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Abstract

We develop a new class of artificial stock market that apply general equilibrium price clearing. Our model
is the first multi-asset artificial stock market to use exogenously generated dividends from a geometric vec-
tor autoregressive model and is therefore the first truly multi-asset artificial stock market. Our model does
not require the concept of a risk free asset and agents are able to form demands for an arbitrary number of
assets with arbitrary covariance structure. We derive an optimisation problem for computing approximate
equilibrium prices that clear our market and then show our market is able to faithfully reproduce many real
stock market dynamics and phenomenon.
Keywords: Applied General Equilibrium; Agent-based Artificial stock-markets; Multi-Asset Market; Mar-
ket Dynamics.
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1
Introduction

Economies are complex dynamical systems. Large numbers of self-interested, heterogenous micro-agents
compete for limited resources through decentralised global markets. In a system of such apparent chaos,
it is remarkable that markets display coherence and order; responding to collective supply and demand
fluctuations with such efficiency that many believe price movements are random and cannot be forecasted.
Economists have grappled with modelling economic systems for hundreds of years and although the use of
financial modelling is questioned by some, 11 there is no doubt it is greatly influential in the policy decisions
of many governments, hedge funds and investment banks.22

Since the time of Walras, economic modelling has centred around the paradigm of supply and demand
equilibrium. The Walrasian economy requires prices be adjusted by a centralised market auctioneer. Utility
maximising producers and consumers form supply and demand decisions on scarce resources conditional
on the market prices determined by the auctioneer; trading may only take place once an equilibrium price is
found. General Equilibrium Theory is a branch of microeconomics concerned with exploring the dynamics
of equilibria within the Walrasian framework.

Dynamics of equilibria, such has existence and uniqueness, are now well established theory. However,
these results only apply to a class of models which conform to a strict set of conditions, most notably that
market participants are concave utility maximisers, possess zero degree homogenous demand functions and
adhere to rational expectations. Unexpected financial events such as the Black Monday market crash (1987),
and the more recent financial crisis have caused many to question the validity of these assumptions. As a
result, a new breed of heterogeneous, boundedly-rational agent-based market models are becoming an area
of increasing research and development. These simulated artificial stock markets do not in general satisfy
equilibria conditions and thus focus is turned to the dynamics of agents operating within the market. Many,
such as Gupta et al.Gupta et al. (20052005), believe artificial markets may be used for time-series forecasting.

Most current research on artificial markets has focused on a single risky asset markets, populated with
mean-variance criterion myopic investors. Furthermore, while some artificial markets use equilibrium theory
for price clearing algorithms, these are not of the same vein as those established in general equilibrium
theory, and there is certainly no requirement for their use, indeed, other pricing algorithms that do not
enforce market clearing, such as order-book style matching are also widely implemented. 33

1See for example TalebTaleb (20082008)
2See for example Holly and WealeHolly and Weale (20002000, chap. 4) and Pindyck and RubinfeldPindyck and Rubinfeld (19981998)
3A survey of artificial markets is given by LeBaronLeBaron (20062006)
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While we agree with new bounded market initiative, we do not feel the current class of artificial markets
capture the dynamics of real markets in a satisfactory way. Firstly, we do not believe it is possible to
fully classify an asset as ‘risk-less’; an assumption often made in the current line of artificial markets.
Secondly, we feel the abstraction to a single risky asset economy removes some of the most vital competitive
characteristics of market dynamics. Both of these observations in our view lead to the same conclusion: the
need for a global price adjustment mechanism. For if there is no truly risk-less asset then by definition, for a
market to prevail there must exist at-least two unique risky assets. This naturally invokes the idea of general
equilibria. Thus, we conclude that removing the assumption of a risk-less asset has dramatic implications
for the structure and complexity of fully clearing artificial market models, in that, a general equilibrium
schema becomes vital for price formation. To the best of our knowledge, the feasibility of a multi-asset
artificial market operating under general equilibrium pricing has not been studied.44. Nevertheless, somewhat
ironically, we feel it is a natural evolutionary direction for artificial markets to take.

Finding equilibria in a seemingly chaotic market is a challenging mathematical and computation task,
and although a small selection algorithms now exist for computing general equilibria, almost all have condi-
tional convergence on general equilibrium theory existence and uniqueness assumptions; there is very little
understanding on the applicability of general equilibrium price finding algorithms outside the Walrasian
domain. Moreover, many of these algorithms require additional convergence assumptions such as gross
substitutes. As described by Noam Nisan and VaziraniNoam Nisan and Vazirani (2007a2007a), in some cases it is possible to compute
equilibria via convex programming, however, even if the problem domain is convex, many convex solvers
implment quasi-Newton methods that require Jacobian and Hessian information. More recently, a new class
of tâtonnement style algorithms have been developed that do not require differential information, however,
these methods may not converge when the problem domain is non-convex.

Artificial stock market research has focused heavily on recreating real market dynamics such as high
volatility, fat-tailed return distributions and high trading volume. These dynamics are absent from standard
general equilibrium models as agents are homogenous and non-evolutionary. Our proposal is to combine
artificial stock market and general equilibrium models and show this new class of hybrid model is flexible,
robust, and is able to produce a wealth of empirically seen market phenomenon.

1.1 Objectives

Our aim is to develop a new class of artificial stock markets that are not restricted to a single risky asset.
We hope our new market model will be able to replace, or at least extend the current generation of artificial
stock markets and become a valuable research tool for studying economic stock markets, and analysing
policy decisions.

We will use methods similar to those employed in computable general equilibrium theory for computing
general equilibrium price vectors that clear our market, in particular we will achieve this by deriving an
optimisation problem such that optimal solutions characterise approximate equilibrium prices. Following
this we will then attempt to vindicate our model by analysing the dynamics of equilibria with relation to
general equilibrium theory, and in particular the existence and stability of equilibrium in our market.

Finally, we hope to show our artificial stock market is able to faithfully reproduce the dynamics displayed
by real markets. We will do this by empirically testing simulated time-series generated by our market.
Additionally, we will analyse if our market is efficient with respect to the efficient market hypothesis.

4Another multi-asset artificial stock market has been developed by WesterhoffWesterhoff (20042004). However, his model does not enforce
market clearing, nor doe it contain exogenously determined assets and thus does not fall within the same class of model we are
proposing.
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1.2 Report Structure and Contributions

• Background: We describe much of the theory required to fully understand the economic setting of
our thesis. We show many of key results that will required in the development of our artificial stock
market model. [Chapter 2]

• Artificial Stock Market Model We develop our artificial stock market model. We begin by analysing
real market dividends and develop a model for accurately generating dividend time-series. Following
this we derive our agents portfolio choice, demand function, expectations forecasting and learning
mechanism. We also discuss the timing of our market and some important implementation concerns.
Finally we show a method for calibrating our dividends model. [Chapter 3]

• Computing General Equilibrium Prices: We begin by determining if our model satisfies the con-
ditions required for general equilibrium existence. Following this we analyse if existing algorithms
for computing general equilibrium prices can be applied in our model, and then develop an optimisa-
tion problem for finding equilibrium prices. We also discuss algorithms for solving the optimisation
problem and analyse the performance of each method. [Chapter 4]

• On Equilibria in Artificial Stock Markets: In this chapter we complete the first phase of our evalu-
ation by examining the dynamics of equilibrium in our market, we analyse if equilibrium prices exist
and if so, whether they can be reliably computed. We finish with a brief discussion on other equilibria
properties. [Chapter 5]

• Market Dynamics: In this chapter we complete the second phase of our evaluation; we asses the time-
series generated by our artificial stock market and compare them to real market data we have collected.
In particular we analyse if our market is able to to generate volatile prices; if returns distributions have
kurtosis; and if our market has high trading volume. Furthermore we briefly examine wealth dynamics
in our market. Finally we test if our market is efficient by applying cross-covariance statistics and
Granger causality testing. [Chapter 6]

• Conclusions & Future Work: We conclude our thesis by drawing together our main finding and
presenting a selection of suggested lines of future research. [Chapter 7]

• Appendix: In the Appendix we briefly outline some of our key implementation details. We also
detail many of the mathematical background material required to understand our model and results,
and in particular we show how to construct and analyse Vector Autoregressive models. Furthermore
we briefly examine mathematical optimisation. [Chapter 8]



2
Background

In this chapter we review some key literature in economics theory that readers should have some familiarity
with before reading the remainder of this thesis. Chronological order is respected where possible. Some
references to additional material are provided for readers interested in pursuing related work. Note some
mathematical definitions are deferred to the appendix.

2.1 Modern Portfolio Theory

Modern portfolio theory is an area of investment science that formulates statistically optimal portfolio deci-
sions. Investors place money into assets (stocks, bonds etc), in the hope that they will obtain a payoff greater
than their initial investment at a later date; “a later date” is assumed to be a single period, this is well defined
for assets such as bonds that have fixed maturity dates, but not for assets such as stocks which can theoreti-
cally be held forever. For assets such as these we can view a period as an investor’s investment horizon, that
is, the time in the future the investor wishes to recover their funds, for example, a myopic investor may only
have an investment horizon of a few weeks or months. All assets are inherently risky11, there is no guarantee
of a positive return even for assets deemed ‘safe’ such as government bonds.22 Furthermore, investors are
assumed to be risk averse; they require higher expected returns when taking on additional risk. It is also
assumed no-arbitrage conditions hold; no completely risk-free profits can be made.

Definition. The rate of return on an asset is:

r =
X1 − X0

X0
(2.1.1)

where X1 and X0 denotes realised funds received and invested respectively.

Definition. The risk of an asset is measured by the standard deviation, σ, of the assets return.

We can visualise this definition of risk by looking at Figure 2.12.1, HNZ has a low standard deviation while
NVDA has a high standard deviation. One would usually describe HNZ as the ‘safer’, of the two assets. 33

1The definition of “risk” differs depending on the setting. For example, in a mean-variance setting risk is measured by standard
deviation (σ), where as in the Capital Asset Pricing Model risk is measured by beta (β). It is not necessary to understand the
reasoning behind these differences as we will only require σ to quantify risk, however, the reader may refer to LuenbergerLuenberger (19981998)
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Figure 2.1: Time-series comparison of H.J. Heinz Company common stock (HNZ) and NVIDIA Corpora-
tion common stock (NVDA) over a two year period. [Obtained from http://finance.yahoo.comhttp://finance.yahoo.com]

2.1.1 Mean-Variance Criterion

It is unlikely that a wise investor would hold a single asset, indeed, it can be shown that it is statistically
beneficial to hold a collection, or portfolio of assets, often called diversification. Under the mean-variance
criterion we only consider portfolios of assets.

Definition. The rate of return on a portfolio of is:

rP =

N∑
i=1

wiri = w · r (2.1.2)

where wi and ri is the weight and return of asset i respectively and w & r are the corresponding vectors.44

Note we must have
N∑

i=1

wi = w · ι = 1

where ι is the vector of ones.55

for further details.
2Governments have defaulted on bonds in the past, most notably the Russian government in 1998.
3For readers wishing to explore reasons why one company may be riskier than another, we recommend Graham and ZweigGraham and Zweig

(20032003), which must be regarded as one of the great investment texts.
4We use boldface to represent vectors throughout our thesis.
5We use notation throughout our thesis.

http://finance.yahoo.com
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Definition. The expected return, or mean of a portfolio is

E[rP] = r̄P = E

 N∑
i=1

wiri

 =

N∑
i=1

wiE[ri] =

N∑
i=1

wir̄i = w · r̄ (2.1.3)

Definition. The variance of a portfolio is

σ2
P = w · (Σw) (2.1.4)

where Σ is the covariance matrix of asset returns.

An investor that is risk averse prefers a higher return for increased risk. An investor’s taste-for-risk can be
quantified with a risk-aversion parameter, α, as α increases the investor is less willing to take risk.

Definition. A mean-variance maximising investor solves

maximise
w

w · r̄−
α

2
w · (Σw)

subject to w · ι = 1

w ≥ 0

(2.1.5)

Equivalently, we can infer for a given return an investor would prefer less risk, this leads to the famous
Markowitz model

minimise
w

1
2

w · (Σw)

subject to w · r̄ = r̄P

w · ι = 1

w ≥ 0

(2.1.6)

The solution to these problems is a vector, w, that characterise the investor’s optimal portfolio. We can plot
many of these optimal portfolios by solving 2.1.52.1.5 for varying α (or r̄P), the resulting solution set, depicted
in 2.22.2 is called the efficient frontier.

Without constraints on portfolio weights it is possible an optimal portfolio to contain negative weights,
this is called short-selling. When an investor sells-short they borrow an asset which they then sell, at a later
date the asset must be returned to the original owner (note the original owner also receives any dividend
paid during borrowing period). Thus a positive rate of return is made on a short-sale only when the price
of the asset decreases over the investment horizon. Many investors are prohibited from short-selling as
it is considered very risky for both parties. The effect on the efficient frontier is shown in Figure 2.22.2 by
the red shaded region. Optimisation problems such as 2.1.62.1.6 are called Quadratic Programs66 (QP) and can
not, in general, be solved analytically. However, there exists a good selection of algorithms for efficiently
computing globally optimal solutions for QP’s. Details of mathematical optimisation are deferred to the
Appendix 8.58.5.

If we remove the portfolio weight constraint w ≥ 0 we are left with an unconstrained convex optimisation
problem. These types of problem can be solved analytically by solving the KKT optimality conditions which
we now demonstrate.

6A quadratic program is a special type of optimisation problem, discussed in the Appendix (8.58.5).
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Risk (Standard Deviation)

E
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te

d
 R

e
tu
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s

All portfolios in here are inefficient.

Portfolios on these line are efficient.

Minimum variance portfolios

Efficient fontiers

Risk aversion decreases

Portfolios below this line not considered.

Portfolios in here are only possible if short selling is permitted.

Figure 2.2: Depiction of efficient frontiers with and without short selling.

Example (Mean-Variance solution). By forming the Lagrangian

L(w,λ) = w · r̄−
α

2
w · (Σw)− λ (w · ι− 1) (2.1.7)

we find the first-order optimality (KKT) conditions by partially differentiating the Lagrangian

∂L(w,λ)
∂w

= r̄−αΣw− λι = 0

∂L(w,λ)
∂λ

= w · ι− 1 = 0
(2.1.8)

Therefore
w∗ =

1
α
Σ
−1(r̄− λι) (2.1.9)

where w∗ denotes the optimal portfolio. Noting we have N + 1 equations for N unknowns we can can
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substitute w∗ into the second optimality condition

1 = w · ι

=
1
α
Σ
−1(r̄− λι) · ι

=
1
α
ι · (Σ−1 r̄)−

(
1
α
ι · (Σ−1ι)

)
λ

(2.1.10)

Therefore

λ =
ι · (Σ−1 r̄)−α
ι · (Σ−1ι)

(2.1.11)

Substituting λ back into 2.1.92.1.9 gives the optimal portfolio

w∗ =
1
α
Σ
−1

(
r̄−
ι · (Σ−1 r̄)−α
ι · (Σ−1ι)

ι

)
(2.1.12)

Aside. Readers familiar with portfolio theory may wonder why we have not considered the concept of a
‘risk-free’ asset. This is because, as stated in Section 11, we do not consider there to exist a truly risk-
less asset, thus they do not form part of our model. The impact of a risk-free asset on portfolio theory
is significant, and not within the scope of this thesis, we refer those wishing to pursue these concepts to
LuenbergerLuenberger (19981998).

2.1.2 Utility Portfolio Choice

We now consider a more abstract notion of portfolio theory which is closely related (and sometimes equiva-
lent) to the mean-variance criterion. It was shown in the previous section that an investor’s portfolio decision
was dependent on their risk-aversion, the following theory formalises this idea.

Definition. A utility function U(x), where U : Rn → R, maps a measurable quantity x, such as a vector of
real numbers, to a level of satisfaction.

Utility functions are a method of ranking objects, such as good & services, investments, or wealth. Objects
with higher utility are more preferable. Some common utility functions are listed in Table 2.12.1, and shown in
Figure 2.22.2.

Expected Utility

When presented with uncertainty, utility functions represent investor risk preferences. An investor evaluates
an investment opportunity by calculating expected utility. Investors using concave utilities are risk-averse,
as the following example demonstrates.

Example. Suppose we decide to use power utility with α = 0.5 and are offered an option of either £1 for
sure, or £2 if a coin flip lands on heads and nothing if it lands on tails. To decide which option is most
preferable we calculate the expected utility of each. The first options utility is E[U(x1)] = 1U(1) = 10.5

0.5 = 2.
The second options utility is E[U(x2)] = 1

2U(2) + 1
2U(0) = 1

2
20.5

0.5 + 1
2

00.5

0.5 ≈ 1.41. The first option has a high
utility and is therefore more preferable.
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Table 2.1: Common utili-
ties.

Name U(x)
Risk neutral x
Quadratic x−αx2

Power x1−α

1−α
Logarithmic ln(x)
Exponential −e−αx

0 1 2 3 4 5 6
−6

−4

−2

0

2

4

6

x

Common utility functions

U
(x

)

 

 

Risk neutral

Quadratic

Logorithmic

Power

Eponential

Table 2.2: Some common utility functions.

Expected Utility Maximisation

Suppose an investor has a wealth Wt to invest at time t and uses a utility for wealth U. The investor wishes to
form a portfolio such that wealth at time t + 1, Wt+1 is maximised. Thus we have the following optimisation
problem:

maximise
w

E[U(Wt+1)]

subject to Wt+1 = (1 + rP
t+1)Wt

w · ι = 1

w ≥ 0

(2.1.13)

The solution to this Quadratic Program (or unconstrained convex problem if the portfolio constraint is re-
moved) is the optimal portfolio for this investor.

2.2 General Equilibrium Theory

We know turn our attention to General Economic Theory, a key research area in theoretical economics and
the foundation of much of our work.

The foundations of general equilibrium theory where introduced by Léon Walras in his 1874 work,
Elements of Pure Economics.77 Here, Walras defined an abstract market model. The Walrasian view of the
economy is well described by KatznerKatzner (19891989), which we summarise here. A Walrasian economy is seen as
a collection of agents, each of which is a consumer, or a producer. Consumers make buying decisions on

7See WalrasWalras (20032003) for a more-recent republished version of the original work.
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commodities produced by the producers, and selling decisions on their own resources (e.g. labor time) while
producers decide production quantities. Consumers formulate preferences through utility maximisation,
subject to budget constraints; producers maximise profit subject to resources constraints. Consumers and
producers interact through perfectly competitive markets, such that markets are fully defined by a pricing
system.

Many general equilibrium models still conform to this framework, however, the distinction of a producer
as defined above is often not clear. For example in a (secondary) stock market, there is no commodity
production. Thus we need a slightly modified framework for such purposes.

Definition (Pure Exchange Economy). A pure exchange economy is a Walrasian economy without produc-
tion, more formally - there exists a bundle of L commodities x = xL = (x1, x2, . . . , xL) ∈ RL. A price vector
for these commodities p = p j = (p1, p2, . . . , pL) ∈ RL. Thus the wealth can be calculated as p · x. Each of the
m agents has an initial endowment ei ∈ R

L, giving the economy supply vector ψ = (ψ1,ψ2, . . . ,ψm). Agent
i’s demands for the assets are given by a demand function fi(p,ωi), where Wi is the wealth of agent i.

Note we have not elaborated a theory of money, however, it is however useful to define a commodity sim-
ilar to money. We call this special commodity the numeraire. It serves as a base reference for all other
commodities and is generally used to normalise the price vector.88

2.2.1 Walrasian Equilibrium

We now describe the equilibrium argument in the Walrasian setting, this theory applies equally to the ex-
change economy definition.

