1 gurate

An application for rigid skeleton

modelling

/

RN

Jonathan Cheung

Supervised by
Andrew Davison

Duncan Gilles

Imperial College London June 19th, 2012

Abstract

Animating a 3D character by hand can be a long and difficult process. Tech-
nologies such as motion capture exist that can detect pose of an actor with
accuracy but these systems are typically too expensive and difficult to set up for
the average user.

In this project we propose a novel solution using computer vision techniques
to building a system that can detect the pose of a real-world object. The system
is easy to use and does not require anything other than an inexpensive web-cam
to operate. Some of the uses for the system include being used as an electronic

drawing aid for artists or for electronic stop-motion animation.

Acknowledgements

First and foremost, I would like to thank Dr Andrew Davison for accepting
my project proposal and for his continued guidance and support throughout this
project. I would also like to thank Duncan Gillies for his inital feedback during
the early stages of the project. Finally I would like to thank my family and

friends for their continued support.

Contents

1 Introduction
1.1 Objective L
1.2 Motivation
1.3 Existing technologies
1.4 Issueso
1.5 Contributions

2 Background
2.1 Computer vision
2.2 Cameramodel
2.3 Bundle Adjustment 0oL 0oL
2.3.1 Non-linear optimisation
24 PTAM e
2.5 Marker detection
2.5.1 ARToolkit
252 AVLAR
2.6 Motion capture file formats00 0oL

11

11

13

15

15

16

18

3 Implementation 21

3.1 User Defined Model 21
3.1.1 Bonemodel, 21

3.1.2 Markers 23

3.1.3 Constraintso 23

3.14 File format 24

3.2 Videoinput 25
3.3 User Interface 26
3.4 Marker pose detectiono 28
3.5 Camera calibration 29
3.6 Initial approaches 31
3.6.1 PTAMapproach 31

3.6.2 Marker distance approacho 000 L L 35

3.7 Final approach: Marker projection from view 40
3.7.1 Objective function 41

3.7.2 Implementation 46

4 Evaluation 49
4.1 Quantitative analysis00 49
4.1.1 Base model 10 markers 50

4.2 Qualitative analysiso 62
4.2.1 Creating the model 62

4.2.2 Estimation of model pose. 65

5 Conclusion

5.1 Summary

5.2 Limitations and future work

A Appendix
A.1 Hardware

A.2 Software

B Bibliography

69

69

70

72

72

72

73

Introduction

1.1. Objective

The objective of this project is to develop a system that utilises computer vision
techniques to estimate the pose of a real-world poseable model. For instance we can
rig a humanoid skeleton from a drawing mannequin of the same proportions. The
system will be able to determine the pose of the real-world object based on a number

of markers placed on the object.

In order for the system to accurately estimate the pose of the model, the estimations of
3D positions of the markers must be as accurate as possible. Furthermore the system
must be able to pose the model as best as it can given imprecise or missing information
about the 3D positions of parts of the object due to noise or occlusion. Computer
vision techniques will be used to detect, recognise and estimate the location of the
markers in 3D space. The system should be designed to be able to work with any
cheap off the shelf web-cam.

Users should also be able to configure their own model definitions in order to estimate

pose of custom models that may not be humanoid in nature. The model definition

is a specification that describes the structure of the model that the user wants to run
through the system. For instance in a humanoid model it would contain information
about the length of specific bones, which bones join together, the degrees of movement
of joints that join bones and the angle of movement of the joints. An intuitive GUI

will also be created that will allow the user to create this model definition.

The scope of this project is to create the above system and to make it as easy to use
as possible for the end-user, a fully fledged Ul will be designed and the application
should provide real-time feedback throughout the process of estimating the pose of the

skeleton model.

1.2. Motivation

The motivation behind this project is to make the act of posing animation skeletons by
hand easier. The primary uses of this system is to provide a better drawing aid for

artists and for fast compositing of static scenes for 3D artists.

Many traditional artists use image references to aid them in drawing. Drawing hu-
manoid subjects can be especially difficult for amateur artists. Traditional scaled human
mannequins can be used to help but the system described in report improves this as it
can be scaled to any body type and can be saved electronically. A key advantage is that
a static viewpoint of the model can also be saved as an image meaning that the artist
can be referring to the exact same image and viewpoint every-time. This can be very
useful if the user is using digital photo editing tools such as Photoshop where they can
directly import the final result.

Existing solutions are either too complex or expensive for the majority of artists. Hand-
animating a 3D skeletal rig can be a long and cumbersome process and requires training
and expertise to get a good result. Existing motion capture systems used to rig 3D
skeletons are typically very expensive and require extensive calibration and clean-up to

achieve good results.

The main area of research in this project is in computer vision. Recently there has
been a lot of interest in computer vision due to the ubiquity of cameras on many
computing devices such as smart phones and tablets as well as the advances in computer
processing power allowing many computer vision techniques to run in real-time. Taking
the computer vision approach to the problem of rigging the skeleton automates a lot of
the work required and makes it faster than traditional approaches such as hand-rigging,
furthermore it is more user friendly as the user does not need to know a lot of the

details involved in 3D animation.

The system proposed in this project aims to make it easy and cheap to pose a static
skeleton using a real-world counterpart such that anyone without knowledge of 3D

skeleton posing can use it.

1.3. Existing technologies

The field of pose detection has been well explored as it is commonly used in motion
capture technology. Motion capture can be described as the process of recording the
movement of an object or person over time. In film making and games it is used
to record the movement of body parts in order to animate characters in computer

animation. Newer motion capture systems can even capture facial expression.

Traditionally motion capture systems[7] used markers in order to detect the 3D posi-
tions of the object. Multiple high-speed cameras would be strategically placed in the
performance area and lighting conditions would be controlled. Every frame of data
captured from the cameras would be synced and the 3D positions of parts of the body
would be triangulated from these markers. These systems typically offer very accurate
pose detection however the downside is the need for very precise calibration and set-up
as well as the cost of multiple high resolution speed cameras (normally upwards of 8
cameras), the large space and the software needed to run such a system. It can typically
cost hundreds of dollars in order to build a motion capture not to take into account
the cost of specialists needed to clean-up and process the data from the output of the

system .

A more recent approach comes in the form of the Microsoft Kinect[4, 10]. The Kinect
is a low cost (8150) depth+RGB camera that is capable of detecting pose of a humanoid
subject with less than a 4cm error for each body part. It works by generating a 3D
point cloud using its IR depth sensor which it then feeds into proprietary software
which is able to make sense of the point cloud and convert it into a skeletal pose in
less than 10ms. When developing the Kinect, many terabytes of data of people in
different poses were collected and body parts were labeled and fed into an 'expert'
system running on a powerful cluster of computers. This resulted in a software package
that was capable of utilising this past data to accurately estimate the pose of a human
body from any frame of point cloud data from the sensor. The software was trained
with other heuristics such as how the body is joined together, for instance that the hand
is connected to the arm in order to make it faster and more accurate. The downsides
of Kinect is its limitation to only work on humanoid subjects and that the subject must

be positioned over 1m away from the sensor in order for it to work.

KINECT

':‘I":I

The system we are proposing in this report would be both low cost due to the fact
it would be able to work with any web-cam without the need for specialist hardware
and it will be capable of modeling any rigid structure. Another difference from the
above systems is that the camera itself can move around as well as the object we are

capturing. Full motion capture is not in the scope of this project.

1.4. Issues

The problem is similar to a 3D reconstruction from motion problem, we will need
to be able to determine the skeleton model pose from the information gathered from
many views around the object. We must find a way to accurately do this using as much

information as possible from the views that are collected.
Capture and mapping of object locations

Several computer vision techniques must be explored in order to determine the most
suitable way to find and accurately place the locations of the markers which relate to
specific parts of the object. The system will need to take into account partial occlusion
of markers as well as adverse lighting conditions, both can have a significant effect on
the accuracy of the pose estimations. Having a robust and accurate pose estimation of
the markers will help reduce error further down in the system and will therefore result

in a better end pose.

Noise and camera lens distortion can also affect the marker pose estimation. The system
must be able to take these factors into account when detecting the markers and working

out the pose of each marker.

Estimating the skeleton model pose

Since the marker detection step will most likely not generate a 100" % accurate poses
of the markers and therefore of the parts of the model we must have a way to allow
for these small discrepancies and hopefully use information from other views in order
to make the final pose estimate as accurate as possible. The optimal solution to this
problem should be able to work out the best pose estimate of the skeleton model based
on both the marker locations and the information about the skeleton model provided

by the user.

Missing markers during the marker capture stage must also be taken in account. Based
on the structure of the model definition it could be possible to get an accurate estimation
of the position of a part of the object even without having seen or only partially seen

the marker relating to that part during capture.

1.5. Contributions

This report outlines the path it took to get to the final application which is a fully
featured application that can estimate the pose of the real-world skeleton model in
real-time using only a web-cam. We will explore the initial approaches we tried before
getting to the final solution and evaluate what worked and what didn't work at each
stage. We will then go into depth about the methods and techniques we used in the
final implementation and also do an in-depth analysis about how accurate the system
is. Finally we will do a guided walk-through of the system, explaining the different
features available at each stage. The final application features a novel approach to the
problem using bundle adjustment techniques to solve the problem of estimating the
pose of the real-world object, the results will show the estimations are very accurate

and can produce results which are only a few millimeters off.

Background

In this section we will take some time to explain some of the concepts and methods

that will be later used in the implementation stage of the report.

2.1. Computer vision

Computer vision is the field that looks at extracting information from images and/or
video, typically from a camera of some kind. This project specifically deals with using a
web-cam to reconstruct the skeleton pose of a real-world model. In a typical computer
vision flow we start from low level information such as detecting of edges and regions
in an image and follow through to more high level reasoning about the scene such as

how we can group together lines to form objects.

In this application we will be using a standard web-cam in order to capture images,
these images will be processed to find markers and we will make sense of the object
in the real-world through these markers. Since the application is designed to be able to
work with any standard off the shelf web-cam the choice of web-cam for the project
was not that important. Below we will go through some of the typical characteristics

used to differentiate between cameras:

Focal length [15] in an optical system refers to the measure of how strongly the lens
converges light. A short focal length bends light stronger and as a result allows the
optical system to bring objects closer to it into focus. In photography focal length is

measured in millimeters. The below image shows the effect of different focal lengths:

. / ﬂigurate: An application for rigid skeleton modelling

Fig. 1: Focus length differences

For our system a large focal length would be optimal however we don't expect the
web-cams that will be typically used for the system will have a large focus length, most
off the shelf web-cams have quite a small focal length.

The frame-rate of a video camera system refers to the rate of capture. This is measured
in frames per second (FPS). A high FPS is preferred in computer vision applications as
a high FPS implies a fast shutter speed which results in less motion blur. A common
downside of a high FPS is that exposure is reduced. Exposure is the measure of how
much light falls on the image sensor in one shutter cycle. Having a low exposure means
the image is less bright and can result in the image being underexposed, the image will

have loss of detail in darker arcas.

