
Dynamic interdiction games on

PERT networks

Eli Gutin

Supervisor: Dr. Daniel Kuhn

Second marker: Dr. Wolfram Wiesemann

Department of Computing

Imperial College

Submitted in part fulfillment of the degree of

MEng Computing

2012

mailto:gutineli@gmail.com
http://www.doc.ic.ac.uk/~dkuhn
http://www.doc.ic.ac.uk/~wwiesema
http://www.doc.ic.ac.uk
http://www.imperial.ac.uk

Acknowledgements

My thanks go to Dr. Daniel Kuhn and Dr. Wolfram Wiesemann for en-

couraging me, for the long meetings and their time. I am grateful to Dr.

Kuhn for agreeing to supervise me at an unusually late stage.

Finally I thank my personal tutor, Prof. Murray Shanahan, for his fantastic

support throughout my undergraduate studies.

Abstract

In a PERT network interdiction game one player tries to get a project,

represented as a PERT graph, finished as quickly as possible by allocat-

ing resources, expediting the project’s tasks and choosing between different

technologies to use. At the same time a second player aims to maximally

delay the project’s completion date by carefully choosing which tasks to

disrupt.

We develop a novel continuous time model of the game, showing that it can

be solved as an MDP. We then implement an efficient exact dynamic pro-

gramming algorithm for it and propose extensions involving implementation

uncertainty and crashing with renewable resources. In addition, we demon-

strate that approximate techniques for solving our models can alleviate the

‘the curse of dimensionality’.

Contents

Contents iii

Nomenclature vi

1 Introduction 1

1.1 Contributions . 2

1.2 Report structure . 2

2 Background 4

2.1 CPM/PERT . 4

2.2 Interdiction problems . 8

2.2.1 Stochastic network interdiction 8

2.2.2 Smuggling problems . 9

2.2.3 PERT interdiction . 9

2.3 Markov decision process . 10

2.3.1 MDP LP solution . 11

2.3.2 Dynamic programming algorithms for MDP - Policy and value

iteration . 12

3 Deterministic interdiction games 14

3.1 A framework for deterministic interdiction games 14

3.2 Project interdiction game . 17

3.2.1 Fixed decision plan for the project manager 19

3.2.2 Project interdiction with a decision plan 21

4 Interdiction games under uncertainty 25

4.1 Problem statements and assumptions . 25

4.2 The decision process . 27

iii

CONTENTS

4.3 Discrete time MDP formulation . 28

4.4 Algorithm for solving larger PERT networks 31

4.5 Software implementation challenges . 36

4.6 Robust MDP formulation and assumptions 36

4.7 Implementation uncertainty . 40

4.8 Constrained MDP formulation . 41

4.9 Other variations and extensions . 43

5 Approximate solutions 44

5.1 Basis functions . 44

5.2 Approximate policy iteration . 45

5.3 Regression methods . 45

5.3.1 Least squares . 46

5.3.2 Artficial neural networks . 47

5.3.3 Support vector regression . 48

5.3.4 SVR kernels . 49

5.4 Non-simulation based SVR . 50

6 Numerical evaluation 52

6.1 Nuclear project . 52

6.1.1 Case study data . 52

6.1.2 Data for the interdictor . 53

6.2 Implementation details . 54

6.2.1 Discussion of results . 55

6.3 Exact dynamic project interdiction evaluation 58

6.3.1 Evaluation methodology . 58

6.3.2 Preliminary examples . 59

6.3.3 Large scale PERT networks . 61

6.3.3.1 Decomposition in action 62

6.3.3.2 Performance evaluation on 300 PERT networks 62

6.3.4 Discussion of results . 66

6.3.5 Interdiction with crashing evaluation 67

6.3.6 Game with crashing evaluation 69

6.3.7 Interdiction with implementation uncertainty evaluation 69

6.3.8 Performance with extensions . 71

6.4 Approximate dynamic programming evaluation 71

iv

CONTENTS

7 Conclusion 76

7.1 Future work . 77

Appendix A 79

7.2 Phase type distribution . 79

References 81

v

Nomenclature

Roman Symbols

exp(x) Another way of expressing ex

1[P (x)] The indicator function

inf Infimum (greatest lower bound)

sup Supremum (lowest upper bound)

e Vector where every entry is 1

x ∼ exp(λ) x is exponentially distributed with intensity λ

ADP Approximate dynamic program

CPM/PERT Critical path method/ Project evaluation and review technique

LP Linear program

MDP Markov decision process

MILP Mixed integer linear program

MP A Markov process

vi

Chapter 1

Introduction

Interdiction games are quantitative methods for either analyzing vulnerabilities or find-

ing ways to disrupt computer and transportation networks Cormican et al. [1998]. They

have also been used to combat illegal drug trafficking and smuggling of radioactive ma-

terial across borders Morton et al. [2007]. In this thesis we consider a motivating

example which is the interdiction of an adversary’s project Brown et al. [2009]. It has

direct applications in crime prevention and defence. For instance, an important part

of the war on drugs is interdicting the harvesting and production of narcotics Shipani

[2010]; other examples include development of biological or nuclear weapons.

The project interdiction game is between two players. There is a manager who

schedules tasks and allocates resources to them, aiming to complete the project in the

most timely way. The other player, the interdictor, seeks to optimally undermine that

effort using his own limited resources.

Our aim is to build a dynamic model of this game that runs in continuous time and

that accounts for uncertainty. Exisiting approaches assume that the project plays out in

a known deterministic way using the PERT (project review and evaluation technique)

framework. In practice, however, projects are notorious for never going according to

plan. We can introduce uncertainty by combining the previous method, probability

theory and using techniques from the field of stochastic optimization.

One of the main challenges of this thesis is not only to propose a reasonable model

that is also amenable to analysis, but to also be able to efficiently solve non-trivial

problem instances on a computer. The latter is not always achievable because problems

involving uncertainty and sequential decision making are generally intractable and suffer

from a phenomenon that the scientist, Richard Bellman, famously called ‘the curse of

dimensionality’.

1

We also consider this thesis as an investigation into the use of exact and approximate

dynamic programming to solve problems related to PERT projects.

1.1 Contributions

• We develop a new model for interdicting a project under uncertainty with random

task durations using a Markov process representation.

• We implement an efficient and specialized dynamic programming algorithm to

solve the new model.

• We extend this new model to allow for the project manager to expedite tasks

and make interdiction success probabilistic. Also we suggest a way to solve the

problem with discounted costs.

• We investigate approximate dynamic programming methods and propose some

for solving our problem.

• We derive an MILP for solving the deterministic PERT interdiction problem with

multiple technologies and demonstrate its computational feasibility.

1.2 Report structure

Chapter 2 contains the core background. We start by giving an overview of project

management and PERT methods. Then we give a literature survey of interdiction

games. Finally we define what an MDP is and describe some approaches to solving

them.

Chapter 3 is about the derivation of a general deterministic interdiction game that

can be used on flow networks and shortest path problems. Then we show an application

to maximally delay an adversary’s project. At the end we extend it to projects where

there is a choice for the manager on how to complete some milestones.

In Chapter 4, we develop a model for playing the interdiction game in continuous

time and with random task durations. We start with the simplest version where the

project manager cannot crash tasks. Then we show that this can be solved with a

discrete-time MDP and give an efficient algorithm for doing so. The chapter is con-

cluded with various extensions including task crashing, implementation uncertainty and

discounted costs.

2

Chapter 5 covers approximate dynamic programming. We describe our choice of

approximation architecture and list some popular algorithms including a recent one.

In Chapter 6, we evaluate the methods given in Chapters 3 through to 5 using

numerical experiments and finally give our conclusion and suggestions for future work.

3

Chapter 2

Background

2.1 CPM/PERT

A project is a coordinated effort to achieve some goals. It consists of time and resource-

consuming tasks (or activities) that need to be completed. An activity is an indivisible

and non-repeatable unit of work Moder and Phillips [1964]. For example in a con-

struction project the tasks can include excavation, bricklaying or interior plumbing.

Some tasks depend on others, for example, putting up a wall requires first laying the

foundation.

Success in large, critical projects is contingent on careful planning. It is vital, for

example, to produce reliable estimates on the expected completion date of the project

(we will call this the makespan) and the probability that deadlines are met. A project

manager also needs to know when to schedule activities, which activities will delay the

project if they take longer than planned and how much delay can be tolerated. One

must decide on resource allocation and consider trade-offs between time and costs.

In the late 1950s the CPM and PERT techniques were developed independently

by Kelley and Walker [1959] and the US Navy to address these questions. These

techniques were only truly different at the time they began. Both have over time been

extended, revised and are now so similar that their names have been amalgamated into

CPM/PERT (we will use the term PERT throughout). Their techniques were notably

used for the Polaris nuclear submarine program.

PERT represents projects as a graph. There are two ways: the AOA (activity-

on-arc) or AON (activity-on-node) representation. We adopt the AON convention. A

project is represented by a directed acyclic graph G = (V,E), a network, whose vertices

V = {1, ..., n} correspond to the projects tasks and whose edges E ⊆ V ×V encode the

4

2. Background

Figure 2.1: A PERT network with 10 tasks. 1 and 12 are dummy tasks.

immediate technological precedences among the tasks. The precedence relation induces

a strict partial order ≺ on V , where u ≺ v exactly if there exists a nontrivial directed

path from u to v. Without loss of generality we assume that 1 is the unique source and n

is the unique sink node of the graph, that is, 1 ≺ u ≺ n for all u ∈ V . This can always

be enforced by appending dummy tasks to the project. We let V +(u), V −(u) ⊆ E

denote the outgoing, respectively incoming edge sets of u.

E can be divided into EFS , EFF , ESS ⊆ E and ESF ⊆ E that form a partition of

E. These relations represents finish-start, finish-finish, start-start and start-finish types

of relationships between activities.

• The most common is the finish-start relationship where (u, v) ∈ EFS iff v can only

start when u has finished. The reason for this is usually resource or technological

limitations. For example, it is impossible to cast metal without having aqcuired

a metallurgical furnace.

• A finish-finish relation between (u, v) ∈ EFF means that v can only finish after

u has finished. The meaning of start-start is similar.

• The last relationship, start-finish is rarely used. In fact, it is not encountered

5

2. Background

anywhere in the case study that we use.

There is another way to create even more elaborate precedence relationships by intro-

ducing a measure called lag. If a task can start k weeks before another finishes then we

say that it has a lag of −k weeks. Lag occurs in practice where careful coordination

can allow one task to begin prematurely before its prerequisite has completely finished.

For example if a wall is partially built, it is possbile in theory to start painting some

of it. It is equally possible to have a positive lag which means that some activity must

wait some extra time after one of its predecessors has completed.

While depicting a project as a ordinary network graph is widely accepted, some

project managers and other professionals prefer a project management specific visual

representation. In this we can see which tasks are active at which points in time. It is

called a Gantt chart.

Figure 2.2: Part of the Gantt chart for a project designed in OmniPlan. The activities
highlighted in red are part of the critical path.

The questions of earliest expected project completion time and task scheduling can

be answered simultaneously with a single algorithm. This algorithm computes the

critical path. A critical path is a sequence of activities (an 1 → . . . → n path in G)

where a delay in any one of the activities will prolong the makespan. Therefore, the

length of the critical path, that is the sum of the durations of the activities that lie on

it, equals the estimated completion date. It is possible to have more than one critical

path. The algorithm is covered in Hillier and Lieberman [1967] and we will briefly

explain it here. Let sev, s
l
v, f

e
v and f lv be the earliest start, latest start, earliest finish

6

2. Background

and latest finish times of v ∈ V . We initialize se1 = sl1 = fe1 = f l1 = 0. Then we proceed

breadth-first through G and for each v we calculate the following updating equations

sev := max
u∈V −(v)

feu (2.1)

fev := dv + sev (2.2)

where dv is the task duration. Once n is reached the makespan is sln. Then we set

f ln = sln = sen and go backwards in the same recursive fashion calculating

f lv := min
u∈V +(v)

slu (2.3)

slv := f lv − dv (2.4)

To find out the slack in an activity (the amount it may be delayed without delaying

the whole project) , we subtract slv − sev. The slack is zero iff the task is on the critical

path.

PERT is also used to compute probabilistic estimates on the time to complete a

project. These techniques are very rough and make some assumptions: Task durations

are independent random variables, they follow a Beta distribution, the project length

is Gaussian distributed and the mean critical path will be always be the critical path.

Each activity has three parameters, an optimistic duration estimate o, the pessimistic

p and the most likely m. These quantities are used to work out the mean and variance

of an activity’s duration as follows:

µ =
o+ 4m+ p

6
(2.5)

σ2 =

(
p− o

6

)2

(2.6)

The mean and the variance of the project duration is then the sum of the means and

variances of activities on the critical path. To work out the probability of the duration

being less than some deadline one can, using the assumptions given, use the Gaussian

CDF. The central limit theorem provides some justification of the Gaussian distribution

assumption if there are many activities on the critical path.

7

2. Background

2.2 Interdiction problems

An interdiction problem aims to find the optimal way to undermine an opponent as he

aims to accomplish some goals. The ones which have been of particular interest focus

on the interdiction of an opponent’s operation of a network. These problems are useful

not only in a militaristic setting against an enemy but also to find vulnerabilities in

one’s own network.

In this dissertation we focus on the interdiction of a project, which is something that

was proposed recently Brown et al. [2005, 2009] but the ones that have been studied

the most and date back to the 1960s Wollmer [1964] are those involving maximum

network flows Cormican et al. [1998]; Wood [1993] and shortest path problems Israeli

and Wood [2002]. More recently other problems have been modelled such as smuggling

and intrusion Morton et al. [2007] and the multi-commodity flow problem Lim and

Smith [2006].

2.2.1 Stochastic network interdiction

This is a variant on a deterministic problem where the objective is to minimize the

maximum flow from source s to sink t through a capacitated network by attacking edges

and thereby reducing their capacity or deleting them. In this problem the interdiction

attempts are independent binary random variables and the edge capacities may also be

random. An interdiction is a binary random variable because it may be successful or

partially successful (or completely unsuccessful).

Instead of formulating it as a straightforward large deterministic MILP, which would

have an exponential number of scenarios, Cormican and Wood found a sequential ap-

proximation algorithm which efficiently computes upper and lower bounds on the op-

timal value at each iteration. Their approach is based on iteratively splitting (which

they call refining) partitions of the support of the binary random variables. They then

condition the expectation of the second stage problem on each of the subspaces from

the partition. Because the second stage recourse problem is a concave function, they

used Jensen’s inequality for the upper bound. The tricky part was to find a lower

bound. They managed this by reformulating the recourse problem by moving the term

with the first stage interdiction variables to the objective and thus obtain an equiva-

lent convex minimization problem. The minimization subproblem is itself solved using

Benders decomposition as there may be a large number of scenarios. The solution

to the minimization lower bound problem is then used to compute the upper bound.

Afterwards the partition is refined and the steps repeated until the difference between

8

2. Background

the lower and upper bounds is sufficiently small.

The worst case complexity of their algorithm is exponential because in the worst

case, the entire space of interdiction successes/failures would need to be enumerated.

However empirically they demonstrated that the partition set does not grow too large

before a good enough approximation is reached.

Cormican and Wood were also able to extend this approach to problems where

multiple interdictions were possible and the capacities were discrete random variables.

2.2.2 Smuggling problems

The smuggling model was described by Morton et al. [2007]. It is another example of a

two stage stochastic interdiction game. In this one, the interdictor wants to minimize

the probability that a smuggler gets from s to t in a transportation network without

getting caught. He does so by installing sensors on certain edges so that there is a lower

probability of the smuggler traversing each of them successfully. It is stochastic because

the s and t nodes are given by a probability mass function over a set of scenarios. The

interdictor can install a limited number of such sensors and only on a strict subset of

the edges of the network. A simplified version of the problem considers a bipartite

network where the edges from one partition to the other can represent border crossings

of a country. It is only on these border crossings that sensors may be placed.

Morton et al. had also formulated a version of the problem where the interdictor

and proliferator had different perceptions of the network. They agreed on the topologies

but might have different views of the probability of crossing an edge undetected. The

smuggler may also not be aware of the interdictor’s exact sensor placements. They

solved the easier problem as a direct large scale deterministic MILP. The second problem

was harder and they used a custom branch and bound algorithm.

2.2.3 PERT interdiction

Brown et al. [2009] propose a Benders decomposition style algorithm to solve the PERT

interdiction problem that we examine later. The algorithm alternates between an upper

bound given by the master problem and a lower bound from a subproblem. To ensure

convergence they add cuts to bound the maximum project time for a given proliferator’s

interdiction and expediting plan. They also overcome an issue where the interdiction

plans might repeat themselves and force the proliferator to use a certain decision plan

by introducing what they call SECs (solution elimination constraints).