Supply & Demand

The equilibrium argument is built upon the notion of supply & demands. For a market to exist we must have
at-least two commodities (although one could be money), and at-least two market participants. Suppose an
economy exists with two commodity where one is money (we make no restriction on market participant and
ignore resource requirements). Consumers formulate demands for the commodity at the current price, and
simultaneously, producers make supply decisions. There are three possibilities, as shown in Figure 2.32.3; if
the price is such that supply exceeds demands (P1), then suppliers will be left with a positive excess amount
of the commodity. If demand exceeds supply (P3) then not all consumer demands can be fulfilled leaving a
negative excess. In both situations, prices must adjust in a way to balance supply and demand (P3). This is
called the equilibrium price. Preferences for an asset may change for reasons other than price change, e.g. a
draught would create a greater demand for bottled water, this is called a shift. A shift on a supply & demand
curve is shown in Figure 2.42.4.

Partial Equilibrium

In the simple economy just considered we defined equilibrium when supply and demand excess is zero.
Real economies contain many assets, each of which will have a supply and demand. Partial equilibrium is
when, everything else being equal, a single commodity is in equilibrium. For example, consider an economy
with fruit commodities. If we fix the price of oranges, pears etc and concentrate on apples, we could find a
price that causes supply and demand of apples to be in equilibrium reasonably easily. We then have a partial
equilibrium within our fruit economy.

8See Barron et al.Barron et al. (20062006) for a more formal definition of the numeraire.
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Figure 2.3: A supply and demand curve for a single
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Figure 2.4: A supply and demand curve showing a
shift in demand.

General Equilibrium

Partial equilibrium has a fatal limitation: inter-market relationships are not considered (See StarrStarr (19971997)).
For example, one would expect demand for jet fuel to increase with an increasing demand for flights; partial
equilibrium does not account for supply & demand shifts. General equilibrium theory looks to find a set of
prices such that all markets are simultaneously in equilibrium, it is a beautiful combination of mathematics,
economics, and computer science; many consider it akin to finding simplicity within a system of chaos.

A general equilibrium can be shown by an Edgeworth box; a tool visualising efficient allocations in a
two good, two agent economy. The indifference curves of both agents are shown for an initial endowment,
and by including a price vector we can include a budget line. Figure 2.52.5 shows an Edgeworth box with
two indifference curves passing through the initial endowment vector e. The space shaded between the two
curves show allocations which give a Pareto improvement.99 Figure 2.62.6 shows the indifference curves of the
agents under two price vectors, which result in budget constraints 1 & 2. The two dotted line shows each
agents demands under all prices p and initial endowment e. We can see that under the first budget constraint,
there is dis-equilibrium, where as under the second budget constraint there is global equilibrium. Note the
equilibrium point is also Pareto optimal.

We now formally state the definition of general equilibrium using the exchange economy definition.
First we define an important property of agent demands functions.

Definition (Walras’ Law).
p · fi(p,Wi) = Wi (2.2.1)

It is assumed fi satisfies Walras’ Law for all i. For any price vector p, total demand in the economy is then
given by

m∑
i

fi(p, p ·ψi)

9Pareto optimality, although not directly related to general equilibrium per se, it is intimately related. We say a price vector, p̂,
is Pareto optimal (or Pareto efficient) if there is no price vector, p, such that Ui(p) ≥ Ui(p̂) for all i.
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Figure 2.5: Edgeworth box showing efficient allocations. The points in the negation space are Pareto opti-
mal.

Lemma 1. A price vector p∗ is an equilibrium price if

m∑
i

fi(p∗, p∗ ·ψi) =

m∑
i

ψi (2.2.2)

Proof. See Appendix 8.28.2. �

We say an equilibrium is Walrasian when each of the agents maximises their utility functions Ui : RL→ R,
more formally agents solve

maximise
xi

Ui(xi)

subject to p · xi ≤Wi

(2.2.3)

The excess demand function of each agent i is

zi(p) = fi(p, p ·ψi)−ψi (2.2.4)
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This implies an equivalent definition of Walras’ law

zi(p) = 0 (2.2.5)

Note, this holds for all prices, not just equilibrium prices. It follows that the aggregate excess demand in the
market is given by

z(p) =

m∑
i

( fi(p, p ·ψi)−ψi)

Using this we can obtain the following general equilibrium condition the characterises equilibrium prices

z(p∗) = 0 (2.2.6)

We can see that a market is in general equilibrium only when each of the assets contained within the market
are in partial equilibrium simultaneously.
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2.2.2 Questions of General Equilibrium Theory

General Equilibrium Theory raises some important questions about the nature and consequences of equilib-
rium in an economy. Many of these are addressed by BryantBryant (20102010).

Existence Perhaps the most obvious and important question is whether equilibrium states do indeed exist.
This is a surprisingly difficult question to answer, indeed, it was not until 1954 the existence question
was proven under the assumption of Arrow-Debreu conditions.

Definition. Arrow-Debreu conditions:

I. Ui is continuous.
II. Ui is monotonic.

III. Ui is concave.
IV. ei ≥ 0.
V. fi satisfies Walras’ law.

VI. fi is Marshallian, i.e. is homogenous of degree zero.

Theorem 1. For any pure exchange economy, if the Arrow-Debreu conditions are satisfied then an
equilibrium exists.

Proof. The basis of the proof comes from Kakutani’s theorem and Brouwer’s fixed point theorem.
The proof is somewhat involved and is beyond the scope of this thesis. See Arrow and DebreuArrow and Debreu (19541954).
Two key observations used in the proof is when conditions 2.2.22.2.2 are satisfied, z is continuous and
homogenous of degree zero. �

Uniqueness Are equilibrium states unique? That is, is there a single price vector that clears the market or
many? It has been proven that under gross substitutes there exists a unique equilibrium.

Definition (gross substitutes). A market satisfies the gross substitutes property if for any good i, in-
creasing pi leads to increased demand for all other goods. The market satisfies weak gross substitutes
if the demand for every other good increases or stays the same.

Theorem 2. Under numeraire normalisation, GE markets of gross gross substitutes satisfying the
Arrow-Debreu conditions have a unique equilibrium.

Stability Is there a price adjustment mechanism that always converges to equilibrium prices? This is a key
question for Applied General Equilibrium Theory which we will discuss next.

Optimality Are equilibrium points Pareto optimal? This property somewhat suggested by the last section.
It has been shown that equilibrium states are Pareto optimal (though the converse is not always true).
This is know as the First Fundamental Theorem of Welfare Economics. It is unlikely we will have
much to say on this point.

Sensitivity Do equilibrium states bifurcate under initial conditions? i.e. is the economy a chaotic system?
This is a very interesting question and is bound to the realm of higher mathematics.

Empirical congruence Do general equilibrium models give a satisfactorily account of actual economic
data? This is perhaps ones of the most important questions in our view. One of our key evaluation
points is this very question.
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2.2.3 Computing General Equilibria

Having briefly described some of the key points of general equilibrium theory we finish this section with a
subject of most interest to us, how to compute general equilibria. Much of the work in this area is a result of
Computable General Equilibrium (CGE) which looks to model empirical data in a general equilibria setting.
Many governments use CGE for policy direction (see, for example Shoven and WhalleyShoven and Whalley (19921992)).

Walras was the first to introduce a price-adjustment mechanism, which he called tâtonnement, defined
by the differential equation

ṗ(t) = z̄(p(t),ω) (2.2.7)

Walras went further with his argument by describing an implementation of tâtonnement: a market ‘auction-
eer’ calls out market prices for each asset, agents within the market formulate demands for each asset given
these prices, no trades are completed until equilibrium is achieved.

It is well know that tâtonnement algorithms may fail to converge unless addition assumptions such as
gross substitutes are made. The market equilibrium problem can be stated as finding the fixed points of 2.2.72.2.7.
ScarfScarf (19671967)1010 was the first to suggest an algorithm for computing approximate fix-points. His algorithm
decomposes the price simplex into smaller components and uses information about the problem instance to
construct a path to an approximate fixed-point. However, the algorithm has exponential running time and
requires all of the previous assumptions of general equilibrium existence.

Another class of algorithms developed for computing equilibrium prices apply global Newton methods
(see, for example SmaleSmale (19761976), and KamiyaKamiya (19901990)). These methods do not require gross-substitutes but re-
quire Jacobian excess information. Other, auction-style combinational algorithms such as Garg and KapoorGarg and Kapoor
(20042004) (surveyed by Noam Nisan and VaziraniNoam Nisan and Vazirani (2007b2007b)) have been developed, however, these algorithms
require global price information and utility separability over all commodities. More recently, a selection of
tâtonnement style algorithm of the form

pi← pi(1 + λimin{1,zi/wi}) (2.2.8)

have been developed. Cole and FleischerCole and Fleischer (20072007) argues these algorithms more closely match how prices in
real markets are adjusted, however, these algorithm also requires gross substitutes. Finally, there is a class of
algorithms that use convex programming (surveyed by Noam Nisan and VaziraniNoam Nisan and Vazirani (2007a2007a)) which generally
look to maximise utility subject to demands, a hybrid, auction-style convex programming approach using
indirect utility has also been developed by Fleischer et al.Fleischer et al. (20082008) which in general requires weak gross
substitutes.

2.3 Agent-based Computational Economics

In the Walrasian setting markets operate in an entirely mechanical way, agents form demands through math-
ematical optimisation with no regard to the environment which they are situated; the current price is the only
determining factor in their decision making. The function of the market is thus dependent on the market
auctioneer. Agent-based Computational Economics removes the dependence of the Walrasian auctioneer,
agents are able to act in a operate in a decentralised market and act independently of an equilibrium pricing
mechanism. This dramatically changes the analytical and tractable complexity of the Walrasian model as
modellers must now consider complexities such as as-symmetric information, strategic interaction, expec-
tation formation, wealth dynamics and social interactions.

10See also, Scarf and HansenScarf and Hansen (19731973) and ScarfScarf (19771977).
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TesfatsionTesfatsion (20062006) concludes: “The defining characteristic of ACE models is their constructive grounding
in the interactions of agents, broadly defined to include economic, social, biological, and physical entities.
The state of a modelled system at each point in time is given by the internal data and methods of the agents
that currently constitute the system. Starting from an initially specified system state, the motion of the state
through time is determined by endogenously generated agent interactions.”

Aside. The term agent is often used without caution in economic literature, general equilibrium theory often
refers to “agents” in the context of decision making, it is important to recognise that these representative
agents1111, although of similar vein, represent a different entity to that discussed here.1212 Let us be clear that
for our purpose unless otherwise stated, agent refers to the bounded rational agents discussed. Further,
agents as defined by the Multi-Agent System (MAS) community are seen as autonomous, Russell and NorvigRussell and Norvig
(20102010) define an agent as “anything that can be viewed as perceiving its environment through sensors and
acting upon that environment through actuators.”. The reader should be made aware that the ACE models
described in this thesis are not, in general, the same as those employed by MAS. It is reasonable to say that
the “agents” used in ACE models are normal object-oriented programming objects.1313 AxelrodAxelrod (20062006) lists
some references to agent-based computational literature.

2.3.1 Motivations

In this section we describe some of the key historical developments that lead to the introduction of ACE.
This is not only useful for gaining a better perspective of why ACE is useful, but also because many ACE
models use these points as benchmark results. We conclude with some of the key goals of ACE.

Rational Expectations and Bounded Rationality

Rationality is an important concept to to economics, we tend to view humans as rational beings, that is,
decisions are made in accordance with reason and logic. This is perhaps unclear, or not strong enough for
the purpose of formal reasoning. In general, rationality in economics is concerned with expectation, and
more specifically how expectations are formed. Expectations are said to be adaptive when derived from past
experience, for example, an agent may calculate expected interest rates based off past interest rates, this is
more formally written as,

E[Xt|It−1] = E[Xt−1] + λ(Xt−1 −E[Xt−1]) (2.3.1)

where It−1 is the information available at time t − 1 and 0 ≤ λ ≤ 1. In the special case where λ = 1 this is
reduced to E[Xt] = Xt−1, known as the Ezekiel model.

Models using the adaptive expectations hypothesis were for some time attacked for information shock
susceptibility, as an illustrative example, consider a farmer who’s crop plantation decisions are dependent
on adaptively expected prices (for when harvest is due), if these expectations are adaptive and there is a
severe drought, this will effect yield which will lower price expectations for the following term. It is easy to
see how this could lead to dramatic fluctuations in price expectations, and hence price. Secondly, as noted
by GertchevGertchev (20072007) “When one states that expectations affect reality, if he assumes them to be adaptive, he
is ultimately assuming that history, not expectations, affects the future. Adaptive expectations always boil
down to a hypothesis of how past variables affect current variables. Therefore, formalising expectations
adaptively is contrary to the very purpose of building a theory of expectations.”.

11Representative agents refer to the homogeneous utility maximisers in Walrasian equilibrium models.
12See KirmanKirman (19921992) for a critical analysis on the use of representative agents
13If the distinction is unclear, see JenningsJennings (19991999).
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MuthMuth (19611961) proposed a new groundbreaking hypothesis of expectations: “I should like to suggest that
expectations, since they are informed predictions of future events, are essentially the same as the predic-
tions of the relevant economic theory”. This says an individuals expectations are perfectly consistent with
realisations; systematic forecasting errors are not made. More formally,

Xt = Et−1[Xt+k] = E[Xt+k|It−1] (2.3.2)

SheffrinSheffrin (19961996), summarises: “Expectations will diverge from actual values only because of some unpre-
dictable uncertainty in the system. If there were no unpredictable uncertainty, expectations would coincide
with the actual values - there would be perfect foresight.”. As noted by Palmer et al.Palmer et al. (19941994), assumptions
are often made when applying rational expectation theory:

• Complete Information. Individuals have full knowledge of the problem.

• Perfect Rationality. Individuals are able to deduce optimal behaviour or act as if they are.

• Common Expectations. Common knowledge1414 of the problem and information is assumed, as well
as that all individuals in the system are operating in the same manner.

Rational expectation naturally leads to equilibrium, often refereed to as rational expectation equilibrium.
RadnerRadner (19791979) explains: “The possibility for one trader to make inferences from market prices about the
information possessed by other traders rests upon his having a “model” or “expectations” of how equilibrium
prices are determined, i.e., how equilibrium prices are related to the information initially possessed by the
various traders. But this relationship is endogenous to the market system, and if traders have any opportunity
to compare the results of the operation of the market with their own models, then a suitable equilibrium
concept would require that their models not be obviously controverted by their observations of the market.”,
in this thesis, he also formalises the definition of a equilibrium under rational expectations. A detailed review
is also given by Allen and JordanAllen and Jordan (19981998).

Definition (Rational Expectations Equilibrium). A rational expectations equilibrium reveals to all traders
the information possessed by all of the traders taken together.

Many now believe rational expectations are unrealistic, suggesting the assumptions outlined earlier (com-
plete information etc) are unlikely to be satisfied. The notion of bounded rationality, proposed by SimonSimon
(19791979) suggests man has a limited computational ability in making decisions. In general, bounded rationality
is not used for analytical problems, no formal definition has proven tractable, and it evident economists have
yet to fully agree on informal characteristics, e.g. HommesHommes (20062006) notes, “A boundedly rational agent forms
expectations based upon observable quantities and adapts his forecasting rule as additional observations be-
come available.”, where as Palmer et al.Palmer et al. (19941994) appear to have a different understanding, explaining, “These
theories [bounded rationality] impose an intentional limitation on some aspect of an agents task, such as the
available knowledge, the computational time or complexity, the memory capacity, the forecasting repertoire,
etc. One difficulty is that there are many dimensions in which to bound rationality, and no clear guiding prin-
ciple for how to set the direction and distance from the zenith of perfect rationality”. Gigerenzer and SeltenGigerenzer and Selten
(20022002) light-heartedly observes, “bounded rationality has become a fashionable label for almost every model
of human behaviour.”. We will use the term “bounded” to describe agents not assuming rational expectation.

14Common knowledge of some fact expresses that all individuals knows the fact, everyone knows everyone knows the fact. . . etc.
See Fagin et al.Fagin et al. (20032003) for examples.
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Heterogeneity and Inductive Reasoning

Under rational expectations assumptions, agents are considered to reason deductively, that is, given premises,
hypothesis (or expectations) are soundly inferred from a general hypothesis. A well known deductive argu-
ment is ‘All men are mortal. Socrates is a man. Therefore, Socrates is mortal.’. Reasoning quickly becomes
more involved as the problem size increases and one must look to game theory to solve larger scale prob-
lems. ArthurArthur (19921992) argues humans do not have the capability to reason deductively, proposing we reason
inductively such that generalisations are formed from past experience. This view is supported by a more
formal argument, described in part by ArthurArthur (19951995) and HommesHommes (20012001), which we now detail.

Consider a market with unbounded supply of a risk free asset paying fixed return r, and a risky asset
pays an exogenously determined stochastic dividends dt at time t ∈ N. The risky asset (ex-dividend) price is
given by pt at t. N agents make portfolio adjustments such that zt shares of the risky asset are owned at t,
thus wealth dynamics of agent j are given by

Wi,t+1 = (1 + r)Wi,t + (pt+1 + dt+1 − (1 + r)pt)zi,t

Publicly available market information ({pi}, {di}, economic indicators, news etc) It is available at t. Agents
are assumed to maximise mean-variance, thus agent j’s demand for z solves

max
zi,t
Ei[Wi,t+1|It]−

α

2
Vi[Wi,t+1|It]

where E is expectation, V is conditional variance, and α is a risk aversion parameter. Thus

zi,t =
Ei[pt+1 + dt+1 − (1 + r)pt|It]
α ·Vi[pt+1 + dt+1 − (1 + r)pt|It]

=
Ei[pt+1 + dt+1 − (1 + r)pt|It]

ασ2
i

where V = σ2 ∀i. Let the fixed supply of the risky asset be given by zs, then

N∑
i=1

wi,t
Ei[pt+1 + dt+1 − (1 + r)pt|It]

ασ2
i

= zs

where wi,s =
σ2

N∑
k

σ2
k

reflecting the weighted average of individuals market expectations. Without loss of

generality, let zs = 0. Market equilibrium is then given by

pt = β

N∑
i=1

wi,t (Ei[pt+1|It] +Ei[dt+1|It]) (2.3.3)

where β = 1
1−r . Now assuming rational expectations agents have homogeneous expectations, thus the arbi-

trage equation 2.3.32.3.3 reduces to
pt = β (E[pt+1|It] +E[dt+1|It]) (2.3.4)

Therefore we must determine E[pt+1|It]. Applying 2.3.42.3.4 recursively gives

E[pt+1|It] = β (E[pt+2|It] +E[dt+2|It])

But this results in the same dilemma, and we must use the transversality condition while applying 2.3.42.3.4
repeatedly
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Lemma 2. Transversaity
lim
t→∞

βkE[pt+k|It] = 0

which results in the fundamental rational expectations price

pt =

∞∑
k=1

βkE[dt+k|It] (2.3.5)

Thus shows the fundamental price is a function of the unbiased discounted sum of future dividends, and as
such depends on the stochastic dividend process dt. Note this is the present value of rational expectation
hypothesis forecasts given by 2.3.22.3.2.

Example. If dt ∼ N(µ,δ2) then,

pt =

∞∑
k=1

βkµ =
µ

r

The fundamental price crucially depends on homogeneous conditions; the rational expectation assumptions
noted earlier apply. Suppose we assume heterogeneity, the market equilibrium equation 2.3.32.3.3 then no longer
reduces to 2.3.42.3.4. However, we can apply the same logic used to derive 2.3.12.3.1 to yield

Ei[pt+1|It] = βEi

 N∑
j=1

w j,t
(
E j[pt+2|It] +E j[dt+2|It]

)
This requires agent i to know every other agents expectation of pt+1, this recursive process could be contin-
ued such that common knowledge of agent expectation of p is necessary. We conclude under heterogeneous
conditions the deductive argument fails for a revision of an agents expectation of others expectations nec-
essarily requires revision for all other agents. Such an approach is unstable and we must assume inductive
reasoning.