Image noise can be a problem in computer vision applications as it can result in loss of
detail and or incorrect labeling in certain computer vision techniques. In the context
of digital video and photography, noise is generally accumulated in the image due to
photo-diode leakage in the image sensor. Low-light conditions can cause greater noise
as the camera system must compensate by increasing the sensitivity of the image sensor

which can cause more noise due to leakage.

2.2. Camera model

It is essential in most computer vision systems to be able to model how the camera
projects the real-world view onto its image plane[9]. The standard model that is used
for this is the pinhole camera model. The pinhole model assumes the real-world view
is passed through a single aperture point before hitting the image plane behind the
aperture point. The relationship between the 3D point [X,Y, Z] in the real-world and

the image plane in (u,v) coordinates is shown in matrix form below:
X
Y
A
1

It can also be represented in the following two equations:

—u=f
_U:fg

The focal length of the camera is represented by f in the formulas above. We can
also convert the © and v values to x,y coordinates on the image plane by taking the

product of u or v with the width or height of the image plane respectively.

The pinhole model is useful for very simple systems however normally we wouldn't
rely on the pinhole model by itself. Having a single point that the light passes through
would not allow enough light for short exposures which is essential for video capture
systems. Cameras use lenses to focus more light into the aperture point to get around
this problem however this introduces another problem. In the manufacture of lenses,
it is inevitable that some sort of imperfection will occur due to the near impossibility
of creating a 'perfect’ lens. We will need to take into account a way to correct these
imperfections in the camera model. The first imperfection that may occur is that the
optical axis or center may not match up with the center of the image plane, this can
be caused by improper fitting of the lens body to the sensor and aperture hole. We

can use the following revised formulas that take this into account:

2= () +e

y=Fu5) +e

In this form f; and fy are the product of the focal length and the new parameters
Sgand 8, which represent the size of the sensor or image plane. ¢; and ¢y represents
the point where the optical axis intersects the image plane also known as the principal
point. Putting the (x,y) coordinates into homogenous form allows us to represent the

above formulas in matrix form as follows:

T fz 0 ¢ X
yl =10 vy ¢ Y
z 0 0 1 Z

This is known as the intrinsic matrix as it encompasses the intrinsic parameters of the
camera model. These parameters encompass focal length, image format, and principal

point.

The next step is to look at correcting for the aberrations that may be present in the lens
itself, we call these the extrinsic parameters [3]. The two most effecting imperfections
is the radial distortion and the tangential distortion. The radial distortion is the effect
where the further you move away from the image center, the more stretched the image

appears, this is typically caused the fish eye effect which can be seen in Figure 2.

Radial distortion can be represented by an expanded Taylor series, typically we only
consider the first few terms as the radial distortion tends to be dominated by the lower
order terms in a typical camera system. In order to correct radial distortion we use

the formula below:

Ty = 2q(1 + k11 + kor® 4 ksr®)

Yu = yd(l + k‘l’l”Q + k27"4 +]€3T6)

Where xy, and ¥, represent the corrected ',y coordinates, T4 and g are the distorted

coordinates, k; is the ith radial coefficient and r = \/ (xqg — :L'C)2 + (yq — yc)2 where
Te, Ye is the principal point.

. / ﬂigurate: An application for rigid skeleton modelling

Fig. 2: Fish-eye

~10~

Tangential distortions occur when the lens is not fitted parallel to the image plane,
it usually appears as a sort of shearing in the image. We can remove this using the

following formula:

Ty = 24+ (2p1y + pa(r® + 22%))

Yu = Ya + (p1(r* + 2¢%) + 2po2)

The next thing to do is to work out the all the unknown intrinsic and extrinsic
parameters. A well known technique for doing this was invented by Zhang et al [18] .
It involves taking many images of a multiple planar surfaces of known width and height
and optimising the camera parameters until the model we estimate matches up with
where the planar surface points are in the image. Many programs use his approach to
work out the parameters, one of these programs is GML toolbox which we use for this

application.

2.3. Bundle Adjustment

Bundle adjustment [17] is a term used to describe the problem of simultancously refining
the location of 3D coordinates seen in a number of viewpoints whilst also refining the
parameters describing the camera and the 3D structure of the scene. Bundle adjustment
is almost always the last step of any feature based 3D reconstruction algorithm. A
number of factors need to be taken into account when deciding on the strategy to
tackle this problem. For instance if we have zero-means Gaussian noise in each image,
the problem becomes the maximum likelihood estimator. The problem essentially boils
down to working out to minimising the re-projection error of points in cach viewpoint.
Non-linear least squares optimisation is typically the chosen method to tackle this

problem.
2.3.1. Non-linear optimisation

Non-linear optimisation is the act of solving a set of equalities sharing unknown param-
eters. The aim is to try and find the parameters that best fit all these equalities, we
use a objective function that tells us how well we are fitting the equalities. Generally
we are looking to maximise or minimise the total cost of the objective function. The

objective function is also non-linear in the case of non-linear optimisation. We can

visualise this as a n-dimension graph where n is the number of unknown parameters,
each data value represents the cost of the set of n parameters. The lowest point in the
graph is the solution as this is the set of parameters which corresponds to the lowest

cost when put into the objective function.

A common approach to this problem is to use Levenberg-Marquardt [14], it is very com-
mon in computer vision applications that need to do non-linear optimisation. Levenberg-
Marquardt aims to find a numerical solution to the problem of minimising an objective
function over the space of a set of unknown parameters. The problem it aims to solve

can be described in the below formula:

In the above formula 3 represents the set of unknown parameters we are trying to
solve, (Y, ;) is the pair of independent and dependent variables and f represents the

objective function.

LMA is a iterative algorithm, to start it the user must provide a set of guess parameters.
One problem with LMA is that its will terminate when it reaches a local minimum due
to the fact that it can't differentiate between the global minimum that we want to find
and a local minimum. Therefore the choice of starting guess parameters can be very
important depending on whether you will be expecting any local minimums or not. If
there are no local minimums the choice of starting guess parameters is not important

as the optimisation will eventually converge to the correct solution.

The algorithm starts by applying a new estimated set of guess parameters and working

out the new objective cost:

o f (i, B)

=55

If we reach the case where the cost function is minimised to zero we can see that the

gradient of S with respect to 6 will be zero as well.

m

S(B+0) ~ Y (i — flai, B) — Jid)®

=1

If we now take the derivative of the above and set it equal to zero we arrive at the

following formula in vector form:

0'N6=1"Ty — £(B)]

J is the Jacobian matrix of j where the ith row of] equals J;. We can solve the
equation for 0. Levenberg also added another contribution that helps speed up the
algorithm. We can use a damping function that if the reduction of S is slow we can
tend towards using the Identity matrix as a product of 0 instead of the Jacobian. This
brings in more in line with the gradient descent method. If the reduction of S is rapid
we lower the damping function which allows the algorithm to perform more like the

Gauss-newton method. The damped version is shown below:

0"+ A8 ="y — £(B)]

The problem with this is that if the damping function is very large, the inverting of the
7' + AI becomes insignificant. The final improvement therefore was to use a diagonal
matrix consisting of the diagonal elements of JT] instead of 1. This gives us the final

Levenberg-Marquardt formula:

(") + Adiag()'1))6 = 1" [y — £(B)]

2.4. PTAM

PTAM [12] is a method presented by George Klein and David Murray for estimating
camera pose in an unknown scene using only a calibrated mono camera system. It
stands for parallel tracking and mapping and is called as such because it processing on
two parallel threads, one of which is performing real-time tracking of the scene whilst

the other is building a map from the information provided from the tracking.

The tracking part of the method assumes that a 3D point cloud of feature points has
already been created. It processing a real-time feed from a camera in order to maintain

an estimate of the camera pose in the map. A basic overview of this is below:

New frame from camera - a prior pose is estimated from the motion model
Map points are projected onto the image based on this estimated pose.

50 of the coarsest scale features are matched in the image

The camera pose is updated from the matches

1000 feature points are now projected onto the image and searched

N 1 W N =

A final pose is obtained from these matches.

The tracking stage also detects FAST feature points. If the camera has moved a sufficient
distance and the tracking quality is deemed to be good, a key-frame can be stored and

passed to the mapping thread in order to improve the map.

The mapping thread is concerned with creating a 3D point cloud of feature points
so that the camera thread can re-project these points out and calculate the estimated
camera pose. It does this using bundle adjustment techniques to determine the camera
pose of all the key-frames passed from the tracking thread and poses of all the map
points seen in those key-frames. Levenberg-Marquardt bundle adjustment is used to
do this. A problem occurs when we are rapidly exploring the scene and many new
key-frames are being added. LMA is a O(ng) problem which means that any increase in
key-frames would cause the time perform optimisation to increase rapidly. The method
doesn't expect all key-frames to be sharing all feature points so it can use this heuristic
in order to reduce the number of key-frames to perform optimisation on per run of the
optimisation. This allows the method to concentrate on optimising newer key-frames
as they arrive. Any time the camera is not exploring the mapping thread can use to
refine older key frames. PTAM limits the local bundle adjustment to 5 key-frames
which consists of the newest key-frame and the 4 key-frames nearest to it.

The final effect is an accurate camera pose tracking system for small AR workspaces.
It works very well if it can find a lot of feature points to track in the scene as it has
a lot of information to build an accurate map. One downside of PTAM is that moving
objects in the scene can cause problems with the map as feature points may be lost or

incorrectly tracked.

. / 'qigurate: An application for rigid skeleton modelling

= PTAM

il Found: 398/483 251/340 46/68 50/98 Map: “3021F, L4KF

Fig. 3: PTAM in action

2.5. Marker detection

In computer vision it is common to look for certain elements in the scene in order to
determine information about the total scene. One way of making a computer vision
application more robust is to design the elements the application is supposed to look
for to make them as easy to track as possible and/or to encode information about
the scene. These are called fiduciary markers and are used as a point of reference
or measure. In this application we will be using fiduciary markers in order to tell us
about the pose of the skeleton model. We therefore need to use a marker design that
will allow us to determine the pose as well as be able to distinguish between different
markers. We also need to have a system that will be able to detect these markers from
the web-cam feed. There have been many approaches to this problem, mainly in order
to perform augmented reality. One of the first frameworks which solves the problem

of marker detection and pose estimation is ARToolkit.
2.5.1. ARToolkit

ARToolkit [8] is a augmented reality framework that contains a fully featured marker
detection process. It was first released in 1999 and since then there has been many
enhancements and other AR frameworks based on the principles of ARToolKit. The
markers that ARToolkit uses are black and white symbols surrounded by a black square

with a thick white border. An example of an ARToolkit marker can be seen below.
The symbol inside is used to uniquely identify the marker. The use of the black square
surrounded by the white border makes it easy for the detection process to find the

marker in the scene.

The marker detection process follows a number of steps. Thresholding is first performed
on the image to extract out the black square of the marker. This is a simple lighting
binarisation, images with an averaged RGB value of less than the threshold become 0
(black) whilst those above the threshold become 1 (white).