The algorithm iteratively solves many MILPs and while it is guaranteed to converge

9

2. Background

there is a maximum number of iterations that can be specified if ε optimality is not

reached by then.

2.3 Markov decision process

The Markov decision process (MDP) Bellman [1957]; Puterman [1994] is a model for

solving sequential decision making under uncertainty problems. It is an extension of a

Markov Chain where transitions probabilities are determined through actions taken by

a decision maker. Built in are rewards (or costs) to motivate the agent influencing the

process. A Markov decision problem can then be stated as the optimization of some

objective criterion such as the average or total reward accumlated over a time horizon

by the agent. MDPs are an attractive tool because of their versatility. Unfortunately

their practical use has been limited due to their exponential complexity (one of the

main challenges of this project).

The MDP is a 4-tuple. 〈Ω,A, p.(., .), r.(.)〉 where Ω is the state/sample space, A the

action space, pa(x, y) the transition probability function and ra(x) the reward function.

The set of actions admissable in x is written as Ax.

A function π : Ω → A is called a policy and is used to direct the agent on which

action to take in a given state. pa(x, y) and ra(x) are then functions of the chosen

action a. We sometimes write rπ(x) and pπ(x, y) which are shorthands for rπ(x)(x) and

pπ(x)(x, y). In general π can be defined as π : Ω×A→ [0, 1], the probability of taking

an action in a state. The latter type of policies are called randomized. An MDP is

called stationary if its transitions and rewards are time and history independent. The

MDPs encountered in this report are all either stationary or randomized stationary.

The final parameter of an MDP model is the time horizon H which is how long the

process runs for. If infinite, the rewards are usually discounted by a factor γ ∈ (0, 1)

which prevents unbounded objective values (as we see next).

The MDP problem is usually

maximize
π∈Π

Eπ
(

H∑
t=0

γtrπ(xt) | x0 ∼ p0

)
(2.7)

where Π is a space of admissable policies, Eπ is the expectation conditioned on the

Markov Chain generated by π, xt is the random state at time t and p0 is the probability

distribution of starting states.

10

2. Background

Figure 2.3: Markov decision process. Colors represent actions. Lines of the same color
denote transitions that result from choosing the action of that color

s1

s2 s3

p1
p3

p2

p4

p4

p5

p6

p7

p8
p9

p10

It can be shown that (2.7) is solved with the following equations for every state

V (x) = max
a∈Ax

{
ra(x) + γ

∑
y∈

pa(x, y)V (y)

}
(2.8)

Where V (x) can be thought of as the expected value of being in state x. Sometimes

we use costs instead of rewards; the ’negative’ of ra(x) becomes ga(x) and the value is

called the cost-to-go, written as J(x). The value for a fixed policy is denoted V π(x).

Using V (.), the optimal stationary policy is found from:

π∗(s) = argmax
a∈Ax

{
ra(x) + γ

∑
y∈

pa(x, y)V (y)

}
(2.9)

2.3.1 MDP LP solution

(2.8) can be solved as an LP:

minimize
v

∑
x∈Ω

vx

subject to vx ≥ ra(x) + γ
∑
y∈Ω

pa(x, y)vy x ∈ Ω, a ∈ Ax
(2.10)

At optimality, a subset of the constraints will be satisfied as equalities - those corre-

sponding to optimal actions. Once the optimal solution v∗ is found, the policy can be

extracted from (2.9) where entries of v give the expected total cost function for each

11

2. Background

state. The dual LP below will be used later

maximize
θ

∑
x∈Ω

∑
a∈Ax

ra(x)θxa

subject to
∑
a∈Ax

θxa − γ
∑
y∈Ω

∑
a∈Ay

pa(x, y)θya = p0(x) ∀x ∈ Ω

θ ≥ 0

(2.11)

where p0(.) is the probability mass function of the starting state. With it we can

add constraints based on costs of performing actions. The variables θxa also give us a

measure of the expected fraction of time spent performing a in x. So a policy can be

calculated from

π∗(x, a) =
θ∗xa∑
b∈Ax θ

∗
xb

(2.12)

where π∗(x, a) is the probability of choosing action a in x. In the absense of additional

constraints on (2.11) the value of π∗(x, a) = 1 or 0 for all x and a which means that

the policy is deterministic.

2.3.2 Dynamic programming algorithms for MDP - Policy and value

iteration

Dynamic programming (DP) is a type of algorithm that solves a problem having optimal

substructure and overlapping subproblems. Optimal substructure exists when the whole

problem can be solved by dividing it into smaller sub-problems, that have the same

structure, and solving those sub-problems recursively. This is true for MDPs and can

be seen from (2.8). A problem is said to have overlapping subproblems if it is possible

that at least two sub-problems have some dependencies in common (dependencies in

terms of solutions to other sub-problems). The idea of DP is to store every solution

to a sub-problem so that they need not be recomputed if needed again. In the case of

MDPs, the dynamic programming algorithms store V (x). Notice that the algorithm to

get the critical path of a PERT network, described in section 2.1, is precisely a dynamic

programming algorithm.

Policy iteration starts with an some initial candidate policy π0. It then iteratively

improves the policy until convergence. Improvement is done by calculting the value

function under the current policy and then obtain a new policy using (2.8). Because

the last equation can be shown to be a contraction mapping the algorithm terminates.

Value iteration is another algorithm. It works by iterating through all states and

updating their expected values V (x) using (2.8). It then repeats this step until V

12

2. Background

converges to V ∗. The optimal policy is then computed from (2.9) and V ∗.

Algorithm 1: Value iteration

Input: MDP M = 〈Ω,A, p.(., .), r.(.)〉
Output: Value function V (x)
repeat

V := V ′

foreach x ∈ Ω do
V ′(x) := maxa∈Ax{ra(x) + γ

∑
y∈Ω pa(x, y)V (y)}

end

until ||V − V ′|| ≤ ε
return V

Algorithm 2: Policy iteration

Input: MDP M = 〈Ω,A, p.(., .), r.(.)〉, Initial candidate π0

Output: Optimal policy π∗

π′ := π0

repeat
π := π′

Solve the following system of equations for V π :
V π(x) = rπ(x) + γ

∑
y∈Ω pπ(x, y)V π(y), x ∈ Ω

foreach x ∈ Ω do
π′(x) := argmaxa∈Ax{ra(x) + γ

∑
y∈Ω pa(x, y)V π(y)}

end

until π′ = π
return π

13

Chapter 3

Deterministic interdiction games

In this chapter we state the general deterministic interdiction game. Then we show

that it can be solved as a MILP. We demonstrate an application of the framework for

deciding on a strategy to maximally delay a project. Currently, it is solved with an

iterative decomposition algorithm which is slow to converge. We show how to solve

this problem directly and exactly.

3.1 A framework for deterministic interdiction games

We formulate a certain type of interdiction game as a tractable optimization problem

with binary decision variables for the interdictor. There are situations where it is

possible use binary variables for the follower as we will see later on.

In the following derivation, we treat the problem as a Stackelberg game which occurs

in two steps. The leader (interdictor) makes a decision and the follower responds to it.

We solve the problem:

sup
x∈X

inf
y∈∆(x)

f(x, y) (3.1)

where

X = {x = (xB, xC) ∈ {0, 1}nb × Rnc | Ax ≤ b} (3.2)

for some coefficient matrix A ∈ Rm×(nc+nb) and b ∈ Rm. The follower’s feasible set is

a polytope parameterized by xB and is represented as

∆(x) =
{
y ∈ Rn+

∣∣∣ x>BGiy + b>i y ≥ h>i xB + vi for i = 1, ..., p
}

(3.3)

Where Gi ∈ RnB×n, bi ∈ Rn, hi ∈ RnB for i = 1, ..., p. The hi are rows of H ∈ Rp×nB ;

14

3. Deterministic interdiction games

columns of H are denoted as hi.

The follower’s objective function f : {0, 1}nb × Rnc × R+
n → R is defined as.

f(x, y) = c>x+ x>Dy + d>y (3.4)

(3.1) is equivalent to

sup
x∈X
{τ ∈ Rn | τ ≤ f(x, y), ∀y ∈ ∆(x)} (3.5)

(3.5) is a semi-infinite problem Lopez and Still [2011] because it has a finite number

of variables but an infinite number of constraints. An equivalent problem with a finite

set of constraints is found by making τ ≤ f(x, y) hold for the worst possible choice of

y, namely, the minimization of f with respect to it Bertsimas and Sim [2002].

sup
x∈X

{
τ ∈ Rn

∣∣∣∣ τ ≤ inf
y∈∆(x)

f(x, y)

}
(3.6)

We then substitute in the dual problem of the minimization term.

sup
x∈X,z∈Φ(x)

{τ ∈ Rn | τ ≤ g(x, z)} (3.7)

Where g is the dual objective and Φ(x), the dual feasible set. We can expand the

second stage problem from (3.1) to obtain.

inf
y∈Rn+

{
x>Dy + d>y | x>BGiy + b>i y ≥ h>i xB + vi, for i = 1, .., p

}
(3.8)

Note that the c>x term is constant with respect to y so we have dropped it for now. We

can get the same optimal objective value later by adding it back. Since this problem

is parameterized by x, it is linear in y. Therefore, we find the dual LP directly.

sup
u∈Rp+

{
u>H>xB + u>v | u>G>i xB + u>bi ≤ (di)>x+ di, for i = 1, .., n

}
(3.9)

However, it is not possible to substitute (3.9) into (3.6) directly because there are

bilinear terms in u and xB in both the constraint and objective. Doing so will give

non-convex constraints.

First, we simplify the problem. It is possible to convert the objective into a con-

straint by changing the problem into one with an additional variable and constraint.

15

3. Deterministic interdiction games

For this reason we will, replace the objective with some linear function f>u where f is

a constant.

sup
u∈Rp+

{
f>u | u>G>i xB + u>bi ≤ (di)>x+ di, for i = 1, .., n

}
(3.10)

Here is a formulation of the problem using p + n × nB = O(n2) variables and

n× (nB + 1) = O(n2) constraints. In this, let α+ = (α+
1 , . . . , α

+
n), α− = (α−1 , . . . , α

−
n) ∈

RnB×n+ . Also we define G+
i := (max{gijk, 0})jk and likewise G−i := (min{gijk, 0})jk.

That is, G+
i , G

−
i are the non-negative, respectively non-positive elements of Gi. One

can check that G+ +G− = Gi. The following is an LP and when substituted back into

the original problem (3.6) is a MILP. I will prove its equivalence to (3.10).

maximize
u∈Rp+

f>u (P2)

subject to e>
(
α+
i − α

−
i

)
+ u>bi ≤ (di)>x+ di i = 1, ..., n

α+
i ≥ G

+
i u−M(e− xB) i = 1, ..., n

α−k ≤MxB i = 1, ..., n

α−i ≤ −G
−
i u i = 1, ..., n

α+, α− ∈ RnB×n+

Proposition 1. (3.10) and P2 are equivalent.

Proof. We show that their feasible sets are equal. Suppose (u, α+, α−) is a FS in P2, I

show that the constraints in (3.10) of the form u>G>i xB + u>bi ≤ (di)>x+ di are true

for any i. For any k and i α+
ik ≥ xk(G

+
i u)k and α−ik ≤ −(G−i u)kxk. Using this it follows

that:

u>G>i xB + u>bi =

nB∑
i=1

xk((G
+
i +G−i)u)k + u>bi

=

nB∑
k=1

xk(G
+
i u)k +

nB∑
k=1

xk(G
−
i u)k + u>bi

≤
nB∑
k=1

α+
ik +

nB∑
k=1

(−α−ik) + u>bi

= e>α+
i − e

>α−i + u>bi

≤ (di)>x+ di

16

3. Deterministic interdiction games

Conversely suppose that u is a FS in (3.10). We see that for any i, there exist α+
i , α

−
i ∈

RnB+ such that, (1) e>α+
i − e>α

−
i + u>bi ≤ (di)>x+ di and (2), α+

i ≥ Giu−M(e− x)

and (3), α−i ≤ min{MxB,−G−i u}. Let’s make α+
ik = xk(G

+
i u)k and α−ik = −xk(G−i u)k.

To check (2) we see that α+
ik = xk(G

+
i u)k ≥ (Giu)k −M(1−xk). Statement (3) can be

verified by by checking the two cases cases xk = 0 and xk = 1. To prove (1):

e>
(
α+
i − α

−
i

)
+ u>bi =

nB∑
k=1

α+
ik +

nB∑
k=1

(−α−ik) + u>bi

=

nB∑
k=1

xk(G
+
i u)k +

nB∑
k=1

xk(G
−
i u)k + u>bi

=

nB∑
k=1

xk(Giu)k + u>bi

≤ (di)>x+ di

The objective functions are identical in both problems and therefore, because the fea-

sible sets for u are equal (as shown), the optimal solutions and objective values are

too.

Now we can state the final MILP by making x a decision variable and adding back

the c>x term to the objective function.

(3.6).

maximize
x∈X,u∈Rp+

c>x+ f>u (P2)

subject to e>
(
α+
i − α

−
i

)
+ u>bi ≤ (di)>x+ di i = 1, ..., n

α+
i ≥ G

+
i u−M(e− xB) i = 1, ..., n

α−k ≤MxB i = 1, ..., n

α−i ≤ −G
−
i u i = 1, ..., n

α+, α− ∈ RnB×n+

3.2 Project interdiction game

In this section we will derive the MILP to optimally delay an adversary’s project based

on a model by Brown et al. [2009]. We use the project representation from Chapter 2.

In this game, a project is planned by two players. The follower schedules the start

times of tasks sv and also allocates resources to minimize the project’s makespan.

17

3. Deterministic interdiction games

The second player chooses which tasks to delay to do the opposite i.e. maximize the

makespan.

For each task we associate a duration dv and make d1 = dn = 0. There are a set R

of non-renewable types of resources. Each activity needs cvr units of resource r. Tasks

may be completed faster i.e. in less time than dv by crashing them (allocating extra

resources to them). There is a separate cost, avr, for expediting tasks. The follower’s

decision variables are (sv)v∈V the start times, (ev)v∈V the crashing amounts for each

task and his budget for each resource r ∈ R is br.

The interdictor is faced with costs of delaying a task hvr′ in terms of interdiction

resource r′ ∈ R′. Interdicting a task delays it by an amount δv. For every interdiction

resource r′ there is a budget br′ and the follower’s decision variables are xv for either

yes=1/no=0 decisions on delaying that task.

Table 3.1: Data for the interdiction problem Brown et al.

[2009]

Symbol Explanation

V The set of tasks

1, n Artificial start and end vertices

E Precedence relation

R Non-renewable proliferator resources (e.g. monetary, physical etc).

R′ Non-renewable interdictor resources (e.g. diplomatic)

dv The nominal duration of task v in weeks

di The minimum expedited duration of i in weeks

f ′uv Equal to 1 if (u, v) ∈ EFF ∪ EFS and 0 otherwise

f ′′uv Equal to 1 if (i, j) ∈ EFF ∪ ESF and 0 otherwise

cvr Units of r ∈ R required to complete i with r

avr Per-week cost to expedite i with additional units of r

luv Constant lag or lead times between pairs of tasks

δi Delay from interdicting i

hvr′ Interdiction cost in r′-dollars

br Proliferator’s budget for resource r

br′ Interdictor’s budget for resource r′

18

3. Deterministic interdiction games

Table 3.2: Decision variables from Brown et al. [2009]

Symbol Explanation

sv The earlist start time of v

ev Amount v is expedited in weeks

xv 1 if v is interdicted, 0 otherwise

θv 1 if v is completed, 0 otherwise 1

3.2.1 Fixed decision plan for the project manager

To derive the formulation, we first consider a simpler sub-problem. Assume there is

one technology. Consider the second stage problem. At this point the leader has made

a choice of which tasks to interdict, which the follower has complete knowledge of. So

xv are constant and the vectors of earliest start times s and expediting amounts e are

decision variables.

minimize sn (PMIN)

subject to sv − su + f ′uveu − f ′′uvev ≥ f ′uv (du + δuxu) (u, v) ∈ E

− f ′′uv(dv + δuxu) + luv

eu ≤ du − du u ∈ V∑
u∈V

cur +
∑
u∈V

aureu ≤ br r ∈ R

s ≥ 0, e ≥ 0

The first constraint ensures that no task can start before all of its predecessors’ finish

times. The second constraint places an upper limit on how much each task can be

expedited and the third is a budget constraint. PMIN is a linear program and its dual

1θv is assumed to always be 1 for now

19

3. Deterministic interdiction games

is shown below.

maximize
∑

(u,v)∈E

yuv
(
f ′uv (du + δuxu)− f ′′uv(dv + δvxv) + luv

)
(LONP)

−
∑
u∈V

zu(du − du)−
∑
r∈R

wr

(
br −

∑
u∈V

cur

)

subject to
∑

v∈V −(u)

yvu −
∑

v∈S(u)

yuv ≤


1 if u = 1

−1 if u = n

0 otherwise

u ∈ V

∑
v∈V +(u)

f ′uvyuv −
∑

v∈V −(u)

f ′′uvyvu

−
∑
r∈R

aurwr − zu ≤ 0 u ∈ V

y ≥ 0, z ≥ 0, w ≥ 0

Note how the dual is a longest path problem where yuv > 0 if edge (u, v) is in the path

and 0 otherwise. The first constraint enforces conservation in a flow network where

the capacity of each edge is 1. The dual variables y correspond to the prececedence

constraint of each edge, v the expediting limit constraints of the primal problem and

w, the resource constraints. For the reasons given we call this LONP (longest path).

