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Abstract

Injuries during tennis matches are phenomena that can drastically alter the in-
play betting odds of a match even during the course of a single point. In-play
tennis betting markets are some of the most heavily traded in the industry
and enforce a variety of payout policies. These markets often differ in their
odds for a match as only some of them take player retirement into account.
We specifically investigate the Betfair Set Betting market, in which all bets are
cancelled in the event of a retirement, and the Betfair Match Odds market,
which only pays out on retirements if they occur after the first set has been
played.

By interpreting the probability a player will retire at some point during the
remainder of a given match as a function of any gap in the odds of the two
Betfair markets, we create the world’s first model of a tennis match that takes
into account risk of retirement. We test our model on randomly generated
artificial matches to see if we can imitate the expected behaviour of markets
that use different retirement payout rules.

We find that we are able to follow the progression of Betfair in-play tennis
markets for a number of real-life matches to a good degree of accuracy and
can provide a value for the retirement risk of a given player at any point. We
also attempt to predict the evolution of a market which pays out on retire-
ments even after just one ball has been played. We find that although this
after one ball model generally behaves as expected, it is very sensitive to any
gap in the Betfair odds which in turn affects our predicted retirement risk.
Similarly, we note that larger than expected retirement risk spikes are seen
when a player has a low match-winning probability. Such fragilities are due
to a heavy dependence on imperfect odds data.
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INTRODUCTION 1
1.1. Player Retirement in Tennis Matches

In professional tennis, a player may ‘retire hurt’ from a match at any time
should they feel they are unable to complete the match due to injury or ill-
ness, or that it is unwise to continue in case they aggravate their condition.
The match is consequently awarded to the opponent regardless of the current
match state. A walkover occurs when a player withdraws from a match before
it has begun.

In-play injuries are common occurrences in tennis as a whole. Between 2000
and 2009, there was a retirement during approximately 3.9% of Grand Slam
men’s singles matches[1]. At any one time there is likely to be a significant
number of professional tennis players that are currently recovering from in-
juries sustained during a match. The TennisInsight.com1 website records a
huge number of facts and interesting statistics about all registered professional
tennis players and any matches they play, including tournaments currently be-
ing held. Figure 1.1 shows a snapshot of the list of currently sidelined players
maintained on TennisInsight.com. The majority of the injuries shown were
the cause of retirements from matches in tournaments, suggesting that they
occurred in-play.

1.2. Rise of the Online Gambling Industry

In recent times, interest in online gambling has seen phenomenal growth due
to the widespread availability of the internet, especially with the rapid ad-
vances in smartphone technology seen over the last few years. The global
online gambling industry grew by 12% during 2010 to reach a breathtaking
total of almost $30 billion. Sporting events, in particular, are a favourite of
many a gambler and sports betting has seen an increase in popularity to match
the industry as a whole, with 41% of revenue attributed to this sector. The
online gambling industry is predicted to be worth up to $40 billion by 2014
should current trends continue[2].

1http://www.tennisinsight.com
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CHAPTER 1. INTRODUCTION

Figure 1.1.: Snapshot of the list of current and recently injured professional ten-
nis players as shown on TennisInsight.com (accessed June 2012, midway
through the French Open)

Betting Exchanges

In the high street, the traditional bookmaker is the market maker; they quote
buy and sell prices, i.e. offer bets for contrasting events. Companies such
as William Hill and Paddy Power offer odds on the outcomes of events and
accept wagers from customers. However, these bookmakers do not offer what
you might call actual odds. Although odds are by their very nature subjective,
the odds offered by bookmakers are slightly biased in favour of themselves in
order to statistically guarantee that they make a profit. If bookmakers offered
actual odds, over a long period of time they would only be able to break even
(similar to if one flips a coin many times, one will get approximately heads
half the time and tails half the time). This means that these odds are not truly
indicative of the probability of a certain event occurring.

Betting exchanges, on the other hand, work differently. They allow customers
to trade directly with each other whilst they instead play the role of supervi-
sor or middleman. The customers themselves are allowed to offer as well
as place bets; they essentially fulfil the role of bookmaker as well. Whereas
successful gamblers may be restricted by a traditional bookmaker, exchanges
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CHAPTER 1. INTRODUCTION

allow bets of any size and odds - as long as someone is willing to match them!
Betting exchanges such as Betfair instead charge a percentage commission on
customer net winnings in order to generate revenue. As a result, the odds on
an exchange are decided by the user base so we can assume that they more
closely reflect the true odds of an event occurring as they represent the com-
bined opinions of a large number of people. This is especially true for popular
markets such as tennis, football, and horse-racing, where millions of pounds
are traded on individual events.

1.3. In-Play Tennis Betting Markets

The creation of betting exchanges has arrived hand-in-hand with the emer-
gence of in-play betting markets. In-play betting is when customers are able
to place bets while an event is still in progress. Some tennis related examples
include Set Betting (final score), Most Aces, Match Odds (picking a winner),
and Total Games. Since traders can now rely on live data from a match in ad-
dition to pre-match estimations, odds fluctuate far more quickly than in the
standard pre-match market as traders react to what is happening in real-time,
potentially allowing greater profits. Traditional high street bookmakers do
offer relatively up-to-date in-play betting odds, for example, next goalscorer
odds at half-time in a football match. However, the high volatility of the mar-
ket increases the risk to the bookmaker, so they may decide to play it safe by
offering poor odds. Consequently, in-play betting is much more prevalent on
exchanges, where the burden is on the trader and one can therefore find better
odds.

Tennis is one of the most heavily traded sports on betting exchanges and con-
tinues to grow at a remarkable pace. For example, during the Wimbledon
2006 final between Roger Federer and Rafael Nadal, Betfair processed approx-
imately £25 million worth of matched trades. For comparison, the Wimble-
don 2011 men’s final between Novak Djokovic and Rafael Nadal matched
£40 million worth of bets. Such interest is not limited to Grand Slam finals ei-
ther; during the women’s semi-final of the Sony Ericsson Open 2011 between
Maria Sharapova and Andrea Petkovic, £10 million was traded on Betfair[3].

Tennis is well suited to in-play trading on exchanges since points are played at
a steady rate, are clearly separated, and are consistently won and lost by both
participants, leading to frequent dramatic changes in fortune for players but
at relatively predictable intervals. Consequently, the odds can very quickly
swing back and forth as traders react to on-court events, generating potential
money-making opportunities. This, in combination with the fact that tennis
markets have the ability to offer only a few outcomes (e.g. in the Match Odds
market, there are only two outcomes, either one player wins or the other
does), ensures its popularity. Around 80% of money waged on tennis matches
is bet while the match is in progress[4].

3



CHAPTER 1. INTRODUCTION

Player Retirement Payout Policies

Betting companies take different approaches when dealing with the issue of
player retirement. Typically, they fall into one of four categories (with regards
to Match Odds markets)[5]:

Category 1: Ball-Served Rule For a bet to stand, at least one ball must have
been served, e.g. Ladbrokes.

Category 2: One-Set Rule For a bet to stand, at least one set must have been
completed in the match. However, if a player retires from the match
before the first set is over, all bets are cancelled and stakes are refunded,
e.g. Betfair.

Category 3: Two-Sets Rule For a bet to stand, at least two sets must have
been completed in the match, e.g. TheGreek.

Category 4: Match-Completed Rule The entire match must be completed
for a bet to stand, e.g. Paddy Power.

Markets offered on the outcomes of individual games or sets are always ren-
dered void unless the result has been unconditionally determined.

Betfair

UK-based betting company Betfair2 was the world’s first betting exchange. It
was launched in 2000 and now boasts over 4 million customers, handles in
excess of £50 million a week[6], and possesses a dominant 90% share of the
betting exchange market[7]. Betfair’s popularity should ensure that we have
markets with as high liquidity (i.e. plenty of willing buyers and sellers) as
possible to analyse, where the odds accurately reflect the evolution of a tennis
match.

Betfair falls into Category 2 of the tennis betting retirement payout policies
with respect to its in-play Match Odds market[8]. Its Set Betting market is
always voided in the event of a retirement since if the match is not finished,
we do not have a final score.

2http://www.betfair.com
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1.4. Premise

The Betfair exchange provides us access to only Set Betting and Match Odds
markets. Figure 1.2 displays the evolution of implied match-winning prob-
abilities for Novak Djokovic when he played Rafael Nadal in the US Open
2011 Men’s Final. The blue line shows implied probabilities extracted from
the Betfair Set Betting market, the red line shows implied probabilities ex-
tracted from the Betfair Match Odds market, and the green line shows the
positive difference of the Set Betting probability minus the Match Odds prob-
ability. As you can see, both markets are closely matched. This is intuitive
since the probability of Djokovic winning the match should be the same as the
sum of the probabilities of the final score being 3-0, 3-1, or 3-2 in Djokovic’s
favour. This is especially true in high profile matches such as this one where
the markets are very liquid and millions of pounds are being traded in both,
leading them to produce very accurate odds.

Figure 1.2.: Evolution of implied match-winning probabilities extracted from the
Betfair Match and Set Betting markets as well as the gap between them
for Novak Djokovic - Djokovic vs. Nadal (US Open 2011 Men’s Final)

Compare with Figure 1.3 which displays the evolution of implied match-
winning probabilities for Andy Murray when he played Michael Berrer in
the French Open 2011 Men’s Third Round. In particular, observe where the
Match Odds probability of Murray winning the match suddenly drops almost
60% (pointed out by the arrow). This phenomenon in the odds data occurred
during a single point in the match. There is no possible event that could have
caused this huge swing in the market so quickly other than the injury that was
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suffered by Andy Murray. We quote from the BBC Sport3 live text commen-
tary of the match during this point:

• "Big, big trouble for Andy Murray, who has gone over on his right an-
kle and looks in real pain. Not sure whether he will be able to continue.
Unbelievable."

• "We are going to have a medical time-out while Murray has treatment.
He slipped as he ran in to put away a forehand, and the replays are not
very pleasant to watch."

In this case, the injury did not cause Murray to retire from the match and he
went on to win in straight sets. Nevertheless, it is clear the market reacted
to this event and its opinion on Murray’s chances of winning the match was
severely affected.

Figure 1.3.: Evolution of implied match-winning probabilities extracted from the
Betfair Match and Set Betting markets as well as the gap between them
for Andy Murray - Murray vs. Berrer (French Open 2011 Men’s Third
Round)

3http://www.bbc.co.uk/sport
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CHAPTER 1. INTRODUCTION

1.5. Contribution

The primary goal of this project is to attempt to create a new model for ten-
nis matches that takes into account the risk that a player will retire from the
match as it progresses. This is not a concept that has been researched before;
this is the world’s first model of its kind. This knowledge makes the idea an
exciting prospect, but also ensures that the investigation will involve signifi-
cant trial and error.

We can observe the evolution of the Betfair Set Betting and Match Odds mar-
kets in order to help us quantify a player’s risk of retirement. This will provide
us with parameters to input into our model. For example, we can see from
the Murray vs Berrer match when the injury occurred that the Match Odds
implied probability dropped sharply but the Set Betting implied probability
remained relatively stable. If a player becomes injured and concedes the match
at any point, traditional bookmakers will usually cancel all bets in the Match
Odds and Set Betting markets (they fall into Category 4). Betfair, however,
will still pay out on bets to win, but will refund money on final score bets
(since the match has a winner but no final score) as long as at least one set
has been played. In this way, the Betfair Set Betting market simulates a Match
Odds market that ignores risk of retirement whereas the actual Betfair Match
Odds market takes into account this important factor, given one set has been
played. Consequently, we see discrepancies between the match and final score
odds in such scenarios (possibly more so beyond the first set) as we do in the
Murray match.

The theory is that the probability of a player retiring at some point during the
remainder of the match should be somehow encapsulated within the difference
between the two markets, i.e. the combined opinions of all the traders betting
in those markets (the wisdom of the crowd). All the complex factors which
lead to a player deciding to retire such as the state of the match, the serious-
ness of the injury, the importance of the match, even their past history of
retirements, should be some function of this gap in the odds. We will examine
the possibility of observing when a potential injury might have occurred in a
match and extracting a value for the likelihood that a player will retire at any
point during the remainder of a match by analysing the difference between
these markets in-play.

• Can we create a more accurate model for predicting the winner of
a tennis match than has been achieved previously by taking into
account risk of retirement?

• Can we use our model and the odds data to predict the evolution of
markets that use other player retirement payout policies from any
point in a match?

7
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Applications

The project alone is an attempt to break new ground in the fascinating area
of sports modelling and this is our prime motivator. Nevertheless, we hope
that the findings will be useful to those with an interest in the growing tennis
trading business since injuries are phenomena that have a massive financial
impact on in-play betting markets. The ability to predict the evolution of the
market (and even markets using different retirement payout policy rules) in
the presence of injuries is an important factor that current models are lacking.
We could also give valuable insight into the efficiency of the in-play markets
we are studying.

Our results could be useful to tennis coaches and personal trainers, who might
be interested in the likelihood their players may retire hurt after suffering a
potentially serious injury during a match. For example, Jayanthi, O’Boyle,
and Durazo-Arvisu (2009)[9] examined over 28,000 matches from US Tennis
Association junior national tennis tournaments in 2005 and found a much
greater risk of medical withdrawal in matches beyond the fourth round. Such
information may also be useful for media coverage of tennis. Imagine if com-
mentators and pundits could estimate the likelihood one of the players might
retire and display it to the viewer.