Contouring can then be done to extract out the shape of the black square in the image.
Line fitting is then performed on the contour to fit 4 straight lines onto it. These four

lines make up a quadrilateral from which 4 corners can be extracted.

Given the four corners we can estimate the pose of the square using the co-planar
posit algorithm. Furthermore we can recognise which marker we have detected by
performing pattern recognition of the image inside the marker with those stored in a

known dictionary.

ARToolkit has the benefits of being relatively fast as its computer vision step is not
computationally expensive and it has been ported to many different platforms. However
it lacks in some key areas, occlusion of the marker is a problem as the detection fails
if even some of the marker is occluded due to the fact that occlusion will break the
contour fitting of the black square. Adverse lighting conditions are also a problem due
to the use of thresholding to extract out the features. Reflective materials used to
make the markers as well as low-light conditions can cause the thresholding step to

incorrectly label certain areas of the image.
2.5.2. AVLAR

We have chosen to use AVLAR marker detection [6] which is a framework based on the
ideas of ARToolkit but with some improvements. The key improvement is the inclusion
of the edge-detection method of detecting the outline of the markers as outlined by
Martin Hirzer [5].

The process begins by dividing the image into regions of 40x40 pixels. Each region is
divided further by scan-lines 5 pixels across and down. Edge detection is performed
across these scan-lines to determine a potential edge of a marker. Edges that have are
not black-white are rejected, we can check this by looking at the RGB colour values
of the potential edge. A RANSAC approach is now used to group edges in a region

. / 'qigurate: An application for rigid skeleton modelling

to form line segments [11]. Two random edges are chosen in the region. If the two
edges match in orientation and this orientation matches the orientation of a line joining
the two edges the two edges form a hypothetical line. The other edges in the region
are then sampled to see whether they support the line. An edge supports the line if
it matches the orientation of the line and is close to the line. This is repeated many
times in the region and the resulting lines are compared to see which ones have the
most support. The lines with the most support are chosen whilst the rest of the lines
are discarded. The two furthest away edges supporting the line are chosen as the end
points thus forming a line segment. The segments are then merged if they follow the
same orientation and the pixels between them are considered edge pixels matching the
orientation of the segment using the Sobel operator. Finally quadrilaterals are formed
from joining up line segments that have end points close to each other and have a black
inside the arca formed by joining up the line segments. The corners of the quadrilateral

are represented by the end points of the line segments.

Overall this approach is more robust than the threshold and contouring approach used
in such frameworks are ARToolkit. It can handle adverse light conditions better as it is
looking for an edge instead of simply relying on a single pixel value for thresholding.
Furthermore it can handle occlusion to some degree as only 3 corners need to be detected
to form a quadrilateral, the fourth corner can be estimated using the incomplete line

segments forming off the existing corners.

Fig. 4: Edge marker detection

Another improvement made was to use markers that encoded their own ID in the
pattern. This was done using markers which have a binary grid as the pattern which
encodes to a number ID. Instead of doing pattern recognition to find the ID, we can
simply read the ID off the grid directly. Figure 5 shows an example of how the IDs

are encoded.

Fig. 5: Marker IDs

2.6. Motion capture file formats

Full motion capture over many frames is not within the scope for this project, however
we plan to utilise the BVH file format [13] that motion capture systems use to store
skeleton pose information as it allows the output of our system to be easily portable
between a lot of 3D modeling tools. We begin by explaining some key terminology

that will be used throughout this report in the context of character pose/animation:
Skeleton

This refers to the collection of all elements that make up our character.

Bones

A bone represents a basic entity in the skeleton. It is the smallest element that is subject
to individual rotation and transformation. The bones can be labeled, for instance a bone

in a skeleton can be called the femur.

o J O V1 P W N

NN NN N N —m s e e e e
G W= O V0 oo J0 1 & W N —= O\

26

Degrees of freedom

Each joint in the skeleton has a set range of movement that it can move in. For instance
the joint between the upper and lower arm is limited to only being able to move in

two directions.
BVH (BioVision Hierarchical data)

BVH consists of two parts. The first describes the hierarchy of the skeleton and the
initial pose. The second describes the movement of each bone for every frame of

animation. An example of the first section of a BVH file is below:

HIERARCHY
ROOT Hips
{
OFFSET 0.00 0.00 0.00
CHANNELS 6 Xposition Yposition Zposition
Zrotation Xrotation Yrotation

JOINT RightUpLeg

{
OFFSET —3.910000 0.000000 0.000000
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT RightLowLeg
{
OFFSET 0.437741 —17.622387 1.695613
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT RightFoot
{
OFFSET 0.000000 —17.140001 —1.478076
CHANNELS 3 Zrotation Xrotation Yrotation
End Site
{
OFFSET 0.000000 —4.038528 5.233925
§
}
}
h

The above describes a skeleton with the root as the hips. The rest of the bones are

described in a recursive fashion with each bones information and children bones are

[N O S

encapsulated in curly brackets. In the example above we have a single upper leg bone
appended onto the hips whose single child is the lower leg who has a foot as a child
bone. End site refers to the ending point of the hierarchy. Note that the offsets are
representing the joint location joining the parent to the child, this is shown in the

picture below.

OFFSET refers to the relative translation in x,y and z that the child bone has to its
parent. In the case of the hips it refers to its translation globally. Translation refers to
the range of movement that the bone can have relative to its parent bone. Bone length

can be inferred from the offset information.

The second section is shown below:

MOTION Frames: 1

Frame Time:

0.04166667 —9.533684 4.447926 —0.566564 —7.757381
—1.735414 89.207932 7.892136 12.803010 —28.692566
2.151862 —9.164188 8.006427 —5.641034 —12.596124
4.366460

The above example shows a single frame of motion. The numbers on the line below
frame time are the rotations for the bones. They relate to the channel data provided in
the first section. For instance the first 6 numbers are for the hips as it has 6 degrees

of freedom, the next three numbers are for the upper leg and so on.

BVH is the most widely used format for motion capture and is supported by most
major 3D modeling and animation tools. It has some downfalls however. Since bone
length is not explicitly defined, there can be conflict if a bone has multiple children.
Also the file does not give details of the environment such as which direction points

upwards.

Implementation

This section deals with how the system was implemented to achieve the goals set out.
We will go over the initial approaches to the problem, how the solution evolved over
time and finally describe in detail how the final solution was implemented and the

reasoning about the choices made over previous approaches.

3.1. User Defined Model

The first task was to define the model that the user would be inputting into the system.
A decision was made to base this model on the standard BVH model explained in the
background section. This model was chosen as it was simple to understand and was
flexible enough to express almost any real-world rigid skeleton model. The model fully
complies with the BVH standard and can be exported to a BVH file after obtaining a

final estimated pose.
3.1.1. Bone model

A model will be defined from its ‘root’ bone, each bone can have any number of
children bones. Each bone will have an associated x,y,z Euler rotation, an offset from
its parent bone and a set of markers attached to the bone. It is easier to understand
if you think of a bone as the bone joint positioned at the offset from the parent bone
joint. The root bone will always be at position (0,0,0) and have O rotation in the x,y
and z angles. The transform of a bone joint in the coordinate space with the center
at the root (0,0,0) and with the Up vector represented as (0,1,0) can be represented

with the following formula:

ﬁ RT;
=0

Where 7 refers to the current bone, 4 is referring from the root bone up to the current
bone, R is the rotation matrix and 1" is the translation (offset) matrix. As such the

transform is a affine transformation that preserves the lengths (offsets) of all the bones.

7/ igurate: An application for rigid skeleton modelling

Hips

Hips

DWRN

Fig. 6: Humanoid bone model

The global coordinate frame refers to the coordinate system that is centered at [0,0,0]
and is orientated with the Up vector as [0,1,0], the Foward vector as [0,0,1] and the
Right vector as [1,0,0]. The offsets of each bone refer to the [X,Y,Z] offset from the

parent bone position in the root bone coordinate frame.

The skeleton pose refers to the complete set of rotations on the skeleton bone model.
The aim of this application is to be able to detect and make an accurate estimation of

the skeleton pose using the real-world model and a web-cam.

The entire bone structure is stored in both a list structure as well as a tree structure
where each parent has a bi-directional link to its children. It is also worth noting
that since we need calculate bone positions and marker positions quite regularly, we
avoid computing the entire chain of transforms every time we want a specific bone by
precomputing and storing the global transforms of parents before computing the global
transforms for their children. The list structure helps us easily achieve this by always
storing parents before their children in the list, we can simply iterate through the list

to compute global transforms.

3.1.2. Markers

A total of 1024 markers with unique IDs are available to use, this is due to the number
of unique rotational variant patterns possible on a 5x5 grid. These markers can be
associated with a bone by marker ID, offset from the bone and the x,y,z Euler rotation
of the marker in the bones local coordinate system. To find the position of a marker

in the coordinate system of the root bone is as follows:

([rT)MR,MT,
1=0

Where M R is the marker rotation and M 7T is the marker translation.

A marker also has 4 ordered corners, To get the 3D Vector location of a specific
corner, the final marker transform needs to be multiplied by the offset of the marker
corner from the center of the marker. The model defines the edge length in mm of

the markers on the model.

0 1

2 3

Fig. 7: An example marker with corners highlighted

Throughout this report we talk about the marker coordinate frame, this refers to the
coordinate system with the marker center as [0,0,0], the Up and Right vector being
planar with the surface of the marker the and the Foward vector coming off the top of

the marker.
3.1.3. Constraints

The user can also define constraints on the rotation. For instance they can limit the

movement of a bone to only rotate on the relative Z axis. This is useful in situations

where the real world model is actually constrained to less than 6 degrees of freedom in
terms of rotation. The rotation of the knee joint is a good example, it is constrained

to movement in only 1 axis as shown in Figure 8.

Hyperexiension

160°

Fig. 8: Knee joint

The default constraint is +/- 180 degrees on X,Y and Z. The user can specify anywhere
between these values for the constraint. The root bone is always considered to be
constrained to all Os in X,Y and Z for optimisation purposes, the rotation of the root
bone does not particularly matter as we are only concerned with the rotations relative
to the root bone. The benefit of constraining the angles in the model is that the
estimation at the end is likely to be faster and more accurate as it will not search in

regions with angles that are outside of the constraining range.
3.1.4. File format

The application will output models into text format when the user wants to save and
load the models up for future use.The following Figure shows the specification for the

bone model file:

N N W

00 J O\ U1 AW =

N RO = = e s e s s
—_ O V0 0 N V1AW= OO

[Name] &[ParentBoneName | *

[xLow] [xHigh][yLow][yHigh][zLow][zHigh]
[xrot] [yrot] [zrot]

[offsetx] [offsety] [offsetz]

[endsitex]* [endsitey]* [endsitez]*

[no of markers]

[markerID] [xoff] [yoff] [zoff] [xrot] [yrot]

Fig. 9: Specification for bone model file

The asterisks indicate an optional value in the specification

The file is exported with the .figure extension. A simple example with 3 bones is

shown below:

-- Model definition for: testmodel --
Hips

-180 180 -180 180 -180 180

000

000

1

0000O0O0DO

2&Hips

-180 180 -180 180 -180 180
000

-40 0 0

1

1000000

5&2

-180 180 -180 180 -180 180
000

040 0

1

2000000

Fig. 10: Model definition for testmodel

3.2. Video input

Directshow is used for the video input, the application accepts any standard web-cam

that is capable at running at 30 frames per second and outputting at 640x480 resolution.

i / iigurate: An avpplication for rigid skeleton modelling

Each incoming frame is preprocessed to extract out information such as which markers
are viewable and the relevant marker transforms. A single 640x480 frame and associated

information will be referred to as a view throughout this report.

