
Department of Computing, Imperial College London

Inferring Tennis Match Progress from In-Play
Betting Odds

Author:
Xinzhuo Huang

Supervisor:
Dr. William Knottenbelt

Second Marker:
Dr. Jeremy Bradley

June 22, 2011

Acknowledgements

I would like to thank my supervisor Dr. William Knottenbelt not only for the support and
guidance he has given me but also his constant enthusiasm for this work. I would also like
to thank Dr. Jeremy Bradley for agreeing to be my second marker.

Abstract

Online tennis betting has become hugely popular, especially in-play betting where trading
occurs whilst an event is taking place. During matches, millions of pounds in bets are
routinely matched on the online betting exchange, Betfair, alone. An obstacle faced by
both human traders as well as automated trading software is the reliability and availability
of live match scores on which to base trading decisions. The aim of this work is to determine
whether and to what extent it is possible to infer tennis match score purely from the
analysis of live betting odds.

We derive a hierarchical Markov tennis model that enables us to calculate each player’s
expected match-winning probability from any point in a match. By comparing this prob-
ability to that implied by odds from the Betfair market, we detect when points are scored.
Therefore, when run from start to finish of a match, the current score should always be
known to our program. Testing our software against real matches shows that this idea is
not only possible but in fact capable of deducing the score of entire sets with few errors.
Much enhancement is still needed before the software is suitable for replacing traditional
sources of scoring information, however this could be the basis for future work.

Contents

1 Introduction 4
1.1 Online Sports Betting . 4
1.2 In-Play Trading on Exchanges . 4
1.3 Betfair . 5
1.4 The Tennis Market . 5

1.4.1 Tennis Trading . 5
1.5 Our Goals . 6
1.6 High Level System Overview . 7

1.6.1 Match-Winning Probability Calculator 8
1.6.2 Score Inference Analysis . 8

2 Contributions 9
2.1 On Tennis Modelling . 10
2.2 On Probabilities of Winning Points on Serve 11
2.3 On Analysis of Tennis Betting Odds . 11

3 Match-Winning Probability Calculator 12
3.1 Hierarchical Markov Tennis Model . 12

3.1.1 Assumptions . 12
3.1.2 Introducing Discrete-Time Markov Chains 12
3.1.3 Modelling the Game Level . 15
3.1.4 Modelling the Set Level . 16
3.1.5 Modelling the Match Level . 17

3.2 Implementing a Single-Level Analyser . 19
3.3 Linking All Levels . 19
3.4 Sample of Match-Winning Probability Calculations 21
3.5 Ensuring Correctness of the Match-Winning Probability Calculator 21

3.5.1 Comparison to Results in Other Works 24
3.5.2 Building and Comparing Results against a Tennis Match Simulator . 24

3.6 Determining Point-Winning Probability Parameter to Use for a Match . . . 26
3.6.1 By Analysis of Historical Player Statistics 26
3.6.2 By Assuming a Fixed Value of the Sum of the Two Point-Winning

Probabilities . 26
3.7 Comparing Expected and Implied Probabilities of a Real Match 27

3.7.1 Match 1: Wozniacki vs. Pennetta - Qatar Ladies Open (2011) . . . 27
3.7.2 Match 2: Del Potro vs. Soderling - Sony Ericsson Open (2011) . . . 28

4 Using Data From Betfair 29
4.1 About the Betfair API . 29
4.2 Tennis Market Information . 29
4.3 Deducing Match-Winning Probability From Market Odds 30

4.3.1 Choice 1: Average of Best Back and Best Lay Prices 30
4.3.2 Choice 2: Moving Average of Back-Lay Average 31
4.3.3 Choice 3: Last Price Matched . 31
4.3.4 Using Data from Both Players . 32
4.3.5 Using the Spread as Indicator of Uncertainty 32

4.4 Recording and Replay Matches . 33
4.5 Visualising Market Data . 34

5 Inferring Score From Live Odds Feed 35
5.1 Criteria and Methods of Testing . 35

5.1.1 Measurements of Correctness . 35
5.1.2 Manual Testing . 36
5.1.3 Automated Testing Framework . 36
5.1.4 Testing with Multiple Point-Winning Parameters 38

5.2 Heuristic 1: Calculating Thresholds and Detecting Crossings 38
5.2.1 Results of Use . 39

5.3 Heuristic 2: Recalibrating Point-Winning Probabilities 41
5.3.1 Results of Use . 41

5.4 Heuristic 3: Recognising Post-Scoring Odds Fluctuations 43
5.4.1 Results of Use . 44

5.5 Heuristic 4: Averaging Odds During Fluctuation 46
5.5.1 Results of Use . 46

5.6 Heuristic 5: Recognising Large Odds Change as Scoring 46
5.6.1 Defining a Large Change . 46
5.6.2 Detecting Large Change Over Many Points 48
5.6.3 Results of Use . 48

6 Case Studies 52
6.0.4 Match 1: Wozniacki vs. Pennetta - Qatar Ladies Open (2011) . . . 52
6.0.5 Match 2: Del Potro vs. Soderling - Sony Ericsson Open (2011) . . . 54

7 Evaluation 56
7.1 Hierarchical Markov Model and Match-Winning Probability Calculator . . . 56
7.2 Score Inference From Live Feeds . 56
7.3 Conclusion . 57

A Rules of Tennis 58

B Explanation of Betting Odds 59
B.1 Fractional Odds . 59
B.2 Decimal Odds . 59
B.3 Conversion Between Decimal Odds and Winning Percentage 59

C Program Structure 60

D Tennis Matches Recorded in csv Files 62

References 63

1 Introduction

1
Introduction

1.1 Online Sports Betting

Wagering on the outcomes of sports matches has always been popular but never more so
than now. This is largely to do with the growth of the online betting market, booming in
recent years, as focus increasingly shifts to the internet. The global online betting market
value is estimated to reach over $7.8 billion by 2012, implying annual growth exceeding
11% over the past decade [1].

The landscape of online sports betting consists of two types of websites, traditional book-
makers and betting exchanges. Traditional bookmakers act as market makers. That is,
they accept wagers on outcomes of events and maintains spreads on the two sides of bets
in order to ensure itself profit. On the other hand, betting exchanges provide its customers
with the ability to offer and take bets with each other, acting as a middle man. There
is usually little or no restriction on the size or odds of a bet that can be offered on an
exchange, only requiring that one or more opposing customers are willing to match it. An
exchange usually profits from commission on net winnings and so the odds offered, not
affected by bookmaker spreads, are truer reflections of probability of outcomes.

1.2 In-Play Trading on Exchanges

A feature that is readily provided by exchanges is in-play betting where trading is facilitated
whilst an event is taking place. Instead of relying on pre-match estimations, bettors can
make decisions based on live information of an event. In this way, odds placed on the
market change quickly as participants react to progression of a match. The rate and
amount by which the odds fluctuate in-play far exceeds that of a pre-match market and so
gives rise to far greater potential profits. Traditional bookmakers sometimes also provide
in-play betting, but this is generally more restricted due to larger risk involved for the
bookmaker. In light of volatile price movements, a bookmaker may decide to widen the
spread to hedge its risk, making the odds less attractive than on an exchange.

Similarly to financial markets, the aim of a trader is to buy low and sell high except here
in the tennis market, the odds are traded instead of financial instruments. For example,
if a trader speculates that a player will worsen in performance later on, they could back
them immediately with the aim of laying them later when the odds change such that it
requires an amount less than than the profit to cover the original liability. Thus if the
trader is successful, it is possible to offset all liabilities regardless of match outcome and
so guaranteeing profit.

4

1 Introduction

1.3 Betfair

Betfair[3] was the world’s first and now largest internet betting exchange. It has grown
rapidly since its launch in 2000 and claims to have over 3 million clients and a turnover of
more than $50 million per week. Across its products, Betfair processes more transactions
on an average day than all European stock markets combined. In fact at its inception, the
founders set out to create a new way of betting modelled on stock exchanges. People are
allowed to buy and sell, or back and lay as it is referred to with regards to betting, the
outcomes of sporting events.

A second reason why Betfair is interesting to us is because it provides users with an
API allowing connection of software to its exchanges. This allows users to easily obtain
market information as well as place bets through their own programs. Indeed a number
of commercial software have been developed with the aim of aiding traders make profit on
the exchange, many of them perform automated trading.

1.4 The Tennis Market

Tennis has become one of the most heavily traded sports online and particularly attractive
for in-play traders. Horse racing and football have traditionally been popular among sports
gamblers, however in recent years tennis has seen an enormous increase in bet volume,
particularly on exchanges [2]. The final match of Wimbledon 2008 was a perfect illustration
of just how popular trading on tennis has become. During that one match between Roger
Federer and Rafael Nadal, a total of £50 million worth of bets were matched on Betfair
alone. More recently in the French Open 2011 final, over £40 million was matched, a figure
routinely reached in Grand Slam finals and other high profile matches.

From a trading point of view, tennis is a unique sport. The sequence of points are played
within fixed intervals, usually no more than half a minute with rallies lasting roughly
10 seconds. As points are gained and lost regularly, in-play traders offer odds that vary
with equal frequency. As we have mentioned, the greater the amplitude and frequency
of odds changes, the more opportunity there is to profit. Another attraction lies in the
availability of matches. Professional tennis is played in eleven months of a year with four
major grand slam events; Wimbledon, the French, US and Australian Open as well as a
series of prestigious tournaments including those of the Association of Tennis Professional
(ATP) tour. This combination of profiting opportunity and availability of matches are the
main contributing factors for the growing popularity of tennis trading.

1.4.1 Tennis Trading

It is estimated that the majority in-play tennis bets placed on Betfair are due to traders
as opposed to recreational gamblers. That is, bets are placed following strategies with the
aim of closing trades out so that profit is ensured regardless of outcome. Although success
of trading still requires fortunate speculation, there are many strategies which are claimed
to maximise success rate.

Scalping is the strategy of trading short term odds fluctuations. The idea is to make a
large number of small profits. For instance, backing a player before a game point then

5

1 Introduction

laying after the point is scored at a lower price. Another strategy is to back the favourite
should they under-perform at the start of a match as it is often the case that they regain
control later.

The reader may already be able to see that in-play tennis betting is situational, that is,
prediction of odds movements and implementation of strategies depend on the state and
score of the current match. This information usually comes from televised broadcasts,
web streams or live scoring websites. Ideally, this information would be instant however
it is often not the case. For instance, matches which are transmitted by satellite are often
delayed by at least 5 seconds, potentially disadvantaging the trader. This idea is supported
by findings presented in Brown (2010)[11]. Other times, matches may not be broadcast at
all or unavailable to be viewed.

Automated trading is also used in conjunction with in-play trading although at present
there is no known reliable way for programs to determine match score independent of
human input. Only rudimentary methods such as screen-scraping scoring websites exist,
which are neither practical nor reliable. Because of this, trading bots can only be set to
perform trades in response to triggers caused purely by odds movements without taking
match progress or score into account as a human would. Although various studies have
been carried out on modelling of tennis matches, prediction of winning probabilities, even
analysis of in-play tennis odds on Betfair, there has been no successful work undertaken
on inferring the score of a match from betting odds.

1.5 Our Goals

Easton and Uylangco (2010)[12] provides point-by-point comparisons of a player’s match-
winning probability described by a mathematical model to that implied by betting odds.
Figure 1, taken from Easton and Uylangco (2010), show that there is a strong correlation
between the two probabilities implying high level of market efficiency. Even on inspection
of peaks and troughs of the graph by eye, we can make reasonable estimations about when
each player gains and loses games. This is the basis of our idea and provides us with the
question we wish to answer; namely, whether or not it is possible to infer tennis
scores through analysis of betting odds and if so, how and to what degree of
effectiveness it can be achieved.

Our ultimate aim is to create a piece of software that is capable of determining the score
of tennis matches, in real-time, through nothing but analysis of live in-play online betting
odds of the corresponding match. At the time of writing, there has been no successful work
carried out to this intention so our work will be as much about determining whether the
ideas are viable as it is about producing a working product. Our motivations stem equally
from both academic interest and the potential for more intelligent automated trading
algorithms, which are aware of the current state and score of a match, that in turn may
have wider implications for the online sports betting community.

Aside from the primary objective of score inference our work may produce other results
of interest. Our idea will compare predicted match-winning probabilities, according to a
stochastic tennis model, against that observed on the Betfair market testing the accuracy
and assumptions of our model. In developing algorithms to intelligently recognise point
scoring, we study the manner in which the market behaves in response to events throughout
a match. Parts of the score inference program that we build may also be desirable as stand-

6

1 Introduction

Figure 1: Probability of Petrova winning the match: Petrova vs. Williams (2007).

alone applications themselves, for instance, the engine that calculates expected match-
winning probability is a useful tool in itself.