Using the dual problem (3.2.1) and the linearization technique shown earlier, we

20

3. Deterministic interdiction games

find that the single-technology project interdiction game can be solved with this MILP

maximize τ (FPINT)

subject to τ ≤
∑

(u,v)∈E

yuv(f
′
uvdu − f ′′uvdv + luv)

−
∑
u∈V

zv(du − du)−
∑
r∈R

wrbr +
∑
u∈V

(α+
u − α−u)

∑
v∈V −(u)

yvu −
∑

v∈V +(u)

yuv ≤


1 if u = 1

−1 if u = n

0 otherwise

u ∈ V

∑
v∈V +(u)

f ′uvyuv −
∑

v∈V −(u)

f ′′uvyvu

−
∑
r∈R

aurwr − zu ≤ 0 u ∈ V

α+
u ≤ δu

∑
v∈V +(u)

f ′uvyuv u ∈ V

α+
u ≤Mxu u ∈ V

α−u ≥ δu

 ∑
j∈V −(u)

f ′′vuyvu

−M(1− xu) u ∈ V

∑
u∈V

hur′xu ≤ br′ r′ ∈ R′

y ≥ 0, z ≥ 0, w ≥ 0, α+ ≥ 0, α− ≥ 0, x ∈ {0, 1}n

3.2.2 Project interdiction with a decision plan

Now we consider an extension to a decision PERT network Moder and Phillips [1964].

This is a representation of a project that allows for alternative ways of completing it.

Essentially, the project is broken down into milestones. Between these milestones are

choices of which tasks to finish in order to reach the next milestone. For example, in

the nuclear proliferation case study there are different competing uranium enrichment

technologies (where enrichment is treated as a milestone or sub-project).

We use the notation from Brown et al. [2009]. Let D ⊂ V be the set of decision

vertices and Pd the set of technology choices associated with decision vertex d ∈ D.

Tasks are partioned into sets Vp for p ∈ Pd and V0 := V \
⋃
d∈D,p∈Pd Vp, so that(⋃

d∈D,p∈Pd Vp

)
∪V0 = V and for every d and p, q ∈ Pd, p 6= q Vp ∩Vq = ∅. The project

21

3. Deterministic interdiction games

Figure 3.1: An example of a decision PERT network from Harney et al. [2006]. The
triangular node represents the milestone or decision task. The project manager can
choose between executing 7 or 8 while the remaining tasks are mandatory.

management decision problem from Brown et al. is

minimize sn (DPMIN)

subject to sv − su + f ′uveu − f ′′uvev ≥ f ′uv (du + δuxu) (u, v) ∈ E

− f ′′(dv + δvxv) + luv −M(1− θu)

eu ≤ du − du u ∈ V∑
u∈V

curyu +
∑
u∈V

aureu ≤ br r ∈ R

θu = 1 u ∈ V0

θu ≤ yv v ∈ V +(u), u ∈ Vp
θd =

∑
v∈V +(u)

θv d ∈ D

s ≥ 0, e ≥ 0, y ∈ {0, 1}n, θ ∈ {0, 1}n

We introduced binary variables θ. When θu = 0 the task is not completed and the

first constraint is relaxed, since this vertex is effectively eliminated. The other new

constraints enforce that exactly one successor of decision vertex d ∈ D is chosen, that

once that successor is chosen, all its successors must be completed and finally all other

tasks not associated with any technology are compulsory. DPMIN , unlike PMIN, is a

0-1 problem and it cannot be dualized in the same way. It is possible to relax DPMIN

to an LP but this produces infeasible solutions and a very wide lower bound on the

22

3. Deterministic interdiction games

optimum for the proliferator. This therefore, when incorporated into the interdiction

game gives overly conservative solutions for the interdictor.

Instead we exploit the nature of this specific problem. There are
∏
d∈D |V +(d)|

possible values for θ (which is the number of different combinations of technologies)

and in the case study from Harney et al. Harney et al. [2006] there are just 3.

Definition 1. For any θ ∈ {0, 1}n, we define Gθ = (Vθ, Eθ) as a subgraph of G where

Vθ := {u ∈ V | θu = 1} and Eθ := { (u, v) ∈ E| θu = θv = 1}. The successors of u ∈ Vθ
are denoted V +

θ (u) and similarly the predecessors as V −θ (u).

Proposition 1. The following problem (called DLONP)

min
θ∈Θ

gx(θ) (3.11)

is equivalent to DPMIN where gx(θ) is the optimal solution to LONP with G = Gθ.

Proof. Let v(P,G) be the optimal objective function value of problem P on a project

network graph G and likewise F (P,G) be its feasible set. Let p∗ := v(DPMIN,G)

and θ∗ be the optimal value. Then p∗ = v(PMIN,Gθ∗) = v(LONP,Gθ∗) since PMIN

is the problem for a fixed decision plan and strong duality holds between PMIN and

LONP. Also by definition, v(LONP,Gθ∗) = gx(θ∗). Suppose that gx(θ∗) is not optimal

for DLONP. Then there exists θ′ for which gx(θ′) < gx(θ∗) and therefore gx(θ′) =

v(LONP,Gθ′) = v(PMIN,Gθ′) = s′n for some (s′, e′, θ′) ∈ F (DPMIN,G) and s′n <

v(DPMIN,G).

Finally, to solve the interdiction problem, we require

sup
x∈X

inf
θ∈Θ

gx(θ) = sup
x∈X
{τ | τ ≤ gx(θ) θ ∈ Θ}

23

3. Deterministic interdiction games

This translates to the following MILP:

maximize τ (DPINT)

subject to τ ≤
∑

(u,v)∈Eθ

yθuv(f
′
uvdu − f ′′uvdv + luv)

−
∑
u∈Vθ

vθu(du − du)−
∑
r∈R

wθr

br −∑
v∈Vθ

cur


+
∑
u∈Vθ

(α+
θu − α

−
θu) θ ∈ Θ

∑
v∈V −θ (u)

yθvu −
∑

v∈V +
θ (u)

yθuv ≤


1 if u = 1

−1 if u = n

0 otherwise

u ∈ Vθ, θ ∈ Θ

∑
v∈V +

θ (u)

f ′uvuθuv −
∑

v∈V −θ (u)

f ′′uvuyji

−
∑
r∈R

aurwθr − zθu ≤ 0 u ∈ Vθ, θ ∈ Θ

α+
θu ≤ δu

∑
v∈V −θ (u)

f ′uvuθuv u ∈ Vθ, θ ∈ Θ

α+
θu ≤Mxu u ∈ Vθ, θ ∈ Θ

α−θu ≥ δu
∑

v∈V −θ (u)

f ′′vuyθvu −M(1− xu) u ∈ Vθ, θ ∈ Θ

∑
u∈V

hur′xu ≤ br′ r′ ∈ R′

yθ ≥ 0, zθ ≥ 0, wθ ≥ 0, α+
θ ≥ 0, α−θ ≥ 0 θ ∈ Θ

x ∈ {0, 1}n

Remark 1. Compared to FPINT, DPINT has at most |Θ| times the number of con-

straints and variables and |Θ| =
∏
d∈D |V +(d)| . In practice however |Θ| may be quite

small which makes this tractable. FPINT itself has O(n) constraints and O(n2) vari-

ables.

24

Chapter 4

Interdiction games under

uncertainty

In the last chapter we analyzed a project interdiction game where it was assumed that

tasks have a fixed duration that are determined by decisions here and now. In real life

this is not true in general.

Now we formulate a problem where task durations are random and decisions to

interdict are made over time. The goal is to find an optimal policy for which tasks to

delay in different states of the project. This differs from DPINT, where a plan was

computed for both sides before the project began. Instead of attempting to convert

DPINT in its entirety, we first simplify it so that there is no crashing and only one

technology. We also crucially assume that task processing times are independent and

memoryless. The following example shows that the timing of interdictions is important

and is something that our new model will take into account unlike the nominal one.

Example 1. Consider the PERT network in Figure 4.1 and suppose the interdictor can

only delay one task. The optimal choice according to DPINT would be to interdict 3

now. However because the durations are memoryless and independent, it would actually

be better to wait until the one of them finishes and only delay whichever is left. So it

could instead be that activity 2 is optimal to interdict (if 3 completes before it).

4.1 Problem statements and assumptions

The input to our game is a directed acyclic graph G = (V,E) and an integer interdiction

budget b ≥ 0, as before. We are also given n dimensional vectors µ and ν. For each task

v ∈ V , µv is its duration’s exponential distribution parameter (or rate) under normal

25

4. Interdiction under uncertainty

Figure 4.1: PERT network with 2 activities.

1

2

3

4

Task Normal Delayed

2 40 58
3 45 60

Table 4.1: Data for the PERT network in Figure 4.1. Each entry in the table is the
mean task duration.

conditions and νv ≤ µv is its rate when delayed. The game plays out in continuous time

and the project is managed under an early start policy. This means that every task is

initiated as soon as all its predecessors complete. At any instant the interdictor must

choose which tasks he will delay. Delaying each task has an integer non-discounted cost

cv ≥ 0 associated with it. Let H be the set of tasks that have been delayed during

the game. It is required that
∑

v∈H cv ≤ b. The interdictor’s goal is to maximize the

expected time until the finish task can begin (i.e. the project is complete).

We also make the following additional assumptions.:

• All activity durations are mutually independent and exponentially distributed.

• An interdiction attempt on a task can only be made when that task is in progress.

• If an interdiction is performed on a task v ∈ V , its residual processing time is

then exponentially distributed with intensity νv

• An interdiction can be done at most once on task.

The first assumptions allows our model to enjoy the memoryless property; making it

possible for us to solve the problem analytically. The second assumption is reasonable

since we consider every task in a project to be an indivisible unit of work. If there

is some interdiction on a task that can be performed earlier than that task begins we

26

4. Interdiction under uncertainty

assume that it works by delaying some prerequisite activities and refine our model by

introducing them into the network. The last assumption is equivalent to stating that

there are two modes of execution for any task - a normal and delayed one and it is only

possible to switch from the former to the latter. This also simplifies the problem but

is possible to generalize.

4.2 The decision process

We are going to base our model on the Markov process by Kulkarni and Adlakha [1986]

which they describe it in terms of activity-on-arc networks. However, like in Creemers

et al. [2010]; Sobel et al. [2009], we adopt the activity on node convention.

At any time t ≥ 0, a task can either be idle , that is not yet started, active, in other

words processing, or finished. As we are working with interdiction games, we allow for a

task that is active to also be normally active or delayed active (or simply delayed). We

encode the state of the interdiction game as a tuple x = (Ix, Nx, Dx, Fx, bx). Where the

integer bx ∈ {0, . . . , n} is the remaining budget, Ix, Nx, Dx, Fx are the sets of idle, active,

delayed and finished tasks that form a an exhaustive partition of V . For convenience

we define Lx = Nx ∪Dx as the set of all tasks in progress. We sometimes write xt as

the state at time t.

The starting state of the game is x0 = (V \{1}, {1}, ∅, ∅, b). That is one in which only

the source node 1 is active, the remainder idle and b is the initial budget. Conversely,

any state with Fx = Vx\{n} or Fx = Vx is a terminal state.

Definition 1. A state x is said to be admissable if it satifies the causality property,

that is

u ∈ Lx =⇒ v ∈ Fx ,∀v ≺ u (4.1)

and additionally

b− bx ≥ |Dx| (4.2)

We can now define Ω as the space of all admissable states and Ω∞ ⊂ Ω as the set of

terminal states. Note that because the project manager follows the earliest start rule,

the states which are visited satisfy an additional property

v ∈ Fx , ∀v ≺ u =⇒ u ∈ Lx ∪ Fx (4.3)

From our definition of a state, we find that |Ω| ≤ 4nb. But because of the constraints

(4.1), (4.2) and (4.3) it is usually that |Ω| � 4nb.

27

4. Interdiction under uncertainty

In our game we allow the interdictor at any time to perform actions a ∈ A where

A ⊆ 2V is the action space. These are choices of which tasks to delay in each state. An

action a is feasible in x iff a ⊆ Nx and |a| ≤ bx. We refer to a = ∅ as the null action

which is always feasible. The set of all feasible actions is Ax.

State transitions are defined in the following way. Let x ∈ Ω be the current state

at time t ≥ 0 and a ∈ Ax the action taken. We have an immediate post-decision state

y = y0
xa. As soon as some task v ∈ Lx completes (the exogenous information), we call

the successor state y = yvxa. In the remainder of this report we will assume w.l.o.g that

each interdicting any task has a cost of 1.

Definition 2. Ex(v) is the eligible set. That is, the set of activities that can start if

the current state is x and activity v has finished.

Ex(v) = {u ∈ Ix | w ≺ u⇒ w ∈ Fx ∪ {v}}

Successor state y = yvxa y = y0
xa

Interdiction budget by = bx by = bx − |a|
Idle tasks Iy = Ix\Ex(v) Iy = Ix
Normal active Ny = (Nx\{v}) ∪ Ex(v) Ny = Nx\a
Delayed active Dy = Dx\{v} Dy = Dx ∪ a
Finished Fy = Fx ∪ {v} Fy = Fx

Table 4.2: This table shows how to construct the post-exogenous-information and post-
decision states.

4.3 Discrete time MDP formulation

We can find an optimal policy to the above continuous time problem by using a discrete

time finite horizon MDP. Assume for now that the interdictor can only make decisions

on which tasks to delay to delay at time t = 0 or t = cv where cv is the completion

time of a task v ∈ V (A1). This is equivalent to requiring that any action at any time

other than t = 0 or t = cv is ∅. Later we show that adding this restriction does not

make the solution any less optimal thanks to the memoryless property.

First we define qy|xa to be the rate of the activity whose completion causes a tran-

28

4. Interdiction under uncertainty

Figure 4.2: Graph of Example 1’s continuous time MDP where the budget is 1. The
vertices are states and are labeled with the current budget and the set of non-dummy
and non-idle activities. a′ means that task a is finished while a∗ means it is delayed
active. A transition to a post-decision state is labeled with the action and a transition
to a post-exogenous -information state is labeled with its rate.

1, {2, 3}start

0, {2, 3∗}

0, {2∗, 3}

0, {2′, 3∗}

0, {2∗, 3′}

0, {2′, 3}

0, {4} 1, {4}

0, {2, 3′}

1, {2, 3′}

1, {2′, 3}

{3}

{2}

µ2

µ3

µ3

ν3

µ2

ν2

µ3

µ2

ν3

ν2

{2}
µ2

{3} µ3

29

4. Interdiction under uncertainty

sition x→ y under action a under assumption (A1). That is

qy|xa :=


µv if y = yvza, z = y0

xa, v /∈ Dz

νv if y = yvza, z = y0
xa, v ∈ Dz

0 otherwise

(4.4)

Theorem 1. Let π∗ : Ω→ A be the optimal policy for the DTMDP 〈Ω,A, p.(., .), r.(.)〉
where Ω, A are the original state and action spaces respectively and r.(.), p.(., .) are

defined as:

ra(x) :=

∑
y∈Ω

qy|xa

−1

and

pa(x, y) := qy|xara(x)

Taking action π∗(xt) at time t = 0 or t = cv maximizes the expected project makespan

under assumption (A1).

Furthermore, π∗ can be computed from the Bellman equations

π∗(x) = argmax
a∈Ax

ra(x) +
∑
y∈Ω

pa(x, y)V (y)

 x ∈ Ω\Ω∞ (4.5)

π∗(x) = ∅ x ∈ Ω∞ (4.6)

where

V (x) = max
a∈Ax

ra(x) +
∑
y∈Ω

pa(x, y)V (y)

 x ∈ Ω\Ω∞ (4.7)

V (x) = 0 x ∈ Ω∞ (4.8)

Proof. We can use an inductive argument as the MDP is transient. Assume x ∈ Ω∞

then V (x) = 0 as required since there is nothing left to process. Let x /∈ Ω∞, a be a

an action and cv for v ∈ Lx be the random completion times. The post-decision state

is immediately z = y0
xa. The expected time spent in z is then

E
(

min
v∈Lz
{cv}

)
=
∑
v∈Ω

qy|xa = ra(x)

30

4. Interdiction under uncertainty

since Az = {∅} and using the property of exponential distributions. The expected time

after transitioning out of z, assuming inductively that V (y) is the expected time from

the next state y is then

E(V (y)) =
∑
v∈Lz

Pr

(
cv = min

u∈Lz
{cu}

)
V (yvza) =

∑
y∈Ω

(
qy|xa∑
z∈Ω qz|xa

)
︸ ︷︷ ︸

pa(x,y)

V (y)

Adding the above two expressions gives the expected project makespan under a and

maximizing over the actions Ax yields (4.5).