Market Efficiency

The introduction of rational expectations raised many questions about information contained within mar-
kets, and in particular, the information revealed by prices. The efficient market hypothesis was formally
developed by FamaFama (19701970), three levels of marked efficiency were originally described, but the key insight
is information is quickly absorbed by the market; information flow in unimpeded, hence, there is no gain for
either the technical or fundamental investor. As described by DupernexDupernex (20072007) market efficiency would im-
ply stock prices follow a random walk; price changes are independent, and thus only (presumedly random)
new information dictates change. This implies the time series of speculative assets can not be forecasted,
past information does not help predict future price movement and investors can not expect above-average
returns without accepting above-average risks.

Market efficiency is perhaps one of the most divided topics in economics, many have questioned the em-
pirical testability of the hypothesis and point to stock market events such as the Black Monday crash and the
internet stock bubble as evidence against market efficiency. Many of the arguments for and against market
efficiency are addressed by MalkielMalkiel (20032003). Grossman and StiglitzGrossman and Stiglitz (19801980) found in strong form that market
efficiency lead to paradox, explaining, if markets are efficient, and information is costly, then no investor
would have incentive to purchase the information, thus full market efficiency is not stable and we must as-
sume information is not costly. FamaFama (19911991) commented “Since there are surely positive information and
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trading costs, the extreme version of the market efficiency hypothesis is surely false.”. General equilibrium
models are of little use exploring market efficiency, agents operate in a static and predictable way thus price
dynamics easily predicted.

Trading Volume, Volatility and Fat tails

As detailed by LeBaronLeBaron (20062006), there are some well known empirical markets facts not exhibited by general
equilibrium models:

• High trading volumes: financial markets generally exhibit large amounts of trading volume. We can
see this in Figure 2.72.7, notice the trading volume is mostly around 4 billion. It is worth noting that
trading volumes are also quite stable, which can also be seen in Figure 2.72.7.

• Volatility: market magnitudes are often predictable, moving from periods of relative calm to periods
of relative turmoil. We can see this in Figure 2.72.7, notice the period of high volatility from September
to November and relative calm from January onwards. There is also known to be high cross correla-
tion between volatility and trading volume, this can be seen in Figure 2.72.7 during the period of high
volatility (around September); at the same time the trading volume peaks.

• Fat tails: first noted by MandelbrotMandelbrot (19631963), over periods of less than a few months returns are not
normally distributed, they are usually distributed with too many observations close to the mean, too
few in the mid-range, and too many in the tails.1515 This known as a fat tail distribution. We can see
this in Figure 2.82.8, here the Normal distribution is shaded in blue and the Fat tail distribution in green,
of particular interest is the fat tails which we have labelled.

Figure 2.7: Time series of the Dow-Jones index showing
high trading volumes and fluctuating volatility.
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Figure 2.8: Comparison of a Normal distribution
and a Fat tail distribution.

15TalebTaleb (20102010) is a popular text on the distribution of stock-prices, the author argues normal return assumptions is dangerous
because any events in the extreme, or what he calls a “black swan” events, have such an impact they should be taken into greater
account. He argues in favour of fat tail distributions.
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Goals of agent-based computing

Some key goals of ACE are given by TesfatsionTesfatsion (20062006):

• Empirical understanding: why have particular global regularities persisted, despite absence of cen-
tralised planning or control? Researchers are concerned with building systems populated with agents
that realistically represent real investors, they then observe the effects of social interactions and strate-
gic information flow. See for example Chan et al.Chan et al. (19991999).

• Normative understanding: how can agent-based models be used to discover good economic policy
design? Researchers look to build markets that display empirical regularities and design investment
policies for a small group of agents, then observe if these agents do better than the market average.

• Qualitative insight and theory generation: looks at how agent-based systems may be used to help
understand dynamics under alternative initial conditions. ArthurArthur (20062006) argues for an agent-based,
out-of-equilibrium approach (though he does also suggest a combination of both methods could be
employed). This line of research also has links to chaos theory, examining if markets exhibit chaotic
behaviour.

• Methodological advancement: this area looks to develop theoretical methods that may help ACE
researchers study economic systems. Much research in this direction has been undertaken in social
interaction theory and machine learning.

2.3.2 Artificial Stock-Market Design

In this section we overview some the key design questions faced by ACE modellers, much of which is
described by LeBaronLeBaron (2001c2001c), LeBaronLeBaron (20062006) and Chang and HarringtonChang and Harrington (20062006).

Pricing Mechanism

Price determination is a fundamental issue for ACE modellers, unlike the Walrasian framework there is no
requirement for a centralised auctioneer. The most simple mechanism uses quasi-auctioneer, a market mak-
ers calls out prices and orders are calculated. The price then responds using fixed-factor excess adjustment,
similar to 2.2.82.2.8, of the form

pt+1 = pt +α(D(pt)− S (pt)) (2.3.6)

With this mechanism the market is never in equilibrium. This has may have advantages for adaptive evolving
situations but has a big disadvantage in that the market usually does not find clearing prices which leaves
the question of how to deal with excesses.

The second approach is to use an equilibrium clearing mechanism. There are three main problems with
this method from an ACE perspective. Firstly, there may be too much market clearing; agents are forced
to trade on every period. This can be unrealistic if the time periods are taken to be small, especially if
trading costs are to be taken into account. Secondly, in real markets agents can trade continuously while
this framework requires all agents to trade simultaneously. Thirdly, the computational and mathematical
challenges of computing equilibrium prices are very challenging. To the best of our knowledge, beyond
very simple cases with a single risky asset, no current artificial stock markets uses this approach.

The trading system which most closely matches real markets is to use an order-book driven system.
Here agents place buy or sell orders onto an exchange and a trade takes place when a match is found. The
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price is then the last strike price. The difficulty with this method is it requires agents to be fully autonomous,
it becomes difficult to specify the learning mechanism agents must use. This method requires a truly multi-
agent system approach. Some of the leading ACE researchers have suggested this is the most appropriate
mechanism.1616

The last method involves complete decentralisation; agents can trade in an over-the-counter method only
e.g. they move around and only trade when they come into contact. This method hasn’t been researched in
much detail. Like the order-book system, this would require a a truly multi-agent system design.

Strategy and Learning

An important design question is the type of agents we want to populate our models. HommesHommes (20062006) distin-
guishes two types of agent; fundamentalists and chartists. Fundamentalists base expectations on fundamen-
tal economic indicators such as dividend, earnings, macroeconomic growth, unemployment rates etc. They
look to buy undervalued stocks and sell overvalued stocks. Chartists, or technical analysts base expectations
on speculative strategies such as moving averages, trend following and pattern matching. These types of
agent are mostly employed for analytical models that use simple least square learning rules such as those
discussed by BrayBray (19821982), who found that under certain initial conditions, the system converges to rational
expectations equilibrium.

Most ACE models do not make explicit distinction between agent types, indeed, one of the very goals of
ACE is to equip agents with sufficient learning capabilities such that they can autonomously evolve. Genetic
algorithms, introduced by HollandHolland (19751975) were some of the first evolutionary algorithms to be employed in
ACE models. LettauLettau (19971997), the first to use them in an ACE setting found agents took on too much risk,
while DuffyDuffy (20062006) finds that many have found it difficult to interpret the results produced by models using
them. The other major criticism of genetic algorithms is they are generally slow to respond to information
shocks.

Simpler learning strategies have also been also been suggested, such as “zero intelligence” learning, dis-
cussed by DuffyDuffy (20062006). Agents adopting this strategy behave randomly subject to budget constraints. Zero
intelligence learning is generally only used for information gathering and benchmarking, but surprisingly
has shown to be very efficient operating in markets with realistic trading environments.

Finally, adaptive learning can be employed. These agents use a variety of techniques from artificial
intelligence, there key feature is they must maintain a history of past performance and be able to make
inferences from this data. LeBaronLeBaron (20102010) makes use simple Kalman filter style regression forecasts, using
a combination of active and passive learning. The model is able to reproduce many of dynamics generated
by more complicated learning approaches and is much simpler to analyse. LeBaronLeBaron (20112011) goes on to
recommend using a combination of active and passive learning.

Information Representation

Another important design decision is how to agents represent and process market information. Information
generally includes price as a minimum, but could include anything from fundamental ratios, other agent
performance, news and asset correlations. Classifier systems are often used. A classifier is a bit-string
where each bit can take values ‘1’, ‘0’, or ‘#’,1717 each bit represents some market condition e.g. if the
stock price went up last period. A classifier is active if it matches the current market condition. Classifier
systems have proven very popular. Some well known models using classifiers we were able to re-implement

16See for example LeBaronLeBaron (20062006).
17’#’ means “don’t care”.
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include Palmer et al.Palmer et al. (19941994), Arthur et al.Arthur et al. (19971997), LeBaron et al.LeBaron et al. (19991999) and LeBaronLeBaron (20022002). Complexity
of information representation varies considerably, for example LeBaronLeBaron (2001b2001b) and LeBaronLeBaron (2001a2001a) uses
neural networks, while others have used a simple vector of parameters.

Social Interaction

Social interaction is concerned with how agents are able to communicate with each other, if at all. One of
the main goals of ACE is to develop a realistic framework that is independent of the pricing system. In real
markets agents are able to trade over an exchange or over-the-counter, and although markets now operate
on a global scale it is reasonable to suggest not all agents will be in contact with every other agents. Other
than having agents interact solely through markets, two alternative approaches have been suggested for
modelling this behaviour. The first by WilhiteWilhite (20062006) suggests agents should operate over fixed networks;
agents populate nodes of networks are only able to interact with agents they are directly linked with. Wilhite
found changes in dynamics as the underlying network was changed. VriendVriend (20062006) has suggested agents
should not only learn to form expectations, but also learn who they wish to interact with, agents may wish
only to trade or share information with a group of other agents they find beneficial to do so. WesterhoffWesterhoff

(20092009) developed a simple market where agents were able to interact and share information. Even in this
simple setting, many interesting empirical market dynamics were produced.

Assets

In our view, a crucial design decision is the number of assets that populate the market. This is one of the
most underdeveloped areas of ACE, our view is supported by LeBaronLeBaron (20062006) who writes “Another very
common and pertinent criticism is that most agent-based financial market models assume a small number
of assets. Often agents trade only one risky asset, and one risk-free asset alone, this simplification may
eliminate many interesting features.”.

Furthermore, it it usual to use assets to introduce some random variation into the market, this generally
comes in the form of dividend payments. A common technique for dividend modelling is autoregressive
models,1818 although some models have used simple normally distributed random shocks. Palmer et al.Palmer et al. (19941994)
found that autoregressive models most closely represented real dividend time-series.

2.4 Summary

We began by giving an overview of mean-variance portfolio theory and showed how to calculate optimal
portfolios in uncertain markets. We showed how utility functions represent an agents risk-aversion, and how
they can be used to construct optimal portfolios.

Next we looked at general equilibrium theory, and in particular, how supply and demand support price
movements. We examined how equilibrium prices are formed, and reviewed some of the key questions
general equilibrium theory looks to answer. We then reviewed methods for computing general equilibria.

We concluded by examining agent-based computational economics, we gave motivation for using agent-
based models and finished by reviewing some key design principles used in current artificial markets.

18We discuss autoregressive models in the Appendix (8.48.4).



3
Artificial Stock Market Model

In this section we develop our artificial stock market model. We give motivations for using certain methods
with reference to the background material and in particular, we follow the artificial stock market design
principles discussed in Section 2.3.22.3.2. We begin with a general overview of the market and follow with
detailed mathematical arguments for each part of our design.

3.1 Model Overview

Figure 3.13.1 demonstrates the high level working of our model. The first key observation is that the dividend
generation is set exogenously of the market, the markets sole responsibility is price setting through mar-
ket clearing. Agents indirectly interact with the market by making portfolio decisions. Agents use market
information and feedback from past portfolio decisions as input to a learning mechanism to make adjust-
ments to forecast rules. Forecasts are independent of portfolio selection and learning, this is to allow easier
modification of the agents learning mechanism.

As suggested in Section 11, our model will contain multiple risky assets. This raises two fundamental
design questions:

• Asset interactions: There is strong empirical evidence asset prices are correlated. This is not surpris-
ing, for example one would expect the price of stocks in the same sector to closely track each other.
We could just ignore this factor, like in WesterhoffWesterhoff (20092009) and Palmer et al.Palmer et al. (19941994), but we feel this
removes an important fundamental characteristics of real assets. This raises the question of how we
should model asset interactions.

• Price setting: As we have already discussed in great detail, we must find a suitable price setting
mechanism. this is the most important component in our model and we defer development of our
pricing mechanism to the next chapter.

3.2 Assets and Dividends

We define assets in terms of dividends structure and emphasis that asset fundamentals are captured by
an underlying probabilistic distributions. The first important observation is that real dividends are always
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Figure 3.1: Overview of our artificial stock market.

positive. However, time-series generated by Gaussian models are unbounded in the y-plane, thus we must
find a way of making samples positive. The first solution would be to simply truncate any negative samples,
but although we have seen this employed in some models, we do not feel it is an acceptable approach. In
our opinion, a much better solution is to use a log-normally distributed model which is bounded to positive
samples. In Section 2.3.12.3.1 we showed there is strong evidence returns are log-normally distributed, and
although we were unable to find any work relating specifically to dividend return distributions, it seems
reasonable to suggest this is also the case. This hypothesis seems to be supported by the samples we
observed, shown in Figure 3.23.2, which show a log-normal shape. The second advantage of a log-normal
distribution compared to the truncation approach is statistical moments can be readily calculated, this will
be useful for calibration and benchmark analysis.

In Section 2.3.22.3.2 we discussed two ways to model dividend structure; Gaussian noise or an autoregressive
model. Although a Gaussian noise process would be easier to implement and analyse, it does not have any
empirically supported properties such as mean reversion and positive autocorrelation, and is very inflexible.
A vector autoregression is essentially a discrete-time version of an Ornstein-Uhlenbeck process, and thus
shares many of the same properties such as mean-revision, drift and positive autocorrelation. However we
stress that to the best of our knowledge, no study on dividend return distributions or suitable supporting
models has been published, therefore we are making entirely debatable choices. Nevertheless, our hypothe-
sis do seem to have some empirical support, which can be seen by looking at Figures 3.33.3, 3.43.4 & 3.53.5. Figure
3.33.3 shows a real set of dividend time-series, note there is little volatility, there seems to be a high level of au-
tocorrelation and substantial drift. Figure 3.43.4 shows a geometric11 multi-variate time-series, calibrated with
data from the real dividends. Notice the high volatility and zero drift. Finally, Figure 3.53.5 shows a geomet-

1By geometric, we mean exponentiated, i.e. the log is normally-distributed.
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Figure 3.2: Histogram of dividends returns for some well known, dividend-paying stocks.

ric vector autoregression22 loosely calibrated with the empirical dividends data, observe how the time-series
displays many of the same properties the observed dividends does, 33 most notably a low volatility and high
autocorrelation. Although there is not as much drift as observed in the empirical data this could be achieved
with better calibration. We conclude that geometric vector autoregression’s are the most suitable method for
modelling dividend time-series.
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Figure 3.3: Time-series of real dividends taken from some well known stocks.

Given the evidence just considered we decided to use a geometric vector autoregression to model dividend.
As described in the overview, this can easily be modified without disrupting the rest of the model if required.
We finish our discussion on assets and dividends by formally defining geometric vector autoregressions and
deriving mean and covariance statistics which will be required when calibrating and evaluating our model.

2An examination of vector auto regressions is given in the appendix (8.48.4).
3We sat “loosely calibrated” as little effort was made to fine tune the model to the empirical data, we just wanted to demonstrate

the basic dynamics the model can produce. However, with more thorough calibration we believe the model could reproduce the
observed data even more reliably.
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Definition. Suppose X is a normal vector autoregression of the form Xt = c+ΦXt−1 +εt. A geometric vector
autoregression, Y , is defined as

Yi,t = eXi,t (3.2.1)

Thus, the dividends, π j,t of asset j at time t is given by Y j,t.

Proposition 1. The mean, µ, of a geometric vector autoregression, Y, is given by

µi = e
((ι−Φ)−1 c)i+

1
2D


∞∑

k=0

Φ
k
ΣΦ

T k


i (3.2.2)

where e is the piecewise, vector function and D is the diagonal operator.

Proof. Trivial application of Lemmas 1414, 1515 and 88. �
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Proposition 2. The covariance matrix, Γ, of a geometric vector autoregression, Y, is given by

γi j =
(
eσi j − 1

) (
eµ̂ii+µ̂ j j+

σii+σ j j
2

)
(3.2.3)

where µ̂i j = (ι−Φ)−1c and σi j =

∞∑
k=0

Φ
k
ΣΦ

T k
.

Proof. Trivial application of Lemmas 1414, 1515 and 99. �

3.3 Agents

Stock markets are driven by thousands of self interested heterogenous investors. To precisely model the
behaviour of real investor is surly an impossible task, nevertheless, it is vital the agents in our market capture
the basic behaviour of real investors in as realistic way as possible; we must model investors preferences
accurately. In Section 2.2.12.2.1 we revealed preferences in a general equilibrium framework are modelled
according to a utility maximisation problem which we described in Section 2.1.22.1.2. As discussed in Section
2.3.12.3.1 these agents conform to the rational expectations hypothesis; agents have perfect knowledge of their
environment, however, in Section 2.3.12.3.1 we showed in a heterogeneous framework the rational expectations
hypothesis fails. In Section 2.3.22.3.2 we briefly discussed alternative learning methods for forming expectations.
Given the evidence we have considered, in our opinion the learning approach is most suitable. Baring this
in mind, along with the other design questions studied in Section 2.3.22.3.2 we must answer the following:

• Portfolio selection: our model contains multiple risky assets, our heterogeneous agents must choose
a portfolio that they deem will benefit them the most.

• Return expectation: we must decide how agents form expectations using a some learning method.
Agents should use what they have learned to forecast future returns.

• Social interactions: We must decide if our agents are to communicate with each other, and if so; what
information should they share? Who should they share information with such that sharing is mutually
beneficial?

3.3.1 Portfolio Selection

Agents portfolio choice is determined by a myopic power utility function in future wealth. This is a reason-
able approach given our proposed objectives (computing general equilibrium). Therefore our agents must
maximise their utility, which, as explained in Section 2.1.22.1.2 requires solving the following maximisation
problem:

maximise
wt

E[U(Wt+1)]

subject to wt · ι = 1

Wt+1 = (1 + rP)Wt

wt ≥ 0

We choose a utility function that satisfies the relevant Arrow-Debereu equilibrium conditions 2.2.22.2.2. From
the utility functions we have seen in Section 2.1.22.1.2 this leaves only power utility, exponential utility and log
utility; all three are concave and monotonic. We choose the power utility for two reasons: firstly, the power
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utility exhibits constant relative risk-aversion; secondly, our model has lognormal dividends returns, with
lognormal returns and power utility the maximisation problem is simplified. Thus agents must solve the
following optimisation problem:

maximise
wt

E

W1−γ
t+1

1− γ


subject to wt · ι = 1

Wt+1 = (1 + rP)Wt

w ≥ 0

(3.3.1)

Assuming lognormal returns 3.3.13.3.1 can be simplified as shown by Campbell and ViceiraCampbell and Viceira (20022002). We make
use of the following result:

Lemma 3. Maximising the expectation is equivalent to maximising the log of the expectation, that is,

x ∈ arg max
x

f (x) iff x ∈ arg max
x

log f (x)

Proof. log is monotonic. �

The first observation is we can remove the scaling factor 1
1−γ . Thus the objective function problem becomes

maximise
wt

lnE
[
W1−γ

t+1

]
Using Lemma 88, we reform the objective function as follows:

lnE
[
W1−γ

t+1

]
= E

[
lnW1−γ

t+1

]
+

1
2

Var
[
lnW1−γ

t+1

]
= E

[
(1− γ)lnWt+1

]
+

1
2

Var
[
(1− γ)lnWt+1

]
= (1− γ)E [lnWt+1] +

(1− γ)2

2
Var[lnWt+1]

= (1− γ)E [lnWt+1] +
(1− γ)2

2
wt · (Σωtwt) (3.3.2)

where Σω,t is the covariance of log-wealth at time t. Taking logs of the budget constraint gives an expression
for the current log wealth

lnWt+1 = ln((1 + rP,t+1)Wt)

= ln(1 + rPt+1) + lnWt

which also gives an expression for the next periods log returns

ηt+1 = ωt+1 −ωt (3.3.3)

Dividing 3.3.23.3.2 by 1− γ and using 3.3.33.3.3 gives the agent problem

maximise
wt

E[ηt+1] +
1− γ

2
wt · (Σtwt)

subject to wt · ι = 1

w ≥ 0

(3.3.4)
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Where Σt is the conditional covariance matrix of log portfolio returns. Notice the important role of γ in 3.3.43.3.4
- when γ < 1 agents seek portfolios with more risk; they prefer a portfolio with a higher log-return variance.
When γ > 1 agents are risk-averse and prefer portfolios with a lower log-return variance. In the special case
when γ = 1 agents have logarithmic utility and choose the portfolio with the highest log return. We can now
show that our agents are indeed solving the mean-variance criterion.

