
Generic Immutability and Nullity Types for an

imperative object-oriented programming language

with flexible initialization

James Elford

June 21, 2012

Abstract

We present a type system for parametric object mutability and ref-
erence nullity in an imperative object oriented language. We present a
simple but powerful system for generic nullity constraints, and build on
previous work to provide safe initialization of objects which is not bound
to constructors. The system is expressive enough to handle initialization
of cyclic immutable data structures, and to enforce their cyclic nature
through the type system. We provide the crucial parts of soundness ar-
guments (though the full proof is not yet complete). Our arguments are
novel, in that they do not require auxiliary runtime constructs (ghost
state) in order to express or demonstrate our desired properties.

2

Contents

1 Introduction 4
1.1 In this document . 5

2 Background 6
2.1 Parametric Types . 6

2.1.1 Static Polymorphism through Templates 7
2.1.2 Static Polymorphism through Generic Types 12

2.2 Immutability . 18
2.2.1 Immutability in C++ . 19
2.2.2 Immutability in Java and C# 21
2.2.3 An extension to Java’s immutability model 21
2.2.4 Parametric Immutability Constraints 24

2.3 IGJ: Immutability Generic Java 25
2.4 Nullity . 27
2.5 Areas of commonality . 30

3 Goals 32

4 Existing systems in more detail 34
4.1 The initialization problem . 34
4.2 What do we require from initialization? 35
4.3 Approaches to initialization . 37
4.4 Delay Types and initialization using stack-local regions 41

4.4.1 Replacing [Free] pets with delayed ones 41

5 System Design 44
5.1 Initialization Regions . 44
5.2 Generic nullity and Mutability 45
5.3 Runtime model . 46
5.4 The language . 47

6 The Type System: Informally 49
6.1 Initialization Regions . 49
6.2 Types for immutability . 51
6.3 Types for nullity . 51
6.4 Field initialization as part of the type information 52
6.5 The type rules . 53

7 The Type System: Formal Description 56
7.1 Type statements . 56
7.2 Notation . 57
7.3 Program definition . 59

7.3.1 Auxiliary functions . 59
7.4 The programming language . 61
7.5 Typing Expressions . 62

3

7.5.1 Well-formedness of a type 63
7.5.2 Well-formedness of Γ, Λ 64

7.6 The Type System . 66
7.6.1 Typing Method Calls . 66
7.6.2 Well-formed Programs . 71

7.7 Runtime semantics . 73
7.8 Design decisions . 74

7.8.1 Changing time environments 74
7.8.2 Subtyping between types with different commitment points 74
7.8.3 Field Assignment . 76
7.8.4 Nullity of the receiver is not parametric 77

8 Soundness 80
8.1 Consistency . 81
8.2 Well-formedness of ψ and φ . 87
8.3 Preservation of well-formed ψ and φ 90
8.4 Mutability . 99

9 Contributions 103
9.1 Generic Nullity . 103
9.2 Flexible initialization patterns . 105
9.3 Exploration of the crossover between nullity and Mutability . . 105

10 Further Work 112
10.1 Proofs of language properties . 112
10.2 Expected features . 112
10.3 Creating a usable language . 113
10.4 Language extensions . 114

Acknowledgements

I would like to thank my supervisor, Sophia Drossopoulou, for dedicating so
much of her own time, for her original discussions, and for her patience, which
have all been indispensable.

I would also like to thank anybody who spotted a typo or grammatical error
while reading my work: though I have no doubt I will find one directly after
submission.

4

1 Introduction

Historically, programmers have leveraged static analysis of their code to guar-
antee certain runtime properties of their programs. Statically-typed languages
impose a type system which places restrictions and checks on which type of
data can be accessed and used in which ways. In nearly all statically-typed lan-
guages, we use the type-system to guarantee that we pass correctly formed data
into functions. In object-oriented languages, we also use it to guarantee that
field-access and method-invocation on our objects are valid and – depending on
the language – certain other statically-decidable properties, such as mutability.

Some statically-typed languages offer the programmer more guarantees than
others: for example, C++ provides the notion of const, which prevents objects
from being modified through certain access paths. The more recently developed
D programming language provides the stronger construct of Immutable data –
data which cannot be altered through any access path at all[12]. More recently
still, the SPEC# language was developed, with – amongst other things – sup-
port for non-null reference types[3]. When we turn our attention to some of
the most commonly used enterprise application programming languages, how-
ever, such guarantees are lacking: specifically, Java and C# lack support for
non-null reference types, and while C# has support for compile-time constants
via its const keyword, neither provide strong immutability guarantees for dy-
namically created objects.

While both immutability and non-nullity are desirable invariants for a type
system to provide (for example, we can eliminate null-reference errors, or we
can concurrently manipulate unchanging data structures without locking), there
is currently no widely used language that has strong support for both immutabil-
ity and nullity constraints. While there exist good solutions to extend Java-like
languages with either (which we will discuss in Sections 2.2.3, 2.3 and 2.4), none
of these systems addresses both topics together, and so none of them exploit
the common overlap between the two: one of the most difficult concerns when
formulating both immutability and nullity type systems is object initialization
(the period before an object can possibly satisfy all of its invariants). In this
project, we develop a type system that allows for both non-null reference types
and immutability. In doing so, we create a type system that delivers a unified
approach to the challenges of both, whilst delivering the expressivity of either.

Because both mutability and nullity concerns have implications for the
initialization of objects, we believe it is helpful to treat them both together.
We also wish to address parametric constraints: this has been successfully done
already for immutability (c.f. [20]), but nullity constraints do not appear to
have received the same treatment. Bringing these two object invariants into a
unified system gives us an excellent opportunity to express them both in similar
terms: we add parametric constraints to nullity types in the same way that it
is common to treat mutability.

In systems that require objects to fulfil invariants that they cannot have
when they are allocated (e.g. the non-nullity of all fields), the authors of type
systems sometimes enforce those constraints at the end of a constructor (e.g.

5

[20], [18]). [21] introduced the concept of ownership to extend the initialization
period of an object. Under the system presented there, it is entirely possible
to initialize, for example, arbitrarily sized, cyclic, immutable structures. The
drawback is that the creation of these structures is tied to the commitment
point of some root node, their owner.

The main contributions of this dissertation are:

Generic nullity Genericity of nullity constraints is a novel construction, and
we will see, when we discuss contributions in more detail later, that it
offers expressivity not previously available.

Flexible initialization It is possible to create factories that produce cyclic
data structures, or even to require that a data structure is initialized to
be cyclic.

A unified treatment of nullity and immutability Under our system, ini-
tialization of NotNull fields must be (guaranteed) completed whilst an
object’s mutability constraints are not yet applied; there is no chance to
create an object which still needs to have fields initialized, but is no longer
mutable.

Lightweight soundness arguments We do not require any additional run-
time constructs (erasable or otherwise) in order to express or show the
properties of our system.

1.1 In this document

We begin by giving some background (Section 2) around the area of parametric
types, immutability in existing languages, and existing systems for handling
nullity. We discuss some of the more general aims of the project in Section 3,
such as the need for modularity, expressivity, and so on. We describe in more
detail some specific systems for mutability and nullity of the type we aim to
achieve in Section 4, before proceeding with an informal description of the type
system (Section 6), and finally a formalization of the type system and runtime
semantics (Section 7) and of the properties that the system guarantees (Section
8). We discuss our contributions and possible further work in Sections 9 and 10.
The impatient reader will find typing rules in Figures 39 and 40, and operational
semantics in Figure 43. Subtyping rules are covered by Figure 37.

6

2 Background

The intention of this section is to provide a general introduction to the concepts
involved: Parametric types, Immutability, and Nullity. The introduction to
each will be more broad than we need for the purposes of our proposed type
system – the intention is to provide background on the state of the field (for
example, when we discuss parametric types, we will go into some detail on
templates in C++, while for our type system, we will not be using features like
metaprogramming). Where appropriate, practical examples of the way language
features are used will be provided through code listings. Readers familiar with
each each individual area are invited to skip ahead, and will not lose anything
in doing so.

2.1 Parametric Types

Polymorphism is a powerful language construct, available in most modern lan-
guages. The idea is to allow us to use data of more than one type in the same
way. It comes in a variety of flavours: static languages have long supported
subtype polymorphism (a subtype is a special kind of the original type). Dy-
namic languages (such as Python or JavaScript) use “duck-typing,” which
is a powerful form of polymorphism that does not require the consumer of an
object to have any knowledge of its type1. This means that in Python we
could write code like:

1 de f p r i n t a l l (c o l) :
2 for i in c o l :
3 p r i n t (repr (i))

The above defines a function that will accept any object, and for each item
it contains (assuming that the object can meaningfully be said to contain any-
thing), print out a textual representation of that item. This function will behave
correctly for any object col over which the Python interpreter can iterate.
With flexibility, however, comes risk: there is no way to know, until we run the
code, whether objects passed into the function can be iterated over. The func-
tion might work correctly in a production system for months before encountering
such a case, but when it does, it might crash the whole program.

Duck typing is a powerful form of polymorphism, but for our purposes (guar-
anteeing static properties of a system, before runtime) we will not be making
use of such flexibility. We will instead look to parametric polymorphism.

Parametric types, commonly known in object-oriented programming as “gener-
ics,” allow us to leave part of a type signature for an object, method, or function
undecided when we write it – preferring to allow the caller to decide. Paramet-
ric types do exactly what we would assume from the name: they allow us to
specify parameters for our types (and, in doing so, allow us to program in a
more generic fashion).

1“If it walks like a duck, quacks like a duck, and smells like a duck, . . . ”

7

Since most readers will have some experience with generic programming, we
will begin with a familiar example (written in Java), in Figure 1.

The listing gives a simple definition for a recursively defined List imple-
mentation. The thing to notice here, though, is the type declaration: we write
List<String> to declare a list of Strings. In doing so, we have parametrised
the type of our list. Throughout the List’s definition, we used a place-holder,
T, but when we declare a usage of such a list, T is substituted with our choice
of type. This means that we can write l.get(i) and know that it will return
a String. This might not seem remarkable to begin with, but consider the sit-
uation if we could not specify that our List contains Strings; every list would
be list a List<Object>. In fact, this is exactly what we did, before J2SE 5.0
(Java version 1.5). l.get(...) would return an object of type Object, and
it would be up to the caller to know which concrete type they were expecting,
and cast to it by hand:

1 Object entry = l . get (i) ;
2 // Let ’ s j u s t hope somebody didn ’ t pass us a l i s t conta in ing

In t e g e r s !
3 St r ing s t r e n t r y = (St r ing) entry ;

This is the essence of parametric types in static languages. The following
sections will look at two methods of implementing parametric typing: “Template
Types,” found in C++ and D, and “Generics,” found in Java and C#. Either
system can be used to produce, for example, convenient collection classes, but
templates offer other features (e.g. “template metaprogramming”) that are not
present in generics.

2.1.1 Static Polymorphism through Templates

Templates deliver more power than we will require for our type system, but
are interesting, because once their implementation is understood, parametric
types are relatively simple, conceptually (although they can, in practice, still
be difficult to use), but also extremely powerful. A templated class is so named
because it provides a template, which must be completed during program com-
pilation, with the appropriate “blanks” filled in. Every time we instantiate a
templated class in C++, the compiler generates a new class, which contains all
the appropriate substitutions. For example, consider the program in Figure 2.

When compiled, the two concrete usages of class Box become expanded, and
the compiler writes new definitions to represent the two required instantiations
(like in Figure 3).

These new definitions are known as “template specializations,” can be thought
of as entire separate classes – distinct from the template that generated them.
The way that templated classes are expanded in C++ means that when a pro-
grammer instantiates a templated class with a concrete type, it is equivalent to
having written out a whole class definition. This carries both advantages and
disadvantages.

8

1 public class List<T> {
2 public stat ic void main (St r ing [] a rgs) {
3 List<Str ing> l = new List<Str ing >() ;
4 l . add (”a”) ; l . add (”b”) ; l . add (”c”) ;
5
6 for (int i =1; i <4; i++) {
7 /∗ We know tha t l . g e t () w i l l re turn a s t r ing , even

though not a l l i n s tance s o f L i s t must contain
s t r i n g s : the type o f l i s parametr ized when we
wr i t e Lis t<Str ing> ∗/

8 St r ing entry = l . get (i) ;
9 System . out . p r i n t l n (

10 In t eg e r . t oS t r i ng (i) + ” : ” + entry) ;
11 }
12 }
13
14 boolean hasItem ;
15 T item ;
16 List<T> next ;
17
18 public L i s t () {
19 this . hasItem = fa l se ;
20 }
21
22 private List<T> next () {
23 i f (this . next == null) {
24 this . next = new List<T>() ;
25 }
26 return this . next ;
27 }
28
29 public void add (T item) {
30 i f (this . hasItem) {
31 this . next () . add (item) ;
32 } else {
33 this . hasItem = true ;
34 this . item = item ;
35 }
36 }
37
38 public T get (int index) {
39 i f (index <= 1) {
40 return this . item ;
41 } else {
42 return this . next () . get (index−1) ;
43 }
44 }
45 }
46
47 /∗ Output :
48 ∗ 1 : a
49 ∗ 2 : b
50 ∗ 3 : c ∗/

Figure 1: A simple recursive implementation of a List with a generic type pa-
rameter in Java

9

1 #include <iostream>
2
3 using namespace std ;
4
5 template<typename T>
6 class Box {
7 public :
8 T item ;
9 } ;

10
11 int main () {
12 Box<int> a ;
13 a . item = 1 ;
14 cout << a . item << endl ;
15
16 Box<const char∗> b ;
17 b . item = ”Hel lo , world” ;
18 cout << b . item << endl ;
19 }

Figure 2: Code showing a basic example of how templates can be used to create
statically polymorphic code in C++

1
2 template<> // A concre te i n s t a n t i a t i o n o f the templa te
3 class Box<const char∗> {
4 public :
5 const char∗ item ;
6 } ;
7
8 template<>
9 class Box<int> {

10 public :
11 int item ;
12 } ;

Figure 3: Code to illustrate how the templates from Figure 2 are expanded by
the compiler to give concrete instantiations

10

Disadvantages

Dependence on implementation In order for the compiler to expand a call
to a templated type into a concrete class, it will need to copy out large
chunks of the template in full. For example, every time we want to store
something in the Box container in the last listing, the compiler needs to
have access to all the code needed to write the newly parametrized Box
type. If the internal implementation details of the base Box class, change,
then so do those of our concrete instantiation.

Larger binaries Every new concrete instance of the class must be stored as a
new datatype in our compiled code (after being generated ahead of time).

Debugging Debugging errors in code that uses templates can be harder, be-
cause errors occur in code that the compiler has generated, rather than
code that the user has written. Historically, error messages generated in
such cases have been difficult for programmers to decipher.

Verbosity Prior to c++11, there was no type inference in c++. This meant
that type signatures for objects had to be written out in full; this can
become extremely verbose, and reduces code readability. This is also a
problem in Java, where type inference is still very limited.

Advantages

Structural Type Checking Because every mention of class T in a class with
T as a type parameter is replaced by a concrete class, we determine at
compile-time whether a class has the required fields and methods. The
implications of this will become clear when we discuss generics in Section
2.1.2.

Metaprogramming When the C++ compiler expands templates, it may in
turn create further uses of the templates it has just expanded. To illustrate
this, consider the recursive definition of a class that can be used to compute
entries in the Fibonacci sequence, in Figure 4.

To instantiate Fib<T> with parameter 45, the compiler must first expand
the definitions of Fib<44> and Fib<43>, and so on. By providing Fib<1>
and Fib<0> explicitly, we “specialise” the template (the compiler uses our
specializations, rather than expanding its own), and provide a base-case
for the recursion. Because all of this expansion occurs at compile-time,
the overhead of actually calculating the Fibonacci sequence is shifted from
run-time to compile-time; at run-time, looking up Fib<45>::value is no
more costly than looking up any other compile-constant. On the other
hand, Fib<46>::value will be unavailable at runtime.

