attends” a Course is
a binary relation. Binary relations on the same set are particularly interesting
because we can define several properties and operations on them as we see in
the next section.

6

Binary Relations Properties

We describe the most common properties of binary relations.

Let R be a binary relation over A. Then

• R is reflexive if and only if ∀x ∈ A. R(x,x).

• R is irreflexive if and only if ∀x ∈ A. ¬R(x, x).

• R is symmetric if and only if ∀x, y ∈ A. R(x,y) ⇔ R(y,x).

• R is asymmetric if and only if ∀x, y ∈ A. R(x,y) ⇒ ¬R(y, x).

• R is antisymmetric if and only if ∀x, y ∈ A. R(x, y)∧x 6= y ⇒ ¬R(y, x).

• R is transitive if and only if ∀x, y, z ∈ A. R(x,y) ∧ R(y,z) ⇒ R(x,z).

Additionally, a binary relation that is reflexive, antisymmetric and transitive
is called a partial order. A binary relation that is reflexive, symmetric and
transitive is called an equivalence relation.

Let R be a binary relation over sets A and B. Then

• R is functional if and only if ∀x ∈ A, ∀y, z ∈ B. R(x,y) ∧ R(x, z)⇒ y =
z.

• R is injective if and only if ∀x, y ∈ A, ∀z ∈ B. R(x,z) ∧ R(y, z)⇒ x = y.

• R is surjective if and only if ∀y ∈ B. ∃x ∈ A. R(x,y).

Binary Relations Operations

We describe the most useful operations on binary relations [18].

• Composition
The composition of two binary relations R ⊆ A × B and S ⊆ B × C is
written S ◦ R and is defined as S ◦ R = {(a, c)|(a, b) ∈ R ∧ (b, c) ∈ S}

• Union
The union of two binary relations R ⊆ A × B and S ⊆ A × B is written
R ∪ S and is defined as R ∪ S = {(a, b)|(a, b) ∈ B ∨ (a, b) ∈ S}

• Intersection
The intersection of two binary relations R ⊆ A × B and S ⊆ A × B is
written R ∩ S and is defined as R ∩ S = {(a, b)|(a, b) ∈ B ∧ (a, b) ∈ S}

• Inverse
The inverse of the binary relation R ⊆ A×B is written R−1 and is defined
as R−1 = {(b,a) ∈ B ×A | (a,b) ∈ R}. It holds that R = (R−1)−1.
For example, the inverse of the attends relation that we gave earlier is read
as ”is attended by” and is defined as R−1 ⊆ Course × Student : R−1 =
{(Programming, Sophia), (Logic,Noble), (Programming,Raoul)}.

7

• Reflexive Closure
The reflexive closure S of the binary relation R on A × A is defined as
S = R ∪ {(a, a)|a ∈ R}. For example, the reflexive closure of the relation
”greater than” is ”greater or equal than”.

• Symmetric Closure
The symmetric closure S of the binary relation R on A× A is defined as
S = R ∪ {(b, a)|(a, b) ∈ R}. In other words, the symmetric closure of R is
the union of R with its inverse.

• Transitive Closure
The transitive closure of the binary relation R on A× A is written as R+

and is defined informally as the smallest transitive relation on A × A that
contains R. The transitive closure is defined formally as R+ =

⋃
Ri where

R1 = R and Ri+1 = R ∪ {(a, c)|(a, b) ∈ Ri ∧ (b, c) ∈ Ri}.
The transitive closure is typically used in graph theory in order to find
out if a node is reachable from a starting node. [19]

2.1.2 Modelling Representation

Relations exist in different contexts and they can be modelled graphically in
order to be more expressive to people.

In this section we will examine relations modelling in the context of database
(Entity-Relationship Diagram) and software (Unified Modelling Language). We
also look at an extension language to UML called Object Constraint Language
that enables the modeller to express extensive constraints on UML models.

Entity-Relationship Diagram [5]

Entity-Relationship (ER) diagrams are used to design databases and are made
of entities, attributes and relationships. An entity is a category that a group
of object may belongs to and that can be uniquely identified. Entities can
have attributes to specify a property to keep in the database about them. For
example, a Student entity might have a Name attribute.

Relationships are the equivalent of the mathematical concept of relations,
they express an association between two or more entities. Just like entities,
they can also have attributes. For example, a relationship Attends between a
Student entity and a Course entity might have a mark attribute recording the
mark of the student for a specific course. In addition, relationships can also be
assigned cardinalities in order to specify the number of entities related to one
another. Such cardinalities include: many-to-many (M:N), many-to-one (M:1),
one-to-many (1:M) and one-to-one (1:1).

Entities are represented in Entity-Relationship diagrams by rectangles, at-
tributes by ellipses and relationships by diamonds.

8

Figure 2.1: Example of Entity-Relationship Diagram
This Entity-Relationship Diagram depicts a relationship Attends between the

Student entity and the Course entity. The relationship Attends has an
attribute mark, the Student an attribute name and the Course an attribute

hours.

Unified Modelling Language [4, 3]

Unified Modelling Language (UML) is a standard language that enables the
specification and visualisation of a software system. UML supports a wide vari-
ety of elements used for specific needs. For example, UML Use Case diagrams
model interactions between a system and users, UML Sequence Diagrams model
communications between objects where the order of communication is impor-
tant, Package diagrams are used to describe the interaction between components
at a high-level in a software. In this section, we focus on UML Class diagrams
which describe the structure of a software and also the underlying relationships
between classes.

Classes are represented by rectangles and contain information about their
fields and methods. Classes are linked together by relationships. Such relation-
ships include associations to express a relation, aggregations to express a ”has
a” association, composition to express a ”is part of” association, realization to
express implementation of interfaces and generalization to express inheritance.

Associations are related to the concept of relationships in Entity-Relationship
Diagrams and also to the mathematical concept of relations. They basically
relate entities together through a link. Similarly to relationships in Entity-
Relationship Diagrams, constraints can also be set on the associations with
multiplicity and navigability. Multiplicity allows to specify the number of objects
participating in the association. Such multiplicities include:

• 0..1 : optional instance

• 1 : exactly one instance

• 0..* or * : any number of instances

• 1..* : 1 or any number of instances

9

Navigability enables to specify the direction of the relationship, this is spec-
ified by an arrow head. For example in Figure 2.2, the association Attends can
only be traversed in one direction: from an instance of Student to an instance
of Course. However, Course to Student is not allowed.

Figure 2.2: Example of UML Class Diagram: simple association.
This Class diagram describes an association between Student instances and
Course instances. This association is directed and Students can attend 0 or

more Courses, while a Course is attended by at least one Student.

In addition, associations can be extended with anassociation class when
the relationship between classes is not only a simple logical connection. An
association class can have attributes and is represented by a rectangle box
connected with a dashed line to the association it describes as show in Figure 2.3.

Figure 2.3: Example of UML Class Diagram: association class.
This Class diagram describes a complex association which records the marks

between Student instances and Course instances.

Object Constraint Language [20]

The Object Constraint Language (OCL) enhance the UML specification by en-
abling modellers to set extensive constraints on UML models. For example, it
can be used to set preconditions, postconditions and invariants. In the context

10

of relations, OCL is useful because it brings the possibility to reason about and
to set constraints on relationships between classes.

At its simplest, OCL can be used to set conditions on fields and operations as
illustrated in figure 2.4 However, OCL allows the modeller to set more evolved
constraints and logic as shown in figure 2.5

Figure 2.4: Example of basic OCL invariant: field invariant.
The Attends association class’s marks must be in the range 1 to 6.

11

Figure 2.5: Example of complex OCL invariant
All the courses attended by a LazyStudent have less than 10 hours of

lectures.

2.2 Relationships in Programming Languages

In this section, we examine how relations apply to object-oriented programming
languages and why first-class relationships are important. We come back to this
with further details in Chapter 6.

We demonstrate the need of first-class relationship by implementing the
simple example of a Student attending a Course in listing 2.1. The UML
diagram is illustrated in figure 2.2.

Listing 2.1: Naive implementation of Attends relationship

1 public class Student {

2

3 String studentName;

4 HashSet<Course> attends = new HashSet<Course>() ;

5

6 public Student(String studentName) {

7 this.studentName = studentName;

8 }

9

10 public void add(Course c)

11 {
12 attends.add(c);

13 c.attendees.add(this);

12

14 }
15 }

16

17 public class Course {

18

19 private String courseName;

20 HashSet<Student> attendees = new HashSet<Student>() ;

21

22 public Course(String courseName) {

23 this.courseName = courseName;

24 }

25

26 @Override

27 public String toString () {

28 return courseName;

29 }

30

31 }

32

33 public class Main {

34

35 public static void main(String [] args) {

36

37 Student stephanie = new Student (" Stephanie ");

38

39 Course oo = new Course ("Object -Oriented Languages ");

40 Course compilers = new Course (" Compilers ");

41

42 stephanie.add(oo);

43 stephanie.add(compilers);

44

45 for(Course c : stephanie.attends)

46 System.out.println(c);

47 }

48 }

Courses can be added through the add() method in the Student class.

Listing 2.1 shows that a lot of boiler plate code is needed to implement a simple
relationship. In addition, there are two undesired issues with this implementa-
tion.

• The semantic of the UML diagram representing a Student attends a
Course is lost in the implementation because it is made implicit using
references and collections. In fact, the relationship had to be implemented
using a HashSet in both classes.

• The Student and Course class are now tightly coupled to one another. In
fact, changing the implementation for recording the mark that a Student

gets by attending a Course would require changes in both classes.

The goal of first-class relationship is to eliminate these problems and add a
first class construct which encapsulates the relationship implementation details.
In addition, it enables the classes participating in the relationship to be entirely
decoupled. Moreover, the semantics of the relationship from the design would
be preserved to the implementation.

In the next sections, we describe the terminology used in the literature for
dealing with first-class relationship. In addition, we present some of the main

13

existing literature in the object relationships field. This section is not compul-
sory to read to understand the main concepts in the next chapters.

2.2.1 Terminology in Literature

• Relationship
A relationship abstracts the implementation of object collaborations. Re-
lationships are the implementation abstraction of the UML association
concept.

• Participants
The participants of a relationships are the objects’ classes involved in the
relationships.

• Relationship instance
A relationship instance represents a possible association between the par-
ticipants of the relationship. For example (Raoul, OO) is one possible
relationship instance of the relationship Attends(Student, Course).

2.2.2 Existing Work

Relations as Semantic Constructs in an Object-Oriented Language

James Rumbaugh, one of the creators of UML, was the first to identify the need
for a built-in relation construct in object oriented languages [6]. He states that
even though object-oriented languages express classification and generalisation
by supporting built-in syntax and semantics, they do not have any semantics
for expressing relations directly.

Although relations can be implemented by distributing the information about
the relation among the different participant classes or by defining a collection
class ”relation” to represent values of particular relations, he argues that rela-
tions should be considered a semantic construct and not simply an implemen-
tation construct. The reason is that this will further abstract the high-level
structure of the system and help decouple classes. Furthermore, he states that
relations are more important to the design of large systems than generalisation
and should therefore have built-in syntax and semantics. In fact, relations affect
globally the way a system is partitioned whereas a generalisation hierarchy is
usually bound to a single module within a system.

The rest of his paper provides an overview of relations as logical constructs
and how to extend object-oriented language to implement relations. In relation
to our work, the paper introduces several useful concepts: updating a relation,
testing membership in a relation, cardinality, encapsulation etc. In addition, the
author discusses a possible syntax for dealing with relations. He argues that the
syntax of declaring relations should be parallel to the syntax for declaring classes
because relations are a first-class semantic construct. However, importantly, it
is not necessary for the user to declare new methods on particular relations,
because they are not actual classes and do not describe instances. The paper
concludes by describing a few implementation optimisations for efficient access
and also by introducing Data Structure Manager (DSM), an object-oriented lan-
guage developed by the author which fully supports relations. However, it does
not support relations inheritance, constraints on relations and further relation

14

operations like transitive closure, inverse and composition. Unfortunately, we
couldn’t find an updated reference link to the DSM project.

First-Class Relationships in an Object-Oriented Language

Gavin Bierman and Alisdair Wren developed a formal specification of a language
RelJ which is a subset of Java and which has first-class relationship support [8,
7]. RelJ enables the definition of relationships between objects and also the
specification of attributes on relationships. Furthermore it introduces a new
concept to any previous work: relationship specialisation. In other words, a
relationship can be derived from another relationship. In addition, the authors
explore the idea of multiplicity constraints on relationships. However, they do
not provide any implementation of their formal work.

The authors declare relationships similarly to class declaration; they con-
tain a number of field declarations and methods declarations: relationship r

extends r’ (n, n’) FieldDecl* MethDecl* This defines a global relation-
ship r with a number of fields and methods declarations. This relationship
is between n and n’ which range over classes as well as further relationships.
Consequently, this enables relationship aggregation.

Listing 2.2 shows an example of declaring an Attends relationship over
Student and Course. It has also an attribute mark and a method getCertificate().
Listing 2.3 shows how to access and set fields of relationship in RelJ.

Listing 2.2: Example relationship declaration and manipulation in RelJ

1 relationship Attends extends Relation(Student , Course){

2 int mark;

3 Certificate getCertificate(Academic signatory){

4 ...

5 }

6 }

7

8 Student stephanie = new Student ();

9 Course oo = new Course ();

10 Attends attnds = Attends.add(stephanie ,oo);

11 Attends.rem(stephanie , oo);

This example shows how to add and remove a relationship instance (stephanie, oo) from
the relationship Attends.

Listing 2.3: Example relationship fields access in RelJ

1 relationship Attends extends Relation(Student , Course){

2 int mark;

3 Certificate getCertificate(Academic signatory){

4 ...

5 }

6 }

7

8 Student stephanie = new Student ();

9 Course oo = new Course ();

10 Attends attnds = Attends.add(stephanie,oo);

11 attnds.mark = 10;

This example shows how to access and set the value of relationship’s fields. In this case we
set the mark for the relationship instance (stephanie,oo) to 10.

15

Listing 2.3 shows that RelJ works by managing relationship instances. In
fact, the add method on the static relationship Attends returns an Attends

instance which enables the developer to access the fields and methods defined
in the Attends relationship. However, the returned instance is strictly bound to
(stephanie,oo). This approach can lead to problems. In fact, if one removes a
relationship instance that was stored in a variable from the relationship then the
variable has now an instance that no longer exist. This problem is illustrated
in Listing 2.4

Listing 2.4: Removal of relationship problems

1 Attends attnds = Attends.add(stephanie ,oo);

2 attnds.mark = 10;

3 Attends.rem(stephanie,oo);

4 int mark = attnds.mark; // problem

The authors suggest three solutions to deal with this issue: taking no action,
deleting instances from the heap and nullifying references. However, the first
option is not an accurate solution because it basically says we don’t deal with
the issue. The last two add further complexity to the language implementation
but also raise security risks when dealing with dangling pointers or is prone to
unexpected null pointer exceptions since we access a null relationship instance.

The paper also introduces relationship inheritance. First the authors define
relationship inheritance exactly as for classes. Namely if relationship r2 extends
r1 then:

• r2 is a subtype of r1

• r2 inherits all fields and methods of r1

However this approach raise a few issues. First, the participants types of the
child relationship must be sub types of the parent relationship’s participants.
Listing 2.5 shows an example of relationship inheritance. In this case it is
necessary that LazyStudent extends Student and HardCourse extends Course.

Listing 2.5: Example of relationship inheritance

1 relationship Attends extends Relation(Student , Course){

2 int mark;

3 ...

4 }

5

6 relationship RelunctantlyAttends extends Attends(LazyStudent, HardCourse){
7 int missedLectures;

8 ...

9 }

Second, this opens several ways to interpret relationship access. Consider
Listing 2.6 where a LazyStudent raoul attends two courses: programming

and compilers. According to the authors, if we consider relationship inher-
itance as a reuse and subtyping mechanism then only the course programming

is available in the Attends relationship. However, if inheritance implies that
ReluctantlyAttends relationship is included in the Attends relationship then
both programming and compilers are accessible through the Attends rela-
tionship because even if Raoul lazily attends programming he’s still however
attending programming.

16

Listing 2.6: Relationship inheritance issues

1 LazyStudent raoul = new LazyStudent ();

2 HardCourse compilers = new HardCourse ();

3

4 Attends.add(raoul , programming);

5 ReluctantlyAttends.add(raoul , compilers);

Furthermore, this raise another issue: if one adds the relationship instance
(raoul,compilers) to the Attends relationship, we would end up with two
same relationship instances in Attends and ReluctantlyAttends. It is unclear
which relationship instance has more importance if we ask for the (raoul,compilers)
relationship instance. To address this issue the authors came up with a different
idea: ”inherited fields should be implemented by an instance of the relationship
in which they were declared, so that this instance may be share among in-
stances of sub-relationships”. This is why, the authors impose the following two
invariants:

1. Consider a relationship r2 which extends r1. For every instance of re-
lationship r2 between objects o1 and o2, there is an instance of r1, also
between o1 and o2, to which the r2 instance delegates requests for r1’s
fields.

2. For every relationship r and pair of objects o1 and o2, there is at most one
instance of r between o1 and o2.

Finally, the paper also describes a formalisation for introducing multiplicity
constraints on relationships. The author suggests two annotations: one and
many to respectively imply ’0..1’ and ’0..*’ in UML. The introduction of mul-
tiplicity adds further restriction on relationship inheritance: a many-to-one re-
lationship may only inherit from a many-to-one or many-to-many relationship.
Similarly a one-to-many relationship may only inherit from a many-to-many re-
lationship or one-to-many relationship. The authors introduce a new invariant
to enforce this restriction:

3. For a relationship r, declared relationship r (n1,n2), where n1 is an-
notated with one, there is at most one n1-instance related through r to
every n2-instance. The converse is true where n2 is annotated with one.

In comparison to our work, we believe RelJ introduces novel concepts like in-
heritance and multiplicity which we explore further. However, the main issue is
that RelJ deals with relationship as a global static entity. Consequently, imple-
menting relationship specialisation is different to object-oriented specialisation
because a relationship can not be instantiated several times just like a class.
RelJ makes uses of complex delegations to solve this issue. With ImperialRJ
we show how several OO concepts can be elegantly ported to relationships if we
don’t force relationships to be global entities. In addition, we explore a different
alternative for accessing relationship instances in order to avoid these problems:
we provide a safe interface to access and update relationship instances through
the relationship entity itself. This way we don’t need to store relationship in-
stances to variables at all.

17

Basic Relationship Patterns

James Noble describes five basic patterns to implement relationships [10].

• Relationship as Attribute
How to design a very simple relationship?
Attributes are ideal for modelling simple one way, one-to-one relationships.
Because these types of relationships are very common they need to be easy
to write and understood but also implemented with minimal overhead. For
instance, a class A has an attribute of type B to represent its relationship
with class B.

• Relationship Object
How to design a big, important, or common relationship?
Complex relationships can be implemented directly using attributes how-
ever, this distributes the implementation of the relationship across the
participants resulting in tight coupling and low cohesion. The author
suggests introducing an additional relationship object containing all the
information about the relationship. For example, a relationship between a
class A and a class B can be managed through a new class C. The objects
involved in the relationship are now independent of it and therefore have
lower coupling.

• Collection Object
How to design a one-to-many relationship?
This pattern is used for describing one-to-many relationships. The au-
thor suggests using a container or a collection object to represent this
relationship; for example, a List or an Array. In addition, if necessary, a
more specialised collection can be implemented to add any constraints or
behaviour required by the relationship.

• Active Value
How to design an important one-to-one relationship?
An active value object is an object representing a single variable and
provides an interface to retrieve the value of the variable and a setter to
change the variable’s value. It is used to associate two objects that are
both dependent on this particular value. To use an active value, the author
advices to make it an attribute of the source object of the relationship and
access the relationship through the active value, rather than the source
object. The active value will detect when its value changes and update
any dependent objects.

• Mutual Friends
How to represent a two-way relationship?
This patterns describes how to implement a two-way relationship where
all the participants are equally important. In this type of relationship, a
change in any participant may affect all other objects in the relationship.
To implement this pattern the author suggests two steps: firstly, split the
relationship into two-one way relationship. Secondly, keep these consistent
through an interface in one of the mutual friend which is defined as a leader
and manages the other objects as its followers in the relationship.

18

In comparison to our work, he doesn’t discuss first-class order relationship but
rather uses object-oriented languages primitive constructs to describe how ob-
jects can be used to model relationships in an ideal way.

Relationship Aspects

In [21], David Pierce and James Noble argue that because most object oriented
programming languages provide little support for dealing with relationships,
the developers have to implement them using languages primitives. As a result,
the participant classes of a relationship are highly coupled and this leads to
poor maintainability and the software becomes difficult to extend. The authors
suggest a different solutions to first-class order relationships, they explore us-
ing available techniques and library to implement relationship by using Aspect
Oriented Programming. They model relationships as a separable cross-cutting
concern and therefore decouple the relationship responsibility from the partic-
ipant classes to external and centralised aspects. The authors developed the
Relationship Aspect Library (RAL) [22] that includes a set of aspects imple-
menting various types of relationships. All relationship aspects implement the
base Relationship interface that is shown in listing 2.7

Listing 2.7: Aspect Relationship interface

1 interface Relationship <FROM ,TO, P extends Pair <FROM ,TO>> {

2 public void add(P);

3 public void remove(P);

4 public Set <P> toPairs(TO t);

5 public Set <P> fromPairs(FROM f);

6 public Set <FROM > to(TO t);

7 public Set <TO> from(FROM f);

8 ...

9 }

The Relationship interface contains methods to add and remove relationship instances. In
addition it comes with various methods to access the participants of the relationship.

For example, the Attends relationship described previously 2.2 can be easily
implemented as an aspect using the SimpleStaticRel aspect which implements
the Relationship interface from the Relationship Aspect Library. Listing 2.8
illustrates the Attends relationship implementation.