Proposition 3. Agents solving the optimisation problem 3.3.63.3.6 are mean-variance optimisers.

Proof. Using Lemma 88 we have

E[ηt+1] +
1
2

wt · (Σtwt) = lnE[1 + rP,t+1] (3.3.5)

using this and the fact that portfolio returns are lognormal we can write 3.3.63.3.6 as

maximise
wt

lnE[1 + rp,t+1]−
γ

2
wt · (Σtwt)

subject to wt · ι = 1

w ≥ 0

(3.3.6)

Which is a mean-variance optimisation problem. �

To solve the agent problem 3.3.43.3.4 we need to specify ηt+1, the portfolio log-return. The return of a portfolio
is given in 2.1.22.1.2, thus we are required to find ln(wt · rt + 1) in terms of log returns on the underlying assets.
This is problematic as in general, the log of a linear combination is not the same as a linear combination
of logs. However, for short time-periods we can approximate this to an arbitrary degree using a Mercator
series.

Definition. A Mercator series is a Taylor series of the natural logarithm

ln(1 + x) =

∞∑
i=1

(−1)n+1

n
xn

We use a Mercator approximation to the first degree which is more than adequate for short-period portfolio
rebalancing (e.g. weeks), thus we have

ln(wt · rt + 1) = wt · rt

Therefore
E[ηt+1] = E[wt · rt] = wt · r̄t

Substituting this into 3.3.63.3.6 reveals our final agent problem

maximise
wt

wt · r̄t +
1− γ

2
wt · (Σtwt)

subject to wt · ι = 1

wt ≥ 0

(3.3.7)

Throughout this analyse we assumed our agents could not short sell. This is probably sensible restriction to
begin with as the model complexity would substantially increase if we were to allow short selling. This is
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because agents could potentially become bankrupt and there is no clear method for handling bankruptcy (do
bankrupt agents simply get removed from the market? What happens to the wealth they have lost?). Also,
there are additional implementation considerations when allowing short selling such as how dividends are
paid to the original stock owner, this would require some system for handling borrowing, no easy task when
assets are infinitely divisible. Thus, at-least to begin with we do not allow short selling. The disadvantage of
not allowing short selling is the agent problem is a quadratic program which is generally not easy to solve,
running-time then becomes an important issue and it will therefore be important to make sure we use a good
quality optimisation algorithm.

For completeness we derive the agents optimal portfolio weights with short selling allowed. First we
need to find the Lagrangian of the problem, which is given by

L(wt,λ) = wt · r̄t +
1− γ

2
wt · (Σtwt)− λ(wt · ι− 1) (3.3.8)

The KKT conditions are then

∂L(wt,λ)
∂wt

= r̄t + (1− γ)Σtwt − λι = 0 (3.3.9a)

∂L(wt,λ)
∂λ

= wt − 1 = 0 (3.3.9b)

We can analytically find the optimal portfolio weights by solving the KKT conditions

r̄t + (1− γ)Σtwt − λι = 0

Σtwt =
1

1− γ
(λι− r̄t)

⇒ w∗t =
1

1− γ
Σ
−1
t (λι− r̄t) (3.3.10)

wt · ι = 1 (3.3.11)

Substituting 3.3.103.3.10 into 3.3.113.3.11

1 =

(
1

1− γ
Σ
−1
t (λι− r̄t)

)
· ι

=
1

1− γ
Σ
−1
t λι · ι−

1
1− γ

Σ
−1
t r̄t · ι

⇒ λ =
1− γ+ r̄t · (Σ−1

t · ι)

ι · (Σ−1
t · ι)

(3.3.12)

Substituting 3.3.123.3.12 into 3.3.103.3.10 gives the optimal weights

w∗t =
1

1− γ
Σ
−1
t

1− γ+ r̄t · (Σ−1
t · ι)

ι · (Σ−1
t · ι)

ι− r̄t

 (3.3.13)

3.3.2 Demands

Now that we have decided how our agents form their portfolios, we must determine how they make demands
for a given price vector. To do this requires some knowledge of how the market operators, specifically, the
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Figure 3.6: Overview of market timing.

market timing. An overview of market timing is given in Figure 3.63.6. The key observation is that the market
starts to clear after dividends have been paid. In a discrete world market timing is one of the hardest aspects
of a real market to mimic, but all things considered this seems like the most sensible approach. Agent i’s
inter-temporal budget constraint are thus given by

Wi,t+1 = (1− λi,t)(1 + ri,P)Wi,t (3.3.14)

where λi,t is agent i’s consumption at time t. We introduce consumption now as a precautionary measure; we
do not yet know what impact wealth dynamics will have on market dynamics and we may need to introduce
consumption if wealth dynamics behave in an is unexpected way, such as an exponentially increase. Agent
i’s current period budget constraint is therefore

Bi,t+1 = Wi,t + δ(πt+1) · νi,t (3.3.15)

where vi,t+1 is agent i’s ownership vector at time t (i.e. how many shares of each asset does the agent own)
and

δ(vi) =

{
νi if νi > 0
0 otherwise

δ stops agents taking dividends for stocks they have borrowed. Note this does not completely solve the
problem with short sales previously outlined, we only include this into our model now as it has no effect on
our market with short sales not allowed.

Figure 3.63.6 reveals another crucial part of our model, agent forecasts. Up to this point our model has
somewhat paralleled a pure exchange economy model defined Section 2.22.2, however, forecasts do not form
part of this definition. This is one of the key difference between our model and a pure exchange economy.
One of our main challenges is to investigate what impact this has on general equilibria in our market.

We focus on how agents make forecasts in the next section, but to derive the agent demand function we
must introduce some notation for agent forecasts. We define τi,t as agent i’s forecast vector at time t, and
write agent i’s optimal portfolio choice, w∗, as a function of r̄. It follows that agent i’s demand for asset j at
time t, ζi,t, is given by

ζi,t(pt, j) =
w∗i,t(τi,t(pt, j, pt−1, j,πt, j)) jBi,t

pt, j
(3.3.16)
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3.3.3 Expected future returns forecasts

As we have just discussed, agents expectations of future returns are given by a forecast. As described in
Section 2.3.12.3.1 this is in contrast to general equilibrium models where agents conform to the rational expec-
tations hypothesis. We also looked specifically in Section 2.3.22.3.2 at current methods for forming forecasts.
Following from this we derive a forecasting scheme with a learning mechanism, depicted in Figure 3.73.7. The
functionality of the two components is as follows:

• Heterogeneous forecast: forecasts take the current periods return (variant on the price generated
by the pricing mechanism) and use past market data history to generate return expectations for next
period. This operation is shown in the diagram on the left hand side; the forecast indirectly receives
input from the clearing mechanism, the agent uses the produced forecast to calculate demands, the
dotted line indicates the relationship is indirect. Note the dashed line between the clearing process
and market history is just there to show the clearing mechanism indirectly updates the market history.

• Learning mechanism: learning takes place at the beginning of each period (if at-all). The learning
mechanism receives the last clearing price indirectly from the clearing mechanism and uses the market
history and the previous forecast to make adjustments to the agents forecasts. Note agent do not have
to apply learning to their forecasts, we could decide to apply learning probabilistically, hence why the
two components are independent.

Heterogeneous 
forecast

Learning 
mechanism

Clearing 
mechanism

Market history

Figure 3.7: Agent forecasting mechanism.
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Before continuing we briefly review some current forecasting approaches. In section 2.3.22.3.2 we mentioned
that the forecast model choice really comes down to the types of investor one is trying to model. Generally
analytical models split agents into two categories, fundamentalists and chartists. Each agent type has a
single homogeneous forecast rule. For example, in HommesHommes (20012001) both agents future price expectation is
as follows:

E[pt+1] = E[p∗t+1] + f (xt−1, . . . .xt−L)

where xt = pt − p∗t , representing the deviation from the fundamental price p∗ which both types of agent
know, L is a lag factor. For a single lag, f is of the form:

f = gxt−1 + b

where g and b determine the trader type. When g = b = 0 the rules reduces to E[pt+1] = E[p∗t+1] representing
fundamentalist expectations. For other values of g and b expectations follow speculative strategies. GeorgesGeorges
(20082008) uses a similar forecast structure but his model only contains “technical traders”. These “few-type”
models are easy to analyse but in general do not produce as many market dynamics as more complicated
strategies. Another problem we have with few-type models is it is inherently abstract, we have found no
evidence that the strategies employed by each “type” of agent actually correspond to the trading strategies
employed by the investors they are attempting to represent.

“Many-type” models do not split agents into categories, agents evolve over time, this method is thus in-
timately related to the learning mechanisms employed. We re-implemented the many-type model described
by LeBaron et al.LeBaron et al. (19991999) which uses classifiers and a genetic algorithm and found that although the model
produced interesting dynamics, it was difficult to analyse. These sentiments have been echoed more recently
by LeBaronLeBaron (20112011).

We follow the advice of LeBaronLeBaron (20112011) and use “few-type” set of learning rules with active and passive
learning mechanisms, developed in a previous publication by the same author, LeBaronLeBaron (20102010). This should
allow easier analysis of our results while still allowing more complex agent dynamics than a standard “few-
type” model. Moreover, as suggested at the beginning of this chapter, our model is designed such that it
would be easy to switch to a more complex mechanism if required.

Forecasts types

All forecasts use the following long-range statistics:

r̄t = (1− gL)r̄t−1 + gLrt (3.3.17a)

p̄dt = (1− gL) p̄dt−1 + gL pdt (3.3.17b)

σ̄2
r,t = (1− gL)σ̄2

r,t−1 + gL(rt − r̄t)2 (3.3.17c)

σ̄2
pd,t = (1− gL)σ̄2

pd,t−1 + gL(pdt − p̄dt)
2 (3.3.17d)

where r̄, p̄d, , σ̄2
r , σ̄

2
pd correspond to mean return, price-dividends ratio and variances respectively. gL is a

gain parameter common across all agents.
Forecasts, τt, indexed by j are drawn from four well known linear forecast groups, these are:

• Long-range forecast: This forecast is a simple passive learning benchmark strategy that uses the
long-range statistics given above. Agents using this forecast should generally employ a “buy and
hold” strategy.
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• Adaptive linear forecast: The second forecast rule uses the traditional adaptive linear expectations
we described in Section 2.3.12.3.1, and in particular is of the same form as 2.3.12.3.1, it is given by

τ j
t = τ j

t−1 + g j(rt − τ
j
t−1) (3.3.18)

where g j is a gain parameter which determines the degree to recent results influence expectations, it is
crucial in determining the agents expectations as can be seen by the contour map in Figure 3.83.8 which
shows how τ j

t responds to changes in g j and r. Here τt−1 is set to 0.45, we can see for low values of
g j expectations remain relatively unchanged regardless of the value of rt, but as g j approaches 1 the
τ j

t becomes more sensitive to deviation from τt−1. This passive learning rule has foundations in trend
following, technical analysis and Kalman filtering. It therefore acts as our “chartist” strategy.

• Price-dividends ratio regression forecast: The third forecast rule uses linear regression of price-
dividend ratios. It is given by

τ j
t = r̄t +β j

t (pdt − p̄dt) (3.3.19)

where β j
t is the regression parameter that must be learned. This rule acts as our “fundamental” strategy.

• Lagged return regression forecast: The fourth, and final rule uses a modified lagged linear regres-
sion that attempts to eliminate short range autocorrelations, it is given by

τ j
t = r̄t +

Mar−1∑
i=0

β j
t,i(rt−i − r̄t) (3.3.20)

where Mar is a lag parameter set to a low value and β
j
t is the regression parameter which must be

learned. This rule is somewhat harder to classify, it lies somewhere between the two previous strate-
gies.

Regression Updates

We now specify the agents active learning mechanism employed to update the regression parameters, β j
t , of

the two regression forecast rules. Both rules use a recursive least-squares method which is widely regarded
as a very effective learning mechanism. Note we make a slight abuse of notation here by allowing vector
division, which should be read in index form.

• Fundamental regression update

β j
t+1 = β j

t +
g j

σ̄2
pd,t

(pdt−iut, j) (3.3.21a)

ut, j = r̃t − τ j,t−Mpd (3.3.21b)

r̃t =
1

Mpd

Mpd∑
j=1

rt− j+i (3.3.21c)

• Lagged return regression update

β j
t+1 = β j

t +
g j

σ̄2
r,t

(rt−iut, j) (3.3.22a)

ut, j = rt − τ
j
t (3.3.22b)
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Figure 3.8: Contour map of adaptive linear forecast for varying gain g and current return rt.

Forecast Utility Updates

The active part of the learning process involves agents having to select which forecast to use. This could be
done in a variety of ways but the simplest is select the rule with maximum current utility. This approach is
conducive to the agents ultimate goal of maximising its current wealth. Each forecast, τ j

t , is given a utility
that is updated according to the adaptive linear rule

Ût, j = Ût−1, j + gi
u(Ut, j − Ût−1, j) (3.3.23)

where gu is a gain parameter, note this is exactly the same rule as the adaptive linear forecast rule, thus gu is
equally important (see Figure 3.83.8).

Agents use the same utility function for next period portfolio returns as they did for next period wealth,
namely the power utility,

Ut, j =
1

1− γ
(1 + rP,t, j)1−γ (3.3.24)

This concludes our agent definition. Throughout our design we have tried to insure our agents are compli-
cated enough to allow for a good range of market dynamics, and to make the general equilibrium problem
interesting but simple enough to be able to analyse effectively. Our learning approach may seem reasonably
basic given the range of possibilities, but given our main priority is to understand equilibrium and market
dynamics in boundedly rational world, a task that as far as we are aware has never truly been faced, we think
it is reasonable to start at this level of simplicity. Once we have gathered our results we should then be in a
position judge if more complicated expectation and learning strategies could be employed.
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3.4 Social Interactions

We discussed social interaction in Section 2.3.22.3.2 and found two possible methods for introducing agent
interactions:

• Fixed networks: Agents occupy nodes in a fixed network and can only trade with agents they are
adjacent to.

• Intelligent interactions: Agents learn who the wish to trade and exchange information with in order
to maximise mutual utility.

Both of these introduce realisms which, as we discussed, influence market structure and resulting dynamics.
The question is should we introduce either of these mechanisms into our model? The first concern we raise is
that in our proposed general equilibrium framework the fixed network protocol is a challenging design task.
The problem is illustrated in Figure 3.93.9; in our general equilibrium framework we must have a centralised
exchange for price clearing. This is perhaps one of the main arguments against using equilibrium for price
finding. To explain the problem, suppose we have a network protocol like the one in Figure 3.93.9. Here agent
3 can trade with everyone but agents 1, 2, 4 & 5 can only trade with agent 3. The problem is there is no way
to form demands for agents 1, 2, 4 & 5 that conforms to our model structure given in the previous section;
agents simply receive prices and return a demand vector. Perhaps one possibility would be to introduce a
demand ‘matrix’ that explicitly encodes demands for assets for each trader, but this raises very challenging
questions such as how agents should ‘split’ their demands between rival agents.

A1

A4

A2

A5

A3
Centralised 
exchange

Price

Demands?

Figure 3.9: The fixed network problem.

We conclude that while the fixed network protocol raises many interesting questions, it is not feasible given
the complexity of our task, we defer this to a future research task. Our suggestion would be this protocol
should be used with the decentralised “order-book” style pricing protocol discussed in Section 2.3.22.3.2.

Having just described why a centralised framework can not support complex demand structures easily,
we note that the intelligent interactions protocol is challenging for exactly the same reason. Thus, unfortu-
nately, social interactions can not form part of our artificial market. While this is a little disappointing, we
note that little overall progress has been made in studying social interactions in artificial markets, thus we
are not alone in finding it difficult to implement such protocols.
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3.5 Market Operation

Other than the pricing mechanism, all of our market components are now in place. In this section we sum-
marise market operation by giving a preliminary version of the main market loop, shown in Algorithm 11.

Algorithm 1: Main market loop

Data: Number of periods n, Dividends π, Agents α
Result: Market simulation
Warm up market;
for t← 1 to n do

for i ∈ α do
νi,t, j←

wi, jWi,t−1
pt−1, j

;

Bi,t←Wi,t−1 +σ(πi,t) · νi,t;

end
UpdateLongRangeStatistics(πt,pt−1);
pt← FindEquilibriumPrices();
UpdateMarket(pt);
for i ∈ α do

Wi,t← (1 + rP
i,t)(1− λi)Wi,t−1;

for τ j ∈ i.Forecasts() do
τ j.Update ();

r
Pτ j

i,t ← τ j.ExpectedPortfolioReturns();

Ui, f ,t←
1

1−γ j
(1 + r

Pτ j

i,t )γi ;

end

τ
j
i,t← MaxUtility(τ);

end
end

Before market simulation starts we ‘warm-up’ the market with data generated from our autoregression pro-
cess. This allows the agents to diverge from their initial conditions, and in particular, allows them to settle
on forecasts. Market operation then proceeds as described in the previous sections. First agents update
their current period budget constraints using the current period dividend. Then the long range statistics are
updated, these are used by agents when calculating their demands during the market clearing phase. The
market is then updated with the equilibrium prices and finally agents update their forecasts and actively
search for a better forecast. This process is repeated.

The last component of our model to be determined is of course the equilibrium pricing mechanism that
clears the market. This will be described in the next section. Although it is worth mentioning now, as we
envisioned at the beginning of this chapter (See Figure 3.13.1), the pricing mechanism is indeed independent
of general market operation.
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3.6 Calibration

To calibrate our geometric vector autoregression dividends model we observed empirical market data from
some well known Dow-Jones index stocks.44 While this is a good starting platform, there are some important
limitations to be aware of. Firstly, it must be noted that not all stocks pay dividend; this is especially
apparent for growth companies and in particular technology firms. The abstractions our model makes does
not account for growth opportunity, it is therefore vital for market function that assets generate a stable
dividend stream. Secondly, companies do not generally pay dividend in uniform, thus statistical analysis
on dividend data must be considered to be erroneous due to differing market conditions at the time of
respective dividend payments. Lastly, it is important to note there is not sufficient historical data to make
certain assertions about the distributions of dividend returns, although, as we have asserted in Section 3.23.2
we believe there is enough evidence to suggest dividends are log-normally distributed.