The D language provides further meta-programming features, that we will
not discuss here. Clearly, templates in C++ provide more functionality than
if they were simply type arguments. Generics are a more limited concept, with

11

1 #include <iostream>
2
3 template<int n>
4 class Fib {
5 public :
6 stat ic const int value = Fib<n−1>:: va lue +
7 Fib<n−2>:: va lue ;
8 } ;
9

10 template<>
11 class Fib<1> {
12 public :
13 stat ic const int value = 1 ;
14 } ;
15
16 template<>
17 class Fib<0> {
18 public :
19 stat ic const int value = 1 ;
20 } ;
21
22
23 using namespace std ;
24
25 int main () {
26 const int i = Fib <45>:: va lue ;
27 cout << i << endl ;
28 }

Figure 4: Code demonstrating the use of template metaprogramming to calcu-
late entries in the Fibonacci sequence

12

1 // I n s i t e the l i s t c l a s s , we rep l a ce T with Object
2 Object item ;
3 . . .
4
5 // The ge t method a c t u a l l y re turns an Object , and the
6 // compi ler i n s e r t s a cas t to the co r r e c t type .
7 St r ing entry = (St r ing) l . get (i) ;

Figure 5: Snippet to show type erasure in Java generics

their uses restricted purely to the parametrization of the types that include
them (meta-programming and specialization, for example, are not available with
generics).

2.1.2 Static Polymorphism through Generic Types

Generics come in many shapes and sizes, but we will discuss two commonly
found implementations of generic types: those found in C#, and those found in
Java. We will begin with Java, since the system is arguably simpler, but will
focus on C#.

In both languages, generics are more limited than C++’s templates. They
strictly specify a type parameter, and nothing more. We have already seen
how they are used, c.f. Figure 1, but we have not discussed how they are
implemented – which, in practice, has ramifications on their capabilities; we
will see that generics in C# yield different results to generics in Java.

Historically, the Java programming language had no support for generics,
until the release of JavaSE5.0. The way they are implemented now is rela-
tively simple: the Java compiler performs type erasure [2] to create a new class
that has the expected return types, method signatures, and field types, but is
compatible with the Java 1.4 language.2 The process is achieved by replac-
ing the parametric type T in the generic class with Object, and then inserting
appropriate casts to the required type (this is the process of erasure). The com-
piled byte-code3 for calling the get method from Figure 1 can be thought of as
identical to the byte-code resulting from the code in Figure 5 (when the class is
instantiated with generic parameter String).

This simple translation allows type-safe parametrized types, without needing
to modify the virtual machine (since the resulting types are compatible with
the previous language specification, they would compile to byte-code compatible
with the previous virtual machine). Note that, since here item has class Object,
the parametrized class is unable to use the object in any way that it would not
be able to use an Object – method calls or field lookups that could not be
performed on an Object cannot be performed on T. This would be an extremely
restrictive limitation – contrast with templates in C++, where we can perform

2Java 1.5 byte-code is not compatible with the Java 1.4 virtual machine; whilst generics
compile to a compatible form, other 1.5 features do not (e.g. enums)

3Machine code for the Java virtual machine

13

1 public class Printer<T extends Pr in t e r . IPr in tab l e > {
2 public stat ic void main (St r ing [] a rgs) {
3 new Printer<Page>() . p r i n t (new Page ()) ;
4 }
5
6 public interface IP r i n t ab l e {
7 public void pr in t () ;
8 }
9

10 public void pr in t (T p r i n t ab l e) {
11 // We know tha t the o b j e c t with parametr ized type
12 // T w i l l have a . p r in t () funct ion , because i t
13 // must f u l f i l the i n t e r f a c e IPr in t a b l e
14 p r i n t ab l e . p r i n t () ;
15 }
16
17 stat ic class Page implements IP r i n t ab l e {
18 public void pr in t () {
19 System . out . p r i n t l n (” Pr in t ing . . . ”) ;
20 }
21
22 }
23 }

Figure 6: We use interface restrictions to limit our parametric types to only be
called with T satisfying certain constraints.

any method calls or field lookups that could correctly be performed on the
type with which we actually instantiate the class. Java actually provides a
mechanism to specify stronger requirements (and so make more assumptions)
about T: we can require that the concrete type used in the type parameter
fulfil certain interfaces. An interface specifies a set of interactions that must be
available on an object of a given type:

1 interface ILength {
2 public int l ength () ;
3 }
4
5 class L i s t implements ILength {
6 . . . // Any other implementation d e t a i l s o f a L i s t
7
8 public int l ength () { // Required by the ILength i n t e r f a c e
9 . . .

10 }
11
12 }

Because List claims that it implements the methods in the ILength inter-
face, we know (the compiler verifies) that it does in fact provide them. Pro-
grammers use these restrictions on parametrized types to allow us to have more
sophisticated and flexible interaction with the objects for which the concrete
type is not known when class is written – see Figure 6.

14

Interfaces in Java are also used in subtype polymorphism, but it won’t be
useful to cover that here.

C# generics are a more sophisticated construct. C#’s system of gener-
ics were introduced in [10] as an extension to the Common Language Runtime
(CLR)4. Unlike in Java, C#’s generics involved changes to the underlying plat-
form, to introduce parametric types as a first-class part of the type system. In
fact, C#’s generics are a feature of the CLR, rather than of the language; they
are introduced in [10] by making modifications to the CLR’s intermediate lan-
guage (which can be thought of in similar terms to the JVM’s byte-code). The
result is that the feature is reified into programs that use it; the generic typing
information is a part of the compiled program, rather than a language construct
that is converted away as in Java (where the parametric type information is
replaced by casts). This means that the generic type information is available
at runtime. [10] also made allowances for the use of value types in generics,
whereas the implementation in Java did not – only reference types can be used
in Java generics, because they must be castable to Object (which value types
such as int or long cannot be).5

Covariance Covariance extends the notion of sub-typing to generic arguments
and containers. To illustrate covariance in a familiar context, we will begin
with array-covariance, as found in both C# and Java. Consider an array of
Integers. Since Integer sub-types Object, and arrays are covariant in Java,
an array of Integers will type-check whenever an array of Objects is required.
Similarly, so will an array of Strings, or anything else that sub-types Object.
To illustrate the problem with this, the short code listing in Figure 7 will be
most effective.

Whilst the program type-checks correctly in a Java compiler, it surely causes
a run-time error when we attempt to assign a String into a list of Integers.
The soundness of the Java type system is defeated by the covariance of array
types. When Generics were introduced, stricter rules were applied: Java’s
generics do not allow covariance in the same way as arrays – see Figure 8.

In order to allow a type-safe implementation of covariance for generics, “wild-
card” syntax was introduced in [19]. Wildcards allow us to express that, in some
instances, we do not need to know about the concrete type with which a class
is parametrized. Using a wildcard in place of a type parameter imposes certain
restrictions (clearly, we cannot add elements to a list when we do not know what
type of element it contains), but allows other freedoms: it is safe for us to ask
the length of a list, regardless of the type of element it contains. Moreover, it
is safe for us to read elements from the list; although we must concede that we
know only that they sub-type Object. [19] distinguishes between the methods
that it is safe for us to call, and those which are not. Informally, it does so by
making the return-type of methods with parametrized type T as general as it

4The CLR is Microsoft’s virtual machine, upon which the .NET infrastructure runs.
5Java and C# allow us to use value types as reference types by introducing the notion of

boxing – which wraps the value type in a reference-type wrapper, which can be assigned to
the heap.

15

1 public class ArrayCovariance {
2 public stat ic void main (St r ing [] a rgs) {
3 Dog [] dogArray = {Fido , El ly , Mutt } ;
4 Cat [] catArray = {Fel ix , Whisker , Tiger } ;
5
6 Object [] objArray1 = (Object []) dogArray ;
7 Object [] objArray2 = (Object []) catArray ;
8
9 for (int i =0; i<objArray1 . l ength ; ++i) {

10 // We are at tempt ing to put ca t s in to our
11 // array o f dogs ! This cou ld cause chaos ,
12 // and the JVM’ s runtime checks w i l l not
13 // a l l ow i t . (A runtime error occurs , even
14 // though the expres s ion c o r r e c t l y type−checks
15 // at compile time) .
16 objArray1 [i] = objArray2 [i] ;
17 }
18 }

Figure 7: Arrays in Java are covariant. This is not type-safe.

1 public class Gener icCovar iance {
2 public stat ic void main (St r ing [] a rgs) {
3 ArrayList<Integer> intArray = new ArrayList<Integer >() ;
4 intArray . add (1) ; intArray . add (2) ; // . . .
5
6 ArrayList<Str ing> s t rArray = new ArrayList<Str ing >() ;
7 s t rArray . add (”one”) ; s t rArray . add (”two”) ; // . . .
8
9 // Compile error ! Java knows tha t covar ian t g ener i c s are

unsafe
10 . . . = (ArrayList<Object >) intArray ;
11 . . . = (ArrayList<Object >) s t rArray ;
12 }
13 }

Figure 8: Generics are not covariant, to ensure type-safety

16

1 public class GenericCovarianceWithWildcards {
2 public stat ic void main (St r ing [] a rgs) {
3 ArrayList<Integer> intArray = new ArrayList<Integer >() ;
4 intArray . add (1) ; intArray . add (2) ; // . . .
5
6 ArrayList<Str ing> s t rArray = new ArrayList<Str ing >() ;
7 s t rArray . add (”one”) ; s t rArray . add (”two”) ; // . . .
8
9 ArrayList <?> objArray1 = intArray ;

10 ArrayList <?> objArray2 = strArray ;
11
12 Object fromArray = objArray1 . get (1) ;
13
14 // Can guarantee t ha t n u l l sub−t ypes whatever argument
15 // the add method might be r e qu i r i n g in p lace o f ?
16 objArray1 . add (null) ;
17
18 // Compile error −− Cannot guarantee t ha t 5 (In t e ge r)
19 // sub types the concre te type o f the ArrayList (which
20 // i s unknown) :
21 //
22 // objArray1 . add (5) ;
23
24 }
25 }

Figure 9: Code showing the behaviour of unbounded wildcards in Java generics

can be (Object), while arguments of type T become as specific as they can be
(by allowing only a single argument: null – which subtypes any possible type
T). We can see an example of this in Figure 9.

Whilst it is useful to be able to inform the type-system (in a type-safe way)
that we do not care for the concrete parametrization of a type, discarding it
altogether is more restrictive than required. To that end, [19]’s system also
allows us to place “bounds” on wildcards. These bounds allow for a more
expressive covariance. If we write <? extends Foo>, then the resulting type
can only be sub-typed by classes that have a generic type parameter that sub-
types Foo, as in Figure 10

The same restrictions apply as with un-bounded wildcards, but now we know
that the most general type returned by in place of ? will be Mammal (we still
know nothing about how specific the underlying class is, so we are still limited
to only passing in the null object in place of ?s).

C# produces a similar effect via its out keyword when specifying a parametrized
interface [17] (see Figure 11)

A type argument that is specified as covariant cannot be used as the argu-
ment to a method in C# – there can be no way to add to an IEnumerable.

Covariance will be relevant to our own system if we want to parametrize
nullity and immutability constraints (one of our goals). When we discuss an

17

1 class Mammal { . . . }
2
3 class Cat extends Mammal { . . . }
4
5 . . .
6
7 ArrayList <? extends Mammal> l i s t = new ArrayList<Cat>() ;
8 . . .
9 /∗ We know anything in the l i s t i s a subtype o f Mammal ∗/

10 Mammal item = l i s t . get (0) ;
11 l i s t . add (null) ;
12
13 // Compile e r ror s :
14 /∗ We don ’ t know anything more s p e c i f i c ∗/
15 Cat item = l i s t . get (0) ;
16 /∗ We don ’ t know the l i s t doesn ’ t want something more s p e c i f i c ∗/
17 l i s t . add (new Mammal()) ;

Figure 10: A demonstration of how we can use wildcards in Java to achieve
safe generic covariance

1 class List<T> { . . . }
2 interface IEnumerable<out T> { /∗ ge t (. . .) , s i z e () , . . . ∗/ }
3
4 IEnumerable<object> ob jL i s t = new List<s t r i ng >() ;

Figure 11: Code showing C#’s equivalent of Java’s wildcards

18

immutability extension to Java in Section 2.2.3, we will see that there are times
when we need to take an upper bound of mutable and immutable (to express
that we do not mind which of the two an object is). If we wish to treat mutability
as a generic constraint, we will need to ensure that we provide a mechanism for
covariance that is compatible with other generics in our system (if we offer any)
– for example, through wildcards. This is the role played by ReadOnly in [6].
We will need to apply similar rules to nullity, since that will also be generic.

Now that we have some understanding of parametric types, we should con-
sider immutability. Ultimately, we would like to be able to parametrize the
immutability constraints of a class.

2.2 Immutability

In general, it is desirable for us to be able to talk about objects and know
they will not (cannot) change. Immutability comes in more than one flavour;
e.g. const in C++, Readonly in D, and Java’s weaker final notion (which
guarantees a form of reference-immutability). We will be concerned with strong
immutability; the assertion (guaranteed by the type system) that an object can
never be changed. Strong immutability is a very powerful concept, and is useful
in several areas, for example:

Concurrency If we know an object’s values cannot change, we can know that
it is safe to access concurrently. Multithreaded operations on immutable
objects reduce locking problems to trivial.

Memory conservation Modern virtual machines such as the JVM and CLR
“intern” (store a single copy of, for the duration of an application’s life-
cycle) the immutable constructs that are a part of their respectively lan-
guages – specifically, Strings, and in C# variables that are defined as
const.

Defensive programming We can pass references of our immutable objects to
other parts of our program (or even 3rd-party code), and know that our
data will be left unmodified.

Guarantee of properties Once an immutable object is properly initialized,
we know that it should never be able to leave such a state – this helps us
to reason about the invariants of objects.

Immutability it not a new construct. The idea of having data in our program
which does not (cannot) change at runtime is an attractive one, and has been
available to us for some time. For example, in C, we might use #DEFINEs in
our code, or simple String literals. These values are baked in at compile time,
and give us a very basic form of immutability. What we want is a little more
sophisticated; we would like to be able to talk about immutable objects that are
initialized (and their properties are decided) at runtime. This, too, is a problem
which various languages address in different ways.

19

Functional programming languages get immutability for free: because
they do not maintain state (e.g. with variable assignment), mutation of a data
structure impossible. This means that, when programming in a functional style,
languages such as F# benefit with a minimum of effort from immutability
constructs ([7]). Languages such as F# and OCaml, in practice, introduce
non-functional aspects to allow the initialization of cyclic data-structures.

2.2.1 Immutability in C++

C++ provides a keyword for the concept of Immutability, const. C++’s const
is both powerful and flexible, allowing for different levels of immutability, ac-
cording to the user’s need. At its most basic, const guarantees that a variable
cannot be changed (at least, not through the current alias). For example:

1 const int pi = 3 ;
2 p i = 4 ; // Compile error !

Assigning to a const int is forbidden by the type system at any point
after the variable’s declaration. Now recall that C++ provides us with the more
complicated construct of Objects:

1 class A {} ;
2 . . .
3 const A a () ;
4 a = A() ; // Compile error !

Again, if we try to assign to a variable that has been declared const, we get
a compile error, just as we would expect. The language is sophisticated enough
to go further:

1 class A {
2 int a ;
3
4 public :
5 void mutate () {
6 ++a ;
7 }
8 } ;
9

10 . . .
11
12 const A a () ;
13 a . mutate () ; // Compile error

This, also, is a compile error. C++ recognises that the method mutate might
alter the state of a, and prevents us from such a call at compile time. It would
be impractical if we were never able to call any of the methods of an immutable
object, so the language provides for that by allowing us to mark our methods as
preserving object state (i.e. they are “pure” methods, depending only upon their
input parameters, and without side effects). We call this “Object Immutability”
(or, equivalently, “Value immutability,” when not discussing Objects).

20

C++ also provides us with another form of immutability: “Reference Im-
mutability.” Here, immutability refers to our handle on the object, rather than
the object itself. To illustrate, the following is perfectly legal:

1 . . .
2 const A ∗a = new A() ;
3 a = new A() ;

Here, we have object but not reference immutability. As before, mutating
the object itself is illegal (whilst as we this shows, mutating our reference to it
is not):

1 . . .
2 const A ∗a = new A() ;
3 a−>mutate () ; // Compile error !

Now, if we employ C++’s reference immutability, we can safeguard our
reference (whilst allowing the object itself to mutate):

1 . . .
2 A ∗const a = new A() ;
3 a−>mutate () ; // Legal
4 a = new A() ; // Compile error !
5
6 // Can a l s o combine the two :
7 const A ∗const b = new A() ;
8 b−>mutate () ; // Compile error
9 b = new A() ; // Compile error

By combining both kinds of immutability, C++ gives us powerful tools to
create read-only structures for use in our programs. const works as expected in
C++’s templates, and is one of the more complete systems for creating read-
only data structures. The immutability that this language provides has two
major limitations:

• C++ does not really provide immutable structures; only immutable aliases
to those structures (see Fig. 12). We can, in general, access supposedly
“immutable” structures through mutable references, and mutate them as
normal. This means that C++ programs are not able to take advantage
of some of the guarantees that a stronger system of immutability would
grant us. For example, we cannot guarantee that when we pass a const
reference to an object to a function, it does not re-alias that reference as
mutable, and modify it.