1.6 High Level System Overview

The core of our idea is to compare match-winning probabilities implied by odds from
Betfair to expected match-winning probabilities according to a mathematical model of a
tennis match, on a point-by-point basis. By continuously analysing implied and expected
probabilities, we decide whether a player has scored based on a number of algorithms that
we develop. If entirely successful, we would be able to detect whenever points are gained
or lost, from beginning to end of a match thus knowing the score at all time. Expected
match-winning probabilities will come from calculations based on a hierarchical Markov
model of a tennis match. We can split the project into its three main parts:

1. Deriving a hierarchical Markov tennis model to create a match-winning prob-
ability calculator (section 3).

2. Accessing odds information from the Betfair market and processing it to obtain
implied match-winning probabilities.

3. Developing heuristics including analysing expected and implied probabilities to de-
tect scoring and prevent erroneous inferences (section 5).

7

1 Introduction

1.6.1 Match-Winning Probability Calculator

The tennis match model that we create is based on the ideas of Lui (2001) and Klaassen
and Magnus (2003), mentioned in section 2.1, linking four variables:

1. Point-winning probability of player 1 on serve

2. Point-winning probability of player 2 on serve

3. Current score

4. Match-winning probability of either player

We use this model to calculate match-winning probabilities corresponding to variations of
the other three parameters; the two point-winning probabilities and current score. How-
ever, unlike in past studies where this is the stopping point, our aim is to compare these
predicted probabilities to that implied by in-play betting odds. In other words, we aim to
reverse the process to try to infer current score through the other three parameters.

We model every possible scoring in a match as a discrete state of a Markov chain, with
appropriate probabilities of moving between them. In order to significantly reduce the
number of states, we use a hierarchical structure separating the levels of game, set and
match then link them in a recursive manner. Upon completion of the model, we will be
able to perform steady-state analysis to find probabilities of reaching the winning states
from any other, i.e. obtain match-winning probabilities.

1.6.2 Score Inference Analysis

We develop algorithms to decide when point scoring occurs upon comparison of expected
and market-implied match-winning probabilities. Since betting is a human activity involv-
ing some speculation and psychological bias, the process of inferring scores is not exact.
That is to say the bets being placed on the market may not always follow expectation
exactly and so there are not precise methods that will be successful in all cases. How-
ever we develop heuristics to recognise patterns in odds changes and market behaviour to
determine occurrences of point scoring. The range of heuristics we will use include the
following:

• Calculating threshold probabilities corresponding to next possible scores and detect-
ing crossings (section 5.2).

• Recalibration of point-winning probabilities in accordance to market changes (section
5.3).

• Recognising and ignoring large fluctuations after scoring (section 5.4).

• Averaging odds during periods of fluctuation (section 5.5).

• Recognising some large odds changes as signs of possible scoring (section 5.6).

A diagrammatic summary of the system overview is shown in figure 2. See appendix C for
a more technical UML diagram.

8

2 Contributions

Figure 2: High Level System Diagram.

2
Contributions

Although the process of inferring tennis score from betting odds has not been attempted,
there have been studies on tennis match modelling, determining point-winning probabilities
and analysis of tennis betting odds that are relevant to our work. The key contributions
of this work are now summarised below, with explicit references in later sections where
applicable.

Before proceeding, the reader should be aware of at least the basics of tennis scoring
structure and rules. A detailed description of tennis rules can be found in appendix A, but
for now, it is sufficient to know that in order to win a match, a player must win a number
of sets. To win a set, a player must win a number of games, which consists of a sequence
of points played with the same player serving. Service alternates between the players after
each game. We will see shortly that this game-set-match structure is the key in enabling

9

2 Contributions

tennis to be modelled easily.

2.1 On Tennis Modelling

Klaassen and Magnus (2001)[13] showed, by analysing 90,000 points played at Wimbledon
over 3 years, that although points scored in tennis are not independent, the deviations
from this feature is small. As such, approximations in modelling under the assumption
still provides good results in many cases.

Lui (2001)[14] offers a method of modelling tennis matches using a hierarchy of discrete
time Markov chains, which we will formally introduce in section 3. The key assumption
is that points are scored independently which allows all possible scores to be represented
as a state in the Markov chain. Furthermore, the recursive structure of tennis scoring is
exploited to greatly reduce the total number of states. The model, however, assumes the
probability of a player winning points are the same whether they are serving or receiving a
game. This is typically not true in tennis as significant advantage rests with the server. We
will use Lui’s idea as the basis to develop our own hierarchical Markov model but extend
it to take differences in each player’s service games into account.

Klaassen and Magnus (2003) link the service game point-winning probabilities of each
player to their match-winning probabilities using a method that appears to be similar,
though they do not fully explain it. They suggest that the point-winning probabilities
may be derived from a combination of official player rankings and subjective judgement.

Barnett, Brown and Clarke (2003)[16] achieves something similar using complex formulas
within Microsoft Excel. There are however two main extensions to the previous modelling
ideas, improving upon it. Firstly, apart from the two point-winning parameters, an addi-
tional four are used; probabilities of missing the first serve and point-winning probabilities
on the second serve for each player. This improvement comes at the cost of additional
complexity. Including second serves would mean doubling the states in our Markov chains,
therefore we decide that this should only be done if our first model is insufficiently accu-
rate. The second revision to the model is allowing for players who are ahead in a set to
increase their probability of winning the set, departing from the independent point scoring
assumption. Dependence between points violates the Markov property, explained in sec-
tion 3, however we may still incorporate this idea in our algorithms instead of the model
itself.

Two notable papers that both unified earlier works are Newton and Keller (2005) [17] and
O’Malley (2008)[18]. Both present explicit derivation and some analysis of what is now
known as the tennis formula. The tennis formula describes probability of winning a match
given probabilities of individual player winning points, equivalent to the idea presented
in Lui (2001). The attraction in the tennis formula stems from it’s succinctness, however
it becomes more complex when we wish to compute winning probabilities from within a
match rather than from the start. Since we require flexible calculations corresponding to
any possible score, we remain with the idea of using Markov chains as in Lui (2001).

10

2 Contributions

2.2 On Probabilities of Winning Points on Serve

The hierarchical Markov tennis model reduces calculation of match-winning probability
to knowledge of point-winning probabilities of each player, therefore service game point-
winning probabilities are key parameters to our program. We discuss how we estimate these
parameters themselves in section 3.6. Klaassen and Magnus (2003) uses a combination
of ranking data and subjective judgement whereas Barnett, Brown and Clarke (2003) use
historical statistics to do this. Results of both papers suggest that their respective methods
are sufficient in producing reasonably accurate results when predicting real matches.

Klaassen and Magnus (2001) concluded, through analysing 258 mens and 223 womens
matches that the average of the sum of two players service game point-winning probabilities
are 1.29 for men and 1.12 for women. For example in a mens match, if we knew that player
1 has 0.6 probability of winning points on player 1’s serve, then the probability of player
2 winning a point on player 2’s serve would most be approximately 1.29− 0.6 = 0.69. We
approach its use with caution as it relies on the assumption of low distribution variance
of the sums of point-winning probability pairs although Newman and Aslam (2009)[19]
showed that a player’s point-winning probability varies from match to match and can be
modelled as Gaussian distributed random variables with relatively low variance.

2.3 On Analysis of Tennis Betting Odds

We have already mentioned Brown (2010) which presents findings that enforce the idea
that a subset of the betting population are observing the action before the wider public,
possibly due to delays in the television signal, and are betting using this informational
advantage. This supports the potential usefulness of a score inference program to in-play
traders.

Easton and Uylangco (2010), also already mentioned, offers comparisons between modelled
and implied probabilities from in-play odds on Betfair. As is shown in figure 1, predicted
and implied probabilities match closely. This is a key property that we rely on for the
success of our work.

11

3 Match-Winning Probability Calculator

3
Match-Winning Probability Calculator

The ability to determine the match-winning likelihood is a fundamental part of our method
and so at the heart of this project is the engine that performs such calculations. The
implementation consists of two parts; an analyser for each tennis level and then a means
of combining them. The inputs are point-winning probabilities, at the lowest level, with
the parameters of each successive higher level being the result from the proceeding lower
one. With this in mind, we derive our model of a tennis match.

3.1 Hierarchical Markov Tennis Model

3.1.1 Assumptions

The main assumption we make in our model is that the points scored are identically
distributed and independent. As discussed in the previous section, Klaassen and Magnus
(2001) suggests that this should still provide a good approximation. This assumption
means that the probability of moving from one state to the next, where states correspond
to scores, does not depend on previous information, only the present state. This lends
the system to be easily described by a series of discrete-time Markov chains and allows
us to perform analysis on their corresponding stochastic matrices. This is the technique
described in Lui (2001). Unlike Lui’s model, we will take into account the differences in
point-winning probability depending on the current server as it is generally true that the
server has an advantage.

3.1.2 Introducing Discrete-Time Markov Chains

Here, we give descriptions, definitions, properties and results of Markov chains needed later
on. The following is a relatively brief introduction, for more comprehensive information,
the reader is invited to refer to Falko Bause [20].

A Markov chain is a type of Markov process, a stochastic process for which the Markov
property holds. The intuitive explanation of the Markov property is to say that the future
of the process is determined only by the present state. However the process may have
evolved to its present state does not influence the future. For the purpose of this project,
we only concern ourselves with discrete-time Markov chains. That is, the case where the
time spent in a state has a discrete distribution. From here on, when we say Markov chain,
we refer to discrete-time Markov chains. The formal definition of a discrete-time Markov
chain is as follows:

12

3 Match-Winning Probability Calculator

Definition 1. The sequence {Xn|n = 0, 1, 2, ...} is a discrete-time Markov chain provided
P [Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, ..., X0 = x0] = P [Xn+1 = xn+1|Xn = xn] ∀ n

∈ N.

The expression on the right-hand side of this equation denotes the probability that the
process goes from state xn to state xn+1 when the time parameter is increased from n to
n + 1.

It is perhaps easiest to understand the concept we require by considering the following well-
known problem, named Gamblers’ Ruin. The description is adapted from Falko Bause [20].

Two gamblers are betting on the outcome of an unlimited sequence of coin tosses. The
first gambler always bets heads, which appears with probability p, 0 < p < 1 on every toss.
The second gambler always bets tails, which appears with probability q = 1− p. They start
with a total of C chips between them. Whenever one gambler wins he has to give the other
one chip. The game stops when one gambler runs out of chips (is ruined). Assume the
gamblers start with C = 3 chips between them.

What is the probability that a gambler is ruined, losing all chips, having started with a
single chip?

We represent the above scenario with the Markov chain in figure 3. The labels in each
state depict how many chips each gambler has and the set of all states describes all possible
combinations of chip distribution. Arcs connecting states represent possible transitions
from one state to the next with the respective probabilities. This is a finite Markov chain
as there are a finite number of states, i.e. 4.

States 0 and 1 are absorbing states, where there are no transitions to any other state once
they have been reached. These correspond to the cases where one gambler wins and the
other is ruined. States 2 and 3 are transient states, where there are transitions between
them as well as to the absorbing states.

Figure 3: Gamblers’ Ruin with 3 chips in total. State with label i − j corresponds to
gambler 1 having i chips and gambler 2 having j chips.

We now give a matrix representation of the Markov chain in figure 3. With the states
labelled as in the diagram, entry ei,j of our matrix represents the probability of movement
from state i to state j in a single step. Note that, for convenience, we refer to the first

13

3 Match-Winning Probability Calculator

row and column of the matrix as the 0th row and column, respectively. Note also that the
numbering of states, denoted by brown numbers in figures, is arbitrary.

P =


1 0 0 0
0 1 0 0
q 0 0 p
0 p q 0

 (1)

Upon inspection, we observe that P is in fact of the form:

P =

(
I 0
R Q

)
(2)

where I is the identity matrix, 0 is the all-zero matrix, R is the matrix describing the
movement from the transient to the absorbing states and Q is the matrix describing the
movement amongst transient states. We remark that I appears in the top-left as once we
reach an absorbing state then we remain there and 0 appears in top-right as it is impossible
to move from an absorbing to a transient state. (2) is in fact a general form of any finite
discrete-time Markov chains.

Since P represents a single transition in our Markov chain, P 2 represents our system after
two transitions. We can generalise this to Pn describing our system after n transitions.
Since we wished to know the probability of a gambler being ruined, having started with 1
chip (reaching state 0 from state 2), then we must first calculate P∞ and look at the (2, 0)
entry.

Since the formula for matrix multiplication also applies to matrices written in block form,
we can calculate the powers of P in terms of the matrices R and Q:

P 2 =

(
I 0

R + QR Q2

)

or in general

Pn =

(
I 0

NnR Qn

)

where Nn = I + Q + Q2 + ... + Qn−1 = Σn
i=1Q

i−1.