In order to calibrate our model we found c, Φ and Σ such that the mean 3.2.23.2.2 and covariance 3.2.33.2.3
evaluated most closely to the sample mean and covariance, µ̂ and Σ̂. To achieve this we devised the following
optimisation problem:

minimise
c, Φ, Σ

|µ− µ̂|22 + |Γ− Σ̂|22

subject to µi = exp

((ι−Φ)−1c
)
i
+

1
2
D

 ∞∑
k=0

Φ
k
ΣΦ

T k


i


γi j =

(
eσi j − 1

) (
eµ̂ii+µ̂ j j+

σii+σ j j
2

)
Unfortunately the solution does not guarantee Σ is positive semi-definite as required, thus we use the nearest
possible semi-definite matrix.55 We also added a little random variation to avoid stagnation. While we
concede there are probably better methods for solving this problem, unfortunately we have been unable to
find any published work on the subject.

3.7 Summary

During this chapter we have built the framework of our artificial stock market. We designed our market in
such a way that we could apply and centralised price clearing mechanism at a latter stage. We first gave a
general overview of our model and stressed our market would be made of independent components.

We then discussed a model for dividends generation assuming our hypothesise that dividends are log-
normally distributed. We found the best option was to employ a geometric vector autoregressive model.

The bulk of the chapter focused on the agents within our model. First, we derived a portfolio selection
policy using power utility maximisation, we showed how this was given as the solution to a quadratic
program in the case of no short selling, and a linear equation when short sales are allowed. We followed
with a derivation of the agent demand function. Next, we introduced our agents expected future returns
forecasts using both passive and active learning.

We then explained why social interaction protocols are not applicable in our centralised model. Finally
we gave an algorithm showing explicitly how our market operates and then showed how we calibrated our
geometric vector autoregressive model.

4Stocks: BA, BP, IBM, KO, PFE, T, WMT, XOM. Bonds: 3-month TBILL. Data obtained from
http://ichart.finance.yahoo.comhttp://ichart.finance.yahoo.com and http://www.federalreserve.govhttp://www.federalreserve.gov

5To find the nearest semi-positive definite matrix we used a Matlab function written by BunchmanBunchman (20112011).

http://ichart.finance.yahoo.com
http://www.federalreserve.gov
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Computing General Equilibrium Prices

In this chapter we present an optimisation problem for finding equilibrium prices in our artificial stock mar-
ket model. As we have discussed throughout this thesis, finding equilibria outside a Walrasian framework
poses a challenging problem, indeed, to the best of our knowledge this represents the first artificial stock
market model to implement a general equilibrium pricing mechanism.

4.1 Comparison with a Walrasian Framework

We begin by comparing our model with a Walrasian pure exchange economy, and in particular we consider
if our model satisfies the conditions for equilibria existence; many of the existence conditions are required
for search method convergence. Following this we evaluate if any existing methods for computing equilibria
could be employed to solve our problem.

4.1.1 Walras’ Law

Recall from Section 2.22.2 that the most fundamental property of agent demand functions in a Walrasian market
is satisfaction of Walras’ law. We presented two equivalent versions of Walras’ law, 2.2.12.2.1 and 2.2.52.2.5. We
begin by verifying our agents demand functions satisfy Walras’ law.

Proposition 4. The agent demand function, ζ, given in 3.3.163.3.16 satisfies Walras’ law.

Proof. The first observation is the agents optimal portfolio vector, w∗, is always equal to unity independent
of the agents forecast return. This is because agents solve 3.3.73.3.7 which has constraint w · ι = 1. The second
observation is agents expend all current wealth; in a Walrasian setting agents do not receive dividends, thus
their wealth is given by Wt, however our agents receive dividends at the beginning of each period thus we
must include this into our demand function. It remains to show

ζ(p, p · ν)− ν = 0

To see this note agent ownership, νi,t, j, is given by

νi,t, j =
wi, jWi,t−1

pt−1, j
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thus with a slight abuse of notation by assuming division is in index terms

ζ(p, p · ν)− ν =
w∗p · wWt−1

p

p
−

wWt−1

p

=
Wt−1

p
−

wWt−1

p

= (ι−w)
Wt−1

p
= 0

Thus ζ does indeed satisfy Walras’ law. �

4.1.2 Homogeneity of ζ

The next important question is do our agents satisfy the Arrow-Debreu conditions 2.2.22.2.2? The first three
conditions are satisfied by our choice of utility function, and the fourth is easily satisfied; we just need to
make sure agents each have a little of each asset initially. Furthermore, we just proved the fifth condition,
Walras’ law. This leaves the final condition, zero degree homogeneity of ζ. More formally, does ζ(p,W) ≡
ζ(αp,αW)? This says that if we increase prices and wealth by the same constant factor then demand remains
the same. In a Walrasian setting this seems perfectly valid; an agents wealth is determined by its current
asset bundle so a constant increase in the price of all assets has no effect on demand. This is really a matter
of relative price; the absolute price of an asset is not of importance, the relative price of an asset is what
matters, prices are set relative to the numeraire.

However in our market demand is not a function of price and wealth, it is a function of price only, wealth
is determined by the last periods prices and the current dividend. Furthermore, the future return forecast uses
the current market prices and current dividends to calculate expected returns for the next period, but these
prices and dividends are normalised in terms of last periods prices and dividend, in essence the current price
is not scaled by the new price and thus acts as a constant. To see the effect of this see Figure 4.14.1, this shows
demand for a riskier asset in a two asset economy with a benchmark long-range forecast. We can see that
when both values are scaled by the same constant factor (points on the diagonal), demand for the riskier
asset increases to begin with, and then remains constant. The reason demands are constant beyond this point
is the agent has moved all it’s wealth into the riskier asset as it’s expectation of future returns grew. This
is just a simple case, other forecasts may result in different dynamics. The key outcome however is that
our agents demand function, ζ, is not homogenous to degree zero. Thus, according to the Theorem 11, our
market does not meet the criteria for guaranteed general equilibrium existence.

4.2 Approximate Equilibria via Optimisation

The preceding revelation raises the question of whether equilibrium, or at-least approximate equilibrium,
exist in our artificial market. We have shown our market to satisfy all but one of the criteria required, and
we have also seen our agents demand functions are homogenous to degree zero past a certain limit. It will
be the subject of the next chapter to try and computationally determine whether equilibrium exists in our
market. For the remainder of this chapter we assume approximate equilibria do exist and work towards an
optimisation algorithm for computing them.
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Figure 4.1: Contour map showing demand for riskier asset in a two asset economy.

4.2.1 Gross Substitutes

We briefly discussed methods for computing approximate equilibria in Section 2.2.32.2.3 and found many re-
quired the assumption of gross substitutes or at-least weak gross substitutes. Recall the gross substitutes
property requires that a price increase in one asset leads to a demand increase in all other assets; weak gross
substitutes only requires that no price decreases occur. If we are to be able to use any of the algorithms
presented in Section 2.2.32.2.3 we need to verify our market satisfies at-least weak gross substitutes.

To evaluate if our market satisfies gross substitutes we set up a simple market with two assets with
differing risk characteristics. We then held the safer asset fixed at price 1 and varied the price of the other
asset, the current asset prices are set to 3 and 1 for the riskier and safer assets respectively, dividends is set to
zero for both assets and the agents risk aversion was set quite low. The agent was set to use the long-range
forecast with a fixed mean and the gain parameter was set as a variable. The resulting contour map is shown
in Figure 4.24.2. We can see that other than for very low values of gL, demand for the safer asset changes
dependent on the new price of the riskier asset. The reason for this is as gL approaches 0 the agent ignores
any new information; its forecast becomes homogenous. Given this, and the fact that agent forecasts are set
randomly, we can not conclude that our market satisfies gross substitutes (or even weak gross substitutes).

4.2.2 Convexity of z

We can now see why the homogeneity and gross substitutes properties of ζ are important for proving exis-
tence, and efficient computing equilibria. Prices can be adjusted with full knowledge of the possible domain
of outcomes; the excess function z is convex. Convex optimisation problems can in general be solved very
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Figure 4.2: Contour map showing demand for safer asset in a two asset economy using long range forecasts
with gain parameter gL. The price of the risky asset is p1.

efficiently due to well known differentiability conditions. Our market does not satisfy either of these two
conditions sufficient for convexity of z.

As can be explicitly seen in Figure 4.34.3 which shows excess for the riskier asset in our simple market
described earlier, the excess function z in our market is non-convex. Aggregate demand has phases of ‘dips’
and ‘humps’ as expectations change. We conclude that to find an equilibrium price we must form a non-
convex solution method. To the best of our knowledge, this type of problem has not been addressed by either
applied general equilibrium or agent-based computing.

4.2.3 Differentiability of z

The next property we must consider is differentiability of ζ, and hence of z. Although our problem is non-
convex we may still be able compute local optimums in reasonable time using Newton methods such as SQP
if we can calculate the Jacobian and Hessian matrix of z. Unfortunately this is not the case, for two reasons:

• Agent portfolio selection: If we disallow short selling agent preferences are found using a maximi-
sation problem. This is not differentiable analytically.

• Agent forecasts: Agents use forecasts in their demand functions that is only known at run-time and
hence cannot be differentiated at compile time.

We conclude that our algorithm must either use a numerically computed Hessian approximation, or a differ-
ential free method.
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Figure 4.3: Excess of riskier asset in simple two-asset market.

4.2.4 Problem Constraints

The final component of our problem we must consider is constraints. Unconstrained optimisation problems
are much easier to solve than constrained equivalents, indeed, as we have seen they can sometimes be
solved analytically. If our problem was unconstrained we could apply either a Trust-Region Line Search,
or a Conjugate Gradient algorithm. Unfortunately this is not the case, we must limit prices to being non-
negative, thus we must use a constrained optimisation algorithm.

Normalisation of z

To compute equilibrium prices our algorithm must find a price vector that satisfies the equilibrium condition
2.2.62.2.6. An important observation is z can be either positive or negative, this is the case as it is the aggregation
of individual asset excesses that can themselves be positive or negative. As we are using optimisation
techniques for computing equilibrium prices we must constrain the value of z (the objective function). The
simplest method of achieving this is to normalise z using the Euclidean norm. Note this does not effect the
equilibrium condition as z(p) = 0 iff ||z(p)||22 = 0.

4.2.5 Model Modifications

There is one further modification we must make to our original model, wealth growth must be constrained.
In contrast to a Walrasian model our market has exogenously included wealth; relative wealth increases over
time. Furthermore, if approximate equilibria are computed there will be some excess ownership due to the
market being over-cleared. Without any intervention wealth levels would exponentially increase leading to
exponential price increases. This is the reason we introduced a consumption, λi, for each agent.
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4.3 Solution Methods

As discussed in the last section to compute approximate equilibrium prices we must solve a non-linear,
non-convex constrained optimisation problem. More formally we must solve the following problem:

minimise
pt

||z(pt)||
2
2

subject to pt > 0
(4.3.1)

In addition we must either use a derivative free, or quasi-Newton with Hessian approximation method.
These types of problem are not easy to solve and in general solution methods are only guaranteed to find
local optimums. Nevertheless, we can take some solace in knowing our problem is not highly-nonconvex,
indeed, with a sensible initial value we believe approximate equilibrium prices can be found in reasonable
time.

We now briefly comment each of the three solution methods we attempted and then finish the section by
presenting error testing results for each method. We then summarise the findings and select an algorithm to
proceed with.

4.3.1 Nelder-Mead Simplex

The first algorithm we tested was an adaption of the well known derivative free Nelder-Mead simplex method
developed by Nelder and MeadNelder and Mead (19651965). Although Nelder-Mead is an unconstrained method, we reasoned
that as it is derivative free we might be able to add a linear constraint by including an ad hoc barrier into
the objective function. Abstractly, the algorithm works by forming an n + 1 point simplex in Rn. On each
iteration the vertex with the worst objective value is chosen and the simplex is either reflected, expanded
or contracted along the the line joining the selected vertex and the centroid of the remaining vertices. If no
better point can be found then only the vertex with the best objective value is retained and all other vertices
are shrunk towards that vertex. The process then repeats.

The workings of the Nelder-Mead algorithm seem to suggest our barrier method might be feasible,
especially for for simpler search spaces such as those with fewer agents and assets. We reason that if the
algorithm selects a point within our barrier then that point will just be ignored, so assuming we set the barrier
large enough and start the search in a point outside the barrier the algorithm should work as expected.

4.3.2 COBYLA

The second algorithm we tested was the COBYLA constrained optimiser developed by PowellPowell (20072007). The
method works by forming linear linear approximations to the objective and constraint functions by forming
linear interpolations at n + 1 points in the search space. A series of simplex are then formed using the
interpolations points which is then reduced until a vector of points with sufficiently optimal objective value
is achieved.

The COBYLA method represents a direct competitor to our Nelder-Mead adaption; it will be interesting
to see if a simplex method designed with constraints in mind can do better than an adapted unconstrained
simplex method. Unfortunately we could not find much material explaining the full workings, or perfor-
mance of COBYLA.
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4.3.3 Limited-memory BFGS-B

The final algorithm we tested was the popular quasi-Newton L-BFGS-B method developed by Byrd et al.Byrd et al.
(19951995). This is not a derivative-free method, but only requires Jacobian information to update a Hessian
approximation on each iteration, however the Jacobian can itself be approximated using the techniques
detailed by Nocedal and WrightNocedal and Wright (19991999). To avoid memory cost problems we used the limited-memory
verison of BFGS-B. This version of BFGS-B only stores an approximation to the computed Hessian matrix,
thus saving having to store a dense n2 matrix.

The performance of L-BFGS-B is considered one of the best of its kind. Given our problem is relatively
simple compared to many non-linear problems we feel this algorithm is most likely to be the most successful.
However we do have concerns that the Jacobian approximation have a critical impact on it’s performance.

4.4 Results

In this section we present the results of our initial equilibrium algorithm experiments. These tests are not
designed to evaluate equilibrium dynamics, but to test the performance and relative accuracies achieved by
each algorithm. This will allow us to choose the most appropriate algorithm moving forward. We then end
with a brief discussion on the general run-time characteristics of each algorithm.

4.4.1 Approximation Errors

To test the accuracy of the algorithms we ran independent simulations of our market for varying amounts of
agents and assets. These tests were kept very general and we stress the errors seen here might not be a good
representation of equilibrium approximations, however the results will be useful in determining the relative
performance of each algorithm. We kept the test sizes reasonably small as the tests take a while to run and
we feel the number of test cases we have considered should be adequate to extrapolate for larger setups.
Supplies for each asset where set to 1. Throughout the tests we kept the number of periods fixed at 50 which
should be more than adequate to get good sample base. We ran 10 separate tests for each test setup and took
the 5 worst from each to calculate the mean normalised error, Ē = ||z||22, of each algorithm. The results are
shown below in Table 4.14.1:

Table 4.1: Mean normalised equilibrium approximation errors.

No. of agents No. of assets Nelder-Mead Ē COBYLA Ē L-BFGS-B Ē
5 2 0.4786 0.4159 0.3756
5 3 ∞ 0.3398 0.3734
5 5 ∞ 0.5328 0.4139
10 2 0.5231 0.3921 0.3572
10 3 ∞ 0.4995 0.3904
10 5 ∞ 0.5577 0.4933
30 2 0.5423 0.4380 0.3333
30 3 ∞ 0.4322 0.4478
30 5 ∞ 0.5941 0.5010
50 2 0.6059 0.4792 0.5102
50 3 ∞ 0.5053 0.4329
50 5 ∞ 0.6012 0.5398
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The first and most obvious of the results seen are the ∞ mean norms given by the Nelder-Mead algorithm.
While this result is worrying, it is perhaps not as bad as first appears; further analysis showed the algorithms
performance to vary drastically, in some cases the algorithm performed very well (sometimes better than the
other two), but on other occasions the algorithm diverged dramatically and terminated only when reaching its
objective function valuation limit. We could find no definitive reason why this was the case, but we suspect
it might be when the prices are close to zero; this would almost surly be a result of the naive adaption of the
algorithm for purposes it was clearly not designed.

Our results show COBYLA and L-BFGS-B fair reasonably similarly for fewer assets, neither seem to be
particularly effected by the number of agents in the market, but a larger number of assets seems to have an
impact on the accuracy of both. However, these results do seem to indicate L-BFGS-B scales slightly better
than COBYLA. This may be because of the increases non-linearity of the ζ as more assets are added to the
market; the linear approximations used by COBYLA may not be as accurate as non-linearity increases.

More generally, the results given thus far do seem a little worrying. A mean approximation error per-
centage of > 30% may not seem sufficient. While this will be analysed in more detail in the next chapter
we show some initial analysis now to give some preliminary insight into the cause of these high figures.
On further analysis we found that like for Nelder-Mead, while the norms where in general much closer to
zero than the figures presented here (sometimes reaching as low as 1×10−10), anomalies such as those seen
in Figure 4.44.4 were somewhat frequent, and distorted the norm excess means. These types of disturbances
seemed to effect all algorithms (though the Nelder-Mead disturbances were of a much greater magnitude),
in the next chapter we will try and determine if this is a consequence of our model, or the solvers we have
chosen to use.
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Figure 4.4: Individual asset excesses for a test simulation.
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4.4.2 Run-time and Memory Costs

Calculating an estimated run-time and memory costs is important as it gives us a practical limit for our
market setup. While we could not derive analytical performance measures we were able to gain a reasonable
understanding of the systems performance by analysing the main bottlenecks in the system, these are:

• Portfolio selection: Agent portfolio selection under no short selling requires solving a quadratic
program. Quadratic programs can be solved in polynomial time for positive-definite Q-matrices. Our
Q-matrix will be at-least semi-positive definite, but there is no guarantee it will be positive-definite,
also, for large number of assets the problem becomes increasingly harder to solve, especially as our
covariance matrix in unlikely to be sparse. Furthermore, we do not know how many times agents will
need to calculate their optimal portfolios each period, this is dependent on the convergence rate of
the equilibrium price finding optimisation routine. Thus the number of assets will be the first main
variable in determining run-time and memory costs.

• Price finding: As we have discussed in this chapter the equilibrium price finding algorithm is non-
linear, non-convex and constrained. Our problem is not particularly non-convex for small numbers of
agents and assets but we can not assume this is the case for larger markets. Thus it is highly likely
that the number of agents will also be a limiting factor in run-time and memory performance.

We were also able to capture some more solid figures for run-time and memory usage while running simula-
tions on the departmental servers. The run-time and memory usage seemed to be quite stable among similar
setups, Figures 4.54.5 and 4.64.6 shows some results we obtained from various simulations. We can see run-time
increases linearly with both agents and assets. Figures 4.74.7 and 4.84.8 show memory usage over 10 periods for
varying numbers of assets and agents. We can see these too, are both linear.
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Figure 4.5: Run-time (in seconds) for one period with
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Figure 4.6: Run-time (in seconds) for one period with
varying number of assets.

Although our memory usage tests show only linear expansion, this is still quite a concern. Even over just 10
periods memory usage rose rapidly with increased number of agents, this may partly be due to the number
forecast histories each agent must store. Given the results presented here, and our experience working with
our simulation,11 we estimate the maximum number of agents and assets over 100 periods we can simulate
in reasonable time is 60 agents and 8 assets.

1We ran simulations on a machine with 24GB of memory available and found with figures over these amounts the entire memory
was quickly consumed and virtual memory initiated, once this occurs the simulation becomes painfully slow.
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Figure 4.7: Memory usage (in MB) over 10 periods
with varying number of agents.
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4.5 Summary

In this section we designed an algorithm to compute general equilibria prices for our artificial market. We
showed that our market satisfies all but one of the conditions sufficient for equilibria existence, the agent
demand function ζ is not homogeneous to degree zero. We found this was a result of the dividends paid in
terms of prices normalised in the last period, and agents forecasts.

Next we showed that our market does not satisfy the gross substitutes property required by almost all
currently available algorithms for computing general equilibria. We followed by showing the excess demand
function z is not convex and non-differentiable due to agent portfolio selection and forecast structure. We
conclude general equilibrium prices in our market must be solved by a non-linear, non-convex constrained
minimisation problem.