Listing 2.8: Attends relationship using RAL

1 public aspect Attends extends SimpleStaticRel<Student,Course>

2 {

3

4 }

5

6 Course compilers = new Course ();

7 Student raoul = new Student ();

8

9 // create relationship between Student and Course

10 Attends.aspectOf ().add(raoul ,compilers);

The aspect Attends extends the SimpleStaticRel aspect which provide methods to access
and manipulate a relationship in accordance with the Relationship interface.

19

Although this paper introduces good ideas to provide a general abstraction
for relationships, the RAL [22] is not first-class. It requires the user to install
the aspectJ [23] library. Nonetheless, the authors did a good work on coming up
with a skeleton of relationship interface that is fairly intuitive to use and learn.
We intend to bring some of these concepts to ImperialRJ when designing our
relationship abstraction.

A Relational Model of Object Collaboration

In [13], Balzer, Gross and Eugster link relationships to discrete mathematics
and introduce the concept of relationship invariants to maintain the consistency
of constraints on relationships as well as introduce member interposition which
allows the specification of relationship-dependent members of classes.

Member interposition differentiates from relationship attributes as defined in
previous research [6, 7] because they define properties on the particular role that
a class plays in a relationship. However, attributes on relationships (referred to
as non-interposed members) describe properties on the relationship itself. The
example given in the paper to demonstrate the use of member interposition is
described in Figure 2.9: a Student assists a Course as a teaching assistant and
the language of instruction must be recorded.

Listing 2.9: Example of member interposition.

1 relationship Assists

2 participants(Student ta, Course course){

3 String >ta instructionLanguage

4 }

The attribute instructionLanguage is interposed into ta.

The paper then extensively explores the concept of relationship invariants,
an idea mentioned previously by Rumbaugh [6]. The authors define relation-
ship invariants as a way to express consistency constraints on relationship. They
distinguish between two categories: structural invariants and value-based invari-
ants. Structural invariants express the scope of the invariant; in other words
they restrict the participation of objects in the relationship. For example, such
structural invariants include defining a relationship to be symmetric, irreflexive
or even defining two relationships to be disjoints. Value-based invariants are
predicates on the attributes and participants of the relationship in the same
way as OCL does [20]. For example, a value-based invariant could be added
to the example in Listing 2.9 to restrict the instructionLanguage to be in
a specific set of languages. Listing 2.10 shows an example which defines an
invariant on the Attends relationship. We define the relationship Attends to
be surjective; i.e all the students must be attending at least a Course and we
also set a restriction on the range of the marks.

Listing 2.10: Example of relationship invariant.

1 relationship Attends

2 participants(Student ta, Course course){

3 int mark;

4

5 invariant

6 surjective(Attends) && mark >=1 && mark <= 6;

7 }

20

The Attends relationship is surjective (structural invariant) and the mark is in the range 1 to
6 (value based invariant).

Relationship Detector

While most work was concerned with the introduction of relationships from a
language design perspective[6, 7, 8, 13, 10], little work was done on whether
first class relationship support is actually justified and useful in practice for
developers. In [11, 12], Balzer, Burns and Gross investigated empirically the
frequency of collaborations between objects in order to assess the need for first
class relationship support. To conduct this experiment the authors develop a
fully automated tool, RelDJ (Relationship Detector for Java) that takes Java
classes as input and which rely on a categorisation of possible implementation
of object collaborations called collaboration code skeletons. The authors de-
scribe five main collaboration code skeletons representative of real world collab-
oration implementations: Direct Binary Unidirectional, Direct Binary

Bidirectional, Indirect Indexed Extent, Indirect Pair Extent and Indirect

Triple Extent. These skeletons make use of Java raw features: references to
classes’ instances through fields, Collections and Maps.

RelDJ identifies collaborations between classes by detecting such skeletons in
the input classes. However, the identification of collaborations when a program
uses non-generic collections is still a work in progress. In fact, the collection
elements’ types are used to infer the participants of a collaboration. However,
since the element type of a non-generic collection is unknown it is difficult to
infer the participant of a collaboration without complex data-flow analysis to
deduce the element type of the collection.

After using RelDJ on a portfolio of 25 different Java programs to conduct
the experiment, the authors concluded that collaboration occurs frequently and
this cast further evidence on the benefits of a first class relationship construct.

Other Papers

There exist other papers linking Relationships to Databases. Current research
is looking into creating an optimal language to query information in tables
representing various relationship. One paper describes Cw which comes with
an Xpath [24] like queries [25]. Another paper describes a language extension
for Java (JQL) which permits queries over object collections [26]. We intend to
further investigate this area and bring these concepts to enable efficient querying
on first class relationships.

Reflection

The existing research in relationships applied to object-oriented language is
still at an embryonic stage. People are more and more aware of the lack of
first-class support for relationships and research describes the benefits of having
relationship constructs build in current object-oriented languages [6, 9, 7, 8, 21].
However, there’s still a lack of in depth research to design such a language. The
only prototype language available to us at the moment is RelJ [7, 8]. However,
RelJ addresses relationship as global static entities. There is still a big issue
that needs to be looked at: whether multiple instances of relationships have
benefits. With ImperialRJ, we further explore this route and show the benefits

21

of this model. We believe this approach enables new opportunities to bring
known concepts like generalisation, aggregation, delegation, interfaces to the
relationships world.

2.3 Language Extensions

In this section we present the two most popular extensible compiler frameworks
that enable the creation of compilers for Java language modifications: JastAddJ
and Polyglot.

For our project, we chose Polyglot because it has a wider community and
lots of projects are available opensource online [27], which makes it easier to
understand the internals of the Polyglot framework. However, there’s little
documentation and this is why we provide a tutorial for students and describe
a comprehensive example of how to build a simple language modification using
Polyglot. This tutorial has been made official and is available on the Polyglot
website [17].

2.3.1 JastAddJ

Introduction

the JastAdd Extensible Java Compiler (JastaddJ) is a Java compiler that can
be extended in order to build new languages on top of Java. JastAddJ [28] was
developed using the metacompiler JastAdd [29] which enables the construction
of customised extensible compilers.

JastAddJ consists of four main components:

• A Java 1.4 frontend and backend defining the constructs, semantics and
translation of Java 1.4 features

• A Java 5 frontend and backend which are extension of the Java 1.4 com-
ponents and extend the language with Java 5 features including generics,
enums and the extended for loop on collections.

Each main component is a directory of JastAdd files, parser generator input
files and programs in Java. The frontend programs are responsible for the
source-to-source translation of the language modification to Java by parsing the
input source files. On the other side, the programs in the backend are responsible
for producing class files.

22

Figure 2.6: Components architecture of JastAddJ

Extending the language

Language extensions can be specified as new components within the 4 main
components. As an example, we describe the outline of extending Java 1.4 with
the Java 5 enhanced for loop.

Three principal parts need to be specified for any language extension:

1. an abstract grammar defining the structure of the Abstract Syntax Tree
(AST). This is specified in a .ast file.

2. a context-free grammar, defining how text is parsed into an AST. This is
specified in a .parser file.

3. behaviour specifications defining the behaviour of an AST. These are de-
fined as aspects using JastAdd constructs in a .jrag file.

To extend Java 1.4 with the enhanced for loop (easy navigation of collections)
we need to provide the definition of three files: EnhancedFor.parser, Enhanced-
For.ast and EnhancedFor.jrag.

The enhanced for loop grammar is defined as a Statement and is specified
as follows in EnhancedFor.parser :

Listing 2.11: Enhanced For Loop grammar in JastAddJ

1 Stmt statement =

2 enhanced_for_statement.f {: return f;

:}

3 ;

4

5 Stmt statement_no_short_if =

6 enhanced_for_statement_no_short_if.f {: return f;

:}

7 ;

8

9 Stmt enhanced_for_statement =

10 FOR LPAREN enhanced_for_parameter.p COLON expression.e RPAREN

statement.s

11 {: return new EnhancedForStmt(p, e, s); :}

12 ;

23

13

14 Stmt enhanced_for_statement_no_short_if =

15 FOR LPAREN enhanced_for_parameter.p COLON expression.e RPAREN

statement_no_short_if.s

16 {: return new EnhancedForStmt(p, e, s); :}

17 ;

18

19 VariableDeclaration enhanced_for_parameter =

20 modifiers.m? type.t IDENTIFIER dims.d? {: return new

VariableDeclaration(new Modifiers(m), t.addArrayDims(d),

IDENTIFIER , new Opt()); :}

21 ;

If the parsing is correct, a new AST node EnhancedForStmt is created which
is specified as follows in EnhancedFor.ast :

Listing 2.12: Enhanced For Loop AST specification

1 EnhancedForStmt : BranchTargetStmt ::= VariableDeclaration Expr

Stmt;

The final step is to define the behaviour of the EnhancedFor AST. This
can be defined by an aspect plugged in in different attributes of a AST Jas-
tAddJ node. For example translation is handled by the toString attribute of an
AST node. The translation of EnhancedFor is specified as follows within the
EnhancedFor.jrag file:

Listing 2.13: Enhanced For Loop grammar in JastAddJ

1

2 aspect EnhancedFor{

3

4 // pretty printing

5 public void EnhancedForStmt.toString(StringBuffer s) {

6 s.append(indent ());

7 s.append ("for (");

8 getVariableDeclaration ().getModifiers ().toString(s);

9 getVariableDeclaration ().getTypeAccess ().toString(s);

10 s.append (" " + getVariableDeclaration ().name());

11 s.append (" : ");

12 getExpr ().toString(s);

13 s.append (") ");

14 getStmt ().toString(s);

15 }

16 }

Conclusion

According to the authors of JastAddJ, it compares well with existing exten-
sible Java compiler framework like Polyglot [27] and Jaco [30]. In fact, Jas-
tAddj passes more tests as defined by the Java Language Specification and new
compiler extension require a smaller implementation size than its competitor.
However, as JastAddJ is relatively new, there aren’t many projects available
yet which use it to implement new language modifications on top of Java. The
only extension available on the JastAddJ website are an implementation of the
JSR308, which extends the Java annotation syntax to permit annotations on
any occurrence of a type [31] and an implementation of pluggable non-null types
for Java [32].

24

2.3.2 Polyglot

Introduction

Polyglot is a highly extensible compiler construction framework developed by
Nystrom, Clarkson and Myers at Cornell University [27]. It performs parsing
and semantic checking on a language extension and the compiler outputs Java
source code. It is implemented as a Java class framework using design patterns
to promote extensibility.

Several projects have successfully used Polyglot to extend the Java pro-
gramming language; they range from large-to middle-scale projects. For ex-
ample, Jif [33] is a language modification that extends Java with support for
information flow control and access control, SessionJ introduces session-based
Distributed Programming in Java [34] and J0 is a subset of Java used for edu-
cation [35].

Language modifications follow the same pattern: they are implemented by
extending the base grammar, type system and defining new code transforma-
tions on top of the base Polyglot framework. The result is a compiler that
outputs Java source code. We can then compile the output with the standard
Java compiler javac to generate bytecode runnable by the JVM.

Currently, Polyglot only supports Java version 1.4, but a language extension
supporting most Java version 5.0 features has been developed [36].

Polyglot comes with the Polyglot Parser Generator (PPG), a customised
Look-Ahead LR Parser based on CUP [37, 38]. It is specially developed for
the language extension developer to easily extend the Java base grammar de-
fined with CUP by specifying the required set of changes [27]. In fact, PPG
provides grammar inheritance, which enables the language extension developer
to augment, modify or delete symbols and production rules from the Java base
grammar.

The architecture of Polyglot follows standard compiler construction tech-
niques. First of all, it first uses JFlex, a lexical analyser generator [39], to
perform lexical analysis on the source language. This step transforms the se-
quence of characters from the source code file into tokens. This chain of tokens
is then parsed by PPG, which creates an abstract syntax tree (AST). An AST
is a tree data structure that reflects the syntactic structure of a program. Dur-
ing the Polyglot process, this data structure is visited by several passes; the
default set of passes include for example type checking, ambiguities removing
and translation. In addition, Polyglot enables the introduction of extra passes
in order to perform operations related to the compiler purposes: for example,
optimising the AST. Finally, if no exceptions are thrown during the Polyglot
process, the created compiler is expected to produce valid Java source code that
can be compiled into Java bytecode.

25

Figure 2.7: Polyglot high-level process

In Details

In practice, implementing new language modification requires some knowledge
about the Polyglot structure and internals. In this section, we explore Polyglot
at a deeper level.

The latest revision of Polyglot can be fetched from the project SVN [40].
The Polyglot distribution contains several directories:

• /bin/ : contains Polyglot base compiler and script newext.sh that gener-
ates the skeleton for a new language extension

• /doc/ : various documentation about Polyglot

• /examples/ : source codes of sample language extensions using Polyglot

• /skel/ : skeleton directory hierarchy and files used for building new lan-
guage extensions

• /src/ : complete source code of Polyglot framework

• /tools/java cup/ : source code of tweaked version of Java CUP

• /tools/ppg/ : source code of PPG

To create a language extension called [extname], the first step is to run
/bin/nexext.sh, which creates the necessary skeleton package hierarchy and
files:

• [extname]/bin/[extname]c : compiler for [extname]

• [extname]/compiler/src/[extname]/ : source code for language ex-
tension

– ast : AST nodes specific to [extname]

– extension : Extension and delegate objects specific to [extname]

– types : type objects and typing logic specific to [extname]

– visit : visitors specific to [extname]

– parse : symbols table, lexer and parser for [extname], PPG grammar
file ([extname].ppg), lexer grammar file([extname].flex) The newext.sh
script takes several parameter:

26

Listing 2.14: newext.sh Parameters

1 Usage: ./ newext.sh dir package LanguageName ext

2 where dir - name to use for the top -level

directory

3 and for the compiler script

4 package - name to use for the Java package

5 LanguageName - full name of the language

6 ext - file extension for source files

In addition, a class ExtensionInfo.java defines how the language extension
will be parsed and type-checked. A file Version.java specifies the version
of the language extension. Finally, the class Main.java brings all the parts
together and performs the compilation.

• [extname]/tests/ : sample [extname] source code test files

The second step is to define the language modifications. This is done by
modifying the [extname].ppg file, which is processed by PPG. It specifies the
changes to the base Java grammar required to generate a parser for the new
language extension. Sometime the developer has to updated the lexer grammar
file [extname].flex too, if new tokens are added. The full list of available instruc-
tions for the PPG grammar can be found on the PPG Project page [37]. They
include:

• extend S ::= productions
the specified productions are added to the nonterminal S.

• override S ::= productions
the specified productions completely replace S

The PPG file also specifies how the parsed information is used to create a
new AST. New AST nodes are instantiated through the language extension’s
NodeFactory, which has factory methods to create each AST node. This Node-
Factory typically extends Polyglot’s Java node factory, which is defined by the
class NodeFactory c class and implements the NodeFactory interface. This
interface specifies all the factory methods for each node. Figure 2.8 depicts a
UML diagram explaining the different classes involved in the node factory.

27

Figure 2.8: Language extension NodeFactory UML diagram
A language extension’s node factory mechanism is split into two parts: an

interface implementing the base node factory and a concrete class node factory
extending the base concrete node factory.

The node factory can be accessed within the PPG file through the parser.nf
instance. Listing 2.15 shows as an example the parsing and creation of an Assert
Java base node.

Listing 2.15: Parsing and Creation of Assert AST Node

1 assert_statement ::=

2 ASSERT:x expression:a COLON expression:b SEMICOLON:d

3 {:

4 RESULT = parser.nf.Assert(parser.pos(x, d), a, b);

5 :};

This snippet defines the production rule assert statement. It is defined by an assert symbol
and an expression representing the assert condition, a colon and another expression

representing the error message followed by a semicolon. For example: assert(size == 0) is a
valid assertion. If the parsing is successful, a new Assert AST node is created through the

parser.nf.Assert(Position,Expr) node factory method.

After defining the syntactic changes through the grammar and defining the
new AST node classes for the language modification, the next step is to specify
the new semantic changes. New passes can be defined by defining and in-
cluding them in Extensions.java. Most of the time, semantic changes can be
implemented directly as part of the type-checking pass. Note that each node
has a method visitChildren(NodeVisitor v) that is called before the type-
checking process in order to disambiguate the types of the Node’s fields. New
nodes defined for the language extension must therefore also execute the visit on
each fields. This is done by overriding visitChildren (NodeVisitor v) and
passing the instance of the visitor to each field using the method visitChild(Node,Visitor).
For the sake of completeness, Listing 2.16 illustrates this mechanism and shows
the method visitChildren of the Assert node.

28

Listing 2.16: Assert node’s visitChildren(NodeVisitor) method

1 /** Visit the children of the statement. */

2 public Node visitChildren(NodeVisitor v) {

3 Expr cond = (Expr) visitChild(this.cond , v);

4 Expr errorMessage = (Expr) visitChild(this.errorMessage , v);

5 return reconstruct(cond , errorMessage);

6 }

The Swap node has two fields: the condition expression (this.cond) and the error message
(this.errorMessage). Both are passed to the visitChild method. The node is then

reconstructed using the returned instances.

Type checking is done in each node by the method typeCheck(ContextVisitor

tc) of a Node. If a type error exists the method throws a SemanticException.
To continue with our example of the Assert node, Listing 2.17 illustrates type
checking for an assert statement.

Listing 2.17: Assert node’s type checking

1 public Node typeCheck(ContextVisitor tc) throws SemanticException {

2 if (! cond.type().isBoolean ()) {

3 throw new SemanticException (" Condition of assert

statement " +

4 "must have boolean type.",

5 cond.position ());

6 }

7

8 if (errorMessage != null && errorMessage.type().isVoid ()) {

9 throw new SemanticException ("Error message in assert

statement " +

10 "cannot be void.",

11 errorMessage.position ());

12 }

13 return this;

14 }

The method type-checks if the expression cond is of type boolean and if the expression
errorMessage is defined and not void.

In addition, the language developer can access the TypeSystem instance
through the ContextVisitor. The TypeSystem instance defines the types of
the language and how they are related. For example, it is used to compare
the equality between two types, set new types on the expressions or check if a
type can be cast to another type. Listing 2.18 shows an example of using the
TypeSystem from the ContextVistor.

Listing 2.18: Switch c’s node typechecking

1 /** Type check the statement. */

2 public Node typeCheck(ContextVisitor tc) throws SemanticException {

3 TypeSystem ts = tc.typeSystem ();

4 Context context = tc.context ();

5

6 if (!ts.isImplicitCastValid(expr.type(), ts.Int(), context)

7 && !ts.isImplicitCastValid(expr.type(), ts.Char(), context))

8 {

9 throw new SemanticException (" Switch index must be an integer

.", position ());

29

10 }

11 return this;

12 }

The index of a switch statement (switch(index)) can only be a char type or an integer type.
However, any type that can be cast to an int or a char is also allowed. For example, an

Integer or a short is valid but a String isn’t. The Switch c’s typeCheck method gets the type
system from the instance tc of the ContextVisitor and then calls the method

isImplicitCastValid(Type, Type, Context) to perform the casting checks.

The final step after the semantic analysis of each AST node is to produce
valid Java code. There are several options available to the language extension
developer.

First, the most extensible way is to introduce a separate pass that transforms
the language extensions AST nodes to valid Java AST nodes and then rely on
the default Java AST translation pass to output valid Java source code. New
passes can be added by extending the default Polyglot scheduler: JLScheduler.
One would then have to create a pass by extending an appropriate Polyglot
visitor class and schedule the pass before the CodeGenerated pass, which is
responsible for translation. The created pass will be responsible for rewriting
language extensions AST nodes into Java AST nodes using the NodeFactory

methods. In addition, one can also use the Polyglot quasiquoting feature, which
enables the generation of Java AST nodes from a String (polyglot.qq.QQ). This
standard technique ensures that the output is well-formed Java code.

Secondly, another way to translate to Java code is to simply override the
method prettyPrint(CodeWriter, PrettyPrinter) of each new Node. This
method is responsible for printing the generated code to the output file and is
called by the default implementation of the method translate(CodeWriter,

Translator), which is called during the Translation pass. Although this is a
quick and easy way to perform code generation, it makes it harder to extend the
modified language later. Furthermore, Polyglot won’t check that the generated
Java code is valid, so errors may show up when the code is compiled.

As an example, Listing 2.19 shows the code generation for the Assert AST
node and Listing 2.20 shows the code generation for the Throw AST node.

Listing 2.19: Assert node translation

1 /** Write the statement to an output file. */

2 public void prettyPrint(CodeWriter w, PrettyPrinter tr) {

3 w.write(" assert ");

4 print(cond , w, tr);

5

6 if (errorMessage != null) {

7 w.write (": ");

8 print(errorMessage , w, tr);

9 }

10 w.write (";");

11 }

12

13 public void translate(CodeWriter w, Translator tr) {

14 if (! Globals.Options ().assertions) {

15 w.write (";");

16 }

17 else {

18 prettyPrint(w, tr);

19 }

30

20 }

The translate method from the Assert node by default calls the prettyPrint method which
handles the code generation to the output file. Note that the print(Node child, CodeWriter
w, PrettyPrinter pp) method will handle the code generation for the Node instance child.

Essentially it calls its prettyPrinter method.

Finally, the language extension compiler is ready and can be used by running
Main.java.

Listing 2.20: Throw node translation

1 /** Write the statement to an output file. */

2 public void prettyPrint(CodeWriter w, PrettyPrinter tr) {

3 w.write("throw ");

4 print(expr , w, tr);

5 w.write (";");

6 }

Similarly to the Assert node, the Throw node’s prettyPrint method handles code generation
and writes code to the output file.

2.3.3 SwapJ

In this section, we bring the concepts introduced about Polyglot together to
show how to create a compiler for a language extension. We create SwapJ, a
language that extends Java with a swap functionality. The modification made to
Java is simple: we introduce a new swap(x,y) keyword that swaps the contents of
the arguments x and y if they are of the same type. We don’t support swapping
array accesses and field accesses, for simplicity.

We start by formally defining the syntax changes to the Java base grammar
and also provide the semantics and type systems for the swap operation. After,
we work step by step and implement the SwapJ compiler.