3.3. User Interface

A fully featured GUI was created in order for users to easily create, load and save
their own models. Upon starting the application the user can choose to edit an existing
model or create a new model. The GUI allows the user to add, edit or delete existing
bones, associate, dissociate or edit markers on a bone and see their changes reflected
in real-time with the interactive 3D model viewer. Upon finishing editing or creating
the model, the user can save the model with a chosen file name. Interaction of the 3D
model viewer can be controlled solely with the mouse or with the mouse and keyboard.
The user can pan, tilt, rotate and zoom in/out using the mouse. Furthermore the Ul

provides an intuitive way to select/focus on a particular bone using the mouse.

4 Bone 1

~ Bone 1 ~

Fig. 11: Example of adding a new bone
1. Bone name

2. Input for new bone offset and name

3. Rotation of selected bone

~26~

V/ iigurate: An application for rigid skeleton modelling

4. Connected bones of selected bone

5. 3D model viewer

l\"

testmodel

v

testmodel2 testsimp'e90

Fig. 12: Loading saved models

1. Text input box - Models sharing the prefix with the name in this box are
highlighted

2. Model viewer

The graphics were implemented using XNA. Model files have the extension .figure and
are saved into separate folders with the name of the model within the directory: <Doc-
uments>/figurate/ models/ <ModelName>/<ModelName> figure. Users can overwrite
existing models by specifying an already existing model name when saving, they will be
prompted that they are overwriting before they confirm to save. The Ul also provides
a way to see the ordering of corners on a marker. Simply select marker mode on the

top left corner and all the markers on the model will display the corner indexes (0-3).

After model creation is done or an existing model is loaded, the user can choose to run
one of two options. The first is a test that simulates running one of the implemented

rotation optimisation techniques explained in the next section. This can be run by

pressing the F1 button. The second option is to perform the optimisation using the
actual real-world model and the web-cam. The user will be able to see the web-cam
view on the right of the screen and the watch the 3D model being fitted to the real-
world model in real-time on the left of the screen. This can be started and stopped by
pressing the F2 button. On-screen guides to help the user obtain the best optimisation
will be displayed depending on the optimisation technique chosen.

3.4. Marker pose detection

All the approaches required the system to know where the markers in the video frame
were relative to camera. The AVLAR library by VTT was used as it provided methods
to detect markers in the scene. AVLAR uses an edge detection approach in order to
detect markers in the scene. A basic overview of the process it uses to detect markers

is as follows:

Grab image from web-cam

Convert to Gray-scale

Use adaptive threshold to binarise image

Search for edges in image

Group edges into lines

Find sets of four joined lines to get potential marker

Verify marker by checking if outside is white and inside is black

Transform 2D quadrilateral into square

O 00 I O U1 B~ W N —

Determine ID from pattern in square.

A more detailed explanation is included in the background section. The four corners of
a marker can be found in the scene using this routine, these corners can be ordered in
a systematic way due to the fact that the pattern inside the marker is rotation variant
and thus can tell us the rotational orientation of the marker in the scene. From this we
can estimate the camera transform relative to the marker position using the coplanar
POSIT algorithm [16], POSIT generates two approximate poses in the degenerate case

where the four input points are coplanar. This routine is outlined below:

Algorithm 1 POSIT
1. gi0) = O,n=1

2. Beginning of loop
Solve for 2, j and Zj using the below 2 equations. When the points are coplanar,
the additional equality ¢.j = 0 must be used. Two poses are found

3. Compute ;) = %OMOMi -k, with k = ¢ X j. In the coplanar case, two sets
of g; with opposite signs are found.

4. 1f | €i(n) — €i(n—1) |< Threshold, Exit
Else n =n + 1. Go to step 2.

M refers to the model points where My is the reference point of the object and M;
is the position of the ith model point relative to Mj.

MoM; - I = x;(1 + &) — xo0,

MoM; - I =y;(1+¢€;) — yo,

with

.
I—ZO,J—ZOJ,

Fig. 13: Solving for ¢ and j

The second step is to discard one of the approximate poses. This is achieved by using
the heuristic that all 4 corner points must have been in front in the camera (Z; > 0). It
can be seen that at each iteration, two poses are obtained, this means we have 2" poses
after n iterations. In practice we can generally discard one of the poses per iteration
and therefore only have to travel done one branch of the tree of possible poses. After

achieving the threshold, we obtain our final estimated pose.

3.5. Camera calibration

In order to get any sort of accuracy from the pose estimation of the markers, we must
take into account the distortion of the camera lens. The model for camera distortion
is explained in more detail in the background section. ALVAR can take into account
camera distortion if the user inputs an XML document that tells it the camera's intrinsic
and extrinsic parameters. GML toolbox was run with two marker boards of size 9x6
(box size 23.6mm) and 60 images in order to calibrate the camera. The results from
GML toolbox were then inputted into the XML file for use with ALVAR.

-/ qigurate: An application for rigid skeleton modelling

%2 GML Camera Calibration Toolbox v.0.5 beta =10§ |
File ObjectDetection Calibration Undistort Help

L) G| B3] 2]] %5

Calibration object | Flesultsl Reproject | Point Densdyl How To... I

.] FICTO001.JPG
ICTO00Z2.JPG
ICTO003.JPG
ICTO004.JPG
ICTO005.JPG
ICTOO06.JPG
ICTO007.JPG
PICTOD0S.JPG

Image PICTOO001.JPG [

Fig. 14: GML camera calibration

~30~

3.6. Initial approaches

In this section we will explore some of the initial approaches tried before coming up
with the final solution. The advantages and disadvantages of each approach will be listed
and the features carried forward into the final solution will also be highlighted. Each
of the approaches was based on the idea of solving bundle adjustment using non-linear
programming, that is to solve a set of equations collectively over a set of unknown
variables with some sort of objective function that must be minimised. This objective
function is non-linear. The technique used to solve these equations and minimise
the objective function was chosen to be the Levenberg-Marquardt technique which is
explained in depth in the background section of this report. The reason why we chose
to use non-linear programming was because we want to take as much information from
the scene into account. Each view from the web-cam can only see certain parts of the
model and we wanted a way to collectively use different views in order to estimate the
rotations of each bone. Furthermore, the final transform of each bone is dependent on
the transforms of its chain of parent bones all the way to the root. As such we know
that each equation will take into account a set of bone rotations. We can therefore know
that the unknown parameters we will be optimising over will be the x,y,z rotations for

cach bone over the range of +/- 180 degrees.
3.6.1. PTAM approach

The first approach involved using PTAM in conjunction with marker detection in order
to generate a map of where the markers were in the unknown scene. PTAM would be
used in order to estimate the global camera pose whilst exploring the environment with
the web-cam. The camera model used is the modified pinhole camera model described

in the background section. This approach is outlined below:

1. For every view obtained from the web-cam, markers are detected and each
corner is stored as a 2D pixel coordinate as to where it appeared on the view.
This is stored alongside the 6 camera parameters that describe the camera pose
in the global coordinate frame. The [X,Y, Z] look-at vector and the [X,Y, Z]
camera position.

2. If we see the root bone (we know we are seeing this if we see the marker
associated with it), we can then work out the transform to get from the global
camera coordinate frame to the root bone coordinate frame. We then know for
every frame where the camera is in relation to the root bone position. We can
determine from this where all the other marker corners should be on the screen

based on the estimated rotation values.

3. The objective function aims to minimise the sum of the euclidean distance between
the projected 2D pixel coordinate of a specified corner from the estimated model
and the same corner as seen in the view of the web-cam across all selected
views. Views are randomly selected from the set of all views for each run of

the optimisation. The objective function is summarised in Figure 15.

—

m—

3
> O (ME; — MVy;)?)
i

J=u 1

Fig. 15: Objective function to minimise
Where m is the view number, 7 is the marker corner index, M Eij is the projection
of the ith corner in the estimated skeleton model onto the screen using the camera
pose in the jth view. MVj; is pixel coordinate on the screen of the ith corner in the
Jth view.

We can find the projection of a specified corner by first finding the translation vector
in the root bone coordinate frame from the estimated model (refer to section 3.1) and

using the equation in Figure 16.

Xf Yy
u = — V= —
zZ '’ Z
1. 1 . R .
T = §Wzdth + uindth , Y= §Hezght + viHezght

Fig. 16: Projecting corner onto viewing plane
Where (u,v) are coordinates on the viewing plane, (z, y) is the pixel coordinates on
the screen, f is the focal length (in mm) and (X,Y,Z) is the 3D coordinate of the
corner in the frame of the camera space. Width and Height refer to the width and
height of the screen in pixels.

Each run of the Levenberg-Marquardt optimisation takes 30 views, therefore the total
number of equations is equal to 30 Zgzo 8Mpy , where b is the bone count and M,
is the number of markers on bone b. There are 8 equations per marker as we take
the x and y coordinates for each corner as separate equations to optimise over. 30 was
chosen as the view count as the Levenberg-Marquardt algorithm is of the order O (n3),
30 was a good compromise between number of views and computation time for the

average model. There were also problems related to local minimums if we selected too

many views. The number of views taken can be tweaked in the TestLevenbergPTAM.cs

class file if the model is very large or very small.

Implementation The first step taken was to compile and run PTAM on Windows, this
was done in Visual Studio 2010. After a build of PTAM was achieved, work was done
to make PTAM as a separate process be able to communicate with the main application
running in C#. Named pipes was chosen as the method of communication as it had a
low overhead and was ideal because of the fact that both processes would be running
on the same machine. PTAM was modified with an extra thread that acts as a server
for the named pipe communication, additionally an extra procedure was added to the
main tracking loop which detects markers in the scene and estimates the pose of the
markers. Since PTAM already grabs frames from the web-cam it was not needed for

the CH# application to grab camera frames of its own.

Upon connection to the server as a client, the main application would start requesting
views from PTAM. PTAM would be passing to the client a 640x480 RGB24 image
representing the current frame as well as the associated camera pose and also the
marker transforms and IDs in the current frame. This would then be stored in the
main application as a new view for possible use in a future optimisation. The camera
view from PTAM can be activated in the main application by clicking on the **Activate
PTAM" button in the bottom left of the Ul. When the user specifies to start the
optimisation, any incoming frames are saved as views if the camera pose stability is
deemed "'good" by PTAM. When the user presses F2 again, Levenberg-Marquardt is
used to estimate the rotations of the bones using 30 of the views selected at random
from all views. The optimisation can be repeated with another set of 30 views by
pressing F2 again. The old estimated rotations are used as the starting guesses for the
new run of Levenberg-Marquardt. The camera images are displayed to the user in

real-time.