Theorem 1. When n→∞ then Qn → 0 and Nn → (I −Q)−1. In particular, the matrix
I −Q is invertible.

It follows from Theorem 1 that

lim
n→∞

Pn =

(
I 0

NR 0

)
(3)

14

3 Match-Winning Probability Calculator

where in our example (1):

N =

(1
1−pq

p
1−pq

q
1−pq

1
1−pq

)

and

NR =

(q
1−pq 0

0 p
1−pq

)

so

lim
n→∞

Pn =


1 0 0 0
0 1 0 0
q

1−pq 0 0 0

0 p
1−pq 0 0


The (2, 0) entry is q

1−pq telling us that this is the probability of a gambler being ruined
having started with 1 chip.

This concludes the introduction to Markov chains. The reader may already be able to
see how the above may be applied to modelling various levels of a tennis match. The
two gamblers are similar to two tennis players, the chip distribution similar to scoring
combinations and the absorbing states in a tennis example will correspond to a player
winning.

3.1.3 Modelling the Game Level

The three levels of tennis (game, set and match) can be modelled using separate Markov
chains. They are linked in such a way that the probability of winning a game will be used
in the set level and the probability of winning a set will be used in the match level.

We begin with the lowest level - the game level. Here, we are only concerned with two
parameters, p, the probability that the server of the game wins a point and q = 1 − p,
probability the receiver wins a point. These two probabilities correspond to the likelihood
of moving along arcs connecting score states. To simplify calculations, we represent the
following pairs of scores by the same state:

• 30 : 30 and 40 : 40 (deuce)

• 40 : 30 and advantage server

• 30 : 40 and advantage receiver

These three states may be visited any number of times before a game is won, similarly to
the gambler’s ruin situation where the gamblers may win and lose chips for an indefinite

15

3 Match-Winning Probability Calculator

time before being fully ruined. Figure 4 shows the Markov chain encompassing possible
evolutions of scores in the game level. We label the absorbing states, where a player wins,
as 0 and 1 so that we have the 2× 2 identity matrix in the top left of our 17× 17 matrix
representation of this Markov chain.

Figure 4: Markov chain showing possible evolution of point scores in a tennis game.

3.1.4 Modelling the Set Level

The set level, comprising of the most states and with the added complication of the
tiebreaker, is the most difficult level to model. Figure 5 shows the possible evolution
of game scores in a set. The probabilities corresponding to the arcs are the probabilities
of the players winning a game, obtained from analysis of the game level (i.e. probability
of moving from state 2 to 0 or 1 in figure 4). Because the rules of tennis dictate that
the server alternates between each game, we need at least four parameters to specify the
Markov chain: the probabilities of the server winning and losing when each of the two play-
ers serve. In figure 5, probabilities corresponding to player 1’s service games are denoted
by solid lines whilst probabilities corresponding to player 2’s service games are shown using
dotted lines.

If the score reaches 6 − 6 in a set, a tiebreaker game is played to decide the set winner.
We account for this scenario by adding two probabilities of moving from the 6− 6 state of
figure 5 to the winning, absorbing, states. We develop a separate Markov chain, figure 6,
to determine these two probabilities as the tiebreaker has a separate scoring structure of
its own. The probabilities of the arcs in figure 6 are the probabilities of winning a point,
like in the game level, however this time we need to take into account who is currently
serving as service switches many times within a tiebreak game. Similarly to the deuce
situation at the game level, winning a tiebreak game requires a player to be two points

16

3 Match-Winning Probability Calculator

clear of the opponent so we represent this situation with the relation between the last few
states (0, 1, 48, 49, 50, 51, 52 and 53) as in figure 6.

Figure 5: Markov chain showing possible evolution of game scores in a tennis set.

3.1.5 Modelling the Match Level

Finally, we have the match level. Rules vary with each tournament as to whether the
match is played as best-of-three or best-of-five sets. Figure 7 shows the Markov chain of
a best-of-five match. The probabilities of the arcs depend on probabilities of each player

17

3 Match-Winning Probability Calculator

Figure 6: Markov chain showing possible evolution of point scores in a tennis tiebreaker.

winning the set level, similarly to the previous levels.

We now have a complete model of a tennis match using four interlinked Markov chains
and can write down their corresponding matrices (of sizes 16 × 16, 41 × 41, 44 × 44 and
11×11). We note that a potential problem we may encounter in developing a score inference
program is false-positive inferences caused by odds changing due to faults of service rather
than points being scored. So far, we have not considered first and second services in our
Markov chain. However if we discover that we need to include such cases then we could
modify our Markov chains by adding extra states corresponding to first service faults. It
may well be the case that the current model is sufficient for the purpose of score inference,

18

3 Match-Winning Probability Calculator

Figure 7: Markov chain showing possible evolution of set scores in a tennis match.

which we will not know until testing, so we proceed to implementation

3.2 Implementing a Single-Level Analyser

We wish to use Theorem 1 and its result, (3), on the match level Markov chain to find
the probability of each player winning a match by recursively applying the same method
to the lower levels in order to obtain probabilities of the arcs. To do so, we must compute
the likelihood of each player probability of winning at each level i.e. the probabilities of
reaching each of the absorbing states of the Markov chains.

Section 3 describes how to solve a generic Gambler’s Ruin problem. This is analogous
to our tennis problem and so we apply the same method to our models. We build our
analyser to parse Markov chain data structures, creating corresponding matrices of the
form in equation 2 and follow the method to calculate the matrix limn→∞ Pn (equation
3). The entries (i, 0) or (i, 1) of limn→∞ Pn gives us the probabilities of player 1 or
player 2 winning, respectively, given the current score is that which corresponds to state
i. Additionally, we can also compute the probability of score of state i becoming score
of state j after n points e.g. from 0 − 15 to 40 − 30 in five points. This can be done by
selecting entry (i, j) from Pn.

3.3 Linking All Levels

Input parameters to the single-level analyser are point-winning probabilities. These are
used in the lowest level to compute game-winning probabilities which can be, in turn,
used to initialise the Markov chain matrices of the set-level and similarly for the match

19

3 Match-Winning Probability Calculator

level. This gives a means of calculating match-winning probability from before a match
commences. However, we also require match-winning probabilities from an arbitrary score,
i.e. in-play. This is more complex as we need to take additional factors into account.
Consider the following situation:

In a five set match, the score is 1 set each, 4 games to 1, and no points scored in the
current game. The probabilities of moving from state 2 to 3, 4 to 6, 8 to 0 etc (i.e. player
1 winning a set) are all identical however it is different to that of from 6 to 8. This is
because the third set is currently in-play and so the probability, instead of being that of
from state 2 to 0 of the set-level, is in fact that of from state 18 to 0 (reflecting the current
games score of 4− 1). This is denoted in figure 8.

Figure 8: Markov chains of match and set levels. Orange highlights states of current
score. Thicker red arrow and blue arrow on the match-level Markov chain denote the
arcs with probabilities different to the others due to the scoring scenario.

Additionally, where it was previously sufficient to only have one set-level model, we now
need two. Separate ones are required for when each player serves the first game in set
because we keep track of who is serving the current game. Therefore we need to adjust
the Markov chain matrices accordingly.

Pseudo-code of our recursive algorithm that calculates match-winning probabilities from

20

3 Match-Winning Probability Calculator

any point within a match, is given in 1. We call the function with the following parameters:

probOfWinning(p1Serve, p2Serve, match-level, score)

where

• p1Serve and p2Serve are the probabilities of each player winning points on their
own serve, obtained previously by some other means.

• match-level is the recursion level of the initial call to the recursive function.

• score is the current score of the match

At each level of recursion, the final step calculates the winning probability at that level
using a single-level analyser, the workings of which is described in 3.2. Our implementation
uses a data structure to hold current score information and uses methods that translates
between current score and state numbers to index the Markov chain matrices.

3.4 Sample of Match-Winning Probability Calculations

We can now calculate match-winning probabilities from any point in a match. A small
selection of results is given in figure 9 showing match-winning probabilities in a three-set
match given various parameters.

Figure 9: Match-winning probabilities corresponding to a range of point-winning probabil-
ities and match score scenarios. Note, the score column is given in the format (Set-Score,
Game-Score).

Figure 10a was created by plotting results from our program, using a pre-match current
score parameter. Similarly, we can produce visualisations corresponding to other scoring
situations such as shown in figure 10b, 10c, 10d and 10e, when player 1 is behind in the
final set of a three set match.

3.5 Ensuring Correctness of the Match-Winning Probability Cal-
culator

Algorithms used in the latter part of the project, to infer match score, depend heavily on
knowing the correct expected match-winning probability. Therefore, it is crucial that the
results produced by our calculator are accurate with respect to our model. We use two
methods to validate our program:

21

3 Match-Winning Probability Calculator

Algorithm 1 double← probOfWinning (double p1Serve, double p2Serve, Level
recursion-level, CurrentScore s)

1: if recursion-level is game-level then
2: MarkovChain m = game-level Markov chain;
3: // initialise probabilities of moving between states of m
4: for all states of m do
5: probServerWinsPoint = p1Serve;
6: probReceiverWinsPoint = 1− p1Serve;
7: // note that at the game level the server is always player 1, whoever is serving

is taken care of at the set-level recursion call
8: end for
9: return Analyser.probabilityToAbsorbingStateFromCurrentScore(s, m);

10: end if

11: if recursion-level is set-level then
12: MarkovChain m = set-level Markov chain;
13: // initialise probabilities of moving between states of m
14: for all states of m do
15: if p1 serving then
16: probP1WinsGame = probOfWinning(p1Serve, p2Serve, game-level,

start);
17: probP2WinsGame = 1− probP1WinsGame;
18: end if
19: if p2 serving then
20: probP2WinsGame = probOfWinning(p2Serve, p1Serve, game-level,

start);
21: probP1WinsGame = 1− probP2WinsGame;
22: end if
23: end for
24: //modify m according to current score
25: if p1 serving then
26: probP1WinsGameFromCurrent = probOfWinning(p1Serve, p2Serve,

game-level, s);
27: probP2WinsGameFromCurrent = 1− probP1WinsGameFromCurrent;
28: end if
29: if p2 serving then
30: probP2WinsGameFromCurrent = probOfWinning(p2Serve, p1Serve,

game-level, s);
31: probP1WinsGameFromCurrent = 1− probP2WinsGameFromCurrent;
32: end if
33: return Analyser.probabilityToAbsorbingStateFromCurrentScore(s, m);
34: end if

35: if recursion level is match-level then
36: MarkovChain m = match-level Markov chain;
37: // initialise probabilities of moving between states of m
38: for all states do
39: probP1WinsSet = probOfWinning(p1Serve, p2Serve, set-level, start);
40: probP2WinsSet = 1− probP1WinsSet;
41: end for
42: //modify m according to current score
43: probP1WinsSetFromCurrent = probOfWinning(p1Serve, p2Serve, set-level,

s);
44: probP2WinsSetFromCurrent = 1− probP1WinsSetFromCurrent;
45: return Analyser.probabilityToAbsorbingStateFromCurrentScore(s, m);
46: end if

22

3 Match-Winning Probability Calculator

(a) Sets: 0 − 0, Games: 0 − 0. (Pre-Match)

(b) Sets: 0 − 1, Games: 4 − 5. player 1 to serve. (c) Sets: 0 − 1, Games: 4 − 5. player 2 to serve.

(d) Sets: 0 − 1, Games: 1 − 3. player 1 to serve. (e) Sets: 0 − 1, Games: 0 − 5. player 1 to serve.

Figure 10: Charts relating each player’s point-winning probabilities and player 1’s match-
winning probabilities in a three-set match. Axis labelled in percentages. Darker means
lower probability to win.

23

3 Match-Winning Probability Calculator

• Compare our results to that in other works on tennis probability.

• Build a tennis match simulator then compare results given by our calculator to that
of the simulator, under various parameters.

3.5.1 Comparison to Results in Other Works

Both O’Malley (2008) and Liu (2001) present a selection of data, relating point and match-
winning probabilities, under different match scenarios. Liu (2001) shows pre-match match-
winning probabilities of both three and five set matches without taking into account of
tiebreakers. O’Malley (2008) presents in-play match-winning probabilities, in particular
those of making a come-back from at least a break behind in a last set with the use of
tiebreakers shown in figure 11.

Figure 11: Match-winning probabilities - Results from O’Malley (2008) [18].

Match-winning probability calculated by our program are exactly those of Liu (2001) and
O’Malley (2008), for the same scenarios, thus we can be reasonably assured that our
calculator works as expected. However, since there is only a small set of match scenarios
to check results against, our confidence is limited and we are still cautious of our errors
elsewhere. We find another means of obtaining match-winning probabilities to perform
further comparisons in more match scenarios.