• Initialization of complex structures is difficult, since fields marked const
must be initialized before an object’s constructor. For example, consider
attempting to initialize a cyclic list with immutable (both value and ref-
erence) references from each node to the next and previous nodes. In
practice, this is difficult to achieve whilst maintaining const-correctness.
(Although since Foo subtypes const Foo, we can construct the data struc-
ture as normal, and then cast to a const version, to simulate the initial-
ization of an immutable data structure).

21

A third limitation is that, in practice, the syntax for using const is clumsy and
often confusing.

C++’s const allows us to express that, through a given alias to an object,
a data structure cannot be changed. It does not allow us to express that the
data structure cannot change through any alias, which we will see that systems
for true immutability (such as Immutability Generic Java, in Section 2.3) do.
Aliasing considerations aside, const does give us that an object’s state can-
not change; that is, any of its fields that are of non-pointer type also become
immutable (we have deep object immutability).

2.2.2 Immutability in Java and C#

We should now consider Java and C#’s immutability constructs. Java pro-
vides us with the far less powerful keyword final. final denotes reference
immutability. final is straightforward: a local variable declared final cannot
be assigned to a different object, whilst a field declared final must be initial-
ized before the end of the object’s constructor, and cannot be re-assigned for
the duration of the object’s lifetime (see Figure 13). It offers us more flexibility
than const does in C++ (for example, we have the entire body of a constructor
to initialize our reference-immutable fields, rather than being required to do so
before the constructor’s body can begin), but in turn gives us a less powerful
system (we have no way to create an object whose fields cannot be mutated –
unless the same is true for all objects of this type because their fields have been
marked final).

C# provides a similar construct by means of the readonly keyword. The
two are almost identical, with the exception that Java’s final allows for constructor-
independent initialization of fields (i.e. fields may be initialized before the con-
structor, in which case they may not be modified within). C# also has the
keyword const, which has a different meaning than in C++. In C#, it denotes
a value which is known at compile-time, and must be statically resolved. For
example, consider the following:

1 c l a s s C {
2 pub l i c const s t r i n g F i e ld = ‘ ‘ l i t e r a l ’ ’ ; // Legal
3 pub l i c const s t r i n g Mistake ; // Error
4 . . .
5 // in a method :
6 F i e ld = ”some other l i t e r a l ” // Error
7 }

Whilst Java and C#’s mutability constructs appear less complete, we should
note that they do, in one way, offer slightly more: it is difficult (though still
possible [14], [11]) to force a final or readonly field to behave as a normal
mutable field.

2.2.3 An extension to Java’s immutability model

We will discuss an extension to the Java language that promises immutability.
[6] introduces mutability constraints through annotations of Rd, RdWr, and Any –

22

1 #include <iostream>
2
3 using namespace std ;
4
5 class A {
6 public :
7 const int i ;
8 A(const int i) : i (i) { }
9 } ;

10
11 int main () {
12 const int i =1;
13
14 // a shou ld be immutable
15 const A a = A(i) ;
16
17 // ge t a po in t e r to the const i n t
18 const int ∗ j = &(a . i) ;
19
20 // At t h i s point , according to the type
21 // system , i , a and the va lue at j are
22 // a l l const (immutable)
23
24 cout << ” i :\ t ” << i << endl ; // 1
25 cout << ”a . i :\ t ” << a . i << endl ; // 1
26 cout << ” j :\ t ” << ∗ j << endl ; // 1
27
28 // This would be a compile error , s ince
29 // j i s a po in t e r to a const i n t
30 //∗ j = 2;
31
32 // But we can cas t away the const , and
33 // mutate the ” immutable” data
34 ∗ ((int ∗) j) = 2 ;
35
36 cout << ” i :\ t ” << i << endl ; // 1
37
38 // a ’ s f i e l d has changed
39 cout << ”a . i :\ t ” << a . i << endl ; // 2
40 cout << ” j :\ t ” << ∗ j << endl ; // 2
41
42 }

Figure 12: Code listing demonstrating that C++’s immutability is only weakly
enforced by the type system; there are no guarantees that the underlying data
cannot be modified through some alternative, non-const alias.

23

1 class A {
2 public int i ;
3 public void mutate () {
4 ++i ;
5 }
6 }
7
8 class B {
9 public f ina l A a ; // Must be i n i t i a l i z e d B ’ s cons t ruc tor

10 public B() {
11 this . a = new A() ; // Removing t h i s l i n e i s a compile error
12 }
13
14 public stat ic void main (St r ing [] a rgs) {
15 f ina l B b = new B() ;
16 b . a = new A() ; // Compile error ; b . a i s dec la red f i n a l
17 b . a . mutate () ; // Pe r f e c t l y l e g a l .
18 b = new B() ; // Compile error ; b i s dec la red f i n a l
19 }
20 }

Figure 13: Code listing illustrating the proper use of Java’s final keyword

to represent, respectively, objects that can be read, read/written, and their least
upper bound (used when we don’t know which of the two mutability constraints
is applied to an object).

The important goal of [6] is that “Well-typed programs never write to fields
of Rd-objects.” Such a constraint expresses exactly what we would like from
a system of immutability; the state of an immutable object cannot change.
Immutable object initialization is achieved by forbidding the escape of certain
references – [6] uses “stack local” memory regions. A stack local region of
memory cannot be referenced by other locations on the heap: all references
to objects inside that region must be on the stack, and the region is said to be
owned by the lowest (least recent) method on the call-stack that holds references
to that region. The mutability constraints of all objects in that region can be
set by that owning method (they must all be the same) – and start off as
writable. When such a change occurs, the method owning the region must be
on the top of the call-stack, so all references to objects inside the region are local
variables of that method. The result is that we end up with a specific point in
the program at which the mutability constraints on an object can be said to
be committed – that is, initialization is finished, and mutability rules should be
enforced. The model is similar to that of [4]’s delayed types (which are used for
nullity constraints, and which we will come to later). Without introducing the
new notation formally, we write:

1 // Require a new stack−l o c a l reg ion on the heap
2 newtoken (n) ;
3
4 // f l i v e s wi th in our stack−l o c a l reg ion
5 Foo f = new <Fresh (n)> Foo () ;

24

6 // We can f r e e l y mutate the f i e l d s o f f
7 f . x = 4 ;
8
9 // Set o b j e c t s w i th in our stack−l o c a l reg ion to read−only

10 commit Fresh (n) as Rd ;
11
12 // Error −− f i s read−only
13 f . x = 5 ;

Writing new <Fresh(n)> Foo(); requires that the new instance of Foo be
treated as uninitialized, and stored within the protected region6 that we re-
quested with the call to newtoken(n).

The initialization of f is protected within the stack-local region of the heap,
and cannot be referenced by any other part of the heap until it becomes com-
mitted. Once it has been committed, it can be stored in read-only fields, and it
is safe to reference from other parts of the stack.

2.2.4 Parametric Immutability Constraints

In C++ Mutability is a part of the type. This means that, when we come to
handle mutability in parametric types, the const part of the type is expanded
into a template in the same way as the rest of the type parameter. Figure 14
demonstrates the way that immutability expands into templates; the compile
error when we try to assign to the item field of an existing node in the list comes
because, when the list is instantiated with T as const int, then the field item
has type const int, and cannot be modified after instantiation. The list itself
can be mutated, but the data stored within it cannot. We cannot, however,
parametrize the list in such a way that the structure cannot be altered, while
the data can. Whilst writing const List<int> seems to achieve that effect,
in fact it only makes the List part of the data structure immutable; it is still
possible to mutate the structure of the underlying collection of Nodes, given a
reference to the sentinel.

For interest, readers might wish to note that the following program will fail
to compile (attempting to store immutable data in a std::vector):

1 int main () {
2 std : : vector<const int> immutableInts ;
3 }

In Java and C# There is no support for the parametrization of mutability
constraints within a class. The final and readonly keywords are not a part of
the type, and are not allowed as arguments for generic parametrization.

6Protected in the sense that no references to any object inside it can appear below this
point on the stack, or anywhere on the heap outside of this region

25

1 #include <iostream>
2 #include ” l i s t . hpp”
3
4 int main () {
5 Lis t<int> l i s t ;
6 l i s t . add (1) ; l i s t . add (2) ; l i s t . add (3) ;
7
8 for (int i =0; i <3; ++i) {
9 std : : cout << i << ” : ” << l i s t . get (i) << std : : endl ;

10 l i s t . s e t (i , i ∗ i) ;
11 }
12
13 for (int i =0; i <3; ++i) {
14 std : : cout << i << ” : ” << l i s t . get (i) << std : : endl ;
15 }
16
17 List<const int> l i s t 2 ;
18 l i s t 2 . add (1) ; l i s t 2 . add (2) ; l i s t 2 . add (3) ;
19
20 // l i s t 2 . s e t (1 , 10) ; // Compile error !
21
22 return 0 ;
23 }

Figure 14: Code listing demonstrating immutability constraints on parametrized
classes (see Figure 15 for class definitions)

2.3 IGJ: Immutability Generic Java

[20] introduces a system of parametric immutability constraints on top of stan-
dard Java. The aim is to be able to express mutability constraints in a more
flexible way than is available in, for instance, templated C++ code. In [20]’s
system, mutability constraints are parametrized just as any other part of the
type: all types gain an extra generic parameter, and this (their first parameter)
dictates their mutability. The parameter can have one of three values (recall
the discussion of [6]): Mutable, Immutable, and Readonly – which denote, re-
spectively, mutable objects, immutable objects, and their common ancestor in
the type hierarchy. An object can never concretely be Readonly – the anno-
tation simply means that we don’t know at the call site whether it is Mutable
or Immutable (so we must treat it with the restrictions of both). The system
presented by [20] is extremely annotation-heavy, but [21] (also by Potanin et
al.) presents a system with similar capabilities and a more succinct syntax.

The following would be allowed under both [6] and [21] systems; they give
us reference immutability on the fields of immutable objects, not deep object
immutability (although this can certainly be achieved in [21] through parametric
specification of the mutability of fields):

1 pub l i c s t a t i c mutateNestedField (Main<Imm> immutable) {
2 // Legal
3 immutable . mutableFie ld . mutate (in , some , way) ;
4 }

26

1 template <typename T>
2 class Node {
3 T item ;
4 Node<T> ∗next ;
5
6 public :
7 Node (T item) : item (item) , next (NULL) { }
8 void add (T item) {
9 i f (NULL == next) {

10 next = new Node<T>(item) ;
11 } else {
12 next−>add (item) ;
13 }
14 }
15
16 T get (int index) {
17 i f (index == 0) { return item ; }
18 else { return next−>get(−−index) ; }
19 }
20
21 void s e t (int index , T newValue) {
22 i f (index == 0) { item = newValue ; }
23 else { next−>s e t(−−index , newValue) ; }
24 }
25
26 } ;
27
28 template<typename T>
29 class L i s t {
30 Node<T> ∗ s e n t i n e l ;
31
32 public :
33 L i s t () : s e n t i n e l (NULL) { }
34
35 void add (T item) {
36 i f (s e n t i n e l == NULL) {
37 s e n t i n e l = new Node<T>(item) ;
38 } else {
39 s en t i n e l−>add (item) ;
40 }
41 }
42
43 T get (int index) const {
44 return s e n t i n e l−>get (index) ;
45 }
46
47 void s e t (int index , T item) const {
48 s en t i n e l−>s e t (index , item) ;
49 }
50 } ;

Figure 15: Templated classes used to demonstrate parametric immutability in
Figure 14

27

Initialization of immutable data structures is difficult for obvious reasons: we
will often need to write to immutable fields in this stage of an object’s lifetime.
To help us with this, IGJ allows a fourth mutability type: AssignsFields. This
level of mutability is available inside constructors, and like ReadOnly cannot be
assigned to an object directly. Objects in this state of mutability cannot be
stored in fields; what this gives us is a level of immutability that can only
occur in an object under construction – thus allowing for the initialization of
immutable objects (whilst limiting it to the constructor). In [21], OIGJ makes
the initialization of immutable objects more flexible through ownership.

To illustrate what this system gives over C++, consider that in C++, the
only available mutability constraint (const) is coupled to the type parameter.
Whilst we can construct a list of const ints, we cannot construct a list of type
List<Immutable, int> – which would allow us to use the mutability parameter
in other parts of the data structure, perhaps in parts that were not dependent
on the int part of the parametrization.

Our next section is a discussion of nullity constraints – the other major area
we wish to address.

2.4 Nullity

A striking feature about nearly every language with support for reference-types
(Java, C#, C++, to name just a few) is the presence of a singleton value
which transcends type boundaries: in the languages just mentioned, it is called
null. A null reference can be used in place of any reference-type object (in
Java, this means anything except a primitive), and C# has explicitly added
support for nullable value-type objects via int?, string?, float? and friends.
Because null transcends type boundaries, we saw in Section 2.1.2 that it can
be “safely” used any time an object of any type is required. The problem
with this is that there is no way, through the type system, to specify that it
is not safe to specify null in place of an object. This is the goal of nullity
constraints – which languages such as Java, C# and C++ do not have. Ef-
forts have already been made to address this situation through both theoretical
work (which we discuss here), and through practical steps: the Kotlin ([9])
and Ceylon ([16]) languages (new languages which target the Java virtual
machine) both have support for not-null fields of objects, and promise not to
throw NullPointerExceptions (the familiar response from Java when a pro-
gram attempts to dereference a null pointer) when objects are fully initialized.
Both require initialization in an object’s constructor (or a similar construct),
and we will see when we discuss [18] that this approach is too limited for our
purposes.

A null-pointer de-reference happens when a program attempts to access a
field or method of the null object. Because null is considered a valid value by
the type system for any object of any type, the only way for a programmer to
ensure that an object passed into a function (or, indeed, any field of any object

28

passed into a function) is not null is to explicitly check:

1 i f (foo != nu l l) {
2 doSomethingWith (foo . someField) ;
3 }

Such checks are inconvenient, and in many practical cases considered unnec-
essary; calling code is generally expected to know in advance whether it is safe
to pass null-references into the arguments of functions. The result of this “as-
sumed prior knowledge” is that programmers make mistakes. With no way to
express through the type system the expectations of calling code with regard to
the nullity of a function’s arguments, we – as software engineers – often get it
wrong. Even when we are conservative, and don’t directly pass null-references
into functions that we call, the inability of the type system to express these con-
straints leaves us open to mistakes when it comes to the nullity of the objects
reachable through our function’s arguments; consider:

1 pub l i c void myFunc(Foo foo) {
2 foo . someField . someMethod () ;
3 }

In this case, the caller has to not only know that the argument to myFunc
foo cannot be null, but also to know how to properly initialize an object of
type Foo, such that none of its fields are left uninitialized.

Consider now, using an exclamation mark (!), as in [18] or [4], among others,
after a type signature to indicate that for an object to type-check against that
type, they must not be null:

1 c l a s s Foo {
2 Bar ! someField
3 }
4 . . .
5 pub l i c void myFunc(Foo ! foo) {
6 foo . someField . someMethod () ;
7 }

In this listing, the function myFunc is guaranteed not to cause a null-
reference error; its argument, foo, cannot be null, and the field foo.someField
can also not be null. It is thus safe to de-reference not only foo, but also
foo.someField, and so we can call its fields and methods with impunity.

Strong efforts have been made to allow programmers to specify the non-
nullity of types in Java-like languages already. Works such as [5], [18] (“Free-
dom Before Commitment” – FBC), and [4] (“Delayed Types”) decorate non-
null fields to mark them as such (e.g. Boo! for a non-nullable field of type
Boo) – the main challenge of these systems lies, again, in initialization. But why
is initialization difficult for non-null types?

The reason is that all fields of an object are – when a constructor is entered
– initialized to null. This means that in a type-safe system for non-nullity, the
type checker must be responsible for two things: ensuring that all non-nullable
fields have been initialized at some point, and ensuring that there is no attempt
to access a non-nullable field in an unsafe way before that point. In practice,

29

such schemes, like schemes for immutability, allow more flexible constraints on
objects under initialization, whilst posing restrictions on how they can be used
(e.g. an object currently under construction cannot be assigned to a field of
an object for which initialization has finished in FBC), by assigning them a
new type that reflects their uninitialized status (e.g. FBC labels objects in
currently-executing constructors [Free]). Objects under initialization are not
assumed to fulfil their invariants – so a non-null field of a [Free] object may
in fact be null.