Formal Definition

We describe the syntax of our new built-in swap operation:

Listing 2.21: SwapJ BNF

1 <statement > ::= "swap" "(" <identifier > "," <identifier > ")" ";"

2 | <statement >

We define the operational semantics of our swap operation. Swapping the
two variables x and y means to assign the content of y to x and assigning the
content of x to y in the store φ:

SwapOS

stmts, φ[x 7→ φ(y), y 7→ φ(x)], χ; v′, χ′

swap(x, y); stmts, φ, χ; v′, χ′

31

We also define the type rule of our swap operation:

SwapTS

P, Γ ` x : t
P, Γ ` y : t

P, Γ ` swap(x, y) : void

Implementation

1. Build skeleton extension
As explained in the previous section, the first step is to run newext.sh to
build the skeleton files and directories for our language extension:

Listing 2.22: Creation of SwapJ files structure

1 ./ newext.sh swapJ swapj SwapJ sj

The directory containing the skeleton file structure is SwapJ. The package name is
swapj, the language name is SwapJ and the extension file for our SwapJ source files is

.sj

2. PPG grammar specification
The next step is to specify the syntactic grammar differences to the Java
base grammar. We translate our BNF specification into PPG grammar
and specify the changes in swapJ.ppg (Listing 2.23) as explained in the
previous section. Since we are adding a new token swap we also have to
modify the lexer grammar file (Listing 2.24).

Listing 2.23: PPG grammar for SwapJ

1

2 terminal Token SWAP;

3 non terminal Stmt swap_stmt;

4

5 start with goal;

6

7 swap_stmt ::= SWAP:a LPAREN name:l COMMA name:r RPAREN

SEMICOLON:b {:

8 RESULT = parser.nf.Swap(parser.pos(a,b),l.toExpr (), r.toExpr

());

9 :};

10

11 extend statement_without_trailing_substatement ::= swap_stmt:a

{: RESULT = a; :};

We extend the Java statement and add a new Swap statement. Note that we also
added a token SWAP that is defined in the lexer grammar file.

Listing 2.24: Lexer grammar for SWAP token

1 keywords.put("swap", new Integer(sym.SWAP));

32

3. NodeFactory and AST Nodes

The next step is to define the new SwapJNodeFactory and create the
necessary AST node. Listing 2.23 shows that if parsing is successful, a
node Swap will be created through the node factory. We now need to
specify the interfaces required, implement the concrete classes and follow
UML diagram 2.8 describing the AST node creations.

We create an interface Swap (Listing 2.25), a concrete class Swap c (List-
ing 2.26) providing the implementation, a new factory interface SwapJNodeFactory
(Listing 2.27) which provides the template for a swap node creation but
also implements the base NodeFactory interface and the concrete node
factory SwapJNodeFactory c (Listing 2.28) that handles the instantiation
of concrete Swap nodes. UML diagram 3 summarises the hierarchy and
relations between the different classes.

Listing 2.25: Swap interface

1 public interface Swap extends Stmt{

2

3 }

A swap node is a statement and therefore implements the Stmt interface.

Listing 2.26: Swap c concrete class constructor

1 public class Swap_c extends Stmt_c implements Swap{

2

3 private Expr left_e;

4 private Expr right_e;

5

6 public Swap_c(Position pos , Expr left_e , Expr right_e) {

7 super(pos);

8 this.left_e = left_e;

9 this.right_e = right_e;

10

11 }

The constructor of a Swap node takes the Position in the source file from the parser
and also two expressions representing the left variable and right variable to swap. The

Swap c also extends the Stmt c class, which encapsulates behaviour of any Java
statement.

Listing 2.27: SwapJNodeFactory interface

1 /**

2 * NodeFactory for swapJ extension.

3 */

4 public interface SwapJNodeFactory extends NodeFactory {

5

6 Swap Swap(Position pos , Expr left_e , Expr right_e);

7

8 }

33

Listing 2.28: SwapJNodeFactory c concrete class

1 /**

2 * NodeFactory for swapJ extension.

3 */

4 public class SwapJNodeFactory_c extends NodeFactory_c

implements SwapJNodeFactory {

5

6 public Swap Swap(Position pos , Expr left_e , Expr right_e) {

7 return new Swap_c(pos , left_e , right_e);

8 }

9

10 }

The factory method Swap(Position, Expr, Expr) returns a concrete node Swap c

Figure 2.9: SwapJ class diagram

4. Semantic changes
The next step is to perform type checking on the swap operation: we
need to ensure that the two arguments to swap are of the same type.
As explained in the previous section, type checking is performed by the
typeCheck(ContextVisitor) method of each node. We override this
method so it checks if the two expressions of the Swap node are of the same
type. Note that we also need to override the method visitChildren(NodeVisitor)

to ensure the types of the Swap node arguments are disambiguated. List-
ing 2.29 shows how the Swap c concrete class’ methods visitChildren

and typeCheck are implemented.

Listing 2.29: Swap node type checking

1 public Swap reconstruct(Expr expr_l , Expr expr_r) {

2 if (this.left_e != expr_l || this.right_e != expr_r) {

3 Swap_c n = (Swap_c) copy();

34

4 n.left_e = expr_l;

5 n.right_e = expr_r;

6 return n;

7 }

8 return this;

9 }

10

11 @Override

12 public Node visitChildren(NodeVisitor v) {

13 Expr expr_l = (Expr) visitChild(left_e , v);

14 Expr expr_r = (Expr) visitChild(right_e , v);

15

16 return reconstruct(expr_l , expr_r);

17 }

18

19 @Override

20 public Node typeCheck(ContextVisitor tc) throws

SemanticException {

21

22 SwapJTypeSystem ts = (SwapJTypeSystem)tc.typeSystem ();

23

24 Type left_t = left_e.type();

25 Type right_t = right_e.type();

26

27 if(! left_t.typeEquals(right_t))

28 {

29 throw new SemanticException ("swap() arguments of different

types !");

30 }

31

32 return this;

33

34 }

The overridden visitChildren disambiguate the Swap c’s fields and return a
disambiguated Swap node. The overridden typeCheck method uses the type systems

to verify the type equality between the two swap’s arguments.

5. Translation and code generation
The final step is translation. Since the swap translation to Java source
code is straightforward, we can override the prettyPrint(CodeWriter

w, PrettyPrinter tr) method directly and define code generation as
explained in the previous section. We also need a fresh variable name
to perform the swap, and Polyglot provides a helper static method for
this: Name.makeFresh(). Listing 2.30 shows how to perform the code
generation of a Swap node.

Listing 2.30: Swap c node’s code generation

1 @Override

2 public void prettyPrint(CodeWriter w, PrettyPrinter tr) {

3

4 // fresh variable name

5 String fresh = Name.makeFresh ().toString ();

6

7 // int temp = y;

8

9 left_e.type().print(w);

10 w.write(" " + fresh + " = ");

35

11 print(right_e ,w,tr);

12 w.write (";\n");

13

14 // y = x;

15 print(right_e ,w,tr);

16 w.write(" = ");

17 print(left_e ,w,tr);

18 w.write (";\n");

19

20 // x = y;

21 print(left_e ,w,tr);

22 w.write(" = " + fresh);

23 w.write (";\n");

24 }

6. Testing
The SwapJ compiler is now operational, and we can test code genera-
tion. We create a swapTest class written in SwapJ and compile it with
the SwapJ compiler. Listing 2.31 shows the class written in SwapJ and
Listing 2.32 shows the generated Java output.

Listing 2.31: swapTest class written in SwapJ

1 public class swapTest {

2

3 public static void main(String [] args) {

4

5 String x = "Swapj !";

6 String y = "Java";

7

8 swap(x,y);

9 // Java Swapj!

10 System.out.println(x + " " +y);

11 swap(x,y);

12 // Swapj! Java

13 System.out.println(x + " " +y);

14 }

15 }

Listing 2.32: swapTest class after compilation

1 public class swapTest {

2

3 public static void main(String [] args) {

4 String x = "Swapj !";

5 String y = "Java";

6 java.lang.String id0 = y;

7 y = x;

8 x = id0;

9

10 System.out.println(x + " " + y);

11 java.lang.String id1 = y;

12 y = x;

13 x = id1;

14

15 System.out.println(x + " " + y);

16 }

17 }

36

Summary

We showed how to quickly implement a simple language extension by using
Polyglot. This section was written as a tutorial for researchers and students
interested to develop language extensions. In the next part of the tutorial, we
will go in further depth and explore the scheduling of passes in Polyglot: we will
add an AST Rewriting pass to directly transform SwapJ nodes into Java nodes.
Table 2.3.3 summaries the lines of code added for each new class introduced to
implement the SwapJ language extension.

Figure 2.10: SwapJ code modifications summary
Classes Lines of code
SwapJNodeFactory 14
SwapJNodeFactory c 14
Swap 7
Swap c 117
Total 152

37

Chapter 3

Design Space of First-Class
Relationships

This chapter presents the design choices available to supporting first-class re-
lationships in an object-oriented language and compare them to existing work.
We present examples using ImperialRJ, which extends Java with first-class re-
lationships.

3.1 Language Design Requirements

There are several requirements for an effective first-class relationship language
to keep in my mind before designing a language that supports first-class rela-
tionships. This section summaries the different requirements suggested recently
in the literature. [9, 7]

• Abstraction : a good relationship abstraction that hides internal imple-
mentation complexity and provides a simple interface to work with.

• Polymorphism : different relationship implementations should be easily
interchangeable without modifications to the participants.

• Reusability : relationship abstractions should be reusable just like classes
can be reused by being instantiated several times.

• Composition : it should be possible to include the relationship imple-
mentation as the basis for another relationship. In other words, relation-
ship implementations can be shared.

• Separation of Concerns : the participants should be decoupled from
the relationship implementation so that they can be reused independently
of the relationship if necessary

• Syntax : an intuitive syntax for expressing relationships

38

3.2 Terminology

We introduce the terminology used in the next sections:

• Relationship: A relationship abstracts the implementation of object col-
laborations. Relationships are the implementation abstraction of the UML
association concept.

• Participants: The participants of a relationships are the objects’ classes
involved in the relationships.

• Roles: The participants of a relationship can be named to indicate the
role they play within the relationship declaration. [41, 42, 13]

• Tuple: A tuple represents a possible association between the participants
of a relationship.

• Extent: An extent represents the instance result of a relationship just like
an object is the instance result of a class. In other words, it represents a
set of tuples.

3.3 Exploring The Design Space

In this section we investigate the design choices available to support first-class
relationships:

1. First-Class Extents
Do we need one or many sets of tuples?

2. First-Class Tuples
What does it mean to support first-class relationships?
Are tuples first-class?

3. State
Can tuples have processing ability?
Can tuples have a state?

4. Encapsulation
Do tuples have an existence outside an extent?
How does an extent encapsulate a tuple?
Do tuples store references or copies to the participants objects?

5. Aliasing
How to prevent confusing situations due to tuple aliasing?

6. Duplicates
Are duplicates of tuples possible within an extent?

7. Arity
Can we support n-ary relationships?

8. Relationship Constraints
How can we set constraints on the participants?
Can we support multiplicity?
How can we set constraints on the state of a tuple?

39

9. Relationship querying
What are the possible ways of supporting querying of an extent?
Can we support mathematical binary relations on extents?

10. Persistence of Relationships
Is there a connection between first-class relationships and databases?

11. Specialising Relationships
What are the issues involving relationship inheritance?
How does it affect consistency constraints?
Can we introduce relationship polymorphism?
How to deal with covariant overriding of participants in a sub-relationship?

The table below in Figure 3.3 compares the existing languages supporting
relationships with our design space [43, 6, 7].

DSM RelJ Rumer ImperialRJ
First-Class Extents No No Yes Yes
First-Class Tuples No Yes ? No
Tuple State ? Yes Yes Yes
Tuple Processing ability ? ? Yes In development
Encapsulation by reference by reference by reference by reference
Aliasing Tuples Protection ? ? ? Aliasing of Tuples forbidden
Duplicate Tuples No No ? In development
N-ary relationships ? No No No
Multiplicities Yes Yes Yes In development
Constraints ? No Yes In development
Querying Yes No Yes Yes
Aggregation functions ? No Yes Yes
Relationship Persistence ? No No In development
Relationship Inheritance No Yes ? In development

Figure 3.1: Design Comparison of Existing Relationship Languages

40

3.3.1 First-Class Extents

Previous work have modelled relationships as a static concept that is available
implicitly to the system [6, 7]. However, this approach reduces reusability since
only one set of tuples is possible for a relationship declaration. Another alter-
native is to allow several extents from the same relationship declaration. We
explore the two alternatives in terms of the following example: A Department
has Students attending Courses. This is depicted in Figure 3.2.

Figure 3.2: The Departments EEE and Computing have Students attending
Courses

In the first alternative, if we only have one extent then modelling the re-
lationship requires a third participant to take the Department into account:
Attends ⊆ Department × Student × Course. This solution has several draw-
backs. Firstly, it requires support for relationship of more than 2 participants,
which are harder to manipulate, reason about and navigate. Secondly, the re-
lationship now couples together 3 participants and cannot elegantly be used
for the simple Attends relationship: Attends ⊆ Student × Course. However,
one advantage is that the relationship is available globally since it only has one
extent, which makes it easier to access it.

In RelJ, one could define two relationships with the same signature but
different names for each department to avoid using a relationship with three
participants as shown in Listing 3.1. However, this solution is clearly not
viable if there are lots of departments or worse if the system needs to be flexible
for changes: new departments are created or renamed and old departments
removed.

Listing 3.1: Considering Departments in RelJ

1 relationship ComputingAttends(Student ,Course){

2 }

3

4 relationship EEEAttends(Student , Course){

41

5 }

6

7 // department EEE

8 EEEAttends.add(sophia ,signals);

9 EEEAttends.add(raoul ,digital);

10

11 // department Computing

12 ComputingAttends.add(raoul ,oop);

13 ComputingAttends.add(michael ,oop);

In the second alternative, we simply allow several extents of the same rela-
tionship declaration. This way the relationship definition remains unchanged
and we can reuse the same relationship declaration. We demonstrate the concept
in Listing 3.2 using ImperialRJ. One disadvantage of this mechanism compared
to a global extent is that the programmer needs to remember the different names
for the extents of a relationship he is creating.

Listing 3.2: Multiple extents for the same relationship

1 relationship Attends(Student ,Course){

2 }

3

4 // department EEE

5 Attends eee = newR Attends ();

6 eee ->add(sophia ,signals);

7 eee ->add(raoul ,digital);

8

9 // department Computing

10 Attends computing = newR Attends ();

11 computing ->add(michael ,oop);

12 computing ->add(raoul ,oop);

Extents in ImperialRJ are created using the newR keyword, intuitively similar to the new

keyword for instantiating classes.

The decision to allow several extents leads to the decision to make extents
first-class entities. Extents can be constructed at runtime and assigned to a
variable and can also be passed as a parameter or returned from a method.

The example described can now be elegantly modelled in the UML dia-
gram 3.3. The Attends relationship is a field of a Department.

Figure 3.3: Departments have Students attending Courses

Note that the introduction of extents as first-class entities also enables re-
lationship aggregation: an extent can be passed as a parameter to another
relationship. Listing 3.3 shows an example of a Recommends relationship which
takes a Attends extent as second participant.

42

Listing 3.3: Relationship Aggregation

1 relationship Attends(Student , Course)

2 {

3 int mark;

4 }

5

6 public relationship Recommends(Tutor , Attends)

7 {

8 String reason;

9 }

10

11 Attends attends = newR Attends ();

12 Recommends recommends = newR Recommends ();

13

14 a->add(raoul , oop);

15 a->add(sophia , oop);

16

17 // Tutor Michael recommends students Raoul and Sophia to attend OOP

18 recommends.add(michael , a).withReason ("Do as I say! It ’s good for

you");

3.3.2 First-Class Tuples

The support of tuples as first-class citizens means that we can store tuples in
a variable and also pass them as arguments to methods. Such a design choice
opens the question of whether a tuple exists outside an extent. As described
in Section 2.2.2, first-class tuples raises issues regarding the fate of the tuple
reference when the tuple is removed from an extent. Wren et al. suggested three
solutions: taking no actions, deleting the tuple from the heap and nullifying
references. The first option is not an accurate solution as it just doesn’t deal with
the issue and the last two introduce security risks when dealing with dangling
references. In addition, Wren et al. suggestions do not cater for multiple extents.
Consider the case when the same tuple is part of two different extents. What
happens to the tuple reference if the tuple is removed from one extent or both?

Supporting first-class tuples also puts more overhead on the programmer
because he has to keep track of the various tuple references, which makes it
harder to reason about the program and leads to the typical aliasing problems
like accidental conflicts [44]. However, it is easier to remember a tuple reference
than refer to the participant objects to access the tuple.

An alternative design choice, is to take a more protective approach and
only allow access to tuples through their extent and forbid reference to tuples.
This mechanism ensures that no problems arises after removal of tuples as we
don’t need to deal with tuple references at all. However, first-class tuples could
be useful in some situations as wrapper objects or as temporary storage for
manipulation. In other words, in certain situations it could be more practical to
process tuples one by one rather than accessing the whole extent holding them,
in which case first-class tuples are desirable. In addition, accessing the tuples
through the extent requires the programmer to write more code as he needs to
keep track of both the extent and the participant objects of the desired tuple.

One possible solution to make life easier to the programmer is to introduce
the generation of a macro, which groups the participant objects of a tuple.

43

Deal with tuple references

We give an overview of a mechanism to deal with tuple as first-class citizens.
We differentiate between three states of the tuples:

1. The tuple hasn’t been removed and it exists in an extent and has an
external reference to it

2. The tuple has been removed and therefore doesn’t exist in an extent but
it still has an external reference to it

3. The tuple reference has been cleared and the tuple doesn’t exist anymore

The three different scenarios are shown in Figure 3.4, 3.5 and 3.6. A possible
choice is to let the programmer be responsible for clearing references to tuples
that don’t exist anymore if he decides to store tuples in variables. This principle
is similar to allocating and deallocate a memory block in C: the programmer
allocate an external reference to the tuple if he wish and then deallocates it.
Listing 3.4 show cases a possible syntax in ImperialRJ for this mechanism.

44

Figure 3.4: The tuple hasn’t been removed

Figure 3.5: The tuple is hidden from the extent but an external reference exists
to it

Figure 3.6: The tuple reference has been removed and the tuple structure cleared

45

Listing 3.4: The three states of a first-class tuple described in ImperialRJ

1 relationship Attends(Student ,Course) : Attendance {

2 }

3

4 Attends attends = newR Attends ();

5 Attendance tuple = attends->add(sophia,oop); // 1

6

7 attends->rem(sophia,oop); // 2

8 tuple.first (); // returns sophia

9 attends ->get(sophia ,oop); // invalid

10

11 tuple.free(); // 3

12 tuple.first (); // invalid

3.3.3 State and Processing Ability

Tuple State

Tuples can hold a state to conveniently include more information about a re-
lationship. As an example, consider the relationship Attends where Students

attend a Course but also get a mark for it. One way to include the mark in
the relationship is to simply have a ternary relationship: Attends ⊆ Student×
Course ×Mark. However, as mentioned earlier, this requires support for n-
ary relationships, which are harder to work with. Furthermore, the mark is
not actually defining the Attends relationships but is rather an attribute of
it. In addition, adding new attributes would require constantly modifying the
Attends relationship definition.

An alternative is to allow tuples to hold the mark for a Student attending a
Course and declaring the mark as an attribute of the relationship rather than
a participant. Listing 3.5 shows how to manipulate tuple states in ImperialRJ.
This mechanism makes it easy to navigate the relationship participants while
at the same time query and modify the states of tuples if necessary.

Listing 3.5: A relationship attribute mark as tuple state

1 relationship Attends(Student ,Course){

2 int mark;

3 }

4

5 Attends attends = newR Attends ();

6 attends ->add(sophia ,oop) .withMark(8);

7 attends ->add(michael ,oop) .withMark(10);

Tuple Processing Ability

It can also be convenient to define methods which manipulate a tuple within the
relationship, especially if tuples are not first-class entities. These methods can
access the state of the tuples through the relationship attributes and also the
participant objects in the tuple by defining roles on the relationship declaration.
Listing 3.6 shows an example where a tuple can generate an attendance report.

Listing 3.6: Tuple processing ability

46

1 relationship Attends(Student s, Course c){

2 int mark;

3

4 void printReport ()

5 {

6 System.out.println(this.s + " is attending " + this.c " and has

grade: " + this.mark);

7 }

8 }

9

10 Attends attends = newR Attends ();

11 attends ->add(sophia ,oop).withMark (8);

12 attends ->add(michael ,oop).withMark (10);

13

14 // sophia is attending oop and has grade 8

15 attends->get(sophia,oop).printReport();

Extent

Similarly to tuples, it can be convenient to encapsulate attributes and processing
ability at the extent level. As an example consider Listing 3.7, which displays all
the tuples within an extent. The keyword extent differentiate the declarations
at the tuple level from the extent level within a relationship declaration. Notice
that the keyword this within an extent declaration refers to the top extent level
otherwise it refers to the current tuple.

Listing 3.7: Extent processing ability

1 relationship Attends(Student s, Course c){

2 int mark;

3

4 void printReport ()

5 {

6 System.out.println(this.s + " is attending " + this.c " and has

grade: " + this.mark);

7 }

8

9 extent void printAllReports()

10 {

11 for((Student s, Course c))

12 {

13 this.get(s,c).printReport ();

14 }

15 }

16

17 }

18

19 Attends attends = newR Attends ();

20 attends ->add(sophia ,oop).withMark (8);

21 attends ->add(michael ,oop).withMark (10);

22

23 // sophia is attending oop and has grade 8

24 // michael is attending oop and has grade 10

25 attends ->printAllReports ();

47

3.3.4 Encapsulation

What is actually stored within a tuple? One option is to store references to the
objects composing a tuples. As a consequence, the extent does not encapsulate
the participants of a tuple: the participant objects composing a tuple can be
manipulated outside the extent. This is illustrated in Figure 3.7.