We may also be able to apply our theories to other sports. It could be rela-
tively straightforward to model retirement risk in similar point-based racquet
sports such as badminton, table tennis, or squash, given there is the necessary
data. It would require much further research if we wanted to look at team
sports such as football, rugby, basketball, or cricket, where it is extremely
difficult to measure the impact an injury to an individual player has on the
team.

There are even parallels to the topic of natural disaster modelling which has a
large impact on the insurance industry. One could arguably see an injury as a
’disaster’ (the greater the severity, the lower the frequency) or even a player as
a precious commodity.
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1.6. System Overview

In order to be able to observe the Match Odds and Set Betting in-play markets
for a given match, we will require access to Betfair odds data. It would be inef-
ficient to use real-time data; we do not know if an injury will occur in a match
yet to be completed. We will make use of a software platform called Swarm by
FracSoft[3], which allows users access to a large database of historical Betfair
odds information.

In order to be able to analyse whether there is any relationship between an
odds discrepancy in a match and a risk of retirement (and also decide which
matches to gather data for), we will also need information concerning whether
a player sustained an injury during a given match. TennisInsight.com as well
as sports news reporting websites such as BBC Sport will be of great assistance
since they both compile reports on all important events occurring in major
tennis tournaments.

The investigation will be divided into four main stages which will hopefully
combine to form a coherent story.

1. Parsing and processing Match and Set Betting historical Betfair
odds data for top-level tennis matches in order to calculate and com-
pare the match-winning probabilities each market produces. We will
only study matches for which it was reported that one of the players
sustained an injury while playing (Chapter 3).

2. Creating a new model for a tennis match that takes into account the
probabilities of each player retiring on each point by incorporating extra
parameters and defining additional outcomes of a match compared to a
standard tennis model. We will interpret the probability a player will
retire at some point during the remainder of a given match as a function
of any gap between the two Betfair in-play markets (Chapter 5).

3. Finding a way of calculating or approximating suitable values for
the parameters required for the model with the aid of the odds data
and real-world averages (Chapter 6).

4. Preparing results data to accompany the corresponding odds data as
well as our chosen parameters in order to evaluate and refine the
model (Chapter 7).

We reason that there is an element of randomness with respect to injury oc-
currence in a tennis match. Consequently, we investigate the use of a suitable
probability distribution when modelling the risk of retirement. We use the
well-known tennis formulae presented in various academic papers as well as in-
vestigating both analytical and numerical solutions in solving the modelling
problem and then searching for appropriate parameters.

9



CHAPTER 1. INTRODUCTION

To test our system on odds data for a real-world tennis match, we also need
to know how the given match played out on a point-by-point basis so that
we are able to input the current score into our model at any time during the
match. We find that the only viable way of entering such data into our system
is manually. Furthermore, as with any modern tennis model, we require the
point-winning probabilities on serve for each player as input. We estimate
these values using a combination of the odds data, real-world averages, and
ideas discussed in previous investigations into these variables.

Figure 1.4 below shows a high-level overview of what our system will look
like.

10
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Figure 1.4.: High-level system overview diagram
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BACKGROUND 2
Tennis is one of the world’s most popular individual sports. It would be help-
ful when reading this report to have a good understanding of how the sport is
played so we briefly summarise the scoring system in Appendix A.

Tennis happens to be a relatively simple game to model in comparison with
other highly complex sports such as football or cricket, as it is just a series of
discrete repeated contests, i.e. points, and calculations essentially boil down
to the probability each player has of winning a given point. The scoring sys-
tem has a fixed number of hierarchical states; points are nested within games,
games within sets, and sets make up a match.

2.1. Betting Odds

Equally as important to this investigation are the mechanics of betting odds.
Everyday usage of odds in the UK usually comes in the form of the odds
against for a particular event or outcome. This is commonly displayed as the
ratio of two integers:

n/m

where n and m represent the relative chance of the event not occurring or
occurring respectively. For example, if you roll a die, the odds of getting a six
is 5/1 (5 to 1). This is equivalent to the probability:

m

(m+ n)
=

1

6

of the event occurring. In terms of wagering, a bet of m currency units would
return a profit of n units, e.g. an outrageous bet of £10 on rolling a six could
return a profit of £50, as well as the original £10 stake, if one is lucky enough.

Betting Exchanges such as Betfair often use a decimal representation of odds,
which is more common in Europe. Given a probability, p, of an event occur-
ring:

Deci mal Od d s =
1

p

13
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Continuing with our previous die example, the decimal odds for rolling a six
would be:

1
1
6

= 6

Since:

T ot al Re t u r n =O r i g i nal S t ake ∗Deci mal Od d s

you must subtract the original stake from your return in order to calculate
your profit. To convert decimal odds to a percentage chance:

Pe r cent a g eC hance =
100

Deci mal Od d s
e.g.

100

6
= 16.67%

2.2. Exchange Trading

Less widely understood are the intricacies of trading on betting exchanges.
Users buy and sell (or back and lay) with respect to the outcome of sporting
events. When a user lays, they offer up a bet on the exchange with a stake and
odds of their choosing. In essence, they are saying that an outcome will not
occur, and another user may back that bet. For example, a lay of £10 at odds
of 3.1 gives you a maximum profit of £10 (you just keep the stake if someone
takes the bet and loses), and a maximum liability of £21 (you must pay out £10
×3.1 = £31 should someone take the bet and win). Similarly, you can back
a bet and another user can match it with a lay. Just as with shares on a stock
exchange, traders create strategies to buy and sell (or trade their position in
the market) in such a way that profit is guaranteed regardless of the outcome
(achieving a green book). For example, say we back Andy Murray to win
for £100 at odds of 1.4 against Gael Monfils. Murray wins the first set 6-4
and his price drops to 1.2. We can now hedge our initial bet with a lay for
£116.67. As shown in Figure 2.1, this guarantees a net profit of £16.67 before
commission[10].

Odds Stake
Murray Win

Profit
Murray Loss

Profit
Back 1.4 £100 £40 -£100
Lay 1.2 £116.67 -£23.33 £116.67

14



CHAPTER 2. BACKGROUND

Total Liability £123.33
Total Return £140

Net Profit £16.67

Figure 2.1.: Tables displaying an in-play betting opportunity to guarantee a profit
for a match involving Andy Murray

One might notice that backing and laying are logical opposites. In a horse-
race, laying one horse is the same as backing any other horse to win. In our
example above, laying Andy Murray is the same as backing Gael Monfils to
win.

2.3. Interpreting Odds Information

The Betfair tennis odds data supplied by FracSoft is made up of a number of
different values. Each specific outcome that you can wager on is known as a
Selection, e.g. for one of the players to win, or for the final score to be 3-1 to
one of the players. The values provided for each selection include:

Last Price Matched This represents the odds of the last back bet that was
matched by a corresponding lay bet or vice versa; it is the value of the
last odds that were traded.

Best Back and Lay Odds The Betfair Exchange displays the three best avail-
able back and lay odds and their respective volumes (stakes). The low-
est odds represent the best lay price that someone is willing to offer
whereas the highest odds represent the best back price that someone is
willing to offer.

Market Percent The proportion of the total volume matched on a given se-
lection.

Total Volume Matched The total amount of money wagered in all matched
bets.

We will want to compare the Set Betting and Match Odds markets directly
at any timepoint during the match in order to compare them accurately. In
order to do this, we could compare the Last Price Matched (LPM) values. This
could be seen as an accurate indicator of the true odds since it represents a bet
taken rather than just offered. On the other hand, the last price matched is
often (naturally) a step behind the best back and lay prices (bets that have been
offered but not yet taken).

Another option would be to make use of the best available back and lay prices.
The difference between them is known as the market spread. This can be
thought of as the amount you will lose if you both back and lay the same

15
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player at the same time. Consider the following scenario: you back a player
to win for £10 at odds of 2.8 and also lay them for £10 at 3.0 simultaneously.
As Figure 2.2 shows, at best you could break even and at worse you will make
a loss of £2.

Odds Stake Player Win Profit Player Loss Profit
Back 2.8 £10 £18 -£10
Lay 3.0 £10 -£20 £10

Figure 2.2.: Table illustrating the concept of market spread

This is analogous to bid-offer spread for stock traded on financial exchanges.
A small spread indicates a less risky market for buyers since prices only have
to rise by a small amount before you can sell to make a profit. A large spread
indicates uncertainty in the market. Traders offer and accept ’safer’ prices
because they perceive that it might be more difficult to make a profit later
on. For example, say that BP is quoted at 676p-677p. This means you can buy
shares in BP at 677p (the bid price) each and sell them for 676p (the offer price)
each. Consequently, if you buy shares at that bid price, the offer price only
has to rise marginally for you to be able to then sell them at a profit[11]. This
measure could be seen as more indicative to the current state of the match
as traders immediately respond to events that are occurring by offering up-
to-date odds. This could be helpful to us as we want to monitor instinctive
reactions to a possible injury.

2.4. On Injury Risk in Professional Tennis Matches

Many papers have been written on tennis-related injuries. In particular, John-
son and McHugh (2006)[12] attempted to quantify the demands in profes-
sional male tennis by analysing the number and type of strokes played per
game for 22 players from three Grand Slams. They found that the serve was
the predominant stroke played in service games (up to 60%) whereas topspin
forehands and backhands were more frequent when receiving. The 2003 US
Open winner hit over 1000 serves during his seven matches at the tourna-
ment. More strokes are played at the French Open than Wimbledon due to
the relative speeds of the clay and grass court surfaces leading to longer rallies
at Roland Garros. Importantly, Johnson and McHugh discuss the strain that
playing a point inflicts on the body. They report that over 50% of world-class
tennis players experience shoulder discomfort during their career and 80% of
these cases stem from overuse. Stroke production in tennis involves generat-
ing repetitive forces and motions that are of high intensity and short duration.
For example, the serve is the most strenuous stroke on the upper extremity
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with internal rotation velocities of the humerus reaching 2420% for elite play-
ers during the acceleration phase. This, coupled with the relentless demands
the ATP (Association of Tennis Professionals) and WTA (Women’s Tennis
Association) tours place on players, suggest that it is no surprise injuries are
an issue in the world of professional tennis.

2.5. On Analysis of In-Play Tennis Betting Odds

Easton and Uylangco (2010)[13] modelled a tennis match and compared the
calculated match-winning probabilities of each player to those implied by
the Betfair in-play match odds on a point-by-point basis (using data from 49
matches played at the 2007 Australian Open). They utilised the mid-point of
the favourite’s best back and lay prices (as the odds for the favourite usually
possess a smaller spread) to calculate the implied match-winning probability.
They found an extremely strong correlation between the model and implied
probabilities, the only noticeable period of variation coming when one con-
testant played at a level vastly different from their expected ability for a short
time (see Figure 2.3). This property is vital to our work as it signifies a high
level of market efficiency, i.e. the implied odds for an outcome are close to
the actual odds. Similarly, Servan-Schreiber, Wolfers, Pennock, and Galebach
(2004)[14] found that prediction markets are superior to human experts at
forecasting the outcomes of NFL football games.

In addition, Easton and Uylangco found that the market prices even incorpo-
rated information about the differing importance of various points with the
anticipation of service breaks. This bodes well for our hypothesis that market
prices encapsulate information about a tennis match, in particular, the proba-
bility of player retirement. On the other hand, they also discovered that the
market underestimates the tendency for players to lose a greater percentage
of first points after conceding a break of service then points lost on average
while receiving, instead displaying mechanistic responses to the points, i.e.
not anticipating a less than normal probability of winning such points. This
suggests that the in-play markets are not flawless and we will bear this in mind
during our investigation. There was no such evidence of a biased reaction with
respect to the information provided by a player holding serve, however.
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Figure 2.3.: Probability of Nadia Petrova winning the match - Petrova vs. Williams
(Australian Open 2007 Women’s Third Round)

Huang (2011)[15] investigated the possibility of accurately inferring the cur-
rent score of a tennis match from the in-play match odds. He finds that entire
sets can be tracked with very few errors, further indicating that in-play odds
successfully reflect the evolution of a tennis match.

2.6. On Modelling Tennis

There have been many past works on the topic of modelling tennis (although
there are none that incorporate retirement risk as a factor). For instance,
Klaassen and Magnus (2003)[16] create a program dubbed TENNISPROB,
which is capable of calculating match-winning probabilities for tennis matches
using Wimbledon singles data from 1992-1995, official rankings, and subjec-
tive judgement to estimate variables such as the point-winning probabilities.

O’Malley (2008)[17] presents what are considered the tennis formulae. The
tennis formulae are a hierarchical series of equations that compute the prob-
ability a given player will win a tennis match given the probabilities that the
given player and his/her opponent will win any of their service points. Com-
bined together are individual formulae for the probabilities of winning games,
sets, and tiebreaks. O’Malley’s tennis formulae are concise and intuitive and
an excellent introduction to the area of research. Although O’Malley focusses
on using his models for pre-play scenarios, for example, for a whole match or
whole set, he hints at using recursion (conditional probabilities) for generat-

18



CHAPTER 2. BACKGROUND

ing match-winning probabilities from any given current score in a match. We
will be looking to extend or improve upon the performance of such a model.