A simulated test was also created for this approach. It started by rotating the bones at
random, this would be the result we are wanting to get to at the end of optimisation.
Next it generated 30 random camera poses around the skeleton model. For each view,
the skeleton model with the rotations applied was projected onto the screen using the
camera pose associated with that view. Gaussian noise was then applied to the 2D
positions of the corners in each generated view. These generated views were used as
input to the Levenberg-Marquardt simulated run. The reason for creating this simulated
test was to determine whether this approach would be viable from an early stage, and
to casily determine how accurate we could get with this approach. We could easily
determine the rotational error for each bone and the 3D point difference for each

marker corner between the estimated and actual model.

Evaluation From the simulated runs, we quickly determined a problem area for this
approach. From running the simulation 50 times, about 5 of these runs resulted in very
large rotational errors whilst the other 25 resulted in acceptably close (+/- 0.1 radians)
rotations per bone. The cause of the bad runs was due to the fact that Levenberg-
Marquardt was stuck in a local minimum when optimising over the set of all equations
causing the algorithm to terminate with a bad estimation. A number of possible fixes

were outlined to solve this issue:

- Random starting parameters - We would be running simultaneous instances of
Levenberg-Marquardt with randomly chosen starting parameters and selecting the
instance with the minimum objective function after all the instances return. The
downside to such an approach would be the computational overhead of running
multiple optimisations at once.

- Use marker rotations to determine starting parameters - The orientation of one
marker to another marker on the parent bone allows us to roughly determine the
rotation of the parent bone. We can use this as input into the LM optimisation.
Choose views that will produce better results - Local minimums can be reached
due to poor selection of views. If we never see any of the markers associated
with a bone and the bone has both a child and parent, there can be multiple
possible rotations possible resulting in many local minimums. We can use some

heuristic to choose 'good' views to use for a run of the optimisation.
Some of these improvements would be implemented in future approaches.

The major problem associated with this approach was discovered when we attempted
to gather the views from PTAM. The tracking information obtained from PTAM was
not very stable resulting in bad estimation of the global camera pose and as a result
a bad projection of the 2D marker corners. Another problem was that PTAM would
lose the global map quite often, every time this happened, the root marker would have
needed to be seen in the view of the camera in order to use the views captured with

the new map. There were a number of reasons why this was happening:

- Not enough feature points in scene - PTAM works best when there are a lot of
feature points to track across frames, the best feature points come from textured
and cluttered environments. Since the application would be typically used when
the web-cam is looking at a mostly white object on an empty desk, it was
likely having difficulties getting a large number of good feature points to track.
Additionally the camera would typically be closeup to the object and rotating
around it. The feature points cannot be tracked when the object is occluding

them which would happen a lot as the camera moves in a path around the object.

As a result of having only a small set of valid feature points, tracking quality was
degraded.

- Wide angle lens - PTAM works best with a wide angle lens as it can see more
of the environment in a single frame and therefore find a larger number of valid
feature points to track. The application is made to work with only a standard
web-cam with a normal FOV, this issue compounded with the above issue further
degraded the tracking quality.

- Relying on the root bone marker - Views in a map that hasn't seen any of the
markers attached to the root could not be used in the optimisation step. The
camera pose used in the optimisation was the global camera pose transformed into
the root bone coordinate frame meaning that the quality of a view relied heavily
on the map tracking the pose of the root bone accurately. It would be possible
to make the optimisation root bone pose invariant by not specifying that the root
bone was at position [0,0,0] with no rotations and allowing optimisation to run
with views using the global coordinate frame. However this introduced more
problems as it caused more local minimums due to the fact that the skeleton

root bone was not fixed in position.

Some of these problems could have been remedied by having the user trained in how
to move the camera as well as modifying the environment to make it easier to get good
feature points (such as placing a checkered pattern underneath the model) but it was
decided that this would be against the principle of the application being able to work
(almost) anywhere and by anyone without knowing any technical knowledge about it.
This approach was ultimately abandoned due to the after-mentioned problems, although

some of the ideas discussed above would appear in later approaches.
3.6.2. Marker distance approach

The next step was to look for a objective function that did not rely on global camera
position. The upside of this would be that we would not need to reply on any sort of
accurate tracking of the global camera pose, the downside was that we would need to
rely on having 2 or more markers in the frame at a time. There would be no way of
conferring information about a view with only a single marker due to the fact we don't

know how the camera is orientated in relation to the other markers on the model.

The intuition behind this approach was that the distances in 3D between the markers
would give us some idea about the rotation of the bone in the model. Based on this

an initial objective function was devised:

m—1n—1

>3 UT—T; |- | Di—Dj |)* i#j

i=0 j=0

Fig. 17: Distance cost function
Where T; refers to the 3D vector location of the center of marker ¢ detected in the
real-world view in the camera coordinate frame, D; refers to the 3D vector location
of the center of the marker ¢ from the estimated model in the root bone coordinate

frame and m,n represent the marker count

This new cost function was inputted into the simulation and test data was generated
for a simple 6 bone model in order to test the viability of the approach. Upon running
the tests it became clear that the cost function had no way of determining the local
rotation of a marker since it was only relying on the distances between the marker
centers. This problem was most obvious on the end sites of the skeleton model where
if the marker was positioned at the bone joint, the bone could an infinite number of

possible rotations that would lead to the same cost.

The next improvement was therefore to not rely on the distances between the center
of the markers but to look at the distances between associated corners on markers.
Associated corners are corners that have the same corner index on different markers.
This allows the optimisation to take into account local rotation information that may
have been lost by only looking at the distances between the centers of the markers.

The objective function is shown below:

—_
—_

m—1n—1 3

22 2 (Tie=Tpel = | Die = Dic)* i#

j=0 c=0

1=

<

Fig. 18: Corner distance cost function

The variable c refers to the corner index (0-3)

Implementation

Instead of looking at individual views and minimising the distance cost for ecach view,
it was decided to minimise the average distance of all views for a pair of marker cor-
ners. This was done to reduce computational cost, instead of optimising Viewcount -
Z:,;_Ol Z;'L:O 4MN equations, we would be optimising over Z?;_Ol Z;L:_& AMN
equations. The application keeps a running average of distance for every corner as-

sociation of every marker to marker relationship, this information is stored in the

DistanceStorage.cs class file, each corner for a marker to marker relationship has a bin
that holds its running average. When a new frame is captured, the markers are detected,
the distances are calculated and then these distances are added to the running average.
The rotation of the root bone was constrained to all Os as the orientation of the root
did not matter for this approach, likewise the rotations for the bones were constrained
to —180 < r < 180 degrees. The flow of the tracking part of this approach is shown

below:

Capture frame from web-cam
2. Identify markers in frame, compute transforms for markers
3. Work out corner distances for markers seen, add new distances to the relevant

running average of distances.

Similar to before, the new cost function was simulated with test data. Test data was
generated by taking the actual distances from an already rotated skeleton model and
app]ying Gaussian noise to these distances. Since a pair of markers may never appear
in the same view, we added in a probability that a pair of markers never have any

recorded distance into the test data as well.

For the real-world running, we implemented another processing thread that continuously
ran the optimisation in the background whilst updating the model in the 3D model
viewer with the new estimated rotation values. This allowed the user to see how
close the optimisation is getting to the real-world skeleton model in real-time. This

optimisation thread is summarised below:

1. Copy the array of average distances for all marker-marker relationships - these

will be used as our observed data for the optimisation equations.

2. Get previous estimated rotation parameters (Initial run will be set to all 0s).
3. Run optimisation for 5 iterations
4. Update 3D model in viewer with new estimated rotations.
5. Go to 1.
Evaluation

This approach produced adequate results very quickly but there were problems with
generating very accurate results, especially at the extremities of the skeleton model. In
order to test the real-world running of this approach, a couple of test skeleton models
were created, known rotations were applied to the model and the application was run
against the rotated model. A record of average rotational difference per axis on a bone
was recorded against the number of iterations of the optimisation. Figure 19 shows the

test model and the rotated test model. Figure 20 shows the results of a run with over

f igurate: An application for rigid skeleton modelling

15,000 iterations which took about 30 seconds to complete. Notice how the rotations
eventually converge down to about 6 degrees average difference per rotation. The
biggest rotational differences are located at the extremities of the skeleton model as

seen in Figure 21. The camera was constantly rotating around the model.

Fig. 19: Left - Inputted model, Right - Model with rotations applied

40
35 M H
_ =
30
25
20 ——

— j
15

10]

Average rotational diff. (Degrees)

T | T T T T
0 500 1000 1500 2000 2500 3000 3500

Runs (5 iterations per run)

Fig. 20: Results of the distance-corner optimisation

. / Aigurate: An application for rigid skeleton modelling

Hips

""fizn Hai

Fig. 21: Showing the final result of optimisation

The results are promising for this approach however there were some key issues involved

with only looking at the distances:

Overestimation of distance - Distances recorded between corners tended to be
overestimated. The amount of error was dependent on the distance of the
camera to the markers and also the angle of the camera relative to the markers.
Overestimation of the distance caused problems for the optimisation and is the
reason why the end sites of the skeleton model were the most error-prone. It
was unlikely that an end site would have another marker on the other side of
it to compensate for the overestimation from one side of the model, this caused
the optimisation to change the rotation incorrectly in order to accommodate the
overestimation of distance. This problem would be exhibited by any marker
which is located in an area of the model where only a few other markers can be
seen and these other markers are all located close together. The overestimation of
distance is likely caused by not perfect calibration of the camera in combination
with the fact that the marker detector cannot perform sub-pixel accuracy when
detecting the marker causing the markers to be detected slightly too small. This
error would increase as the marker appearing in the frame got smaller.

- Local minimums - There were still cases when the optimisation got caught in
local minimas, the optimisation works best if all markers can see each other.
If a certain set of markers cannot see another set there may be many possible

rotations that would be valid in terms of reducing the objective function.

The upside of this approach was the speed of running, the problem size was essentially
fixed as instead of relying on separate views, we relied on the average distances for
cach corner of a marker-marker relationship. The downside was that it required 2 or
more markers on the screen in order to use that particular view. Another downside
was the fact that there were still quite a few rotational errors in the final results mostly
due to the overestimation of distance, these rotational errors increased dramatically if

the optimisation did not have distances recorded for certain marker-marker relations.