3.5.2 Building and Comparing Results against a Tennis Match Simulator

Our calculator returns match-winning probabilities according to a hierarchical Markov
model but this is not the only method to do so. An alternative would be to simulate tennis
matches under desired parameters and record the number of times each player wins over a
total number of runs. The proportion of a player’s wins compared to total simulation runs
gives an estimation of their match-winning probability under those parameters. Since the
simulation is probabilistic, outcomes of each run vary but the proportion of a player’s wins
is expected to converge after a large number of runs. Thus, we use the simulation to obtain

24

3 Match-Winning Probability Calculator

each player’s winning proportions, as an estimation for match-winning probabilities, then
compare these to that given by our match-winning probability calculator under the same
parameters.

The simulator models the scoring structure of a tennis match and takes the same point-
winning probability inputs for each player, p and q, as our calculator. Until either wins,
the simulator loops with probability p of incrementing player 1’s points and 1 − p of
incrementing player 2’s points, during player 1’s service game; probability q of incrementing
player 1’s points and 1−q of incrementing player 2’s points, during player 2’s service game.
The algorithm is given in algorithm 2.

Algorithm 2 double← simulateMatch (double p, double q, int totalRuns)

1: int run = 1
2: double numMatchesP1Wons = 0
3: while run ≤ totalRuns do
4: while match not finished do
5: if is player 1’s service game then
6: either increment player 1’s point with probability p
7: or increment player 2’s point with probability 1− p
8: else
9: either increment player 2’s point with probability q

10: or increment player 1’s point with probability 1− q
11: end if
12: end while

13: if player 1 won then
14: numMatchesP1Wons++
15: end if

16: return (numMatchesP1Wons/totalRuns)
17: end while

Before using the simulation results to validate those from our calculator, we must first
be confident that the simulation results are correct themselves. As before, we check the
results to those presented in Lui (2001) and O’Malley (2008). Since these are consistent,
together with the fact that the implementation is relatively straightforward, we assume
that it is accurate. Even if the simulator produces incorrect results, it is unlikely that it
would be incorrect in an identical manner to that of our calculator and so we would be
prompted to investigate any mistake upon finding inconsistencies.

The probability calculator and the match simulator produce results consistent with each
other. Given that we obtained the same match-winning probabilities, across multiple pa-
rameters, using independent methods as well as being consistent with results from previous
studies, it suggests that our program is correct and so we can move on to the next part of
the project and use our calculator with confidence.

An observation to note is the differences in run-times needed to produce results of the
two methods. Our calculator parses Markov chain data structures and uses a number of
matrix manipulations with matrices of large sizes, nevertheless calculations are done in
sub-second time. In contrast, although a single run of the simulation is fast, we require
many runs (usually between 10,000 and 100,000) before making an estimation of winning
proportions and so on average it takes up to 15 seconds per set of parameters. This proves

25

3 Match-Winning Probability Calculator

the superiority of our calculator method, in terms of time efficiency. It also indicates
its potential usefulness in inferring live scores which are continuously updated as well as
demonstrating the reason why we could not have used the simulator as our means of
obtaining match-winning probabilities, from the start.

3.6 Determining Point-Winning Probability Parameter to Use for
a Match

So far, we have developed the method of calculating match-winning probability under the
assumption of availability of the parameters. Current score is not problematic as if we
follow a match from beginning to end, it will always be known. Point-winning probabilities
on serve, however, is more difficult to determine and we now examine some means to do
so.

3.6.1 By Analysis of Historical Player Statistics

Some websites record historical player statistics including results against opponents on
various court surfaces as well as further details about those matches. We can analyse this
data and combine it with our own judgement to estimate an appropriate point-winning
probability for an upcoming match. This is a popular method used in past studies. The
major drawback of this is the overhead in obtaining and analysing data of each players
of the match we wish to infer scores. A second difficulty is the requirement of subjective
judgement in interpreting the data. Furthermore, having to manually deduce and input
these parameters is a sacrifice in the degree of automation of our program although it may
be a necessary one.

3.6.2 By Assuming a Fixed Value of the Sum of the Two Point-Winning
Probabilities

We mentioned in section 2.2 that Klaassen and Magnus (2001) found, through analysis of
empirical data, that the sum of two player’s service game point-winning probabilities was
on average, 1.29 for men and 1.12 for women. To illustrate how this may be useful to us,
consider a chart relating each player’s point-winning to match-winning probabilities such as
figure 10a. Any match-winning probability can arise due to an infinite pair of each player’s
point winning probabilities, for instance, in the case when match-winning probability is
0.5, i.e. when both players are equally skilled, the point-winning probabilities must be
equal; for example 0.1 − 0.1, 0.2 − 0.2, 0.99 − 0.99 etc. In fact, any pair of values on the
diagonal line of figure 10a joining the point 0−0 to 100−100. Klaassen and Magnus’ (2001)
result introduces a new constraint that allows us to narrow the previous list of possibilities
to a single pair. In our evenly-skilled example, the probabilities would be 0.645 − 0.645
(as 0.645 + 0.645 = 1.29) for a men’s match and 0.56 − 0.56 (as 0.56 + 0.56 = 1.12) for a
women’s match.

This method is attractive as given the extra constraint and implied match-winning prob-
ability at the start of a match, the corresponding pair of point-winning probabilities can
be calculated without further input. This method has been used in practice in various

26

3 Match-Winning Probability Calculator

papers including Easton and Uylangco (2010) which show the resulting modelled proba-
bilities closely follow that implied by odds of a real match. However, we still approach its
use with caution as it relies on the assumption of low distribution variance of the sums of
point-winning probability pairs.

We conclude that our best option is to use a mixture of the two afore mentioned meth-
ods. Our program defaults to using the automated fixed-sum method to determine point-
winning probabilities upon starting a match, however also allows for manual adjustment
of these values should it be needed.

3.7 Comparing Expected and Implied Probabilities of a Real Match

We want match-winning probabilities that we calculate from our model to be as close to
that implied by Betfair odds as possible, for the same set of parameters. To test whether
this is the case, we record match-winning probabilities implied by Betfair odds along with
the score at each point of a full match. The exact means to do so is explained later in 5.1.2.
For each point of the match, we use our calculator to work out the expected match-winning
probability and overlay this on a graph with the implied probabilities. Each player’s point-
winning probabilities are obtained by estimation using a mixture of historical statistics and
trial such that it equals the pre-match match-winning probability. These point-winning
probabilities values are held constant for calculations throughout the match. Note that
the resulting graphs are similar to that in Easton and Uylangco (2010) in figure 1, shown
earlier, but in greater detail.

3.7.1 Match 1: Wozniacki vs. Pennetta - Qatar Ladies Open (2011)

Figure 12: Probability of Wozniacki winning match for first set. Green arrow indicates
Pennetta breaking Wozniacki’s serve, Yellow arrows indicate Wozniacki breaking Pen-
netta’s serve. Red arrow indicates period of systematic difference between implied and
expected probabilities.

We see in figure 12 that the implied and expected match-winning probabilities follow the
same overall pattern. Furthermore, it appears that the peaks and troughs corresponding

27

3 Match-Winning Probability Calculator

to individual point scorings also occur in the same manner, albeit with exception that
the modelled probability changes at discrete scoring intervals whilst implied probability
continues to fluctuate between points.

Wozniacki starts as the favourite with match-winning probability 0.79, point-winning prob-
abilities used for expected match-winning probabilities are Wozniacki - 0.59, Pennetta -
0.53. Upon starting, Wozniacki immediately falls behind, the implied match-winning prob-
ability falls further than the expected although still keeping to the same patterns, devel-
oping a systematic difference between the two. The gap is closed again upon Wozniacki
coming back to break Pennetta’s serve after a long stand-off at deuce. The more than
expected drop in implied probability suggests that the market over-reacted to Wozniacki’s
initial under-performance, only rallying after she regained control of the match. A depar-
ture of implied from expected probability, like in this case, could be troublesome for score
inference but the systematic nature of the difference suggests that the problem could be
overcome by developing a means of detecting such an occurrence. In fact, we encounter
and tackle this very problem in section 5.1.2.

3.7.2 Match 2: Del Potro vs. Soderling - Sony Ericsson Open (2011)

Figure 13: Probability of Del Potro winning match for first set. Yellow arrows indi-
cate Soderling breaking Del Potro’s serve. Green arrows indicates Del Potro breaking
Soderling’s serve.

Service game point-winning probabilities used as parameters for expected match-winning
probability calculations are Del Potro - 0.6305, Soderling - 0.6195. Figure 13 shows implied
followed expected probability closely, even more so than the previous example. This is
encouraging as it shows our hierarchical Markov model appears to be successful in mirroring
market probabilities but it is still too early to say whether it does so sufficiently. We can
only determine the degree of accuracy needed for score inference through experimentation.

28

4 Using Data From Betfair

4
Using Data From Betfair

It should be clear by now that we intend to use odds traded on the Betfair exchange to de-
termine market-implied match-winning probabilities. However, we have not yet discussed
exactly what odds data is available, which parts are most useful to us, how we obtain
the information nor in what manner we will use them. Before we proceed to develop our
match-winning probability calculator and full inference program, we addressed these issues
in this section.

4.1 About the Betfair API

As part of its Developers Program, Betfair provides a Java API that allows users to access
various information relating to its live markets, ranging from match schedules to available
odds on an event. We use the Free Access version of the API that has certain limitations
to the frequency of calls allowed to be made to its service. For instance, market prices can
be polled at a maximum rate of 60 per minute. This is sufficient for our needs as points
scored in tennis matches are not more frequent than once every 10 seconds or so, therefore
no significant amount of information is lost by only viewing the market at such intervals.

4.2 Tennis Market Information

Betfair’s tennis market is divided into sub-markets that can be traded on including match-
winner, set-winner, game score, number of aces, etc. Since we are interested in match-
winning probabilities, the match-winner market is the most relevant. Within the match-
winner market, the following information is available:

• For each of the two players:

– Offered back prices

– Offered lay prices

– Last price matched

– Volume available at back prices

– Volume available at lay prices

• For the market as a whole:

– Timestamp

29

4 Using Data From Betfair

– Total volume matched

– Market status

Note that we use the words price and odds interchangeably. Note also that there are
separate prices for each player although the relationship between them is simple. Since
there are only two players, the probability of one winning is that of the other losing so
backing one is equivalent to laying the other. In practice, there is sometimes a small
discrepancy between the two values, due to lack of perfect market efficiency. We examine
the significance of this to our program shortly, in section 4.3.4.

4.3 Deducing Match-Winning Probability From Market Odds

Betfair presents all odds in decimal format as is favoured by European bookmakers, see
appendix B for interpretation guidelines. We can easily convert any given decimal odds to
a probability using the method described in appendix B.3. However, since there is a range
of market odds data (including back, lay prices and last price matched - for each player), it
is not obvious which should be used or how they should be processed in order to obtain a
value that implies the match-winning probability. We consider possible choices along with
their potential pros and cons for the purpose of score inference.

4.3.1 Choice 1: Average of Best Back and Best Lay Prices

Back and lay odds are the prices currently available to be taken in the market. The
difference between the back and lay prices is the spread, which we consider in more detail
in section 4.3.5, but for now it can be understood to exist as compensation to traders for
taking a risk in the market. It is also the amount which you are certain to lose if you
attempted to take opposite positions in the market simultaneously. i.e. both backing and
laying the same player at the same time.

At any time, there is a range of back and lay prices offered in the market by different
bettors at prices that they are willing to accept. It only makes sense for others in the
market to take the best back or best lay price, that is, the price that would give the
maximum return compared to the others. If we wanted to use the best back and best lay
prices as indicators for match-winning probabilities, it makes sense to take the average and
use this mid-point as our value.

The main advantage of this is that the back and lay prices are very responsive to changes
in events, such as point scoring. As market participants react to changes, the back and lay
prices immediately reflect what prices they are willing to trade at. However, the best back
and best lay prices tend to fluctuate much more in comparison to the last priced matched,
which we will consider shortly. In practical terms, this means that it is more likely for
false-positives to occur in our inference program, that is, erroneously inferring points are
scored when odds change is large when the actual cause was fluctuations between points.
This is indeed the case when experimenting with the use of back-lay average values in
our inference program where many false-positive inferences are made. Figure 14 compares
back-lay average to last price matched. Note that for this graph and all others in
the report, we are observing player 1’s data.

30

4 Using Data From Betfair

Figure 14: Back-lay average reflects changes in market a step before last price matched,
however it also fluctuates more. (Del Potro vs. Soderling - Sony Ericsson Open 2011)

4.3.2 Choice 2: Moving Average of Back-Lay Average

In order to smooth out fluctuations, we could continuously calculate an average of a subset
of most recent back-lay average values. The idea is that by giving weighting to older values,
our program will no longer be as affected by sudden large odds price changes whilst still
being able to observe overall movement pattern. The larger the subset used, the smoother
our series of values.