Figure 3.7: Storing participant objects references

A design alternative to storing the participant objects references is to store
deep copies of the participant objects. This mechanism ensures that the ex-
tent completely encapsulates its tuples. However, this mechanism is expensive
because a deep copy of the participant objects is required as well as equality
comparisons for every methods of the extent storing the copies. This mechanism
is illustrated in Figure 3.8.

Figure 3.8: storing copies of participant objects

48

Similarly the introduction of attributes on tuples raises encapsulation issues
if the state of a tuple is composed out of references to objects outside the extent.
One solution is to only allow primitive values as attributes but this could be too
restrictive.

3.3.5 Aliasing

The introduction of first-class tuples can lead to confusing situations. Take as
example Listing 3.8 where two tuples references from two different extents of
the same type are returned. Could a tuple reference be assigned to another
one? In which case what happens after removal of the tuple within the extent
and the deallocation of the tuple reference? Can the alias of the tuple on which
free() wasn’t called still access the tuple or not?

Listing 3.8: Confusion after tuple assignment

1 relationship Attends(Student ,Course) : Attendance {

2 }

3

4 Attends a1 = newR Attends ();

5 Attends a2 = newR Attends ();

6

7 Attendance t1 = a1->add(sophia,oop).withMark(10);

8 Attendance t2 = a2->add(sophia,oop).withMark(9);

9

10 t1 = t2; // assignment

11 a2->rem(sophia ,oop);

12 t1.free();

13

14 // 9?

15 t2.getMark ();

Situations when a removed tuple has several aliases can lead to problems.
In fact, it can accidentally modify the behaviour of the other aliases pointing to
the same tuple unbeknownst to the programmer.

One possible strategy is to enforce control of the tuples alias through own-
ership types: a tuple reference from one extent cannot be assigned to another
tuple reference from another extent even if the extents hold the same types
because the tuples are considered to have different owners. Even though this
mechanism can help clarify situations when two different extents are involved,
it still doesn’t solve the problem when two references from the same extents are
assigned.

An alternative solution is to enforce immutability of the references pointing
to a tuple. This way, two different tuples references cannot be reassigned and
the problem doesn’t occur.

Another less restrictive approach is to enforce read-only references to tuple,
which cannot modify the state of the tuple they refer to after reassignment.
This is technique is further described by Tschantz and Ernst in their work
about extending Java with reference immutability [45]. In the example shown
above, t1.free() wouldn’t be allowed because t1 cannot modify the state of
the tuple it points to, only t2 is entitled to do so.

49

3.3.6 Duplicates

Another question to raise is how to deal with duplicate tuples? The mathemat-
ical definition of a tuple only consider the participants of a tuple but not its
state. We suggest three options that take into account the state of tuples:

1. Prevent duplicate tuples based on the participants and throw a runtime
exception if a duplicate is added.

2. Override the existing tuple with the new one since the tuple state may be
different.

3. Allow duplicate tuples with different states to be stored. When a specific
tuple is required, a random or all are returned.

The desired behaviour can be annotated at compiled time. Listing 3.9 and
3.10 show an example in ImperialRJ using the annotations @AllowOverrideTuples
and @AllowDuplicateTuples.

Listing 3.9: AllowOverrideTuples annotation

1 @AllowOverrideTuples

2 relationship Attends(Student s, Course c)

3 {

4 int mark;

5 }

6

7 Attends a = newR Attends ();

8 a->add(sophia ,oop).withMark (10);

9 a->add(sophia ,oop).withMark (8); // override

10

11 // 8

12 a->get(sophia , oop).getMark ();

Listing 3.10: AllowDuplicateTuples annotation

1 @AllowDuplicateTuples

2 public relationship Attends(Student s, Course c)

3 {

4 int mark;

5

6 void printReport ()

7 {

8 System.out.println(s + " is attending " + c + " and has grade:

" + this.mark);

9 }

10

11 extent public void printAllReports ()

12 {

13 for((Student s, Course c))

14 {

15 this.get(s,c).printReport ();

16 }

17 }

18 }

19

20 Attends a = newR Attends ();

21 a->add(sophia ,oop).withMark (10);

22 a->add(sophia ,oop).withMark (8);

50

23

24 // Sophia is attending OOP and has grade 10

25 // Sophia is attending OOP and has grade 8

26 a->printAllReports ();

3.3.7 Arity

Could we implement relationships with more than two participants? This is
possible by extending the relationship declaration to support a third partic-
ipant object. However, dealing with more than two participants makes the
relationship harder to navigate as a third dimension is introduced. An alter-
native solution, is to simply define two principal participants and consider the
other participants as attributes which can be stored within the tuples of the
relationship.

Consider the Usage relationship illustrated in Figure 3.9. A particular Room
is booked at a certain Time for an Activity. Clearly the relationship is defined
as Usage ⊆ Room×Activity × Time.

Figure 3.9: Storing copies of participant objects

This can simply be defined as a relationship Usage ⊆ Room×Activity, which
has an attribute Time. Listing 3.11 illustrates this example in ImperialRJ.

Listing 3.11: Time as an attribute of the Usage relationship

1 relationship Usage(Room , Activity)

2 {

3 Time time;

4 }

5

6 Usage usage = newR Usage ();

7 usage ->add(311, tutorialOOP).withTime (10am);

3.3.8 Relationship Constraints

Multiplicity

As described in the Background section, associations can be annotated with
multiplicities to restrict the number of instances of participants within a rela-

51

tionship. There are two ways to check multiplicities within a language imple-
mentation: runtime and static checking.

Runtime checking makes it easy to validate complex multiplicities including
ranges, for instance 2..5. The reason is because the check can be executed
before adding or removing a new tuple to validate whether the multiplicity
hold. However, this behaviour is not necessarily desirable because it means
the programmer needs to cater for possible exceptions at runtime and write
exceptions handler. Listing 3.12 shows an example on how to express such a
multiplicity in ImperialRJ. Students are allowed to take between 6 and 8 courses.

Listing 3.12: Multiplicity On Participants

1 relationship Attends(many Student, 6..8 Course)

2 {

3 int mark;

4 }

Static checking prevents problems from arising at runtime because the val-
idation was done at compile time. However, validating complex multiplicities
would require intricate data-flow analysis. In fact, one would need to track every
conditional branches and scenarios in order to find a violation of the multiplicity
and this may not be possible in practice.

Note that for languages that only implements binary relations, multiplicities
can also be specified on relationship attributes. For example, Listing 3.13 con-
veys that a Student can get up to three marks per Course that he is attending.

Listing 3.13: Multiplicity On Relationship Attribute

1 relationship Attends(Student , Course)

2 {

3 0..3 int mark;

4 }

Constraints On Participants and Relationship Attributes

Further constraints can be set on the participants and relationship attributes
in order to ensure only valid information goes inside an extent and its tuples.
One possible way to express these constraints is to specify declarative valida-
tions, which are checked at runtime. Listing 3.14 shows an example in Impe-
rialRJ using a constraints block inspired from Grails [46]. Participants of
the relationship are annotated with roles so they can be referred to inside the
relationship declaration. The constraints block declares that mark must be in
the range 1 to 10 and that the number of teaching hours of the course must be
greater than 16.

Listing 3.14: Constraints On Relationship Attributes and Participants

1 relationship Attends(Student student , Course course)

2 {

3 int mark;

4

5 constraints

6 {

7 mark(range(1..10);

8 course(hours > 16);

52

9 }

10 }

Relationship Invariants

In addition, it is possible to verify properties on the structure of a relationship
by specifying structural invariants. This concept has been described by Balzer
et al and can be expressed in a language implementation using for instance
an invariants block. Listing 3.15 shows an example where the relationship
Substitutes is defined as irreflexive and asymmetric.

Listing 3.15: Constraints On Relationship Attributes and Participants

1 relationship Substitutes(Faculty substitute , Faculty substituted)

2 {

3 invariants

4 {

5 irreflexive;

6 asymmetric;

7 }

8 }

3.3.9 Relationship Operations and Querying

Relationship Operations

Similar to the Java Collection library which incorporate various relationship
operations like union and intersection, a first-class relationship language should
implement these operations built-in on extents as they are useful for different
use cases. For instance, take the example of Departments holding an Attends

extent. The union of all of the Attends extents represents the attendance within
an University. In addition, various mathematical binary relations like inverse
and transitive closure can be implemented for when relationships are used in the
context of algorithms. As an example to find reachability in a graph structure
represented by a Connect relationship. It is also useful to define navigation built-
in methods to quickly scan the instances available in the domain and image of
a relationship.

We list below the most common relationship operations in the ImperialRJ
syntax:

• unionof a with b

returns the union of the extent a and b

• intersectionof a with b

returns the intersection of the extent a and b

• compositionof a with b

returns the composition of the extent a and b

• a(-)

returns the inverse of the extent a

• a=

returns the reflexive closure of the extent a

53

• a:

returns the symmetric closure of the extent a

• a*

returns the transitive closure of the extent a

As an example, given a graph structure represented in Figure 3.10, a visitor
could get all the visitable cities on his way starting from Brussels by combining
the transitive closure and the extent built-in from() method to navigate the
instances in the image of Brussels as shown in Listing 3.16.

Figure 3.10: Cities linked together in a graph structure

Listing 3.16: Cities visitable starting from Brussels

1 public relationship Connect(City c1, City c2){

2 }

3

4 Connect cityConnections = newR Connect ();

5 cityConnections ->add(london ,paris);

6 cityConnections ->add(paris ,nice);

7 cityConnections ->add(nice ,rome);

8 cityConnections ->add(paris ,brussels);

9 cityConnections ->add(paris ,berlin);

10 cityConnections ->add(brussels ,luxembourg);

11 cityConnections ->add(luxembourg , berlin);

12 cityConnections ->add(berlin , zurich);

13 cityConnections ->add(berlin , warsaw);

14

15

16 // Set{luxembourg ,berlin ,zurich ,warsaw}

17 (cityConnections*)->from(brussels);

54

Relationship Querying

Modern languages have little support for querying structured collections and ob-
jects [26]. As a consequence programmers are forced to handcode the queries,
which can be inefficient. LINQ is an example of a language developed by Mi-
crosoft, which incorporate integrated queries on collections [47]. As relationships
provide a structured interface for accessing data through extents and tuples, it is
desirable to provide the programmer with built-in efficient querying constructs
in order to prevent then from writing inefficient and error prone code. A possible
way to express queries on relationship is through a select() construct acting
on an extent. Common operations like average, maximum, sum and minimum
performing calculations on relationship attributes could be defined separately
like aggregate functions in SQL. Listing 3.17 shows how a filtering query is ex-
pressed and Listing 3.18 shows on how aggregate functions are expressed on an
extent in ImperialRJ.

Listing 3.17: Filtering used macros

1 relationship Macro(Name , Definition)

2 {

3 boolean used;

4 }

5

6 Macro macro = newR Macro ();

7

8 macro ->add(name1 ,d1).withUsed(true);

9 macro ->add(name2 , d2).withUsed(false);

10 macro ->add(name3 , d3).withUsed(true);

11

12 // filter all macros that are used

13 macro->filter(used == true);

Listing 3.18: Aggregate functions

1 relationship Follow(User , User)

2 {

3 int interest;

4 }

5 // Twitter follow relation

6 Follow f = newR Follow ();

7

8 // AVG

9 double avg = average interest from f;

10 // SUM

11 int sumInterest = sum interest from f;

12 // MAX

13 int maximum = max interest from f;

14 // MIN

15 int minimum = min interest from f;

3.3.10 Relationship Persistence

There exists a direct connection from associations in object oriented systems
to relations in database systems. In fact, a relation in the database world is
defined as a set of tuples, which conform to a common set of attributes. This

55

can be mathematically modelled as a relation over several sets where the sets
are the possible attributes values of the database relation. A database relation
is usually described as a table, which is organised into rows and columns. This
means that relationships between entities can be modelled as a table. Figure
3.11 shows how the Attends relationship between Student and Course can be
modelled using a relation over the attributes StudentId and CourseId.

Figure 3.11: Attends relationships in Database

The same example is represented as a relationship in Object-Oriented sys-
tems.. How do we map the object model to a relational database? The two most
common approaches are writing SQL conversion methods by hands or using so-
phisticated ORM frameworks. However, they are not intuitive and optimal for
dealing with associations intra objects because object-oriented languages lack
construct to explicitly define relationships. First-class Relationships can help
facilitate the mapping of associations from an object-oriented system to a rela-
tional database.

The first approach available to the programmer is to set up SQL tables as
well as write SQL conversion methods by hand to remove and add new tuples
in the table persisting the relationship. This mechanism is inefficient for several
reasons:

• it requires the programmer to keep the running system consistent with
the database.

• it requires the programmer to write tedious and error prone code.

• the sql conversion methods are vulnerable to changes in the object-oriented
system if new requirements comes in.

Another approach is to use a mapping system that acts transparently to the
object model to store and retrieve objects directly to and from the database.

56

These systems are referred to as Object-Relational Mapping System (ORM).
One of the most popular within the Java community is Hibernate. However,
these sophisticated systems require a lot of knowledge to use. In addition they
may not be optimal for dealing with associations as they map relationships that
are implicitly defined in code since object-oriented languages are lacking explicit
constructs. Moreover, such systems come with specialised querying languages,
which introduce a mismatch between filtering logic in code and filtering logic on
the relational database. As an example, Listing 3.19 show a mapping configu-
ration for the Attends example, which assumes the Student class has a Set of
Courses and the Course class a Set of Students to represent the relationship.

Listing 3.19: Filtering used macros

1 <class name=" Student">

2 <id name="id" column =" studentId">

3 <generator class =" native"/>

4 </id >

5 <set name="courses" table="Attends">

6 <key column =" studentId"/>

7 <many -to-many column =" courseId"

8 class=" Course"/>

9 </set >

10 </class >

11

12 <class name=" Course">

13 <id name="id" column =" courseId">

14 <generator class =" native"/>

15 </id >

16 <set name="students" inverse="true" table="Attends">

17 <key column =" courseId"/>

18 <many -to-many column =" studentId"

19 class=" Course"/>

20 </set >

21 </class >

This mapping method of associations is undesirable for several reasons. First
of all, it requires detailed knowledge of mapping associations to the database.
Second, it is not optimal for changes. For example introducing a mark attribute
for every attendance would require an overhaul of the configuration mapping as
well as the object-oriented system code.

Since first-class relationships explicitly define relationship between objects,
they could be used to automatically map the relationship to the relational
database. There are several benefits:

• no detailed knowledge required of association mapping to relational database.

• optimal for new requirements about an association.

• transparent to the programmer.

• no mismatch between relational filtering within the object-oriented system
and the relational database

• constraints from object-oriented model preserved to relational database

Figure 3.12 describe a graphical example of table generation from the Attends
relationship declaration. Each Attends extent is assigned an AttendsId. The

57

table Attends associates tuple of Students and Courses with their Mark as
well as their extent. The range constraint set on the mark attribute can be used
to optimise the internal type on the relational database. For example to a byte
value rather than an integer as only 10 values are used.

Figure 3.12: Attends table generation with First-Class Relationships

The example above is generated from the following ImperialRj code:

Listing 3.20: ImperialRJ persistence

1 relationship Attends(Student , Course)

2 {

3 int mark;

4 constraints

5 {

6 mark(range (1..10);

7 }

8 }

9

10 Attends a1 = newR Attends ();

11 Attends a2 = newR Attends ();

12

13 a1->add(raoul ,oop).withMark (10);

14 a1->add(sophia ,oop).withMark (8);

15 a1->add(sophia ,compilers).withMark (9);

16 a1->add(michael ,oop).withMark (10);

17

18 a2->add(michael ,compilers).withMark (8);

58

3.3.11 Relationships Inheritance

Overview

One of the key benefits of class inheritance is to minimise duplicate code and
enable reuse of code defined in a parent class by a child class. The same concept
can be applied to relationships. Wren et al introduced relationship inheritance
specifically to RelJ in a restricted form of delegation [7]. However, it is not
suited for a language supporting first-class extents since RelJ doesn’t support
first-class extent.

We investigate a relationship inheritance implementation for ImperialRJ
that is suited for first-class extents. It is similar to classes inheritance in Java:
implementation of the parent relationship is inherited by a child relationship,
however, the participants of the child relationship are a specialisation of the
participants of the parent relationship.

A relationship can extend a parent relationship using the extends keyword
and specialising the participants types. Figure 3.13 depicts a scenario, which
requires relationship inheritance: Students get a mark for attending a specific
Course in an University. In some cases, HappyStudents will happily attend
a Course with a certain level of happiness.

Figure 3.13: Typical University environment

As illustrated in the above UML diagram, the relationship HappilyAttends

extends the Attends relationship. However, it provides more specialised par-
ticipants: only HappyStudent can be part of the HappyAttends relationship.
Similarly to class inheritance, the relationship HappilyAttends will inherit the
implementation of its parent relationship; namely all the parent’s fields and
methods. In this case, a HappilyAttends relationship has a levelOfHappiness

field but also a mark field for each of its tuples. Declaration and use of the
HappilyAttends relationship is presented in Listing 3.21.

59

Listing 3.21: HappyAttends

1 public relationship Attends(Student s, Course c)

2 {

3 int mark;

4 String mood;

5 }

6

7 public relationship HappilyAttends(HappyStudent s, Course c) extends Attends

8 {

9 int levelOfHappiness;

10 }

11

12 HappyAttends a = newR HappilyAttends ();

13 a->add(sophia ,oop).withMark (8).withLevelOfHappiness (90);

14 a->add(raoul ,oop).withMark (10).withLevelOfHapiness (100);

In addition, we introduce polymorphism of relationships by linking relation-
ship inheritance with relationship sub-typing. In the above example, HappyAttends
also becomes a subtype of Attends. The benefits of introducing relationship
polymorphism are similar to class polymorphism: the developer can write code
that deals with a family of relationship types. This is illustrated in Listing 3.22
where a Department holds attendance of Students regardless on whether they
are happily attending the Courses.

Listing 3.22: Relationship Polymorphism

1 public relationship Attends(Student s, Course c)

2 {

3 int mark;

4 String mood;

5 }

6

7 public relationship HappilyAttends(HappyStudent s, Course c)

extends Attends

8 {

9 int levelOfHappiness;

10 }

11

12 public class Department

13 {

14 Attends attends;

15 String departmentName;

16 }

17

18 Department eee = new Department ();

19 eee.attends = newR Attends ();

20

21 Department computing = new Department ();

22 computing.attends = newR HappilyAttends ();

Issues

The introduction of relationship inheritance and polymorphism raises several
issues:

• Are relationship types covariant?

• How to deal with relationship’s attributes specialisation?

60

• How to deal with multiplicity and constraints specialisation?

Relationship covariance

We illustrate the problem of relationship types covariance in Listing 3.23.

Listing 3.23: Assignment of extents with same family type problem

1 public relationship Attends(Student s, Course c)

2 {

3 int mark;

4 String mood;

5 }

6

7 public relationship HappilyAttends(HappyStudent s, Course c)

extends Attends

8 {

9 int levelOfHappiness;

10 }

11

12 HappilyAttends happilyAttends = newR HappilyAttends ();

13 // assignment of extent

14 Attends attends = happilyAttends;

15

16 UnHappyStudent gavin = new UnHappyStudent ();

17 HappyStudent raoul = new HappyStudent ();

18

19 happilyAttends ->add(raoul ,java)

20 attends ->add(gavin ,java);

21

22 // return gavin and raoul , but we expect only happy students

happilyAttends->from(java);

The declaration of HappilyAttends is specialised to allow tuples of HappyStudents
and Courses. However, by declaring an alias attends of type Attends and as-
signing it an alias of a HappilyAttends extent, the programmer can now access
the Attends participants’ interface and effectively corrupt the happilyAttends

extent by adding tuples of type Student rather than HappyStudent.
We identify 4 ways to tackle this issue and suggest a simple solution based

on an efficient internal structuring of tuples.

1. Forbid assignment to extent aliases of different static type than
right hand side
The simplest solution is to completely forbid assignment of extents to
a different static typed receiver. However, this solution is not practical
because we lose the benefits of relationship polymorphism. It basically
means that HappilyAttends is not a subtype of Attends.

2. Deep copy assignments of extents
Another solution is to deep copy assignment of extents. The receiver of the
assignment would receive a deep copy of the assigned extent rather than a
reference. This way, the receiver has a copy completely independent from
the right hand side and therefore can not corrupt it. Although this solution
is expensive due to the deep copy mechanism required, it is also not very
practical because extents need to be copied when passed as parameters.
For example, it prevents the storage of extents in collections. In fact, in
Java, elements are added to collections by references.

61

3. Filter input
A different solution is to use the dynamic type of the receiver in order to
prevent tuples of the wrong type to be added in the extent. In the previous
example, even though the alias attends has a static type Attends, it
has a dynamic type HappyAttends and this information can be used to
ensure that only tuples matching the HappyAttends declaration are added.
However, this solution comes with two drawbacks. Firstly, it requires
dynamic type checking on every addition of a tuple. Secondly, it is very
restrictive as only HappyAttends tuples can be added even though the
extent’s alias static type accepts Attends tuples. This solution is similar
to how Java deals with arrays.

4. Filter output
An alternative solution is to perform filtering when fetching tuples from
an extent rather than when adding them. One could use the static type
of the receiver in order to fetch tuples matching the receiver’s type. This
solution is less restrictive because it allows the alias attends to access tu-
ples matching the Attends participants’ declaration and allows the alias
happyAttends to access tuples of the HappyAttends participants’ decla-
ration. As a result, the result from the from(), to(), foreach() methods
are filtered out to return results matching the static type of the receiver.
However, this solution is relatively expensive as type checking is required
every time tuples are fetched.