Proposition 1. The interdictor’s policy is no less optimal under restriction (A1) than

it would be if decisions could be made at any time.

Proof. Let xt be the game’s state at t and the optimal action be a∗. Let s > t be

a time before the next transition and xs be the post-decision state at time s then

Nxs = Nxt\a∗, Fxs = Fxt , Ixs = Ixt and Dxs = Dxt ∪ a∗ by definition. For any action

as ∈ Axs we can find an action at ∈ Axt such that V as(xs) = V at(xt). More precisely

at = as∪a∗ which follows from the memoryless property of activity durations and (4.5).

It must also be that as ∩ a∗ = ∅ because the tasks in a∗ would no longer be available

to delay and therefore as = at\a∗. We find that for any b ∈ Axs that

V ∅(xs) = V a∗(xt) ≥ V a∗∪b(xt) = V b(xs)

and therefore ∅ ∈ argmaxa∈Axs{V
a(xs)}. The implication of this is that the optimal

action in any intermediary state xs is the null action and therefore we only need search

for optimal policies with (A1).

4.4 Algorithm for solving larger PERT networks

We have shown a discrete time formulation for solving a dynamic interdiction game

that is optimal in the continuous setting. Unfortunately using standard algorithms

that solve the MDP exactly such as policy, value iteration or linear programming is

computationally infeasible for even medium sized PERT networks (with 30 activities

or more). We instead use a specialized dynamic programming algorithm proposed by

Creemers et al. [2010] and adapt it to our problem. The algorithm addresses a major

computational bottleneck which is the need to store the state and decision space in

memory. With this algorithm we can solve for medium sized PERT networks exactly.

31

4. Interdiction under uncertainty

A key ingredient in the development of our algorithm is a characteristic set which

Creemers et al. [2010]; Kulkarni and Adlakha [1986] refer to as a UDC (uniformly

directed cut) since it was a cut of the activity on arc flow network. Since we use do not

use AOA our definition is the following:

Definition 3. A UDC U of V, induced by the relation ≺, is an inclusion maximal

antichain. It is a subset of V which satisfies the following:

• u 6≺ v ∧ v 6≺ u for u, v ∈ U

• ¬∃U ′ s.t. ∃v ∈ V s.t. U ′ = U ∪ {v} ∧ the above holds for U’

The algorithm consists of two main steps. The first is to generate the set of UDCs

U (Definition 3). Creemers et al. [2010] showed that U is a partition of the state space

Ω 1. We use the same algorithm as Creemers et al. [2010]; Stork and Uetz [2005]

which is given below. Essentially we enumerate the nodes of a tree T . The root node

Procedure FindUDCs(node k, ancestors)

U := ∅
if antichain({k} ∪ ancestors) then

maximal := true
foreach v ∈ V, v 6= k do

if antichain({k, v} ∪ ancestors) then
maximal := false

if maximal then
U := U ∪ ({k} ∪ ancestors)
return U

if k < n then
foreach i := k + 1 to n do

U := U ∪ FindUDCs(i, ancestors ∪ {k})

else Discard this node

corresponds to the empty set and its children are correspond to activities 1, . . . , n. Each

node j, associated to the activity j, has children j + 1, . . . , n. There are 2|V | nodes in

such a tree and it can be shown that there is a bijection between the tree nodes and the

power set 2V . Stork and Uetz [2005] use a depth first search procedure to visit nodes of

a tree and prune it whenever they finds a non-admissable subset. We implemented this

as a recursive procedure for simplicity. This algorithm is polynomial in the number of

UDCs but exponential in the worst case.

1Our state space is not exactly the same as in their paper but the ideas are similar

32

4. Interdiction under uncertainty

Figure 4.3: PERT network with 6 activities

1

2

3

4

5

6

Figure 4.4: An example tree T (left) and its pruned counterpart (right). The resulting
UDCs are {2, 4}, {2, 5}, {3, 4} and {3, 5}

2 3 4 5

3 4 5 4 5

4 5 5

2 3 4 5

3 5 4 5

Example 2. Consider the PERT network in Figure 6.2. The algorithm for finding the

UDCs will produce the trees shown in Figure 6.3. Notice that the leftmost subtree has

been discarded because task 2 precedes 3.

With each U ∈ U we associate a rank

r(U) := |{i ∈ V | ∃j ∈ V s.t. j ≺ i}| (4.9)

that counts the number of predecessor activities. We index UDCs by their rank and

from them generate a UDC network N = (U, S) where S(U, V) if and only if there exists

an activity v that is active or delayed in some state of U and whose completion causes

a transition to a state in V . Creemers et al. [2010] showed that inter-UDC transitions

are only possible from a lower to a higher ranked UDC. During the UDC enumeration

33

4. Interdiction under uncertainty

procedure we record transitions and the number of incoming ones to a each Ui ∈ U.

We store this value as a variable li. Each UDC has a set of states σ(U) where each

x ∈ σ(U) represents an admissable partition of U Kulkarni and Adlakha [1986] into

Lx, Fx and Ix. Since our focus are interdictions games, we split Lx into the normally

active and delayed active sets and produce copies for different bx ∈ {0, . . . , b}. Likewise

Creemers et al. [2010] showed that there is a surjection σ−1 : Ω → 2V from the state

space to the UDC space U which applies to our problem since it is a ’special case’.

In order to compress the storage requirements we encode a state into an integer

tertiary value that is used as an index into an array associated with a UDC. Creemers

et al. [2010] used this to perform a a binary search when looking up a V (x). This is

preferred to a general hash table because the latter needs to map a potentially infinite

universe of keys to the array whereas we ’know’ all the states a priori. To emphasize

how valuable this is, it is worth noting that we are able in theory to store approximately

256,000,000 in memory at once on an ordinary PC. To make this work we order the

elements of U as 1, . . . , |U | and let ρi ∈ V denote the task in the ith position. We will

now show an appropriate tertiary value function that can be used in for our problem.

Table 4.3: This table shows the states of the {2, 5} UDC of Figure 4.3 and their τ
values

Nx Dx Fx bx τ(x)

2 4,5 0 25
2 4,5 0 24

2,5 4 0 19
2 5 4 0 18
5 2 4 0 17
2 4,5 1 9
2,5 4 1 3

Proposition 2. Let m = |σ−1(x)|. For x, y ∈ U if τ(x) < τ(y), where

τ(x) :=

m∑
i=1

2i−1
(
1[Nx](ρi) + 2m1[Fx](ρi)

)
+ 4m(b− bx) (4.10)

and 1[Nx](ρi) is an indicator function that is 1 if pi ∈ Nx else 0, then V (y) will not

depend on V (x)

Proof. It is sufficient to show that x does not occur after y in any sample run of the

MDP. Suppose that it does, then bx ≤ by and Fx ⊇ Fy. If Fx = Fy then bx < by as the

34

4. Interdiction under uncertainty

only changes that have happened is some tasks have been delayed.

τ(x) ≥ 4m(b− bx) > 4m(b− by) + 22m−1 − 1 ≥ τ(y)

If Fx ⊃ Fy, it must be that

τ(x) ≥ 4m(b− by) +
m∑
i=1

2i−1
(
1[Nx](ρi) + 2m1[Fx](ρi)

)
> 4m(b− by) +

(
2m−1 − 1

)
+

m∑
i=1

2m+i−1
1[Fy](ρi)

≥ τ(y)

So in either case we contradict our assumption that τ(x) < τ(y).

Proposition 3. For any U ∈ U and x, y ∈ U , x 6= y iff τ(x) 6= τ(y).

Proof. x 6= y iff one of Nx 6= Ny or Fx 6= Fy is true. Since τ(.) depends on these sets it

must be different for x and y. If the τ(x) 6= τ(y) then at least one of the terms must

differ in (4.10) also making the state differ too.

Corollary 1. τ : Ω→ Z is an injective function.

What makes this algorithm capable of solving larger PERT networks is that the

need to compute Bellman’s equation for every state in one go is decomposed into

several steps. In each one we solve all the states of a particular UDC before moving

onto the next one. When the value function V ’s values for a UDC are no longer required

they are freed up. This would happen if there is no way to transition to the UDC in

question. Thus we only need to keep a fraction of states in memory at any given time.

Furthermore we only need to apply a backward induction that solves the value and

optimal decision for each state once which makes the algorithm Θ(|Ω|). The ordering

imposed by the tertiary function τ guarantees that the value computed for every state

is always available for the next one within the same UDC. Since inter UDC transitions

can only go from a lower to strictly higher rank it is also possible to solve UDCs of the

same rank in parallel. To implement a paralellized version we would need to enforce

synchronization in the deleting step to avoid race conditions.

35

4. Interdiction under uncertainty

Algorithm 3: Solve for optimal policy

Input: Activities 1, . . . , n, Relation ≺, Vectors µ and ν
Output: The optimal interdiction policy π∗

Generate the UDC network N(U, S)
V (x) := 0 for x ∈ Ω∞

foreach r := n− 1, . . . , 1 do
foreach U of rank r /* May be done in parallel */

do
foreach x ∈ σ(U) in decreasing order of τ(x) do

V (x) := maxa∈Ax{ra(x) +
∑

y∈Ω pa(x, y)V (y)}
π∗(x) := argmaxa∈Ax{ra(x) +

∑
y∈Ω pa(x, y)V (y)}

end
foreach Ui such that S(U,Ui) do

li := li − 1
if li = 0 then

Free all data associated with Ui
end

end

end

end

4.5 Software implementation challenges

We will briefly explain some challenges of efficiently implementing the algorithm in Java.

The first prototype we developed was notoriously slow. After profiling the application,

we found that this was caused by a hot spot in the procedure for generating the next

state because we used the HashSet class’s methods to find it. Instead, we tried using

a bit vector representation of a set and bitwise operations with the BigInteger class.

Next we introduced a cache to store a state ’template’ that would look up which tasks

are active (normally and delayed) and finished if a certain activity completes. Also this

cache would only exist in a UDC evaluation step. The two modifications sped up the

code 20 times on average!

4.6 Robust MDP formulation and assumptions

We have proposed a dynamic model of an interdiction game and an algorithm to solve

it. However, our goal is to build on the deterministic model of Brown et al. [2005,

2009], discussed in Chapter 3. We have simplified the problem by considering only one

36

4. Interdiction under uncertainty

technology, allowing only integer interdiction costs and not considered the possiblity of

the project manager crashing tasks.

In this section we extend our model by letting the project manager expedite tasks.

We assume that he possesses renewable resources k = 1, . . . ,K where each has a con-

stant availability Rk that is always constant. We assume that he is able to revise his

decision, like the interdictor only when some task completes or at time 0 (A2) and

that he does this after the interdictor (A3). We will show that, just as in the case of

the interdictor, this restriction does not make the adversary’s policy any less optimal.

We introduce his decision variables in state x as {ξv}v∈Lx which are the amounts by

which he crashes tasks in progress. For example, if ξv = 2 he will crash v by a fac-

tor of 2 and we shall explain shortly what this means in our model. We assume that

crashing an activity v requires akv amount of resource k per unit of crashing and thus

we require that
∑

v∈Lx akvξv ≤ Rk for k = 1, . . . ,K. Additionally we constrain that

0 < lv ≤ ξv ≤ uv < ∞ for v ∈ Lx and we let Ξx be the polyhedral uncertainty set

of all such admissable allocations in x. We assume that this intersection of a poly-

tope and hyper-rectangle is non-empty, in other words for every k, Rk is large enough

to accommodate the minimum resource allocation given by the vector l ∈ R+
P , where

P = |L(x)|, to all activities in progress in any state. The uncertainty sets in differ-

ent states are independent of each other. We shall now elucidate the crashing model

which use and can also be found in Elmaghraby and Girish [2010]; Rudolph and El-

maghraby [2007]; Tereso et al. [2003, 2004a,b], albeit in the context of the TCTP. We

adopt the view that the uncertainty of a task’s duration is a function of deterministic

and stochastic components. The stochastic component is termed work content. We

can describe it as an uncertain measure of effort required to complete a task which is

exponentially distributed. We denote it as a r.v. wvxa ∼ exp(µvxa) which is a function

of the current state x and interdictor’s action a. The adversary’s choice of ξ ∈ Ξx is

the non-stochastic component and given both ingredients, the task’s random duration

is cvxa(ξ) = wvxa/ξv. It can be shown that cvxa(ξ) ∼ exp(ξvµ
π
vx). We therefore assume a

hyperbolic relationship between the activity’s processing rate and resource allocation

level.

Theorem 2. Assume that the interdictor and project manager act according to as-

sumptions A1, A2 and A3. Solving Bellman equations

V (x) = max
a∈Ax

inf
ξ∈Ξx

{
1 +

∑
v∈Lx ξvµ

v
xaV (yvxa)∑

u∈Lx ξuµ
u
xa

}
x ∈ Ω\Ω∞ (4.11)

V (x) = 0 x ∈ Ω∞ (4.12)

37

4. Interdiction under uncertainty

maximises the project’s mean makespan

Proof. We can use the same argument as for Theorem 1 and in addition use the fact

that E (cvxa) = (ξvµ
π
vx)−1

Proposition 4. The value in (4.11) is optimal for the adversary even if he were able

to make decisions at any time, i.e. relaxing assumption A2.

Proof. Suppose that at time t the game transitions into state x. The interdictor takes

action at ∈ Ax and then an optimal ξ∗t is chosen by the adversary. Let s > t be a time

before the next state transition. The tasks in progress have not changed and by the

memoryless property every activity’s remaining work content wvxa ∼ exp(µvxa) has the

same distribution at time s as in the post-decision state at time t, y0
xat . Therefore, the

adversary’s optimal crashing decision at time s is unchanged, ξ∗s = ξ∗t . Likewise, from

Proposition 1, the interdictor’s null action is optimal.

Note that the function being minimized in (4.11) is quasilinear (quasi-convex and

quasi-concave) in ξ.

We now focus our attention on the adversary’s problem in a certain state exclusively

and will drop the subscripts a and x since we will assume that they remain fixed. Also

we relabel Gv := µvxaV (yvxa) and µv := µaxv and the set of active tasks is L := Lx.

Finally the uncertainty set is called Ξ. We will define the optimal value of adversary’s

sub-problem,

va(x) = inf
ξ∈Ξ

{
1 +

∑
v∈L ξvGv∑

u∈L ξuµu

}
(4.13)

Proposition 5. For every state x and action a, va(x) equals the optimal objective value

of the LP where A := (akv)k=1,...,K,v∈L(x).

inf
z∈R+,

y∈Rn+

{
z +

∑
v∈L

Gvyv | Ay − zR ≤ 0,
∑
v∈L

µvyv = 1, y ∈ [zu, zl]

}
(4.14)

and ξv = yv/z.

Proof. va(x) is the optimal objective value of a linear fractional program. See Boyd

and Vandenberghe [2004]; Charnes and Cooper [1962].

It is possible to solve the LP (4.14) in every state of the system as part of the

dynamic programming algorithm but it will place a tremendous computational burden

38

4. Interdiction under uncertainty

if we are to use such a direct approach. We will now give a special case where a more

efficient method is applicable.

Suppose K = 1 i.e. the adversary has only one resource, then the uncertainty set Ξ

becomes the intersection of a hyper-rectangle and a closed halfspace. If we remove the

upper bounds on ξv, then the feasible set becomes a P+1 dimensional simplex for which

we can solve the problem analytically. We now define the constant d := R−
∑

v lv, for

convenience.

Proposition 6. Assuming there is no upper bound on individual task crashing, that is

uv = +∞ for all v and there is a single resource constraint, the optimal value va(x)

can be found analytically in time O(n) with the following expression

va(x) = min
v∈L

{
1 +

∑
u∈L(x) Ju

(
lu + 1[u=v](d− lu)

)∑
w∈L(x) µw(lu + 1[w=v](d− lu))

}
(4.15)

Proof. We will first show a technical lemma

Lemma 1. Let f be a quasiconcave function and xi for i = 1, . . . , n be a set of points

in domf and z =
∑n

i=1 αixi where α ≥ 0 and eTα = 1. It follows that f(z) ≥
mini=1,...,n(f(xi)).