Whilst [18] presents the most concise approach (needing very few annota-
tions, and resulting in a usable system for non-null fields), is it significantly
less flexible than that of [4] (delayed types). FBC requires that all objects
satisfy their non-nullity constraints by the end of their constructors (although
they can be treated as possibly-uninitialized after that point). Whilst objects
are allowed to escape their constructors as [Free] references, we cannot use
auxilliary methods to initialize them, and we cannot continue their initializa-
tion after the end of their constructors. Initialization of cyclic data-structures is
defeated by this scheme: it is impossible to assign a non-null back-reference to
the final element in a cyclic list before the first constructor is over (see Figure 16
for an illustration of the problem, and Figure 17 for a compatible work-around).
Whilst there is a work-around for a simple recursively-structured list (that is, a
homogeneous data structure, where we can hoodwink the type system by using
a reference to this, which is always available), it is perfectly conceivable that
a programmer may need to construct mutually-referencing objects for which
this trick cannot be applied (e.g. an object that needed a non-null reference
to another type of object, with neither being fully constructed until it could
store a non-null reference to the other – that is, a heterogeneous cyclic data
structure).

[4] introduces more flexibility here by placing the point at which initialization
must be complete outside the scope of the constructor – in a way very close to
[6]. In effect, delaying the point of commitment until outside the constructor
places the responsibility for initialization onto the caller, rather than the object
itself. Methods are then decorated with information about which fields of an
object they will guarantee to initialize.

The advantage of FBC is that it is clear, concise, and importantly modular;
all initialization is the responsibility of the object being initialized, and not the
calling code. The advantage of Delayed Types is that they are more flexible.
Both systems are proven sound by their respective authors, but while FBC also
has a sound type-checker implemented, Delayed Types has not. Both systems
use the concept of “commitment” to mean a concrete time at which (deep)
initialization of an object is finished, and from which point onwards we can
safely rely on the invariants promised by the nullability of its fields’ types.

An obvious omission from the non-null type systems mentioned so far is
parametrized nullity constraints. Whilst both systems will allow them in the
same sense that C++ templates allow parametrized mutability constraints, nei-
ther delivers the freedom that OIGJ ([21]) does for immutability – and nor does
any system for nullity that we are aware of.

30

1 class Node {
2 // In a c y c l i c l i s t , we always need
3 // a prev ious node
4 Node ! prev ious ;
5
6 // S imi la r l y , we must always have a
7 // prev ious node passed in to the
8 // cons t ruc tor i f we are par t o f a
9 // c y c l i c l i s t

10 public Node(Node ! prev ious) {
11 this . p r ev ious = prev ious ;
12 }
13
14 public stat ic void main (St r ing [] a rgs) {
15 // In the f i r s t ins tance , the re can be
16 // no prev ious node !
17 Node ! f i r s t =
18 new Node (/∗ What do we put here ? ! ∗/) ;
19 }
20 }

Figure 16: Code listing demonstrating the difficulty in initializing structures in
which the non-null fields of objects are mutually dependent.

2.5 Areas of commonality

This concludes the discussion of immutability and nullity – ideas are about
introducing further invariants to existing type systems in order to increase ex-
pressiveness and safety of programs. The shared challenge is that of object
initialization: in the case of nullity, the challenge is to ensure that all fields of
an object have been properly assigned to, while in mutability, the challenge is
to allow the short-term mutability of otherwise immutable objects, without ex-
posing their mutable forms to the wider world. We will see in section 4 that it is
beneficial to be able to complete the initialization of an object’s not-null fields
outside of its constructor, but this pattern requires objects to remain mutable
for that time also.

Current work on mutability seems to have embraced parametrization (c.f.
[20], [21], [6]) while work on nullity seems, so far, to be limited to un-parametrized
nullity constraints (e.g. [18], [5], [4]).

Greater flexibility has been achieved by generalizing the period of initializa-
tion to a “commitment point,” which may by outside the scope of an object’s
constructor. [21] leverages ownership to provide an external point of commit-
ment for objects, whilst [4] and [6] provide explicit commitment points within
the code.

31

1 class Node {
2 Node ! prev ious ;
3
4 // I n i t i a l i z e the f i r s t node
5 public Node () {
6 // FBC fo r c e s us to i n i t i a l i z e t h i s non−nu l l
7 // f i e l d , but we can have no ” prev ious ” f i e l d
8 // when we i n i t i a l i z e the f i r s t Node
9 this . p r ev ious = this ;

10
11 // This i s a t r i c k ; we do t h i s to s a t i s f y the
12 // type system , not because i t e xpre s s e s
13 // the in t en t i on o f the program .
14 }
15
16 public Node(Node ! prev ious) {
17 this . p r ev ious = prev ious ;
18 }
19
20 public stat ic void main (St r ing [] a rgs) {
21 // No ” prev ious ” node ye t
22 Node ! root = new Node () ;
23 Node ! second = new Node(root) ;
24 Node ! th i rd = new Node(second) ;
25
26 // Complete the c y c l e
27 root . p rev ious = th i rd ;
28 }
29 }

Figure 17: A work-around for initializing cyclic data-structures under [18]

32

3 Goals

We briefly cover the aims of this project in order to give a broad context to the
more specific discussions of existing systems in the next section.

Our most important aim is to produce a system that supports mutability
and nullity in a sound way, whilst allowing flexible initialization. Introducing
a generic system of nullity is an important challenge, and ultimately we hope
that the language and type system are as expressive as the other systems which
tackle the same problems.

We should also consider the aims of the authors of other systems: we will
consider the aims of [18] (Freedom Before Commitment, FBC), and [21] (Own-
ership Immutability Generic Java, OIGJ).

FBC was intended to be suitable for mainstream use, and consequently was
designed with four main goals in mind:

• Modularity,

• Soundness,

• Expressiveness,

• Simplicity

The reasons for each should be clear – modularity means that we can type-
check a class without concerning ourselves with how it is used by other code (e.g.
sub-classes, or any other code that uses the class itself); soundness guarantees
that any program that can be type-checked can execute without causing type
errors (e.g. incorrect method calls); while expressiveness and simplicity speak
for themselves, but are particularly important when designing a language (or
language variant) for mainstream consumption: as programmers, we are often
extremely reluctant to learn complicated new syntax, or use languages that
don’t allow us to express ideas that others might.

In [18], Summers et. al. note that FBC is in some ways less expressive
than alternative non-null type systems, but gains simplicity as a consequence.
They also performed an experimental evaluation, applying their type system to
a large existing body of code (“SSCBoogie,” a Spec# verifier), having imple-
mented a type-checker in a modified version of the Spec# compiler. We will
not attempt such an experimental approach, since implementing a type checker
will be outside the scope of the project, but we will provide code examples to
show that our system can express complex data structures and initialization
patterns.

In [21], Potanin et. al. also implemented a type-checker, then annotated the
collections from the Java standard collections. They note in their introduction
that no refactoring of existing code was required after annotations were added,
and conclude that their system is expressive enough for most purposes.

In presenting a type system that expresses (im)mutability and nullity in-
formation, along with flexible initialization, we will favour expressiveness over

33

simplicity. The annotations required to write classes in the type system pre-
sented may be extremely verbose, but we prefer to focus on the problem of the
ease with which these complex objects can be initialized and used. If there is
opportunity, we aim to simplify the annotations through a series of defaults
(e.g. objects are assumed committed unless the user states otherwise), but we
see that as a nicety here, rather than as essential.

Whilst we will not consider syntactic simplicity, we should consider semantic
simplicity (is the system conceptually easy to use?). While we will consider this
in our evaluation, we should note: data-structures with parametric mutability
and nullity constraints are fundamentally not simple ideas. With this in mind,
it is quite expected (and acceptable) that a type system describing them is also
not simple.

The above focuses on our requirements for the constructed type system from
a practical point of view. We would also like for our formulation of the type
system to provide a unified approach to the two separate concepts in a way
that allows them to compliment each other with shared concepts (notably, the
initialization phase of an object’s lifetime). We aim to minimise the extra work
required from the system in order to satisfy our goals (e.g. do we need to have
separate ideas of when an object becomes initialized for nullity and mutability
constraints? Do we need new run-time constructs?).

34

4 Existing systems in more detail

We should spend some time discussing some existing systems for nullity and
immutability in more detail. In particular, we will look at the initialization
section of an object’s life-cycle; this section is perhaps the most complicated,
since it is the time when invariants on an object must first be established.

4.1 The initialization problem

So far, we have noted that initialization is difficult, but we haven’t explored why.
Systems for both nullity and mutability spend some time on the problem, but
the challenge for each is different. In the case of nullity, the problem is that,
when an object is first allocated, it is likely not to satisfy its invariants. In
the case of mutability, the problem is that if we enforce the invariants, it will
become difficult to complete the object’s initialization with respect to its other
properties (e.g. nullity, although this also applies to properties expected of an
object that are not a part of the type system).

In order to make the problem concrete, we should consider an example: we
will define two classes, Pet and Owner. Each Pet will have a single, unique
Owner, and Owner will be a special case of Person – one which has a Pet. To
represent this specification in a real program, we will need to construct two
mutually dependent objects. Traditionally we would write something like in
Figure 18. Clearly there are times when such mutual dependencies occur in
real programs, and the steps we could take to make the initialization appear
cleaner often defeat good design practices (e.g. if we were to create the Pet in
the Owner’s constructor, we would defeat dependency injection). Note that the
initialization of these objects is not “safe;” the type system guarantees neither
that all Pets will end up with Owners, nor that all Owners will be given Pets.
Moreover, for the sake of example, we contrive to require “loyalty” from both
our pets and our owners; a faithful dog will not desert its master, and a good
master will not abandon his loyal companion. So we have two new requirements:

• That the owner and pet fields of Pet and Owner (respectively) are non-
null.

• That they are also immutable.

In Figure 18, we did not initialize either of these fields within the body of each
object’s constructor. We can do a little better than that by mandating that a
Pet be created after an Owner, and requiring that an Owner be passed into the
Pet’s constructor. But how can we properly initialize the Owner? If our type
system truly guarantees the mutability and nullity promises we would like it to
at the end of a constructor, then we will certainly want it to give a type error in
Figure 18 (we cannot satisfy the nullity requirements within the constructor,
and we do not respect the mutability constraints outside it). Even if we make
the modification we’ve just mentioned, we will be unable to satisfy the nullity
and mutability requirements of both objects. Our options are limited:

35

• Weaken the type constraints on one of our fields. This is the simplest
solution, but also the least desirable; our type system is rather impotent if
we can only use it to guarantee mutability and nullity constraints in some
places, but for the sake of initialization we must give up this privilege in
others.

• Come up with some scheme for initialization that will allow us to satisfy
our type system’s requirements with regard to the invariants on an object,
allowing that the constraints of the type system might be too rigid while
the object is still under initialization.

4.2 What do we require from initialization?

We require two things from the initialization of an object:

• That when initialization is “finished,” (the object is “committed”) it sat-
isfies all of its invariants. This includes both those that are part of the
type system (e.g. nullity constraints), and also those required by the
particular application (so the user should be able to perform arbitrary
initialization).

• That it is possible, within the constraints of the type system, to fulfil (and
check that we have fulfilled, at the pint of type-checking) all the invariants.

Often, we consider the initialization phase of an object to be only its con-
structor. This is because, in general, this is the only code that we can guarantee
will be run by the client of our class. In C++, we actually require that some
initialization is done before the constructor is entered; the initialization of const
fields, for example. As we have seen though, the constructor alone is not enough:

• Sometimes it is not possible to perform all the initialization that an object
requires from within its constructor. We generally rely on client code to
know about this, and perform the required extra steps. Whatever system
we design should be flexible enough to allow this pattern of initialization.

• Even when it is possible to perform all required initialization within the
constructor, objects in real systems are required to undergo non-trivial
procedures – the most obvious of which being method calls with the object
under initialization as the receiver (or, equivalently, function calls with the
object as an argument). We will refer to this as an object “escaping” its
constructor.

So we require that we are able to use objects under initialization in a context
that is not limited to the constructor – that is, we must be able to safely handle
objects under initialization in other parts of the code, whether it be the code
that creates the objects, or the code that is called from within their constructors.

36

1 class Person {
2 . . .
3 }
4
5 class Owner extends Person {
6 // An owner i s a s p e c i a l type o f person ,
7 // with a pet .
8 Pet pet ;
9 }

10
11 class Pet {
12 // Al l pe t s must have owners !
13 Owner owner ;
14 }
15
16 class Program {
17 public stat ic void main (St r ing [] a rgs) {
18 // Create the o b j e c t s −− they are not
19 // ye t ready to use , as they have not
20 // been i n i t i a l i z e d
21 Owner owner = new Owner () ;
22 Pet pet = new Pet ;
23
24 // Finish i n i t i a l i z i n g . One o f t he se
25 // (and only one) cou ld have been
26 // performed wi th in a cons t ruc tor .
27 owner . pet = pet ;
28 pet . owner = owner ;
29 // We could comment out the se f i e l d
30 // assignments and the Java type
31 // checker would not complain − the
32 // f i e l d s would s imply be l e f t
33 // u n i n i t i a l i z e d (to the p e r i l o f
34 // anybody who uses the o b j e c t s l a t e r
35 // on in the program)
36 }
37 }

Figure 18: Java code showing a common pattern for initializing objects that
cannot be properly initialized within their own constructors because of mutual
dependencies.

37

4.3 Approaches to initialization

Freedom Before Commitment (FBC, [18]) employs the simplest approach
to initialization of the work we have mentioned. Object initialization finishes
with the constructor – an object is said to be [Free] throughout its constructor,
and while any of the arguments to its constructor are still [Free]. Otherwise it
is said to be “[Committed].” Both [Free] and [Committed] objects subtype
[Unclassified], so that where it is not important which state is applicable, we
need not restrict ourselves. These commitment annotations become a part of
the type, and methods are required to specify commitment level (with defaults
provided) along with the rest of their signature. Methods also gain one more
requirement; they must specify the commitment level of their receivers. See
Figure 19 for an example of how we might implement our pets/owners example
from Figure 18.

Now that we can specify the level of initialization of our objects in FBC,
we should discuss what it means for an object to be (un-)initialized in a type
system of nullity. Whilst ostensibly simple (we have discussed already that the
object may not yet satisfy its invariants), it places serious restrictions on what
we can do with the object. Within FBC:

• We must treat all non-null fields of a [Free] object as possibly-null (but
not null-assignable). This is to be expected; if an object has not finished
initialization, then we might expect its not-null fields to be possibly null.

• We cannot store [Free] objects in the fields of [Committed] objects.
If we were to store uninitialized objects in the fields of initialized ones,
we would defeat the soundness of the type system; when we access the
[Committed] object from elsewhere in the code, we would then be able
to access the uninitialized fields of the stored [Free] object, through an
alias that suggested they were initialized.

• In a [Free] object, we do not know the initialization state of the fields;
even if they prove to be non-null, they may in turn also be [Free] –
consider Figure 19, if we were to reference the Pet’s owner subsequently
in the Pet’s constructor. They may of course be committed; we must say
they are [Unclassified] and treat them with the restrictions of both.

In summary, FBC requires constructors to assign non-null values to all
non-null fields. Objects are allowed to escape to methods whist [Free], but
are restricted to methods expecting possibly-[Free] arguments (or receivers,
as appropriate). [Free] objects may only be assigned to the fields of other
[Free] objects, and we must assume all their fields to be possibly-null and
[Unclassified]. The challenge of initialization in FBC can be summarised
into three core issues: ensuring all fields are properly initialized; allowing some
objects to hold references to other uninitialized objects; and allowing the object
to escape its constructor without compromising the type safety of the system
as a whole.