4.1 Structuring using static type of the extent’s alias
We suggest a simple way of structuring the way tuples are added
in an extent based on a russian nesting doll structure in order to
provide an efficient filtering of tuples. The concept is illustrated in
Figure 3.14. When an extent is created, internally a box is allo-
cated for tuples matching the relationship participants’ types. In
addition, a surrounding box is created for each of the extent’s par-
ents relationship participants’ types. This way, whenever tuples are
added through an alias, they are added to the right box consider-
ing the static types of the participant objects passed as parameters.
In the example described earlier, adding a tuple with participant
types HappyStudent and Course through happilyAttends will add
it inside the HappilyAttends box. Similarly, adding the same tuple
through the attends alias will add it inside the HappilyAttends box.
However, adding tuples through the attends alias with participant
objects of static types Student and Course will add them inside the
Attends box, which has also access to the HappilyAttends box. In
case, the static types of the participant objects of a tuple don’t match
a specific box, the first matching parent type is used for placing the
tuple. For example, in the previous example gavin has static type
UnHappyStudent and will therefore be added inside the Attends box
because UnHappyStudent is a subtype of Student.

This structure allows to efficiently retrieve tuples based on the static
type of the receiver. In fact, in the example described above, the
happilyAttends alias has only access to tuples in the HappilyAttends
box because its static type is HappilyAttends. However, attends

62

alias has access to the whole Attends box, which includes tuples in
the HappilyAttends box. Consequently, no run time type checking
is required to filter out fetched tuples.

Figure 3.14: Placing tuples in a russian nesting doll structure

Relationship Attributes Specialisation

Take as example Listing 3.24. The Attends relationship defines an attribute
tutor of type Tutor, whereas the relationship HappyAttends specialising At-
tends defines the attribute tutor as of type GreatTutor. How do we deal with
relationships that define an inherited attribute with a different type?

Listing 3.24: Attribute Specialisation

1 public relationship Attends(Student , Course)

2 {

3 int mark;

4 Tutor tutor;

5 }

6

7 public relationship HappilyAttends(HappyStudent , Course) extends

Attends

8 {

9 int levelOfHappiness;

10 GreatTutor tutor;

11 }

The first approach, is to take a purist view and simply forbid specialising
an attribute name. The HappilyAttends relationship could simply define an-
other attribute name greatTutor which takes a type GreatTutor. However,
this may not be desired as the HappilyAttends relationship now has an un-
necessary tutor attribute. In addition the code may lose consistency if a new
attribute name is introduced representing the same information as another at-
tribute. Another approach is to allow attribute specialisation and check based
on the static type of the extent receiver whether the attribute tutor requires
a general Tutor or a GreatTutor. However, this may not be accurate as for
Attends extents only general tutors are allowed even though the participant
object is a HappyStudent. A different approach is to allow attribute specialisa-
tion based on the static type of the participant objects. For instance, if a tuple

63

of HappyStudent and Course is added to an Attends extent, it will require a
GreatTutor for the attribute tutor.

Multiplicity and Constraints Specialisation

Similarly, a specialised relationship will inherit constraints from its parent re-
lationship. If required the specialised relationship should be able to set more
restrictive multiplicities or constraints. For example if the mark attribute of
the Attends relationship has a constraint range of 1..10, the HappilyAttends

could refine the range to only good marks: 7..10. One possible way to ensure
the constraint validation, is to apply the specialised constraints on the dynamic
type of the extent receiver. This way the constraint always follow the most
specialised form.

64

Chapter 4

ImperialRJ: The language

In this section we present ImperialRJ as a programming language extending
Java. We introduce ImperialRJ by giving an example showcasing its features.
We follow by providing the formal definition of ImperialRJ.

4.1 Example

To introduce ImperialRJ as a programming language, we program an example
to show case in practice some of the available features in the language.

• Students attend Courses and get a mark for it.

• The University has two departments: computing and eee.

• What is the average mark at the University?

• Generate a Report with all Students who get a mark higher than the
university average.

• There are 4 students: Raoul (computing), Sophia (computing), Michael
(eee) and Stephanie (computing).

• There are 3 courses: oop, java and signals.

• Raoul attends oop with mark 10, Sophia attends java with mark 8 and
oop with mark 6, Michael attends signals with mark 7, Stephanie attends
oop with mark 8.

To program this problem, we declare a relationship Attends on Student

and Course that has a relationship attribute mark. We create two extents for
the two departments: computing and eee. We then add the tuples with their
marks using the constructs available on relationship. To find the average mark
on the university we use the union operator on the two extents as well as the
average aggregate function. We use this result to filter all tuples with a relation-
ship attribute greater than the university average. Finally, we define a method
generateReport which takes an Attends extent to print an attendance report.
The output of the program is shown below in Figure 4.1 and the code including
comments is shown in Listing 4.2. The generated code by the ImperialRJ can
be found in Appendix A.

65

Listing 4.1: University Example Output

1 Average is: 7.8

2 Raoul attends OOP with mark 10

3 Sophia attends Java with mark 8

4 Stephanie attends OOP with mark 8

Listing 4.2: University Example in ImperialRJ

1 import uk.ac.ic.doc.jrl.lang .*;

2 import uk.ac.ic.doc.jrl.interfaces .*;

3 import uk.ac.ic.doc.jrl.factory .*;

4 import uk.ac.ic.doc.jrl.exceptions .*;

5 import uk.ac.ic.doc.jrl.visitors .*;

6 import java.util .*;

7

8 public class UniversityExample

9 {

10 public void launch () throws Exception

11 {

12 Student raoul = new Student ();

13 raoul.sName = "Raoul";

14

15 Student michael = new Student ();

16 michael.sName = "Michael ";

17

18 Student sophia = new Student ();

19 sophia.sName = "Sophia ";

20

21 Student stephanie = new Student ();

22 stephanie.sName = "Stephanie ";

23

24 Course oop = new Course ();

25 oop.cName = "OOP";

26

27 Course java = new Course ();

28 java.cName = "Java";

29

30 Course signals = new Course ();

31 signals.cName = "Signals ";

32

33

34 // create two extents

35 Attends computing = newR Attends();

36 Attends eee = newR Attends();

37

38 // add attendance with mark

39 computing << (raoul,oop).withMark(10);

40 computing << (sophia,java).withMark(8);

41 computing << (sophia,oop).withMark(6);

42 eee << (michael,signals).withMark(7);

43 computing << (stephanie,oop).withMark(8);

44

45 // university is union of computing and eee

46 Attends university = unionof computing with eee;

47

48 // calculate average mark at the university

49 double averageMark = average mark from university;

50 System.out.println (" Average is: " + averageMark);

66

51

52 // filter the good students

53 university->filter(mark > averageMark);

54 // generate a report

55 generateReports(university);

56 }

57

58

59 private relationship Attends(Student, Course)

60 {
61 int mark;

62 }
63

64 public void generateReports(Attends a) throws Exception

65 {

66 foreach((Student s, Course c) : a)

67 {

68 int mark = a->get(s,c).getMark();

69 System.out.println(s +" attends "+ c +" with mark " + mark);

70 }

71 }

72

73

74 private class Student

75 {

76 String sName;

77

78 public String toString ()

79 {

80 return sName;

81 }

82 }

83

84 private class Course

85 {

86 String cName;

87 public String toString ()

88 {

89 return cName;

90 }

91 }

92 }

4.2 Formal Definition

In this section, we describe the language definition, type system and operational
semantics of ImperialRJ.

4.2.1 Overview

Syntax

The main extension required to extend an Object-Oriented language with rela-
tionships is a new entity at the same level as a class. This is why we introduce
a new syntactic category EntityType, which is composed of both classes and

67

relationships. A program is defined as a set of class declarations (ClassDecl)
and relationship declarations (RelDecl). In addition, we added a new structure
RelMap to map a relationship (RelId) to its definition which contains the two
participant types and a map with the fields declared in the relationship.

Type System

Most of the rules introduced ensure that the arguments passed to a relationship
method are in accordance with the participants types specified in the relation-
ship declaration. Similarly, the rules setting relationship attributes ensure that
the types of the arguments match the types of the relationship attributes spec-
ified in the relationship declaration.

Operational Semantics

We introduce a new RelationshipObject which represents an extent. It con-
tains the RelID and a set of tuples contains participant objects as well as rela-
tionship attributes.

4.2.2 Syntax

68

CM ∈ ClassMap : ClassId → ClassId × FieldMap × MethMap

RM ∈ RelMap : RelId → EntityType × EntityType × FieldMap

FM ∈ FieldMap : FieldId → Type

MM ∈ MethMap : MethId → Type

VM ∈ VarMap : VarId → Type

Program::= ClassDecl* | RelDecl*

RelDecl ::= class relationship R (p,p’) {FieldDecl*}
ClassDecl ::= class C extends C’ {FieldDecl* MethDecl*}

op ∈ Operators ::= < | > | == | ...

numeric ∈ NumericType ::= int | double | ...

p ∈ PrimitiveType ::= boolean | char | String | numeric

e ∈ EntityType ::= C | R

t ∈ Type ::= p | e | Set<t>

FieldDecl ::= t f

MethDecl ::= t m(t’ x) { s }

v ∈ Value ::= PrimValue | {true, false, null}
pv ∈ PrimValue ::= charValue | intValue | StringValue | ...

e ∈ Expression ::= v | x | e.f | e→size() | ro | ae | se

ro ∈ RelationExpression ::= e−1 | e+ | e= | e◦ | e ∪ e’ | e ∩ e’

ae ∈ AggregationExpression ::= average f from e |

sum f from e |

min f from e |

max f from e

se ∈ StatementExpression ::= new C() |

newR R() |

e→add(e’,e’’) |

e→add(e’,e’’)[FieldSet*] |

e→rem(e’,e’’) |

e→get(e’,e’’)[f] |

e→set(e’,e’’)[FieldSet*] |

e→from(e’) |

e→to(e’) |

e→filter(f op e’) |

fieldset ::= f = e

s ∈ Statement ::= ε | se; se’ | foreach((p x, p’ x’) : e) { se }
se’

Figure 4.1: The syntax of ImperialRJ

69

4.2.3 Type System

Type System Rules

NEWR

P ` R

Γ ` null : R
Γ ` newR R() : R

SIZE

Γ ` e : R

Γ ` e→ size() : int

ADD

Γ ` e : R
RM(R) = (t, t′,)
Γ ` e′ : t
Γ ` e′′ : t′

Γ ` e→ add(e′, e′′) : void

ADDSET

Γ ` e : R
RM(R) = (t, t′,FM)
Γ ` e′ : t
Γ ` e′′ : t′

∀i ∈ {1..n} : FM(fi) = ti ∧ Γ ` ei : ti

Γ ` e→ add(e′, e′′)[f1 = e1, ..., fn = en] : void

REM

Γ ` e : R
RM(R) = (t, t′,)
Γ ` e′ : t
Γ ` e′′ : t′

Γ ` e→ rem(e′, e′′) : void

70

RELFIELDGET

Γ ` e : R
RM(R) = (t, t′,FM)
Γ ` e′ : t
Γ ` e′′ : t′

FM(f) = t′′

Γ ` e→ get(e′, e′′)[f] : t′′

RELFIELDSET

Γ ` e : R
RM(R) = (t, t′,F)
Γ ` e′ : t
Γ ` e′′ : t′

∀i ∈ {1..n} : FM(fi) = ti ∧ Γ ` ei : ti

Γ ` e→ set(e′, e′′)[f1 = e1, ..., fn = en] : void

FROM

Γ ` e : R
RM(R) = (t, t′,)
Γ ` e′ : t

Γ ` e→ from(e′) : Set < t′ >

TO

Γ ` e : R
RM(R) = (t, t′,)
Γ ` e′ : t′

Γ ` e→ to(e′) : set < t >

FOREACH

x, x′ /∈ dom(Γ)
Γ ` e : R
RM(R) = (t, t′,)
Γ[x 7→ t, x′ 7→ t′] ` se
Γ ` se′

Γ ` foreach((t x, t′ x′) : e){ se } se′

71

INVERSE

Γ ` e : R
RM(R) = (t, t′,)
RM(R−) = (t′, t,)
Γ ` R−

Γ ` e−1 : R−

FILTER

Γ ` e : R
Γ ` e′ : t
FM(f) = t

Γ ` e→ filter(f op e′)

AGGREGATION

Γ ` e : R
Γ ` FM(f) : t
t ∈ numeric

Γ ` {average, sum,max,min} f from e

Well-Formedness

WELL-FORMED RELATIONSHIP

∀t, t′,FM : (t, t′,FM) ∈ RM(R)⇒ P ` t3
P ` t′3
∀f : dom(FM)⇒ P ` FM(f)3

P ` R3

WELL-FORMED PROGRAMS

∀C : P(C) is defined⇒ P ` C3
∀R : P(R) is defined⇒ P ` R3

` P3

72

4.2.4 Operational Semantics

Meta Information

ι ∈ Addr ∪ {null}
o ∈ EntityObject
r ∈ RelationshipObject
c ∈ ClassObject

Addr = {ιi | i ∈ N}
V al = Addr ∪ Set<Val> ∪ {true, false, null}

Heap : Addr → EntityObject
Stack : Addr × V al

RelationshipObject : RelID × P (Addr ×Addr × (FieldID → V al))
ClassObject : ClassID × (FieldID → V al)
EntityObject : RelationshipObject ∪ ClassObject

Figure 4.2: Meta variables used for Operational Semantics

Tuples(r) = r ↓2
TupleF ields(r, domain, image) = {t ↓3 | t ∈ Tuples(r), t ↓1= domain ∧ t ↓2=
image }

FD(r) = dom(RM(r) ↓3)
FD(c) = dom(CM(c) ↓2)

Figure 4.3: Meta functions for Operational Semantics

Operational Semantics Rules

SIZE

e, φ, χ; ι, χ′

χ′(ι) = ro
v = #(ro ↓ 2)

e→ size(), φ, χ; v, χ′

73

ADD

e, φ, χ; ι, χ′

χ′(ι) = r
e′, φ, χ′ ; ι′, χ′′

e′′, φ, χ′′ ; ι′′, χ′′′

tuples = Tuples(r) \ (ι′, ι′′,)
fields = {f : initial for f | f ∈ FD(r)}
χ′′′′ = χ′′′[ι 7→ (r, tuples ∪ {(ι′, ι′′, fields)}]

e→ add(e′, e′′), ø, χ; ι, χ′′′′

ADDSET

e, φ, χ; ι, χ′

χ′(ι) = r
e′, φ, χ′ ; ι′, χ′′

e′′, φ, χ′′ ; ι′′, χ′′′

tuples = Tuples(r) \ (ι′, ι′′,)
fieldsValues = {ei, φ, χ′′′ ; vi, χ

′′′′ | ei ∈ {e1, ..., en}}
fieldsWithValue = {fi : vi | fi ∈ {f1, ..., fn}}
fieldsWithDefaultValues = {fj : initial for fj | fj ∈ FD(r) \ {f1, ..., fn}}
χ′′′′ = χ′′′[ι 7→ (r, tuples ∪ (ι′, ι′′, fieldsWithValue ∪ fieldsDefaultValues))]

e→ add(e′, e′′)[f1 = e1, ..., fn = en], φ, χ; ι, χ′′′′

REM

e, φ, χ; ι, χ′

χ′(ι) = r
e′, φ, χ′ ; ι′, χ′′

e′′, φ, χ′′ ; ι′′, χ′′′

tuples = Tuples(r) \ {(ι′, ι′′,)}
χ′′′′ = χ′′′[ι 7→ (r, tuples)]

e→ rem(e′, e′′), φ, χ; ι, χ′′′′

FROM

e, φ, χ; ι, χ′

χ′(ι) = r
e′, φ, χ′ ; ι′, χ′′

v = {ι′′ | (ι′, ι′′,) ∈ Tuples(r)}

e→ from(e′), φ, χ; v, χ′′

74

TO

e, φ, χ; ι, χ′

χ′(ι) = r
e′, φ, χ′ ; ι′, χ′′

v = {ι′′ | (ι′′, ι′,) ∈ Tuples(r)}

e→ to(e′), φ, χ; v, χ′′

NEWR

ι is new in χ
χ′ = χ[ι 7→ (R, ø)]

newR R(), φ, χ; ι, χ′

RELFIELDGET

e, φ, χ; ι, χ′

χ′(ι) = r
e′, φ, χ′ ; ι′, χ′′

e′′, φ, χ′′ ; ι′′, χ′′′

(ι′, ι′′, fieldsForTuple) ∈ Tuples(r)
v = fieldsForTuple(f)

e→ get(e′, e′′)[f], φ, χ; v, χ′′′

RELFIELDSET

e, φ, χ; ι, χ′

χ′(ι) = r
e′, φ, χ′ ; ι′, χ′′

e′′, φ, χ′′ ; ι′′, χ′′′

tuples = Tuples(r)
(ι′, ι′′, fieldsMap) ∈ tuples
fieldsUnaffectedWithValue = {f : fieldsMap(f) | f ∈ FD(r) \ {f1, ..., fn}}
ei, φ, χi ; vi, χi+1 where χ1 = χ′′′ and i = 1..n
fieldsAffectedWithNewValue = {fi : vi | fi ∈ {f1, ..., fn}}
χ′′′′ = χi+1[ι 7→ (r, tuples \(ι′, ι′′,) ∪ (ι′, ι′′, fieldsUnaffectedWithValue ∪ fieldsAffectedWithNewValue))]

e→ set(e′, e′′)[f1 = e1, ..., fn = en], φ, χ; e, χ′′′′

75

FOREACH

e, φ, χ; ι, χ′

χ′(ι) = r
∀(ι′, ι′′,) ∈ Tuples(r) : se, φ[x 7→ ι′, x′ 7→ ι′′], χi ; vi, χi+1 where i ∈ {1..#Tuples(r)}
se′, φ, χn+1 ; v, χ′′

foreach((t x, t′ x′) : e){ se } se′, φ, χ; v, χ′′

INVERSE

e, φ, χ; ι, χ′

χ′(ι) = r
χ′(ι′) = r−1

e−1, φ, χ; ι′, χ′

FILTER

e, φ, χ; ι, χ′

χ′(ι) = r
e′, φ, χ′ ; v, χ′′

tuples = Tuples(r)
validTuples = {(ι′, ι′′, fieldsMap) | (ι′, ι′′, fieldsMap) ∈ tuples ∧ fieldsMap(f) op v}
χ′′′ = χ′′′[ι 7→ (r, validTuples)]

Γ ` e→ filter(f op e′)

AGGREGATION

e, φ, χ; ι, χ′

χ′(ι) = r
tuples = Tuples(r)
f ∈ FD(r)
values = {fieldsMap(f) | (ι′, ι′′, fieldsMap) ∈ tuples}
v = {average, sum,max,min}(values)

{average, sum,max,min} f from e, φ, χ; v, χ′

76

Chapter 5

ImperialRJ Implementation

In this section we describe the implementation of ImperialRJ following the
standard structure of a compiler. First, we describe the syntax choices and the
grammar of ImperialRJ in Polyglot. Second, we explain the processing architec-
ture by going over the AST generated from the grammar, then we briefly explain
the various analysis supported; namely type checking and constraint checking.
After that, we give an overview of the resulting Java code generation and of
the Java Relationship Library that we implemented to work with relationships.
Finally, we briefly give an overview of the testing platform used to validate the
language implementation.

With respect to our design space presented in Chapter 3, the current features
available in the ImperialRJ implementation are:

1. First-class extents

2. Tuples not as first-class citizens

3. Tuple states

4. Encapsulation by references

5. Querying

6. Aggregation functions

In addition, ImperialRJ provides new constructs to easily navigate relation-
ships:

1. pattern matching foreach loop

2. from()/to() constructs to navigate the domain and image of the rela-
tionship

77

The table below summarises the lines of code and number of classes added
in order to implement the ImperialRJ compiler.

Figure 5.1: ImperialRJ code summary
Lines of code Classes

Grammar extension 371
ImperialRJ core 2422 63
Java Relationship Library 2388 71
Total 5181 134

5.1 Syntax choices

We made several decisions with regard to the syntax of ImperialRJ in order to
make it intuitive and easy to work with. Firstly, extents are accessed with a
different accessor operator: the arrow -> instead of the dot accessor in order
not to confuse them with class objects.

Secondly, the method names available on extents follow the Java naming
convention. For example adding a tuple is simply done using the add method
on an extent, getting and setting the value of relationship attribute is done using
the standard getter/setter Java convention.

Thirdly, operations available on relationship like union and intersection as
well as aggregation functions follow a syntactical form very close to English in
order to be very readable. As an example the union of two extents is declared
as: unionof extent1 with extent2;

Finally, we provide a new foreach construct which is similar to the extended
for introduced in Java 5 but allows pattern matching on the participants of an
extent for easy navigation.

5.2 Grammar

The grammar of ImperialRJ is written in the ppg format - Polyglot’s parser.
The grammar hooks in the standard Java grammar. For example, the new
foreach construct extends a statement in order to be usable as a normal loop
construct. This is shown in Listing 5.1

Listing 5.1: foreach grammar

1 extend statement ::= relationship_for_statement:a {: RESULT = a;

:};

2

3 relationship_for_statement ::= FOREACH:n LPAREN LPAREN type:a

identifier:b COMMA type:c identifier:d RPAREN COLON name:e

RPAREN:f statement:g

4 {:

5 RESULT = parser.nf.RelFor(parser.pos(n,g),a,b,c,d,e.toExpr (),g);

6 :};

78

5.3 Abstract Syntax Tree Structure

We present a UML diagram in Figure 5.2 depicting the hierarchy of the relevant
AST extension nodes created by the NodeFactory, which is called during the
parsing phase based on the ImperialRJ grammar. We created all the classes
and interfaces below except NodeFactory, Node, Expr, Stmt and Term which
are part of Polyglot.

Figure 5.2: ImperialRJ AST Nodes structure

We introduce a new top level entity to classify object classes and relationship
at the same level: EntityDecl. It is inherited by RelDecl which represents
the declaration of a relationship and ImperialRJClassDecl which represents
classes and interfaces declaration. In addition we introduce several interfaces
representing specific actions on an extent:

• NewRel: represents the instantiation of an extent

79

• RelCall: represents a standard method call on an extent like add, rem,
to, from...

• RelSetOperation: represents a set operation on an extent, e.g.. union

and intersection

• RelOperation: represents the various mathematical operation on an ex-
tent including transitive closure, inverse, reflexive closure and symmetric
closure

• RelAggregate: represents the various aggregate function calls on an ex-
tent including sum, maximum, minimum and average.