Newton and Keller (2005)[18] more comprehensively explore the use of re-
currence relations to model tennis, utilising them to calculate probabilities
of winning tournaments and also proving explicitly that the probability of
winning a set or match does not depend on which player serves first. Bar-
nett and Clarke (2002)[19] experiment with the same idea in Microsoft Excel.
They investigate using six parameters rather than just the two point-winning
probabilities taking into account service faults. Consequently, for each player
they input the probability of a successful first serve, the probability of win-
ning a point on first serve, and the probability of winning a point on second
serve. This greatly complicates the base model and since we are adding fur-
ther complexity with the probability of retirement, we shall concentrate on
extending the simpler, two parameter version. Barnett, Brown, and Clarke
(2003)[20] followed this up with a investigation into player momentum in
tennis matches by slightly perturbing point-winning probability depending
on how much the given player is leading or trailing the match by (essentially
introducing a dependency between points).

Equivalent is the idea of using a hierarchy of Discrete-Time Markov Chains
(DTMC) to model a tennis match proposed by Liu (2001)[21]. Each possible
score in a match is represented by a state in the system. Certain equivalent
states are combined in order to reduce the size of the state space, e.g. 30-30
and deuce. However, Liu assumes that the probability a player wins a point
stays the same regardless of whether that player is serving or receiving. It is
well known that the server has a significant advantage in tennis (which is why
breaking your opponent’s serve is such a cause for celebration), so we take
this factor into account in our model.

The vast majority of models use the assumption that points played in a ten-
nis match are independent and identically distributed, e.g. the probability of
winning the current point is unaffected by any previous point. Klaassen and
Magnus (2001)[22] analysed almost 90,000 points played at Wimbledon over 3
years and found that, although points played are not completely independent,
the assumption that they are is still a good approximation as the divergence
from iid is small. Note that this assumption is necessary in order to avoid vi-
olating the Markov Property when modelling a tennis match as a DTMC (see
Appendix E).

2.7. On Estimation of Point-winning Probabilities

Most models of tennis matches have in common the use of point-winning
probabilities on serve for each player as parameters. Many researchers such as
Klaassen and Magnus (2003) and Barnett and Clarke (2005)[23] use ranking
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data, historical statistics, and subjective judgement to estimate point-winning
probabilities. Klaassen and Magnus (2000)[24], from the 258 mens and 223
womens Wimbledon singles matches they analysed, found that the average
sum of two players’ point-winning probabilities on serve was 1.29 for men
and 1.12 for women (implying there is greater service dominance in the men’s
game). Huang suggested a combination of these ideas. If we can use the match
odds at any point in the match to estimate the current point-winning prob-
ability of Player A, PA, we can estimate that the equivalent probability for
Player B, PB , is either 1.29 - PA or 1.12 - PA. Although point-winning prob-
abilities will vary for a player from match to match for reasons such as sur-
face, fitness, form, strength of opponent, etc, Newton and Aslam (2009)[25]
showed that they can be modelled as Gaussian-distributed random variables
with relatively low variance. Interestingly, Marek (2011)[26] found that it
is the difference, δ, between the point-winning probabilities of two players
which determines who is more likely to win the match, and not the absolute
values. One can express the match-winning probability of Player A, for in-
stance, as a linear function of δ = PA− PB , within bounds of −0.1≤ δ ≤ 0.1
with reasonable accuracy. We show this in Figure 2.4.

Figure 2.4.: Match-winning probabilities for the situation where PA = 0.645 and
PB = PA−δ, where δ ranges from -0.1 to 0.1

20



ACQUIRING ODDS DATA 3
There would have been no point proceeding with the investigation if we were
not sure that information about a player’s risk of retirement from a match
was could be found within the betting odds. Attempting to confirm that a
significant gap between the Betfair Set Betting and Match Odds markets is
created when a player suffers an injury during a match presented a significant
challenge.

3.1. Identifying Matches

We required odds data from tennis matches where one of the players suffered
a clear injury, i.e. they require treatment from a trainer. In order to help find
such matches, we scoured the internet for sports articles and news reports de-
scribing the events of matches from major tournaments. Particularly useful
was the popular BBC Sport website, which even provides live text commen-
tary on many sporting events.

As mentioned previously, we used a piece of software called Swarm created
by FracSoft to gather historical Betfair tennis odds data. FracSoft[3] is a UK-
based company which seeks to provide trade execution and analysis tools for
use with electronic sports trading exchanges such as Betfair. Their Swarm
software platform provides access to large database of historical Betfair data
going as far back as 2006. It was far more straightforward and reliable to anal-
yse the in-play odds data retrieved from Swarm as opposed to recording real-
time data. It also allowed us to repeatedly test our software with match data
of our choosing as opposed to only matches that are currently being played.
In Chapter 7, we test our new tennis match model against a subset of these
matches.

Swarm allows the customised exporting of odds data in the Comma-Separated
Values (CSV) file format such as in Figure 3.1 below. We used Java CSV parser
library OpenCsv1 to parse such files. It was helpful to visualise the evolution
of the odds data throughout matches when trying to understand and interpret
market behaviour. We used open source Java chart library JFreeChart2 to
generate graphs of our parsed data against the accompanying timestamps.

1http://opencsv.sourceforge.net
2http://www.jfree.org/jfreechart/
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Figure 3.1.: Sample CSV file exported from Swarm - Sharapova vs. Azarenka Match
Odds (Sony Ericsson Open 2011 Women’s Final)

3.2. Comparing In-Play Tennis Betting Markets

We started off by taking the ideal and most straightforward approach to pro-
cessing the odds data. We utilise just the Last Price Matched (LPM) values as
they give the most accurate indicator of the true odds. To extract a value for
the gap between the two markets at a specific given time in a match we:

1. Convert the current LPM value in the Match Odds market for the se-
lection corresponding to our target player into a match-winning proba-
bility.

2. Convert the current LPM values in the Set Betting market of all the
selections corresponding to a victory for our target player, e.g. 2-0, 2-1,
into probabilities and sum to form a match-winning probability.

3. Extract the probability produced by the Match Odds minus the proba-
bility produced by the Set Betting odds.

We quickly discovered that much of our exported odds data suffered from
the problem of low market liquidity, where traders are reluctant to place bets.
This can often be the case for early-round or minor tournament matches be-
tween two little-known players or the underdog in matches where one player
is heavily favoured. Consequently, we find the most accurate data with respect
to matches where the heavy favourite suffers an injury or high profile matches
where either one of the competitors required treatment. Importantly, we also
note that the more complex Set Betting market is often significantly less pop-
ular than the straightforward Match Odds market for most matches. For ex-
ample, in the French Open 2010 first round match between Andy Murray and
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Richard Gasquet, almost £20 million was matched in the Match Odds market
but only £60,000 was matched in the Set Betting market.

This issue is complicated further by the fact that we are directly comparing
two different markets throughout their lifetimes, one of which has up to 6
outcomes (i.e. in the Set Betting market for a 5-set match, each player can
win 3-0, 3-1, or 3-2). For every LPM value in the Match Odds market during
a match that we convert into a match-winning probability for the player in
question, we need a corresponding value drawn from the Set Betting market
using LPM values that were created from bets matched at (approximately) the
same time.

This naturally begs the question of how to deal with the situation where we
do not have all the corresponding LPM values in the Set Betting market. A
possible solution is to make use of the best available back prices, which give
the most up-to-date indicator of what the market thinks. In order to acquire
the highest quality back prices, we must use the idea of crossmatching.

3.2.1. Crossmatching and Virtual Bets

We have previously established that backing and laying are natural opposites,
particularly if there are only two possible outcomes. We also know that the
majority of money traded is bet on the favourite. One might think that
this would make it unreasonably difficult to get a bet on the underdog to be
matched. The crossmatching system implemented by Betfair is a set of rules
dictating how to match unmatched bets. For instance, if you back Player A at
odds of 2.0, Betfair will attempt to match your bet with another trader’s lay
offer at odds of 2.0 or better or any possible match that is equivalent to a lay bet
on Player A, e.g. a back on Player B at odds of 2.0 or better. Consequently,
bets can either be matched by another bet from an actual trader or a virtual
bet created by Betfair using the crossmatching rules[27].

The formula for calculating the odds for a virtual back bet on a specific out-
come by laying all the other selections as given on the Betfair Developers Pro-
gramme(BDP) website[28] is as follows:

BackP r i c e =
1

N −
∑

ι∈L

1

ι

N is the number of possible winning outcomes (1 in our case)
L is the set of the best available lay prices of all the other selections

To calculate the amount of money that should be offered at these odds:

BackO f f e r =
mi n(LayOd d s1 ∗ St ake1, LayOd d s2 ∗ St ake2, ...)

BackP r i c e
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In the Match Odds market, there are only two possible selections so cross-
matching is simple. Say we lay Victoria Azarenka at odds of 3.5 to win for
£10. This is equivalent to backing opponent Laura Robson at odds of:

BackP r i c e =
1

1−
1

3.5

= 1.4

At these odds we can match a stake of:

BackO f f e r =
3.5 ∗ £10

1.4
= £25

This is intuitive since if you back Laura Robson at for £25 at 1.4 you could
potentially stand to win a profit of:

(£25 ∗ 1.4)− £25= £10

On the other hand, if you back Victoria Azarenka for £10 at 3.5 you could
potentially stand to win a profit of:

(£10 ∗ 3.5)− £10= £25

Things get a little more complicated when we start to consider more than
two selections. Remember that higher odds are better when you are backing
as you get a greater payout if you win whereas lower odds are better when
you are laying so you pay out less if you lose. We run through an example
similar to that given on the BDP website[28]. We omit calculations of the
appropriate stakes as we are only interested in the odds information.

Selections Back Lay
England 1.01 1.5 1.5 2.0 2.5 1000.0

West Indies 1.01 2.4 2.5 3.0 20.0 1000.0
The Draw 1.01 3.0 5.0 10.0 50.0 1000.0

Figure 3.2.: Example state of what an in-play Match Odds market for an England vs
West Indies Test Match might look like

Looking at Figure 3.2, say we place a large back bet on the The Draw at 1.01.
This causes the stake to be split between the odds of 1.01, 3.0, and 5.0, with
anything remaining being left unmatched. With crossmatching, we can get
better prices. Notice the best available lay offers for England (odds of 2.0 to
win) and the West Indies (odds of 3.0 to win). These are previously made back
bets that have not yet been matched by a trader willing to lay them. These
two back offers can be matched against our bet on The Draw at a price of 6.0,
since odds of 2.0, 3.0, and 6.0 form a 100% book:
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1

2
+

1

3
+

1

6
= 1

Say that after matching these bets with appropriate stakes, the market now
looks like this:

Selections Back Lay
England 1.01 1.5 1.5 2.5 1000.0

West Indies 1.01 2.4 2.5 3.0 20.0 1000.0
The Draw 1.01 3.0 5.0 10.0 50.0 1000.0

Figure 3.3.: England vs West Indies in-play Match Odds market after the first round
of matching

We ended up matching the whole stake that was available on the lay offer at
2.0, hence its absence from the new state. Now we still have back bets on
England at 2.5 and the West Indies at 3.0. These two bets can be matched
against a back bet on The Draw at a price of 3.75, since odds of 2.5, 3.0, and
3.75 form a 100% book:

1

2.5
+

1

3
+

1

3.75
= 1

We now have the best three available back prices. The two virtual bets we
have calculated are the bets that would have been matched had we received
that (sufficiently) large back bet at 1.01 on The Draw. Figure 3.4 shows the
state of the market with the two virtual bets on the back side of the market
for The Draw selection.

Selections Back Lay
England 1.01 1.5 1.5 2.0 3.0 1000.0

West Indies 1.01 2.4 2.5 3.0 20.0 1000.0
The Draw 3.75 5.0 6.0 10.0 50.0 1000.0

Figure 3.4.: England vs West Indies in-play Match Odds market with the two virtual
bets

We can apply this same concept to the Set Betting market in tennis. For 3-set
matches there are four selections: 2-0, 2-1, 0-2, 1-2, whereas for 5-set matches
there are six selections: 3-0, 3-1, 3-2, 0-3, 1-3, 2-3. Now our algorithm be-
comes:
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1. Convert the current LPM value in the Match Odds market for the se-
lection corresponding to our target player into a match-winning proba-
bility.

2. Attempt to find ’recent’ LPM values in the Set Betting market of all the
selections corresponding to a victory for our target player, e.g. 2-0, 2-1
and convert into a match-winning probability.

3. If we find there is no recent LPM value for one or more of the required Set
Betting selections, use crossmatching with the best available lay prices of the
remaining Set Betting selections to calculate appropriate estimations of the
back prices to use instead.

4. Take the probability produced by the Match Odds minus the probabil-
ity produced by the Set Betting odds.

Unfortunately, in extreme cases, we may find that we do not have a best avail-
able lay price for a selection in the Set Betting market where we need one.
There are not enough up-to-date offers in the market to use our current algo-
rithm. We turn directly to the raw best available back price for the selection
in question in order to calculate a match-winning probability. Step 3 now
becomes:

If we find there is no recent LPM value for one or more of the required Set Betting
selections, use crossmatching with the best available lay prices of the remaining
Set Betting selections to calculate appropriate estimations of the back prices to use
instead. If we find there is no best available lay price for a Set Betting
market selection, then just take the raw best available back price for that
selection.