We can show this by a straightforward induction on n. If n = 2 then because f is

quasi-concave it follows that f(αx + (1 − α)y) ≥ min(f(x), f(y)). Let z =
∑k

i=1 αixi

and define γ :=
∑k−1

i=1 αi. We then express f(z) as

f(z) = f

(
γ
k−1∑
i=1

αi
γ
xi + αkxk

)

≥ min

(
f

(
k−1∑
i=1

αi
γ
xi

)
, f (xk)

)
≥ min

i=1,...,n
(f(xi))

The first inequality follows from γ+αk = 1, the second from the induction hypothesis.

We note that the feasible set Ξ is a P + 1 simplex, by assumption, with vertices

C = {dev + lv | v ∈ L} ∪ {l}. Therefore every feasible point is in the convex hull of C.

conv(C) =

{∑
v∈L

αvxv | xv ∈ C,
∑
v∈L

αv = 1, αv ≥ 0 ∀v ∈ L

}
(4.16)

39

4. Interdiction under uncertainty

Let ϕ denote the objective function in (4.13). We know that ϕ is quasi-concave and

therefore for any feasible point z ∈ conv(C)

ϕ(z) = ϕ

(∑
v∈L

αvxv

)
≥ min

v∈L
(ϕ(xv)) (4.17)

Figure 4.5: Illustration of a linear fractional function with of the form in (4.11)

5
10

15
20

25
30

35
40

5
10

15
20

25
30

35
40

20

30

40

50

60

70

x2

x1

f(x
1,
x2
)

4.7 Implementation uncertainty

We consider a final extension to our model where an interdiction action’s effectiveness

is random. By that we mean that if we were to interdict a task, unlike before, not only

is its remaining processing time random, but also the parameter of that distribution

itself is random, i.e. µv is a r.v.

First, we look at the simplest case where the residual rate parameter is a binary

random variable. The first of the two possible outcomes is that the interdiction suc-

ceeds and the residual processing time of task v, Rv ∼ exp(νv), the second is that the

interdiction fails and the remaining time Rv ∼ exp(µv). The advantage of this particu-

40

4. Interdiction under uncertainty

lar model is that we do not need to modify the original state space Ω. If an interdiction

fails in a state then the budget is decremented with no other change. The action space

A is also identical. However the state transition probabilities would need to change.

Let x, y ∈ Ω, pa(x, y) be the transition probability of the original DTMDP, pu|a, the

probability that an interdiction succeeds on activities u ⊆ a ⊆ V but fails on the rest
1. The transition probabilities of the model under consideration p′a(x, y) are given by

p′a(x, y) :=


pa(x, y) if a = ∅

pu|a if Ny = Nx\u,Dy = Dx ∪ u, by = bx − |u|

0 otherwise

(4.18)

The state rewards may also be redefined as

r′a(x) :=

ra(x) if a = ∅

0 otherwise
(4.19)

The Bellman recursion is the same as before but with the new state transition proba-

bilities and state rewards.

V ′(x) = max
a∈Ax

r′a(x) +
∑
y∈Ω

p′a(x, y)V ′(y)

 (4.20)

Corollary 2. If pa|a = 1 and pu|a = 0 for all u ⊂ a then the new model and original

are equivalent.

Proof. Let x be a state, a ∈ Ax the action taken. If a = ∅ then by definition of (4.18)

the state transition probability is the same as in the original model. If a 6= ∅ then as

pa|a = 1, the next state y by (4.18) is with probability 1 identical to the post-decision

state yvxa in the original model.

4.8 Constrained MDP formulation

In the main dynamic model of this thesis, the one without crashing and with implemen-

tation certainty, we used integer costs. It is possible, if needed, to have real valued costs

that are discounted at a continuously compounded rate r ∈ (0, 1). The caveat is that

1The marginal probabilities need not be independent, they could be correlated since the joint
distribution is left to the user’s design

41

4. Interdiction under uncertainty

the budget constraint will only be obeyed on average. The nature of the formulation

makes the resultant optimal policy randomized.

First we introduce a new state space Ω where each state is a tuple x = (Ix, Nx, Dx, Fx)

- so it is the same as before but without the bx element. The definition of terminal

states Ω∞ is unchanged. Now let’s introduce two types of costs: the first is incurred

at the end of the project and is some large value C. We will also assign an interdiction

cost to each activity v ∈ V , hv > 0. Let Jπ(x) be the cost-to-go in state x under

policy π. Then Jπ(x) = M for x ∈ Ω∞. For any non-terminal state, the cost-to-go

is the discounted expected cost-to-go of any next state y, where the discount factor is

determined by the random time spent in the present state τx:

Jπ(x) = E
(
e−rτx

)∑
y∈Ω

pπ(x, y)Jπ(y)

=

∫ ∞
0

e−rtt
(
qπ(x)e−q

π(x)t
)
dt
∑
y∈Ω

pπ(x, y)Jπ(y)

= qπ(x)

∫ ∞
0

te−(qπ(x)+r)tdt
∑
y∈Ω

pπ(x, y)Jπ(y)

=
qπ(x)

qπ(x) + r

∑
y∈Ω

pπ(x, y)Jπ(y)

=
∑
y∈Ω

qy|xπ

qπ(x) + r
Jπ(y)

where qπ(x) is the rate of the exponential distribution of τx and pπ(x, y) is the proba-

bility of the next state and qy|xπ is the completion rate under the policy and state of

the activity that causes an x→ y transition.

By combining a technique from Dmitri and Edmund [2005]; Kallenberg [1983] and

the Bellman equations above, we can solve a constrained MDP

minimize
θ

C

 ∑
x∈Ω∞,a∈Ax

θxa


subject to

∑
a∈Ax

θxa −
∑

y∈Ω,a∈Ay

(
qy|xa

qπ(x) + r

)
θya = 1[x=x0], x ∈ Ω

∑
x∈Ω,a∈Ax

(∑
v∈a

hv

)
θxa ≤ b

θ ≥ 0

(4.21)

42

4. Interdiction under uncertainty

The randomized optimal policy is then found from

pxa = θxa/
∑
u∈Ax

θxu (4.22)

Where pxa becomes the probability of doing action a in state x.

4.9 Other variations and extensions

There are other ways to extend our primary model. It is possible to introduce different

ways of interdicting activities by expanding the action space. Each way can have its

own cost, success probabilities and so on. Also it is possible to combine crashing with

implementation uncertainty. To be able to continue building ever more sophisticated

models it is worth exploring approximate dynamic programming which is the subject

of the next chapter.

43

Chapter 5

Approximate solutions

Our aim in this part is to find algorithms that can solve approximately some dynamic

interdiction games but are much more scalable. We will focus on one kind of heuris-

tic method known in the literature as ADP (approximate dynamic programming) or

reinforcement learning. These techniques have generated interest for their ability to

overcome the curse of dimensionality in some cases and still give high-quality solu-

tions. Another benefit is they give the user more flexibility in modeling. For example,

we have in this thesis been tied to strong assumptions about independent exponential

distributions.

The common idea behind ADP algorithms is to approximate the value function V

(in the Bellman equation) and so avoid having to enumerate the whole state space.

To do this they use a mixture of simulation and machine learning. Some ADP algo-

rithms are mostly dependent on simulation, for example, Q-learning or SARSA. Their

advantage is they are are relatively model-free. That means that they don’t need to

make assumptions about Markov chain transition probabilities. Other types of ADP

algorithms use state aggregation but remain model-dependent. Finally the algorithms

that we will focus on are parametric methods which can (loosely) be viewed as a com-

promise between the model-dependent and simulation approaches. We will mostly be

using algorithms from Bertsekas and Tsitsiklis [1996]; Powell [2007].

5.1 Basis functions

One way to approximate the value function is to use a regression model. Let Ṽ π(x) be

the approximate value of being in state x ∈ Ω under the policy π. We can compute it

44

from

Ṽ π(x) =
k∑
i=1

θiφi(x) (5.1)

where φi(x), i = 1, . . . , k are a set of k basis functions and θi’s are weights. The

definition of the basis functions are left up to the algorithm designer but they can be

thought of as features of a state. To find a good approximation architecture requires

some experimentation and insight into the specific problem under consideration.

We have 2n+2 basis functions where φ1(x) = 1, φ2(x) = bx, the next i = 3, . . . , n+2

are

φi(x) =



0 if i− 2 ∈ Ix
1 if i− 2 ∈ Nx

2 if i− 2 ∈ Dx

3 otherwise

(5.2)

and the final i = n+ 3, . . . , 2n+ 2 are

φi(x) = φ2
i−n (5.3)

5.2 Approximate policy iteration

We will try to approximate the solution to the standard problem (no crashing, certain

success) in Chapter 4. This can easily be generalized to the implementation uncertainty

problem. Moreover, we can come up with more sophisticated outcomes: for example

a task can be delayed by factor that is a continuous random variable rather than be

limited to discrete outcomes. This is because in these ADP algorithms, we use simula-

tion to estimate the policy’s value without building infinite Markov chains. However,

we hypothesize that this will not work for the crashing game because there are two

decision makers.

We use a simple state sampling method given below. One of its drawbacks could

be that it does not give a uniform distribution over the states sampled and it would be

worthwhile to investigate alternatives.

5.3 Regression methods

We have given the outline of a policy-iteration algorithm that estimates the value of

being in each state. To give the complete algorithm we will state which regression

45

Algorithm 4: Approximate policy iteration

Input: Project G = (V,E), budget b, initial policy π0 and value estimate Ṽ π0(.)
Output: A near-optimal interdiction policy π
foreach iteration i := 1, . . . , I do

Let πi := argmaxa∈Ax

{
ra(x) +

∑
y∈Ω pa(x, y)Ṽ πi−1(y)

}
for s := 1, . . . , S do

Sample state xs
Simulate M trajectories starting in state xs, using πi
Let V πi

s1 , . . . , V
πi
sM be the simulated project completion times

V̂ πi
s :=

∑M
j=1 V

πi
sj /M

end

Find Ṽ πi(.) by a regression on (x1, V̂
πi

1), . . . , (xS , V̂
πi
S)

end

Procedure SampleState

repeat
bx is a random integer from 0 to b
for v :=1,. . . ,n do

With equal probability place activity v in Nx, Ix, Cx or Dx

until x is admissable
return x

methods we use. In this we let Ωs ⊂ Ω be the sampled states, the pairs (x, V̂ π(x)), x ∈
Ωs be the sampled states and their estimated values.

5.3.1 Least squares

Our first regression procedure is Least Squares where we use the basis functions given

earlier φ(.) and solve the unconstrained problem for the weights θ

minimize
θ

∑
x∈Ωs

V̂ π(x)−

rπ(x) +
∑
y∈Ω

pπ(x, y)θ>φ(y)

2

(5.4)

which has an analytical solution that is efficient to compute. Using the optimal weights

θ∗ we compute (5.1) for the value estimate.

Definition 1. For the remainder of this chapter we represent the state x as an integer

vector where x1 = bx and the remaining elements (xi)
n+1
i=2 correspond to each activity’s

state (0 = idle, 1 = active, 2 = delayed active, 3 = completed).

46

5.3.2 Artficial neural networks

Our second way is to use Artificial neural networks (ANNs or NNs). Neural networks

form a vast research topic and have been used successfully in many applications besides

Dynamic Programming. We will only cover the basics to explain our method.

In general a NN is a non-linear function that is used for classification and regression

in machine learning. The simplest neural network is just a linear regression model.

More complex models are built out of neurons. Each neuron computes a function of

the linear combination of its weighted inputs:

y = f

(∑
i

θixi

)
(5.5)

Where f is a non-linear function such as the popular sigmoid activation function:

f(t) =
1

1 + e−t
(5.6)

The output of one neuron can be the input to another and is called a signal. We will

use only a certain type of NN called a feed-forward network where the signals travel

in one direction. The NN can then be partitioned into layers where the first is usually

called the input layer and receives external input. The last layer is called the output

and the ones in between called hidden layers.

We will use our NN to estimate the value of being in state Ṽ π(x). To do this

the idea is that we train it by giving input, output examples. So in our case these

would be the pairs (x, V̂ π(x)), x ∈ Ωs. With each training example, the NN uses an

algorithm called backpropagation to minimize the error of its prediction against the

actual output (like in linear regression). The difficulty with backpropagation is that it

optimizes a non-convex function and so sometimes either does not converge or finds a

local minimum. We therefore need to introduce a limit on the number of iterations and

a performance threshold ε > 0.

In our appplication each neuron in the input layer will receive each element of the

state vector. While the output layer will consist of a single neuron that outputs a value

ox. Because the NN we use employs the sigmoid activation function, whose range is

between 0 and 1, we need to scale the output by an amount W , so that our estimate

is Ṽ π(x) = Wox. Similarly we divide the training outputs V̂ π(x) by W before sending

them in. We will choose W to be a large enough number.

Neural networks are useful because they can fit arbitrary functions closely and can

47

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 5.1: A three layer feed-forward NN, similar to the one that we use. Diagram
thanks to http://www.texample.net/tikz/examples/neural-network/

be updated recursively. However these models suffer from other difficulties apart from

their non-convexity. They can overfit the data, that is, they will fit the noise in data

thus reducing their prediction accuracy and their predictions can have a high variance.

This can be a significant problem with ADP which relies on Monte-carlo simulation.

5.3.3 Support vector regression

With support vector regression Smola and Scholkopf [2004] our goal is to find weights θ

that approximate well the value of a state in (5.1). However we also want at the same

time to reduce model complexity to address the problem of overfitting (where there is

noisy data). The basic SVR problem can be stated as a Quadratic program

minimize
θ,ξ,ξ∗

1

2
||θ||2 + C

∑
x∈Ωs

(ξx + ξ∗x)

subject to θ>φ(x)− V̂ π(x) ≤ ε+ ξx , x ∈ Ωs

V̂ π(x)− θ>φ(x) ≤ ε+ ξ∗x , x ∈ Ωs

(5.7)

Where the slack variables ξ, ξ∗ penalize deviation grater than ε from Ṽ π(x) the function

we are trying fit, the term 1
2 ||θ||

2 penalizes complexity and C is used to trade off the

two penalties. With a larger C and smaller ε, maximizing the accuracy in fitting the

data is favoured over minimizing complexity.

48

http://www.texample.net/tikz/examples/neural-network/

The dual problem is

maximize
λ,λ∗

−
∑
x,y∈Ω

(λ∗x − λx)(λ∗y − λy)K(x, y)− ε
∑
x∈Ωs

(λx + λ∗x)

+
∑
x∈Ωs

V̂ π(x) (λ∗x − λx)

subject to 0 ≤ λx, λ∗x ≤ C , x ∈ Ωs

(5.8)

where λ, λ∗ are Lagrange mutipliers and K(x, y) := φ(x)>φ(y) is a kernel function. The

advantage of solving the dual is that we need not evaluate the inner product φ(x)>φ(y)

explicitly. Rather, all that is needed is a suitable kernel which lets us enjoy significant

computational savings if there are many basis functions. The problem can be solved

more efficiently using the SMO (sequential minimization optimization) algorithm Platt

[1999]. Once the optimal λ, λ∗ are found, the estimate is worked out as

Ṽ π(x) =
∑
y∈Ωs

(
λy − λ∗y

)
K(y, x) (5.9)

This is also known as the support vector expansion. Another benefit of the dual problem

is that it has only 2|Ωs| variables and because the problem is convex has a global

optimum (if feasible and bounded) that can be found efficiently. Also the parameters

C and ε give us a way to mitigate overfitting. A disadvantage of SVR based ADP

methods is that there is no known way to perform it recursively unlike with least

squares and ANNs.

5.3.4 SVR kernels

Our final task is to find a valid kernel K(., .). Fortunately there is already a test called

Mercer’s condition that allows us to do that:

The rule is that there exists a vector of basis functions φ such that K(x, y) =

φ(x)>φ(y) if and only if for all f where∫
f(x)2dx

is finite (f is square-integrable) implies∫
K(x, y)f(x)f(y)dxdy ≥ 0

49

These are some valid and popular choices of kernel:

• The polynomial kernel: K(x, y) =
(
x>y + 1

)p
• Radial basis function (RBF) kernel: K(x, y) = exp

(
||x− y||2/γ

)
• Sigmoidal: K(x, y) = tanh

(
κx>y − δ

)
An interesting feature of the RBF kernel is that the basis functions that it’s computed

from are infinite dimensional. Intuitively, we can see this as the series expansion of ex.

5.4 Non-simulation based SVR

We will attempt to apply a recent technique by B. Bethke and J. How and A. Ozdaglar

[2008] to approximately solve our standard dynamic problem. This approach is highly

model dependent but eliminates the need to perform simulations.