We then presented three algorithms for computing the price optimisation problem: Nelder-Mead;
COBYLA; and L-BFGS-B. We explained why these methods are applicable and then showed performance
analysis results for each algorithm. We found that the Nelder-Mead method was not acceptable due to insta-
bility of convergence, and while the other two methods gave better overall results, they too showed signs of
unstable convergence.

Finally we found two potential bottlenecks in our market and showed run-time performance figures from
simulations of our market using the L-BFGS-B method under differing initial conditions. We concluded
that while the running time figures were not overly concerning, memory requirements severely limited the
possible size of our market.



5
On Equilibria in Artificial Stock Markets

In this chapter we focus on the dynamics of equilibria in our market using the results from the last chapter.
In particular we analyse the existence of equilibria from a computational perspective and evaluate more
generally if general equilibrium pricing is a appropriate for artificial stock markets.

5.1 Existence

While it was never the goal of this thesis to find a mathematical argument for existence of general equilibria
in our artificial stock market, indeed, doing so would be a challenge for even the most accomplished math-
ematician, we would like to try and determine computationally if equilibria existence is likely. Before we
begin our analysis it is worth commenting on the consequences of equilibrium not being certain. While it
would seem counter-intuitive to apply general equilibrium pricing to a market that does not guarantee exis-
tence, we stress that even applied general equilibrium models, those that apply empirical data to a Walrasian
framework, are only certain to find approximate equilibrium. Furthermore, we make note that some artifi-
cial markets do not use an equilibrium pricing method at-all, recall from Section2.3.22.3.2 that some artificial
markets are purposefully designed to be out of equilibrium. In reality, it is unlikely that while globally opti-
mal solutions non-linear, non-convex optimisation problems remain NP-Hard to compute, non-approximate
general equilibrium pricing will be applicable in artificial markets. Nevertheless, we believe that an approx-
imate equilibrium market would still be an extremely useful research tool in working towards the goals of
agent-based computing.

5.1.1 Rational Expectations Equilibrium

First we briefly evaluated equilibria existence under rational expectations assuming agents all use long-range
linear forecasts, we gave the agents knowledge of the dividends structure (expected value and mean) and all
risk-aversions were kept at the same level to enforce homogeneity. For this part of the evaluation we only
used the L-BFGS-B algorithm.

Under rational expectations we found the equilibrium points were in general much easier to compute.
Indeed, when in rational expectations equilibrium the agent demand function becomes convex, this is be-
cause the previous periods price and dividends does not form part of the conditional information set used to
form the new expectations (see 2.3.22.3.2). An example of a rational expectations excess function is shown in
Figure 5.15.1. This market consists of three assets of varying risk, we set one of the prices fixed to just above
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the optimum to give a better picture of the search space. Notice how the there is a clear zone of prices that
form a convex basin, the equilibrium price lies within this basin and can be quickly found by the L-BFGS-B
method.
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Figure 5.1: Contour map of normalised excess, |z|22, under rational expectations.

Setting up our market under rational expectations gave us the opportunity to find for a benchmark for further
equilibrium approximations. In theory, under rational expectations our market should fully clear on every
period as, by definition, the rational expectations equilibrium occurs when traders have the same expecta-
tions, and hence form portfolios in equal proportions. To examine if this was indeed the case we set up
our market with 50 agents all operating under rational expectations forecasts, we included 3 assets into the
market with all supplies set to 1. We then simulated 50 periods of trading. The resulting approximation
errors can be seen in Figure 5.25.2. We can immediately see that the errors have extremely small variance (this
is why all indices on the y-axis appear as 1). However, what is more surprising is that the error is not 0 or
even close to 0, indeed, the error is almost consistently 1. This was most troublesome, it appeared that all
agents in our market where completely ignoring one of the three assets and the market could only achieve a
partial equilibrium with the other two assets.

We tried many different market set-ups with varying amounts of assets and assets but the problem seemed
to always remained. The answer inadvertently emerged while we were attempting to add mechanisms into
our market for allowing short sales. We found that by allowing agents to short sale, the problem disappeared.
This led to our first key insight into market equilibrium existence.
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Figure 5.2: Normalised equilibrium approximation errors under rational expectations.

5.1.2 Consequences of No Shorting

As suggested above, it appeared that by allowing agents to short sale our market could be fully cleared. In
Section 3.3.13.3.1 we made the decision to disallow short sales to simplify the design of our market, it seems
this is a route taken by many artificial stock-market designers, in some cases we found that the approach
taken to shorting was far from adequate, for example Palmer et al.Palmer et al. (19941994) and LeBaronLeBaron (20102010) both use
a portfolio selection policy that does allow shorting (i.e by deriving the agent portfolio problem with no
portfolio constraint), but then goes on to say that agents will not be permitted to short sale. We can only
assume that portfolios that would usually have negative weights are being truncated.

For the current class of artificial markets this does not seem to be a problem, even for those that use
equilibrium conditions; as we have seen, these markets are only required to find a equilibrium price that
clears the market for a single asset, indeed, in LeBaronLeBaron (20102010) equilibrium prices are found by way of a
simple binary search. However, for our market with a minimum of two assets being involved in equilibrium
it appears the consequences of disallowing short sales have a direct impact on the existence of equilibrium
prices. To see if this was the case we set up the market described above in the same manner, but this time
we permitted agents to short sale by changing the agents portfolio selection from the quadratic program
3.3.73.3.7, to the analytical portfolio choice 3.3.133.3.13. The first difference we found was a dramatic decrease in
computation time and memory requirements, though this is perhaps not surprising; agents are no longer
having to invoke a quadratic program solver to find optimal portfolios. Of much greater interest was the
change in equilibrium search space, recall that from Figure 5.15.1 that although the search space was convex,
it was still somewhat irregular, and more importantly did not fall to below 1.
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Figure 5.3: The equilibrium search space under rational expectations with shorting allowed.

A contour map of the new setup with shorting is shown in Figure 5.35.3. There are two key insights this gives
us, firstly the search space is much more regular, this may be because agents are no longer hitting a minimum
value in their portfolio selection. More importantly we can see the search space is now contains points that
are close to zero. We conclude that in artificial stock markets using general equilibrium pricing, short selling
has a direct impact on the existence of equilibrium and indeed, the stability of finding those equilibrium.

Unfortunately, we were not able to adapt our market to process short sales in full. Like many others,
we have found this to be one of the most challenging design questions; it seems there is no clear method
for settling short trades within a centralised environment. The problem is somewhat similar to the those
faced by introducing social interactions described in Section 3.43.4. Even with the precautionary measures we
took by disallowing agents to claim dividends earned on borrowed assets, we could find no way of actually
paying the dividends to the agent that lent the asset, it is not even clear which agent lent the asset in our
model. It would appear that once again, a decentralised market would solve this problem. We envision that
in this setting it would be much easier for tracking exactly which stocks are owned by which agents.

With no clear method for clearing assets that have been shorted, our market was soon overwhelmed by
short sales that far outreached the endowments of each asset. The resulting wealth dynamics are illustrated
in Figure 5.45.4, agents with low risk aversions start shorting the safer assets and find that they soon become
bankrupt, once this occurs the agent demand formula, which as we showed must satisfy Walras’ law ef-
fectively inverses agents demands and soon there is no wealth left in the market. Once this occurs there is
no longer equilibrium, the search for equilibrium prices soon exponentiates and the market descends into a
state of stagnation.
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Figure 5.4: Wealth dynamics for a selection of agents in a market with shorting.

5.1.3 Existence in Non-rational Markets

Having learned that our market is incapable of processing borrowing, and that short-sales are key for rational
expectations equilibrium the most important question is now “does equilibrium exist in markets without
rational expectations and shorting disallowed?”. We find ourselves in a somewhat troublesome position;
it could be equilibriums do exist but our search method cannot find them. To try and determine if this was
indeed the case we ran small simulations with all three algorithms described in Section 4.34.3 in parallel and
observed if they converged and diverged from equilibriums in unison. If just one algorithm could find an
equilibrium point while the others failed, we could assert with greater confidence that the divergence errors
described in Section 4.4.14.4.1 are more likely to be a result local optimums rather than equilibria non-existence.

The results for one simulation, shown below in Figure 5.55.5 are highly revealing. We can clearly see that
there are periods for which one algorithm has found an approximate equilibrium point close to 0 which
the others have only managed to find an approximate equilibrium point that is nearer 1. We found this
phenomenon occurred during almost every simulation in this parallel set-up we did, indeed in some 44%
of periods over a series of 200 we found that the Nelder-Mead and COBYLA were able to find a better
approximate equilibrium point than L-BFGS-B. The reasons behind this are difficult to conclude, it would
appear beyond doubt there is a fragility with each of the algorithms; as we noted in the previous chapter
the Nelder-Mead algorithm is highly volatile in convergence, this can also be seen in Figure 5.55.5 where in
periods 0, 4, 6, 9 and 16 it was able to find an approximate equilibrium close to zero while both L-BFGS-B
and COBYLA were not. Nevertheless, it cannot be ignored that there are periods such as 3, 17 & 18 where
no equilibrium close to 0 could be found.
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Figure 5.5: Equilibrium approximation errors for L-BFGS-B, Nelder-Mead and COBYLA.

Unfortunately, for the same reasons we were unable to find a mathematical argument for existence, we have
no method of determining whether equilibriums actually exist for periods where none of the algorithms
could find any. We are thus reliant on the accuracy of the available algorithms which as we have seen,
are not guaranteed to succeed. However, one observation that is quite telling is that the error seems to be
bounded by the initial supply of the asset (1 for the simulation in Figure 5.55.5). If no equilibrium exists for
these periods it is almost certainly for the same reasons given in the previous section, namely restriction
of short selling. We can try and gain some further insight into this by looking at the number of partial
equilibriums that were found for each asset during computation of general equilibrium.11 If it is found
that one particular asset has a significantly low partial equilibrium count then it would seem reasonable to
conclude that the short sale restriction is the indeed the problem. This is because if there is just a handful of
assets that are constantly out of equilibrium it suggests that agents are hitting a boundary on their demands
for those assets, this is exactly the restriction short sale restriction puts on agent portfolios.

We simulated our market with the same set-up used to compute the results in Figure 5.55.5 but also recorded
the number of partial equilibriums that were found during each iteration of the L-BFGS-B search, hence it
is the relative number of partial equilibriums that is important, not the actual number. Figure 5.65.6 shows the
results. We can see that asset 6 is in partial equilibrium significantly less than the other assets, this is very
strong evidence for our hypothesis that short sale restriction is causing general equilibrium non-existence.

1Recall from Section 2.2.12.2.1 that an asset is in partial equilibrium when when it is in equilibrium independently of the other assets.
For example we could have 7 out of 8 assets in partial equilibrium. We need all assets to be in partial equilibrium to have a global
equilibrium.
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Figure 5.6: Partial equilibriums found during computation of general equilibrium using L-BFGS-B.

5.2 Stability

In Section 2.2.22.2.2 we discussed some of the key questions faced by general equilibrium theory. One of these,
existence, has been already been discussed. Another important question was that of stability; how well could
the equilibrium search mechanism actually find equilibriums? This is an import question for our model.

To test for stability in our artificial market we needed to establish a bound for equilibrium approximation
errors (any equilibrium prices found by the search mechanism would need to have a normalisation error
below this bound to be recorded as an approximate equilibrium). We felt the most natural choice given the
findings we have just made would be a normalisation error of 1, this accounts for the short sale problem with
a single asset. We also had to decide which algorithm to chose for running stability tests. From our initial
analysis in Section 4.4.14.4.1 we stated the L-BFGS-B algorithm would be the best choice. Considering this,
and the analysis on existence we have completed in this chapter we think this is probably the best choice;
although Nelder-Mead does seem to find equilibrium points where the others don’t, as can be seen from
Figure 5.55.5, L-BFGS-B finds equilibriums more often, indeed, in our parallel existence testing we found
L-BFGS-B found equilibriums better, or equivalent equilibriums in 56% of periods.

For this test we simulated our market under different initial settings, in particular with a variable number
of assets and agents. The number of periods was kept fixed at 52. We ran each test 5 times, and used the
average of the worst 4 to calculate the percentage of periods where approximate equilibriums were found.
The results, shown in Table 5.15.1 indicate that even with just L-BFGS-B our pricing mechanism was able to
find an acceptable equilibrium in the majority of periods.
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Table 5.1: Percentage of approximate equilibriums found for different market set-ups.

No. of agents No. of assets % of approximate equilibriums found
2 2 99.5
2 3 99.0
2 8 97.6

20 2 99.5
20 3 97.6
20 8 96.6
30 2 98.6
30 3 96.2
30 8 90.0
40 2 98.6
40 3 95.7
40 8 88.5

Having said this it does seem clear that the accuracy of the approximations decreases with the number of
assets, and to a small degree the number of agents. The increases error with increasing number of agents
can be safely attributed to the accuracy of the l-BFGS-B method, indeed, it is quite likely that that a better
Jacobian approximation method, or a larger number Hessian approximation vectors would eliminate this
error. The increased error with number of assets is almost certainly due to more assets being included into
the “short sale problem”, there is little we can do to counter this error other than the modifications we
suggested in Section 4.2.54.2.5. Our advice to those wishing to design their own general equilibrium artificial
stock markets would be do introduce a robust short-sale mechanism, although as already discussed, this is
not an easy task.

5.3 Uniqueness, Sensitivity & Optimality

The remaining questions of general equilibrium theory outlined in Section 2.2.22.2.2, while interesting, were
not addressable in the time we had. However, we can offer some of our thoughts on these issues given our
experience with our market.

• Uniqueness: We are almost certain that equilibrium points in our market are unique. While we have
found no evidence to confirm this claim we have found non to the contrary either. It is also worth
mentioning that our market is ‘close’ to satisfying the conditions for uniqueness given in Section
2.2.22.2.2.

• Sensitivity: Our market seems does seem to be very sensitive to initial conditions. We often found
that on some simulations equilibrium points would be relatively close, while on other occasions they
would oscillate wildly. We feel this is perhaps the most interesting questions to be answered, and
would certainly require much mathematical analysis such as that undertaken by Brock and HommesBrock and Hommes
(19981998).

• Optimality: Somewhat similar to uniqueness, we would be very surprised if equilibrium prices were
not optimal, or almost optimal. Our market is very close to satisfying the First Fundamental Theorem
of Welfare Economics conditions which would guarantee this is indeed the case.
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5.4 Conclusions

We conclude with strong confidence that general equilibria do exist in our market when short sales are per-
mitted, however it is not so clear when short sales are disallowed. It is unfortunate we can not complete
similar partial equilibria analysis on our market with short sales permitted. Nevertheless, we feel the ap-
proximation error caused by a small amount of assets being out-of-equilibrium during the course of trading
is not of great significance, indeed, we can easily neutralise the error by adjusting wealth in our market
through consumption.

It is interesting to hypothesise if the short sale problem we have discovered in our market has any
parallels to reality. Could a real market function properly without borrowing? Almost certainly not, for
one there is the obvious problem with investors simply not having adequate funds to purchase a more risky
investment such as a homeowner buying a mortgage. Moreover, we postulate that we would see similar
patterns to what we have seen in our market, namely that if investors were not able to short then demand for
certain types of asset would be such that supply and demand would almost never be in equilibrium.

We are confident our pricing mechanism is stable enough to act as a price clearing mechanism in our
artificial stock market. However, we are weary of the limitations given the problems we have described. We
repeat that those wishing to pursue this line of work should think vary carefully about a robust borrowing
mechanism to avoid the short-sale problems we have uncounted.

Finally, the assertions we have made on uniqueness, sensitivity and optimality are largely hypothetical,
each would almost certainly be its own avenue of research. We feel the most important question that for the
future of artificial stock markets is sensitivity, we say this because of all the properties discussed this is the
one that would almost certainly have the most impact on market dynamics.



6
Market Dynamics

In this chapter we evaluate our artificial stock markets market dynamics. Having analysed the equilibria in
our market in the last chapter and concluded that our approximate equilibrium pricing mechanism is robust
enough to clear out market, we now turn to the consequences on the actual market of general equilibrium
pricing. In particular we will try and determine if out market has any of the properties exhibited by real
markets outlined in Section 2.3.12.3.1. These were high volatility, high trading volume and fat-tailed returns.
Another interesting property we wish to determine is if our market satisfies the efficient market hypothesis;
as discussed in Section 2.3.12.3.1 there is much debate as to whether real markets are efficient, thus our discussion
here will be more hypothetical, it will however allow us to say with confidence whether our market converges
towards a rational expectations equilibrium. We finish we a brief analysis on learning dynamics in our
market.

6.1 Overview of Evaluation Procedure

Before beginning our evaluation we briefly describe our evaluation procedure, and in particular the set-up of
our market during evaluation. Note our set-up for this series of tests is slightly different from those carried
out during equilibrium analysis, for example during equilibrium analysis we carefully controlled certain
parameters such as agent risk aversion. This was because these parameters had little effect on equilibrium
conditions and therefore were not important for the results gathered.

6.1.1 Market Setup

Like most artificial stock markets, our model has many adjustable parameters that influence market dynam-
ics. To evaluate every variable of our market is unrealistic, indeed, one of the main criticisms of artificial
stock markets has been there are too many parameters.11 Thus we focus on the parameter that are of most
relevance to our task, namely the number of assets. All other parameters will be set as follows:

• Number of periods: Unless stated otherwise we keep the number of periods set to 52 to represent 1
year of market data (recall from Section 3.3.13.3.1 that our myopic agents are assumed to have an invest-
ment horizon of one week.). This is a reasonable test period given the computational requirements of
our market and should allow us to properly analyse the data.

1See for example LeBaronLeBaron (20062006).
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• Number of agents: The number of agents will be set within the range 40-60 depending on the num-
ber of assets. We choose this range based off the results of our computational requirement analysis
conducted in Section 4.4.24.4.2. In terms of general project analysis this is perhaps our biggest disap-
pointment, we have been unable to reach anywhere near the amount of agents we would have liked to
include in our market. As discussed in Section 4.4.24.4.2 the memory requirements of out model went far
beyond what we had anticipated, and in hindsight we would have almost certainly chosen a language
that has explicit memory control such as C.22. Implementation details are almost always completely
ignored by the agent-based economics society, but from our experience working with what is perhaps
one of the most computationally demanding markets developed, it seems clear that if artificial stock
market research is to continue in this direction then researchers should have memory requirements in
mind prior to market development.

It is difficult to asses the consequences of this flaw in our market, given, this is the first artificial
stock market to use general equilibrium pricing we have no other markets for direct comparison.
Further, we estimate we would need a machine with upwards of 1000GB of memory to reach the
same numbers of agents as current artificial stock markets.33

• Endowments: Agents are endowed with equal amounts of each asset, this is useful as it gives agents
equal wealth before trading begins. We can then asses more carefully how different agents fared in
the market without having to consider any agents having had a ‘head start’.

• Forecasts: Agents are given 30 of each type of the four forecasts given in Section 3.3.33.3.3. We follow
LeBaronLeBaron (20102010) and set forecast gains according to the half-life rule

1
2

= (1− g j)mh

where mh for each forecast is set as follows:

– Long-range gain: 10, corresponding to a decay of 10 years. This may seem long given our
simulation length, but we stress the long-range forecast is a benchmark for other forecasts, and
should not be drastically influenced by short-run volatility.

– Other forecasts: For all other expectation forecasts, and the active learning utility maximisation
forecast are chosen uniformly from [0.5,1,2,5,10] corresponding to 0.25, 0.5, 1, 2.5 & 5 years
respectively.

We provide agents the covariance matrix of dividends returns calculated in 22 for their Σ matrix. This
is so agents don’t have to learn the asset relationship structure. Perhaps an interesting extension of our
market would be to introduce another learning mechanisms for Σ, however, we feel there is already
enough complexities within our market and we would like to see if agents can take advantage of this
provided information.