3.7. Final approach: Marker projection from view

A final approach was devised that took inspiration from both initial approaches. We
still did not want to be reliant on the global camera pose, however we wanted to be
able to take each individual view into account and be able to optimise over a number
of selected views. Instead of looking at the distances between corners in each view,
we project out the marker corner positions from a selected marker in the scene and
aim to minimise the 2D euclidean distances between the seen marker corners and the

projected marker corners. Figure 22 shows the inputted model shown in Figure 19

f igurate: An application for rigid skeleton modelling

Fig. 22: Example showing the projected marker corners based around the marker with ID 0

projected onto a real-world model without any rotations applied. The projection is
based around the marker with ID 0, orange points are the projected corners, red points

are the detected corners.
3.7.1. Objective function

We first needed to define the new objective function to minimise. The objective function
will be looking to minimise the 2D distances between where the model expects marker
corners to be from the estimated rotations and where they are actual seen in the frame,
this is a similar approach to the PTAM approach after-mentioned. The key difference
is that instead of using a global camera pose, we will use a camera pose where a
single marker is selected to be at the center. The estimated skeleton model will be
transformed so that the same marker on the skeleton model will be matched up with
the marker seen in the camera. If we know the transform matrix of a marker in the
view, we can transform every marker corner in the skeleton model as in Figure 23 to

obtain its coordinate in the chosen markers coordinate frame.

T=MCHWP

V' = [Tuo, Tar, Ta2]

Fig. 23: Getting vector position of a marker corner
Where 1 is the transform matrix of the marker corner in the camera coordinate frame
and V is the 3D vector coordinate of that marker corner. M is the marker corner
transform in the root bone coordinate frame. C'is the marker transform of the chosen
marker in the root bone coordinate frame. W is the world transform matrix, i.e. the

camera transform obtained from the chosen marker and P is the projection matrix.

Knowing the vector position of the marker corner in the view, we can now do a

projection to get it into screen coordinates using the formula in Figure 24.

Xf Y f
u = —— V= —
zZ A

1 1 1 1
T = §Width + uin'dth , Y= §Height + U§Height

Fig. 24: Projecting to screen coordinates
Where (u,v) are coordinates on the viewing plane, (x,y) is the pixel coordinates on
the screen, f is the focal length (in mm) and (X, Y, Z) are the 3D coordinate of the
corner in the frame of the camera space. Width and Height refer to the width and

height of the screen in pixels.

The actual marker corners seen in the view can be extracted from the relevant marker
transform matrix. Since we know the edge size of a marker, we can take the corner as
a translation from [0, 0, 0] and multiply this translation matrix by the camera transform
from a specified marker. We can then use the same projection formula as in Figure 24

to get the position in screen coordinates.

Now that we found the two marker corner screen coordinates, the objective function
is to minimise the distances between them. This leaves us with two problems, firstly
how do we choose which marker is to be used as the chosen marker in each view.

Secondly how do we choose which views to use?

The first problem was solved by ranking the markers in each view depending on how

accurate its pose estimation was likely to be. The intuition was that since some of

the marker corners were far far away from the chosen marker position, any error in
pose estimation would be exacerbated the further the point was away from the chosen
marker. Choosing the most accurate marker meant that we reduced the likeliness of a
very bad pose being used which would result in a lot of error when calculating the 2D
point difference. 2D size of the marker in the view was used to rank how accurate the
pose estimation for a marker was likely to be. The larger the area on the screen, the
less likely that sub pixel inaccuracies when detecting corners would occur. Figure 25

shows the formula to get the area of the marker in the view.

A©) =5 | (Va=Vo) x (V3 =11) |

N

Fig. 25: Area of a 2D quadrilateral
Where V; is the 2D coordinate of the ith point.

We can define the objective function in terms of the set of equations for each view.
We use the above ranking to obtain the marker that is most accurate within a view,
the next step is to project the estimated skeleton model based on the chosen marker.
The next step is to project out the corners for each seen marker in the view. Finally

we can get the 2D distance as shown by the formula in Figure 26.

n—1 3
(Eic - %0)2
0

=0 c=

Fig. 26: 2D distance between marker corners
Where n refers to the marker count, ¢ is the corner index, F. is the calculated screen
coordinates of marker ¢ and corner ¢ from the estimated skeleton model and Vj. is the

calculate screen coordinates of the marker ¢ and the corner ¢ in the view.

Since the computational time for the optimisation increases exponentially with the
problem size as it is an O(n3) problem, it was decided to limit the views per run
of the optimisation to 30 views. Another improvement is to not always run a global
optimisation looking to optimise the rotations for all the bones in the model. We can
run localised optimisations that only looks at a subset of bones to optimise over. The
skeleton model makes it easy to divide up the optimisation into localised sections since
we know that to estimate the rotation of a bone, only the bones in the route to the

root bone would affect its final position. This is illustrated in Figure 27.

-/ Higurate: An application for rigid skeleton modelling

‘ %J"

x

Fig. 27: Local optimisation
Notice how a rotation of the parent bone of the top half will not affect any of the positions of bones in

the bottom half,

If we represent the skeleton model as a tree, we can perform a local optimisation by
moving from the rootbone and picking our way down the tree until we reach a leaf
node. A leaf node represents an end site of the skeleton model. This path through the
tree can be further reduced in size by picking a connected section within it to perform
the optimisation over. We would only need to consider markers that are related to the
bones in this selection. The views that we would use for the local optimisation must
have 2 or more of these markers in them otherwise they would be worthless to the
local optimisation. Preferably we want the views where the most accurate marker in
the view is one of the markers in the selection in order for the results from the view

to be less error-prone.
An outline of the localised selection is below:

Start at root node

Select one of the children, add to selection

25% of adding any of the other children to selection
Travel to first selected child

G AW N =

If child is end site terminate, else go to 2.

Since the computation time of the optimisation is exponential with the number of bones,
by doing a local optimisation over a subset of the bones we are drastically reducing the

time it takes per iteration of the LMA optimisation.

Hips

Hi ps

Selected bone S

Fig. 28: Bone tree representation

Only the highlighted bones will be affected by the rotations of the chosen bone

There is one more heuristic we can take into account to minimise local minimum
problems with the optimisation step. We can take advantage of the fact that we can
estimate the orientation difference between the two connected bones by comparing the
camera transform matrices between the markers on both bones. We can use this value
to constrain the search for the rotation to up to +/- 20 degrees from the estimated
value. We only want to do this if we have adequate data to support that the rotation
estimation is correct so we take the average of all views showing the rotation and only
use it as a constraint if we have over 120 views adding up to the average. We also
keep a running variance value for each rotation, based on this variance we can limit
the constraint even further, a low variance can make the constraint as low as +/- 8

degrees for the rotation.

(M; R) (MR~

Fig. 29: Finding rotation transform from one marker to another
Where M; refers to the marker transform of © and R; refers to the rotation matrix part of

the transform of 1.

The equation count for optimising across all bone rotations is therefore Viewcount Z:‘L:O Zi:O(EiC_
V}C)Q Whereas a local optimisation is the same except that n represents only those

markers included in the local optimisation.
3.7.2. Implementation

We can now outline the entire algorithm in two sections. The first section deals
with the tracking part where we detect the markers in a view and process the view
in preparation to be used in optimisation. The second section deals with how the
optimisation chooses the views it is going to use and how it determines the constraints

to use for each rotation parameter.
Tracking
Whenever a new frame is captured the following happens:

1. Detect markers in scene - We use ALVAR marker detection in order to detect
markers and associate an ID and camera transform to them.

2. Check distances - We can know the maximum possible distance two markers
can be apart from the skeleton bone model. This is essential the max distance
that the markers can be apart in 3D that the skeleton model allows. We can
precompute this distance for each marker-marker relation before the optimisation
begins. If a distance between two markers is larger than this maximum distance
by more than 10mm we can discard the entire view as it is likely that the marker
detector has incorrectly labeled one of the marker IDs. If we know that at
least one marker has been incorrectly labeled, it is likely that the tracking of
the view was not ideal anyways. Similarly, we can discard any view where the
closest marker appears more than 300mm from the camera, the pose estimation
is unlikely to be very accurate.

3. Work out rotation between connected bones - If two markers on connected bones
appear in the frame, we add the [X,Y,Z] rotation between them to the running
average of rotation for that particular bone pair in the ViewStorage.cs class file.

We also increment the count seen for that bone pair rotation.

4. Rank marker accuracy - We rank markers within the view by the area that the
quadrilateral formed by its corners in 2D make, it is more likely for a marker
pose to be accurate if it appears larger in the view.

5. Construct view object - A new view object is created that includes information
such as the markers seen in the view and the associated camera transforms. This
view object is stored along with all other views in the ViewStorage.cs class file.
The view is placed into a bin that corresponds to its most accurate marker. A
reference of this view is also placed into a bin corresponding to its 2nd most

accurate marker.
Optimisation

Optimisation happens in a separate thread. Every run of the optimisation does 5

iterations with 30 views.

1. Decide whether to do local or global optimisation - There is a 50/50 chance of
doing cither. If we choose to do a local optimisation we use the selection process
in order to select the bones to optimise over. From this we can then modify the
equations to only take into account markers on the chosen bone and the bones
in its sub tree.

2. Determine constraints - There are two constraints that can be applied. Firstly we
can look at the user inputted constraints, secondly we can look at the constraints
implied by the average rotations seen in the tracking stage. If the two constraints
are not overlapping we take the user inputted constraint as the constraint for
optimisation and we also clear the rotational average determined from the tracking
stage, we assume that the user has constructed the model correctly and that the
seen rotation is impossible on the model. Otherwise the final constraint is the
lower and upper bound from the rotational and user inputted constraints that has
the least difference.

3. Collate views - We select 30 random marker IDs and pick views that have these
marker IDs as their primary or secondary accurate markers, we bias the selection
of views to pick ones that have been seen more recently, this is to avoid not
taking in new information once the view count gets too large. This gives us
a good spread of views as the logic to pick the views is not skewed towards
markers that are seen a lot. If we are doing local optimisation, we can only
randomly pick marker IDs corresponding to the markers of the bones we are
optimising. Also we don't pick views that do not have 2 or more of the markers
we are optimising over.

4. Run optimisation - We can now perform the optimisation. The input estimated

rotation parameters are the results from the previous run (all Os for initial run).

V/ iigurate: An application for rigid skeleton modelling

For every view we take two sets of equations, the first set uses the most accurate
marker as the chosen marker, the second set uses the second most accurate marker.
If we are working out the objective function on a view that does not contain
a marker that we want to include in the optimisation, the difference for any
equation that includes that marker is set to 0.

5. Update 3D model - Finally we can update the 3D model viewer with our new

estimated rotation parameters.

Another improvement over previous approaches is that we can now see clearly when
the estimation is poor in the Ul It now overlays onto the camera feed the estimated
marker corner positions centered on the most accurate marker in the current view as
seen in Figure 30. The 2D points are re-distorted using the brown's distortion model

so they match up with the marker corners on the screen.

Fig. 30: Ul showing estimated corner positions

Evaluation

The evaluation of the final application will be done with quantitative analysis as well as
qualitative analysis. We will be looking at how accurate the estimation of the rotations
gets on a number of skeleton models which we know the exact rotations of. We will
also look at each of the improvements to the core optimisation explained in the previous
section and see how they affect the final estimation result. Finally we will be doing
a walk through of the final application on a more complicated model to show how

intuitive it is to use.