3.2.2. Correcting for Overround

The concept of overround is essentially how traditional bookmakers make
their money. Given 5 possible outcomes, say a bookmaker prices each selec-
tion at odds of 4/1 or 5.0. This indicates that each selection has a 20% chance
of occurring and we have a 100% book. If the bookmaker were to take an
equal amount of money on each selection, he would break even.
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Outcome Odds Percentage
A 5.0 20%
B 5.0 20%
C 5.0 20%
D 5.0 20%
E 5.0 20%

100%

Figure 3.5.: Table displaying five outcomes of an event each with odds of 5.0, creat-
ing a 100% book

If the bookmaker were to price each selection at 3/1 or 4.0, then the im-
plied probability of each outcome would change to 25% despite this not be-
ing mathematically possible. Now if the bookmaker were to take an equal
amount of money on each selection, he would take five ’units’ and pay out
four. We now have a 125% book with the extra 25% being known as the
overround and representing the bookmaker’s profit (25/125= 20% profit) or
’vigorish’.

Outcome Odds Percentage
A 4.0 25%
B 4.0 25%
C 4.0 25%
D 4.0 25%
E 4.0 25%

125%

Figure 3.6.: Table displaying five outcomes of an event each with odds of 4.0, creat-
ing a 25% overround

What this means is that when working with unmatched bets, i.e. best available
back prices, we must account for the overround (lay bets have an equivalent
symmetric concept called the underround). Step 3 of our algorithm now
becomes:

If we find there is no recent LPM value for one or more of the required Set Betting
selections, use crossmatching with the best available lay prices of the remaining
Set Betting selections to calculate appropriate estimations of the back prices to
use instead, making sure to correct for overround. If we find there is no best
available lay price for a Set Betting market selection, then just take the raw best
available back price for that selection.
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In more detail:

(a) Subtract the probability contribution of any corresponding / recent
LPM values from 1 in order to find the remaining probability that we
need to make up using crossmatching.

(b) Calculate the overround (or rather, the ratio of the total remaining value
of the book to the remaining probability) with respect to the sum of the
crossmatched (or if necessary, raw) best available back prices.

Note that the crossmatching formula is now:

BackP r i c e =
1

RP −
∑

ι∈L

1

ι

RP is the remaining probability
L is the set of the best available lay prices of all the other selections

since we have already accepted some LPM values.

(c) To correct for overround, we divide each chosen back price by the ra-
tio of the total value of the book to the remaining probability that we
calculated.

(d) Add the probability contribution of the LPM values and the probability
contribution of the sum of the overround-corrected best available back
prices to generate the desired match-winning probability.

Note that the accuracy of our direct comparisons between the two markets
depends on our definition of ‘approximately the same time’. We search in a
pre-defined time window around a Match Odds implied probability for Set
Betting data. The larger the window, the easier it is to find Set Betting of-
fers, but the less accurate the comparison and consequently, the less reliable
the resulting graph. We balanced these concerns by choosing a window of 5
minutes either side of the time of a Match Odds sample.
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3.3. Sample Match Data

We now apply our odds processing algorithm to an example real-world match.
In the third round of the French Open 2011, Andy Murray faced off against
Michael Berrer. Murray was cruising through the match until he dramatically
rolled his ankle chasing a drop shot early in the second set and had to receive
lengthy treatment. Fortunately, an almost one-legged Murray still managed
to see out the match in straight sets and avoid the disappointment of a retire-
ment. Figure 3.7 shows the behaviour of the Match and Set Betting markets
for Murray on the Betfair exchange during the match. The blue line is the
implied match-winning probability drawn from the Set Betting market, the
red line is with respect to the Match Odds market, and the green line is the
difference between the two when the Set Betting probability is greater, i.e.
information about the risk of retirement of Andy Murray. This match is an
excellent example of the ’ideal’ type of injury situation; we can see clearly
when Murray’s injury occurred and the effect it immediately had on the mar-
kets (Murray’s Match Odds probability instantly drops from almost 1 to 0.4,
creating a gap of 0.4). We even see the market’s slow realisation that Murray
was not going to retire as the Match Odds implied probability climbed back
up to meet the Set Betting implied probability at 1 at victory.

Figure 3.7.: Evolution of extracted Betfair Match and Set Betting markets implied
match-winning probabilities as well as the gap between them for Andy
Murray - Murray vs. Berrer (French Open 2011 Men’s Third Round)

We also note that the odds data does not produce ’smooth’ results. The Set
Betting market represents implied probabilities without risk of retirement
whereas (for Betfair), the Match Odds market takes into account risk of re-
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tirement after the first set has been played. A totally efficient market (at times
where there is no risk of retirement) would cause both the Match Odds and
Set Betting markets to generate identical implied probabilities. Prior to the
injury, we can see that even though the Match Odds implied probability stays
close to 1 as Murray is dominating, the Set Betting implied probability fluc-
tuates. The theory suggests that a lower Set Betting than Match Odds prob-
ability represents the opponent’s chance of retiring (whereas the opposite is
the target player’s retirement risk). However, Berrer showed no sign of injury
whatsoever in this match.

In a hypothetical match scenario where both players show genuine risk of re-
tirement, each player’s Match Odds probability will decrease a certain amount
due to their own injury, yet also increase due to their opponent’s injury.
The difference between the two Betfair markets will then indicate something
about each player’s retirement risk relative to the other player.

Even after the injury, we see wild movements in the Set Betting odds data.
There are many possible reasons for such anomalies:

• We have already noted that the Set Betting market is significantly less
popular than the Match Odds market. The strictly vertical and hori-
zontal movement at approximately 13:00, for instance, suggests lack of
investment in the market. The match took place at a Grand Slam (the
highest profile of competitions) but it was only the third round and all
signs pointed to a whitewash in favour of Murray. Consequently, there
may not have been much interest in the match from traders. The figures
from FracSoft say £4 million worth of bets were matched in the Match
Odds market and £260,000 in the Set Betting market, which is nothing
special.

• We acknowledge that we could have missed flaws in the algorithm we
used to process the Set Betting odds due to the complexity of the data
and created anomalies in the graphs that otherwise should not be there.
However, we are confident in the correctness of our algorithm since
our results shows some similarity to graphs generated using only LPM
values in the Set Betting market (not necessarily in correspondence with
the Match Odds LPM values).

• We could just be seeing inefficiencies in the market. Differences be-
tween the implied probabilities of the two markets at times when there
was no obvious retirement risk (e.g. early in the match) could simply
indicate possible arbitrage opportunities.
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We also present the same information but for opponent Michael Berrer in
Figure 3.8.

Figure 3.8.: Evolution of extracted Betfair Match and Set Betting markets implied
match-winning probabilities as well as the gap between them for Michael
Berrer - Murray vs. Berrer (French Open 2011 Men’s Third Round)

As noted previously, the odds data is never as comprehensive for heavy un-
derdogs. Nevertheless, you can still clearly see how Murray’s injury coincides
with a large boost in the chances of Berrer winning the match due to a Murray
default. Berrer’s Set Betting implied probability even rises for a short period,
potentially due to an expectation that he might come back to win the match
normally against a hobbling Andy Murray.
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We now know that information about the risk of retirement of players in
professional tennis matches can be extracted from odds data. We can use the
Set Betting market as an imitation of a Match Odds market that provides
implied match-winning probabilities without risk of retirement (since we do
not have access to a real one). Alternatively, we can use an established tennis
match model such as the tennis formulae to represent this market.

4.1. Implementation

The tennis formulae described by O’Malley (2008)[17] calculate the pre-play
probabilities of winning games, sets, matches and tiebreaks given the prob-
abilities of each player winning a point on their serve. As an example, we
give below O’Malley’s formula for the probability of winning a game. The
formula combines the probabilities of all the different ways a player can win
a game. Note that when the game score reaches deuce, the game does not
end until one of the players achieves a two-point advantage. Consequently, an
infinite geometric series represents the progression of the match from deuce.
The formula for a tiebreak is derived in a similar fashion.

g (p) = P(W i nGame)

= p4+ 4 p4(1− p)+ 10 p4(1− p)2+ 20 p3(−p)3. p2
∞
∑

i=3

[2 p(1− p)]i−3

= p4

 

15− 4 p −
10 p2

1− 2 p(1− p)

!

However, we require the probability of winning a game, set, or match from
any given current match state. We code hierarchical, recursive functions that
calculate these probabilities for a given player, similar to those previously ex-
plored in papers such as Newton and Keller (2005)[18] and Barnett, Brown,
and Clarke (2003)[20]. Our input is the probability the target player wins
a point on serve, PA, the probability the opponent player wins a point on
serve, PB , and the current state of the match. Note that for a game, we need
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only to pass in the probability the target player wins any point in that game
(regardless of the server).

You can find pseudocode for our functions in Appendix B.

4.2. Comparison with Previous Works

We compare match-winning probabilities generated by our base model with
those published in previous academic papers. We investigate the pre-play
probabilities found in such papers as well as, vitally, the probabilities of win-
ning from a given match state. For instance, Figure 4.1 shows the probabilities
of winning a game from all possible starting scenarios given a point-winning
probability of 0.54 found by Barnett and Clarke (2002)[19]. O’Malley charted
3-set match-winning probabilities as PA increases from 0 to 1 where PB =
PA− 0.02. Figure 4.2 shows our faithful reproduction of the original graph.

A Score
0 15 30 40 game

0 0.60 0.74 0.87 0.96 1
15 0.44 0.59 0.76 0.91 1

B Score 30 0.25 0.39 0.58 0.81 1
40 0.09 0.17 0.31 0.58

game 0 0 0

Figure 4.1.: Probabilities of Player A winning a game from all possible starting sce-
narios given a point-winning probability of 0.54

Our base recursive model produces results identical to those published in re-
lated works. The model, given a pre-play starting scenario, also agrees with
our implementation of the tennis formulae, further adding to our confidence.
Furthermore, we were successful in reproducing Figure 4.2 and others like it
using our model. However, such results are usually mentioned only in passing
and therefore cover just a small subset of the possible range of input parame-
ters. It would be unreasonable to expect to be able to test all possible point-
winning probability and starting match state combinations and, regardless,
there is no definitive source of correct values to check our output against any-
way. Nevertheless, we still felt it would be sensible to search for a way of
providing a more thorough verification of our functions.
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Figure 4.2.: Chart displaying 3-set match-winning probabilities as PA increases from
0 to 1 where PB = PA− 0.02

4.3. A Tennis Match Simulator

We decided that another way of verifying the correctness of our model would
be to use a different method to calculate match-winning probabilities and see
if we get the same results. To this end, we created a tennis match simulator
capable of approximating match-winning probabilities (as well as many other
statistics, for example, the average number of points in a tiebreak). We in-
put the point-winning probability for each player as well as the current score,
and simulate a large number of matches using the same parameters for each
match. The simulator is probabilistic but we expect convergence towards ex-
act match-winning probabilities. The greater the number of runs (i.e. matches
played), the greater the accuracy of the approximation generated by the sim-
ulator. The proportion of matches the target player wins out of the total
number of runs is an estimation of the chance of winning. Note that we use
a single static Mersenne Twister algorithm implementation to decide which
player wins each point according to the point-winning probabilities, as it is a
fast way of generating very high-quality pseudorandom numbers.

Below we present pseudocode for the simulator.
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Algorithm 1 SimulationOutcomes simulate(double pa, double pb, Match-
State initialState, boolean isScenario, double runs)

SimulationOutcomes outcomes = new SimulationOutcomes(runs)
//When simulating a particular scenario, e.g. a match in progress, we want to
replicate the starting conditions exactly for each run, else we just pick a player
to serve next at random
for each run do

MatchState result = new MatchState(initialState)
if !isScenario then

result.chooseRandomServer()
end if
simulateMatch(pa, pb, result)
outcomes.update(result)

end for
return outcomes

Algorithm 2 MatchState simulateMatch(double pa, double pb, MatchState
score)

while !score.matchOver() do
while !score.setOver() do

while !score.gameOver() do
playPoint(pa, pb, score, score.targetPlayerServing())

end while
if score.tiebreak() then

playTiebreak(pa, pb, score)
end if

end while
end while
return score

Algorithm 3 void playPoint(double pa, double pb, MatchState score,
boolean serving)

double point =mersenneTwister.nextDouble()
if (serving && point < pa) || (!serving && point ≥ pb) then

score.incrementTargetPlayerScore()
else

score.incrementOpponentScore()
end if
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Algorithm 4 void playTiebreak(double pa, double pb, MatchState score)

boolean serving = score.targetPlayerServing()
// Service swaps every odd number of points
while !score.tiebreakOver() do

playPoint(pa, pb, score, serving)
if score.isOddPoint() then

serving = !serving
end if

end while

Fortunately, we find that the tennis match simulator agrees with our base re-
cursive model. This gives us confidence in moving forwards with creating
a model for retirement risk. However, we remain aware of the possibility
that we could have made exactly the same or equivalent mistakes when cod-
ing both the base model and the simulator. In this case, both systems would
generate the same probabilities, hiding any such errors.
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MODELLING RETIREMENT RISK 5
5.1. Point-level Retirement Risk

Our approach to this problem took an intuitive angle. We decided to main-
tain the granularity of the model to be on a point-by-point basis as this is
compatible with the structure of standard tennis models. We could then try
to incorporate this model into a main model for calculating the probability of
winning a tennis match. As examined by Johnson and McHugh (2006)[12],
when a tennis player plays a point (or even on each stroke), he or she puts
great strain on their body. This strain naturally leads to a chance of an in-
jury occurring. For the vast majority of points played, the strain is perfectly
manageable and does not lead to injury. For example, Grand Slam winners
will hit over 1000 serves during the course of the tournament without issue.
Occasionally however, the body fails to cope with the strain, or the strain is
for some reason much more acute than normal (e.g. remember Andy Mur-
ray twisting his ankle), and an injury occurs. When a player does get injured
during a match, it does not always end in retirement. Players often soldier on
at least for a few points and may even recover from the injury as the match
progresses.