38

1 class Person {
2 . . .
3 }
4
5 class Owner extends Person {
6 Pet ! pet ;
7
8 Owner () {
9 // t h i s escapes from the cons t ruc tor

10 // when i t i s passed as an argument to
11 // a func t ion (not ye t i n i t i a l i z e d !)
12 // which expec t s a [Free] owner .
13 this . pet = new Pet (this) ;
14
15 // t h i s . pe t must s t i l l be t r ea t e d as
16 // uncommitted , because i t took a re f e r ence
17 // to t h i s in i t s cons t ruc tor
18
19 // Compile error ! l i c k () r e qu i r e s a
20 // [Committed] owner , but t h i s i s s t i l l
21 // under cons t ruc t i on −− i t i s s t i l l
22 // [Free]
23 this . pet . l i c k (this) ;
24 }
25
26 [Committed] void play () {
27 // This i s a l lowed , s ince both the owner
28 // and the pet are committed .
29 this . pet . l i c k (this) ;
30 }
31 }
32
33 class Pet {
34 Owner ! owner ;
35
36 // Pet ’ s cons t ruc tor expec t s a [Free]
37 // (u n i n i t i a l i z e d) owner to be passed in .
38 Pet ([Free] Owner owner) {
39 this . owner = owner ;
40
41 // I t was sa f e to accept an u n i n i t i a l i z e d
42 // Owner , s ince we did not use the
43 // non−nu l l n e s s o f any o f i t s f i e l d s .
44 }
45
46 [Committed] void l i c k ([Committed] Person person) {
47 // A [Committed] Pet may l i c k a [Committed]
48 // Person ; the method expec t s a l l f i e l d s o f
49 // both t h i s and person to be i n i t i a l i z e d .
50 . . .
51 }
52 }

Figure 19: Code showing the specification of commitment levels in FBC code.
! denotes a not-null field. Note that Pet’s constructor will not accept an
initialized Owner; we could be more permissive here and use [Unclassified].

39

Ownership Immutability Generic Java (OIGJ, [21]), as we have men-
tioned previously, uses ownership to help with initialization. The problem of
initialization in OIGJ is harder than in FBC, because immutability places
more powerful constraints on initialized objects than non-nullity does. In non-
nullity, the only restriction on an initialized object is that we cannot set its
fields to uninitialized values (we can freely manipulate them in any other way).
With mutability constraints, we cannot change them at all. In essence: while
FBC allows us to complete the initialization of the fields it constrains after the
object is “cooked” (i.e. we can initialize them to anything at all so long as it is
not null, and complete proper initialization outside of the constructor), a sys-
tem for mutability constraints can offer no such freedom (by definition!). This
is where ownership steps in; while FBC limits initialization to the constructor,
OIGJ extends it; an object is considered to be under initialization until its
owner ’s constructor finishes. This allows us the flexibility to properly initialize
objects even when we cannot do so in the constructor.

At first glance, OIGJ’s seems the better system; but consider that, in terms
of the guarantees it makes on the object after initialization finishes, it actually
gives us very little. OIGJ does not mandate that any proper initialization
occurs; which is entirely natural, since the system speaks to whether an object
can change, rather than the proper initialization of the fields (or lack thereof).

The restrictions that OIGJ places on objects under initialization are in a
similar vein to those that FBC uses. OIGJ does not place explicit empha-
sis on initialization state; it prefers to reason in terms of the properties that
it describes (mutability). Mutability constraints come in the following forms:
Immut (immutable), Raw (objects under construction; they are treated as muta-
ble), Mutable (subtypes Raw: mutable objects that are not under construction).
At the top of the type hierarchy is ReadOnly, used when we do not know the
mutability of an object (and so must treat it with the restrictions of both, like
[Unclassified]). Whilst both Raw and [Free] reflect that an object is under
initialization, [Free] is purely a reflection on initialization state, where as Raw
is a type parameter, and fits into the mutability type hierarchy (it is legitimate
to expect fully initialized arguments which subtype Raw).

Raw objects cannot be stored in fields, like [Free] ones. An object with
mutability constraint extending Raw (so, one that is either under initialization,
or one that is Mutable) can be freely mutated. Once objects become cooked,
their Immutable fields cease to be treated as Raw and become mutable.

For a comparison of Raw and [Free], see Figures 20 and 21.
If we are to produce a system that unifies the specification of types with

regard to nullity and mutability, we would like them to share a model for ini-
tialization. The problem is that Raw and [Free] make quite different guarantees
to (and require quite different promises from) code that refers to objects with
each type. The advantages of limiting initialization to within an object’s own
constructor are obvious; the system is simpler, and we can check in a modular
fashion (i.e. without inspecting calling code) that we fulfil our promises (all
non-null fields get properly initialized during the constructor). The advan-
tage of allowing Raw objects to persist as long as their owners’ constructors is

40

Feature Raw [Free]
Can be assigned to fields of uninitialized objects × X
Can be assigned to fields of initialized objects × ×
Object is still in its constructor ? ?
Must establish invariants before cooking × X
Initialization state of fields is known X ×

Figure 20: Table comparing the guarantees made by and restrictions on Raw
and [Free] types.

Figure 21: Diagram showing the object’s lifecycle in terms of: Owner’s con-
structor, Object’s constructor, [Free], and Raw Initialization of NotNull fields
in [18] must be completed by the end of the object’s constructor, but it remains
[Free] until all the constructor’s arguments are committed. Mutability con-
straints in [21] are enforced from the end of the object’s owner’s constructor.

41

obvious: we can perform more complex initialization tasks that could not be per-
formed within the constructor. Each system works well for its own constraints,
but what happens if we extend non-null initialization to the same commitment
point as Raw, or limit Raw to the object’s constructor? In the former case, we lose
the simplicity of finishing initialization before the object’s constructor finishes
(which seems a shame, but it not entirely prohibitive), but more importantly we
lose the modularity. Unlike with mutability constraints (where the type system
does not become somehow unsound if we fail to properly initialize a field), in
the case of nullity constraints, all fields must be initialized – so if we extend
the initialization period to a point outside of the constructor, we must be able
to check that the combination of the calling code and the constructor, between
them, properly initialize fields. The alternative, of limiting Raw to the end of the
constructor, would prohibit us from many initialization patterns on immutable
data structures; we would have to make an object with suitably complex ini-
tialization requirements mutable, and so give up many of the advantages of the
type system.

4.4 Delay Types and initialization using stack-local re-
gions

Both the systems we have just discussed involve keeping uninitialized objects
inside protected regions: in the case of [18], this means that objects are initial-
ized before they leave their constructors, while in the case of [21], this means
they are initialized before they leave their owners’ constructors. [6] and [4]
generalise on this idea by talking explicitly about these protected uninitialized
areas. [4] uses the notion of “delay time,” confining uninitialized objects within
a given lexical scope, and [6] names its protected regions “stack local.” These
systems differ from the previous ones by not binding these protected regions to
e.g. a constructor, or an owner. In doing so, they create a more flexible, if more
complicated system.

In Section 2.2.3 we talked about [6]’s stack-local regions. [4] also makes
the presence (or otherwise) of an object in one of these protected regions a
part of its type, but also allows other methods (to which the object may be
escaped during its initialization) to take this part of the type as a parameter.
This has the added advantage that, in [4]’s system, we can re-use the same
protected region when we create more objects. Such a capability is not required
in a system of mutability alone, since we are not required to initialized specific
fields.

4.4.1 Replacing [Free] pets with delayed ones

It is informative to re-visit the example in Figure 19 from the perspective of
[4]’s delayed types. This helps to motivate our decision in the next section to
favour a model of initialization based on [4] and [6], rather than a constructor-
or ownership-based model, and also illustrates explicit initialization regions in
action. We have adapted the syntax presented originally in [4] for the sake of

42

a comparison with other systems, to produce the code in Figure 22. We have
omitted the declarations for methods on objects which are committed (which
are not significantly different).

43

1 /∗ Declare the NonNull f i e l d s o f the ob j e c t ∗/
2 Owner . pet : Pet !
3 Pet . owner : Owner !
4
5 /∗ Owner con s t ruc to r expect s an u n i n i t i a l i z e d Owner and Pet ∗/
6 Owner . c t o r [t , t > Now] (t h i s : Owner ! ˆ t , pet : Pet ! ˆ t)
7 /∗ Te l l the type system which f i e l d s we i n i t i a l i z e ∗/
8 { t h i s . pet }
9 {

10 t h i s . pet = pet ;
11
12 /∗ pet . l i c k (t h i s) would s t i l l be unava i l ab l e in t h i s system , as

pet i s known to be u n i n i t i a l i z e d ∗/
13 }
14
15 Pet . c t o r [t , t > Now] (t h i s : Pet ! ˆ t , owner : Owner ! ˆ t)
16 { t h i s . owner }
17 {
18 t h i s . owner = owner ;
19 }
20 . . .
21 l e t owner : Owner ! ˆNow =
22 delay t
23 in
24 l e t o : Owner ! ˆ t = a l l o c Owner [t] // A l l o ca t e
25 in
26 l e t p : Pet ! ˆ t = a l l o c Pet [t] // A l l o ca t e
27 in
28 o . c to r (pet) ; // I n i t i a l i z e Owner
29 p . c to r (owner) ; // I n i t i a l i z e Pet
30 /∗ o . play () and p . l i c k () are s t i l l f o rb idden un t i l

the end o f the de lay scope ∗/
31
32 o // Result o f the de lay
33 in
34 owner . play () // Owner and pet are committed and NotNull

Figure 22: We present code which illustrates that the example in Figure 19 can
be better expressed in Delayed Types (notice that we can move the construction
of the Pet to outside the constructor of Owner, without risking that either
is left uninitialized by the programmer). Under the Delayed Types system,
constructors are not implicitly called when object are allocated.

44

5 System Design

Having broadly covered some of the existing systems which tackle nullity and
mutability, we are in a position to describe the properties of our system. When
we must chose between expressivity and simplicity, we chose expressivity. This
section introduces the parts of the system which are likely to be unfamiliar
with most readers: we will discuss our models for initialization and genericity.
Aside from these aspects, the concepts involved are largely familiar. We will go
into more detail about the structure of types, the specifics of our initialization
regions, and the type hierarchies for mutability and nullity parameters in the
next section.

5.1 Initialization Regions

We have just seen in Figure 22 an example of using initialization regions to
ensure the safe initialization of our objects. In reality, all the systems we have
seen so far have the notion of an initialization region, but some are more explicit
than others. The three models we have seen are:

Constructor-based The most restrictive model, which limits initialization to
within an object’s constructor. We have discussed already that this model
is too limited for our purposes. [18] uses to constructor-based model,
though in order to allow more complex initialization, it concedes that the
guarantees (specifically, deep initialization) may not hold as soon as the
constructor finishes; rather they will finish some time later, when its least
committed argument becomes committed.

Ownership-based This model introduces more flexibility. Whilst in the case
of [21] it was applied to the question of when we begin to enforce con-
straints, we have discussed the idea of adapting it to the question of by
which point we require the programmer to satisfy guarantees.

Explicit This is the most flexible model, binding initialization to a region of
the code, rather than a part of the object hierarchy. The code allocating
the object can perform arbitrary initialization, and is only compelled to be
finished by the time the method ends (that is, the allocating code decides
the length of the initialization period).

It is useful to think of the explicit model in terms of an ownership model,
but instead of assigning ownership of each object to another object, we assign
ownership of an object to a region of the code. When we leave that region of
the code, the initialization of all the objects it owns must be complete (and the
restrictions are enforced).

Our system We use explicit initialization regions, like those found in [4] and
[6]. There is a requirement on the code which allocates an object to ensure that
the object becomes initialized before the end of the initialization region. Since

45

the duty of object initialization is moved to the point at which the object is
allocated, we follow the lead of [4] and do not use implicit constructor call. The
commitment point of the object becomes a part of its type for the duration of
the initialization region.

Helper methods It is desirable to be able to use auxiliary methods to aid
in object initialization. To this end, a newly allocated (but as yet not-fully-
initialized) object can be the target of method call. Methods are decorated
with an effects list, reflecting which fields of its arguments the caller can expect
to be initialized (this is just the system in [4]).

Initialization regions for nullity and immutability Recall Figure 21,
which shows the gap between the end of initialization under [18] and the begin-
ning of immutability under [21]. In a system with explicit commitment points
not coupled to the allocation of a specific object (or ownership hierarchy), the
allocator of the object may place that commitment point wherever is convenient;
initialization may extend as long as desired. It is not clear that we would gain
anything by allowing mutability constraints to be relaxed for any duration after
the initialization of NotNull fields is complete, so we unify the commitment of
objects with respect to both the end of their NotNull initialization, and their
mutability constraints.

5.2 Generic nullity and Mutability

We have discussed already that we bring genericity in terms of mutability and
nullity to our types. Generics are a familiar construct, and we see no reason
to depart from convention in this regard: our parametric mutability closely
resembles that of [20] and [21], and parametric nullity will be modelled on
this system. In order to allow methods whose arguments are covariant in their
generic parameters, we us a system like that of Java wild-cards to provide
upper bounds for both mutability and nullity parameters of a type. We will
give more detail in the next section, but it will be possible, for example, to
write methods which are completely generic in terms of the mutability and
nullity parameters of their arguments, for example in Figure 23. The mutability
parameters themselves are almost exactly those from [21]: Immutable objects
do not change, Mutable objects can, and we promise not to write to ReadOnly
objects, but accept that somebody else might (that is, ReadOnly signifies that
we can accept an object with any level of mutability). nullity constraints are,
again, of a familiar form: a reference is either Nullable or NotNull, with a
NotNull reference able to take the place of a Nullable one (subject to the
restrictions that we will discuss in the next section).

The figure also reveals some other details of the system:

• The type of a method’s receiver is a part of its signature. The implication
of this decision is that we can limit the availability of certain functions by
the parametrization of the receiver’s type: for example, it is possible to

46

1 c l a s s C[i]< ,n1> {
2 f : C[i , n1]< ,n1>
3
4 /∗ The type o f the f i r s t argument i s g iven d i r e c t l y by the

mutab i l i ty and n u l l i t y c on s t r a i n t s o f the c l a s s ∗/
5 C[i , n1]< ,n1> getF (C[i , NotNull]< ,n1> t h i s) {
6 t h i s . f // Just f i e l d lookup
7 }
8
9 /∗ Accept an in s t anc e o f C which may or may not be Mutable , and

whose f f i e l d may or may not be Nul l ab l e ∗/
10 void m (C[<? extends ReadOnly>, NotNull]< , <? extends Nul lab le>

> t h i s) {
11 . . .
12 /∗ x would have type C[<? extends ReadOnly>, <? extends

Nul lab le >]<, <? extends Nul lab le> > ∗/
13 x = th i s . getF ()
14 . . .
15 }
16 }

Figure 23: Figure demonstrating the constructs that allow generic covariance.
We have omitted effects and initialization-state constraints from method signa-
ture, and assumed the presence of a type void.

specify that certain methods can only be called upon Mutable instances
of the class (this is akin to the conditional method guards found in [8]).

• We separate the first mutability and nullity parameters from the others.
This is because the first parameters represent the object which is pointed
to by a particular references that holds this type: is the thing at the end
of this reference mutable? It it guaranteed to be not-null? The other
parameters are used within the body of the class to specify the types of
its fields and signatures of the methods.

• Class definitions are not parametric in terms of their own nullity. We
will cover the reasons for this in more detail in Section 7.8.4.

Class genericity We only chose to tackle genericity in the context of mu-
tability and nullity parameters. We make no attempt to provide types which
are generic in one or more class parameters. Such systems have been studied
in detail, and good implementations exist (which we covered in some detail in
Section 2).

5.3 Runtime model

We have mentioned already that the runtime model is simple, requiring no aux-
iliary constructs to specify our properties. We use a simple heap-based model,

47

with objects, field-assignment, and runtime (class-based) method resolution. To
that end, objects on the heap are just a class identifier, and a list of fields. Since
method resolution is performed by looking up the runtime class of an object, and
from there determining the appropriate method definition, an object is a unit
of polymorphism (as well as statefulness): this is everything we need to encode
booleans, integers and conditional branching flow constructs (the if-statement)
– demonstrated by early systems for object calculus like [1].

5.4 The language

The source language itself is illustrated through extensive examples in section
9. Most of the examples there assume standard constructs like if-then-else,
integers and booleans, but the language actually contains none of these; the full
range of available expressions is shown in Figure 30. For the sake of illustration,
we present an example code listing which assumes no additional constructs
(except the definition of a class Callable, with a single method call) in Figure
24, and encodes booleans. The listing demonstrates class definition and the
form of method signatures.

We are now ready to discuss the type system in more detail.