4.1. Quantitative analysis

We will be performing the optimisation on each model for 35 runs of 5 iterations each.
The attached graphs will show how the average rotational difference for a single rotation
changes over the runs. The algorithm does not expect the same views for every run
and there are non-deterministic parts of the algorithm as well so we do not expect
every run to generate the same results. To help alleviate differences due to changing
observations and randomness we will be doing 5 passes of 35 runs for each model and
taking the average of the results of all passes. The camera will try and keep on a similar
path for every pass performed in order to give the optimisation similar views for every
pass, however there is still some randomisation due to noise and view selection. The
camera will be moving in a circular path above the model whilst directed towards the
model as shown in Figure 31. We will be using two main metrics for the evaluation,
firstly we will look at the 3D point difference. This is done by looking at the average
distance between where the bone is estimated to be in the skeleton model and where
the bone actually by applying the pre-measured rotation values to the skeleton model,
we take a reading of this every run. Secondly we look at the average rotational error
for an axis of rotation on a bone, this is the difference between the estimated rotation
and the actual rotation of the real-world model, this is recorded every run as well. We

will also look at the variance against runs for both metrics.

Fig. 31: Camera path

4.1.1. Base model 10 markers

We will start by testing on a model with 10 markers. Figure 32 shows this model with
no rotations applied. No constraints have been applied to the bones since we want to

test the accuracy on all axis (X, Y and Z).

Bone Index | X offset ‘ Y offset ‘ Z offset ‘ X constraint | Y constraint | Z constraint

BO 0 0 0 0 0 0

B1 0 40 0 N/A N/A N/A
B2 -20 20 0 N/A N/A N/A
B3 -30 0 0 N/A N/A N/A
B4 20 20 0 N/A N/A N/A
B5 -40 0 0 N/A N/A N/A
B6 -30 0 0 N/A N/A N/A
B7 0 -30 0 N/A N/A N/A
B8 40 0 0 N/A N/A N/A
B9 -20 20 0 N/A N/A N/A
B10 0 -20 0 N/A N/A N/A

-30,0,0

-30,00

0,-30,0

We will now test with the rotations as shown in Figure 33.

Bone Index | X [Y[Z |
BO oJlo] o
Bl 0o/ -15
B2 0] o] -30
B3 olo] o
B4 olo] o
BS 0] o] 100
B6 0] o] -s0
B7 0o/ 20
BS 0]o0] 50
B9 0] o] -50
B10 ojlo] o

-20,20,0

20,20,0

0,40,0

-40,0,0 40,00

Fig. 32: 10 marker model

Fig. 33: 10 marker model, rotations 1

-/ ﬂigurate: An application for rigid skeleton modelling

Hips

Hi ps

Fig. 34: After optimisation

The first graph shows the average 3D point difference for cach bone in millimeters.
Notice the rapid convergence after less than 20 iterations. This is mostly due to the
rotation constraints that are applied to the optimisation. It is also worth noting that the
variance of 3D point difference for each run was progressively getting low, each bone
was exhibiting roughly the same 3D point difference due to the fact we are optimising
over all markers in a view. If we only took into account rotational information across
connected bones, we would expect a larger 3D point difference near the extremities
of the model. At the end of the optimisation, we can see that bones came to roughly
Imm of the expected position which is an excellent result. The Imm error could be

due to a number of factors such as systemic error due to calibration or noise.

Variance (mm})
g E

g

Difference / mm

16

14

12

B / Aigurate: An application for rigid skeleton modelling

=
S

o

@

—

T N—

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Runs (5 iterations per run)

Fig. 35: 3D point difference

9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Runs (5 per iteration)

Fig. 36: 3D point difference variance

-/ ﬂigurate: An application for rigid skeleton modelling

The graph in Figure 37 shows the average rotational error for each rotational axis on
cach bone over the number of runs performed. It roughly follows the same shape
as the 3D point difference graph with a rapid convergence towards the correct pose
around the 5th run (25th iteration) and the stabilisation towards the 30th run. It also
shows we can expect the optimisation to reach a state where each rotation is roughly
+/2 degrees off the expected rotation. Unlike the 3D point difference we noticed a

greater variance on rotational errors, this is likely due to the self-correcting nature of

the model.

the optimisation. The 2D point differences are reduced to obtain a more acceptable
general pose, sometimes at the cost of worse rotational error on some of the bones in

25

20

e
&

Rotational error / (lcgrccs
15

e ISR

e .»"""\

9 PR
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Runs (5 iterations per run)

Fig. 37: Rotational error

B / Aigurate: An application for rigid skeleton modelling

45

w
@

8

Variance ((]cgrccs)

//

10

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Runs (5 iterations per run)

Fig. 38: Rotational error variance

The second test will use the same model with different rotations applied as in Figure

39. This test was also performed under less than ideal lighting conditions.

Bone index|X|Y| Z |
BO 0|0 0
B1 010|115
B2 01|01 120
B3 0|0 0
B4 0|0 0
B5 01| 0| 40
B6 0|0 -30
B7 0|0/ 80
B8 01|0]|-70
B9 01| 0| 100
B10 0|0 10

~56~

. / 'qigurate: An application for rigid skeleton modelling

Fig. 39: 10 marker model, rotations 2

Create New Mm’sl

Hips

Hi ps

Fig. 40: After optimisation

-/ Higurate: An application for rigid skeleton modelling

Figure 41 shows the 3D point difference. It followed a similar shape to the 3D point
difference from before however the convergence is not as pronounced. Notably this
optimisation was done in less than ideal lighting conditions which would have caused
problems with the quality of available views. Noise would have played a bigger factor
causing the marker pose estimations to be of poorer quality. Another problem would
be that some markers may have gotten mistaken for others. This is reflected by the less
stable optimisation shown in the graph, having a good selection of views would have a

much greater importance than before due to the fact that some views could adversely
affect the final result of the optimisation.

w

i

-

Difference /mm

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Runs (5 iterations per run)

Fig. 41: 3D point difference

. / 'ﬂigurate: An application for rigid skeleton modelling
20

18
NOA
AW
16 L ‘,‘
Yo
\
» 14 ",’
@ 4
£ \
by |
= n -
|
By \
5)
g \
: 10
“ 1
\
E \
c =8 L]
2 \
2 \
= \
. T
|
| AN .
" e] -
N T e - \"'“'\
5 .
0 T T T T T T T T T T T
1 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Runs (5 per iteration)

Fig. 42: Rotational error

We will now look at how the rotation constraints affects the optimisation stage of the
process. The next test will be using the same rotations as in the first 10 marker test.

However we will be turning off the rotation constraints and allowing the optimisation
to use any value between -180 and 180 degrees when estimation the rotations.

i / iigumte: An application for rigid skeleton modelling

Hips

Hips

Fig. 43: Final estimation with no rotation constraint

Figure 44 shows that even though the rotation constraints were removed, we have still
obtained an accurate estimation of the skeleton pose. It may seem that the rotation
constraints may not add anything to the process, however it does improve on how
fast the optimisation converges to an accurate and stable solution. Notice how the
optimisation took nearly 50 runs to become stable with an accurate result compared to
the 30 runs needed for the optimisation with constraints applied. This is because the
optimisation has to search across a larger range to get to the final estimated rotation.
Using the rotation constraints can also reduce the likelihood of local minimums affecting
the final pose due to the fact that the optimisation will start near to the actual skeleton
pose instead of starting at all Os for rotations. Figure 45 shows the rotational error, it
is very high initially due to the fact that we are starting at all Os rotation and eventually
gets close to the accurate rotation values.

~60~

Difference / mm

Rotational error / degrees

-
&

B / Aigurate: An application for rigid skeleton modelling

5]

Y

A

N
ot

=]

.
&

_J

1234567 8 910111213 14151617 18 10 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 43

Runs (5 iterations per run)

Fig. 44: 3D point difference - No rotation constraints

AWAN A
Vv

¥ ~—"\

12 34567 8 91011121314151617 18 19 2021 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Runs (5 iterations per run)

Fig. 45: Rotational error - No rotation constraints

. / qigurate: An application for rigid skeleton modelling

4.2. Qualitative analysis

In this subsection we will walk through the process of using this tool from end to end.
We will be doing the walk-through on the model as seen in Figure 46 starting with the
creation of the model in the Ul through to performing the optimisation to estimate the
skeleton pose. It has 10 bones in total, each with its own marker, 5 of the bones are
connected by hinges that allow movement in only a single axis and 4 of the bones are

connected using ball joints allowing complete freedom for rotations.

Fig. 46: real-world model

4.2.1. Creating the model

We have pre-measured the offsets of the bones and markers so all we need to do is
input them into the program. We start by selecting ''Create a new model" in the Ul
To add a new bone, click on the parent bone to select it, click on '*Add new bone"
and type in the name of the new bone and the X,Y,Z offset from parent. Finally click

create" to finish adding the bone. The 3D model viewer will update to reflect the
new bone added to the model and the new bone will automatically become the selected

~62~

bone. Also note you can change the X,Y,Z rotation orientation of any bone of the
model by clicking on the bone in the 3D viewer and adjusting the sliders that pop up
on the left of the Ul It is also possible to set the constraints on rotation on the bone
by moving the constraints marker on cach slider to the appropriate value. Another
useful feature is the bone hierarchy viewer on the right of the Ul, it shows the parent
of the current bone and lists the children underneath as well. Clicking on the name of

any bone in the bone hierarchy will make that bone the selected bone.

Hips
1dd o

~ Hips~

Hip: Tail

Fig. 47: Creating a new model
Top left - Starting a new model, Top right - selecting to add a new bone, Bottom left - Inputting the

name and offset, Bottom right - after adding the tail bone.

After creating the complete skeleton model we will need to add markers in order for
the optimisation to recognise the bone positions. First we will click on the marker
mode button on the top left of the UI, this mode displays as the markers on the model
showing the corner orientations and positions of each marker. To add a new marker to
a bone, select the bone in the 3D viewer and type in the X,Y,Z offset of the marker
in the input boxes on the left of the Ul Clicking on *'Add new marker" will add the

marker onto the selected bone. To modify the rotation of a marker on a bone select

-/ ﬂigurate: An application for rigid skeleton modelling

the bone in the viewer. A list of markers attached to that bone will appear on the left
of the Ul. Clicking on the marker in that list will select the marker, this is reflected
by the orange highlighting of the selected marker in the 3D model viewer. The X,Y,Z
rotation sliders will appear on the left. The application will automatically assign cach
marker an ID based on its internally created bone model tree. It is possible to override
this behavior and assign your own IDs to a marker by using the text input box on the
bottom left whilst having a marker selected. When moving back to bone editor mode,

the corners of the markers will still be visible on the model.

Fig. 48: Adding the markers
Top left - Adding a marker, Top right - Selected marker and changing orientation, Bottom - Marker

appearing bone mode.