Here we present an elegant model for the probability a player will retire on a
given point in a tennis match:

r0 = 0
rn+1 = mi n(ρrn +X , 1)

where rn is the given player’s risk of retirement on point n of the match,
0 ≤ ρ ≤ 1, and X is a random variable. Do not confuse rn with what we
are hoping to eventually calculate which is Rn , the risk of retiring at some
point during the remainder of the match from point n. We make the reason-
able assumption that players start a match with zero probability of retiring
(r0 = 0), else they would choose to not participate and allow their opponent
a walkover. This is not strictly true since players sometimes play matches
despite possessing niggling injuries. We have a decay parameter, ρ, which
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models the idea that players recover from injuries as matches progress. For
the purposes of avoiding too complex a model, we make the simplifying as-
sumption that ρ and the distribution of X is the same for both players. When
setting rn+1, we make sure to take the minimum of the calculated rn+1 and
1, since retirement risk is a probability and cannot be greater than 1. The
random variable, X , models the rationale that each point played causes strain
on a player and therefore risk of injury. Since we are modelling probability,
rn must always be between 0 and 1, so when choosing an appropriate distri-
bution for X we had the following requirements:

• F (0) = 0 and F (1) = 1, where F (x) is the Cumulative Distribution
Function(CDF) of the distribution (i.e. the support of the distribution
is 0≤ x ≤ 1, where x is a member of the distribution).

• The distribution is heavy-tailed so that the majority of points cause very
little injury risk but occasionally a point may cause a more significant
risk of retirement.

• The distribution requires as few unknown parameters as possible mean-
ing fewer approximations and a more accurate model.

There are many probability distributions which display such characteristics.
We explore the use of a bounded Pareto distribution and an exponential distri-
bution.

5.1.1. A Bounded Pareto Distribution

The bounded (or truncated) Pareto distribution is a special case of the standard
Type I Pareto Distribution where you supply an additional parameter, H ,
which is the upper bound of the distribution. Pareto distributions also take
a lower bound parameter, L, and a parameter, α, which determines the shape
of the distribution. Pareto distributions are heavy-tailed and often used to
model situations where there is some sort of balance in the distribution of
the ’small’ to the ’large’, for example, phenomena such as the distribution of
wealth (most people are not particularly wealthy but a few are super rich) or
the size of human settlements (few cities but many villages). In this sense, the
distribution appears to be intuitively suitable for our model.

Although we can take H = 1, the Bounded Pareto distribution requires that
L > 0 which means we cannot directly use it in our model as we need the
support of the distribution to be between 0 and 1 inclusive. A solution is
to shift the Bounded Pareto so that this is the case by subtracting L from any
value sampled from the distribution and setting H = L+1. By also setting L=
1 we can simplify the inverse transform of the CDF used to sample from the
distribution. Figure 5.1 shows a possible CDF of such a modified distribution.

40



CHAPTER 5. MODELLING RETIREMENT RISK

Figure 5.1.: The CDF of a Pareto distribution with upper bound 1, shifted to possess
a lower bound of 0, and with shape parameter α= 20

Note that the Lomax distribution is a Pareto Type I distribution which has
been shifted so that L= 0 (and also happens to be a special case of the Pareto
Type II distribution), but it does not have the necessary upper bound. The
Pareto distribution is also closely related to the exponential distribution, which
we investigate next.

5.1.2. A Truncated Exponential Distribution

The well-known exponential distribution is also heavy-tailed. It is used to
model the time between events which occur continuously and independently
at a constant average rate, for example, such phenomena as the time until a ra-
dioactive particle decays or the time until your next phonecall. Although this
description is less intuitively suitable for our model, all we are really looking
for is a CDF that is easy to sample and where all the probability is contained in
members in the range [0, 1] (and most of it in the bottom end of this range).
The support for the exponential distribution is bounded below with x ≥ 0
which is an advantage over the Pareto but it is also unbounded above which is
a problem.

The exponential distribution is one of the easiest to sample from as it has a
CDF very amenable to the inverse transform method. Given a uniformly
distributed random variable U ∼U (0,1), the random variable:

T = F −1(U )

is exponentially distributed, where:
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F −1(y) =
− ln(1− y)

λ

is the inverse of the CDF of the exponential distribution. Since (1− U ) ∼
U (0,1) as well, we have:

T =
− ln(U )

λ

Usefully, if you take a random variable Y ∼ e x p(λ), and extract the frac-
tional part {Y } of Y , we find that {Y } is drawn from a truncated exponential
distribution with upper bound 1! A proof and reference for this result can
be found in Appendix D. In order to sample from a truncated exponential
distribution, we sample from a normal exponential distribution (once again
using our global Mersenne Twister to generate the uniform random variable
required) and subtract the integer part of the value drawn. As you can see
from Figure 5.2, the CDF of a truncated exponential distribution is very sim-
ilar to that of our modified Pareto distribution above. However, we find that
sampling from the truncated exponential is faster and simpler than using a
bounded Pareto distribution that we have had to shift and so we define in our
retirement risk model our random variable:

Figure 5.2.: The CDF of an exponential distribution with rate λ = 20 and upper
bound 1

As we saw in the Murray vs Berrer sample match data, serious injuries can
produce a gap in the odds of at least 0.4. This implies that our truncated
exponential distribution requires a rate λ small enough such that sampling
values that are not trivially tiny are possible but very unlikely (such injuries
should be rare). However, the distribution should still yield very very small
samples the vast majority of the time as on most points there is no injury. We
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could not find a value for λ that allowed the distribution to successfully meet
both these criteria so we now turn to a hyper-exponential distribution.

5.1.3. A Hyper-Exponential Distribution

A hyper-exponential distribution has probability density function with re-
spect to a random variable Y :

fY (y) =
n
∑

i=1

fZi
(y)pi

where Zi is an exponential random variable with rate parameter λi and pi is
the probability that Y will take on the form of Zi .

In our case, we can say that X takes on the form of an exponential distribu-
tion with rate parameter λ with probability drawn from a Bernoulli distri-
bution with success parameter c . So a sample from a Bernoulli distribution
takes value 1 with probability c and value 0 with probability 1− c . Since the
probability of injury on any point is so small, we can safely model it as 0.
Occasionally (with probability c ), a player suffers an injury while playing a
point and the magnitude of this injury is modelled using an exponential dis-
tribution with rate λ. Note that our distribution still needs to be truncated as
detailed previously. In addition, although we do not let rn be greater than 1,
we will generally use a high enough value for λ such that it is unlikely we will
sample a value for X that causes the point-level retirement risk to rise above
1. We define in our retirement risk model our random variable:

X ∼ T r H y pE x p(c ,λ)

In order to find out whether we have created a reasonable model for retire-
ment risk, we need to find a way to incorporate our specific model into a
overarching model for the probability of winning a tennis match. The sim-
plest way of doing this to begin with was to modify the tennis match simulator
that we conveniently created earlier.

5.2. A Modi�ed Tennis Match Simulator

We use our simulator to run a large number of matches, each with identi-
cal starting scenarios, in order to approximate the match-winning probability
of each player. Previously, we had only two outcomes to each point; either
Player A won the point or Player B won the point. Now we have two ad-
ditional outcomes; Player A can retire from the match or Player B can re-
tire from the match. This requires two more parameters in addition to the
point-winning probabilities of each player. We now also have r A

n and r B
n , the

probabilities that Player A and Player B retire from the match on point n,
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respectively. These probabilities are updated each point in accordance with
the model we defined above.

Algorithm 5 shows the pseudocode of our new playPointWR() method:

Algorithm 5 void playPointWR(double pa, double pb, RetirementRisk risk,
MatchState score, boolean serving)

risk.ra = risk.ra * ρ
risk.ra = risk.ra + XA∼ T r H y pE x p(c ,λ)
risk.rb = risk.rb * ρ
risk.rb = risk.rb + XB ∼ T r H y pE x p(c ,λ)
// p is the probability Player A wins the point whereas q is the probability
Player B wins the point. These probabilities must be normalised.
double p, q
if serving then

p = pa / (1 + risk.ra + risk.rb)
q = (1 - pa) / (1 + risk.ra + risk.rb)

else
p = (1 - pb) / (1 + risk.ra + risk.rb)
q = pb / (1 + risk.ra + risk.rb)

end if
double point =mersenneTwister.nextDouble()
if point < p) then

score.incrementTargetPlayerScore()
else if point ≥ p && point < p + q then

score.incrementOpponentScore()
else if point ≥ p + q && point < p + q + ra then

score.targetPlayerRetires()
else if point ≥ p + q + ra then

score.opponentRetires()
end if
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0 1

p q rA rB

Figure 5.3.: The four possible outcomes of a point in our modified tennis match
simulator

We use a Mersenne Twister random number generator to decide which player
wins each point. Looking at Figure 5.3, the bin the random number falls into
is the outcome of the point. The match ends if it falls in one of the retirement
bins (which is why rA and rB are usually 0 else you will rarely be able to get
through even a single match without retiring), otherwise one of the players
wins the point and the match continues (unless it was match point). Now our
simulator calculates four results. The probabilities of each player winning the
match by achieving the required number of sets and the probabilities of each
player retiring from the match.

Although the simulator produces results to a good degree of accuracy and rea-
sonably fast (see Appendix C), ideally we would build a new mathematical
model for a tennis match that incorporates retirement risk and generate exact
solutions. The problem is that such a model would be analytically very diffi-
cult to solve (although we do detail the theory behind its possible creation in
Appendix E) so we decide to focus on making our simple and efficient modi-
fied simulator as our main model for a tennis match. The use of the simulator
also makes it straightforward to calculate the probability each player retires
in a particular set (splitting up the two retirement outcomes), allowing us to
predict the evolution of markets that follow the different tennis betting retire-
ment payout policies.

5.3. Modelling Markets

To imitate the Betfair Set Betting market (or equivalently, a Match Odds mar-
ket using a Paddy Power-style match-completed payout policy), we can use our
base recursive model which ignores retirement risk (the No Risk column in
Figure 5.4). We use our modified simulator to imitate a Match Odds market
as it might behave using the different retirement betting payout policies by
calculating the remaining probabilities in the right-most three columns.
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Player No Risk
Normal Win

With Risk
Retirement in

1st set
Retirement
after 1st Set

A WA W ′
A R1

A R2
A

B WB W ′
B R1

B R2
B

Figure 5.4.: Probabilities that can be closely approximated by our modified tennis
match simulator

W ′
A, for example, is the probability of Player A winning the match normally

by achieving 3 sets and not via Player B retiring.

Note that we can (re-)calculate the match-winning probability for Player A
ignoring retirement risk (WA) as a sanity check by computing:

W ′
A

W ′
A+W ′

B

This is because we assume that the point-winning probabilities of each player
are unaffected by injury. Consequently, the ratio of WA to WB is the same as
the ratio of W ′

A to W ′
B .

We can imitate a Betfair-style after one set payout policy market for Player A
by computing:

(W ′
A+R2

B )

(W ′
A+R2

B )+ (W
′

B +R2
A)

which is the probability that Player A wins normally plus the probability that
Player B retires after the first set, normalised by the sum of the probabilities
that either player wins the match normally and either player retires after the
first set.

Similarly, we can imitate a Ladbrokes-style after one ball payout policy market
for Player A by computing:

(W ′
A+RB )

(W ′
A+RB )+ (W

′
B +RA)

where RA = R1
A+ R2

A and RB = R1
B + R2

B . This is essentially a re-calculation
of the Normal Win With Risk column.
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Figure 6.1 displays a table describing the majority of the variables we have
introduced thus far. An appropriate parameterisation of the model would
be values for the unknown input variables, c , λ, and ρ, that generate RA ≈
RB ≈ 1.95% when input into our modified simulator for a whole match with
PA= PB = 0.6. We believe this is justified as it corresponds to the 3.9% average
retirement rate in Grand Slam men’s singles matches as well as a common
point-winning probability on serve of a top-level professional tennis player
that we discovered through research. The here goal is to fit the model to
accurately reflect real-world events.

The problem now is that we essentially have three unknowns but only one
equation (the simulator). We can choose a reasonable value to fix ρ at but
this still leaves us with two unknowns so we gain little by guessing the decay
constant. One possible solution is to only consider the retirement risk of one
player at a time, for example, Player A, and fix RB

n = 0 (i.e. assume Player B
has no chance of retiring) since it is rare that both players in a match come to
be at serious risk of retiring. However, this would not provide a symmetric
model. We want W ′

A and W ′
B to be logical opposites of each other. Conse-

quently, we have no choice but to estimate suitable c , λ and ρ that will give
us the retirement rates that we want.