Unlike the techniques provided thus far we do not give state, value training exam-

ples. Rather we work with the MDP definition itself. The following function

B(x) = θ>φ(x)−

rπ(x) +
∑
y∈Ω

pπ(x, y)θ>φ(y)

 (5.10)

= −rπ(x) + θ>ψ(x) (5.11)

where ψ(x) := φ(x)−
∑

y∈Ω pπ(x, y)φ(y) is called the Bellman residual. The aim is to

minimize |B(x)| for as many sampled states possible. When B(x) = 0 for each sample,

then our approximation

Ṽ π(x) =

k∑
i=1

θiφi(x) = V π(x)

is exact.

Bethke showed that when B(x) is substituted into the nominal SVR it is equivalent

to the following problem. Let φ0 denote the ’feature’ vector of some terminal state.

The problem is stated as

minimize
θ

1

2
||θ||2

subject to θ>ψ(x)− rx = 0 x ∈ Ωs

θ>φ0 = 0

(5.12)

50

Note that for our problem we added just one more constraint that states that the value

of the terminal state must be zero. Introducing multipliers λ and µ, the Lagrangian is

L =
1

2
||θ||2 −

∑
x∈Ωs

λx(θ>ψ(x)− rπ(x))− µθ>φ0 (5.13)

As (5.12) is a convex problem, the necessary and sufficient optimality conditions are

∇θL = θ −
∑
x∈Ωs

λiψ(x)− µφ0 = 0 (5.14)

θ>ψ(x)− rπ(x) = 0 (5.15)

θ>φ0 = 0 (5.16)

Using (5.14), (5.15) and (5.16), we solve for λ and µ as follows(
K ψ

ψ> 1

)(
λ

µ

)
=

(
r

0

)
(5.17)

Where ψ := (ψ(x)>ψ0)x∈Ωs and K is the Gram matrix for {ψ(x)}x∈Ωs
. Using the

solution to (5.17), the value approximation is calculated from

Ṽ π(x) = θ>φ(x)

=

∑
y∈Ωs

λyψ(y) + µφ0

> φ(x)

=

∑
y∈Ωs

λy

(
φ(y)−

∑
z∈Ω

pπ(y, z)φ(z)

)
+ µφ0

> φ(x)

=
∑
y∈Ωs

λy

(
K(y, x)−

∑
z∈Ω

pπ(y, z)K(z, x)

)
+ µK(0, x)

Where the first equality follows from (5.14). Bethke showed that when Ωs = Ω, ,that

is we sample the entire state space, the approximate solution becomes exact.

51

Chapter 6

Numerical evaluation

6.1 Nuclear project

These experiments are based on the case study from Brown et al. [2009]; Harney et al.

[2006]. We will use them to test the algorithms in Chapter 3. Here we have a project

to develop a small batch of nuclear weapons.

6.1.1 Case study data

The main milestones in the project are:

1. Diversion of 120 metric tonnes of yellowcake uranium

2. Enrichment plant feed material production

3. Enrichment with a choice of either gas centrifuge, gas diffusion and aerodynamic

technologies

4. Conversion of uranium hexaflouride to highly enriched uranium

5. Missile design and assembly

In total there are 155 tasks with about 400 precedences. Each task normally takes a

number of weeks to complete and consumes non-renewable resources.

There are 5 types of resource: professional, skilled and unskilled labour, energy and

materials. They all have limited availability and also incur a $ cost per unit of use. We

calculated from the data that the minimum required financial budget is around $159.8

million. Anything less and the project is unviable. Also with this budget, the project

will take (a maximimum of) 412 weeks to complete - a little under 8 years.

52

6. Numerical results

Table 6.1: Proliferator’s resources

Name Units Unit cost (US $) Available

Energy MWHr 100 3,100,000

Materials $ 1000’s 1,000 190,000

Professional labour man-months 48,000 10,000

Skilled labour man-months 24,000 10,000

Unskilled labour man-months 6,000 10,000

The project manager crashes tasks and we model the deterministic task duration as

di = di − ei (6.1)

where ei ∈ [0, di − di] is the expedited duration. There is a fixed resource cost for

completing a task in its normal time. There is also an additional cost for expediting

which is given by a quantity called the acceleration factor ar for resource r:

air =
(ar − 1)cir

di − di
(6.2)

Table 6.2: Acceleration factors

Name Factor

Energy 2.0

Materials 1.2

Professional labour 1.2

Skilled labour 1.5

Unskilled labour 2.0

6.1.2 Data for the interdictor

An interdiction adds a fixed delay to the task duration. There are 12 types of interdic-

tions A,B, .., L, each having a specified delay and cost. Every task has an interdiction

type assigned to it.

53

6. Numerical results

Table 6.3: Cost index for the interdictor. Each task has

an upper and lower case later assigned to it. The former is

the delay in weeks that the interdiction would cause and the

latter is the cost to the interdictor. For example, diffusion

barriers has Fa which means that it could delay the project

by 24 weeks and costs $ 200,000

Delay index A B C D E F G H I J K L

Delay (weeks) 4 8 12 16 20 24 28 36 40 48 56 60

Cost index a b c d

Cost ($M) 0.2 0.45 1.2 1.7

6.2 Implementation details

All LP/MILPSs were solved using CPLEX 12.1, a commercial software from IBM. The

experiments in this section were run on a 2.93 GHz Intel Core i7 processor with 4 GB

RAM.

To solve the models with the data from the case study, we produced a project

spreadsheet. This could also be generated by exporting from popular project manage-

ment software such as MS Project or OmniPlan 1. We then developed a Java program

to read the spreadsheet and either generate a .lp file, which would be read via the

interactive CPLEX terminal, or call the solver directly from the application. It is

possible and could be worthwhile to extend the program to read from a database or

directly interface with the project management tools but this is beyond the focus of

the dissertation.

We also experimented with using a domain specific language from IBM called OPL

(optimization programming language). This is an algebraic modelling language similar

to GAMS and AMPL where the idea is to describe the mathematical model in a user-

friendly way. The data is then combined with the description and a concrete problem

is generated for the solver. However we chose to write our own custom translator as it

seemed simpler and made debugging easier.

1Omniplan is a project analysis tool for the Mac OS http://www.omnigroup.com/products/omniplan

54

6. Numerical results

6.2.1 Discussion of results

We tested the PMIN, DPMIN, FPINT and DPINT models. The results from each

model were consistent with each other. We first observed that the three enrichment

technologies have different trade-offs. Gas centrifuge was the cheapest with a minimum

project cost of $159.8M and $200M fully crashed but required 196 weeks. In contrast,

the gas diffusion ‘sub-project’ could be completed in just 192 weeks but had signifi-

cantly higher costs due to large amounts of energy needed to complete the final task to

‘Produce enriched and depleted uranium’. Aerodynamic enrichment is least desirable,

with the highest costs and having the same fully crashed duration as gas centrifuge.

The results we obtained for DPMIN confirmed that it is the minimizer of PMIN over

technology decisions.

Figure 6.1: Comparing enrichment technologies

160 180 200 220 240 260 280 300 320 340

250

300

350

400

Proliferator budget (millions USD)

P
ro

je
ct

m
ak

es
p

an
(w

ee
k
s)

Aerodynamic
Gas diffusion
Gas centrifuge
Decision

The results for running DPINT showed that the proliferator’s budget had modest

impact on the effectiveness of interdictions (Figures 6.2 and 6.3) with a difference of

about 40 weeks between a $190 USD and $300 USD project budget in Figure 6.2.

This is because the proliferator could freely switch to other technologies in the static

model and as we saw earlier the project completion time was similar between all three

technologies although significantly cheaper for centrifuge enrichment.

In Figure 6.3, the project makespan went up rapidly from an interidction budget of

0 to $3M. It then tapers off because the interdictor can only attack non-critical tasks.

With an unlimited budget the interdictor will trivially delay everything.

55

6. Numerical results

Figure 6.2: Efficient frontier for an increasing number of interdictions from 0 to 8

240

260

280

300

320

340

360

380

400

420

0 1 2 3 4 5 6 7 8

P
ro

je
ct

le
n

g
th

(w
ee

k
s)

Number of interdictions

Project length with an increasing number of interdictions

$190 million budget
$300 million budget

Figure 6.3: Efficient frontier for a varying interdiction budget

240

260

280

300

320

340

360

380

400

420

0 5 10 15 20

P
ro

je
ct

le
n

g
th

(w
ee

k
s)

Interdictor budget ($US millions)

Varying interdictor and proliferator budgets

$300 million budget
$250 million budget
$200 million budget

56

6. Numerical results

As expected and can be seen in Figure 6.4, DPINT has the fastest runtimes for either

extremely low interdiction budgets or very high ones. The decisions at these extremes

become easier to compute. The longest runtime was found for when the proliferator’s

budget was $250M and the interdiction budget around $6M. This was the most difficult

scenario to find an optimal solution for. The reason is that at that point, the proliferator

would fare equally well with either gas diffusion or centrifuge technologies as they had

same duration and cost (given no interdictions). Thus he would have the most freedom

to jump from one to the other and this made the interdictor’s problem harder, as

reflected in the spike of the CPU time to just under 5 minutes.

Figure 6.4: Computation time

0

50

100

150

200

250

300

0 5 10 15 20

C
P

L
E

X
ti

m
e

(s
ec

on
d

s)

Interdictor budget ($US millions)

Varying interdictor and proliferator budgets

$300 million budget
$250 million budget
$200 million budget

57

6. Numerical results

6.3 Exact dynamic project interdiction evaluation

We now give experimental results of implementing the models in Chapter 4. We demon-

strate how scalable the exact dynamic programming algorithms are and how much is

theoretically gained from using this dynamic model.

First, we evaluate the simplest problem, where the project manager does not crash

tasks and interdiction attempts are always successful. Afterwards we look at the prob-

lem with crashing allowed and finally at the one with binary implementation uncer-

tainty. It turns out that these three versions are the only ones that can be solved on

medium sized problems exactly. To address more elaborate set-ups, such as those where

the measure of interdiction success is not necessarily yes or no (it could be continu-

ous) and where activity durations are correlated, we would use approximate dynamic

programming. We test the effectiveness of such algorithms in the next section.

6.3.1 Evaluation methodology

To answer the question of how much one gains from solving our dynamic problem over

the nominal one, we use the following method due to the lack of historical data to

back-test on. We evaluate the optimal dynamic policy by computing the mean time

to absorption (equivalently the project makespan) of the Markov process that results

from the policy’s implementation. Let qj|ia be the rate of the activity that causes a

transition i→ j.

mπ
k(i) =

∑
a∈A(i)

pπia

(
mπ
k−1(i) +

∑
j∈Ω qj|iam

π
k(j)∑

j∈Ω qj|ia

)
(6.3)

where mπ
k(i) is the kth moment of the project makespan from state i, pπia is the prob-

ability of executing action a in i with policy π and mπ
0 (i) := 0 for all states i. The

equations are solved backwards starting from the terminal state. Note that the project

makespan has a phase-type distribution (see Appendix 1).

Afterwards, we can compare mπ
k(0) to mπ̂

k(0) given by a sub-optimal policy π̂, based

on heuristics, by computing equation (6.3) in the same way.

There are 3 heuristics that we use. The first is a pure static policy where we select

a set of ’target’ activities T ⊆ V by solving the nominal problem and interdict any

task in T as soon as it begins. In real life, a better strategy would be to solve the

same deterministic problem in every state but on a different PERT network consisting

of the unfinished activities. We call such a strategy an adaptive static policy. However

58

6. Numerical results

we will only use the latter on smaller problem instances because evaluating it on more

complex examples becomes too computationally expensive because of the need to solve

many MILPs.

Lastly, we include a naive heuristic, called a greedy policy, which works by always

delaying the most time-consuming tasks in any state whenever possible.

Table 6.4: Summary of interdiction policies
Policy Description

Dynamic Policy given by the dynamic program solution
Non-strict dynamic Policy given by the randomized constrained MDP
Pure static Always delay the same fixed set of tasks
Adaptive static Chooses tasks to delay in a state by solving a subproblem
Greedy Perform any admissable interdiction

6.3.2 Preliminary examples

Figure 6.5: Toy PERT network. The mean normal and interdicted durations are to the
left and right respectively of the vertical bars

A

D

C

E

B

S T

30 | 50 30 | 80

10 | 90

20 | 45

30 | 50

We start our analysis with hand-picked examples to compare, in more detail, the

optimal dynamic and heuristic solutions.

Firstly, we consider the 5 activity PERT network from Figure 6.5. We see that with

a budget of 3, the longest interdicted s − t path is S → A → C → E → T which, in

the deterministic model, would increase the project makespan to 50 + 45 + 50 = 145.

Therefore, if we were to follow this reccommendation, we would, at the start of the

project, interdict activity A. However, as Table 6.5 shows, doing so is sub-optimal (the

optimal initial action being to interdict only D). Just this example is enough to show

59

6. Numerical results

Budget Dynamic Adaptive Static Greedy

1 139.76 139.76 139.76 109.35
2 162.24 162.24 158.62 152.51
3 183.56 167.25 149.74 167.16
4 196.74 179.25 149.74 191.20

Table 6.5: Mean project makespans with some policies from Table 6.4

that there is a potential to improve on the nominal problem solution (i.e. the static

policies).

As we would expect, we see from Table 6.5 that the mean project makespan is an

increasing function of the budget for all policies. Surprisingly however, when the budget

equals 3, the greedy policy outperforms the static solution by 22%. Furthermore, as

soon as the budget increases to 4, the greedy policy outperforms both the static and

adaptive policies, the latter by nearly 10%. Although such a finding does not apply to

the majority examples (where the greedy policy is always dominated by its rivals), it

does reveal something about the nature of the MILP solutions. Note how the longest

interdicted path in the above network has 3 activitesA, C andD. As soon as we increase

our budget above 3, the pure static problem is unable to find any further improvements

(i.e. any longer paths) and in essence, deteriorates, by suggesting actions that are no

more optimal than they would be with a smaller budget.

Table 6.5 confirms that dynamic solution is the best. Indeed with a budget of 3,

the dynamic solution exceeds its nearest rival’s value, the adaptive static policy’s, by

almost 10%. This issue, as we will see later, can be more pronounced in networks

exhibiting greater parallelism in their tasks’ processing.

For the second of our chosen examples, we used a random network with 20 tasks.

We made the budget range from 1 to 15 and the efficient frontier is shown in Figure

6.6. We see that the expected makespan, as a function of the budget, is concave for

the optimal exact dynamic solution. On average, its value is 3.1% greater than the

adaptive static solution’s. The greatest difference between the two policies is just over

4% when the budget is 10. This may indicate that a dynamic approach is most valuable

relative to the alternatives, when the budget is around half of the size of the network.

On the other hand, if the budget is equal to zero or the number of tasks in the network,

then all policies perform equally well.

60

6. Numerical results

Figure 6.6: Efficient frontiers for a network with 20 activities and order strength of 0.6

60

65

70

75

80

85

90

95

100

105

110

0 2 4 6 8 10 12 14 16

M
ea

n
p

ro
je

ct
m

ak
es

p
an

Interdiction budget

Dynamic
Adaptive

Static

6.3.3 Large scale PERT networks

So far we demonstrated empirically that it is advantageous to solve the dynamic prob-

lem. In the best case we are able to produce a strategy that extends the mean duration

of a project by as much as 10% above its rival policies (Figure 6.5).

The question we now answer is how scalable our dynamic programming algorithm is.

We also explore if there is any relationship between characteristics of a PERT network

and the value in using our algorithm.

We tested our algorithm on 300 acyclic directed graphs that were produced by

the RanGen software Demeulemeester et al. [2003]. This tool allows us to randomly

generate a PERT network with a specified number of vertices and order strength. The

second parameter is a measure of how difficult a PERT network G is to solve and is

computed in the following way. Let n be the number of vertices in G and m the size of

≺, the order strength O(G) is given by

O(G) := m/

(
n

2

)
(6.4)

In other words it is the ratio of the number of transitive precedence relations over the

maximum possible number.

61

6. Numerical results

6.3.3.1 Decomposition in action

Figure 6.7: Number of stored states with a total of roughly 2,700,000

0

200000

400000

600000

800000

1e+06

1.2e+06

0 50 100 150 200 250 300 350

S
ta

te
s

in
m

em
or

y

Iteration number

States

Before we continue, we show that, as stated in Chapter 4, we reduce the memory

requirements of solving the MDP by using the decomposition approach. Figure 6.7

shows the number of states stored at each iteration of the dynamic programming al-

gorithm. On average only about 22% of states need to be stored at any time, while

the maximum required peaked at 44% during the 137th iteration. The problem being

solved in Figure 6.7 involved a PERT network with 80 tasks and an order strength of

0.8.

6.3.3.2 Performance evaluation on 300 PERT networks

For each order strength and network size we used 30 random instances (this was a

similar approach to Creemers et al. [2010]) to work out sample average measures of CPU

time, state space size and mean project makespans. To speed up the computation, we

spread it between several but nearly identical machines (the glyph group in the Labs).