It turns out that using a moving average in this way does not work well in practice. The
smoothing effect occurs to such an extent that we now have the opposite problem, odds
movements now appear to be too subtle. Even with a two point moving average, instances
of actual point scoring are often missed. An alternative, the exponential moving average
gives greater weighting to the most recent value with each older data point decreaseing
in weighting exponentially. This is a slight improvement over a normal moving average,
however the problem of over smoothing remains. We conclude that this method is not
appropriate for our needs.

4.3.3 Choice 3: Last Price Matched

The last price matched is, as the name suggests, the most recent odds that was traded on
the exchange. This is, arguably, a more accurate match-odds indicator than the back-lay
average as it shows what was accepted not what is offered. The main drawback of using
last price matched is that it is always a step behind the back and lay prices, since back
and lay prices are offered first before they can be matched. A related problem is that
when market liquidity is low, people may be less willing to take new bets and so the last
price matched will be stagnant. These disadvantages are a small cost in avoiding the more
serious problem of false-positive score inferences, therefore we will use last price matched as
the odds that implies match-winning probability. This choice is supported by experimental
results with the program as will be discussed later on.

31

4 Using Data From Betfair

4.3.4 Using Data from Both Players

We noted in section 4.2 that Betfair has separate odds for the players of a tennis market,
each having their own back, lay and last matched prices. The relationship between the two
player’s odds should be such that if the implied match-winning probability of one player
is p then that of the other player is 1− p. In theory, this relationship is ensured by traders
immediately taking any arbitrage opportunity, that is, the possibility of making risk-free
profit by simultaneously backing one player and laying the other. However, due to lack of
perfect market efficiency, in practice there is sometimes a small discrepancy between the
match-winning probabilities implied by the two player’s odds.

Using last price matched from both players and averaging the implied match-winning
probabilities results in the odds movements appearing to be smoother, making our program
less affected by the false-positive score inferences caused by sudden odds changes. The
downside is that we observe less sharp movements even when they are genuinely caused
by point scoring. It is our choice, however, that avoiding false-positives outweighs the
disadvantage. Figure 15 compares average last price matched from both players to that of
single player.

From here on, whenever we refer to implied match-winning probability, we mean the av-
erage of the probabilities given by the last price matched of both players.

Figure 15: Average of last price matched from both players is smoother, fluctuates less,
than from a single player. (Del Potro vs. Soderling - Sony Erricsson Open 2011)

4.3.5 Using the Spread as Indicator of Uncertainty

The difference between the best back and best lay prices reflects the level of risk traders
incur in taking a position in the market. This is analogous to the spread between the bid
and ask prices for stock traded on financial exchanges. One protects oneself from inability
to trade out, taking the opposite position at a later time, by offering or accepting safer
prices. Therefore the greater the perceived difficulty in doing so the wider the spread. It
follows that we can use the relative size of the spread to infer the degree of uncertainty

32

4 Using Data From Betfair

in the market indicating the level of reliability of the current odds as a match-winning
probability indicator.

(a) Smaller Back-Lay difference.

(b) Greater Back-Lay difference.

Figure 16: The spread, difference between best back and best lay prices, could be used to
reflect market certainty about the outcome of a match. (Nadal vs. Djokovic & Wawrinka
vs. Federer - BNP Paribas Open 2011)

4.4 Recording and Replay Matches

So far, we can access information on active markets through Betfair (i.e. matches currently
taking place), however we cannot review earlier data. This is a problem when developing
our inference analyser as we will need to compare various heuristics against constant sets
of data in order to determine their successfulness, in other words, reviewing a single match
multiple times. Therefore, it is essential to be able to record a match for play-back at a

33

4 Using Data From Betfair

later time. It would also increase efficiency if we were able to manipulate the replays such
as fast-forward and skipping to specific parts of a match of interest.

To implement a replay feature, we record live market information to comma-separated
value (csv) files [6]. We record an additional line in our csv file each time our program
obtains market information from Betfair so that once the match is complete, we have an
update by update record of the in-play market status. Market data is written in pairs of
lines, one corresponding to each player, with a new pair written each time Betfair is polled.
Figure 17 is a sample from such a file. To review the match, we parse the file, read data
from each line in the same manner as if it were streamed live from Betfair. Additionally,
it is also straightforward to fast forward, rewind and skip to particular parts of the match
by selecting the line number or order of reading accordingly. For the writing and reading
of the csv files, we use opencsv [7], an open source csv parsing library for java. A list of
matches for which csv files were recorded throughout the course of the project is given in
appendix D.

Figure 17: Example of recorded csv file. (Del Potro vs. Soderling - Sony Ericsson Open
2011)

4.5 Visualising Market Data

The data that we receive and record are sets of numbers which are fed into our program.
We can plot information such as prices or volumes, obtained both live from Betfair or
read from a csv file, against a timestamp to see a history of the market data. Visualising
price and other data movement patterns helps in understanding market behaviour and so
is crucial when developing our program. We use JFreeChart [8], an open source graphing
library to plot such graphs. In fact, all graph figures in this article are examples of its use.

34

5 Inferring Score From Live Odds Feed

5
Inferring Score From Live Odds Feed

Now that we have a tennis probability calculator as well as the ability to pull market data
from Betfair, we integrate them to develop the inference program, the second of the two
core parts of the project. We have already discussed the basic idea of inferring score from
odds: input each player’s point-winning and match-winning probabilities to the probability
calculator in order to work out the current score.

It should be clear that we rely on the market behaving in a rational way. That is to say, as
a trivial example, if a player performs well then the odds for backing them should shorten,
diminishing the profit and so implying greater probability of winning the match, and vice
versa. Moreover, it would make inference easier if the changes in odds correspond exactly
to what is mathematically implied. Although we know that market prices tend to follow
what is expected, as shown by Easton and Uylangco (2010) in figure 1, it would be naive
to assume that they follow it exactly. Betting is a human activity and so inevitably will be
affected by psychological biases and a degree of randomness. We hope that, given a large
number of market participants and sufficient market liquidity, the unexpected effects will
be insignificant in the majority of cases. When unexpected market behaviour occurs, we
need to find ways of dealing with them, depending on how troublesome they are.

We approach the development of the inference analyser in an iterative manner. We pro-
pose a range of strategies for inference, implement it then test their effectiveness on match
recordings. Since we do not know how much and in what way market behaviour differs
from that which we expect, it is difficult to foresee what is required for the entire process.
Instead, we adapt and develop new algorithms to overcome flaws exposed in each itera-
tion. In order to test our program after each implementation cycle to determine whether
improvements were made, we first define a set of criteria against which we measure suc-
cessfulness as well as methods to do so.

5.1 Criteria and Methods of Testing

5.1.1 Measurements of Correctness

Our goal is for our program to be able to infer scores from the start to finish of a ten-
nis match and so one measurement of successfulness could be how many points it infers
correctly before making a mistake. This is intuitively reasonable as the more points for
which the analyser can infer correctly, the closer it is to the ideal goal. We use this as
one quantitative measurement although it is not the only one. Longer duration of correct
inference is an indication of successfulness, however it may not give the whole picture of

35

5 Inferring Score From Live Odds Feed

what is going on. For example, it could be that in two versions of the program, where
one is a modification of the other, the second makes a mistake sooner but apart from this
particular mistake it would have inferred the rest of the match more correctly than the
first version. In such cases, it is not trivial to say whether the modification had improved
the program and so judgement, upon analysis of results, is needed. It is also important to
perform testing on multiple sets of data as methods which seem to work well on one set
may be particular to that set of data and ineffective on others.

5.1.2 Manual Testing

To recognise when the program makes an inference mistake, we must know what the actual
score of the match is at any time. One way we could do this is to also record scores of
matches for which we are recording Betfair data. During testing against replays, we could
then compare inferred scores to that which was recorded. Furthermore, recording the times
of scoring along with graphs of Betfair data would allow us to easily identify and analyse
price movement patterns triggered by point scoring.

There are a number of websites that claim to have live-updating of tennis match scores. In
reality, the live scores of the vast majority of these have a substantial lag or inconsistent
rate of update. For instance, it is often the case that the websites indicate scoring up to
half a minute after the Betfair odds movements have suggested scoring had occurred and
it is not uncommon either for updates not to occur for many minutes then all at once.
Of all the websites, the most reliable for scoring updates has a consistent lag of around
15 seconds. Paired with graphs of live Betfair data, it is not too difficult to determine
exactly when points are scored. Thus, for a means to compare inferred scores to actual
scores, we first perform a screen recording of our live data graph along with the website’s
live scores whilst a match is taking place, as in figure 18, then play it back at a later time
while also running our analyser. We remark that in fact, one of the potential applications
of this project could be to completely or partially replace the dependence on other less
reliable methods of obtaining scores such as those websites that we use here in testing our
program.

The method of confirming correctness of the inference analyser described above is entirely
manual in that it relies on comparing actual score, shown on the recording, to inferred
score, from the program running on replay data, by eye on a point by point basis. This
may appear somewhat crude but it is definitely necessary in understanding the workings
of the analyser. For instance, viewing price movements on the graph as the inference
program run with replay data can give important insight into how and why some methods
are successful and others not. We will see examples shortly.

5.1.3 Automated Testing Framework

Although manually following the program whilst each score is inferred is essential, it is
still useful to have a means of efficiently testing the program in an automated way since
following an entire match is very time consuming. Sometimes we merely wish to know
whether a mistake is made at all and if so, at what point in the match does it occur so that
we can focus our attention there, thus improving efficiency in debugging. For this purpose,
we implement a testing framework for our program. As well as for comparing various
inference strategy implementations, we also use the framework to rapidly run the program

36

5 Inferring Score From Live Odds Feed

Figure 18: Performing screen recording of match-winning probabilities implied by Betfair
odds together with live scores. (Nadal vs. Djokovic - Sony Ericsson Open 2011)

with multiple parameters and compare results. This is particularly useful in relation to
testing a range of player point-winning probabilities, discussed shortly in section 5.1.4.

We modify the recorded csv file 4.4 to include a scoring column with entries denoting when
a player scores. This can be done either through the GUI at the time of replay recording
or by editing the csv file, post match, against recorded scoring data.

We build the framework to run the inference analyser at maximum speed checking times
of inferred scoring against that of the actual score, written earlier to the csv file. If, at
a particular time, one source indicates that scoring occurs and the other does not then
we know that an erroneous inference was made. In such a case, we either ask the test to
terminate, to allow us to investigate the cause, or to automatically correct the erroneous
inferred score to actual score and continue testing. In the end, the test reports the number
of times and at which points a correction was needed. Note that we allow a predefined
discrepancy between the time of inferred scoring and actual scoring as the timing is not
expected to be exact.

By testing the program in such a way, we reduce the time it takes to find points of failure
of errors of the program, with respect to one set of match data, from around 3 hours (if
we were to follow a whole match in real-time) to around one minute. Note that this is at
the cost of the additional overhead of inputting the actual scoring to the csv file before we
can use the framework. However, this is still beneficial especially when we may require to
test the program multiple times for many reasons including that described below.

37

5 Inferring Score From Live Odds Feed

5.1.4 Testing with Multiple Point-Winning Parameters

Since there is no sure or straightforward way of obtaining values for player point-winning
probabilities, it would be difficult for us to be confident in their reliability, no matter
how they are determined. Consequently, if the program makes an inference mistake, we
cannot differentiate whether it was truly due to the inference strategies being used or due
to incorrect estimation of these input parameters. The only way to be sure would be to
re-run the program under different point-winning probability parameters.

If the current implied match-winning probability is 0.5, then this may correspond to an
infinite number of player 1 and player 2 point-winning probabilities e.g. 0.2, 0.3, 0.5 etc.
In fact, any value as long as both players have the same. One such method we suggested
in section 3.6 for solving this problem is to introduce an additional constraint such as a
fixed sum of the two probabilities but this itself is difficult. For testing purposes, we want
to run the inference simulation under a range of point-winning parameters, near to that
which we estimated. To do this, we repeat the test varying the value of the fixed sum of
the two point-winning probabilities, in intervals of a predefined step, after each run.

5.2 Heuristic 1: Calculating Thresholds and Detecting Crossings

A single probability corresponds to many possible scorings in a match as multiple situations
have the same likelihood of occurring. However, given the current score, there are only
two possible new scorings that could immediately arise, specifically, either player 1 gains
a point or player 2 gains a point. Our inference analyser should rely on detection of when
a player scores given that it already knows what the current score is. Thus, if we run the
program from the start of the match then it should be able to detect point scoring and keep
track of the score as the match progresses. The question is now how to recognise point
scoring events occurring by viewing the market data. Assume that at any given point in
the match we know the following:

• Each player’s point-winning probability

• Current score of the match

• Match-winning probability (Implied by latest match-odds as discussed in 4.3)

We use our probability calculator, discussed in section 3.3, to compute the match-winning
probability if player 1 were to score from the current situation and the match-winning
probability if player 2 were to score from the current situation. Assuming that the point-
winning probability parameters are accurate, we now have the two possible values that the
implied match-winning probabilities could change to depending on which player actually
scores. It is intuitive that these two probabilities will be either side of the current implied
match-winning probability. We set these two values as thresholds for which we continuously
test the latest implied match-winning probability against, until one is crossed in which case
we infer that the corresponding player had scored. By updating the current score to what
was just inferred and using the latest implied match-winning probability, we calculate a
new pair of threshold values and repeat the process. This is shown in figure 19.