6.1. The Nelder-Mead Simplex Method

The Nelder-Mead Simplex Method is a multivariate direct search optimisation
algorithm primarily designed for statistical parameter estimation problems
such as ours. The method uses the idea of a simplex, a polytope of N + 1
vertices given N dimensions, i.e. a line segment on a line, a triangle on a
plane, a tetrahedra in 3D space, etc. The user defines an initial non-degenerate
simplex and an objective function that the algorithm attempts to minimise.
It does this by iteratively trying a sequence of three operations (reflection,
expansion, contraction) with the vertices of the simplex to generate a new
vertex which is input into the objective function.
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Variable Known Input /
Output

Description

PA Yes Input
The probability Player A wins a point on

serve (assumed for the moment)

PB Yes Input
The probability Player B wins a point on

serve (assumed for the moment)

WA Yes Input
The probability Player A wins the match

using the standard base tennis model

WB Yes Input
The probability Player B wins the match

using the standard base tennis model

GA Yes Input
The Betfair Set Betting implied probability

minus the Betfair Match Odds implied
probability for Player A for GA≥ 0

GB Yes Input
The Betfair Set Betting implied probability

minus the Betfair Match Odds implied
probability for Player B for GB ≥ 0

- Yes Input The current score in the match

W ′
A No Output

The probability Player A wins the match
normally given the possibility of retirement

W ′
B No Output

The probability Player B wins the match
normally given the possibility of retirement

RA No Output
The probability Player A retires at some point

during the remainder of the match (can be
categorised by set)

RB No Output
The probability Player B retires at some point

during the remainder of the match (can be
categorised by set)

c No Input

The Bernoulli success probability parameter
for the truncated hyper-exponential

distribution representing the chance a player
suffers an injury on any given point

λ No Input

The rate parameter for the truncated
hyper-exponential distribution dictating the
magnitude of the injury suffered by a player

should such an event occur.

ρ No Input
The decay constant representing recovery

from injuries in our retirement risk equation

Figure 6.1.: Table describing the variables used in our system

If the new vertex produces a value smaller than the worst of the current ver-
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tices, than it replaces that vertex to create a new simplex. If the new value is
not better, than we have stepped across a ’valley’ and we create a new simplex
by shrinking the old one using pre-determined step sizes (which decrease on
each iteration). Ideally, the points of the simplex should eventually converge
on the minimum of the objective function (or as close to it as the user decides
is sufficient). For example, Figure 6.3 shows the evolution of the Nelder-Mead
method executed on a suitable initial simplex for the simple bivariate function
shown in Figure 6.2[29].

The Nelder-Mead method is quite easy to understand and simple to use; we
found readily available Java code for it. Furthermore, the method requires no
derivative information about the given objective function, which we do not
have. The method is also reasonably quick, requiring only one or two eval-
uations of the objective function per iteration, rather than N as with other
search algorithms. Due to the nature of our modified simulator, which deliv-
ers only approximations, we will look for a satisfactory rather than precise
solution. Fortunately, the first few iterations tend to give significant improve-
ment on the value of the objective function.

A disadvantage of the Nelder-Mead method is that it can converge to a non-
stationary point. In fact, there is little convergence theory at all with regards
to the algorithm. We hope to avoid such situations by choosing carefully our
initial simplex and starting step sizes as well as defining a maximum number of
iterations. There are more modern techniques for multivariate optimisation,
but we feel that the Nelder-Mead algorithm will be sufficient.

Figure 6.2.: Visualisation of the bivariate function f (x, y) = x2− 4x + y2− y − xy
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Figure 6.3.: An evolution of a simplex when executing the Nelder-Mead method on
bivariate function f (x, y) = x2− 4x + y2− y − xy

De�ning an Objective Function

Vitally important to the success of the Nelder-Mead method is the choice of
objective function to minimise. In our case our modified simulator is essen-
tially the function, but we must still define what it means to minimise it. This
is the main way we mould the algorithm to solve our problem.

�

�

�WA− (W
′

A+RA)
�

�

�+
�

�

�WB − (W
′

B +RB )
�

�

�

After the algorithm has completed, the first term ensures that we have recre-
ated the correct gap in the odds for Player A with the second term being the
same idea for Player B. So in this case, at the minimum, we would have:

|0.5− (0.4805+ 0.0195)|+ |0.5− (0.4805+ 0.0195)|= 0

An Initial Simplex

In our case, we require a tetrahedra simplex since we have three variables we
are trying to approximate. Choosing an initial simplex is an important part
of the process. For instance, choosing too small an initial simplex can lead to
a local search, causing the algorithm to get stuck in some sub-optimal hole.
We can use our intuition to pick the vertices for the initial simplex, which is
shown in Figure 6.4. For c , we know that it will be very small and sensitive
as thousands of normal points can be played between injuries. For λ, we have
seen that in an extreme case that the gap in the odds for a player can jump
to at least 0.4 so we can hypothesise that the mean magnitude of a point-
level retirement risk will be something lower than this. For ρ, we judge from
inspecting the odds data of numerous matches that a likely value might be
0.5 < ρ < 1.0. Note that we used a constrained version of the Nelder-Mead
algorithm in order to ensure logical bounds 0< c ,ρ< 1 and λ > 0.
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Parameters
Vertex c λ ρ

1 0.0001 5.0 0.50
2 0.00025 10.0 0.65
3 0.00035 15.0 0.80
4 0.0005 25.0 0.95

Figure 6.4.: The vertices of the initial simplex we input into the Nelder-Mead
method

We also defined suitable initial step sizes according to the magnitudes of the
numbers that made up the initial simplex (as well as choosing a tolerance level
indicating when convergence has happened). We tried to strike a balance be-
tween avoiding the risk of stepping too far between simplex iterations and
potentially falling into sub-optimal minima, and search speed.

The Results

We ran the Nelder-Mead method a number of times under the same condi-
tions and took the means of the approximations found for our three param-
eters each time as our chosen values. Remember, c is the per point injury
probability, λ is the point-level retirement risk magnitude exponential distri-
bution rate parameter, and ρ is the injury recovery factor.

• c = 0.000115 (implying an injury approximately every 8500 points)

• λ= 10.0 (implying injuries cause a point-level retirement risk of 0.1 on
average when they occur)

• ρ= 0.95 (point-level retirement risk is scaled by 0.95 each point)

Note that in practice there are likely to be many combinations of values for
these parameters that would generate the retirement rates we require. For
example, the effect of decreasing ρ (quicker recovery) could be countered by
increasing λ (injuries are more severe) or increasing c (injuries are more com-
mon).

6.2. An Arti�cial Tennis Match

In order to find out what our model is capable of, we try it out in a totally
artificial environment where we control all the variables. We ran a single
simulated match many times with our set of parameters PA = PB = 0.6,
c = 0.000115, λ = 10.0, and ρ = 0.95. We assume that PA and PB remain
unchanged throughout the match. We were looking for ’ideal’ scenarios, e.g.
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where Player A receives an injury during the match but does not retire and
still goes on to achieve victory. When we generate such a match, we recorded
into a CSV file the score, the server, and the point-level retirement risks, rA
and rB , at each point during the match. We then read this information back
in, calculating match-winning probabilities at each point in the match.

Figure 6.5 shows the effect on simulated markets with varying retirement pay-
out policies of Player A suffering an injury in the second set but still manag-
ing to go on to win the match. We see a sharp drop in the red and orange
lines (Match Odds markets with after one set and after one ball payout poli-
cies, respectively) when the injury occurs. This is followed by recovery, sim-
ilar to the Murray vs. Berrer example. The blue line (Match Odds market
with match-completed policy) ignores retirement risk and therefore does not
react to the injury. Figure 6.6 shows the evolution of both the point-level
(magenta line) and match-level (green line) retirement risks for Player A in
this match. They are clearly inversely related to the behaviour of the mar-
kets; where match-winning probability falls, retirement risk rises, and where
match-winning probability recovers, retirement risk decays.

Figure 6.7 shows a similar situation but where the injury occurs in the first
set. This time we can see the orange line approach the red as we near the end
of the first set. The models the idea that if an injury occurs in the first set of a
match, traders in such a market will display increased reluctance to back the
player in question as it becomes more likely he or she will finish the set (in
case they then decide to default afterwards and payouts happen).

Figure 6.9 shows a match where Player A decided not to continue. Player A
does attempt to play one or two more points after the injury and the market
anticipates recovery but those hopes are soon dashed. Note that any discrep-
ancies you might see between the three markets are due to the fact that the
modified simulator provides only approximations whereas the base recursive
model provides exact solutions (particularly noticeable at deuce or 6-6 in a
tiebreak).

The model appears to produce markets that behave in the theoretically correct
manner. We have sudden, sharp drops in match-winning probability corre-
sponding to an injury on a point, followed by gradual recovery as the traders
realised retirement might not happen. We move on to testing it against Betfair
odds data from real-world top-level tennis matches.
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Figure 6.5.: Evolution of Match Odds markets with a variety of retirement payout
policies for an artificial match (PA = PB = 0.6, c = 0.000115, λ = 10.0,
ρ = 0.95) with respect to Player A. In this match, Player A receives an
injury in the second set but rallies and continues on to victory

Figure 6.6.: Evolution of point-level and match-level retirement risks for an artificial
match (PA = PB = 0.6, c = 0.000115, λ = 10.0, ρ = 0.95) with respect
to Player A. In this match, Player A receives an injury in the second set
but rallies and continues on to victory
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Figure 6.7.: Evolution of Match Odds markets with a variety of retirement payout
policies for an artificial match (PA = PB = 0.6, c = 0.000115, λ = 10.0,
ρ = 0.95) with respect to Player A. In this match, Player A receives an
injury in the first set but rallies and continues on to victory

Figure 6.8.: Evolution of point-level and match-level retirement risks for an artificial
match (PA= PB = 0.6, c = 0.000115, λ= 10.0, ρ= 0.95) with respect to
Player A. In this match, Player A receives an injury in the first set but
rallies and continues on to victory
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Figure 6.9.: Evolution of Match Odds markets with a variety of retirement payout
policies for an artificial match (PA = PB = 0.6, c = 0.000115, λ = 10.0,
ρ = 0.95) with respect to Player A. In this match, Player A receives an
injury and has to retire

Figure 6.10.: Evolution of point-level and match-level retirement risks for an arti-
ficial match (PA = PB = 0.6, c = 0.000115, λ = 10.0, ρ = 0.95) with
respect to Player A. In this match, Player A receives an injury and has
to retire
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6.3. Fitting the Model to the Odds Data

Our model appears to produce reasonable results from the beginning of a
match but this is only because of our assumption that players begin matches
with no risk of retiring (r A

0 = r B
0 = 0). Our model must also be applicable for

any given match state, including the situation where an injury has recently
occurred but the affected player is continuing to play. At this stage, we know
the gap in the odds for each player (GA and GB ), but how can we go back-
wards from this and calculate the retirement risk for the current point, r A

n
and r B

n (which will naturally be a lot smaller)? Well once again, we can use
the Nelder-Mead method to approximate these values for each point in the
match. Given this information, our simulator will be able to calculate the
match-level retirement risk for each player at each point (RA

n and RB
n ).

Vertex r A
n r B

n

1 0.001 0.001

2 0.1 0.01

3 0.01 0.1

Figure 6.11.: The Nelder-Mead initial simplex we use when approximating the
point-level retirement risks for a given current match score

Remember, we can imitate a Betfair-style after one set payout policy market
for Player A by computing:

W
′′

A =
(W ′

A+R2
B )

(W ′
A+R2

B )+ (W
′

B +R2
A)

and similarly for Player B.

Therefore, we redefine our objective function as:
�

�

�WA− (W
′′

A +GA)
�

�

�+
�

�

�WB − (W
′′

B +GB )
�

�

�

now that we are dealing with the gaps in the odds rather than the retirement
risks to be output. We now also have all the information we need to be able
to predict the evolution of a market with an after one ball payout policy for a
real match using just the two Betfair markets!

Figure 6.12 below displays our variables are where they are used in the system.
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Figure 6.12.: A diagram displaying the variables of the whole system and how they
are used. Note that c , λ, and ρ are constant whereas rA and rB are per
point per match
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CASE STUDIES 7
7.1. Preparing the Match Data

Obtaining the Betfair odds data for a match was only the first step. We also
need to acquire other match-specific information such as a pointstream and a
point-winning probability for each player.

Acquiring Real Point-by-Point Match Data

In order to test our model against odds data from real-world matches, we
need to be able to input the current score into the model at any stage in the
match. We could not find any resource which archives point-by-point data in
a suitable format so we entered it manually into CSV files using the historical
point-level live commentary provided by website TennisEarth.com1. Unfor-
tunately, the TennisEarth.com point-level archive is not comprehensive, so we
could not study all the matches we wanted to (notably our running example,
the Murray vs. Berrer French Open 2011 Third Round match) and we did
not have time to try and procure videos of such matches in order to record
the score.