48

1 c l a s s Bool [i]<,> extends Object {
2 {} // Do not promise to i n i t i a l i z e any f i e l d s
3 {} // Do not expect any parameters to be u n i n i t i a l i z e d
4 /∗ Return an immutable Bool which may be nu l l ∗/
5 Now −> Bool [Immutable , Nu l l ab l e]<,>
6 /∗ Method name ∗/
7 then (
8 /∗ Expect an in s t anc e o f Bool , which must be committed ,

with the mutab i l i ty g iven by the type o f the
r e c e i v e r (NotNull) ∗/

9 Now −> Bool [i , NotNull]<,> th i s ,
10 /∗ Expect an in s t anc e o f Ca l lab l e , which must be

committed , with any mutabi l i ty , which i s not Nul l
∗/

11 Now −> Ca l l ab l e [<? extends ReadOnly>, NotNull]<,>
c a l l a b l e t r u e ,

12 /∗ As be f o r e ∗/
13 Now −> Ca l l ab l e [<? extends ReadOnly>, NotNull]<,>

c a l l a b l e f a l s e) {
14
15 /∗ Just re turn nu l l ∗/
16 nu l l
17 }
18 }
19
20 /∗ Extend Bool − t h i s i s a promise to implement i t s i n t e r f a c e in

f u l l ∗/
21 c l a s s True [i]<,> extends Bool {
22 {} {} Now −> Bool [Immutable , Nu l l ab l e]<,>
23 then (
24 Now −> Bool [i , NotNull]<,> th i s ,
25 Now −> Ca l l ab l e [<? extends ReadOnly>, NotNull]<,>

c a l l a b l e t r u e ,
26 Now −> Ca l l ab l e [<? extends ReadOnly>, NotNull]<,>

c a l l a b l e f a l s e) {
27
28 /∗ Do the ac t i on ∗/
29 c a l l a b l e t r u e . c a l l () ;
30 /∗ Return nu l l ∗/
31 nu l l
32 }
33 }
34
35 c l a s s Fa l se [i]<,> extends Bool {
36 {} {} Now −> Bool [Immutable , Nu l l ab l e]<,>
37 then (
38 Now −> Bool [i , NotNull]<,> th i s ,
39 Now −> Ca l l ab l e [<? extends ReadOnly>, NotNull]<,>

c a l l a b l e t r u e ,
40 Now −> Ca l l ab l e [<? extends ReadOnly>, NotNull]<,>

c a l l a b l e f a l s e) {
41
42 c a l l a b l e f a l s e . c a l l () ;
43 nu l l
44 }
45 }

Figure 24: Encoding of booleans. Assumes the presence of a class Callable
which has the method call.

49

6 The Type System: Informally

This section presents an informal description of our type system. In Section 7,
we will lay out the formal model. The system borrows heavily from the systems
we have already mentioned

We use classes, objects, a call stack, a heap, field assignment, and methods.
For simplicity, we will assume single inheritance and only virtual methods (we
will see that method call is resolved by the runtime class of an object).

We will define initialization regions, based on delay types from [4]. We
introduce the form of an expression’s type, which will contain several pieces of
information:

• A Class Name. This is familiar to all programmers of statically typed
languages.

• An initialization region parameter, enabling us to:

– Decide whether or not the object is under initialization – do its in-
variants necessarily hold?

– Refer to the initialization region of the object. This means that we
can create new objects (and assign them to fields) that are within
the same initialization region.

• A primary mutability parameter, describing the mutability of the object
with this type.

• A primary nullity parameter, describing the possibility that the reference
is null.

• Zero or more further mutability and nullity parameters, which can be
used in the body of the class, parametrizing the types of its fields and
method arguments.

• A set of zero or more as-yet possibly-uninitialized fields

Whilst the nullity and mutability parameters serve an obvious purpose, we
would like to give an intuition into our model for initialization regions. Readers
familiar with [4] or [6] will find them nearly identical (up to a restriction on
references between initialization regions), but they will be unfamiliar to most
other readers.

6.1 Initialization Regions

The idea of an initialization region is to be able to assign new objects to the
heap, and properly type them, without requiring that they yet be initialized. We
say that an object has a commitment point given by the end of its initialization
region in the code. As in [4], we will refer to this commitment point as a time, t.
Objects whose commitment points have passed are guaranteed to be initialized,

50

and we say they have commitment point Now. We further borrow from this
system, and say that commitment points which have not yet passed (i.e. are in
the future) are after Now: t > Now. We should note that [4] models the ordering
of time, while we (as in [6]) do not.

When we want to create a new initialization region t, we will write:

delay t{e}

with e an expression that may refer to t. At the end of e, we say that objects
allocated with the commitment point t become committed; we substitute Now
in place of their commitment point in their type. Within e, we say t > Now.
We may create nested initialization regions within t, but since we do not place
any ordering on time,

delay t{ delay t′{e}}

is equivalent to
delay t′{ delay t{e}}

We will see in Section 7.8.2 that we would not gain anything by placing an
ordering on time.

Initialization regions cannot extend beyond the end of the method that cre-
ates them, and a reference to an object o cannot be stored in the field of an
object with commitment different to that of o. We enforce the following:

• Objects with commitment point t = Now cannot reference objects still
under initialization (those with commitment point t′ > Now).

• Objects with commitment point t cannot reference objects with commit-
ment point different to their own.

• If an initialization region is created within a method, then that method is
at the top of the call stack at the end of that initialization region.

These restrictions on which objects can hold references to others dictate the
nature of references between objects in the heap, which Figure 25 shows. If
an initialization region tn is created at stack frame φn, then it can only be
referenced by stack frames higher up the call stack (φ>n).

[6] gives a similar discussion for the possibilities for references between object
in various stack frames under their tokens-based system. That system does not
allow the specification of the commitment points to be passed up the stack;
the approach is simpler, but makes it impossible to complete the initialization
of an object’s fields via helper methods; there is no way for a method to tell
whether an object is mutable, or simply uninitialized, so a conservative approach
is taken, and methods cannot assign objects under initialization to fields, unless
the initialization region for those objects is declared within the same method.

51

Figure 25: Figure showing the possibility of references to objects based on their
commitment points times, and a method’s place on the stack. Red (dashed)
lines represent references which are not allowed and blue (solid) lines represent
references which are permissible. t1 and t2 are protected initialization regions.

6.2 Types for immutability

We construct a type hierarchy for immutability. We need to be able to spec-
ify that an object is Mutable, Immutable, or under initialization. When we
want to express that we do not care for the mutability of an object, we will
say that it is <? extends ReadOnly >. <? extends ReadOnly > will be an
upper bound on Mutable and Immutable types, and will neither allow field-
writes, nor imply immutability. Mutablewill also subtype another mutability
construct: <? extends Writable >. This is the upper bound of Mutable and
the mutability type of objects under initialization (which may be Immutable
when they are committed). This type hierarchy is shown in Figure 26.

Both Immutable and Mutable references will correctly type when a ReadOnly
reference is required, and Writable can be used to require either Mutable or
objects under initialization. Writable and ReadOnly, however, will not be
available as the concrete type of a field; both Writable and ReadOnly will serve
only as bounds, as in [6] – we will write them only as <? extends ReadOnly >
and <? extends Writable >.

6.3 Types for nullity

Similarly to types for immutability, we require an upper bound on nullity for the
case when we do not care for whether a reference is Nullable or not. In general,
when constructing systems of nullity, authors simply allow NotNull reference

52

Figure 26: Figure showing the type hierarchy of immutability types.

to subtype Nullable ones. Whilst we also wish to have such a situation, we
need to take more care in the case of generic parameters: we write a least upper
bound for Nullable and NotNull:

Nullable ≤<? extends Nullable >

NotNull ≤<? extends Nullable >

We present a type hierarchy in Figure 27. Whilst we want to allow the user
to use a NotNull reference in place of a Nullable one, we want to avoid the
situation where a type with NotNull generic parameter subtypes a type with
Nullable generic parameter: the generic parameter dictates the nullity of the
object’s fields, and we do not want to treat an object with NotNull fields in the
same way as one with Nullable fields. The subtyping relationships are laid out
in full by Figure 37 in Section 7.5.2.

One may not assign null to the NotNull fields of an object under initial-
ization, but one also cannot guarantee them to be NotNull. The former is to
allow us to check that all the NotNull fields of an object become initialized; we
don’t need to check that a helper method is not reseting all our NotNull fields
to null when we pass in an object under initialization. This restriction is also
found in other systems for nullity.

6.4 Field initialization as part of the type information

Readers familiar with type systems for nullity will have come across the notion
of effects in the type system. The idea is that we must keep track of which fields
of an object are (or conversely are not yet) initialized. In doing so, we can check
that during the course of an object’s initialization, all of its NotNull fields are
assigned appropriate values. Some systems chose to add this construct to the
typing environment, but we have added the possibly-uninitialized fields to the
type itself. Types are written in the form

(. . .){f}

53

Figure 27: Figure showing the type hierarchy of nullity types. The dashed
line reflects that whilst in general a type parametrized with NotNull in place of
Nullable is not an acceptable substitute, when the NotNull reflects the nullity
of the reference itself we allow the subtyping relationship.

to mean that the fields f are not yet guaranteed to be initialized. The outcome
is that it is possible to write method signatures which expect objects to be in
certain stages of initialization, and the programmer is allowed to immediately
use the non-nullness of the fields to which they have just assigned (we can see
an example in Figure 28, which omits mutability constraints and optional type
parameters). For an example of how we can use the additional information in
method signatures, see Figure 54 (which does include all the type annotations
in the full system). By the time an object becomes committed, the programmer
must ensure that its set of possibly-uninitialized-fields is just the empty set.

6.5 The type rules

The type rules presented in Figures 39 and 40 are mostly straightforward. The
rules for variable lookup, object allocation, and possibly-null-dereference are
of the familiar form. We include a judgement for type subsumption, and a
less familiar rule for environment subsumption, which simplifies branching con-
structs: one environment is a sub-environment of another if it types all entries
in the latter with a type that is more specific. Clearly all environments are
sub-environments of the empty one.

Typing of method call is more complex than the others, and the rule is
described in more detail in Section 7.6.1, but field assignment and lookup are
also more complicated than in other systems.

Field Lookup Field lookup can be typed by either one of two separate judge-
ments: (T-FieldLookupUninit) and (T-FieldLookup). There are three cases for
field lookup:

When an object is committed This is the simplest case; we just check the
class of the receiver, and find the class of the type directly from the class
definition (modulo substitutions of the mutability and nullity parame-
ters).

54

1 c l a s s C {
2 f : C[NotNull]
3 g : C[NotNull]
4 }
5 . . .
6 de lay t {
7 /∗ Al l o ca t e an ob j e c t with c l a s s C and commitment po int t to

the va r i ab l e z1 , which ho lds a NotNull r e f e r e n c e ∗/
8 a l l o c t −> C[NotNull] as z1 ;
9 /∗ z1 : (t −> C[NotNull]) ˆ{ f , g} ∗/

10 a l l o c t −> C[NotNull] as z2 ;
11 /∗ z2 : (t −> C[NotNull]) ˆ{ f , g} ∗/
12
13 /∗ z1 and z2 are now ob j e c t s under i n i t i a l i z a t i o n with

committment po int t ∗/
14
15 /∗ Type e r r o r : f i s not i n i t i a l i z e d , so must be t r ea t ed as

pos s ib ly−nu l l ∗/
16 z1 . f . g
17
18 /∗ Type e r r o r : g i s not i n i t i a l i z e d , so must be t r ea t ed as

pos s ib ly−nu l l ∗/
19 z1 . g . g
20
21 z1 . f = z2 ;
22 /∗ z1 : (t −> C[NotNull]) ˆ{g} ∗/
23
24 /∗ Now l e g a l : f i s i n i t i a l i z e d , so we know i t i s NotNull ∗/
25 z1 . f . g
26
27 /∗ S t i l l a type e r r o r : g i s s t i l l u n i n i t i a l i z e d ∗/
28 z1 . g . g
29
30 z1 . g = z2 ;
31 /∗ z1 : (t −> C[NotNull]) ˆ{} − we have f i n i s h e d i n i t i a l i z i n g z1

∗/
32
33 /∗ Now l e g a l : ∗/
34 z1 . g . g
35
36 /∗ Must a l s o i n i t i a l i z e z2 , o the rw i s e we have a type e r r o r ∗/
37 z2 . f = z2 ;
38 z2 . g = z2 ;
39 /∗ z2 : (t −> C[NotNull]) ˆ{} ∗/
40 }

Figure 28: The programmer may use the knowledge of the already-initialized
fields further down in the same method – omitting mutability and optional type
parameters.

55

When an object is not committed There are two cases:

The field is not listed as possibly-uninitialized In this case, we type
the field lookup exactly as in the previous case, with the exception
that, since the object owning the field is uninitialized, we must as-
sume that the referenced object is also uninitialized: in particular we
assume the list of uninitialized fields for the object that is the result
of field lookup to be all of its NotNull fields.

The field is listed as possibly-uninitialized In this case, we do ex-
actly as in the previous case, but we also change the type of the
field-lookup to be possibly-null. In this case we must assume that:
the result of a NotNull field lookup might in-fact be null, and the
result of any subsequent lookups on the result might also be null,
even when they are declared as NotNull.

Field Assignment Field assignment is nearly exactly how we would expect,
but warrants a paragraph of explanation. We check that the receiver is not null,
that it is Writable (i.e. the type of the receiver is either Mutable or Immutable
but under initialization), then that the value being assigned is a subtype of
the expected type for the field. The part of the rule that is unusual is that
we check that the expected field type is “Grounded.” This entails checking
that is not one of <? extends ReadOnly >, <? extends Writable >, or <
? extends Nullable >. This is exactly the check we have to make in any
generic type system that supports covariant type parameters with wild cards:
the idea is that we cannot assign to a field about which all we know is that it
is e.g. ReadOnly; there might be other aliases to the object that type the field
as Immutable or Mutable. We go into more detail about this in Section 7.8.3.
In the case when we are assigning to a field of a variable (y.f = . . .), then we
also update the type information for that variable to reflect that the field is now
initialized.

56

7 The Type System: Formal Description

In order to reason about the type system we create, we will require the language
to do so. In this section we will formalize:

• The programming language itself,

• Typing statements,

• Runtime semantics,

7.1 Type statements

As we discussed in Section 6, a fully specified type must contain all the following
information:

• Class,

• A commitment point, t,

• A primary mutability constraint,

• A primary nullity constraint,

• Zero or more further mutability and nullity constraints, which parametrize
the definition of the underlying class,

• Zero or more possibly-uninitialized fields.

We will write types using the vocabulary in Figure 29. We write a fully-
qualified type σ, contains information about the initialization state of an object.
Informally, it should be read: “At time Θ, an object with this type will have
mutability I0 and nullity N0. The definition of the class is parametrized by I0,
I, and N , and the fields ε may be uninitialized.”

In Section 7.3, we specify program definitions. A class definition specifies the
fields and methods of a type, and is parametrized by the Is and Ns in that type.
The definition of fields here is straightforward (note that fields are also defined
in terms of unqualified types; the fields of an object will have fully-qualified
types dependent upon the fully-qualified type of that object – e.g. they will
be assumed by the type system to have the same commitment point as the
object itself, so commitment information isn’t required here), but the definition
of methods is a little more complex. Method definitions are in terms of fully
qualified return and argument types (which allows us to specify that an object
must be, e.g. immutable), but also a set of future times, Σ, which allows us to
specify that some of the arguments to a function must by uncommitted, and
an effects function, Ψ, which promises to the calling code which fields we will
initialize.

As we will see when we specify the type system itself, these constraints
govern both the arguments with which a method can be called, and also the

57

times at which an object may be a receiver of a method (e.g. only instances
of a list that is mutable will be able to have objects added to them after their
commitment point).

7.2 Notation

Before we continue with the form of programs, and assorted definitions, we set
some notation.

Ranges We write:
x
∣∣
j...k
≡ {xi}i=j...k

and we will omit the indexes i and j in most cases, to get

x ≡ x
∣∣
1...n

Functions We write:

{x 7→ a, y 7→ b, z 7→ c, . . .}

to mean a function which maps x to a, y to b, and so on.
We mix this notation with that for ranges, to get:

{x 7→ a}

which is equivalent to a function f such that:

∀i ∈ [1 . . . n] : f(xi) = ai

Substitutions We will use the normal notation for substitutions:

C[I,N] < I,N > [Immutable/I] = C[Immutable,N] < I,N >

And we freely combine it with the above notation to perform a set of substitu-
tions:

C[I,N] < I,N > [Mutable/I] = C[I,N] < Mutable,N >

C[I,N] < I,N > [I/Mutable
∣∣∣
0...1

] = C[Mutable,N] < Mutable, I
∣∣
2...n

,N >

We will also use this substitution notation with functions, to relabel elements
in their domain:

{x 7→ z}[y/x] = {y 7→ z}

58

C, T ∈ ClassId Class Identifiers
f, g,∈ Field Id Field Identifiers
m ∈ Method Identifiers
ε ::= {f} Uninitialized fields
this, x ∈ Argument Identifiers
z ∈ Local Identifiers
y ::= x | z Variables
t ∈ Time Variables Initialization Region Identifiers
χ ::= Now| t Possible Times
θ ∈ Formal Time Parameters
Θ ::= χ | θ Time Parameters
I ::= Mutable | Immutable Mutability Modifiers
i ∈ Formal Mutability Parameters
I ::= I | i |<? extends ReadOnly >
|<? extends Writable > Mutability Parameters

N ::= Nullable | NotNull nullity Modifiers
n ∈ Formal Nullity Parameters
N ::= N | n |<? extends Nullable > Nullity Parameters
ς ::= C[I,N] < I,N > Unqualified Types
σ ::= (Θ→ ς)ε Fully Qualified Types
Γ ::= {x 7→ σ} Typing Environment
Λ ::= {Θ} Time Environment
Σ ::= {θ} A set of future commitment points
Ψ : Argument Identifiers→ set of Field Ids Effects list
e ::= Expressions
Field Def ::= f : ς Field Definition
Meth Def ::= m : Ψ,Σ, σ, (σ, σ){e} Method Definition
Qualified Method Signature ::= Ψ,Σ, σ,Γ
Class Def ::= class C[i] < i, n >

extends C ′{Field Def,Meth Def} Class Definition
Program :== Class Def,Program | e Program definition

Figure 29: Vocabulary of types.