The pseudo-code for such an algorithm is given in Algorithm 3. The threshold is defined
to be exactly the match-winning probability if a player was to win a point from the cur-

38

5 Inferring Score From Live Odds Feed

Figure 19: When implied match-winning probability exceeds a threshold, we infer that a
point was scored. New thresholds are then calculated according to new score. (Nadal vs.
Djokovic - Sony Ericsson Open 2011)

rent score. This could be changed to include an additional percentage error, adjusting the
threshold for cases when the market is found to be under or over-reacting to point scorings.
If the market is over responsive, that is if implied match-winning probabilities are chang-
ing more than expected after each point, we could widen the gap between the threshold
values for a stricter requirement before inferring scoring. Conversely, if the market is less
responsive, we could narrow the threshold gap to infer scoring under smaller change of
implied probabilities.

5.2.1 Results of Use

This strategy does allow our program to detect initial instances of scoring, however success
is severely limited. In fact, only the first few points are correctly inferred before a mistake
appears. Even if we manually correct the inferred score, another mistake will be made at
most two or three points later.

The problem seems to be that when a point is scored, odds often change more than ex-
pected beyond the threshold, meaning the expected match-winning probability could now
be very different to the actual implied match-winning probability for the given point. As
more points are scored, the difference between the expected and implied match-winning
probabilities, grows larger. This results in the thresholds becoming increasingly incorrect
with respect to the market implied match-winning probability. Consequently, the thresh-
olds may not bound the implied match-winning probability as expected, thus becoming a
useless means of scoring detection. In extreme cases, the implied match-winning proba-
bility may even be outside of a pair of newly calculated threshold causing an immediate
erroneous inference after the previous one. An example is shown in figure 20a.

One could conclude that the more than expected price movements is down to irrational
over-reactions of the market, however this may not be the case entirely. The fact that we
judge market odds changes to be an over-reaction is relative to what we are expecting and

39

5 Inferring Score From Live Odds Feed

Algorithm 3 void← inference ()

1: p = probability player 1 scores on their serve
2: q = probability player 2 scores on their serve
3: s = current score

4: while matched not finished do
5: m =latest implied match-winning probability for player 1
6: s1 =score if player 1 wins point from s
7: s2 =score if player 2 wins point from s
8: //Threshold1
9: m1 = implied match-winning probability for player 1 at s1 calculated using p and

q as parameters
10: //Threshold2
11: m2 = implied match-winning probability for player 1 at s2 calculated using p and

q as parameters

12: if m ≥ m1 then
13: //Inferred that player 1 had just scored
14: s = s1
15: else if m ≤ m2 then
16: //Inferred that player 2 had just scored
17: s = s2
18: else
19: //Inferred neither player had scored
20: end if
21: end while

40

5 Inferring Score From Live Odds Feed

so it is reasonable to challenge the information upon which we are basing our expectations.
In particular, our model assumes that the estimation of point-winning probabilities, which
the market gives to each player, remains constant throughout the match. This may not
be a valid assumption as with new information, in the form of observations of player
performance, the market may alter its perception of a player’s point-winning ability. With
this in mind, we modify our strategy to include periodic re-calibrations of player point-
winning probabilities.

5.3 Heuristic 2: Recalibrating Point-Winning Probabilities

We consider how to deduce the market’s possible changing opinion of player point-winning
probabilities. The difficulty here is almost the same as that of determining the point-
winning probabilities at the start of the match 3.6, that we have two unknown variables
(point-winning probabilities) to deduce from one equation (the relation linking the un-
known variables to the known match-winning probability). The difference in this situation
is that with an assumption, we can reduce the problem to solving for one variable at a
time. Note that the two point-winning probabilities correspond to when each of the two
players serves but also that at any point in a match, only one player is the server. From
this, we assume that the market only changes its views on the point-winning probability
of the player who is the current server. In practice, the two probabilities are not likely to
be entirely independent but their correlation may be assumed insignificant enough for us
to ignore.

Let

• p1Serve be player 1’s point-winning probability on their serve

• p2Serve be player 2’s point-winning probability on their serve

• mwpImplied be latest implied match-winning probability for player 1

If player 1 is serving then we recalibrate by solving for p1Serve with fixed p2Serve and
fixed mwpImplied. If player 2 is serving, we recalibrate by solving for p2Serve with fixed
p1Serve and fixed mwpImplied. We test a range of possible point-winning probabili-
ties by replacing one of p1Serve or p2Serve and calculating corresponding match-winning
probabilities using our calculator from section 3. The algorithm loops in this way un-
til a point-winning probability is found that matches the current implied match-winning
probability. Note that we choose to use a loop as opposed to solving algebraically since
the implementation is simpler and calculations are fast enough to not be of concern. The
algorithm is given in Algorithm 4.

5.3.1 Results of Use

The result is that when points are scored, the next threshold values are now calculated using
point-winning probabilities in line with the market’s perception. This prevents the problem
described in 5.2.1 and allows scoring detection by threshold crossing to work correctly far
beyond the first few points. See figure 20 for demonstration of this scheme in use. Although
errors are no longer caused by incorrect threshold values, sporadical erroneous inferences

41

5 Inferring Score From Live Odds Feed

(a) Before - Inferences become erroneous after short period.

(b) After - Correctly identifies scoring.

Figure 20: Identical situation before and after implementing point-winning probability re-
calibration. Blue arrows indicate time of actual point scoring, red arrows highlight time
of inferred scoring. Erroneous inferences made in (a) as thresholds calculated using point-
winning probabilities that become increasingly out of sync market views. Problem solved
in (b) by calculating new thresholds according to recalibrated point-winning probabilities.
(Mayer vs. Berdych - Sony Ericson Open 2011)

42

5 Inferring Score From Live Odds Feed

Algorithm 4 void← recalibratePointWinningProb (double mwpImplied, Score
currentScore)

1: double pointWinningTemp = 0
2: double mwpTemp = 0
3: double errorOld = 1

4: if player 1 is serving then
5: while abs(mwpImplied−mwpTemp)≤ errorOld do
6: errorOld = abs(mwpImplied−mwpTemp)
7: //Use Algorithm1 to calculate match-winning probability with parameters:
8: mwpTemp = probOfWinning(pointWinningTemp, p2Serve, match-level,

currentScore)
9: end while

10: p1Serve = pointWinningTemp

11: else
12: while abs(mwpImplied−mwpTemp)≤ errorOld do
13: errorOld =abs(mwpImplied−mwpTemp)
14: //Use Algorithm1 to calculate match-winning probability with the parame-

ters:
15: mwpTemp = probOfWinning(p1serve, pointWinningTemp, match-level,

currentScore)
16: end while
17: p2Serve = pointWinningTemp
18: end if

still occur for other reasons such as mistaking inter-point odds fluctuations for actual
scoring.

5.4 Heuristic 3: Recognising Post-Scoring Odds Fluctuations

Large price fluctuations often occur in the time immediately following a player scoring a
point, typically lasting a few seconds before settling down to the expected value. Examples
of such occurrences are shown in figure 21. This phenomenon is most prevalent, although
not limited to, crucial points of a match such as breakpoints, deuce and tiebreakers. An
explanation of these price fluctuations could be initial uncertainty about where the odds
should be - one can intuitively understand this as market forces find an equilibrium between
backers’ and layers’ offers.

Whilst not unexpected, the extent to which prices fluctuate is often problematic for our
program. It is difficult to distinguish such post-scoring fluctuations from price changes
caused by actual scoring, figure 22a shows an example of a false-positive inference in such
a situation.

We devise a method that allows our program to recognise this market behaviour. The
reason we, as humans, can tell some price movements are due to post-point fluctuations is
due to knowledge of very recent point scoring, making another point scoring within such
a short time frame impossible, or at least very unlikely. It therefore seems natural to
teach our program to use the same method, in particular, by implementing a timer. We

43

5 Inferring Score From Live Odds Feed

Figure 21: Red arrows highlight large odds changes caused by point scoring followed
by short periods of smaller odds fluctuations. (Nadal vs. Djokovic - Sony Ericsson Open
2011)

start a countdown of our timer each time our program infers that a point was scored and
any new crossings of thresholds before the timer reaches zero is attributed to post-scoring
fluctuations and is ignored. Normal inference is resumed once the timer fully counts down.

A difficulty in implementing this post-scoring timer method is the choice of countdown
duration. A longer countdown ensures that normal inference is not resumed before the
post-scoring fluctuation period ends but also increases the chance of missing the next
genuine point scoring should it happen within this time. We must find an optimal value
that strikes the delicate balance between these two factors. Since there is no official rule
in tennis regarding minimum time between each point, a suitable value must be decided
through experimentation. We find that the average time between points varies depending
on whether the server or the receiver is the next scorer. In particular, an ace allows the
server to rapidly score the next point whereas it would take the receiver a few extra seconds
to do the same. In accordance with this, we determine that a reasonable countdown value
for the server is 7 seconds and receiver is 9 seconds.

5.4.1 Results of Use

The post-scoring timer prevents almost all instances of false-inference in the situation
described above. Furthermore, we find that even if the next point is scored before the
timer runs down, our program can still detect the point correctly once countdown finishes
since the threshold will already be crossed when normal inference resumes. This gives us
a little leeway in our countdown timer value. However, if two points are scored during
countdown then the program would not be able to infer them both.

44

5 Inferring Score From Live Odds Feed

(a) Before - False-positive inference made.

(b) After - Fluctuation correctly ignored.

Figure 22: Identical situation before and after implementing scoring timer. Blue arrows
in (a) denote recalculation of thresholds following correct inference of scoring, arrows
omitted in (b). Red arrow in (a) highlights an erroneous inference made after odds
crossed threshold values but was not caused scoring. This is correctly ignored in (b).
Black arrow denotes duration of countdown. (Wozniacki vs. Pennetta - Qatar Ladies
Open 2011)

45

5 Inferring Score From Live Odds Feed

5.5 Heuristic 4: Averaging Odds During Fluctuation

An issue related to post-scoring fluctuations is calculation of thresholds according to incor-
rect values. After scoring, the program recalibrates point-winning probabilities according
to the most recent match-winning probability. As we have seen previously, odds after
scoring may be in fluctuation and so the value taken could be an inaccurate estimation of
match-winning odds for that point. In turn, the thresholds calculated using these values
will also be inaccurate and thus cause incorrect inferences of the next point as is the case
in figure 23a. To solve this problem, we record all values of implied match-winning proba-
bility whilst prices are still in fluctuation during countdowns after point scoring. Once the
timer reaches zero, we use an average of the recorded implied match-winning probabilities
for recalibration of point-winning probabilities, which in turn are used for threshold cal-
culation for the next point. This avoids using a single value, which may be inaccurate, for
threshold calculations. Examples of use of this method are shown in figure 23b.

5.5.1 Results of Use

As with the case with many heuristics that we try, the above averaging method solves
one problem but causes another. We mentioned in section 5.4.1 that our program may
still correctly infer points scored during countdown since if a point was scored, a threshold
should already be crossed when normal inference resumes. With the new recalibrating
according to an average, this is no longer the case. Changes in implied match-winning
probability during countdown are included in calculating an average and so new threshold
values would change accordingly. This shows that recalibration according to an average
should not always be used. To decide when it should be done, we maintain detection
of possible scoring even when the timer is counting down and avoid using this averaging
technique should a possible scoring be detected.

5.6 Heuristic 5: Recognising Large Odds Change as Scoring

We have implemented heuristics to suppress errors in different scenarios, however the only
indicator of scoring that we use is still by detection of threshold crossing. Although this
works in most cases, we observe a situations in which it is unsuccessful, shown in figure
24a. We can see that a large, sharp and sustained change in odds occurs in response to
point scoring yet the program fails to detect this as the odds is close but not reaching the
threshold value. In response to this, one might suggest making the thresholds narrower,
for example by allowing a degree of error between implied match-winning odds and the
threshold, but we find this relaxation of criteria causes many false-positives elsewhere.
An alternative solution that does not affect the current threshold crossing scheme is to
implement a separate detection method that recognises large movements as point scoring.

5.6.1 Defining a Large Change

We explore how to define a large change in odds. The difference between threshold values
varies depending on the current score therefore it is clear that large cannot be a constant
value. Instead, we define it as a percentage of the difference between current threshold

46

5 Inferring Score From Live Odds Feed

(a) Before - Threshold calculated according to a value in fluctuation.