• RelSelect: represents a filtering querying with its three arguments: rela-
tionship attribute name, comparing operator and value to compare with.

All the interfaces mentioned above are implemented by concrete classes.
For example, RelCall is implemented by RellCallAdd c to represent an add
method call on an extent, RelAggregate is implemented by RelMinimum c to
represent the minimum aggregation call.

5.4 Semantic Analysis

The ImperialRJ compiler supports semantic analysis: type checking and con-
straint checking. These are performed through the visitor hook methods pro-
vided by Polyglot for each phase of the compilation process. The constraints
implemented are defined in the formal definition of ImperialRJ as typesystem
and operational semantics rules.

5.4.1 Type Checking

All the type system rules presented in the formal definition of ImperialRJ are
implemented. For example, the ADD rule specifies that the types of the tuple’s
participants must match the participants’ types as specified in the relation-
ship declaration. Listing 5.2 shows how this check is implemented within the
RellCallAdd c class. Basically, the domain and image type of the extent’s
definition are compared with the type of the arguments on the add call.

Listing 5.2: Add Type Checking: RellCallAdd c.java

1 // Rule ADD

2

3 @Override

4 public Node typeCheck(ContextVisitor tc) throws SemanticException

{

5

6 TypeNode domainType = reldef.domainType ();

7 TypeNode imageType = reldef.imageType ();

8

9 Type arg1Type = arg1.type();

10 Type arg2Type = arg2.type();

11

12 if(! arg1Type.typeEquals(domainType.type(), tc.context ()))

13 {

80

14 throw new SemanticException (" tuple first argument type ("+

arg1Type.toString ()+") doesn ’t match with Domain type ("+

domainType.toString ()+").");

15

16 }

17

18 if(! arg2Type.typeEquals(imageType.type(), tc.context ()))

19 {

20 throw new SemanticException (" tuple second argument type ("+

arg2Type.toString ()+") doesn ’t match with Image type ("+

imageType.toString ()+").");

21

22 }

23

24 return this;

25 }

As another example of type checking, the code in Listing 5.3 shows that the
union of two extents is only possible if the extents are of the same type.

Listing 5.3: Union Type Checking: RelUnion c.java

1 @Override

2 public Node typeCheck(ContextVisitor tc) throws SemanticException

{

3

4 String leftRelStr = leftRelDef.asType ().toString ();

5 String rightRelStr = rightRelDef.asType ().toString ();

6 if(! rightRelStr.equals(leftRelStr)){

7 throw new SemanticException (" Different relationship type

arguments! left: "+ leftRelStr +", right: "+ rightRelStr);

8 }

9 return this;

10

11 }

5.4.2 Constraint Checking

The compiler also checks whether an attribute name in a filter query actually
exists in the relationship declaration. Listing 5.4 shows how this check is im-
plemented within the RelSelect c class.

Listing 5.4: Constraint checking in filter query: RelSelect c.java

1 @Override

2 public Node typeCheck(ContextVisitor tc) throws SemanticException

{

3

4 if(! reldef.relDecl ().relBody ().existField(b.toString ()))

5 {

6 String relName = reldef.asType ().toString ();

7 throw new SemanticException ("The field " + b.toString () + "

is not declared in " + relName);

8 }

9

10 return this;

11 }

A similar check is executed on aggregation queries: before execution, the
existence of the relationship attribute which is queried is checked within the
relationship declaration.

81

5.5 Code Generation

In this section, we present the code generation phase of the ImperialRJ compiler.
An example of generated code can be found in Appendix A. In addition, we
present the Java Relationship Library (JRL), a library we developed to single
out all functionalities responsible for working with relationships in Java.

Figure 5.3 depicts the code generation phase of the ImperialRJ compiler. It
shows that the ImperialRJ compiler is a source-to-source translator, in other
words it outputs Java code, which is then compiled to Java bytecode using the
standard javac compiler. The generated Java code uses the JRL to deal with
relationships.

Figure 5.3: ImperialRJ Code Generation architecture

5.5.1 Java Relationship Library

We describe an UML diagram of the JRL in Figure 5.4. The JRL is composed
of re-usable components that enable to:

1. Create and access tuples.

2. Create relationships.

3. Navigate a relationship as an iterable collection.

4. Navigate the domain and image of a relationship.

5. Add/Remove tuples in a relationship.

6. Apply visitors to a relationship to execute different operations.

82

The different visitors available include:

1. MaxVisitor: returns the maximum value of a relationship attribute within
a relationship.

2. MinVisistor: returns the minimum value of a relationship attribute within
a relationship.

3. SumVisitor: returns the sum of a specific relationship attribute for every
tuple within a relationship.

4. AverageVisitor: returns the average of a specific relationship attribute
for every tuple within a relationship.

5. TransitiveClosureVisitor: returns the transitive closure of the tuples
within a relationship.

6. SymmetricClosureVisitor: returns the symmetric closure of the tuples
within a relationship.

7. ReflexiveClosureVisitor: returns the reflexive closure of the tuples
within a relationship.

8. UnionVisitor: returns the union of a relationship with one or more rela-
tionships.

9. IntersectionVisitor: returns the intersection of a relationship with one
or more relationships.

Figure 5.4: Java Relationship Library UML

83

As shown in the UML diagram, the Relationship interface provides a base
for specific relationship implementations. At the moment only ManyRelationship

is available. Further implementation can be added by implementing the Relationship
interface to provide more specific multiplicities: OneManyRelationship, ManyOneRelationship
etc.

5.5.2 Mapping ImperialRJ to Java

The ImperialRJ translation phase is executed within the translate(CodeWriter

w, Translator tr) method of each AST node. The translate method by
default calls the prettyPrint(CodeWriter w, PrettyPrinter pp) to output
Java code to the generated Java class file. This is why, each AST node overrides
the prettyPrint method to generate Java code which uses the JRL to interface
with relationships. We describe three translation examples.

Firstly, when a relationship is declared in ImperialRJ, four classes are gen-
erated as shown in Figure 5.5:

1. the relationship class

2. the inverse class of the relationship

3. the relationship tuple class

4. the inverse relationship tuple class

Figure 5.5: Translation of Relationship declaration to Java

The classes are accessed with the methods provided by the JRL. For example,
adding a tuple to an extent uses the built-in add method of the relationship class
as shown in Figure 5.6. Listing 5.5 shows the translation method within the
RelAdd AST node.

84

Figure 5.6: Adding a Tuple translation to Java

Listing 5.5: Adding a Tuple translation to Java

1 // in RelCallAdd_c.java

2

3 @Override

4 public void prettyPrint(CodeWriter w, PrettyPrinter pp) {

5

6 String fresh = Name.makeFresh ().toString ();

7

8 String domainType = this.reldef.domainType ().nameString ();

9 String imageType = this.reldef.imageType ().nameString ();

10

11 String tupleTypeName = reldef.name().toString () + "Tuple";

12

13 w.write(tupleTypeName + " " + fresh + " = new "+ tupleTypeName

+"("+ this.arg1 +","+ this.arg2 +");\n");

14 w.write(this.name + ".add("+ fresh +")");

15 }

As another example, navigating an extent with the ImperialRJ foreach con-
struct is translated to use the iterable property of the relationship class as
specified by the JRL. This is described in Figure 5.7. Listing 5.6 shows the
translation method within the RelFor AST node.

85

Figure 5.7: Foreach construct translation to Java

Listing 5.6: Foreach construct translation to Java

1 // in RelFor_c.java

2

3 @Override

4 public void prettyPrint(CodeWriter w, PrettyPrinter pp) {

5

6 String domainT = domainType.nameString ();

7 String imageT = imageType.nameString ();

8

9 String freshTupleName = Name.makeFresh ().toString ();

10

11 w.write("for(Tuple <"+ domainT+", "+ imageT +">" + freshTupleName +

" : ");

12 relName.prettyPrint(w, pp);

13 w.write (")");

14 w.write ("{");

15

16 w.write(domainT + " " + this.domainVar.name().toString () + " =

" + freshTupleName +". first();\n");

17 w.write(imageT + " " + this.imageVar.name().toString () + " = "

+ freshTupleName.toString ()+". second ();\n");

18

19 body.prettyPrint(w, pp);

20

21 w.write ("}");

22 }

5.6 Testing

In this section we briefly describe the testing infrastructure we developed in
order to validate the compiler of ImperialRJ.

5.6.1 Java Relationship Library

The Java Relationship Library is used internally by the ImperialRJ compiler
to represent relationships and provide all the methods and operations available

86

on them. Following standard software engineering practices, we unit tested the
different functionalities provided by the library. Currently there are 60 unit
tests. The main functionalities tested include:

• Relationships and Tuples creation

• Accessing Relationships and Tuples states

• Navigation of Relationships

• Relationship Operations: inverse, transitive closure, reflexive closure, union,
intersection...

Figure 5.8 depicts a sample of unit tests run in eclipse.

Figure 5.8: Unit Testing of the Java Relationship Library

5.6.2 Validation of ImperialRJ

We wrote 22 test cases written in ImperialRJ that test the language features
of ImperialRJ. The tested features include:

• extents as first-class citizen

• add/removal of tuples

• navigation constructs

• filtering of relationship

• relationship operations: inverse, transitive closure, union, intersection...

• aggregation functions

We built an automated testing tool which compiles each test case and run
them individually. The tool captures the output of the compiled test case and
compares it with the expected output for that test. Once all the tests have
been run our tool produces a summary of passing and failing tests. All failing
tests return the expected output and actual output to the console for debugging

87

purposes. Figure 5.9 shows an example output produced by our tool with one
failing test: Testing reflexive closure.

Figure 5.9: Output Example for ImperialRJ Automated Testing

The list of all test cases currently available with the ImperialRJ compiler
can be found in Appendix B for reference.

88

Chapter 6

Evaluation of First-Class
Relationships with
ImperialRJ

In this section we evaluate the benefits of first-class relationships in Imperi-
alRJ over implicit relationships built with language primitives. We perform
our evaluation by showing implicit relationship implementation code from three
popular Java applications: JFlex - a lexical analyser generator [39], JFreeChart
- a Java chart library [48] and PMD - a scanner for problems in Java source
code [49], and porting them using first-class relationships in ImperialRJ. We
show the problems of implicit relationships implementation and demonstrate
how first-class relationships in ImperialRJ can improve code readability and
ease development in an agile context.

6.1 Issues with Implicit Relationships

From our evaluation we identified six issues with the implementation of implicit
relationships:

1. Boiler Plate Code: Adding and removing data from a relationship re-
quires the programmer to implement the same methods over again.

2. Navigation: Internal implementations of relationships with collections
make it hard to navigate the relationship.

3. Querying: The programmer needs to implement himself the algorithm
to query the internal structure representing a relationship, which may not
be efficient.

4. Encapsulation: In some cases, the internal implementation of a relation-
ship can poorly encapsulate its participants and lead to security issues.

5. Consistency: The implicit relationship implementation needs to ensure
the relationship stays consistent, putting additional overhead on the pro-
grammer.

89

6. Rigidity: Implicit relationships are rigid to changes and make it difficult
to be agile to new requirements without painful implementation changes.

We discuss each issue with code examples and refactor them to ImperialRJ
to demonstrate the benefits of first-class relationships.

6.2 Boiler Plate Code

The following example shown in Listing 6.1 is taken from JFreeChart. It shows
that Series are associated with Labels.

Listing 6.1: Adding Series Label: MultipleXYSeriesLabelGenerator.java

1 /**

2 * Adds an extra label for the specified series.

3 *

4 * @param series the series index.

5 * @param label the label.

6 */

7 public void addSeriesLabel(int series , String label) {

8 Integer key = new Integer(series);

9 List labelList = (List) this.seriesLabelLists.get(key);

10 if (labelList == null) {

11 labelList = new java.util.ArrayList ();

12 this.seriesLabelLists.put(key , labelList);

13 }

14 labelList.add(label);

15 }

This relationship is internally represented as a Map of a series to a list of
Labels. Adding new Label to a Series requires creating a special addSeriesLabel
method, which deals with the internal representation of the relationship. This
method implementation is also error-prone: if the list of Labels hasn’t been
instantiated it needs to be created first before adding Labels to it.

Similarly, more boiler plate code is required for removing tuples from that re-
lationship. Listing 6.2 shows the method implementation to remove all Labels
associated to a Series.

Listing 6.2: Removing Labels from a Series: MultipleXYSeriesLabelGenera-
tor.java

1 /**

2 * Clears the extra labels for the specified series.

3 *

4 * @param series the series index.

5 */

6 public void clearSeriesLabels(int series) {

7 Integer key = new Integer(series);

8 this.seriesLabelLists.put(key , null);

9 }

In ImperialRJ

In ImperialRJ, the boiler plate code to manipulate a relationship is abstracted
away from the programmer. The example above can be modelled as a rela-
tionship between a Series and Labels as shown in Listing 6.3. Adding and

90

removing tuples of series and Label can be done using the built-in constructs,
which enables the programmer to focus on the logic of his application rather
than the error-prone implementation details.

Listing 6.3: SeriesToLabels in ImperialRJ

1 relationship SeriesToLabels(Integer , String)

2 {

3

4 }

5

6 SeriesToLabels seriesLabels = newR SeriesToLabels ();

6.3 Navigation

The following example shown in Listing 6.4 is taken from PMD. It shows an as-
sociation between a RuleSet and a list of Rules participating in the RuleChain.

Listing 6.4: Navigating RuleSet and Rules: AbstractRuleChainVisitor.java

1 public abstract class AbstractRuleChainVisitor implements

RuleChainVisitor {

2 /**

3 * These are all the rules participating in the RuleChain ,

grouped by RuleSet.

4 */

5 protected Map <RuleSet , List <Rule >> ruleSetRules = new

LinkedHashMap <RuleSet , List <Rule >>();

6

7 protected void initialise () {

8

9 // Determine all node types that need visiting

10 Set <String > visitedNodes = new HashSet <String >();

11 for (Iterator<Map.Entry<RuleSet, List<Rule>>> entryIterator =

ruleSetRules.entrySet ().iterator (); entryIterator.

hasNext ();){

12 Map.Entry<RuleSet, List<Rule>> entry = entryIterator.next();

13 for (Iterator <Rule > ruleIterator = entry.getValue ().

iterator (); ruleIterator.hasNext ();) {

14 Rule rule = ruleIterator.next();

15 if (rule.usesRuleChain ()) {

16 visitedNodes.addAll(rule.getRuleChainVisits ());

17 }

18 else {

19 // Drop rules which do not participate in the

rule chain.

20 ruleIterator.remove ();

21 }

22 }

23 }

This example shows that the programmer requires two nested loops in order to
navigate the Rules associated to a RuleSet. The code is also not very readable
due to the generics in the Map, which have to be redeclared to navigate the
entries with a Map.Entry<RuleSet, List<Rule>>.

91

In ImperialRJ

ImperialRJ comes with a special pattern matching loop construct, which facil-
itates navigation on a relationship. The benefits of this construct is that the
code becomes more readable. The example above can be refactored by declaring
a relationship between RuleSet and Rule as shown in Listing 6.5.

Listing 6.5: Navigating RuleSetToRule in ImperialRJ

1 relationship RuleSetToRule(RuleSet ruleSet , Rule rule)

2 {

3

4 }

5

6 RuleSetToRule rulesExtent = newR RuleSetToRule ();

7 // add stuff to it

8

9 // filtering algorithm

10 Set <String > visitedNodes = new HashSet <String >();

11 foreach((RuleSet ruleSet, Rule rule) : rulesExtent)

12 {

13 if (rule.usesRuleChain ())

14 {

15 visitedNodes.addAll(rule.getRuleChainVisits ());

16 }

17 else

18 {

19 // Drop rules which do not participate in the rule chain.

20 rulesExtent ->remove(ruleSet ,rule);

21 }

22 }

6.4 Querying

JFlex

The following example shown in Listing 6.6 is taken from JFlex. It shows a
filtering implementation to collect all unused macros.

Listing 6.6: JFlex Querying Unused Macros: Macros.java

1

2 /** Maps names of macros to their definition */

3 private Hashtable macros;

4

5 /** Maps names of macros to their "used" flag */

6 private Hashtable used;

7

8 /**

9 * Returns all unused macros.

10 *

11 * @return the enumeration of macro names that have not been used

.

12 */

13 public Enumeration unused () {

14 Vector unUsed = new Vector ();

15 Enumeration names = used.keys();

16 while (names.hasMoreElements ()) {

17 String name = (String) names.nextElement ();

92

18 Boolean isUsed = (Boolean) used.get(name);

19 if (!isUsed.booleanValue ()) unUsed.addElement(name);

20 }

21 return unUsed.elements ();

22 }

The introduction of a used attribute in a separate HashMap forces the pro-
grammer to implement manually a specific method to query the Map for unused
macros.

PMD

The example in Listing 6.4 from PMD shows the difficulty to navigate the
internal structure of the relationship. The navigation is required in order to filter
all the rules which validate the method usesRuleChain(). If the programmer
needs to filter rules matching a different property, most likely he will have to copy
the navigation code and tweak the condition to filter the new property. This
methodology can prove very problematic if changes to the internal structure of
the relationship are needed. The programmer has now to modify several parts
of his code and can introduce new bugs.

In ImperialRJ

The JFlex example querying over a relationship attribute is a perfect example
showcasing the benefits of querying constructs in ImperialRJ. A macro can be
defined as a relationship between its Name and its Definition with a relationship
attribute used. The only thing required to the programmer is to filter all macros
with used==false as shown in Listing 6.7.

Listing 6.7: JFlex Macros in ImperialRJ

1 relationship Macros(String , RegExp)

2 {

3 boolean used;

4 }

5

6 Macros macros = newR Macros ();

7 macros ->add(" macro1",definition1).withUsed(true);

8 macros ->add(" macro2", definition2).withUsed(false);

9

10 // only contains (" macro2", definition2)

11 macros->filter(used == false);

6.5 Encapsulation

The example in Listing 6.2 from JFreeChart shows that the relationship is im-
plemented as a Map of Series to a list of Labels. This internal representation
can be problematic when the programmer accesses a reference to a List within
the Map. This reference lives outside of the relationship and can accidentally
be changed with another list or set to null, which can potentially delete several
tuples at the same time.

93

In ImperialRJ

In ImperialRJ each tuple are encapsulated individually. The internal imple-
mentation of the relationship is encapsulated through safe constructs so the
programmer can’t accidentally abuse the implementation of the relationship by
accident.

6.6 Consistency

The following example shown in Listing 6.8 is taken from JFlex. It describes
the definition of a macro. A macro has a Name, a Definition and also a state
whether it has been used or not.

Listing 6.8: JFlex Macro Consistency: Macros.java

1 /**

2 * Stores a new macro and its definition.

3 *

4 * @param name the name of the new macro

5 * @param definition the definition of the new macro

6 *

7 * @return <code >true </code >, iff the macro name has not been

8 * stored before.

9 */

10 public boolean insert(String name , RegExp definition) {

11

12 if (Options.DEBUG)

13 Out.debug(" inserting macro "+name+" with definition :"+Out.NL

+definition);

14

15 used.put(name, Boolean.FALSE);

16 return macros.put(name,definition) == null;

17 }

18 }

This example shows a relationship between the Name of the macro and its
Definition. Moreover, this relationship has an attribute, which tells whether
the macro has been used. The internal implementation of this relationship is
made out of two Hashtable, which respectively maps the Name of the macro to
its Definition and the Name of the macro to its attribute used. The insert

method shows that in order to add a new macro, the two Maps are forced to be
kept consistent with respect to the Name of the macro. This is problematic for
two reasons:

1. The programmer is responsible for the internal representation and consis-
tency of the relationships.

2. The relationship becomes rigid to changes as we explain in the next sec-
tion.

In ImperialRJ

As explained previously, this example can be implemented by defining a macro
as a relationship between its Name and its Definition as shown in Listing 6.7.

94

6.7 Rigidity

The example in Listing 6.8 shows that the relationship attribute used is imple-
mented by keeping an extra HashMap mapping the Names of macros to a Boolean

indicating whether the macro has been used or not. This internal representation
of the relationship makes it very rigid to changes.

Firstly, take the case when a second attribute indicating the importance of
the macro is required. The programmer would need to add an extra HashMap

to hold this new property and keep the additional HashMap consistent with
the other Maps. In addition, he would need to change the insert method for
adding new macros, as well as other methods to encapsulate the access to the
relationship attributes within the HashMap.

Secondly, what if a macro can have several definitions? This new requirement
would require a complete overhaul of the implementation. The programmer
would need to change the internal data structure to store several definitions as
well as modify all the methods dealing with the previous data structure, and
potentially introducing bugs along.

In ImperialRJ

ImperialRJ provides a relationship abstraction designed to have any number of
attributes and dynamic methods are generated to access them. This flexibility
makes relationships agile for new requirements. The problem described above
can be tackled by simply adding a new relationship attribute in the Macros

relationship declaration as shown in Listing 6.9. In addition, the Listing be-
low shows that the programmer doesn’t need to worry about allowing several
definitions for each macro as the relationship is by default many to many.

Listing 6.9: JFlex Macros in ImperialRJ

1 @AllowDuplicates

2 relationship Macros(String , RegExp)

3 {

4 boolean used;

5 int importance;

6 }

7

8 Macros macros = newR Macros ();

9 macros ->add(" macro1",definition1).withUsed(true).withImportance (10)

;

10 macros ->add(" macro1", definition2).withUsed(false).withImportance

(9);

95

Chapter 7

Conclusion

In this section we conclude our work; summarising the major achievements,
outlining further work and possible optimisations. Finally, we reflect on the
project and the future of first-class relationships in object-oriented languages.