59

7.3 Program definition

We define a program in Figure 29 as a set of declarations of the following form
(followed by an expression):

class C[i0] < i, n > extends D{f : ς,m : Ψ,Σ, σret(σrec, σ){e}}

This declares a class (C), which has fields f of types ς, and methods m with
the signatures Ψ,Σ, σret(σrec, σ){e}. The Σ’s will constrain the commitment
points of a method’s arguments, and the Ψ’s will denote the initialization per-
formed by the method on its arguments. Notice that the definitions for field
types and method signatures are parametric in terms of i0, the mutability of
the receiver, but not in terms of its nullity.

To refer to the declarations in the program, we define a function:

Ω : ClassId→ Class Definition

We then extend Ω over field identifiers:

Ω : ClassId× Field Id→ Parametrizable Types

So with the program Ω with the single class declaration above, we would
have mappings:

Ω(C) = C[i0] < i, n > extends D{f : ς,m : Ψ,Σ, σret(σrec, σ){e}}

Ω(C, fi) = ςi

Note that the definition of Ω(C) is parametrized by i, n, i, n. We extend Ω
to include more specified types:

Ω : Unqualified Types× Field Id→ Unqualified Types

Ω(C[I] < I,N >, f) = Ω(C, f)[I/i,N/n, I/i,N/n]

When we look up the type for a field in an unqualified type, we substitute
the concrete nullity and mutability parameters of that type into the formal
parameters specified by the class.

Method signatures We add a further extension to the function Ω ; We allow
Ω to range over ClassId, Method Id pairs:

Ω : ClassId×Method Id→ Signatures

Given the program Ω defined above, we define:

Ω(C,mi) = Ψi,Σi, σi,ret(σi,rec, σi){ei}

7.3.1 Auxiliary functions

To help us with definitions later, we will define the following auxiliary functions:

60

body To easily retrieve a method body from a type and method identifier, we
define the body:

body : ClassId×Method Id→ Expression

which maps to method bodies: when Ω(C,mi) is defined as above, then we write

body(C,mi) = ei

Class As shorthand for accessing the class-name from a type we define a
function:

Class : Unqualified types → ClassIds

Class(C[I,N] < I,N >) = C

We extend the function over fully-qualified types in the obvious way.

Fields In order to talk about the set of fields that belong to an object of a
given type, C, when

Ω(C) = C[i, n] < i, n > extends D{f : ς,m : Ψ,Σ, σret(σrec, σ){e}}

then we say that
Fields(C) = {f}

and we make the natural extension to unqualified types, and fully-qualified
types:

Fields(C[I,N] < I,N >) = {f : ς[I/i,N/n, I/i,N/n]}

Fields(Θ→ C[I,N] < I,N >) = {f : ς[I/i,N/n, I/i,N/n]}

notNullFields We then add a secondary function for extracting only the
non-nullfields of type:

notNullFields : Fully-qualified types → set of (Field Id/Fully-qualified type) pairs

notNullFields : Unqualified types → set of (Field Id/Unqualified type) pairs

notNullFields(σ) = {f : σ st. f : σ ∈ Fields(σ)∧ ` σ ≤ NotNull}

notNullFields(ς) = {f : ς st. f : ς ∈ Fields(ς)∧ ` ς ≤ NotNull}

time We define shorthand for taking the initialization point from a type by a
function from fully-qualified types to times:

time : Fully Qualified Types→ Time Parameters

time((Θ→ ς)ε) = Θ

61

uninit For retrieving the possibly uninitialized fields from type information,
we define uninit :

uninit : Fully-qualified types→ set of Field Ids

uninit((Θ→ ς)ε) = ε

possiblyNull We define the function possiblyNull , which replaces the NotNull
modifier of uninitialized objects with <? extends Nullable > - this won’t
allow us to assign null references to NotNull fields, but it forces us to treat
uninitialized fields as if they might be null.

possiblyNull : Fully-qualified types→ Fully-qualified types

possiblyNull((Θ→ C[I,N] < I,N >)ε) = (Θ→ C[I, <? extends Nullable >] < I,N >)ε

7.4 The programming language

With class, field, and method declarations for a program Ω defined as in Section
7.3, we can then define expressions in the programming language which evaluate
to a result.

Program expressions are shown in Figure 30. We have the normal imperative
ingredients: values (the final result of evaluating an expression), field assign-
ment, field lookup, and sequences of expressions. We add an expression delay
which creates a new initialization region. Method lookups are of a familiar form,
with one exception: a method call is parametrized by the fully-qualified type of
the receiver.

The de-referencing of possibly-null references is of a familiar form for non-
null type systems; if the reference is not null, we evaluate e2 as if y has
a non-null concrete type. Finally, we allocate a new object to the heap by
calling “alloc , as ” which is equivalent to a parameter-less, body-less new
call in Java (all fields are zero-initialized – since all types in our language are
reference types, this means that they will be initialized to null). Any further
initialization can be done through method calls, field assignment, and so on.
There is then a proof burden on the calling code to ensure all non-null fields
are initialized before the end of the initialization region t.

Ensuring field initialization with effects In order to ensure that all non-
null fields are initialized, we must in some way keep track of which fields of an
object under initialization we have assigned to. Since the non-null initialization
of fields is a monotonic operation (that is, once they have become non-null,
they will not revert to null), this contextual information could be used when
later accessing those fields (that is, the user already knows the fields are non-
null, because she made them that way further up the method – regardless of
the fact that the object’s initialization is not yet complete). With this idea in
mind, it makes sense to carry the initialization information around as part of the

62

ι ∈ ψ (Addresses in the heap)
v ::= ι | null (A value is an address or null)
z ∈ Local variable identifiers (Assigned by variable allocation)
x ∈ Method Arguments (Received by methods)
y ::= x | z
p ::= y | p.f (Paths)
e ::= p | p.f := e | e; e (Result, field assignment, lookup, concatenation)
| delay t{e} (Initialization region)
| < I,N > p.m(y) (Method call)
| ifnull y then e1 else e2 (Possibly-null dereference)
| alloc σ as z (Object allocation)

Figure 30: Expression definitions

type. For this reason, we included the effects list as part of the fully-qualified
type information of a variable, instead of as contextual information. We will
write a fully-qualified type in the form:

(Θ→ ς)ε

with ε denoting the not-definitely-initialized fields of the object, and Θits
initialization point (we will see full syntax for all type information below). Note
that ε is just a set field whose initialization state we do not know. We will
abbreviate

(Θ→ ς)∅

to
Θ→ ς

7.5 Typing Expressions

We will use a context (Γ) for the types of local variables (those that are not
fields of objects, whose type information cannot be resolved through Ω). An
environment Γ is just a map from variable names to fully-qualified types:

Γ(y) = σ

We will use a “time environment” (Λ), constituted of a set of time variables,
which we will use to make judgements about the passing of time. We will discuss
the time environment in more detail in Section 7.5.2.

There is a burden of proof on the type system to ensure that all the NotNull
fields of all objects have been properly initialized, and we use the possibly-
uninitialized fields list (which is part of the fully-qualified types given by the
environment) to achieve that (contrast to [4], which uses a separate list of ini-
tialization effects).

63

We will write typing statements in the following form:
Ω,Γ,Λ ` e : σ,Γ′

which can be read as: under environment given by Γ and Λ, with program
definitions as given in Ω, the expression e has fully qualified type σ. Γ will be a
set of (variable identifier/type) pairs. Typing an expression e will also lead to
a modified environment, (Γ′). The change of environment keeps track of newly
declared variables, and will help us determine the how initialized newly assigned
objects are. We then define a system of typing judgements in Figures 39 and
40 to type expressions.

Because the guarantees offered by the type system in terms of mutability are
dependent upon initialization state, we use judgements about it in the form:

Λ ` σ ≤ I
where I is the declared mutability of a field. The judgement reads: With the

commitment points in Λ in the future, the type σ has mutability subtyping I.

7.5.1 Well-formedness of a type

We need to be able to check that the types in our programs make sense. For
this, we will need to check that:

• They contain class-names which are within the program, and

• the Mutability and Nullity constraints are permitted

We make the judgement:

Ω(C) = C[i0] < i
∣∣
1...n

, n
∣∣
1...m

> extends D{. . .}

TypeWFΩ((Θ→ C[I,N] < I
∣∣
1...n

,N
∣∣
1...m

>)ε)

We also need to be more specific than this: types allowed in method signa-
tures are more general than types allowed in fields, for example, so we make the
judgement:

σ = (Θ→ C[I,N] < I
∣∣
1...n

,N
∣∣
1...m

>)ε

TypeWFΩ(σ)
∀i ∈ {0 . . . n} : Grounded(I)
∀j ∈ {0 . . .m} : Grounded(N)

FieldTypeΩ(σ)

Where Grounded is defined by:

Grounded(I)

Grounded(i)

Grounded(N)

64

Θ ∈ Λ
Λ ` Θ > Now

Λ ` Now ≤ Now

Figure 31: Judgements about time

SM-Reflexive` I ≤ I

` I ≤ I′ ` I′ ≤ I′′
SM-Transitive` I ≤ I′′

SM-AllReadonly` I ≤<? extends ReadOnly >

SM-MutWritable` Mutable ≤<? extends Writable >

Figure 32: Subtype relationships between mutability values

Grounded(n)

In particular, <? extends ReadOnly >, <? extends Writable >, and <
? extends Nullable > are not Grounded: we will not allow them to be used
for field assignment or field declaration.

7.5.2 Well-formedness of Γ, Λ

A well-formed context requires only that ∀y ∈ Γ : TypeWFΩ(Γ(y)), with Γ(y)
being a well-defined function into the space of types.

Formally, we define Γ as a map:

Γ : Variable Identifiers → Types

e.g. Γ(y) = σ.
A well-formed time-environment, Λ, is a set of delayed time variables, of the

form:
Λ = {Θ}

A time-environment need only specify commitment points in the future; all
others are either Now, or parametric and are treated as unknown. Note that
there ss no requirement for an ordering on time. We define the judgements
about time in Figure 31. It is convenient to write t ≤ Now when t is committed.

We now have everything that is required to define the subtyping relationships
in Figure 37 (which is augmented by the rules in Figures 32, 33, 34, 35).

65

Λ ` σ ≤ I ` I ≤ I′ SM-TransitiveFullTypes
Λ ` σ ≤ I′

σ = Now→ C[Immutable,N] < I,N >
SM-CommittedImmutableΛ ` σ ≤ Immutable

σ = Θ→ C[Mutable,N] < I,N >
SM-MutableAlwaysMutable

Λ ` σ ≤ Mutable

σ = Θ→ C[I,N] < I,N >

Λ ` Θ > Now SM-UnCommittedCanMutateΛ ` σ ≤<? extends Writable >

Figure 33: Rules for relating full types to mutability values

SN-Reflexive` N ≤ N

` N1 ≤ N2 ` N2 ≤ N3 SN-Transitive` N1 ≤ N3

SN-PossiblyNull` N ≤<? extends Nullable >

Figure 34: Rules for subtyping of nullity constraints

` ς ≤ N
SN-Timeless` (Θ→ ς)ε ≤ N

ς = C[I,N] < I,N >
SN-Shorthand` ς ≤ N

` ς ≤ N ` N ≤ N′ SN-TransitiveFullTypes
` ς ≤ N′

Figure 35: Rules for relating fully-qualified types to nullity constraints. Note
that time constraints play no part here, so we can make judgements about
unqualified types.

66

SC-ReflexiveΩ ` C ≤ C

Ω ` C ≤ D Ω ` D ≤ E
SC-TransitiveΩ ` C ≤ E

Ω(C) = C[i] < ī, n̄ > extends D{. . .}
SC-ExtendsΩ ` C ≤ D

Figure 36: Rules for class subsumption

7.6 The Type System

We define the typing rules for the system in Figures 39 and 40.
When typing a program (a single expression, e), we begin with an empty

environment and time-environment.
Notice that we use a type subsumption rule, and also a similar rule for

generalizing an environment (this is useful when we want to “merge” disparate
environments resulting from the paths taken in a branch operation: specifically,
possibly-null dereference). We define the relationship Γ ⊆ Γ′ in Figure 38.

7.6.1 Typing Method Calls

When they occur during a program, method calls are parametrized by their
receiver, and all their arguments. The signature of a method is flexible, so that
it can correctly handle, for example, the initialization of several non-committed
objects. The bounds on the types objects that can be passed to a method are
given in two ways: the types of the arguments, σ which may or may not be fully
parametrizable (e.g. the programmer can specify that the arguments must be
immutable); and a set of future times Σ(which indicate which of the arguments
are still under initialization). When we discuss the well-formedness of a method
definition, we will place some constraints on Σ in order to specify what is a
correctly-written program, but recall from Figure 29 that it is a set of formal
time parameters (θ).

We will wish to make judgements about whether or not a set of arguments
is “correct” in terms of a method signature; we will need to make a judgement
about whether or not the concrete argument types are compatible with the
parametrizable method signature, and whether or not the commitment points
on those parametrized types are appropriate for the time constraints, Σ, which
are placed on the signature.

Further, we will need to take account of the initialization that a method
performs on its uncommitted arguments. To do this, a method signature con-
tains a mapping, Ψ, which specifies which fields it guarantees to initialize. We
will need to update the type information of objects at the call-site with new
initialization state. Formally, we define Ψ as a map from argument identifiers
to a set of field identifiers:

67

S-ReflexiveΩ,Λ ` σ ≤ σ

Ω,Λ ` σ ≤ σ′ Ω,Λ ` σ′ ≤ σ′′
S-Transitive

Ω,Λ ` σ ≤ σ′′

σ1 = (Θ→ C[I,N] < I,N >)ε1

σ2 = (Θ→ C[I,N] < I,N >)ε2

ε2 ⊆ ε1 S-InitΩ,Λ ` σ2 ≤ σ1

S-FullyInit
Ω,Λ ` (Now→ ς)ε ≤ (Now→ ς)∅

σ1 = (Θ→ C[I′0,N] < I,N >)ε

σ2 = (Θ→ C[I′0,N] < I′,N >)ε

` I′ ≤ I
∣∣
0...n S-MutΩ,Λ ` σ2 ≤ σ1

σ1 = (Θ→ C[I,N0] < I,N >)ε

σ2 = (Θ→ C[I,N′0] < I,N′ >)ε

` N′ ≤ N
∣∣
0...n S-NullΩ,Λ ` σ2 ≤ σ1

σ1 = (Θ→ C[I,N] < I,N >)ε

σ2 = (Θ→ C[I, NotNull] < I,N >)ε
S-NotNullΩ,Λ ` σ2 ≤ σ1

σ1 = (Θ→ D[I,N] < I
∣∣
1...i

,N
∣∣
1...j

>)ε

σ2 = (Θ→ C[I,N] < I
∣∣
1...i′

,N
∣∣
1...j′

>)ε

Ω(C) = C[i] < i, n > extends D{. . .}
Ω(D) = D[i] < i

∣∣
1...i

, n
∣∣
1...j

> extends E{. . .}

i ≤ i′ ∧ j ≤ j′
S-ClassΩ,Λ ` σ2 ≤ σ1

Figure 37: Full type subsumption relationship. Note that the program def-
initions are only required in the final judgement – this is where we account
for (single) inheritance. This definition relies on the auxiliary rules defined in
Figure 33, Figure 35, and Figure 36

68

∀y ∈ Γ′ : Λ ` Γ(y) ≤ Γ′(y)

≡

Λ ` Γ ⊆ Γ′

Figure 38: Environment subsumption

Ψ : Argument Identifier→ set of Field Ids

These considerations make the typing rule for method call more complicated
than the other typing rules, and it is be given separately (in Figure 41), with
some explanation, as well as in-line with the other typing rules.