Each one had a Dell Optiplex 980 Intel Core i5 650 3.2GHz processor and 8 GB of

RAM. When running our Java process, we set the maximum JVM heap size to 2560

MB.

62

6. Numerical results

Budget

Size 1 2 3 4 5 6 7 8

10 0.125 0.118 0.122 0.122 0.120 0.118 0.123 0.129
20 0.331 0.325 0.332 0.340 0.349 0.355 0.352 0.368
30 0.769 0.793 0.828 0.842 0.886 0.909 0.921 0.951
40 1.439 1.542 1.645 1.775 1.940 2.062 2.187 2.325
50 3.026 3.222 3.566 3.991 4.490 5.043 5.573 6.076
60 5.859 6.456 7.273 8.563 10.17 11.95 13.84 15.74
70 4.351 5.786 9.253 16.61 28.98 46.60 67.51 90.67
80 10.89 14.43 23.06 42.43 80.97 125.4 179.6 244.8
90 16.30 25.37 50.92 110.4 218.5 379.0 580.3 802.7
100 21.23 39.26 107.6 241.4 555.2 1071.0 1809.1 2806.3

Table 6.6: Average CPU solution time in seconds over 30 random instances with 80%
density

Budget

Size 1 2 3 4 5 6

10 77.0 146.2 217.0 287.8 358.6 429.4
20 348.2 739.7 1169.9 1604.6 2039.4 2474.2
30 1102.7 2560.3 4293.3 6090.6 7895.4 9700.6
40 3608.4 9410.0 17222.3 25850.8 34674.9 43525.0
50 8877.7 24773.9 47827.3 74497.3 102314.0 130355.4
60 20136.1 59572.9 120607.0 194435.6 273175.6 353144.1
70 57325.3 188955.3 422217.2 738365.1 1102313.3 1486371.1
80 114419.5 392637.7 907792.2 1630374.0 2481203.3 3389711.7
90 235703.3 839294.5 1998663.7 3667425.0 5661641.7 7804814.1
100 507836.1 1928983.3 4887529.3 9480422.5 15322732.3 21876561.5

Table 6.7: Average state space size over 30 random instances with 80% density

63

6. Numerical results

20 40 60 80 1005

5

10

15

Number of tasks
Budget

L
o
g

st
a
te

sp
ac

e
si

ze

Figure 6.8: Average number of states versus network size and problem budget (on a
log scale)

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

1 2 3 4 5 6 7 8
Budget

S
ta

te
s

Figure 6.9: State space size with budget for networks with 50 activities and 80% density

64

6. Numerical results

Budget

Size 7 8

10 500.2 571.0
20 2909.0 3343.8
30 11505.8 13311.0
40 52376.6 61228.2
50 158421.8 186489.4
60 433306.9 513487.4
70 1876642.2 2268295.0
80 4317219.4 5249229.9
90 9997285.3 12201475.5
100 28738368.5 35702364.7

Table 6.8: Average state space size over 30 random instances with 80% density (con-
tinued)

Budget

Size 1 2 3 4 5 6 7 8

10 0.125 0.115 0.1181 0.126 0.122 0.1352 0.130 0.135
20 0.481 0.515 0.5503 0.613 0.679 0.7629 0.826 0.888
30 1.508 1.790 2.2946 3.190 4.364 5.8955 7.450 9.063
40 4.908 6.383 9.7705 16.58 27.57 41.850 58.10 74.99
50 3.026 3.222 3.566 3.991 4.490 5.043 5.573 6.076

Table 6.9: Average CPU solution time in seconds over 30 random instances with 60%
density

Budget

Size 1 2 3 4

10 168.1 354.6 558.2 763.4
20 1746.6 4527.5 8240.0 12314.6
30 11990.3 36529.9 75909.8 124903.9
40 56401.3 188719.0 423769.8 739066.8
50 324109.2 1247660.5 3189663.6 6215531.0

Table 6.10: Average number of states over 30 random instances with 60% density

65

6. Numerical results

Budget

Size 4 5 6 7 8

10 968.6 1173.8 1379.0 1584.2
20 16470.3 20635.8 24801.8 28967.8
30 178014.1 232295.8 286792.1 341311.4
40 1096323.4 1468473.7 1844175.5 2220423.8
50 10057479.7 14346986.6 18817613.9 23342343.9

Table 6.11: Average number of states over 30 random instances with 60% density
(continued)

Budget

Size 1 2 3 4 5 6 7 8

10 0.155 0.159 0.187 0.169 0.170 0.176 0.196 0.209
20 0.723 0.946 1.366 2.176 3.341 4.843 6.505 8.203
30 4.319 8.380 22.06 57.32 128.8 241.2 394.8 572.3

Table 6.12: Average CPU solution time in seconds over 30 random instances with 40%
density

6.3.4 Discussion of results

For all order strengths, we see an exponential growth of both computational resources

and state space size with increasing numbers of activities. However, keeping the network

size constant, the relationship between the budget and number of states is almost linear

(Figure 6.8 and 6.9).

Despite the explosion in the problem complexity, we are able to solve non-trivial

sized problems - networks with up to 100 tasks - provided that the order strength is

high at 80%. In the best case we were able to solve problems with about 35 million

states where the computation took 81 minutes. Beyond that, our program would run

out of memory.

When implementing the algorithm, we decided to speed up the computation by

using a state template ‘cache’ as described in Chapter 4. It is quite possible that were

we to remove that, slightly larger problem instances could be solved due to the increased

space available. However we did not have enough time to test this hypothesis.

We also see that order strength has a great effect on complexity. When the OS is

60% we can only solve 1 networks with up to 50 activities and a budget of 8. With

40% this drops to 40 and a budget of 3. Finally when the network has an OS of 20% ,

we could only solve all instances with 20 activities and a budget of 4. The reason for

1That means solving all of our 30 randomly generated instances

66

6. Numerical results

Figure 6.10: Average % improvement in value over a pure static policy

10 20 30 40 50 60 70 80 90 1001
2

3
4

5
6

7
8

1
2
3
4
5
6
7
8
9

Difference

Percentage difference

Network size

Budget

Difference

1
2
3
4
5
6
7
8
9

this is that low densities in PERT networks, all else being equal, allow more tasks to

execute in parallel creating more possible states. Conversely, a higher order strength

enforces a strict order of task execution and so fewer states.

Figure 6.10 shows that the dynamic strategy gives the most advantage with larger

networks and budgets for a fixed order strength (80% in this case). This might be

because there are more states and therefore more information that the static model

loses. The highest average improvement is about 8%.

Finally, we examine the average improvement over an adaptive static policy in

Figure 6.11. As we predicted, the highest average improvement of 3.3% occurs when

the order strength is lowest at 20% and the budget is around half the network size (5 to

6). Beside that, we see consistent pattern of improvement between all order strengths.

The improvement first declines when the budget is 2-3, then sharply increases until the

global maximum at 5 and finally drops off.

6.3.5 Interdiction with crashing evaluation

We have formulated and tested a dynamic interdiction problem on PERT networks.

We will now evaluate the extension where the project manager is able to crash tasks.

Because of the novelty of this problem, as we did in the basic dynamic problem’s case,

67

6. Numerical results

Figure 6.11: Average % improvement in value over an adaptive static policy. Network
size is 10.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

Budget

A
ve

ra
ge

%
im

p
ro

ve
m

en
t

OS=0.8
OS=0.6
OS=0.4
OS=0.2

68

6. Numerical results

we explain a suitable method of assessing the model and its solution algorithm.

Because there are now two players; the interdictor and project manager, we will

generate a policy for each one. In software engineering terms, a policy is a lookup

table. To speak of this in game theoretic terms, we now refer to the interdictor and

project manager as the leader and follower respectively. The leader’s lookup table is,

as before, a mapping of states to a set of activities (to delay in that state), whereas

the follower’s is a mapping from states to a ’crashing function’. The crashing function

maps each active or active delayed task in that state to an amount of each resource

allocated to it. Given a policy π for the leader and ρ for the follower, we may compute

the expected makespan of the project as a modification to equation (6.3). Let ξρij be

the crashing function on an activity that causes a transition i→ j and qρj|ia := ξρijqj|ia,

the kth moment of the project makespan is given by

mπ,ρ
k (i) =

∑
a∈A(i)

pπia

(
mπ
k−1(i) +

∑
j∈Ω q

ρ
j|iam

π,ρ
k (j)∑

j∈Ω q
ρ
j|ia

)
(6.5)

where mπ,ρ
0 (i) = 0 as in (6.3).

6.3.6 Game with crashing evaluation

We tested the optimal policy’s value against a pure static heuristic on 30 randomly

generated networks having 10 tasks. In the best case we see an average improvement

of 40% when the budget is 70% of the network size and the project’s order strength is

0.4. As we would expect there is never any value gained in using a dynamic approach

when the budget is either 0 or the size of the network.

However, in between the two extremes, we see that the lowest order strength net-

works have the greatest improvement for budgets below 5. We also find a surprising

pattern where the improvement curves for the OS’s peak at different budgets. Not

only that but budgets beyond about 7 actually started to favour 0.4 OS networks over

0.2. This is also what we found with the standard game. It might be due to some law

of diminishing returns where as soon as we are able to delay the majority of tasks, it

becomes preferable for the task execution order to be slightly more rigid.

6.3.7 Interdiction with implementation uncertainty evaluation

To measure the implementation uncertainty game’s optimal value over an adaptive

static heuristic we used the following method: the deterministic problem would use the

69

6. Numerical results

Figure 6.12: Crashing game: Average relative advantage of using the optimal dynamic
solution over a heuristic

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

Interdiction budget

A
ve

ra
ge

%
im

p
ro

ve
m

en
t

OS=0.6
OS=0.8
OS=0.4
OS=0.2

Figure 6.13: Implementation uncertainty game: This shows the average relative per-
centage improvement of solving the dynamic problem over the adaptive static policy.
The PERT networks each had 10 tasks.

0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

Budget

A
ve

ra
ge

%
im

p
ro

ve
m

en
t

OS=0.8
OS=0.6
OS=0.4
OS=0.2

70

6. Numerical results

expected value of a task’s interdicted duration and we would compute the game’s value

using another modification to (6.3).

The implementation uncertainty game was an interesting case because we could

increase the budget beyond the size of the network and still see an advantage of using

a dynamic policy. The reason being that on average only a fraction of interdiction

attempts actually succeed - so there is still room for improvement, so to speak.

Comparing the standard problem with this one reveals that introducing an addi-

tional element of uncertainty makes the adaptive static solution even worse, in relative

terms. Indeed the average improvement is about 3 times higher with implementation

uncertainty than without.

6.3.8 Performance with extensions

The cost of using the crashing 1 and implementation uncertainty extensions is substan-

itally increased CPU time due to additional calculations done in each state - a hotspot

of the basic algorithm in Chapter 4. However the storage requirements aren’t affected

as the same state space is used throughout.

If we were to do a linear regression 2 on the the points in Figure 6.14, we would

find that the gradient is approximately 21 times greater with crashing than without

(in the standard version). On the other hand, the implementation uncertainty game’s

gradient is about 13 times greater.

6.4 Approximate dynamic programming evaluation

The exact dynamic programming algorithms have proven to be intractable. As soon as

the order strength is less than 50%, only small examples can be solved with reasonable

computational resources. On the other hand, the dynamic approach is more valuable

with harder problem instances (where there is a larger state space). On top of that,

the more complicated games with implementation uncertainty and crashing yielded a

higher advantage to the optimal policy over other heuristics.

Therefore we now turn our attention to the approximate dynamic programming

algorithms we discussed in Chapter 5. We test if they can provide better solutions

compared to the nominal problem (the adaptive static policy). Also, we measure how

sub-optimal such policies are. Finally, we attempt to understand how parameters

influence the quality of ADP solutions. The algorithms we consider are least square

1The algorithm with a single crashing resource in Chapter 4
2Using the SLOPE function in Excel

71

6. Numerical results

Figure 6.14: The effect on CPU time of (i) letting the project manager to crash tasks
(ii) adding implementation uncertainty. The networks all had 50 activities and the
order strength was 80%

1 2 3 4 5 6 7 8
0

20

40

60

Budget

A
ve

ra
ge

ru
n
ti

m
e

(s
ec

o
n

d
s)

Standard
Implementation uncertainty
Crashing

policy iteration, neural network-based policy iteration (ANN), support vector regression

with simulation (SVR1) and Bellman residual SVR (SVR2).

We set up the ANN as a 3 layer perceptron with n+ 1 input layer neurons, 2n+ 2

hidden layer neurons and 1 neuron in the output - where n + 1 corresponds to the

dimension of the state vector (described in Chapter 5). Unfortunately, there was not

enough time to test other neural network architectures. SVR1 had ε = 0.05 and

C = 10, 000. For each simultion-based algorithm we set the number of simulated

trajectories to be M = 30, 000.

We start with an example to see more closely how the algorithms progress. Figure

6.15 shows the value of each algorithm’s policy over 8 iterations on one PERT network.

The number of samples taken was relatively large, about half the state space (which

was possible with 10 tasks but does not scale). We see all of them shoot up in the

first iteration and reach similar values of between 46-47. Then the ANN-based policy

stops improving. The remaining policies, SVR1, SVR2 and least squares then proceed

to overtake the adaptive static policy’s value but never reach the optimum. The only

exception to the last statement would be SVR2 because, when the entire state space is

sampled, it is exact (because of no simulation noise).

We see that the support vector regression policies are marginally superior to the

least square and that SVR1 improves slightly on SVR2. The reason possibly lies in the

72

6. Numerical results

1 2 3 4 5 6 7 8
40

42

44

46

48

50

Iteration

E
x
p

ec
te

d
p

ro
je

ct
m

ak
es

p
an

SVR2
Least squares
ANN
SVR1
Adaptive static
Optimal

Figure 6.15: Interdiction game value after 8 iterations. The network had 10 tasks and
its order strength was 0.4, the number of samples taken by each algorithm was 1000

73

6. Numerical results

100 200 300 400 500 600 700 800
10

12

14

16

18

20

22

Number of samples

M
ea

n
er

ro
r

(%
)

Least squares
ANN
SVR1

Figure 6.16: Mean absolute percentage error of the estimate Ṽ on 10 networks each
with 10 tasks and 0.4 order strength

values of the SVR1 parameters. ε being positive conferred a lower model complexity to

SVR1 as compared to SVR2, which meant that SVR1 could better predict unobserved

states’ values. On the other hand SVR1 fitted the data more closely than least-square

probably because of the implicitly infinite dimension of its data projection (as a result

of the radial basis function kernel). Nearly all policies’ values in Figure 6.15 converge

after 4 iterations and then fluctuate without any improvement.

Next, we measured the mean absolute percentage error of the value estimates pro-

duced by the four algorithms (Figure 6.16) . The sample sizes constituted roughly 5%,

10% up to 40% of the state space. We did not try larger samples as they would not

be used in practice. Unfortunately the SVR2 approach gave very large errors - around

90% when the sample sizes were in the given range. However above 1000 samples, we

did consistently decrease the error and its solution was exact, as we predicted, when the

whole state space was used. It could be that SVR2 is effective with a more specialized

sampling strategy rather than the straightforward randomized one that we tried.

Figure 6.16 demonstrates that least squares has the lowest error with small sample

sizes. This suggests to us that it has the most potential in practical applications (as

74

6. Numerical results

Table 6.13: Average % improvement over adaptive static policy and average % sub-
optimality. The number of sampled states is in brackets and networks had 10 activities.

Order strength

Algorithm 0.2 (300) 0.4 (200) 0.6 (100) 0.8 (50)

Least squares
AS improvement +1.2902 +1.0919 -1.3147 -1.0071
Sub-optimality 3.2056 2.5346 3.6729 1.0206

ANN
AS improvement -2.8821 -2.8926 -1.8164 -3.0245
Sub-optimality 5.0870 4.6197 3.5365 3.7974

SVR2
AS improvement -13.1498 -8.6819 -10.7159 -8.9035
Sub-optimality 20.5348 13.6582 14.6776 9.9948

well as being solved more efficiently). Our prediction is confirmed in Table 6.13 where

we see that least square is generally closer to the optimum than other policies 1. It is

also the only one which offers any advantage over the adaptive static policy (at least

for 0.4 and 0.6 order strengths).

1We ran out time before being able to measure the average performance of SVR1. However on a
few examples that we tried, it was inferior to least squares

75

Chapter 7

Conclusion

In this thesis we developed a new model for interdicting projects in continuous time

under uncertainty. Our inspiration was an equivalent deterministic problem described

in Brown et al. [2009].

First, we formulated the original model as a large scale MILP. Using standard

solvers, we showed that it is computationally tractable provided that there are not

too many technologies. Our method was faster than in the original paper, taking up

to 5 minutes, in the worst case, as opposed to 20. We also were able to solve larger

problem instances (using larger interdiction budgets) than Brown et al. [2009] reported.