Estimating Point-Winning Probabilities

Up until this point we have assumed that we will be able to manually input
the point-winning probabilities on serve of both players in the match. We
noted previously Klaassen and Magnus’ (2000)[24] findings that the average
point-winning probability on serve for a top-level professional tennis player,
γ , was 0.645 for men and 0.560 for women. We also know, according to Marek
(2011)[26], that the important thing in determining the winner of a match is
the difference, δ, between the point-winning probabilities of each player and
not the absolute values. Consequently, if we can find what δ should be, we
can choose appropriate values for PA and PB by using the constraint that their
average equals γ . We must find both; we cannot, for example, fix PA to γ
and linearly search for PB , since the model would cease to be symmetric for
both players. We know the current implied match-winning probability of the
Set Betting (no retirement risk) market for both players and so we can do a

1http://www.tennisearth.com
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simple binary search to find a value for δ (and therefore values for PA and
PB ) for which our base recursive model generates the same results as the Set
Betting market. Marek also states that for one to be able to express match-
winning probability as a function of δ, one must constrain −0.1 ≤ δ ≤ 0.1.
Since the market’s opinion of each player’s point-winning probability changes
throughout the match, we recalculate PA and PB on every point to reflect this.
Note that this does not invalidate the assumption that points are iid as no
dependency between points is introduced.

Aligning the Odds Data with the Correct Score

A challenge we had to overcome was how to match the odds data to the score
at each point. For instance, we may have many thousands of odds data lines
for a match but only a couple of hundred points. Although we have a times-
tamp for each line of odds data, we do not know the exact time that each point
was played. To overcome this challenge, we make the reasonable assumption
that points happen at regular intervals. For example, if we have 9000 lines
of odds data for a match and 300 points were played, we would sample every
9000/300= 30t h line. Consequently, our modelled markets will appear more
sparse than the original odds data as we only have as many points as there are
points in the match.

We now test our system on five real-world matches. We consider only the
evolution of the in-play markets from the point of view of the player that was
injured in the match (it is extremely rare that both players in a match receive
significant injuries).
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7.2. Rafael Nadal vs. David Ferrer

An all-Spanish Australian Open 2011 Men’s Quarter Final saw Rafael Nadal
battle veteran and fellow clay court specialist David Ferrer. A mystery injury
early on in the first set meant Nadal struggled throughout the match but he
refused to retire and allowed his opponent the three-love win.

Figure 7.1 displays processed odds data as in Chapter 3. In Figure 7.2, we use
our system to model Match Odds markets under three different retirement
payout policies using the current score, estimated point-winning probabili-
ties, and the positive gap created by subtracting the Betfair Match Odds im-
plied probabilities on each point from the Betfair Set Betting probabilities,
as input. As you can see from the graph, our system reproduces the Betfair
Match Odds market (red line) quite accurately with the after one set modelled
market. This shows that the Nelder-Mead algorithm was successful in finding
point-level retirement risks that would recreate the gap between the Betfair
Set Betting and Match Odds markets. The orange line shows our predicted af-
ter one ball modelled market. As we would expect (since the injury occurred
in the first set), this market anticipates an even greater drop in Nadal’s match-
winning probability around the time of his injury than the Betfair Match
Odds market. In the event of a Nadal retirement, such a market would pay
out for a David Ferrer win as long as one ball has been played so at this point,
traders would be very reluctant to back Nadal if he showed signs he might
retire. As the match moves past the first set, the after one ball and after first set
lines merge since potential injuries now contribute to both markets equally.

Bear in mind that there will always be a certain amount of variation due to the
inexact nature of the simulator and our method of aligning our point-by-point
data with the odds data.
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Figure 7.1.: Evolution of implied match-winning probabilities extracted from the
Betfair Match and Set Betting markets as well as the gap between them
for Rafael Nadal - Nadal vs. Ferrer (Australian Open 2011 Men’s Quarter
Final)

Figure 7.2.: Evolution of modelled Match Odds markets under three different re-
tirement payout policies for Rafael Nadal - Nadal vs. Ferrer (Australian
Open 2011 Men’s Quarter Final)

Figure 7.3 shows the evolution of Rafael Nadal’s risk of retirement through-
out the match. The green line follows the probability of retirement during the
remainder of the match from the given point (Rn), whereas the magenta line
gives the probability of retiring on a particular point itself (rn). Our model
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predicts a high peak match-level retirement risk of 96% during the injury pe-
riod. This coincides with a peak point-level retirement risk of 18%.

Furthermore, as the match progresses and Nadal falls further behind, we see
spikes in his retirement risk despite there being no large gaps between the
Betfair markets. This happens when the Match Odds market gives a player
little chance of winning the match. We illustrate how this occurs with an
example. Say that on a particular point, the Set Betting market tells us that
the implied probability of Nadal winning the match is 0.5. This means that
we can assign PA = PB = 0.645. We also happen to know that the difference
between the Betfair Set Betting and Match Odds for Nadal is 0.4. When we
run the Nelder-Mead method, we will be looking for a value of rA (retirement
risk of Nadal on this point) such that W

′′

A (probability of winning the match
normally with retirement risk after the first set only) is only 0.1. Since we
have PA = PB , we have W

′′

B = 0.1 and so the total probability of either player
winning the match normally is only 0.2. Making the assumption that r B

n is
close to zero, we must have that RA ≈ 0.8 (retirement risk of Nadal in the
match). This can happen in any situation where W

′′
is small and there is a

risk of retirement, like towards the end of this quarter final.

Such scenarios, as well as our choice of matches where only one player was
injured, help to explain why our predicted retirement risk is generally much
larger than the gap in the Betfair markets.

Figure 7.3.: Evolution of modelled point-level and remainder of match retirement
risks for Rafael Nadal - Nadal vs. Ferrer (Australian Open 2011 Men’s
Quarter Final)
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7.3. Victoria Azarenka vs. Maria Sharapova

Victoria Azarenka faced off against Maria Sharapova in the Rome Masters
2011 Quarter Final. Unfortunately, Azarenka suffered a hand injury early in
the second set while leading one set to love and was unable to continue the
match.

As you can see in Figure 7.6, we have spikes of retirement risk during the first
set which correspond with sporadic drops in the implied probability of our
predicted after one ball market. These anomalies appear to coincide correctly
with small gaps created where the after one set market model is beneath the
Set Betting market. However, the tiniest of these gaps can correspond to a
significant drop in the implied probability of after one ball market. Whenever
we have such a gap, the Nelder-Mead algorithm attempts to find a point-level
probability (rn) that will recreate this gap. Since the Betfair Match Odds mar-
ket only takes into account retirement after the first set, only retirements
after the first set can affect our model of this market. However, the system
has no direct control over retirements after the first set if we are still in the
first set. The more you try to increase the immediate point-level retirement
risk, the more likely the given player will retire straight away (still in the first
set). Lower it so the player will survive past the first set and he or she prob-
ably will not retire. The consequence of this is that our after one ball market
model (and therefore our predicted retirement risk) is very sensitive to the
Betfair odds source data, particularly towards the beginning of the first set.

Nonetheless, this match is still a good example of how unpredictable injury
occurrence is. Azarenka’s match-level retirement risk still stays relatively low
until the injury occurs on point 75. The risk shoots up to 52%, peaking at
90% at retirement on point 93 after a brief dalliance with the possibility of
recovery.
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Figure 7.4.: Evolution of implied match-winning probabilities extracted from the
Betfair Match and Set Betting markets as well as the gap between them
for Victoria Azarenka - Azarenka vs. Sharapova (Rome Masters 2011
Women’s Quarter Final) [ended in retirement]

Figure 7.5.: Evolution of modelled Match Odds markets under three different retire-
ment payout policies for Victoria Azarenka - Azarenka vs. Sharapova
(Rome Masters 2011 Women’s Quarter Final) [ended in retirement]
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Figure 7.6.: Evolution of modelled point-level and remainder of match retirement
risks for Victoria Azarenka - Azarenka vs. Sharapova (Rome Masters 2011
Women’s Quarter Final) [ended in retirement]
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7.4. Andy Murray vs. Jarkko Nieminen

During Andy Murray’s recent French Open 2012 second round match against
Jarkko Nieminen, he appeared to suffer a quite serious lower back injury in
the first set of this match and looked very unlikely to be able to continue.
Murray decided to struggle on and conceded the first set.

This can be seen in Figure 7.8, where Murray’s Set Betting implied probability
falls as traders suspect he might lose the match normally. As Murray recovers
from his injury, the market realises he is unlikely to default and his risk of
retirement dies away (Figure 7.9).

Figure 7.7.: Evolution of implied match-winning probabilities extracted from the
Betfair Match and Set Betting markets as well as the gap between them
for Andy Murray - Murray vs. Nieminen (French Open 2012 Men’s Second
Round)

67



CHAPTER 7. CASE STUDIES

Figure 7.8.: Evolution of modelled Match Odds markets under three different retire-
ment payout policies for Andy Murray - Murray vs. Nieminen (French
Open 2012 Men’s Second Round)

Figure 7.9.: Evolution of modelled point-level and remainder of match retirement
risks for Andy Murray - Murray vs. Nieminen (French Open 2012 Men’s
Second Round)
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7.5. Andy Roddick vs. Lleyton Hewitt

In the Second Round of the Australian Open 2012, Andy Roddick played
Lleyton Hewitt in front of a partisan crowd. Roddick started strongly and
went one-set up, but unfortunately suffered a hamstring injury after an awk-
ward lunge early in the second set. He valiantly played on through to com-
pletion of the third set until retiring to avoid doing himself further damage.

Looking at Figure 7.12, we once again see that the gap between the Betfair
markets has a notable effect on our after one ball prediction. You can see how
Roddick’s retirement risk spikes towards 100% as his Match Odds implied
probability drops towards zero at the end of the match.

Figure 7.10.: Evolution of implied match-winning probabilities extracted from the
Betfair Match and Set Betting markets as well as the gap between them
for Andy Roddick - Roddick vs. Hewitt (Australian Open 2012 Men’s
Second Round) [ended in retirement]
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Figure 7.11.: Evolution of modelled Match Odds markets under three different re-
tirement payout policies for Andy Roddick - Roddick vs. Hewitt (Aus-
tralian Open 2012 Men’s Second Round) [ended in retirement]

Figure 7.12.: Evolution of modelled point-level and remainder of match retirement
risks for Andy Roddick - Roddick vs. Hewitt (Australian Open 2012
Men’s Second Round) [ended in retirement]
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7.6. Rafael Nadal vs. Juan Martin del Potro

In the Fourth Round at Wimbledon 2011, Rafael Nadal was matched up
against Argentine Juan Martin del Potro. Nadal required treatment on his
left foot just before the first set tiebreaker and despite initially limping be-
tween points, managed to edge the first set. He became stronger as he ran off
the injury and went on to notched a straight sets victory.

Figure 7.15 shows that this match-level retirement risk indicates a slightly less
severe injury than those we have seen previously, peaking at 65%. This match
was the longest and most heavily traded of all our case studies. Consequently,
our modelled markets and retirement risks are more dense and potentially
more accurate than in the other matches.

Figure 7.13.: Evolution of implied match-winning probabilities extracted from the
Betfair Match and Set Betting markets as well as the gap between them
for Rafael Nadal - Del Potro vs. Nadal (Wimbledon 2011 Men’s Fourth
Round)
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Figure 7.14.: Evolution of extracted Betfair Match and Set Betting markets implied
match-winning probabilities as well as the gap between them for Rafael
Nadal - Del Potro vs. Nadal (Wimbledon 2011 Men’s Fourth Round)

Figure 7.15.: Evolution of modelled point-level and remainder of match retirement
risks for Rafael Nadal - Del Potro vs. Nadal (Wimbledon 2011 Men’s
Fourth Round)
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CONCLUSIONS 8
Observing the E�ect of Injuries on In-Play Tennis Betting Markets

We confirm that it is possible to observe the occurrence of an injury in a given
tennis match by observing the evolution of the in-play betting odds. We ex-
amine historical Betfair odds for a number of real-life matches and find that
a gap between the markets is, in fact, created in correspondence with the oc-
currence of an injury in the match. We note that injuries have a drastic effect
on the odds data, in many occasions turning the overwhelming favourite into
the underdog in an instant.

An Enhanced Model of Tennis incorporating Retirement Risk

We have created a new model for tennis in the form of a tennis match sim-
ulator which takes the retirement risk of players into account by incorpo-
rating extra parameters approximated using real-world averages and betting
odds data as well as additional match outcomes compared to standard tennis
models. This is the world’s first attempt to create such a model.

We tested the model in a totally artificial environment and found it was able
to mimic the expected patterns of in-play betting markets with different re-
tirement payout policies for matches with varying injury scenarios.

Quantifying Retirement Risk in Professional Tennis Matches

We conclude that a given player’s risk of retirement at some point during the
remainder of a match is a function of the difference between the odds of a
Match Odds market for that player that ignores injuries and the odds of a
Match Odds market for that player that takes into account risk of retirement,
at any given point in the match. Our system can provide a value for the
retirement risk of a given player at any point in a match.