7.1 Achievements

In this project we took up the challenge to investigate all the major topics involv-
ing first-class relationships. In Chapter 2, we analysed earlier working linking
object-oriented techniques with relationships. In Chapter 3, we explored the
design space available for implementing object-oriented languages supporting
first-class relationships. This investigation led us to come up with a few novel
ideas: multiple sets of relationships, mechanisms to deal with aliasing of tuples,
covariant overriding of the participants of a relationship and relationship persis-
tence. In Chapter 4, we defined a formal definition of ImperialRJ to provide a
solid reference for further work. In Chapter 5, we described the implementation
of ImperialRJ, the first language to extend Java with relationship constructs.
Finally, in Chapter 6, we explored the issues with implicit relationships and val-
idated the benefits of first-class relationships using ImperialRJ. Additionally, we
wrote a tutorial on Polyglot, which is now official, for researchers and students
interested in building language extensions [17].

7.2 Further Work

This project opens door for interesting further work.

ImperialRJ Compiler

Firstly, even though first-class relationships bring benefits from a software en-
gineering point of view, the current code generation is not optimised. An in-
teresting route would be to statistically infer properties about relationships and
optimise their internal data structures accordingly. This idea can actually be
extended to the use of collections in Java. Secondly, interesting features to Im-
perialRJ still need to be implemented: multiplicities, roles and annotation of
duplicate tuples.

96

Design Space

We briefly looked at the opportunities to link relationships in the database
world with the software world. However, current ORM framework deal with
implicit relationships in mind since first-class relationships are not yet part
of mainstream object-oriented languages. It would be interesting to research
whether first-class relationships can provide a unified model for relationship
persistence as well. In addition, we gave an overview of relationship inheritance
but the need for it isn’t yet clear. Further work is required to explore possible use
cases and whether specialised mechanisms are needed to deal with relationship
inheritance.

Empiral Study

We would also like to provide a comprehensive study on the use of implicit
relationships in order to further validate the use of first-class relationships. In
fact, our evaluation was limited to three popular Java applications. It would
be interesting to compare implicit relationships in more applications and in
different object-oriented languages in order to guide the development of better
first-class relationship mechanisms.

Automated Refactoring

Finally, it would be interesting to develop a tool under the form of an Eclipse
plugin that automatically refactors software to use first-class relationships in
ImperialRJ. The benefits of such a tool will provide an automated way of im-
proving the abstraction of software as well as reducing the systems coupling.
In addition, with clever dataflow analysis it can also potentially speed up the
application.

7.3 Reflection

We hope this report has laid strong foundations to fuel further interests in
first-class relationships. Our preliminary results from the evaluation shows that
relationships are omnipresent in object-oriented systems but are consistently
implemented implicitly and dangerously by the developer. This is why, we
believe support for relationship primitives is useful.

In our opinion, there’s still work left to push first-class relationships into
mainstream languages. Firstly, more research is required regarding the use of
implicit relationships; our study only analysed three popular Java applications.
Secondly, as applications are more and more enterprise related, it is important
to fully understand the link between relationships at the software and database
level. Thirdly, more work on possible compiler optimisations is necessary: first-
class relationships are an opportunity to leverage new constructs and statically
infer optimisation properties. Finally, we need more integrated tooling to help
developers easily program using first-class relationships.

We hope to continue our work in the future and perhaps one day see first-
class relationships as an integral part of the object-oriented paradigm.

97

Appendix A

University Example Java
Output

Listing A.1: Java output of University Example

1 import uk.ac.ic.doc.jrl.lang .*;

2 import uk.ac.ic.doc.jrl.interfaces .*;

3 import uk.ac.ic.doc.jrl.factory .*;

4 import uk.ac.ic.doc.jrl.exceptions .*;

5 import uk.ac.ic.doc.jrl.visitors .*;

6 import java.util .*;

7

8 public class UniversityExample

9 {

10

11 public void launch () throws Exception {

12 Student raoul = this.new Student ();

13 raoul.sName = "Raoul";

14 Student michael = this.new Student ();

15 michael.sName = "Michael ";

16 Student sophia = this.new Student ();

17 sophia.sName = "Sophia ";

18 Student stephanie = this.new Student ();

19 stephanie.sName = "Stephanie ";

20 Course oop = this.new Course ();

21 oop.cName = "OOP";

22 Course java = this.new Course ();

23 java.cName = "Java";

24 Course signals = this.new Course ();

25 signals.cName = "Signals ";

26

27 Attends computing = new Attends ();

28 Attends eee = new Attends ();

29

30 AttendsTuple id0 = new AttendsTuple(raoul ,oop);

31 id0.mark = 10;

32 computing.add(id0);

33 AttendsTuple id1 = new AttendsTuple(sophia ,java);

34 id1.mark = 8;

35 computing.add(id1);

36 AttendsTuple id2 = new AttendsTuple(sophia ,oop);

37 id2.mark = 6;

38 computing.add(id2);

39 AttendsTuple id3 = new AttendsTuple(michael ,signals);

99

40 id3.mark = 7;

41 eee.add(id3);

42 AttendsTuple id4 = new AttendsTuple(stephanie ,oop);

43 id4.mark = 8;

44 computing.add(id4);

45

46 Attends university =

47 (Attends) (new Attends ().copyFrom(computing.accept(new

UnionRelationshipVisitor <UniversityExample.Student ,

UniversityExample.Course >(),eee)));

48

49 double averageMark =

50 (Double) university.acceptAggregate(new AverageVisitor <

Student , Course >(), "mark",Integer.TYPE);

51

52 System.out.println (" Average is: " + averageMark);

53

54 // startOf filter

55 Attends id5 = new Attends ();

56 id5.copyFrom(university);

57 for(Tuple <Student ,Course > t : id5){

58 int mark = ((AttendsTuple) t).mark;

59 if(!(mark > averageMark)){

60 university.rem(t);

61 }

62 }

63 // endOf filter

64

65

66 this.generateReports(university);

67 }

68

69 private class Attends extends ManyRelationship <Student ,Course >{}

70

71 private class AttendsInverse extends ManyRelationship <Course ,

Student >{}

72

73 public class AttendsTuple extends AbstractTuple <Student ,Course >{

74

75 public AttendsTuple (){super ();}

76

77 public AttendsTuple(Student a,Course b){

78 super(a,b);

79 }

80

81 /*1*/

82 public int mark;

83 }

84

85 public class AttendsInverseTuple extends AbstractTuple <Course ,

Student >{

86

87 public AttendsInverseTuple (){super();}

88

89 public AttendsInverseTuple(Course a,Student b){

90 super(a,b);

91 }

92

93 /*1*/

94 public int mark;

95 }

96

100

97

98

99 public void generateReports(Attends a) throws Exception {

100 for(Tuple <Student , Course >id6 : a){

101 Student s = id6.first();

102 Course c = id6.second ();

103 {

104 int mark = ((AttendsTuple) a.get(s,c)).mark;

105 System.out.println(

106 s +

107 " attends " +

108 c +

109 " with mark " +

110 mark);

111 }}

112 }

113

114 private class Student

115 {

116 String

117 sName;

118

119 public String

120 toString () {

121 return sName;

122 }

123

124 public Student () {

125 super();

126 }

127 }

128

129 private class Course

130 {

131 String

132 cName;

133

134 public String

135 toString () {

136 return cName;

137 }

138

139 public Course () {

140 super();

141 }

142 }

143

144 public UniversityExample () {

145 super();

146 }

147

148 }

101

Appendix B

Test Cases

The first commented line describe the purpose of the test. The second line states
the expected output after running the test.

Adding One Tuple

Listing B.1: Adding One Tuple

1 // Adding one tuple

2 // 0\n1\n

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10

11 public class BasicExtent1

12 {

13 public void launch () throws Exception

14 {

15 User raoul = new User();

16 raoul.userName = "Raoul ";

17

18 User sophia = new User();

19 sophia.userName = "Sophia ";

20

21 Follow f = newR Follow ();

22 System.out.println(f->count ());

23

24 f << (raoul ,sophia);

25 System.out.println(f->count ());

26 }

27

28 private relationship Follow(User , User)

29 {

30 }

31

32 private class User{

33 public String userName;

34 public String toString (){ return userName ;}

35 }

36 }

102

Adding Two Tuples

Listing B.2: Adding Two Tuples

1 // Adding two tuples

2 // 0\n2

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10

11 public class BasicExtent2

12 {

13 public void launch () throws Exception

14 {

15 User raoul = new User();

16 raoul.userName = "Raoul ";

17

18 User sophia = new User();

19 sophia.userName = "Sophia ";

20

21 Follow f = newR Follow ();

22 System.out.println(f->count ());

23

24 f << (raoul ,sophia);

25 f << (sophia ,sophia);

26 System.out.println(f->count ());

27 }

28

29 private relationship Follow(User , User)

30 {

31

32 }

33

34 private class User

35 {

36 public String userName;

37 public String toString ()

38 {

39 return userName;

40 }

41 }

42 }

103

Adding Two Tuples Removing One

Listing B.3: Adding Two Tuples Removing One

1 // Adding two tuples removing one

2 // 3\n2\n

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10

11 public class BasicExtent3

12 {

13 public void launch () throws Exception

14 {

15 User raoul = new User();

16 raoul.userName = "Raoul ";

17

18 User sophia = new User();

19 sophia.userName = "Sophia ";

20

21 Follow f = newR Follow ();

22

23 f << (raoul ,sophia);

24 f << (sophia ,sophia);

25 f << (sophia ,raoul);

26 System.out.println(f->count ());

27 f->rem(raoul ,sophia);

28 System.out.println(f->count ());

29 }

30

31 private relationship Follow(User , User)

32 {

33

34 }

35

36 private class User

37 {

38 public String userName;

39 public String toString ()

40 {

41 return userName;

42 }

43 }

44 }

104

Testing from()

Listing B.4: Testing from()

1 // Testing from()

2 // 2\ntrue\ntrue

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10

11 public class BasicExtent4

12 {

13 public void launch () throws Exception

14 {

15 User raoul = new User();

16 raoul.userName = "Raoul ";

17

18 User sophia = new User();

19 sophia.userName = "Sophia ";

20

21 Follow f = newR Follow ();

22

23 f << (raoul ,sophia);

24 f << (sophia ,sophia);

25 f << (sophia ,raoul);

26

27 Set results = f->from(sophia);

28

29 System.out.println(results.size());

30 System.out.println(results.contains(sophia));

31 System.out.println(results.contains(raoul));

32 }

33

34 private relationship Follow(User , User)

35 {

36

37 }

38

39 private class User

40 {

41 public String userName;

42 public String toString ()

43 {

44 return userName;

45 }

46 }

47 }

105

Testing to()

Listing B.5: Testing to()

1 // Testing to()

2 // 1\ nfalse\ntrue

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10

11 public class BasicExtent5

12 {

13 public void launch () throws Exception

14 {

15 User raoul = new User();

16 raoul.userName = "Raoul ";

17

18 User sophia = new User();

19 sophia.userName = "Sophia ";

20

21 Follow f = newR Follow ();

22

23 f << (raoul ,sophia);

24

25 f << (sophia ,raoul);

26

27 Set results = f->to(sophia);

28

29 System.out.println(results.size());

30 System.out.println(results.contains(sophia));

31 System.out.println(results.contains(raoul));

32 }

33

34 private relationship Follow(User , User)

35 {

36

37 }

38

39 private class User

40 {

41 public String userName;

42 public String toString ()

43 {

44 return userName;

45 }

46 }

47 }

106

Set attribute value

Listing B.6: Set attribute value

1 // Set attribute value

2 // 10

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10

11 public class AttributeExtent1

12 {

13 public void launch () throws Exception

14 {

15 User raoul = new User();

16 raoul.userName = "Raoul ";

17

18 User sophia = new User();

19 sophia.userName = "Sophia ";

20

21 Follow f = newR Follow ();

22

23

24 f << (raoul ,sophia).withInterest (10);

25 int interest = f->get(raoul ,sophia).getInterest ();

26 System.out.println(interest);

27 }

28

29 private relationship Follow(User , User)

30 {

31 int interest;

32 }

33

34 private class User

35 {

36 public String userName;

37 public String toString ()

38 {

39 return userName;

40 }

41

42 }

43

44 }

107

Re-Set attribute value

Listing B.7: Re-Set attribute value

1 // Re -Set attribute value

2 // 11

3

4

5 import uk.ac.ic.doc.jrl.lang .*;

6 import uk.ac.ic.doc.jrl.interfaces .*;

7 import uk.ac.ic.doc.jrl.factory .*;

8 import uk.ac.ic.doc.jrl.exceptions .*;

9 import uk.ac.ic.doc.jrl.visitors .*;

10 import java.util .*;

11 public class AttributeExtent2

12 {

13 public void launch () throws Exception

14 {

15 User raoul = new User();

16 raoul.userName = "Raoul ";

17

18 User sophia = new User();

19 sophia.userName = "Sophia ";

20

21 Follow f = newR Follow ();

22

23

24 f << (raoul ,sophia).withInterest (10);

25 f->set(raoul ,sophia).withInterest (11);

26 int interest = f->get(raoul ,sophia).getInterest ();

27 System.out.println(interest);

28 }

29

30 private relationship Follow(User , User)

31 {

32 int interest;

33 }

34

35 private class User

36 {

37 public String userName;

38 public String toString ()

39 {

40 return userName;

41 }

42

43 }

44

45 }

108

Filter used macros

Listing B.8: Filter used macros

1 // Filter used macros

2 // 2

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10

11 public class FilterExtent1

12 {

13 public void launch () throws Exception

14 {

15 Name n1 = new Name();

16 Name n2 = new Name();

17 Name n3 = new Name();

18

19 Definition d1 = new Definition ();

20 Definition d2 = new Definition ();

21 Definition d3 = new Definition ();

22

23 n1.name = "macroName1 ";

24 n2.name = "macroName2 ";

25 n3.name = "macroName3 ";

26

27 d1.definition = "definition1 ";

28 d2.definition = "definition2 ";

29 d3.definition = "definition3 ";

30

31 Macro m1 = newR Macro();

32 m1 << (n1 ,d1).withUsed(true);

33 m1 << (n2 ,d2);

34 m1 << (n3 ,d3).withUsed(true);

35

36 m1->filter(used == true);

37

38 System.out.println(m1 ->count ());

39 }

40

41 private relationship Macro(Name , Definition)

42 {

43 boolean used;

44 int importance;

45 }

46

47 private class Name

48 {

49 String name;

50 public String toString () { return this.name; }

51 }

52

53 private class Definition

54 {

55 String definition;

56 public String toString () { return this.definition; }

57 }

58 }

109

Filter Interest greather than 9

Listing B.9: Filter Interest greather than 9

1 // Filter Interest > 9

2 // 1

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10 public class FilterExtent2

11 {

12 public void launch () throws Exception

13 {

14 User raoul = new User();

15 raoul.userName = "Raoul ";

16

17 User sophia = new User();

18 sophia.userName = "Sophia ";

19

20 User janek = new User();

21 janek.userName = "Janek ";

22

23 Follow f = newR Follow ();

24

25 f << (raoul ,sophia).withInterest (10);

26 f << (raoul , janek);

27 f << (sophia , raoul).withInterest (8);

28

29 f->filter(interest > 9);

30 System.out.println(f->count ());

31 }

32

33 private relationship Follow(User , User)

34 {

35 int interest;

36 }

37

38 private class User

39 {

40 public String userName;

41 public String toString () { return this.userName; }

42 }

43 }

110

Pass Extent as parameter to method

Listing B.10: Pass Extent as parameter to method

1 // Pass Extent as parameter to method

2 // 1

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10

11 public class FirstClassExtent1

12 {

13 public void launch () throws Exception

14 {

15 User raoul = new User();

16 raoul.userName = "Raoul ";

17

18 User sophia = new User();

19 sophia.userName = "Sophia ";

20

21 Follow f = newR Follow ();

22

23

24 f << (raoul ,sophia).withInterest (10);

25 printFollowSize(f);

26 }

27

28 private void printFollowSize(Follow f)

29 {

30 System.out.println(f->count ());

31 }

32

33 private relationship Follow(User , User)

34 {

35 int interest;

36 }

37

38 private class User

39 {

40 public String userName;

41 public String toString ()

42 {

43 return userName;

44 }

45

46 }

47

48 }

111

Return extent from method

Listing B.11: Return extent from method

1 // Return extent from method

2 // 2

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10

11 public class FirstClassExtent2

12 {

13 public void launch () throws Exception

14 {

15 Follow f = getInitialisedExtent ();

16

17 System.out.println(f->count ());

18 }

19

20 private Follow getInitialisedExtent () throws Exception

21 {

22 User raoul = new User();

23 raoul.userName = "Raoul ";

24

25 User sophia = new User();

26 sophia.userName = "Sophia ";

27

28 Follow f = newR Follow ();

29 f << (raoul ,sophia).withInterest (10);

30 f << (sophia ,raoul).withInterest (11);

31 return f;

32 }

33

34 private relationship Follow(User , User)

35 {

36 int interest;

37 }

38

39 private class User

40 {

41 public String userName;

42 public String toString ()

43 {

44 return userName;

45 }

46

47 }

48

49 }

112

Testing Average Fct

Listing B.12: Testing Average Fct

1 // Testing Average Fct

2 // 7.0

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10 public class RelationshipAggregations1

11 {

12 public void launch () throws Exception

13 {

14 User raoul = new User();

15 raoul.userName = "Raoul ";

16

17 User sophia = new User();

18 sophia.userName = "Sophia ";

19

20 User janek = new User();

21 janek.userName = "Janek ";

22

23 Follow f = newR Follow ();

24

25

26 f << (raoul ,sophia).withInterest (10);

27 f << (raoul , janek);

28 f << (sophia , raoul).withInterest (11);

29

30 double avg = average interest from f;

31

32 System.out.println(avg);

33 }

34

35 private relationship Follow(User , User)

36 {

37 int interest;

38 }

39

40 private class User

41 {

42 public String userName;

43 public String toString () { return this.userName; }

44

45 }

46

47 }

113

Testing Max Fct

Listing B.13: Testing Average Fct

1 // Testing Max Fct

2 // 11

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10

11 public class RelationshipAggregations2

12 {

13

14

15 public void launch () throws Exception

16 {

17 User raoul = new User();

18 raoul.userName = "Raoul ";

19

20 User sophia = new User();

21 sophia.userName = "Sophia ";

22

23 User janek = new User();

24 janek.userName = "Janek ";

25

26 Follow f = newR Follow ();

27

28 f << (raoul ,sophia).withInterest (10);

29 f << (raoul , janek);

30 f << (sophia , raoul).withInterest (11);

31

32 int maximum = max interest from f;

33

34 System.out.println(maximum);

35 }

36

37 private relationship Follow(User , User)

38 {

39 int interest;

40 }

41

42 private class User

43 {

44 public String userName;

45 public String toString () { return this.userName; }

46 }

47 }

114

Testing Min Fct

Listing B.14: Testing Min Fct

1 // Testing Min Fct

2 // 0

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10 public class RelationshipAggregations3

11 {

12

13

14 public void launch () throws Exception

15 {

16 User raoul = new User();

17 raoul.userName = "Raoul ";

18

19 User sophia = new User();

20 sophia.userName = "Sophia ";

21

22 User janek = new User();

23 janek.userName = "Janek ";

24

25 Follow f = newR Follow ();

26

27

28 f << (raoul ,sophia).withInterest (10);

29 f << (raoul , janek);

30 f << (sophia , raoul).withInterest (11);

31

32 int minimum = min interest from f;

33

34 System.out.println(minimum);

35 }

36

37 private relationship Follow(User , User)

38 {

39 int interest;

40 }

41

42 private class User

43 {

44 public String userName;

45 public String toString () { return this.userName; }

46

47 }

48

49 }

115

Testing Sum Fct

Listing B.15: Testing Sum Fct

1 // Testing Sum Fct

2 // 21

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10 public class RelationshipAggregations4

11 {

12

13

14 public void launch () throws Exception

15 {

16 User raoul = new User();

17 raoul.userName = "Raoul ";

18

19 User sophia = new User();

20 sophia.userName = "Sophia ";

21

22 User janek = new User();

23 janek.userName = "Janek ";

24

25 Follow f = newR Follow ();

26

27

28 f << (raoul ,sophia).withInterest (10);

29 f << (raoul , janek);

30 f << (sophia , raoul).withInterest (11);

31

32 int sumInterest = sum interest from f;

33

34 System.out.println(sumInterest);

35 }

36

37 private relationship Follow(User , User)

38 {

39 int interest;

40 }

41

42 private class User

43 {

44 public String userName;

45 public String toString () { return this.userName; }

46

47 }

48

49 }

116

Testing union

Listing B.16: Testing union

1 // Testing union

2 // 3

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10 public class RelationshipOperations1

11 {

12 public void launch () throws Exception

13 {

14 Name n1 = new Name();

15 Name n2 = new Name();

16 Name n3 = new Name();

17

18 Definition d1 = new Definition ();

19 Definition d2 = new Definition ();

20 Definition d3 = new Definition ();

21

22 n1.name = "macroName1 ";

23 n2.name = "macroName2 ";

24 n3.name = "macroName3 ";

25

26 d1.definition = "definition1 ";

27 d2.definition = "definition2 ";

28 d3.definition = "definition3 ";

29

30 Macro m1 = newR Macro();

31 m1 << (n1 ,d1);

32 Macro m2 = newR Macro();

33 m2 << (n2 ,d2);

34

35 Macro m3 = unionof m1 with m2;

36 m3 << (n3 ,d3);

37 System.out.println(m3 ->count ());

38 }

39

40 private relationship Macro(Name , Definition)

41 {

42 boolean used;

43 int importance;

44 }

45

46 private class Name

47 {

48 String name;

49 public String toString () { return this.name; }

50 }

51

52 private class Definition

53 {

54 String definition;

55 public String toString () { return this.definition; }

56 }

57 }

117

Testing intersection

Listing B.17: Testing intersection

1 // Testing intersection

2 // 1

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10 public class RelationshipOperations2

11 {

12 public void launch () throws Exception

13 {

14 Name n1 = new Name();

15 Name n2 = new Name();

16 Name n3 = new Name();

17

18 Definition d1 = new Definition ();

19 Definition d2 = new Definition ();

20 Definition d3 = new Definition ();

21

22 n1.name = "macroName1 ";