However we believe that their algorithm scales better when there are more technologies

while there were just three in the case study that we tested on.

Later we formulated a novel continuous time MDP model of the interdiction game.

We simplified it to only allow for a single technology, integer interdiction costs and

no crashing. We then showed how it can be solved by reducing it to a discrete time

MDP. This approach was based on Creemers et al. [2010]; Kulkarni and Adlakha [1986].

Next, we implemented a dynamic programming algorithm by Creemers et al. [2010] and

optimized it. As long as the PERT network order strength was greater than 50%, we

were able to solve medium sized problems with up to 60-100 tasks. Our algorithm failed

to work for larger problems because of a lack of storage.

Next, we tested the optimal solution generated by our algorithm against other

heuristics. It turned out that compared to the best heuristic, the one that solves

the deterministic problem in every state, there was an improvement of about 1-3%

on average. This figure was strongly correlated with the size of the problem i.e. the

number of states, and peaked when the interdiction budget was around half the network

size.

Then we extended the vanilla model by making crashing tasks possible. However

76

this differed from Brown et al. because we had renewable as opposed to non-renewable

resources whose supply stays constant. We then solved this game as a robust MDP,

without affecting the state space and also showed a more efficient way to solve the

follower’s problem in linear, as opposed to polynomial, time. We reported average

improvements over a heuristic as high as 40%.

Finally we developed another extension where an action’s success could be uncer-

tain. This involved a relatively small modification to the vanilla problem and also did

not affect the state space. We showed that with higher budgets and more states, the

mean improvement over the best heuristic is as high as 9%. Finally, we demonstrated

that it is possible, in theory, to overcome the limitation of integer non-discounted in-

terdiction costs by using a constrained MDP and solving this alternative model as a

large scale LP.

To overcome the intractability of some of the models, we implemented and tested

approximate dynamic programming algorithms. With these we made use of simulation

and regression analysis. We also implemented an ADP algorithm by B. Bethke and J.

How and A. Ozdaglar [2008] which did not rely on simulation, instead using a support

vector machine to minimize the Bellman residual. Practically it turned out that LSPI

(least square policy iteration) was best in terms of performance and scalability. In

other words, even when sampling a small subset of states it yielded the best performing

policies.

We argue that our interdiction game model is more realistic than previous ap-

proaches because we consider issues such as timing and uncertainty of successful in-

terdiction. However our one has drawbacks: it is intractable, we had to make strong

assumptions about independent and exponentially distributed task durations. It is pos-

sible to work around the last point by approximating task durations using phase-type

distributions, adding the ‘sub-Markov processes’ into the MDP, and use approximate

dynamic programming to mitigate the exponentially increasing computational burden.

7.1 Future work

A good extension is to introduce the multiple technology feature, that currently exists

in the static model, to the dynamic game. It would probably would not require a

major change of state space but would still be worthwhile as a proof of concept that

the nominal problem could be replaced. An interesting exercise would then be to apply

the complete model to the case study in Harney et al. [2006], probably using LSPI.

77

With regards to approximate dynamic programming, the Bellman residual method

gave poor approximations of the value function and produced policies that were worse

in comparison to other ADP algorithms. It is theoretically attractive however and it

would be useful to find out what states need to be sampled to get the best performance

out of it. It is our suspicion that the Bellman residual method works best on ergodic

MDPs but this would need a proper investigation.

Finally, solving the models presented in this thesis was expensive computationally

and it could be promising to experiment with high performance computing found in

GPGPUs (general purpose graphics processing units) and other advanced hardware.

78

Appendix A

7.2 Phase type distribution

A phase type distribution (abbreviated as PH) Bolch et al. [1998] is a continuous

distribution of the time until absorption in a transient Markov process. The PH is a

generalization of exponential, Erlang and Coxian families of distributions and have been

shown to approximate any distribution arbitrarily well (with enough states). There

exists a discrete time counterpart of the PH distribution.

Let Q be the infinitisemal generator matrix of a Markov process, defined as

Q :=

(
0 0

−Se S

)

where S ∈ Rn×n is called the sub-generator. Let α be a row vector specifying the pmf

of the process’s initial state. The MP’s time to absorption T is said to be phase-type

distributed PH(α, S) and its density function is

f(t) = −α exp (St)Se (7.1)

and its cdf is

F (t) = 1− α exp (St) e (7.2)

where exp(St) is the matrix exponential

exp(St) =
∞∑
k=0

(St)k

k!
(7.3)

79

Figure 7.1: A histogram of 10,000 simulation runs of an interdicted project. The
sample mean was 55.4 and the standard deviation was 28.25. The project’s makespan
is phase-type distributed.

0 20 40 60 80 100 120 140 160 180 200 220 240
0

50

100

150

200

250

Project makespan

80

References

B. Bethke and J. How and A. Ozdaglar. Approximate Dynamic Programming Using

Support Vector Regression. In IEEE Conference on Decision and Control (CDC),

Cancun, Mexico, 2008. 50, 77

Richard Bellman. A markovian decision process. Indiana Univ. Math. J., 6:679–684,

1957. ISSN 0022-2518. 10

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena

Scientific, 1st edition, 1996. ISBN 1886529108. 44

Dimitris Bertsimas and Melvyn Sim. The price of robustness. Operations Research,

2002. 15

Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi. Queueing

networks and Markov chains: modeling and performance evaluation with computer

science applications. Wiley-Interscience, New York, NY, USA, 1998. ISBN 0-471-

19366-6. 79

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University

Press, New York, NY, USA, 2004. ISBN 0521833787. 38

Gerald G. Brown, W. Matthew Carlyle, Johannes Royset, and R. Kevin Wood. On

the complexity of delaying an adversary’s project. The Next Wave in Computing,

Optimization and Decision Technologies, pages 3 – 17, 2005. 8, 36

Gerald G. Brown, W. Matthew Carlyle, Robert C. Harney, Eric M. Skroch, and

R. Kevin Wood. Interdicting a nuclear-weapons project. Oper. Res., 57:866–

877, July 2009. ISSN 0030-364X. doi: 10.1287/opre.1080.0643. URL http:

//dl.acm.org/citation.cfm?id=1595844.1595851. 1, 8, 9, 17, 18, 19, 21, 36,

52, 76

81

http://dl.acm.org/citation.cfm?id=1595844.1595851
http://dl.acm.org/citation.cfm?id=1595844.1595851

REFERENCES

A Charnes and W W Cooper. Programming with linear fractional functionals. Naval

Research Logistics Quarterly, 9(3-4):181186, 1962. URL http://www.springerlink.

com/index/10.1007/BF02613374. 38

Kelly J. Cormican, David P. Morton, and R. Kevin Wood. Stochastic network interdic-

tion. Oper. Res., 46:184–197, February 1998. ISSN 0030-364X. doi: 10.1287/opre.

46.2.184. URL http://dl.acm.org/citation.cfm?id=767679.768152. 1, 8

Stefan Creemers, R Leus, and M Lambrecht. Scheduling markovian pert networks to

maximize the net present value. Operations Research Letters, 38:51–56, 2010. 27, 31,

32, 33, 34, 62, 76

Erik Demeulemeester, Vanhoucke M, and Herroelen Willy. Rangen: A ran-

dom network generator for activity-on-the-node networks. Technical Report

urn:hdl:123456789/97356, Katholieke Universiteit Leuven, 2003. URL http://

ideas.repec.org/p/ner/leuven/urnhdl123456789-97356.html. 61

Dolgov Dmitri and Durfee Edmund. Stationary deterministic policies for constrained

mdps with multiple rewards costs and discount factors. In Proceedings of the 19th

international joint conference on Artificial intelligence, IJCAI’05, pages 1326–1331,

San Francisco, CA, USA, 2005. Morgan Kaufmann Publishers Inc. URL http://dl.

acm.org/citation.cfm?id=1642293.1642504. 42

S. Elmaghraby and R. Girish. Optimal resource allocation in activity networks under

stochastic conditions. Internal report. North Carolina State University, 2010. 37

Robert Harney, Gerald Brown, Matthew Carlyle, Eric Skroch, and Kevin Wood.

Anatomy of a project to produce a first nuclear weapon. Science and Global

Security, 14(2-3):163–182, 2006. doi: 10.1080/08929880600993105. URL http:

//www.tandfonline.com/doi/abs/10.1080/08929880600993105. 22, 23, 52, 77

Frederick S. Hillier and Gerald J. Lieberman. Introduction to operations research /

Frederick S. Hillier, Gerald J. Lieberman. Holden-Day Inc., San Francisco :, 1967. 6

Eitan Israeli and R. Kevin Wood. Shortest-path network interdiction. Networks, 40:

2002, 2002. 8

L.C.M Kallenberg. Linear Programming and Finite Markovian Control Problems.

Math. Centrum, 1983. 42

82

http://www.springerlink.com/index/10.1007/BF02613374
http://www.springerlink.com/index/10.1007/BF02613374
http://dl.acm.org/citation.cfm?id=767679.768152
http://ideas.repec.org/p/ner/leuven/urnhdl123456789-97356.html
http://ideas.repec.org/p/ner/leuven/urnhdl123456789-97356.html
http://dl.acm.org/citation.cfm?id=1642293.1642504
http://dl.acm.org/citation.cfm?id=1642293.1642504
http://www.tandfonline.com/doi/abs/10.1080/08929880600993105
http://www.tandfonline.com/doi/abs/10.1080/08929880600993105

REFERENCES

James E. Kelley, Jr and Morgan R. Walker. Critical-path planning and scheduling. In

Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer

conference, IRE-AIEE-ACM ’59 (Eastern), pages 160–173, New York, NY, USA,

1959. ACM. doi: http://doi.acm.org/10.1145/1460299.1460318. URL http://doi.

acm.org/10.1145/1460299.1460318. 4

V. G. Kulkarni and V. G. Adlakha. Markov and markov-regenerative pert networks.

Operations Research, 34:769–781, 1986. 27, 32, 34, 76

Churlzu Lim and J. Cole Smith. Algorithms for discrete and continuous multicommod-

ity flow network interdiction problems. IIE Transactions, 2006. 8

Marco Lopez and Georg Still. Semi-infinite programming. European Journal of Oper-

ational Research, 180(2):491–518, 2011. 15

Joseph Moder and Cecil Phillips. Project management with CPM and PERT [by] Joseph

J. Moder [and] Cecil R. Phillips. Reinhold Pub. Corp. New York, 1964. 4, 21

David P. Morton, Feng Pan, and Kevin J. Saeger. Models for nuclear smuggling inter-

diction. IIE Transactions, 39(1):3–14, 2007. doi: 10.1080/07408170500488956. URL

http://www.tandfonline.com/doi/abs/10.1080/07408170500488956. 1, 8, 9

John C. Platt. Advances in kernel methods. chapter Fast training of support vector

machines using sequential minimal optimization, pages 185–208. MIT Press, Cam-

bridge, MA, USA, 1999. ISBN 0-262-19416-3. URL http://dl.acm.org/citation.

cfm?id=299094.299105. 49

Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimen-

sionality (Wiley Series in Probability and Statistics). Wiley-Interscience, 2007. ISBN

0470171553. 44

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. Wiley-Interscience, 1994. ISBN 0471619779. URL http://www.amazon.

ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0471619779.

10

Adam J. Rudolph and S. Elmaghraby. The optimal resource allocation in stochastic

activity networks via continuous time markov chains. Internal report. North Carolina

State University, 2007. 37

83

http://doi.acm.org/10.1145/1460299.1460318
http://doi.acm.org/10.1145/1460299.1460318
http://www.tandfonline.com/doi/abs/10.1080/07408170500488956
http://dl.acm.org/citation.cfm?id=299094.299105
http://dl.acm.org/citation.cfm?id=299094.299105
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0471619779
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0471619779

REFERENCES

Andres Shipani. Cocaine production rise spells trouble for bolivia. http://www.bbc.

co.uk/news/10231343, 2010. Accessed: 30/09/2010. 1

Alex J Smola and Bernhard Scholkopf. A tutorial on support vector regression. Statis-

tics and Computing, 14(3):199–222, 2004. ISSN 0960-3174. doi: 10.1023/B:STCO.

0000035301.49549.88. URL http://dx.doi.org/10.1023/B:STCO.0000035301.

49549.88. 48

Matthew J. Sobel, Joseph G. Szmerekovsky, and Vera Tilson. Scheduling projects

with stochastic activity duration to maximize expected net present value. European

Journal of Operational Research, pages 697–705, 2009. 27

Frederik Stork and Marc Uetz. On the generation of circuits and minimal forbidden

sets. Open access publications from maastricht university, Maastricht University,

2005. URL http://EconPapers.repec.org/RePEc:ner:maastr:urn:nbn:nl:ui:

27-4895. 32

Anabela P. Tereso, Araujo M. Madalena T., and Elmaghraby Salah E. Experimental

results of an adaptive resource allocation technique to stochastic multimodal projects.

International Conference on Industrial Engineering and Production Management,

2003. 37

Anabela P. Tereso, Araujo M. Madalena T., and Elmaghraby Salah E. Adaptive re-

source allocation in multimodal activity networks. International Journal of Produc-

tion Economics, 92(1):1–10, November 2004a. URL http://ideas.repec.org/a/

eee/proeco/v92y2004i1p1-10.html. 37

Anabela P. Tereso, Araujo M. Madalena T., and Elmaghraby Salah E. The optimal re-

source allocation in stochastic activity networks via the electromagnetism approach.

Project Management and Scheduling, 2004b. 37

Richard Wollmer. Removing arcs from a network. Operations Research, 12(6):pp.

934–940, 1964. ISSN 0030364X. URL http://www.jstor.org/stable/168177. 8

R. K. Wood. Deterministic Network Interdiction. Mathematical and Computer Mod-

elling, 17(2):1–18, 1993. doi: 10.1016/0895-7177(93)90236-R. URL http://dx.doi.

org/10.1016/0895-7177(93)90236-R. 8

84

http://www.bbc.co.uk/news/10231343
http://www.bbc.co.uk/news/10231343
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://EconPapers.repec.org/RePEc:ner:maastr:urn:nbn:nl:ui:27-4895
http://EconPapers.repec.org/RePEc:ner:maastr:urn:nbn:nl:ui:27-4895
http://ideas.repec.org/a/eee/proeco/v92y2004i1p1-10.html
http://ideas.repec.org/a/eee/proeco/v92y2004i1p1-10.html
http://www.jstor.org/stable/168177
http://dx.doi.org/10.1016/0895-7177(93)90236-R
http://dx.doi.org/10.1016/0895-7177(93)90236-R

	Contents
	Nomenclature
	1 Introduction
	1.1 Contributions
	1.2 Report structure

	2 Background
	2.1 CPM/PERT
	2.2 Interdiction problems
	2.2.1 Stochastic network interdiction
	2.2.2 Smuggling problems
	2.2.3 PERT interdiction

	2.3 Markov decision process
	2.3.1 MDP LP solution
	2.3.2 Dynamic programming algorithms for MDP - Policy and value iteration

	3 Deterministic interdiction games
	3.1 A framework for deterministic interdiction games
	3.2 Project interdiction game
	3.2.1 Fixed decision plan for the project manager
	3.2.2 Project interdiction with a decision plan

	4 Interdiction games under uncertainty
	4.1 Problem statements and assumptions
	4.2 The decision process
	4.3 Discrete time MDP formulation
	4.4 Algorithm for solving larger PERT networks
	4.5 Software implementation challenges
	4.6 Robust MDP formulation and assumptions
	4.7 Implementation uncertainty
	4.8 Constrained MDP formulation
	4.9 Other variations and extensions

	5 Approximate solutions
	5.1 Basis functions
	5.2 Approximate policy iteration
	5.3 Regression methods
	5.3.1 Least squares
	5.3.2 Artficial neural networks
	5.3.3 Support vector regression
	5.3.4 SVR kernels

	5.4 Non-simulation based SVR

	6 Numerical evaluation
	6.1 Nuclear project
	6.1.1 Case study data
	6.1.2 Data for the interdictor

	6.2 Implementation details
	6.2.1 Discussion of results

	6.3 Exact dynamic project interdiction evaluation
	6.3.1 Evaluation methodology
	6.3.2 Preliminary examples
	6.3.3 Large scale PERT networks
	6.3.3.1 Decomposition in action
	6.3.3.2 Performance evaluation on 300 PERT networks

	6.3.4 Discussion of results
	6.3.5 Interdiction with crashing evaluation
	6.3.6 Game with crashing evaluation
	6.3.7 Interdiction with implementation uncertainty evaluation
	6.3.8 Performance with extensions

	6.4 Approximate dynamic programming evaluation

	7 Conclusion
	7.1 Future work

	Appendix A
	7.2 Phase type distribution

	References