After we have added all the bones and markers we should save the model. To do this,
click on "'Save Current Model" in the top right of the Ul. A text input box will appear,
type in the name you wish to save the model under and click save to confirm. If we are
overwriting an existing model, a dialog box will appear asking you to confirm you really
want to overwrite an existing model, otherwise the application will take a screenshot
of your model and save it into the <Documents>/figurate/models/<ModelName>/
folder. To load an existing model click on the ''Load existing Model" button on the

~64~

. / qigurate: An application for rigid skeleton modelling

top right of the Ul. The Ul will show display pictures of all saved models, simply click
on the model you wish to load. You can also type the name of the model you want
to load in the text input box, the saved models that have a prefix matching the typed
name will be highlighted in the display. The saved model will be loaded with all the

rotations and offsets specified as when you saved it.

y
A

b
Hips

Fig. 49: Saving and loading
Top right - Saving the bug model, Top left - Loading the same bug model.

4.2.2. Estimation of model pose

We have completed creating the model and placing the markers in the previous section,
we will not go on to explain how to estimate the model pose from a real world model.

The rotated model we will be using for this example is show in Figure 50.

~65~

. / 'ﬂigurate: An application for rigid skeleton modelling

Fig. 50: Rotated real-world model

To start the optimisation, press F2. The Ul will change to show the camera feed on
the right side and the 3D model viewer on the left side. You can still use the mouse
to navigate and rotate around the 3D model during the optimisation. 300 usable views
have to be collected before the levenberg marquardt kicks in. As you navigate the
real-world model with the camera, the camera feed will be overlaid with the difference
between expected marker corners and seen seen marker corners based on the dominant
marker in the current view. This is to aid the user in navigating the model, markers
exhibiting a large difference should be prioritised for viewing with the camera. Press
F2 again to stop the optimisation, it is usually clear when the estimated model matches
the real-world model as the expected corners should match up more or less with the

actual corners in the camera feed overlay.

-/ qigurate: An application for rigid skeleton modelling

Fig. 51: Optimisation in action

Figure 51 shows optimisation in action. The top two images show the optimisation in
the beginning stages, notice how the 2D point difference is large on the tail and wings
as the optimisation is in the process of estimating those parts of the skeleton model.
The bottom two images shows the optimisation towards the later stages, the model in
the 3D model viewer is nearing the rotations present in the real-world model. The 2D

corner seen and observed has almost completely matched up in the overlay.

~67~

i / iigurate: An avpplication for rigid skeleton modelling

Fig. 52: Final rotation model

Figure 52 shows the final estimated skeleton model pose after optimisation. The results
obtained are very accurate, notice how it is almost completely symmetrical as it is in
the real-world model. Upon selecting the bones and comparing it to the real-world
model rotations, we see a similar sort of accuracy to the accuracy obtained during the

quantitative analysis testing. The user can now save this rotated model.

Finally there is a tool included which allows the user to export this pose as a BVH file
with a single frame of animation. This allows the user to import the result into a 3D
modeling application such as 3DS max and attach a real 3D model to the estimated
pose for further use. The user simply has to click the export to BVH button in the
bottom right of the UI after optimisation has finished. The BVH file will be written

out to the same folder that the associated model is saved to.

~68~

Conclusion

Throughout this report we have demonstrated an easy to use system that allows a user to

generate a very accurate pose of a real-world object using just a web-cam in real-time.

This has been achieved using computer vision techniques, in particular reconstruction

from many views using a Levenberg—Marquardt optimisation scheme. In this section I

will highlight a few important things to be taken from this project, detail some of the

limitations of the system and finally talk about some future work that can be done in

order to improve and add functionality to the system.

5.1.

Summary

Using bundle adjustment techniques can yield a very high degree of accuracy,
typically bone positions were less than a few mm off, and in this case can also
help recover from situations where not all the feature points may be visible in
the scene. For instance in the situation of having a missing marker on a bone
chain between two seen markers, we can typically recover the rotation of the
bone with the missing marker based on the information about the markers either

side of it. An example of this is shown in Figure 53.

- Initially we were having problems with some markers being mistaken for others

when the camera was not in focus or the lighting conditions were not ideal. This
can cause problems as the view collected would be bad and adversely affect the
optimisation. We got around this by saying that a view is not valid if the marker
is detected further away than the skeleton model would allow from any other
marker. This check is an O(n2) operation for markers in the scene, in practice
this is acceptable as even if we had the full 1024 markers in the scene the time

to perform this check would be minimal.

- Bundle adjustment is an O(TLS) problem by nature, using all the information from

all the views simultaneously would mean it would take far to long for real-time
application. We solved this problem by splitting up the tracking the markers
from the optimisation of the estimated rotations. This is similar to the approach
taken by PTAM. Furthermore we intelligently selected a limited amount of views
we were using in order to make each iteration of the optimisation complete in
a far faster time. This reduced the problem down to a O(nm) problem with

increasing view count.

-/ Higurate: An application for rigid skeleton modelling

* We also found that doing a localised optimisation on certain parts of the model
can helps in speeding up the overall optimisation. Reducing the number of bones
in an optimisation pass reduces the computation time exponentially.

- Initially we were running into the problem of local minimums causing the op-
timisation to terminate on an incorrect result. The use of the rotation estimate
heuristic allows us to get around this problem as well as speeding up the process
of optimisation as we were starting closer to the final solution.

Having the overlay on the web-cam feed meant that the user can have an easy
way to see how well the optimisation is going. It proved to be very useful in

quickly determining if the optimisation was working or not.

r

Hips

Fig. 53: Missing marker on wing, notice how the final estimate recovers the pose of the complete wing

5.2. Limitations and future work

One of the key limitations of the system is the need to accurately measure the model
to input into the application. Having a badly measured model can yield bad results
as the optimisation would think the rotations are off if it expects the markers to be
somewhere else. A further improvement to get around this would be to have a self-
calibrating system which can determine the lengths of the bones and possible rotations
just be looking at the model with the web-cam. A possible way to do this would be
to manually take a number of views with the bones rotated in a certain way around

the real-world model in order to find out where the joints are on the model.

The application does not get around the problem that the optimisation would still increase
exponentially with the number of bones in the model. Although it would probably
be unwise to use a different scheme other than Levenberg-Marquardt optimisation, we

could change the strategy related to how many views we use per run and the chances

~70~

of doing a local optimisation as opposed to a global one. This strategy could be based
on an analysis performed on the model done before the optimisation begins. Further
work is also possible on how we rank the views that we obtain, for instance we can
rank views exhibiting large amounts of motion blur to be of worse quality and base
our selection on more factors than just the number of markers in a scene and the most

dominant marker seen.

Having markers on the real-world model is still not the most ideal solution. A big
improvement could be made if we could make the system marker-less as well, it would
rely on real-world features on the model instead of the fiduciary markers. We would
need a good way to be able to tell the system what to look for in the scene and how to
comprehend the features it finds in relation to the skeleton model. This would likely

be the next step forward for the application.

Another are of future work would be to make the application be able to detect when
the real-life model has changed rotation in the middle of an optimisation pass. We could
then be able to perform real-time capture of the change of rotation. This can be further
worked upon to make it retain information about the bones that have not changed
rotation in order to make it determine the new pose without having to recapture

information about the whole skeleton model.

It would be useful if we could visualise the full 3D model that will be used in programs
such as 3DS Max in conjunction with the estimated pose. We could include this in the

3D viewer by allowing the user to import a valid rigged 3D model.

Finally it would be an interesting area to explore if we could model 'bones' that have
changing lengths such as springs or fabric. Our optimisation would need to take the
change in size of a bone into account as well as the rotation. This would allow us to
move onto modeling not only rigid skeleton objects but objects with elastic properties

such as clothing and ropes.

Appendix

A.1. Hardware

The project was developed and run on Windows 7 running on a Dual-core i7 (2.8ghz)
and 8gb of RAM. The camera used throughout the project was a non-branded 640x480

30hz web-cam. The camera intrinsic and extrinsic parameters are listed below:

Focal length : [898.003 896.062 |
Principal point : [360.282 204.918]
Distortion : [—0.081541 1.034180 0.006233 —0.004752

A.2. Software

The entire application was developed using the C# programming language in Visual
Studio 2010 Express edition. We used Microsoft XNA for the graphics API, Alglib for
the Levenberg Marquardt implementation and AVLAR for the marker detection. We

are using the AVLAR wrapper built from Goblin XNA, this must be included as a DLL
in the project.

Bibliography

(1]
(2]

(3]

[4]

[5]

(6]
[7]
(8]
(]

(10]

(11]

(12]

Bochkanov Sergey Anatolyevich. Alglib http://www.alglib.net.

R Hartley B Triggs, P McLauchlan. Bundle adjustment a modern synthesis. page
153, 2000.

D. C. Brown. Decentering distortion of lenses. Photometric Enginecring,
32(3):444--462, 1966.

MICROSOFT CORP. Visual target tracking, 2010.

M. Fiala. Artag, a fiducial marker system using digital techniques. In Proc. IEEE
Computer Society Conf. Computer Vision and Pattern Recognition CVPR 2005,
volume 2, pages 590--596, 2005.

VTT Finland. Alvar http://virtual.vtt.fi/virtual/proj2/multimedia/alvar.html.
Maureen Furniss. Motion capture. 1999.
KATO H. Artoolkit. http://www.hitl. washington.edu/artoolkit/ .

R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition, 2004.

Mat Cook Toby Sharp Mark Finocchio Richard Moore Alex Kipman Andrew Blake
Jamie Shotton, Andrew Fitzgibbon. Real-time human pose recognition in parts

from single depth images. 2011.

S. Carlsson J.C. Clarke and A. Zisserman. Detecting and tracking linear features
efficiently. 1996.

G. Klein and D. Murray. Parallel tracking and mapping for small ar workspaces.
In Proc. 6th IEEE and ACM Int. Symp. Mixed and Augmented Reality ISMAR
2007, pages 225--234, 2007.

[13]

(14]

[15]

[16]

[17]

(18]

UW Madison. Biovision bvh http://research.cs.wisc.edu/graphics/courses/ cs-
838-1999/jefl/bvh.html.

Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear
parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2):pp.
431--441, 1963.

Nikon. Understanding focal length http: //www.nikonusa.com/learn-and-

explore/photo graphy—techniques /g3cubo2o/1/ understanding—focal— length html.

D. Oberkampf, D. F. DeMenthon, and L. S. Davis. Iterative pose estimation using
coplanar points. In Proc. CVPR '93. IEEE Computer Society Conf Computer
Vision and Pattern Recognition, pages 626--627, 1993,

Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon.
Bundle adjustment - a modern synthesis. In Proceedings of the International
Workshop on Vision Algorithms: Theory and Practice, ICCV '99, pages 298--372,
London, UK, UK, 2000. Springer-Verlag.

Z. Zhang. A flexible new technique for camera calibration. 22(11):1330--1334,
2000.