(b) After - Threshold calculated according to average value over fluctuation period.

Figure 23: Identical situations before and after implementing score-timer and countdown-
averaging. Red arrow denotes time of scoring, undetected in (a) but detected in (b).
Yellow arrow denotes average odds value over fluctuation period. Blue arrows de-
notes value of odds used in calculation of next threshold values. Black arrow highlights
time over which average of odds is taken for subsequent threshold calculation. (Nadal vs.
Djokovic - Sony Ericsson Open 2011)

we

47

5 Inferring Score From Live Odds Feed

values. If two consecutive implied match-winning probabilities differ by this large amount
then we infer that a point was scored. This is illustrated in figure 24b. In order to avoid
inferring random spikes as scoring, we add an additional constraint requiring that the odds
to remain around the new value after a large change before we conclude that the cause
was a point scoring. Large movements due to random spiking usually return to around the
original value after the initial change and so will be ignored. See figure 25 for an example.

5.6.2 Detecting Large Change Over Many Points

The above heuristic only considers the difference between two consecutive odds updates.
A large change that is spread over three or more points may not be recognised as each
consecutive change may be considered small. Figure 26 shows a case situation in which
this is a weakness. We extend the previous scheme to also detect changes for any number
of updates as long as the change is in one direction, i.e. monotonically increasing or
decreasing. In this way, consistent changes of odds can be detected regardless of the rate
it occurs.

We currently define a large change to be one which exceeds a percentage of the difference
between threshold values. For instance, we can decide that if odds change in an amount
over 50% of the threshold difference then a point has been scored as is the case in figure
24b. Although sometimes successful, the flaw in this idea is that the relative volatility in
odds varies between points and so the appropriate definition of large should also change.
Consider two situations in figure 27. For whatever reason, odds in situation figure 27
oscillate less between points than in figure 27b so we should accept a relatively smaller
change in odds as being sufficiently large to be deemed to be caused by point scoring. This
implies that we need a measurement of relative odds volatility between points.

We record a list of odds values since the last point scoring then the larger the spread
between the values, the greater the volatility. We use the interquartile range of the list
of values, the difference between the third and first quartiles, as the measure of spread.
The interquartile range is suitable over other statistical measures, such as range, mean
or standard deviation as it is more robust, that is to say it is less affected by a small
number of outliers. We can now dynamically specify the large percentage depending on
the expected level of fluctuation. In periods of high volatility, we require a relatively large
change in odds before we deem it to be caused by scoring and the opposite in periods of
low volatility.

5.6.3 Results of Use

We find that recognition of large odds changes as scoring makes a huge contribution to
our program by detecting almost all scorings that the threshold crossing method misses.
In fact, we estimate that out of all inferences made 70% is detected by threshold crossing
and 30% by large odds change recognition.

48

5 Inferring Score From Live Odds Feed

(a) Before - Fails to detect scoring as threshold not crossed.

(b) After - Correctly identifies scoring.

Figure 24: Identical situation before and after implementing large odds change detection.
Red arrows indicate time of point scoring and subsequent odds change. Blue arrows
in (b) denote the threshold difference and maximum odds change which are compared.
In (b), the program correctly detecting scoring shown by the subsequent re-calculation of
thresholds. (Wozniacki vs. Pennetta - Qatar Ladies Open 2011)

49

5 Inferring Score From Live Odds Feed

Figure 25: Red arrow highlights odds spike due to random fluctuation which is correctly
ignored. (Peng vs. Bartoli - Qatar Ladies Open 2011)

Figure 26: Red arrow highlights large change in odds over a period and undetected by
our large movement heuristic as consecutive changes are small. (Ljubicic vs. Verdasco -
French Open 2011)

50

5 Inferring Score From Live Odds Feed

(a) Mild odds fluctuation between point scoring.

(b) High odds fluctuation between point scoring.

Figure 27: Matches, and sometimes different periods within a match, are characterised by
varying amounts of odds volatility. (Wozniacki vs. Pennetta - Qatar Ladies Open 2011 &
Troicki vs. Djockovic - Sony Ericsson Open 2011)

51

6 Case Studies

6
Case Studies

We now show the full score inference software in use although there is some difficulty in
presenting our work as we wish to demonstrate a process rather than a set of data. We run
the program against two real matches. If any mistakes in inference are made, we manually
correct it and continue running. The matches are chosen as examples that give typical
results, in comparison to the numerous matches tested, with regards to successfulness
and limitations of our program. The matches chosen are the same as those analysed in
section 3.7. We present graphs plotting implied-match winning probability with scoring
probability thresholds, as described in section 5.2, so that the reader can see when scoring
was inferred by noting times of threshold recalculation. Any errors made are also explicitly
noted.

6.0.4 Match 1: Wozniacki vs. Pennetta - Qatar Ladies Open (2011)

Caroline Wozniacki played Flavia Pennetta in the quarter finals of the Qatar Ladies Open
2011. Wozniacki was favourite to win with pre-match odds of 1.27, implying a winning
probability just below 0.79. We run our software for the first set, as shown in figure 28a
with the key highlights as follows:

• The program automatically determines service game point-winning probabilities us-
ing method described in section 3.6 with the option of manual adjustment that we
do not use. Probabilities assigned are Wozniacki - 0.59, Pennetta - 0.53.

• Upon starting the match, Wozniacki immediately loses her first service game and
her implied-match winning probability drops. Time of break shown in figure 12. For
the next period, Wozniacki’s under-performance drives her market-implied match-
winning probability below that of her expected, according to the starting point-
winning parameters.

• Recalibration of point-winning parameters after each point, as described in section
5.3, prevents many false inferences in this time. By this stage, probabilities assigned
are Wozniacki - 0.576, Pennetta - 0.53. If not for recalibration, many false-positives
inferences for Pennetta scoring would have occurred as the market over-estimates her
good performance with regards to the starting point-winning probabilities.

• No errors made for the first 35 points played, until end of fourth set.

• First error is an undetected point scoring due to it occurring too quickly after the
previous point, perhaps from an ace. The fluctuation timer, described in section 5.4,
was counting down. This can be seen in more detail in figure 28b.

52

6 Case Studies

• Wozniacki regains control and dominates the second half of the set breaking Pennetta
twice.

• Inference errors occur towards the end of the set when Wozniacki’s match-winning
probability is very high, around 0.9, due to the difference between each point only
affecting match-winning probability slightly.

• Wozniacki wins first set 5− 2 after 75 points.

(a) First set of match.

(b) Close-up of the first error in part (a) - scoring occurs too close together to be
detected.

Figure 28: Market-Implied probability of Wozniacki winning match, with threshold cross-
ings. Red arrows indicate points of erroneous inference. Blue arrow in part (b) indi-
cates the last correct inference before the missed scoring. (Wozniacki vs. Pennetta - Qatar
Ladies Open 2011)

In summary, our program inferred the scores of the first set of the match, making only
four errors in over 75 points (8 games including a 10 point deuce). The longest consecutive

53

6 Case Studies

period without errors was 35 points. Each heuristic we developed in section 5 was used
many times in the process. A weakness that was exposed is when one player denominates
the match, their match-winning probability is very high such that any change in score
only alters it slightly such that our program has difficulty distinguishing fine changes from
market fluctuations between points.

6.0.5 Match 2: Del Potro vs. Soderling - Sony Ericsson Open (2011)

Juan Martin Del Potro played Robin Soderling in the second round of the Sony Ericsson
Open 2011. Graph of implied match-winning probability for Del Potro and thresholds
shown in figure 26.

• Pre-match odds 1.80 imply match-winning for Del Potro of 0.56. Automatically
assigned point-winning probabilities Del Potro - 0.6305, Soderling - 0.6195.

• The first missed inference occurs after 10 points in the third game. This was caused by
market odds not changing as much as expected, not crossing threshold nor triggering
detection via large change in odds.

• The next period, including Soderling breaking Del Potro, was accurately inferred.
Large change in odds were expected for each scoring and so are easily detected when
they occur.

• The following period of lower expected change in odds are more difficult to distinguish
from inter-point fluctuations and so cause some errors.

• Del Potro wins the match 5− 2 after 60 points.

Slightly more errors were made in a similar number of points. Again, all heuristics de-
veloped in section 5 were used. Errors occurred due to similar reasons to before; when
expected odds between points are small, there is difficulty in detecting scoring and more
chance of false-positive inference. Additionally, there was a greater amount of fluctuation
between points than in the previous match that may have been caused by more traders
in the market, greater volume traded and greater liquidity, compare figure 29b to 28b.
This caused odds movement to seem more continuous as they blurred together rather than
change in discrete steps, making it harder to distinguish separate point scoring. Greater
inter-point fluctuation also requires large change in odds for scoring detection using method
described in section 5.6 and so some were missed due to this reason.

54

6 Case Studies

(a) First set of match.

(b) Close-up of the first error in part (a) - discrete consecutive scorings unclear.

Figure 29: Market-implied probability of Del Potro winning match. Red arrows indicate
points of erroneous inference. (Del Potro vs. Soderling - Sony Ericsson Open 2011)

55

7 Evaluation

7
Evaluation

7.1 Hierarchical Markov Model and Match-Winning Probability
Calculator

In section 3, we derived a stochastic tennis model using a hierarchy of Markov chains
defined by two point-winning probability parameters. This model enabled us to calculate
match-winning probabilities, from any point in a match, which formed the foundation of
scoring detection heuristics used later in 5.2.

In section 3.1.5, we discussed the idea of extending our model to include second services by
introducing additional states but rejected this for reasons of complexity. During testing of
our inference program, however, we did speculate that some false-positive inferences may
have been caused by market reactions to first service faults rather than point scoring. It is
possible that these errors may have been prevented if our model took second services into
account, however we hypothesise that it is equally likely that this would have introduced
inference errors in other cases as additional estimated parameters would be needed to
define our model. Further research could be done to investigate this.

Although developed for use in our score inference program, we suggest that the match-
winning probability calculator may be desirable as a standalone application or part of other
systems. For instance, it could be used on future work in tennis modelling, integrated into
other software or even as a tool in aiding traders to make decisions on the market.

7.2 Score Inference From Live Feeds

In section 5, we developed ideas for score inference. We first implemented the fundamental
idea of calculating scoring thresholds then made refinements and additions to enhance
our program. We discovered that the heuristics used with the aim of solving a particular
problem generally did not work in all cases of the targeted behaviour and would sometimes
even cause errors in other situation. This was often inevitable as we found that the market
did not always react in an identical manner given the same situation nor across different
matches. However, we found that inference errors were generally rare overall and that the
heuristics worked well, as seen in section 6.

The score inference software can be enhanced by implementing additional heuristics in
scoring detection, false-positive inference prevention as well as other ideas, forming basis
for much future work. For instance, we suggest:

56

7 Evaluation

• Account for non-independence in probability of winning points, for example, adjust-
ing for psychological advantage when ahead in a set.

• Use variance of each player’s point-winning probability in threshold calculations.

• Develop measure of certainty for when scoring is inferred i.e. confidence that detec-
tion decision is correct.

• Use additional market information such as volume of bets and fully range of back
and lay odds offered.

7.3 Conclusion

We set out to investigate the extent to which it is possible to infer the score of a tennis
match from live betting odds. Our work has proven that this is not only possible but in fact
can be done correctly such that an entire set can be inferred with very few errors. Despite
this success, much more work is still needed before the software would be suitable for
replacing traditional sources of scoring information or integration with automated trading
applications. Overall, we believe our contribution is valuable to the research community
in answering the above question, offering insight into this area and provides precedence for
further research.

57

A Rules of Tennis

A
Rules of Tennis

A tennis-singles match is contested between two players. A game is finished when one
player receives at least 4 points with a two point margin. The values of the first three
points earned by a player are 15, 15, and 10, respectively. When a player wins the first
point, the score is 15:0 (or 0:15). When the scores are a tie at 40−all or above, it is called
a deuce. If the server scores or loses the point after deuce, it is advantage to the server
or receiver, respectively. If the server wins the next point following 40:0, 40:15, 40:30, or
advantage server then he takes the game.

A set is finished when one player wins at least 6 games with a two−game margin. If the
score reaches 6−all, a tiebreaker game will be played to decide who takes the set. Thus,
the possible winning scores in a set are: 6:0, 6:1, 6:2, 6:3, 6:4, 7:5, 7:6. Service of each
game alternates between the players, the winner of the current set starts service of the
next set.

A tiebreak is won when a player reaches 7 points and has a two point lead, it is possible
for a tiebreak game to last indefinitely. The player who was first to serve in the set begins
serving in a tiebreak, after the first point the service alternates every two points.

A match consists of three or five sets, played as the best of three or five. Women’s matches
are always best of three whereas men’s differ depending on tournament rules.