• Consumption: The agent consumption parameter λi is adjusted dynamically to compensate for any
approximation errors given by the clearing mechanism as described in Section 4.2.54.2.5, it initially set to
0.

2Implementation details are discussed in the Appendix 8.18.1.
3The number of agents vary greatly between markets usually depending on the type of forecasts used, for example those markets

that use genetic algorithms usually contain around 500-1000 agents, but those that use “few-type” forecasting can have anything up
to 100,000 agents.
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• Risk Aversions: Agent risk aversions are drawn uniformly from the range [1,5], this allows for a large
variety of agent risk characteristic in our market.

• Clearing algorithm: As suggested in the previous two chapters we will use the L-BFGS-B algorithm
for all market dynamic simulations.

6.1.2 Simulations

As suggested in 3.53.5 we “warm-up” our market with data generated exogenously from our geometric vector
autoregression. We set the warm-up phase to 1000 periods, this gives the agent forecasts a chance adapt to
the dividends data.

Where possible we ran 5 simulations of our market and used averages for the following results. While
this is satisfactory for return distributions and mean returns it would not be helpful for more in-depth analysis
such as Granger causality testing. For these types of tests we generally analysed the simulation we deemed
‘most interesting’.

6.2 Comparison with Real Market Dynamics

As stated in the introduction to this chapter we will be analysing if out market displays any of the character-
istics of real markets outlined in Section 2.3.12.3.1. As a further evaluation point we will briefly look at wealth
dynamics in our market, it will be interesting to see if traders generally do equally well or some become
more wealthy than others.

6.2.1 Volatility

We analyse volatility from two perspectives. Firstly we measure volatility using standard mathematical
calculation, then we visually examine some of our generated time series for signs of bubbles and crashes.

Log-return Volatility

We measure volatility as follows:
σT = σ

√
T

where sigma is the standard deviation of logarithmic yearly returns and T is the time horizon in years. Given
we have one years worth of market data we use T = 1

52 .44

We obtained data55 for a small selection of well known assets and the S&P 500 index.66 The volatilities
of these assets are shown below in Table 6.16.1. Other than the S&P 500 these assets were selected somewhat
at random and represent benchmarks for assets in our market.

Following this we then simulated our market with varying number of assets and calculated volatilities
for asset that were ‘high risk’, ‘medium risk’ and ‘high risk’.77 Note that all prices are given relative to
the numeraire which clearly always has unity price. Note for markets with two assets there is no ‘low’ or

4It is common to use T = 1
256 as there are only 256 trading days in the year, but our model does not consider “non-working

days”, and our model has weekly periods, thus this is not the appropriate measure.
5Data obtained from http://ichart.finance.yahoo.comhttp://ichart.finance.yahoo.com.
6The S&P 500 is a collective index of 500 American companies and is generally considered the best reference for the market as

a whole.
7These ‘risks’ were taken by looking at the dividends process covariance matrix underlying each asset in the market.

http://ichart.finance.yahoo.com
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Table 6.1: Volatilities for some well known assets.

Asset S&P 500 Apple Inc. NVIDEA Goldman Sachs British Petroleum
σT 0.09697 0.14183 0.19752 0.16956 0.11849

‘medium’ risk assets, similarly for a three asset market there is no ‘medium’ risk asset. The results are
shown below in Table 6.26.2

Table 6.2: Sample volatilities of assets in our market for varying number of assets.

Volatilities, σ
Number of assets High risk asset Medium risk asset Low risk asset Average

2 0.70539 N/A N/A 0.70539
3 0.99472 N/A 0.49813 0.7464
4 1.03125 0.731082 0.50293 0.7551
8 1.63498 1.104892 0.69768 1.1459

Comparing the volatilities from our market with those from the real assets shown in Table 6.16.1 we can see
that our market is over-volatile. Some possible reasons for this phenomenon are:

• Number of agents: One likely cause is the low number of agents in our market; if there were more
agents then each agent would have less impact on equilibrium prices, we often found that demands
by a few agents would dramatically effect the equilibrium price. To conform this we ran smaller
tests with more agents and indeed found that the asset volatilities fell; with ∼ 150 agents we saw an
approximate 5% decrease in volatility.

• Equilibrium approximation: We discussed equilibrium approximation at some length in the last
chapter. This could be a result of the approximation error caused by the short-sale problem; if an asset
is out-of-equilibrium then it could cause a sharp increase in all of the markets asset prices.

• Dividends calibration: We found that the market dynamics to be sensitive to the underlying dividends
structure. For example, consider Figure 6.16.1 where we have simulated our market with highly corre-
lated dividends. We can see that the resulting time-series are also highly correlated. This suggests
that the exogenous dividends has a strong influence on the dynamics of the market.

The consequences of this are very interesting. Do dividends have a similar impact on real markets?
This is a highly debatable subject and really comes down to whether one believes in the ‘fundamen-
talist’ view or the ‘technical’ view. Indeed, as we have seen, asset correlation plays a fundamental
role in portfolio theory, and as asset prices are given as the discounted sum of future dividends (see
2.3.52.3.5) portfolio theory would seem to suggest that dividends correlations do have an important role in
price dynamics. Those who believe in the market efficiency hypothesis would almost certainly take
the opposite view.

It is quite possible that all these factors have contributed to the increased levels of volatility in our artificial
market. It is unfortunate that we are not able to fully test the first two postulates more fully, for reasons
discussed in this section and the last. Each of these postulates are quite possibly research questions in their
own right. However, we can go some way in answering the ‘excess volatility’ phenomenon by examining
the generated price time-series visually.
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Figure 6.1: Price time-series with highly correlated dividends.

Bubbles & Crashes

Bubbles & crashes are a phenomenon seen often in real markets, and indeed many artificial stock market
researches, have seen similar phenomenon in their markets. One market developed by Day and HuangDay and Huang
(19901990) is of particular interest. Their market uses out-of-equilibrium pricing, and they found that their
market was particularly susceptible to bubbles & crashes in certain setups.

We found the “bubble & crash” phenomenon to be particularly prevalent in our market. An example
is shown in Figure 6.26.2 where we can see a significant bubble. These types of events are deemed to be
‘speculative’ phenomenon which seems to contradict somewhat the type of dynamics we saw in Figure 6.16.1
where prices were highly correlated indicating high ‘fundamental’ presence.

This evidence seems to support the postulations we made previously; it is quite probable that with the
small amount of agent we are restricted to there could be a higher proportion of one type of investor in the
market, this would lead to very different types of volatility we have seen. Furthermore, it also seems to
support our hypothesis that the equilibrium approximation error is causing such bubbles & crashes, as seen
by Day and HuangDay and Huang (19901990); this would also lead to a significant increase in volatility.

Another explanation for the higher than expected volatility is we have underestimated the time-horizon
of our myopic agents. Originally we assumed time-horizons were one week which fell within the range of
“myopic” investment horizons, however this choice was not determined mathematically. We found that by
recalculating volatility in our market assuming period lengths of ∼ 3 months the results were much closer to
empirical results than before, for example in the 8 asset market shown in Figure 6.16.1 we found the volatility
of the market average under a 4 month time-horizon was near 0.3, much closer to the observed figures.
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Figure 6.2: Price time-series for a three asset market showing a ‘bubble’.

Furthermore, as found by LeBaronLeBaron (2001a2001a), the time-horizons of agent population has a dramatic impact on
market volatility, this almost certainly agrees with our findings. Whether a long time-horizon is a problem or
not really depends on the type of analysis required by the modeller. It was not within the scope of this project
to analyse such details, however, we are confident that our model could easily be adjusted to accommodate
different time-horizons if required. For example, one could adjust the number of terms used from the
Mercator series to calculate the agents portfolio return, or, adjust the agents learning function parameters.
However, we warn that by decreasing the time-horizon the computational requirements needed to simulate
a satisfactory length of time becomes increasingly demanding, and also, the modeller must also be aware
that trading costs should be taken into account when modelling smaller time-horizons which present another
challenging design issue.

6.2.2 Return Distribution

The next important market property we consider is “fat-tails” or more formally, kurtosis. As we have dis-
cussed, real markets returns display kurtosis over certain periods, a property not present in existing general
equilibrium models. Having discovered in the last section that our initial time-horizon estimate was too
short to agree with empirical data (with a time-horizon of 1-3 months seeming more likely), evaluating our
markets return structure against empirical data is a good further opportunity to add evidence to our new
hypothesis; if empirical evidence supports our simulated market data over similar period lengths we can say
with greater confidence our model is accurate over periods of 1-3 months. We begin by analysing kurtosis
mathematically.
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Definition. The kurtosis of a distribution, X, is defined as follows:

k =
E(X − µ)4

σ4

A normal distribution has a kurtosis of 3, thus distributions with more outliers (or “fatter tails”) have a
kurtosis greater than 3. In order to evaluate if our artificial market gave returns with kurtosis we first
gathered empirical return data from some well known assets for period lengths of 1 week (52 weeks total),
and 1 month (52 months total) and calculated the kurtosis for each, the results are shown in below Table 6.36.3.

Table 6.3: Sample kurtosis for a selection of well known assets.

Asset
Period S&P 500 Apple Inc. NVIDEA Goldman Sachs British Petroleum

1 week (52 total) 3.0250 2.4166 2.0636 2.7565 3.2819
1 month (52 total) 3.9053 12.0580 4.5777 3.3339 12.6757

The first observation is that returns for a period length of 1 month have higher kurtosis that for period lengths
1 week, this agrees with the findings of MandelbrotMandelbrot (19631963) who discovered returns showed highest kurtosis
for periods of approximately 3 months. The next observation is there is a large range of values, especially
for monthly returns. Finally, we can see that a high kurtosis does not imply a high volatility.

We simulated our market with an 8 asset setup, however to for this simulation we made some of the
adjustments suggested in the previous section, namely, increasing the number of agents (although only by
a small amount), and recalibrating the exogenous dividends with a smaller covariance’s. The results are
shown below in Table 6.46.4

Table 6.4: Sample kurtosis and volatility for each asset in our 8 asset market.

Asset 1 2 3 4 5 6 7 8
k 12.4175 21.3300 6.7893 23.1179 7.9126 11.3376 7.3240 3.0724
σT 0.58172 0.626735 0.709685 0.58403 0.62947 0.66717 0.64546 0.21329

We can see that these results support our new hypothesis of longer time-horizons, indeed, this is strong
evidence to suggest our model supports a time-horizon of approximately 3 months, this is highly interesting
given our exogenous dividends is calibrated to empirical dividends that is paid quarterly. We can also see
that our model also displays a high range of kurtosis values, and, that like the empirical data, a high kurtosis
does not imply a high volatility.

It is also useful to observe the return distributions visually. Figure 6.36.3 shows returns for a simulation of
our market with just two assets, we can see this is log normally shaped like the monthly returns for Apple
shown in Figure 6.46.4. Notice also they have a similar outliers on the far rights, this is exactly the type of
“Black swan event” TalebTaleb (20102010) warns of and is strong evidence to suggest our model could potentially be
a safer choice for policy evaluation. Figures 6.56.5 and 6.66.6 show the distributions used to calculate the kurtosis
results. We can see that although there are some differences such as our model showing less kurtosis on the
left tail, they are both fat-tailed. This can be seen more clearly by looking at the logs of the two distributions,
shown in Figures 6.76.7 and 6.66.6. We can see here that both are normal, and reassuringly similar. This gives
us great confidence our model is faithfully producing real market dynamics, even when limited by a small
number of agents. We believe our model could give even more impressive results if this limitation was not
present.
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Figure 6.3: Period returns from a simulation of our
market with 2 assets.
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Figure 6.4: Monthly returns for Apple over 52 trading
weeks.
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Figure 6.5: Period returns for a simulation of our mar-
ket with 8 assets.
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Figure 6.6: Monthly returns for the assets in Table 6.36.3
over 52 trading weeks.
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Figure 6.7: Log of Figure 6.56.5.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

35

Return

F
re

q
u
en

cy

Log monthly returns (52 total) for all assets

Figure 6.8: Log of Figure 6.66.6.



70 Market Dynamics

6.2.3 Trading Volumes

The next market property we examine is trading volume. We have seen that real markets display high levels
of trading volume. It is quite challenging to record actual trading volumes in our market for the same reasons
why a robust short selling mechanism is challenging, there is no arbitrator that records asset movement. The
only role of the centralised exchange is to clear the market through prices. Another problem is that due to
the limited number of agents in our market, it is difficult to say what constitutes a ‘high’ trading volume; or
put another way, how many traders actually trade on real markets?

One way we can try and gain some insight into trading volumes is by examining the normalised portfolio
changes made by our agents each period. We can conclude that if agents are changing their portfolios often
then our market displays signs of high trading volume. Figure 6.96.9 shows the numeraire normalised price
time-series of the 3 asset market simulation used for this test and Figure 6.106.10 shows the mean normalised
portfolio changes for the entire market population (i.e the mean of |wi,t −wi,t−1| for all agents i).

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

Period

P
ri

c
e

Price time−series for 3 asset market

Figure 6.9: Price time-series for portfolio test.

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Period

M
ea

n
 |w

t −
 w

t−
1
|

Mean normalised portoflio change

Figure 6.10: Mean normalised portfolio changes.

We can see that agents change their portfolios quite readily on average. This could suggest agents in our
population are too speculative, this would also go some way to explaining the bubbles & crashes observed
earlier. Further insight can be made by looking at the histogram of portfolio differences as shown in Figure
6.116.11. This, together with what we have seen in Figure 6.106.10 would suggest that there are actually two groups
of agents, one group that change their portfolios often and another group that make few adjustments. This
would actually suggest that some agents are becoming ‘too’ fundamental and implementing ‘buy and hold
strategies’ while the market is being driven by speculative agents. Whether this is the case in real markets
is a very open and interesting question. It is frustrating we are unable to carry out experiments with more
agents in our market to see if this phenomenon is always the case, however, we hope that this work will
motivate others to continue in the direction we have initiated.

One final observation we can make is that like in real markets, trading volume and market volatility
have strong cross-correlation (see Section 2.3.12.3.1), for example we can see that when trading volume begins
to increase in period 15, soon after in period 20 the market sees a sharp rise in volatility, and then in period
22 when trading volume sharply falls, the market price soon follows. This is repeated near period 40. It
seems in our market that trading volume is dictating volatility, whether this is the case in real markets is an
open question, but in our view this is more likely than the contrapositive.
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Figure 6.11: Histogram of agent normalised portfolio change.

6.2.4 Wealth Dynamics

We end this section with a brief examination of wealth dynamics in our market. Wealth dynamics is not
a market property that is often discussed in current agent-based computing literature, however we feel it
too has an important role in real market dynamics. Real markets are notorious for being populated with
investors who experience highs and lows; this year top hedge fund manager is all to often next years market
sheep. There are a very select few, such as Warren Buffet, who manage to continually make high returns on
the stock market. We were curious to see how agent wealth dynamics changed in our market, for example,
could agents sustain high levels of wealth?

The results are somewhat surprising, Figure 6.126.12 shows agent wealth dynamics as a time-series while
Figure 6.136.13 shows the corresponding return series for the same market simulation. Firstly, we can see
that agent wealth is volatile, this is perhaps not quite the level of fluctuation we would witness from a lay
investor, but it is quite possible this degree of activity would be seen by firms with a large market presence
and high risk strategies such as hedge funds. On the other hand there do seem to be periods where agents
have sustained success (blue line), and one agent (green line) never seems to succeed.

Another interesting observation is overall wealth is not always correlated with market returns, indeed,
we can see periods where market returns are high, but only a single agent has managed to take advantage of
the opportunity. During other periods, the market has not done particularly well yet some agents seemingly
see an increase in wealth. This kind of phenomenon is well known in stock markets were a small group of
investors have managed to beat the market by some degree. This is a highly interesting subject and we feel
much further development could be made from larger, more sophisticated simulations of our market.
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Figure 6.12: Agent wealth time-series.
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Figure 6.13: Return time-series for 8 asset market.

6.3 Market Efficiency

We now consider if our market is efficient as defined by the efficient market hypothesis described in Section
2.3.12.3.1. As explained, market efficiency is a very divided subject in economics, there has been evidence to
suggest markets are efficient such as low autocovariance’s between asset prices, and evidence to suggest
markets are not efficient, such as market crashes & bubbles. We have already seen our market, like so many
other artificial stock markets, experiences frequent bubbles & crashes. In general these events are explained
by referring to investors expectations given their learning methods, however we feel it will be interesting to
perform more abstract analysis and evaluate if our market is efficient, this would go some way to explaining
the market dynamics we have witnessed.

To try and fully evaluate our market under a variety of conditions we compare two different market
setups. The first is a standard 3 asset market with loosely calibrated dividends (which we will call “stable”)
and a 52 period simulation time. The second is an 8 asset market with highly correlated dividends that
closely resembles a Gaussian sample (which we will call “unstable”), this market is run for 150 periods.
The stable and unstable dividends can be seen in Figures 6.146.14 and 6.156.15 respectively. We can see the large
difference between the dividend series, we would like to determine if these differences lead to changes in
our market, and in particular if market efficiency can arise.
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Figure 6.14: Stable dividends.
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Figure 6.15: Unstable dividends.
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When analysing time series for lagged influence it is useful to use a cross-covariance plot which shows the
lagged covariance’s between all variables in a system, a variables autocovariance is thus a special case. For
two variables x and y the cross-covariance of lag m us defined as:

φxy(m) = E[(xn+m − µx)(yn − µy)∗]

The vector case follows. We can see the cross-covariance plots for the stable and unstable dividends streams
in Figures 6.166.16 and 6.176.17 respectably. While both have high covariances, we can immediately see the the
differences; the stable dividends has large cross-covariances compared to the unstable dividends suggesting
past dividends in the stable case can be used to predict future values, while this is not the case for the unstable
dividends.
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Figure 6.16: Cross-covariance of stable dividends.
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Figure 6.17: Cross-covariance of unstable dividends.

The resulting numeraire normalised price time-series for the simulated markets with stable and unstable
dividends are shown in Figures 6.186.18 and 6.196.19 respectively. On first glance they seem quite similar, although
we can see that the unstable market seems to have a higher covariance than its unstable counterpart. This
would suggest our analysis at the beginning of this chapter was indeed correct; the dividends calibration
needs refining. Moreover, this further shows the important influence dividends has on our markets dynamics
and strongly suggests our market is sensitive to initial conditions, although as we have previously suggested,
this is something that needs much further research.
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Figure 6.18: Price time-series with first set-up.
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Figure 6.19: Price time-series with second set-up.
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To examine the resulting time-series more thoroughly we can look at the each series cross-covariances. The
cross-covariance’s for the market with stable and unstable dividends are shown in Figures 6.206.20 and 6.216.21
respectively. The results are highly surprising, we can see that the market with stable dividends has signifi-
cantly less cross-covariance than the market with unstable dividends. The stark contrast can be seen by com-
paring the two figures with Figures 6.166.16 and 6.176.17 which shows that the series seem to have inverted; from
a dividends stream with high cross-covariance we have a time series with very little information between
prices (although there is still some degree of autocovariance); and from a dividends series with virtually no
cross-covariance there is seemingly much information between series.
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Figure 6.20: Cross-covariance of price with first set-
up.
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Figure 6.21: Cross-covariance of price with second
set-up.

We can go one step further here and apply Granger causality analysis to both markets. Granger causality is
a form of hypothesis testing to determine the influence of one variable in a system, over and above others.88

A high Granger causality indicates one variable can be used to predict another in the system. We applied
Granger causality analysis to both systems,99 the results for the markets with stable and unstable dividends
are shown in Figures 6.226.22 and 6.236.23 respectively. We can see that Granger causality testing showed there
was no influencing variables in the first market, this supports the results of the cross-covariance statistics.
On the other hand we can see that Granger causality revealed that there is a strong causal relation between
asset 4 and 5 suggesting asset 4’s price can be used to predict asset 5’s. We found that the influence was
actually stronger for longer lags than shorter lags, indicating that long term prices can be predicted. This is
supported by what we can see in Figure 6.216.21 where for lags near 10 there is a rise in covariance between
two assets.