23 n2.name = "macroName2 ";

24 n3.name = "macroName3 ";

25

26 d1.definition = "definition1 ";

27 d2.definition = "definition2 ";

28 d3.definition = "definition3 ";

29

30 Macro m1 = newR Macro();

31 m1 << (n1 ,d1);

32 m1 << (n2 ,d2);

33 m1 << (n3 ,d3);

34 Macro m2 = newR Macro();

35 m2 << (n2 ,d2);

36

37 Macro m3 = intersectionof m2 with m1;

38 System.out.println(m3 ->count ());

39 }

40

41 private relationship Macro(Name , Definition)

42 {

43 boolean used;

44 int importance;

45 }

46

47 private class Name

48 {

49 String name;

50 public String toString () { return this.name; }

51 }

52

53 private class Definition

54 {

55 String definition;

56 public String toString () { return this.definition; }

57 }

58 }

118

Testing transitive closure

Listing B.18: Testing transitive closure

1 // Testing transitive closure

2 // 2\n6

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10 public class RelationshipOperations3

11 {

12 public void launch () throws Exception

13 {

14 User raoul = new User();

15 raoul.userName = "Raoul ";

16

17 User sophia = new User();

18 sophia.userName = "Sophia ";

19

20 User janek = new User();

21 janek.userName = "Janek ";

22

23 Follow f = newR Follow ();

24

25 f << (raoul ,sophia);

26 f << (raoul , janek);

27

28 Follow transitive = f(*);

29

30 System.out.println(transitive ->count ());

31

32 f << (sophia ,raoul);

33 transitive = f(*);

34 System.out.println(transitive ->count ());

35 }

36

37

38

39 private relationship Follow(User , User)

40 {

41

42 }

43

44 private class User

45 {

46 public String userName;

47 public String toString () { return this.userName; }

48 }

49 }

119

Testing reflexive closure

Listing B.19: Testing reflexive closure

1 // Testing reflexive closure

2 // 3\n5

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10 public class RelationshipOperations4

11 {

12

13 public void launch () throws Exception

14 {

15 User raoul = new User();

16 raoul.userName = "Raoul ";

17

18 User sophia = new User();

19 sophia.userName = "Sophia ";

20

21 User janek = new User();

22 janek.userName = "Janek ";

23

24 Follow f = newR Follow ();

25

26

27 f << (raoul ,sophia);

28 f << (raoul , janek);

29

30 Follow reflexive = f(=);

31

32 System.out.println(reflexive ->count());

33

34 f << (sophia ,raoul);

35 reflexive = f(=);

36

37 System.out.println(reflexive ->count());

38 }

39

40

41

42 private relationship Follow(User , User)

43 {

44

45 }

46

47 private class User

48 {

49 public String userName;

50 public String toString () { return this.userName; }

51

52 }

53 }

120

Testing symmetric closure

Listing B.20: Testing symmetric closure

1 // Testing symmetric closure

2 // 4

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10 public class RelationshipOperations5

11 {

12

13 public void launch () throws Exception

14 {

15 User raoul = new User();

16 raoul.userName = "Raoul ";

17

18 User sophia = new User();

19 sophia.userName = "Sophia ";

20

21 User janek = new User();

22 janek.userName = "Janek ";

23

24 Follow f = newR Follow ();

25

26

27 f << (raoul ,sophia);

28 f << (sophia , janek);

29

30 Follow symmetric = f(:);

31

32 System.out.println(symmetric ->count());

33

34 }

35

36 public void printFollow(Follow f) throws Exception

37 {

38 foreach ((User u1, User u2) : f)

39 {

40 //int i = f->get(u1,u2).getInterest ();

41 System.out.println("("+u1+ "," +u2+ ") ");

42 }

43 }

44

45 private relationship Follow(User , User)

46 {

47

48 }

49

50 private class User

51 {

52 public String userName;

53 public String toString () { return this.userName; }

54

55 }

56 }

121

Testing Inverse same domain/image

Listing B.21: Testing Inverse same domain/image

1 // Testing Inverse same domain/image

2 // 2\ntrue\ntrue

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10 public class RelationshipOperations6

11 {

12 public void launch () throws Exception

13 {

14 User raoul = new User();

15 raoul.userName = "Raoul ";

16

17 User sophia = new User();

18 sophia.userName = "Sophia ";

19

20 User janek = new User();

21 janek.userName = "Janek ";

22

23 Follow f = newR Follow ();

24

25 f << (raoul ,sophia);

26 f << (sophia , janek);

27

28 Follow inverse = f(-);

29 System.out.println(inverse ->count());

30

31 Set fromSophia = inverse ->from(sophia);

32 System.out.println(fromSophia.contains(raoul));

33 Set fromJanek = inverse ->from(janek);

34 System.out.println(fromJanek.contains(sophia));

35 }

36

37 private relationship Follow(User , User)

38 {

39

40 }

41

42 private class User

43 {

44 public String userName;

45 public String toString () { return this.userName; }

46 }

47 }

122

Testing Inverse different domain/image

Listing B.22: Testing Inverse different domain/image

1 // Testing Inverse different domain/image

2 // 2\ntrue\ntrue

3

4 import uk.ac.ic.doc.jrl.lang .*;

5 import uk.ac.ic.doc.jrl.interfaces .*;

6 import uk.ac.ic.doc.jrl.factory .*;

7 import uk.ac.ic.doc.jrl.exceptions .*;

8 import uk.ac.ic.doc.jrl.visitors .*;

9 import java.util .*;

10 public class RelationshipOperations7

11 {

12

13 public void launch () throws Exception

14 {

15 Student raoul = new Student ();

16 raoul.studentName = "Raoul";

17

18 Student sophia = new Student ();

19 sophia.studentName = "Sophia ";

20

21 Course oop = new Course ();

22 oop.courseName = "OOP";

23

24

25 Attends a = newR Attends ();

26 a << (raoul ,oop);

27 a << (sophia ,oop);

28

29 AttendsInverse inverse = a(-);

30 System.out.println(inverse ->count());

31

32 Set fromOOP = inverse ->from(oop);

33 System.out.println(fromOOP.contains(raoul));

34 System.out.println(fromOOP.contains(sophia));

35 }

36

37 private relationship Attends(Student , Course)

38 {

39

40 }

41

42 private class Student

43 {

44 public String studentName;

45 public String toString () { return this.studentName; }

46

47 }

48

49 private class Course

50 {

51 public String courseName;

52 public String toString () { return this.courseName; }

53

54 }

55 }

123

Bibliography

[1] Deborah J. Armstrong. The quarks of object-oriented development. In
COMMUNICATIONS OF THE ACM. 2006.

[2] Alan Kay. On the meaning of object-oriented programming. http://

userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en.

[3] Dan Pilone and Neil Pitman. UML 2.0 in a Nutshell. O’Reilly Media, Inc.,
2005.

[4] Russ Miles and Kim Hamilton. Learning UML 2.0. O’Reilly Media, Inc.,
2006.

[5] Peter Pin-Shan Chen. The entity-relationship model - toward a unified view
of data. Technical report, Massachusetts Institute of Technology, 1976.

[6] James Rumbaugh. Relations as semantic constructs in an object-oriented
language. In OOPSLA ’87 Proceedings, 1987.

[7] Gavin Bierman and Alisdair Wren. First-class relationships in an object-
oriented language. In ECOOP 2005, 2005.

[8] Alisdair Wren. Relationships for object-oriented programming languages.
PhD thesis, University of Cambridge Computer Laboratory, 2007.

[9] Stephen Nelson. First-class relationships in object-oriented programs. Tech-
nical report, University of Wellington, 2008.

[10] James Noble. Basic relationship patterns. Technical report, Macquarie
University, Sydney, 1997.

[11] Alexandra Burns. The relationship detector. Master’s thesis, ETH Zurich,
2006.

[12] Stephanie Balzer, Alexandra Burns, and Thomas R. Gross. Objects in
context: An empirical study of object relationships. Technical report, ETH
Zurich, 2008.

[13] Stephanie Balzer, Thomas R. Gross, and Patrick Eugster. A relational
model of object collaborations and its use in reasoning about relationships.
In ECOOP 2007, 2007.

[14] Apache commons collection library. http://commons.apache.org/

collections/.

124

http://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en
http://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en
http://commons.apache.org/collections/
http://commons.apache.org/collections/

[15] Guava: Google core libraries for Java 1.5+. http://code.google.com/p/
guava-libraries/.

[16] Stephanie Balzer and Thomas R. Gross. Verifying multi-object invariants
with relationships. In ECOOP 2011, 2011.

[17] Raoul-Gabriel Urma. Swapj: An introduction to polyglot. http://www.

cs.cornell.edu/projects/polyglot/doc/swapJ-tutorial.pdf.

[18] First year discrete maths course. http://www.doc.ic.ac.uk/~yg/

Discrete/notes.pdf.

[19] Robert Sedgewick. Algorithms in Java, Third Edition, Part 5: Graph Al-
gorithms. Addison-Wesley Professional, 2003.

[20] UML 2.0 OCL Specification.

[21] David J. Pearce and James Noble. Relationship aspects. In AOSD 2006,
2006.

[22] David J. Pearce and James Noble. The relationship aspect library. http:

//homepages.mcs.vuw.ac.nz/~djp/RAL/index.html.

[23] Aspectj library. http://eclipse.org/aspectj/.

[24] Xml path language. http://www.w3.org/TR/xpath/.

[25] Gavin Bierman, Erik Meijer, and Wolfram Schulte. The essence of data
access in cw. In ECOOP 2005, 2005.

[26] Darren Willis, David Pearce, and James Noble. Efficient object querying
for Java. In ECOOP 2006, 2006.

[27] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Poly-
glot: An extensible compiler framework for Java. In In 12th International
Conference on Compiler Construction, 2003.

[28] Torbjorn Ekman and Gorel Hedin. The jastadd extensible Java compiler.
In OOPSLA 2007, 2007.

[29] Gorel Hedin. An introductory tutorial on jastadd attribute grammars.
Technical report, Lund University, 2011.

[30] Jaco. http://lamp.epfl.ch/~zenger/jaco/.

[31] Jsr 308: Annotations on Java types. http://jcp.org/en/jsr/detail?

id=308.

[32] Torbjorn Ekman and Gorel Hedin. Pluggable checking and inferencing of
non-null types for Java. Journal of Object Technology, 2007.

[33] Nate Nystrom, Lantian Zheng, Steve Zdancewic, Andrew Myers, Stephen
Chong, and K. Vikram. Java information flow. http://www.cs.cornell.
edu/jif/.

[34] Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based dis-
tributed programming in Java. In ECOOP 2008, 2008.

125

http://code.google.com/p/guava-libraries/
http://code.google.com/p/guava-libraries/
http://www.cs.cornell.edu/projects/polyglot/doc/swapJ-tutorial.pdf
http://www.cs.cornell.edu/projects/polyglot/doc/swapJ-tutorial.pdf
http://www.doc.ic.ac.uk/~yg/Discrete/notes.pdf
http://www.doc.ic.ac.uk/~yg/Discrete/notes.pdf
http://homepages.mcs.vuw.ac.nz/~djp/RAL/index.html
http://homepages.mcs.vuw.ac.nz/~djp/RAL/index.html
http://eclipse.org/aspectj/
http://www.w3.org/TR/xpath/
http://lamp.epfl.ch/~zenger/jaco/
http://jcp.org/en/jsr/detail?id=308
http://jcp.org/en/jsr/detail?id=308
http://www.cs.cornell.edu/jif/
http://www.cs.cornell.edu/jif/

[35] Andrew Jonas, Daniel Lee, and Andrew Myers. J0: A Java extension for
beginning (and advanced) programmers. http://www.cs.cornell.edu/

Projects/j0/.

[36] Milan Stanojevic and Todd Millstein. Polyglot for Java 5. http://www.

cs.ucla.edu/~todd/research/polyglot5.html.

[37] Michael Brukman and Andrew C. Myers. A parser generator for exten-
sible grammars. http://www.cs.cornell.edu/projects/polyglot/ppg.
html.

[38] Princeton University and Technical University of Munich. Lalr parser gen-
erator for Java. http://www2.cs.tum.edu/projects/cup/.

[39] Jflex - the fast scanner generator for Java. http://jflex.de/.

[40] Polyglot svn. http://polyglot-compiler.googlecode.com/svn/trunk/
polyglot/.

[41] Friedrich Steimann. On the representation of roles in object-oriented and
conceptual modelling. Technical report, 2000.

[42] Matteo Baldoni, Guido Boella, and Leendert van der Torre. Relationships
meet their roles in object oriented programming. Technical report, 2007.

[43] Stephanie Balzer and Thomas R. Gross. Rumer. http://www.mcs.vuw.

ac.nz/raool/papers/rumer.pdf.

[44] John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux, and Richard
Holt. The geneva convention on the treatment of object aliasing. SIGPLAN
OOPS Mess., 3:11–16, April 1992.

[45] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference
immutability to Java. In OOPSLA 2005, 2005.

[46] Grails constraints. http://grails.org/doc/1.0.x/guide/single.html#
7.1DeclaringConstraints.

[47] Linq. http://msdn.microsoft.com/en-us/netframework/aa904594.

[48] The Java free chart library. http://www.jfree.org/jfreechart/.

[49] Pmd - project mess detector. http://pmd.sourceforge.net/.

126

http://www.cs.cornell.edu/Projects/j0/
http://www.cs.cornell.edu/Projects/j0/
http://www.cs.ucla.edu/~todd/research/polyglot5.html
http://www.cs.ucla.edu/~todd/research/polyglot5.html
http://www.cs.cornell.edu/projects/polyglot/ppg.html
http://www.cs.cornell.edu/projects/polyglot/ppg.html
http://www2.cs.tum.edu/projects/cup/
http://jflex.de/
http://polyglot-compiler.googlecode.com/svn/trunk/polyglot/
http://polyglot-compiler.googlecode.com/svn/trunk/polyglot/
http://www.mcs.vuw.ac.nz/raool/papers/rumer.pdf
http://www.mcs.vuw.ac.nz/raool/papers/rumer.pdf
http://grails.org/doc/1.0.x/guide/single.html#7.1 Declaring Constraints
http://grails.org/doc/1.0.x/guide/single.html#7.1 Declaring Constraints
http://msdn.microsoft.com/en-us/netframework/aa904594
http://www.jfree.org/jfreechart/
http://pmd.sourceforge.net/

Listings

2.1 Naive implementation of Attends relationship 12
2.2 Example relationship declaration and manipulation in RelJ . . . 15
2.3 Example relationship fields access in RelJ 15
2.4 Removal of relationship problems 16
2.5 Example of relationship inheritance 16
2.6 Relationship inheritance issues 17
2.7 Aspect Relationship interface . 19
2.8 Attends relationship using RAL 19
2.9 Example of member interposition. 20
2.10 Example of relationship invariant. 20
2.11 Enhanced For Loop grammar in JastAddJ 23
2.12 Enhanced For Loop AST specification 24
2.13 Enhanced For Loop grammar in JastAddJ 24
2.14 newext.sh Parameters . 27
2.15 Parsing and Creation of Assert AST Node 28
2.16 Assert node’s visitChildren(NodeVisitor) method 29
2.17 Assert node’s type checking . 29
2.18 Switch c’s node typechecking . 29
2.19 Assert node translation . 30
2.20 Throw node translation . 31
2.21 SwapJ BNF . 31
2.22 Creation of SwapJ files structure 32
2.23 PPG grammar for SwapJ . 32
2.24 Lexer grammar for SWAP token 32
2.25 Swap interface . 33
2.26 Swap c concrete class constructor 33
2.27 SwapJNodeFactory interface . 33
2.28 SwapJNodeFactory c concrete class 34
2.29 Swap node type checking . 34
2.30 Swap c node’s code generation 35
2.31 swapTest class written in SwapJ 36
2.32 swapTest class after compilation 36
3.1 Considering Departments in RelJ 41
3.2 Multiple extents for the same relationship 42
3.3 Relationship Aggregation . 43
3.4 The three states of a first-class tuple described in ImperialRJ . . 46
3.5 A relationship attribute mark as tuple state 46
3.6 Tuple processing ability . 46
3.7 Extent processing ability . 47

127

3.8 Confusion after tuple assignment 49
3.9 AllowOverrideTuples annotation 50
3.10 AllowDuplicateTuples annotation 50
3.11 Time as an attribute of the Usage relationship 51
3.12 Multiplicity On Participants . 52
3.13 Multiplicity On Relationship Attribute 52
3.14 Constraints On Relationship Attributes and Participants 52
3.15 Constraints On Relationship Attributes and Participants 53
3.16 Cities visitable starting from Brussels 54
3.17 Filtering used macros . 55
3.18 Aggregate functions . 55
3.19 Filtering used macros . 57
3.20 ImperialRJ persistence . 58
3.21 HappyAttends . 60
3.22 Relationship Polymorphism . 60
3.23 Assignment of extents with same family type problem 61
3.24 Attribute Specialisation . 63
4.1 University Example Output . 66
4.2 University Example in ImperialRJ 66
5.1 foreach grammar . 78
5.2 Add Type Checking: RellCallAdd c.java 80
5.3 Union Type Checking: RelUnion c.java 81
5.4 Constraint checking in filter query: RelSelect c.java 81
5.5 Adding a Tuple translation to Java 85
5.6 Foreach construct translation to Java 86
6.1 Adding Series Label: MultipleXYSeriesLabelGenerator.java . . . 90
6.2 Removing Labels from a Series: MultipleXYSeriesLabelGenera-

tor.java . 90
6.3 SeriesToLabels in ImperialRJ . 91
6.4 Navigating RuleSet and Rules: AbstractRuleChainVisitor.java . 91
6.5 Navigating RuleSetToRule in ImperialRJ 92
6.6 JFlex Querying Unused Macros: Macros.java 92
6.7 JFlex Macros in ImperialRJ . 93
6.8 JFlex Macro Consistency: Macros.java 94
6.9 JFlex Macros in ImperialRJ . 95
A.1 Java output of University Example 99
B.1 Adding One Tuple . 102
B.2 Adding Two Tuples . 103
B.3 Adding Two Tuples Removing One 104
B.4 Testing from() . 105
B.5 Testing to() . 106
B.6 Set attribute value . 107
B.7 Re-Set attribute value . 108
B.8 Filter used macros . 109
B.9 Filter Interest greather than 9 . 110
B.10 Pass Extent as parameter to method 111
B.11 Return extent from method . 112
B.12 Testing Average Fct . 113
B.13 Testing Average Fct . 114
B.14 Testing Min Fct . 115

128

B.15 Testing Sum Fct . 116
B.16 Testing union . 117
B.17 Testing intersection . 118
B.18 Testing transitive closure . 119
B.19 Testing reflexive closure . 120
B.20 Testing symmetric closure . 121
B.21 Testing Inverse same domain/image 122
B.22 Testing Inverse different domain/image 123

129

List of Figures

2.1 Example of Entity-Relationship Diagram 9
2.2 Example of UML Class Diagram: simple association. 10
2.3 Example of UML Class Diagram: association class. 10
2.4 Example of basic OCL invariant: field invariant. 11
2.5 Example of complex OCL invariant 12
2.6 Components architecture of JastAddJ 23
2.7 Polyglot high-level process . 26
2.8 Language extension NodeFactory UML diagram 28
2.9 SwapJ class diagram . 34
2.10 SwapJ code modifications summary 37

3.1 Design Comparison of Existing Relationship Languages 40
3.2 The Departments EEE and Computing have Students attending

Courses . 41
3.3 Departments have Students attending Courses 42
3.4 The tuple hasn’t been removed 45
3.5 The tuple is hidden from the extent but an external reference

exists to it . 45
3.6 The tuple reference has been removed and the tuple structure

cleared . 45
3.7 Storing participant objects references 48
3.8 storing copies of participant objects 48
3.9 Storing copies of participant objects 51
3.10 Cities linked together in a graph structure 54
3.11 Attends relationships in Database 56
3.12 Attends table generation with First-Class Relationships 58
3.13 Typical University environment 59
3.14 Placing tuples in a russian nesting doll structure 63

4.1 The syntax of ImperialRJ . 69
4.2 Meta variables used for Operational Semantics 73
4.3 Meta functions for Operational Semantics 73

5.1 ImperialRJ code summary . 78
5.2 ImperialRJ AST Nodes structure 79
5.3 ImperialRJ Code Generation architecture 82
5.4 Java Relationship Library UML 83
5.5 Translation of Relationship declaration to Java 84
5.6 Adding a Tuple translation to Java 85

130

5.7 Foreach construct translation to Java 86
5.8 Unit Testing of the Java Relationship Library 87
5.9 Output Example for ImperialRJ Automated Testing 88

131

	Introduction
	Motivation
	Contributions
	Report Structure

	Background
	Relations
	Mathematical Representation
	Modelling Representation

	Relationships in Programming Languages
	Terminology in Literature
	Existing Work

	Language Extensions
	JastAddJ
	Polyglot
	SwapJ

	Design Space of First-Class Relationships
	Language Design Requirements
	Terminology
	Exploring The Design Space
	First-Class Extents
	First-Class Tuples
	State and Processing Ability
	Encapsulation
	Aliasing
	Duplicates
	Arity
	Relationship Constraints
	Relationship Operations and Querying
	Relationship Persistence
	Relationships Inheritance

	ImperialRJ: The language
	Example
	Formal Definition
	Overview
	Syntax
	Type System
	Operational Semantics

	ImperialRJ Implementation
	Syntax choices
	Grammar
	Abstract Syntax Tree Structure
	Semantic Analysis
	Type Checking
	Constraint Checking

	Code Generation
	Java Relationship Library
	Mapping ImperialRJ to Java

	Testing
	Java Relationship Library
	Validation of ImperialRJ

	Evaluation of First-Class Relationships with ImperialRJ
	Issues with Implicit Relationships
	Boiler Plate Code
	Navigation
	Querying
	Encapsulation
	Consistency
	Rigidity

	Conclusion
	Achievements
	Further Work
	Reflection

	University Example Java Output
	Test Cases
	Bibliography