The server of the first game is decided by a coin toss. Thereafter, each successive game is
served by the other player. During a tiebreaker, the player who would normally serve the
point serves once, then service alternates every two points.

For more detailed description of tennis rules and regulations, refer to the International
Tennis Federation rule book [9].

58

B Explanation of Betting Odds

B
Explanation of Betting Odds

B.1 Fractional Odds

Fractional odds quote the total that will be paid out to the bettor should he win, relative
to his stake. For example, odds of 3/1 imply that if you bet £10 then you stand to win
an additional £30, making the net profit £40. Conversely, odds of 1/3 mean you stand to
win £10 on a £60 stake.

B.2 Decimal Odds

In contrast to fractional odds which are conventional in the UK, decimal odds are favoured
in continental Europe. Decimal odds differ from fractional odds in that they quote the
total amount that will be paid out to the bettor including the initial stake. Fractional
odds of 3/1 would be 1 + 3/1 = 4 and fractional odds of 1/3 would be 1 + 1/3 = 1.333.

B.3 Conversion Between Decimal Odds and Winning Percentage

It is more convenient for us to work with percentages rather than odds. Algorithm 5
demonstrates how to convert from decimal odds to percentage.

Algorithm 5 double← decimalOddsToPercentage (double odds)

1: double n = odds− 1
2: int dp = n’s number of decimal places
3: double numerator = n ∗ 10dp

4: double denominator = 10dp

5: double newDenominator = numerator + denominator
6: return (1− numerator/newDenominator) ∗ 100

Converting from probability to decimal odds is equally more simple, shown in Algorithm
6.

Algorithm 6 double← percentageToDecimalOdds (double perc)

1: double numerator = 1− (perc/100)
2: double denominator = perc
3: return numerator/newDenominator + 1

59

C Program Structure

C
Program Structure

Figure 30 shows a simplified UML diagram of the main components of our system. The two
core components that perform probability calculations and score inference are highlighted
in red, development and implementation of these parts will be explained in detail in sections
3 and section 5, respectively. Implied match-winning probability parameter can be taken
from one of two different parts of our program; live Betfair market or recorded replay data,
this is explained in section 4.4.

60

C Program Structure

Figure 30: Simplified UML class diagram of software design.

61

D Tennis Matches Recorded in csv Files

D
Tennis Matches Recorded in csv Files

The following is a list of matches for which csv files were recorded, either in part or in
entirety.

Men’s

• Troicki vs. Djokovic - Australian Open 2011 (Set 1)

• Federer vs. Djokovic - Australian Open 2011 (Set 1)

• Nadal vs. Del Potro - BNP Parisbas Open 2011 (Full)

• Nadal vs. Djokovic - BNP Parisbas Open 2011 (Full)

• Isner vs. Anderson - Sony Ericsson Open 2011 (Set 1)

• Wawrinka vs. Federer - Sony Ericsson Open 2011 (Set 1)

• Mayer vs. Berdych - Sony Ericsson Open 2011 (Set 1)

• Nadal vs. Djokovic - Sony Ericsson Open 2011 (Full)

• Del Potro vs. Soderling - Sony Ericsson Open 2011 (Full)

• Ferrer vs. Devvarman - Sony Ericsson Open 2011 (Full)

• Ljubicic vs. Verdasco - French Open 2011 (Set 1)

• Gasquet vs. Bellucci - French Open 2011 (Full)

• Nadal vs. Soderling - French Open 2011 (Set 1)

• Nadal vs. Federer - French Open 2011 (Set 1)

Women’s

• Wozniacki vs. Pennetta - Qatar Ladies Open (Set 1)

• Wozniacki vs. Sharapova - Qatar Ladies Open (Set 1)

• Wozniacki vs. Azarenka - Qatar Ladies Open (Set 1)

• Jankovic vs. Schiavone - French Open 2011 (Full)

• Bartoli vs. Dulko - French Open 2011 (Set 1)

• Jankovic vs. Schiavone - French Open 2011 (Set 1)

• Bartoli vs. Schiavone - French Open 2011 (Set 1)

62

References

References

[1] H2 Gambling Capital Consultants - Gambling Statistics and Reports (accessed 2011).
http://www.h2gc.com/h2data_and_reports.php

[2] SportingIndex (accessed 2010). http://www.sportingindex.com/extra-spread/

guide/betting-market-overview.htm

[3] Betfair (accessed 2010). www.Betfair.com.

[4] William Hill (accessed 2010). www.WilliamHill.com.

[5] Bet365 (accessed 2010). www.Bet365.com.

[6] Wikipedia - Comma-Separated Values Files (accessed 2011). http://en.wikipedia.
org/wiki/Comma-separated_values

[7] Opencsv (accessed 2011) http://opencsv.sourceforge.net/

[8] JFreeChart (accessed 2011) http://www.jfree.org/jfreechart/

[9] International Tennis Federation, Tennis Rules (accessed 2011) http://www.

itftennis.com/abouttheitf/rulesregs/rules.asp

[10] Magnus, J.R. & Klaassen, F.J.G.M., 2000. “How to reduce the service dominance in
tennis? Empirical results from four years at Wimbledon”, Open Access publications
from Tilburg University, urn:nbn:nl:ui:12-84108, Tilburg University.

[11] Brown, Alasdair, 2011. “Evidence of In-Play Insider Trading on a U.K. Betting
Exchange”, Applied Economics, issn:0003-6846. http://www.informaworld.com/10.
1080/00036846.2010.537644.

[12] Easton, Stephen & Uylangco, Katherine, 2010. “Forecasting outcomes in tennis
matches using within-match betting markets,” International Journal of Forecasting,
Elsevier, Vol. 26(3), pages 564-575, July.

[13] Magnus, J.R. & Klaassen, F.J.G.M., 2001. “Are Points in Tennis Independent and
Identically Distributed? Evidence From a Dynamic Binary Panel Data Model”, Journal
of The American Statistical Association, Vol.96, pages 500-509. http://www1.fee.

uva.nl/pp/klaassen/index_files/iid.pdf.

[14] Yaping. Lui, 2001. “Random Walks in Tennis”. http://www.math-cs.cmsu.edu/

~mjms/2001.3/Yliuten.pdf.

[15] Magnus, J.R. & Klaassen, F.J.G.M., 2003. “On the Probability of Winning a Tennis
Match”, Medicine and Science in Tennis, Vol.8, pages 10-11. http://www1.fee.uva.
nl/pp/klaassen/index_files/ArticleMST.pdf.

[16] T. Barnett, A. Brown, S. Clarke (2003). “Developing a Tennis Model That Reflects
Outcomes of Tennis Matches”. strategicgames.com.au/8mcs.pdf

[17] Paul K. Newton, Joseph B. Keller, 2005. ”Probability of Winning at Tennis I. Theory
and Data”, Studies in Applied Mathematics, Vol.114 (3), pages 241-269, April.

63

http://www.h2gc.com/h2data_and_reports.php
http://www.sportingindex.com/extra-spread/guide/betting-market-overview.htm
http://www.sportingindex.com/extra-spread/guide/betting-market-overview.htm
www.Betfair.com
www.WilliamHill.com
www.Bet365.com
http://en.wikipedia.org/wiki/Comma-separated_values
http://en.wikipedia.org/wiki/Comma-separated_values
http://opencsv.sourceforge.net/
http://www.jfree.org/jfreechart/
http://www.itftennis.com/abouttheitf/rulesregs/rules.asp
http://www.itftennis.com/abouttheitf/rulesregs/rules.asp
http://www.informaworld.com/10.1080/00036846.2010.537644.
http://www.informaworld.com/10.1080/00036846.2010.537644.
http://www1.fee.uva.nl/pp/klaassen/index_files/iid.pdf
http://www1.fee.uva.nl/pp/klaassen/index_files/iid.pdf
http://www.math- cs.cmsu.edu/~mjms/2001.3/Yliuten.pdf
http://www.math- cs.cmsu.edu/~mjms/2001.3/Yliuten.pdf
http://www1.fee.uva.nl/pp/klaassen/index_files/ArticleMST.pdf
http://www1.fee.uva.nl/pp/klaassen/index_files/ArticleMST.pdf
strategicgames.com.au/8mcs.pdf

References

[18] James. A. O’Malley, 2008. “Probability Formulas and Statistical Analysis in Ten-
nis”, Journal of Quantitative Analysis in Sports, Vol.4, Iss.2, Article 15. http:

//www.bepress.com/jqas/vol4/iss2/15.

[19] Paul K. Newton & Kamran Aslam, 2009. “Monte Carlo Tennis: A Stochastic Markov
Chain Model”, Journal of Quantitative Analysis in Sports, Berkeley Electronic Press,
Vol. 5(3). http://www.bepress.com/jqas/vol5/iss3/7.

[20] F. Bause, 2002. Stochastic Petri Nets (2nd Edition). http://ls4-www.informatik.
uni-dortmund.de/QM/MA/fb/publication_ps_files/bause_kritzinger_spn_

book_screen.pdf.

[21] “Probability Models for Tennis Scoring Systems”, Journal of the Royal Statistical
Society. Series C (Applied Statistics), Vol 37 pages 63-75.

[22] Jackson, D., and K. Mosurski. 1997. “Heavy defeats in tennis: Psychological momen-
tum or random effect?”, Chance, Vol.10(2), page 27.

64

http://www.bepress.com/jqas/vol4/iss2/15
http://www.bepress.com/jqas/vol4/iss2/15
http://www.bepress.com/jqas/vol5/iss3/7
http://ls4-www.informatik.uni-dortmund.de/QM/MA/fb/publication_ps_files/bause_kritzinger_spn_book_screen.pdf
http://ls4-www.informatik.uni-dortmund.de/QM/MA/fb/publication_ps_files/bause_kritzinger_spn_book_screen.pdf
http://ls4-www.informatik.uni-dortmund.de/QM/MA/fb/publication_ps_files/bause_kritzinger_spn_book_screen.pdf

	Introduction
	Online Sports Betting
	In-Play Trading on Exchanges
	Betfair
	The Tennis Market
	Tennis Trading

	Our Goals
	High Level System Overview
	Match-Winning Probability Calculator
	Score Inference Analysis

	Contributions
	On Tennis Modelling
	On Probabilities of Winning Points on Serve
	On Analysis of Tennis Betting Odds

	Match-Winning Probability Calculator
	Hierarchical Markov Tennis Model
	Assumptions
	Introducing Discrete-Time Markov Chains
	Modelling the Game Level
	Modelling the Set Level
	Modelling the Match Level

	Implementing a Single-Level Analyser
	Linking All Levels
	Sample of Match-Winning Probability Calculations
	Ensuring Correctness of the Match-Winning Probability Calculator
	Comparison to Results in Other Works
	Building and Comparing Results against a Tennis Match Simulator

	Determining Point-Winning Probability Parameter to Use for a Match
	By Analysis of Historical Player Statistics
	By Assuming a Fixed Value of the Sum of the Two Point-Winning Probabilities

	Comparing Expected and Implied Probabilities of a Real Match
	Match 1: Wozniacki vs. Pennetta - Qatar Ladies Open (2011)
	Match 2: Del Potro vs. Soderling - Sony Ericsson Open (2011)

	Using Data From Betfair
	About the Betfair API
	Tennis Market Information
	Deducing Match-Winning Probability From Market Odds
	Choice 1: Average of Best Back and Best Lay Prices
	Choice 2: Moving Average of Back-Lay Average
	Choice 3: Last Price Matched
	Using Data from Both Players
	Using the Spread as Indicator of Uncertainty

	Recording and Replay Matches
	Visualising Market Data

	Inferring Score From Live Odds Feed
	Criteria and Methods of Testing
	Measurements of Correctness
	Manual Testing
	Automated Testing Framework
	Testing with Multiple Point-Winning Parameters

	Heuristic 1: Calculating Thresholds and Detecting Crossings
	Results of Use

	Heuristic 2: Recalibrating Point-Winning Probabilities
	Results of Use

	Heuristic 3: Recognising Post-Scoring Odds Fluctuations
	Results of Use

	Heuristic 4: Averaging Odds During Fluctuation
	Results of Use

	Heuristic 5: Recognising Large Odds Change as Scoring
	Defining a Large Change
	Detecting Large Change Over Many Points
	Results of Use

	Case Studies
	Match 1: Wozniacki vs. Pennetta - Qatar Ladies Open (2011)
	Match 2: Del Potro vs. Soderling - Sony Ericsson Open (2011)

	Evaluation
	Hierarchical Markov Model and Match-Winning Probability Calculator
	Score Inference From Live Feeds
	Conclusion

	Rules of Tennis
	Explanation of Betting Odds
	Fractional Odds
	Decimal Odds
	Conversion Between Decimal Odds and Winning Percentage

	Program Structure
	Tennis Matches Recorded in csv Files
	References