We applied the model to a number of real-world matches (from the point of
view of an injured player) using Betfair odds data and produced imitations
of the in-play betting markets following different player retirement payout
rules. We find that we can mimic to a good degree of accuracy the progress of
the Betfair Set Betting and Match Odds in-play markets throughout matches,
i.e. a match-completed market and an after first set market, respectively. We
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attempt to use the Betfair odds data to predict the evolution of an after one
ball market. We find that such a market generally correctly produces slightly
higher retirement risks than the Betfair Match Odds market when the given
match is still in the first set, although it can be somewhat erratic. The re-
tirement risk values are very sensitive to any gap between the Betfair markets
due to the lack of control our system has over retirement risk after the first
set when the match is still in the first set. Furthermore, we notice that the
system generates retirement risk spikes when the player in question has a low
match-winning probability. The problem underlying these fragilities in our
predictions is that the Betfair in-play tennis betting markets are not perfect.
Since this odds data is vital input for our system, it is no surprise that fluctuat-
ing, anomalous, and sparse data heavily influences the output of our system.
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FUTURE WORK 9
The E�ect of Injury on Point-winning Probability

In theory, the Betfair Set Betting market ignores the risk of retirement and
therefore should be a true indicator of a player’s match-winning probability
regardless of any injury. However, though the Set Betting market does not re-
act as quickly as the Betfair Match Odds market to injury events, it does react.
This suggests that injuries affect a player’s point-winning probability, a factor
which our model does not take under consideration. This is intuitive since
a player limping around the court will be less able to win points than they
are in normal circumstances. A further extension to this investigation would
be to try and incorporate the effect of injury on point-winning probabilities
into the model. Success in this endeavour would affect our updating of point-
winning probability estimates on each point since they will also be modified
by the model itself.

Accounting for Player Individuality

It is clear that some players are more injury prone than others, just as in any
sport. For example, as of August 2011, 31-year-old Michael Llodra had retired
from 25 matches and withdrawn from 2. His career total of 27 defaults is the
highest of any current player. In contrast, Roger Federer has only withdrawn
once and has never retired in almost 1000 career matches. Mischa Zverev, on
the other hand, has already racked up 22 defaults in under 150 career matches
at the tender age of 24[30].

We accept that we have made the generalising assumption here that injury
rates are the same for all players, which is a weakness in the model. It would,
however, be quite possible to tailor these parameters for individual players
using their own past histories of retirement if one wanted to add further com-
plexity to the model. For example, if we find that Samantha Stosur has re-
tired from 2.8% of her matches on grass, than we can use the Nelder-Mead
method to find personalised Bernoulli success probability c , point-level re-
tirement risk magnitude rate λ, and recovery parameter ρ that produce this
initial retirement rate for Samantha Stosur playing on grass (as well as another
set of values for her opponent). The challenge with this approach is finding
enough data about a player to allow for accurate parameterisation. It is some-
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what rare that a specific player will suffer an injury in a match (Andy Murray
and Rafael Nadal are not always getting injured despite the impression one
might get from this report!), and even more unlikely that they will retire. If
we also categorise matches by court surface, we will find it very difficult to
piece together comprehensive data for any player.

Dependence on the Current State of the Match

We have assumed that retirement risk is homogeneous over all possible states
of a tennis match. In reality, this assumption may not hold. There has been
recent debate over whether players are far more ready to give up when carry-
ing an injury and losing than they used to be. With the hectic ATP and WTA
tour schedules and ever-intensifying demands of the sport itself, players may
value avoiding further injury and maximising precious rest periods over play-
ing ’lost cause’ matches to completion just for the benefit of the viewers and
sponsors. This implies that players may be more likely to retire if they are in
a losing position compared to when they sense victory. There could also be
other match situations which encourage retirement such as the end of a set or
a switchover between games.

We note that our simulator is already much more sensitive to retirement when
the match-winning probability of the given player is low, potentially mod-
elling the expectation of traders that a player is more likely to retire as it
becomes more difficult for them to win the match (although this was not an
intended effect and thus is not under our control).

An `After Two Sets' Match Odds Market

Just as we have created an after one ball Match Odds market, we could model
an after two sets Match Odds market in a similar fashion. This would require
our simulator to produce two more values, R3

A and R3
B , which are the proba-

bilities that Player A and Player B retire after the second set has been played,
respectively. We would then compute:

(W ′
A+R3

B )

(W ′
A+R3

B )+ (W
′

B +R3
A)

which is the probability that Player A wins normally plus the probability that
Player B retires after the second set, normalised by the sum of the probabilities
that either player wins the match normally and either player retires after the
second set. We expect this to be a less popular market, however, since some
matches can finish after two sets such as a straights victory in the women’s
game.
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Parallelisation

The main disadvantage of our system is that it is very slow. This is mainly
due to the execution of the Nelder-Mead method on every point. We know
that a single 10,000 run simulation is no great drain on computing power
(see Appendix C) but when we have over 200 points in a match, all these
approximations take their toll. This could limit the real-time application of
our model although we expect that the system would be able to keep up with
the rate at which points are played in top-level tennis.

We can speed up the use of the Nelder-Mead method by increasing the con-
vergence tolerance level or limiting the maximum number of iterations of the
algorithm, but only at the cost of accuracy and therefore unwanted fluctua-
tions in our modelled markets. A solution could be the use of parallelisation.
There is no reason why we could not process each point in parallel as points
do not depend upon each other. This would speed up the system significantly
although it would require access to multiple machines or CPU cores. Fur-
ther optimisations could be made by improving the code and making use of
helpful features of programming languages other than Java.

Betfair provides a free API which allows users to programmatically connect
to its exchanges in order to observe markets and place bets using their own
software. It is likely that much of the trading that takes place on Betfair can
be attributed to automated trading software rather than individual gamblers.
This API would be available to us for gaining access to the real-time odds from
the Set Betting and Match Odds markets should we require it.

An Exact Model

We have used a simulator that can only produces approximations as our model.
As we touched upon earlier, we could try to create a mathematical state tran-
sition system model for tennis that incorporates retirement risk in order to
calculate exact solutions. Such a model may also be faster than a simulator.
Furthermore, we may be able to use such a model to investigate in more depth
the relationship linking the gap between the Betfair Set Betting and Match
Odds markets and our estimated match-level retirement risk values. In Ap-
pendix E, we attempt to explain the theory that would form the basis behind
this future research.
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A The Scoring System of Tennis

A singles match in tennis concerns only two players and consists of a best-of-
three set or best-of-five set contest. Sets consist of a number of games. A player
who has won one, two, or three points in a game, has the score 15, 30, or 40,
respectively. A game is won only when one player has at least four points
and has at least a two-point lead. 40-all is known as deuce. Whichever player
wins the next point when the score is at deuce, gains advantage. However, if
the opposing player then wins the following point, the score returns to deuce.
Consequently, a game could, in theory, last forever. The players take turns
serving each game, with the initial server determined by a coin toss. If the
server is one point away from winning a game, the point is known as game
point. If the returner is one point away from winning a game, the point is
known as break point, i.e. he/she is on the verge of ’breaking the opponent’s
serve’. The score of a player who has no points in a game is known as love.

A set is won when one player has at least 6 games and at least a two-set lead.
Alternatively, if the score is 6-all, there is a change of serve as per normal and
then a tiebreak is (usually1) played. In a tiebreak, the player who serves first is
the designated server for the ’game’ but service changes on every odd point,
e.g. after point 1, 3, 5, etc. A tiebreak is won when one player has at least
7 points and at least a two-point lead. The server of the first game of the set
following a tiebreak is the player who served second in the tiebreak itself, i.e.
no player is allowed to serve two games in a row[31].

1Today, only the final set in singles matches at three of the four Grand Slam tournaments (the
Australian Open, the French Open, and Wimbledon), as well as in Davis Cup ties, do not
use the tiebreak system.
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B Base Tennis Model Pseudocode

Algorithm 6 double game(double p, CurrentGameScore gameScore)

if target player has won the game then return 1
end if
if opponent has won the game then return 0
end if
if score is deuce then return p2/[1− 2 p(1− p)]
end if
return p * P(Win game after winning next point)

+ (1 - p) * P(Win game after losing next point)

Algorithm 7 double set(double pa, double pb, CurrentSetScore setScore,
CurrentGameScore gameScore, boolean servingNext)

if target player has won the set then return 1
end if
if opponent has won the set then return 0
end if
if tiebreaker then

return tiebreak(pa, pb, new CurrentGameScore(), servingNext)
end if
double g
if servingNext then

g = game(pa, gameScore)
else

g = game(1 - pb, gameScore)
end if
return g * P(Win set after winning next game)

+ (1 - g) * P(Win set after losing next game)
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APPENDIX B. BASE TENNIS MODEL PSEUDOCODE

Algorithm 8 double tiebreak(double pa, double pb, CurrentGameScore
gameScore, boolean servingNext)

if target player has won the tiebreak then return 1
end if
if opponent has won the tiebreak then return 0
end if
if score is 6-6 then

return (pa * (1 - pb)) / (1 - (pa * pb + (1 - pa) * (1 - pb)))
end if
double p, q
if servingNext then

p = pa
q = 1 - pa

else
p = 1 - pb
q = pb

end if
// Note that service changes player on every odd point
return p * P(Win tiebreak after winning next point)

+ q * P(Win tiebreak after losing next point)

Algorithm 9 double match(double pa, double pb, CurrentMatchScore match-
Score, CurrentSetScore setScore, CurrentGameScore gameScore, boolean
servingNext, int numSetsToWin)

if target player has won the match then return 1
end if
if opponent has won the match then return 0
end if
double s = set(pa, pb, setScore, gameScore, servingNext)
return s * P(Win match after winning next set)

+ (1 - s) * P(Win match after losing next set)
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C Tennis Match Simulator Analysis

We experimented with the number of runs required to produce accurate re-
sults using our tennis match simulator. We repeatedly simulated a 5-set match
with point-winning probabilities PA = PB = 0.6. As one might expect, the
match-winning probability given by the mathematical model for such a sce-
nario is 0.5. On each iteration we increment the number of runs by 100 up to
25,000. As Figure C.1 shows, anything at or above a mere 10,000 runs appears
to consistently give results within 0.5% of the exact solution - sufficient for
our needs.

Figure C.1.: An experiment concerning the accuracy of our tennis match simulator

We also note that running 10,000 full matches on our modified tennis match
simulator with PA = PB = 0.6, c = 0.000115, λ = 10.0 and ρ = 0.95 takes
approximately 0.328 seconds on a state-of-the-art laptop.
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D Truncated Exponential Distribution Proof

Say we have random variable Y ∼ e x p(λ). We take bY c as the integer part of
Y and {Y } as the fractional part. We find the joint distribution:

P(bY c= k ,{Y } ≤ y) = P(k ≤X < k + y)

= e−λk − e−λ(k+y)

= e−λk (1− e−λy )

If we fix y and sum over all possible values of k we have:

P({Y } ≤ y) = (1− e−λy )
∞
∑

k=0

e−λk

=
1− e−λy

1− e−λ

F (y) = 1− e−λy is the CDF of an exponential distribution and 1− e−λ is the
probability that an exponential random variable with rate λ is no greater than
1[32].

83



E A Possible State Transition System

Tennis matches are amenable to being modelled using Discrete Time Markov
Chains as demonstrated by Liu (2001)[21] and Huang (2011)[15]. Any system
that is modelled as a Markov Chain must fulfil the Markov Property:

P(Xn+1 = j |Xn = xn , ...,X0 = x0) = P(Xn+1 = j |Xn = xn)

for n, j = 0, 1, ... and where Xn represents the state of the system at time n.
In other words, the next state the Markov Chain transitions to is independent
of any state the system was in prior to the current state. Unfortunately, our
model cannot fulfil the Markov Property. On point n, each player has an
updated retirement risk parameter rn that is dependent on its value at point
n − 1. The retirement parameters help to determine the subsequent state as
they contribute to the normalised probabilities of each player winning the
point or one of the players retiring. Consequently, the next state in the system
is dependent on states prior the current state.

So we may not have a Markov Chain that we can study, but we do still have a
labelled state transition system that we can reason about. An absorbing state in
a state transition system is a state that once entered, is never left. A transient
state is a state that is only visited by the system a finite number of times. In
addition to the two absorbing states found in standard Markov Chain models
tennis, i.e. either one of the players wins the match normally by achieving the
required number of sets, we have two more: either one of the players can retire
from the match on any point (just as with our simulator). If we also wanted to
know the probability of a player retiring in a particular set, we would have to
introduce further absorbing states (and complexity!). Every other state in our
system is transient as each of these states represents a different possible score
in the match and you never visit the same score twice in any given tennis
match. We explain theory as described by Bause and Kritzinger (2002)[33]
that could be applied to our model.

Say we have a set St of nt transient states and a set Sa of na absorbing states.
We number the states such that the na absorbing states occur first and write
the one-step transition probability matrix:

P =
�

I 0
B Q

�

I is the identity matrix with all element pi i = 1 since once you enter an
absorbing state you stay there. B is an nt × na matrix describing movement
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APPENDIX E. A POSSIBLE STATE TRANSITION SYSTEM

from the transient to the absorbing states. Q is an nt × nt matrix describing
the movement amongst transient states. 0 is the na×nt zero matrix since you
cannot move from absorbing states to transient states. We define the n-step
transition probability matrix:

P n =
�

I 0
NnB Qn

�

where Nn =
n
∑

i=1

Q i−1. Since as n → ∞, Qn → 0 (intuitive since transient

states eventually will not be revisited), Nn→ (I−Q)−1 and the matrix (I−Q)
is invertible, we can say N = (I −Q)−1 is the fundamental matrix of the
system. So now we have:

lim
n→∞

P n =
�

I 0
NB 0

�

We should be able to use this result to calculate the probability of reaching any
of our absorbing states (any way the match can end) from any of our transient
states (any given current match score). Unfortunately, the matrices B and Q
are very large (there are a lot of possible match scores) and would take a long
time to produce correctly.
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