These results are perhaps the most surprising and exciting of all our findings. It appear our market is
able to produce efficient and non-efficient behaviour depending on initial conditions. To the best of our
knowledge, no other artificial stock markets have displayed this kind of flexibility, although this is perhaps
not surprising given that no other artificial markets are truly multi-asset.1010 While it would seem our market
both agrees and disagrees with the efficient market hypothesis, there is much further research that could be

8The mathematics is quite involved and we will not discuss it here, instead we refer the reader to Granger original paper GrangerGranger
(19691969).

9Results obtained using Matlab toolkit developed by SethSeth (20102010).
10We have already noted that WesterhoffWesterhoff (20042004) developed a multi-asset market, and although his market did display signs of

real market phenomenon, the market is highly simplified; prices are adjusted in response to excess demand and agents and there is
no exogenous dividend.
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done to reach a more established conclusion (if there is one), for example we have not been able to study
the influence of equilibrium approximation, short selling or agent population on our markets efficiency.
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Figure 6.22: Granger causality relations from
first set-up.
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Figure 6.23: Granger causality relations from
second set-up.

6.4 Agent Learning Dynamics

We finish our evaluation with a very brief discussion on agent learning dynamics in our market. We have
seen how our market is susceptible to bubbles & crashes, and also that our market can display signs of
inefficiency. Both would suggest agents are tending towards speculative strategies and away from rational
expectations equilibrium. Interestingly, LeBaronLeBaron (20102010) who first developed the forecasting system we used,
found similar types of price bubbles & crashes in his market. However, where as he found in his market
the long-range ‘buy & hold’ strategies control much of the wealth in the market (although these agents
have little influence on price setting), we found that agents almost completely ignore this strategy. Indeed,
we found that our agents almost always tended towards the lagged return regression forecast, as shown in
Figure 6.246.24. This is somewhat surprising and goes some way to explaining presence of both ‘fundamental’
and ‘technical’ phenomenon in our market (recall that the lagged return regression forecast lies somewhere
in between both extremes).

We postulate that agents like this strategy as it looks to take advantage of any autocovariance’s in the
price series, which as we have seen, can be present in our market. This would also suggest that unlike many
artificial stock markets, convergence to rational expectations equilibrium is unlikely. This is yet another
component of our market that has enough depth to be it’s own line of research. We would be interested to
see if agents display similar types of learning when using “many-type” learning strategies such as classifier
with a genetic algorithm.
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Figure 6.24: Time-series showing the number of agents using forecasts in each period.

6.5 Summary

In this chapter we have concluded the second phase of our evaluation process; our first evaluation phase
considered the mechanics involved in our market, namely the equilibrium process that finds clearing prices.
In this phase of our analysis we compared our market dynamics against empirical data and found that in
many cases, our market was able to reproduce some important market phenomenon. in particular we found
that under the correct time-horizon calibration, the price time-series produced by our market displayed high
volatility. We also found that our market displayed signs of both fundamental and speculative events such as
bubbles & crashes. Further, we found that our market return has high kurtosis. We followed by examining
the trading volumes in our market and found that our market had high cross-correlation, and for the most
part high trading volume. Our evaluation on market dynamics concluded with a brief discussion on the
wealth dynamics in our market.

Finally, we discussed the efficiency of our market and observed signs of both efficiency, and non-
efficiency. We concluded our market does not converge to rational expectations equilibrium, although noted
that much further research is required to validate this claim.
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Conclusions & Future Work

In this thesis we have laid the foundations for a new class of artificial stock markets that employs a gen-
eral equilibrium pricing mechanism. Our model can be populated by a potentially unbounded number of
exogenously determined asset, and is therefore to the best of our knowledge the first artificial stock market
that does not require the concept of a risk-free asset. By removing the requirement of a risk free asset and
introducing the sound principles of general equilibrium theory, our model has the potential to become a
valuable tool for agent-based computational research.

7.1 Conclusions

During the process of developing our model, we found evidence to suggest that dividends returns are log-
normally distributed, and developed a method for exogenously determined dividends using geometric vec-
tor autoregressive models that can be calibrated to closely resemble empirical dividends. Furthermore we
showed a simple method for calibrating the geometric vector autoregression using an extension of a least-
squared optimisation.

We showed that while our model does not satisfy all the conditions sufficient for general equilibrium
existence, it is highly likely equilibrium do existence in our market when short selling is permitted, indeed,
one of our main contributions is showing the importance of developing a robust borrowing mechanism for
future artificial stock markets that using equilibrium pricing. Furthermore, we developed a non-linear non-
convex optimisation problem for finding approximate equilibrium prices in our market and evaluated the
robustness of the Nelder-Mead, COBYLA and L-BFGS-B algorithms for finding solutions.

Our artificial shock market is able to faithfully reproduce many well known real market dynamics, and
in particular we found when properly calibrated is able to generate simulated market data that is volatile
and has return distributions with high kurtosis. Further we found that our model encourages high trading
volume and realistic wealth dynamics. Additionally, we found our market supports both fundamental and
speculative phenomenon such as bubbles & crashes.

Finally, we showed our market is highly flexible and is able to generate price time-series with varying
degrees of efficiency. Indeed, one of the main advantages of our model over existing artificial stock markets
is the vast degree of dynamics that can be captured with relatively simple calibration.
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7.2 Future Work

The work we have presented in this thesis is extremely broad in scope, and we have tried to highlight areas
of potential further research throughout the course of our paper. We summarise these here.

• Exogenous dividends calibration: While we have presented an initial study on dividend time-series,
and indeed a suitable model for generating dividends in the form of a geometric vector autoregres-
sive model we feel their is much that could still be developed here. In particular, for more accurate
dividends time-series our model requires further calibration.

• Short selling mechanism: One of the key discoveries of our project has been the importance of short
selling for market equilibrium. Modelling borrowing in artificial stock markets is a challenging task.
A robust protocol for handling borrowing in our model would have significant benefits for equilibrium
approximations.

• Social interactions: As we have discussed, modelling agent interaction in a centralised market is
a very challenging and interesting research area. By extending our model do allow agent interac-
tions, either over fixed networks or through random intervention, another layer of dynamics would be
introduced into our market.

• Proof of existence: An interesting mathematical challenge would be to prove existence in our market.
This would represent a significant advancement in the advocation of our model.

• Convex optimisation reformation: One of the main implementation problems with our market is
the equilibrium pricing mechanism requires iterated solutions to a non-linear, con-convex constrained
optimisation problem. However, we have showed that the search domain to only show small degrees
of non-convexity. It may be possible to take advantage of this and reform our optimisation problem
as a convex optimisation problem which would hugely improve market performance and potentially
unlock a new layer of market dynamics.

• Sensitivity investigation: An interesting line of research would be to investigate our markets sensi-
tivity to initial conditions. It would be very interesting to see if our market is chaotic.

• Learning mechanism: In our model we used a relatively simple learning mechanism. This is a com-
ponent of our market that can be easily modified, and represents an interesting area for research. One
could implement more sophisticated learning mechanisms in our model and asses the consequences
for market dynamics.

• Market dynamics: We have presented initial analysis on the market dynamics of our market. How-
ever there is a wealth of possible research area that could be explored here, in particular our model
could be used as a tool to study market efficiency and other market phenomenon.

• Policy evaluation: Unfortunately we have not been able to study policy evaluation in our model. This
is a line of research that should only be completed once our model is well understood.

• C reimplementation: One of the main points of criticism of out project is we were unable to populate
our artificial market with large numbers of agents. A reimplementation of our market in C, with an
eye towards better memory management could see a significant increase in agent populations.
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• Trading costs: An interesting design challenge would be to include trading costs into our market.
This would add a new layer of realism, and is especially important for smaller time-periods.

• Wealth dynamics: We found in our market to display very interesting wealth dynamics, however we
were not able to dedicate much time to this area and it is certainly something that would be of great
potential interest.
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Appendix

8.1 Implementation Details

We briefly note some of our main implementation details.

• Our market was written in the Python programming language. We chose Python as it has a wide range
of libraries available for matrix manipulation and optimisation. Although Matlab arguably has better
support for these two features we decided it’s poor object support would make it hard to implement an
agent-based model. It it also reasonably efficient and has less overhead than a language such as Java
(but is not as efficient as a well written C equivalent).

• We used the SciPy optimisation package for the Nelder Mead and L-BFGS algorithms. These im-
plementations are reasonable and easy to use. In addition, we could not find any better open-source
equivalents.

• We used the MOSEK quadratic program solver to calculate agent portfolios. The MOSEK solver is
arguably one of the best on the market and its interface support with CVXOPT made this a relatively
easy choice.

8.2 Proofs

Proof of Lemma 11. (From BalaskoBalasko (19881988)) In order for individual demand to be satisfied, it suffices that
demand is satisfied for every commodity

m∑
i

fi(p, p ·ψi) ≤
m∑
i

ψi

Multiplying both sides by the price of commodity j, and assuming at least one equality is strict yields
L∑
j

 m∑
i

fi(p, p ·ψi)

 < L∑
j

 m∑
i

ψi


Rearranging both sides gives

m∑
i

p · fi(p, p ·ψi) <
m∑
i

p ·ψi
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Applying Walras’ law (2.2.12.2.1) to the left hand side yields

m∑
i

p ·ψi <

m∑
i

p ·ψi

which is a contradiction, thus we can conclude strict inequality does not hold. �

8.3 Mathematical Background

First we define some important properties of functions that the reader should be aware of:

Definition. A function f : Rn → R is convex if dom f is a convex set and for all x, y ∈ dom f , and for λ
with 0 ≤ λ ≤ 1, we have

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y) (8.3.1)

Definition. A function f : Rn → R is concave if dom f is a convex set and for all x, y ∈ dom f , and for λ
with 0 ≤ λ ≤ 1, we have

f (λx + (1− λ)y) ≥ λ f (x) + (1− λ) f (y) (8.3.2)

Definition. A function f : Rn → R is quasi-concave if dom f is a convex set and for all x, y ∈ dom f , and
for λ with 0 ≤ λ ≤ 1, we have

f (λx + (1− λ)y) ≥max( f (x), f (y)) (8.3.3)

Definition. A function f : Rn→ R is monotonic if for any x,y ∈ dom f such that x < y, we have f (x) < f (y).

The reader may also find the following properties from probability theory useful:

Lemma 4. E is monotonic
if X ≤ Y then, almost surley E[X] ≤ E[Y] (8.3.4)

Lemma 5. E is linear
E[X + c] = E[X] + c

E[X + Y] = E[X] +E[Y]

E[αX] = αE[X]

(8.3.5)

Lemma 6. The variance of a constant scaled random varaible is

Var[αX] = α2Var[X] (8.3.6)

Lemma 7. The variance of the sum of two random variables is given by

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X,Y] (8.3.7)

Lemma 8. If X ∼ ln N(µ,σ2) then

logE[X] = E[logX] +
1
2

Var[logX] (8.3.8)

Lemma 9. If X ∼ ln N(µ,σ2) then

Var[X] =
(
eVar[logX] − 1

) (
e2E[logX]+Var[logX]

)
(8.3.9)
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8.4 Vector Autoregressive Models

Time-series modelling is a critical part of econometrics, in general, we wish to analyse real time series to
extract meaningful observations11, or to forecast future results given some model. A time-series is written as

YT = {y1,y2,y3, . . . ,yT }

where T is the number of observations, note that we are assuming discrete time.

Definition. A process is covariance-stationary when the mean µ and the autocovariance’s γ jt are indepen-
dent of t, that is

E(Yt) = µ (8.4.1a)

E(Yt − µ)(Yt− j − µ) = γ j (8.4.1b)

for all t and any j.

Definition. We call a series of i.i.d variables εt

{ε1, ε2, ε3, . . . , εT } (8.4.2)

where
εt ∼ N(0,σ2)

a Gaussian white noise process.

Inherently

E(εt) = 0 (8.4.3a)

E(ε2
t ) = σ2 (8.4.3b)

White noise processes are important building blocks for many other time-series. We are most often interested
in stochastic dynamic processes that have some autocorrelation and as such cannot be reliably be modelled
by a white noise process. The models employed for stochastic time series can be seen as realisations of
first-order difference equations

yt = φyt−1 + wt (8.4.4)

Notice we may recursively substitute to give

yt = φt+1y−1 +

t∑
k=0

φt−kwt (8.4.5)

Thus we may fully define the series given an initial point y−1 and all wt. If we substitute the white noise
process (8.4.28.4.2) for w (i.e. wt = c + εt) we get a first-order autoregression.

Definition. A first-order autoregression, denoted AR(1) is given by

Yt = c + φYt−1 + εt (8.4.6)

1When applied to stock market time-series this is called “technical analyse”.
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As detailed in HamiltonHamilton (19941994), when |φ| ≥ 1 the system the system is ‘explosive’, and no covariance-
stationary process exists. When |φ| < 1, (8.4.68.4.6) is a covariance stationary process and we are able to analyse
the mean and covariance’s.

Lemma 10. If εt ∼ N(0,σ2) and y is covariance-stationary then yt ∼ N(µ,γ0).

Proof. yt is a linear combination of normally distributed i.i.d’s. �

Lemma 11. If y is covariance-stationary the mean µ is

µ =
c

1− φ
(8.4.7)

Proof.
E(Yt) = c + φE(Yt−1) +E(εt)

As the process is covariance-stationary
E(Yt) = E(Yt−1) = µ (8.4.8)

Thus,
µ = c + φµ+ 0

or
µ =

c
1− φ

(8.4.9)

�

Lemma 12. If y is covariance-stationary the variance γ0 is

γ0 =
σ2

1− φ2 (8.4.10)

Proof. Substituting (8.4.78.4.7) into (8.4.68.4.6)

Yt = µ(1− φ) + φYt−1 + εt

or,
(Yt − µ) = φ(Yt−1 − µ) + εt

Squaring both sides and taking expectation gives

E(Yt − µ)2 = φ2E(Yt−1 − µ)2 + 2φE[(Yt−1 − µ)εt] +E(ε2
t ) (8.4.11)

As (Yt−1 − µ) is a linear function of ε and the auto-covariance of ε is 0

E[(Yt−1 − µ)εt] = 0 (8.4.12)

and as the process is covariance-stationary

E(Yt − µ)2 = E(Yt−1 − µ)2 = γ0 (8.4.13)

substituting (8.4.128.4.12) and (8.4.138.4.13) into (8.4.118.4.11) gives,

γ0 = φ2γ0 + 0 +σ2

or

γ0 =
σ2

1− φ2 (8.4.14)

�
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Lemma 13. If y is covariance-stationary the jth auto-covariance is given by

γ j =
σ2φ j

1− φ2 (8.4.15)

Proof. See proof of Lemma 1616. �

In many situations we may wish to model multiple processes that have some degree of correlation, naturally
this leads to vector autoregressive models, denoted VAR. A pth order VAR is written VAR(p) and has the
form

yt = c +Φ1yt−1 +Φ2yt−2 + · · ·+Φpyt−p + εt

where c is a (n× 1) vector constant, Φi are (n× n) coefficient matrices and εi is a (n× 1) white noise vector
satisfying

E(εt) = 0 (8.4.16)

E(εtε′τ) =

{
Σ t = τ (8.4.17a)

0 otherwise (8.4.17b)

Definition. A VAR(1) has the form
yt = c +Φyt−1 + εt (8.4.18)

For example, a bivariate VAR(1) model is given by(
y1,t
y2,t

)
=

(
c1
c2

)
+

(
φ1,1 φ1,2
φ2,1 φ2,2

)(
y1,t−1
y2,t−1

)
+

(
ε1,t
ε2,t

)
A VAR(1) is covariance-stationary if the eigenvalues of Φ all lie in the unit circle, more formally |λ| < 1 in

|ιλ−Φ| = 0 (8.4.19)

thus for covariance-stationary VARs we can obtain the following

Lemma 14. If y is covariance-stationary the mean µ is

µ = (ι−Φ)−1c (8.4.20)

Proof. We have
E(yt) = c +ΦE(yt−1) +E(εt)

Assuming y is covariance stationary then
µ = c +Φµ

Rearranging gives
µ = (ι−Φ)−1c

�

Lemma 15. If y is covariance-stationary the covariance’s Γ0 are

Γ0 =

∞∑
k=0

Φ
k
ΣΦ

T k
(8.4.21)
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Proof. Writing yt in recursive form we have

yt =

t∑
k=1

Φ
kc +Φty0 +

t∑
k=0

Φ
kεk

Then

y∞ = (ι−Φ)−1c +

∞∑
k=0

Φ
kεk

Taking the variance of both sides gives

Var(y∞) = Var

 ∞∑
k=0

Φ
kεk


= Var

 ∞∑
k=0

∞∑
j=0

(Φkεk)(Φ jε j)T


=

∞∑
k=0

∞∑
j=0

Φ
kVar(εkε j)ΦT k

=

∞∑
k=0

Φ
k
ΣΦ

T k

�

Lemma 16. If y is covariance-stationary the jth autocovariance Γ j are

Γ j = Φ jΓ0 (8.4.22)

Proof.

Γ j = E[(yt −µ)(yt− j −µ)′]

= E[(c +Φyt−1 + εt −µ)(yt− j −µ)′]

= E(c(yt− j −µ)′) +ΦE[(yt−1 −µ)(yt− j −µ)′) +

E(εt(yt− j −µ)′]

= 0 +ΦΓ j−1 + 0
= ΦΓ j−1 (8.4.23)

It is easy to see repeated application of (8.4.238.4.23) will yield

Γ j = Φ jΓ0 (8.4.24)

�
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8.5 Mathematical Optimisation

Mathematical optimisation is an area of mathematics and computer science concerned with optimising (find
the minimum or maximum) some function, sometimes subject to constraints. More formally, an optimisation
problem has the form

minimise
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m
(8.5.1)

where the vector x = (x1, . . . , xm) is the optimisation variable, f0 : Rn → R is the objective function and the
functions fi : Rn→ R, i = 1, . . . ,m are the (inequality) constraints.

A solution to 8.5.18.5.1, x∗, is either locally optimum or globally optimum. A globally optimum solution
satisfies f0(x∗) ≤ f0(x) for all x. A locally optimum solution satisfies f0(x∗) ≤ f0(x) for a neighbourhood N
of x∗.

An optimisation problem is convex if the objective function and constraints are convex. Convex optimi-
sation problems can almost always be efficiently be solved. To see this consider an alternative definition of
a convex function:

f (y) ≥ f (x) +∇ f (c)T (y− x)

Which is the second order Taylor expansion of f . Therefore if we set the differential of f w.r.t x to 0 we
obtain

f (y) ≥ f (x)

for all y. This is the first order optimality condition for convex optimisation. Convex optimisation problems
are discussed in great detail by Boyd and VandenbergheBoyd and Vandenberghe (20042004).

An optimisation problem of the form

minimise
x

1
2

xT Px + qT x + r

subject to Gx ≤ h

Ax = b

(8.5.2)

is called a Quadratic Program. Solution methods for quadratic programs are discussed in Boyd and VandenbergheBoyd and Vandenberghe
(20042004) and also in Nocedal and WrightNocedal and Wright (19991999).

If the objective function f0 of 8.5.18.5.1 is non-linear and non-convex then the problem often becomes very
difficult to solve. In general one must choose between a local optimiser in polynomial time or a global
optimiser in exponential time. Methods for solving these types of problems are highly involved and are
discussed in Nocedal and WrightNocedal and Wright (19991999).
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