The rule itself can be read as follows:

• Find the fully-qualified type of the receiver and arguments, checking that
the receiver is NotNull,

• From the receiver’s type, find the method’s signature (including return
type and an environment with which our arguments must be compatible),

• Check that any arguments expected to be uninitialized are do indeed have
commitment points in the future,

• The initialization information given by Ψ is mapped into the local context,
which each local variable’s new initialization state being given by the union
of all initialization promises made by the method signature for any of the
arguments filled by that variable.

Recall that fully-qualified types are of the form:

(Θ→ ς)ε

We can think of this as a statement about an object with this type:

“The object will be committed at time Θ to type ς . Until then,
the fields ε are not guaranteed to be initialized.”

With that in mind,we define a new syntax to help us with this rule:

((Θ→ ς)ε)ε′ ≡ (Θ→ ς)ε\ε
′

which will be short-hand for taking account of newly initialized fields. We also
define a further overload on Ω , taking a fully-qualified type, a method id, a set of
mutability conditions, and a set of nullity conditions, and returning an effects
map, the time constraints, the return type, and an environment associated with
a method. The first three come (with some substitutions) from the method
signature, and the environment is a more specialised version of the environment
with which the method’s body is type-checked:

69

Ω,Λ ` σ1 ≤ σ2 Ω,Γ,Λ ` e : σ1,Γ′ (T-Subsum)
Ω,Γ,Λ ` e : σ2,Γ′

Ω,Λ ` Γ1 ⊆ Γ2 Ω,Γ,Λ ` e : σ,Γ1 (T-EnvSubsum)
Ω,Γ,Λ ` e : σ,Γ2

y ∈ Γ
(T-env)

Ω,Γ,Λ ` y : Γ(y),Γ

Ω,Γ,Λ ` e : σ′,Γ′

Ω,Γ′,Λ ` p : σ,Γ′

σ = (Θ→ ς)ε

Λ ` σ ≤ Writable

` σ ≤ NotNull

Ω(ς, f) = ς ′

σ′′ = (Θ→ ς ′)notNullFields(ς′)

FieldTypeΩ(σ′′)
Ω,Λ ` σ′ ≤ σ′′

Γ′′ = Γ′[p 7→ Γ′(p){f}]
(T-FieldAss)

Ω,Γ,Λ ` p.f := e : σ′′,Γ′′

Ω,Γ,Λ ` p : σ,Γ
σ = (Θ→ ς)ε

` σ ≤ NotNull

Ω(ς, f) = ς ′

Λ ` Θ > Now
f ∈ ε

σ′ = possiblyNull((Θ→ ς ′)notNullFields(ς′))
(T-FieldLookupUninit)

Ω,Γ,Λ ` p.f : σ′,Γ

Ω,Γ,Λ ` p : σ,Γ
σ = (Θ→ ς)ε

` σ ≤ NotNull

Ω(ς, f) = ς ′

f 6∈ ε ∨ Λ ` Θ = Now

σ′ =

{
(Θ→ ς ′)∅ if Θ = Now

(Θ→ ς ′)notNullFields(ς′) otherwise
(T-FieldLookup)

Ω,Γ,Λ ` p.f : σ′,Γ

Ω,Γ,Λ ` e1 : σ1,Γ′ Ω,Γ′,Λ′ ` e2 : σ2,Γ′′ (T-Concat)
Ω,Γ,Λ ` e1; e2 : σ2,Γ′′

Figure 39: Typing rules for programs pt.1

70

t 6∈ Λ
Λ′ = {t} ∪ Λ

Ω,Γ,Λ′ ` e : σ,Γ′

σ = (Θ→ ς)ε

∀y ∈ Γ′ : time(Γ′(y)) = t =⇒ uninit(Γ′(y)) = ∅
Γ′′ = Γ′[Now/t]

σ′ =

{
(Now→ ς)∅ if Θ = t

σ otherwise
(T-InitRegion)

Ω,Γ,Λ ` delay t{e} : σ′,Γ′′

C ∈ Ω
σ = (Θ→ C[I, NotNull] < I,N >)ε

Ω ` C[I, NotNull] < I,N > Well formed

ε = notNullFields(σ)
Γ′ = Γ[z 7→ σ]
Λ ` Θ > Now (T-Allocate)

Ω,Γ,Λ ` alloc Θ→ C[I, NotNull] < I,N > as z : σ,Γ′

Γ(y) = σ

σ = (Θ→ C[I,N] < I,N >)ε

Ω,Γ,Λ ` e1 : σ′,Γ′

Γnotnull = Γ[y 7→ σ[NotNull/N]]
Ω,Γnotnull,Λ ` e2 : σ′,Γ′

(T-NullDeref)
Ω,Γ,Λ,` ifnull y then e1 else e2 : σ′,Γ′

Ω,Γ,Λ ` p : σ,Γ
` σ ≤ NotNull

Ω,Γ,Λ ` y : σ,Γ

Ω(σ,m, I,N) = Ψ,Σ, σ′,Γ′

Λ ` Γ ⊆ Γ′[y/x]

Σ[time(σ)/θ] ⊆ Λ

εy =
⋃
yj=y Ψ(xj)

Γ′ = Γ[y 7→ Γ(y)εy]
(T-MethCall)

Ω,Γ,Λ `< I,N > p.m(y) : σ′,Γ′

Figure 40: Typing rules for programs pt.2

71

Ω,Γ,Λ ` p : σ,Γ
` σ ≤ NotNull

Ω,Γ,Λ ` y : σ,Γ

Ω(σ,m, I,N) = Ψ,Σ, σ′,Γ′

Λ ` Γ ⊆ Γ′[y/x]

Σ[time(σ)/θ] ⊆ Λ

εy =
⋃
yj=y Ψ(xj)

Γ′ = Γ[y 7→ Γ(y)εy]
(T-MethCall)

Ω,Γ,Λ `< I,N > p.m(y) : σ′,Γ′

Figure 41: Rule for typing Method Call

If
Ω(D,m) = Ψ,Σ, σα+1, (σ0, σ

∣∣
1...α

)

σ0 = (Θ→ C[I0,N0] < I
∣∣
1...i

,N
∣∣
1...j

>)ε

σ′0 = (Θ′ → D[I′0,N′0] < I′
∣∣
1...i′

,N′
∣∣
1...j′

>)ε
′

∀k ∈ 0 . . . α+ 1 : σ∗k = σk[Θ′/θ, I′/i
∣∣∣
0...n

,N′/n
∣∣∣
0...m

]

Σ ` σ′0 ≤ σ∗0
Γ′ = {x 7→ σ∗}

Then
Ω(σ′0,m, I

∣∣
i′+1...n

,N
∣∣
j′+1...m

) = Ψ,Σ, σx+1,Γ′

Finally, we give the judgement for method typing in Figure 41

7.6.2 Well-formed Programs

In order to talk about the correctness of our type system with respect to our
runtime semantics, we will need to specify what qualifies as a correctly-written
program. We will require that all class definitions are properly specified, which
will in turn need us to check that all the fields and methods are properly speci-
fied.

Well-formedness of a method We will need to be able to type-check a
method against its most general set of arguments. If the method type checks
correctly in this case, then we will say that it is well-formed.

Each argument to a method has a type of the form

(Θ→ C[I,N] < I,N >)ε

72

with each I, N being parametrizable. We need to be able to type-check the body
of a method, given that we do not know the concrete types of each argument
ahead of time. Since the type-system allows us to handle parametrizable types
(i.e. types which contain formal parameters) without modification, this is not a
problem. We do require, however, that any appearance of a parametrizable type
within the body of the method is fully-specified by the method’s arguments.

In order to type-check the method’s body, we will need to construct an
environment (and a time-environment). For a program with

Ω(C,m) = Ψ,Σ, σret(σrec, σ){e}

We will construct a time-environment ΛC,m directly from the method signa-
ture, which specifies the commitment points which are in the future:

ΛC,m = Σ

Recall that Σ is a set of formal time parameters, which are the commitment
points of zero or more of the method arguments.

We can construct an environment for type-checking, by writing:

ΓC,m(this) = σrec

ΓC,m(x) = σ

Finally, we make the following judgement:

Ω(C,m) = Ψ,Σ, σret(σrec, σ){e}
TypeWFΩ(σrec), TypeWFΩ(σret), TypeWFΩ(σ)

Ω,ΓC,m,ΛC,m ` e : σret, (Γ′)

∀i ∈ [1..n] : ΛC,m ` Γ′(xi) ≤ σiΨ(xi)

ΛC,m ` Γ′(this) ≤ σrecΨ(this)

∀x ∈ Γ′ \ Γ : uninit(Γ′(x)) = ∅
Ω ` C.m well-formed

Well-formed classes The definition of a well-formed class is relatively straight-
forward. For a C to be well-formed, we require that:

Ω(C) = C[i, n] < i, n > extends D{f : ς,m : Ψ,Σ, σret(σrec, σ){e}}

with
D ∈ ClassId ∪ {Object}

D 6= Object =⇒ D well-formed

and
Ω ` C.m well-formed

i.e. the class must either extend some other well-formed class definition, or
extend a special class “Object,” and all the class’s methods must be well-formed.

We further require:

73

ι ∈ Addresses
v ::= ι | null Values
f ∈ Field Id
o ::= (C, {f 7→ v}) Objects
φ : Variable Identifiers → Values Stack Lookup
ψ : Addresses → Objects Heap Lookup
ψ : Addresses × Field Id→ Values Field lookup

Note that ψ(ι, f) is equivalent to ψ(ι) ↓2 (f) – an object is a tuple of a class
identifier and a map from field identifiers to values.

Figure 42: We define stacks, heaps, and values

• All methods appearing in D must also appear in C, with identical method
signature (but possibly different method body), and all fields appearing
in D must also appear in C, with the identical type. In this system,
“extending” another class is a promise to implement its interface in full.

• ∀f ∈ Fields(C) : FieldType(Ω(C, f))

Well-formed programs A well-formed program requires only two condi-
tions:

• All classes declared in the program are well-formed according to the rules
above

• There exists a class Main with a method Main.main accepting as receiver
a mutable, non-null instance of Main. The class should have no further
methods, no fields, and no extra formal parameters.

7.7 Runtime semantics

We define the stack, heap, and values in Figure 42. An Object is a tuple of a
class identifier, and a number of field-identifier/value pairs. A value is either an
address, or null. A heap is a function mapping addresses to objects, and for
convenience, we extend the heap to map address/field-identifier pairs to values
(i.e. we extend it with field lookup on objects).

A stack is a map from variable identifiers to values:

φ : Variable Identifiers → Values

We then define the run-time reduction semantics of our system in Figure 43,
written in the form

ψ, φ ` e v, ψ′, φ′

with v, a value, the result of evaluating the expression e on heap ψ with stack
φ, and ψ′, φ′ the resulting heap and stack after that evaluation completes. A
complete program is run by evaluating a single expression on an empty stack

74

and heap (formally, the initial domain of each partial mapping is the empty
set).

None of the runtime rules is complex enough to warrant special attention.

7.8 Design decisions

Before we go on to discuss proofs of the system’s formal properties, we will
briefly describe some of the design decisions made during the formulation of
the type system just presented. The reader may freely skip ahead to the next
section; this section is intended to provide a rationale for some of the features of
the system, as well as document the process of designing it (in particular, some
of the pitfalls we came across on the way).

Full type information of fields Since we are storing a list of definitely as-
signed fields on each type, we considered also including the full type information
of the values assigned to those fields, so that if they were assigned further up in
the same method, the user could use the more specific type information (rather
than the declared type in the class declaration). This is attractive from the
point of view of allowing the user to use all the information we can infer from
the structure of the program, but adds more complexity, and may prove to be
unsound in the context of multi-threading. (We might know what the concrete
type of a field is when we assigned it, but perhaps it will be changed before we
come to use that information further down in the same method).

7.8.1 Changing time environments

When we were formulating the type rules, it was intended that we would keep
track of both commitment points that had not yet been reached (i.e. “which
objects are not yet initialized?”), and commitment points which had passed (i.e.
“which objects can be judged to be fully initialized?”). The idea was that we
could make a judgement about whether the commitment point associated with
any given object was in the past or not. Instead, we now just substitute the
commitment point of a type with Now when it becomes committed (this is in line
with [4]), so we need only keep track of those objects which are not committed.

Under the latter system, the only possibility to change the time environment
is when we evaluate a sub-expression, within a delay construct (we evaluate
the sub-expression with a new time-environment, but do not change the sur-
rounding one). This means that we needn’t keep track of a changing time
environment. The new system is as expressive as the old system, since we only
used the set of “passed times” to judge that an object was committed: now we
just compare its commitment point to Now.

7.8.2 Subtyping between types with different commitment points

Originally, we intended to allow a subtyping relationship between types with
different commitment points. This would allow the programmer to write, for

75

φ(y) = v
(R-VAR)

ψ, φ ` y v, ψ, φ

ψ, φ ` e v, ψ′, φ′

ψ′, φ′ ` p ι, ψ′, φ′

ψ′(ι) ↓1= C

f ∈ Fields(C)
ψ′′ = ψ′[ι 7→ (C,ψ′(ι) ↓2 [f 7→ v])]

(R-FieldAss)
ψ, φ ` p.f := e v, ψ′′, φ′

ψ, φ ` p ι, ψ, φ

ψ(ι, f) = v
(R-FieldLookup)

ψ, φ ` p.f v, ψ, φ

ψ, φ ` e v, ψ′, φ′

ψ′, φ′ ` e′ v′, ψ′′, φ′′
(R-Concat)

ψ, φ ` e; e′ v′, ψ′′, φ′′

ψ, φ ` e v, ψ′, φ′
(R-InitRegion)

ψ, φ ` delay t{e} v, ψ′, φ′

ι 6∈ ψ
y 6∈ φ

φ′ = φ[z 7→ ι]

C := Class(σ)

Fields(C) = {f}
ψ′ = ψ[ι 7→ (C, f = null)]

(R-Allocate)
ψ, φ ` alloc σ as z ι, ψ′, φ′

φ(y) = null ψ, φ ` e v, ψ′, φ′
(R-NullDeref)

ψ, φ ` ifnull y then e else e′ v, ψ′, φ′

φ(y) = ι ∈ ψ ψ, φ ` e′ v, ψ′, φ′
(R-NotNullDeref)

ψ, φ ` ifnull y then e else e′ v, ψ′, φ′

ψ, φ ` p v

ψ(v) ↓1= C

body(C,m) = e

ψ, φ
∣∣
y
[this 7→ v][x/y] ` e v′, ψ′, φ′

(R-MethCall)
ψ, φ ` p.m(y) v′, ψ′, φ

Figure 43: Runtime semantics for programs.

76

example:

1 de lay t1 {
2 a l l o c t1 −> C[Immutable , NotNull]<> as y ;
3 de lay t2 {
4 a l l o c t2 −> D[Immutable , NotNull]<> as x ;
5 /∗ Ass ign ing an ob j e c t with commitment po int t2 to the

f i e l d o f one with commitment po int t1 w i l l cause a
problem ∗/

6 y . f i e l d = x ;
7 }
8
9 /∗ This has the same problem (t h i s time we as s i gn an ob j e c t

with commitment po int Now to one with commitment po int t1) :
∗/

10 y . f i e l d = x ;
11
12 /∗ Allows (with D. mutate () be ing some method r e qu i r i n g a

Writable i n s t anc e o f D) : ∗/
13 y . f i e l d . mutate ()
14 /∗ which i s c l e a r l y i n c o r r e c t ∗/
15 }

The problem with this is that when y remains uncommitted at the end
of delay scope t2, its field, y.field is also treated as uncommitted (i.e. our
type system treats y.field as Writable). In [4], this sort of field assignment is
allowed: when we look up fields of an uninitialized object under that system,
we know that the value in the field has commitment point no later than that of
the object. In the context of nullity constraints alone, this is enough.

Because of the above, we do not allow types with different commitment
points to have a subsumption relationship. Note that, when two objects are
committed, we treat them both as having Now as their commitment point. The
following is allowed:

1 de lay t1 {
2 a l l o c t1 −> C[Immutable , NotNull]<> as y ;
3 a l l o c t1 −> D[Immutable , NotNull]<> as x ;
4 /∗ This i s sa f e , s i n c e both are committed at the same time ∗/
5 y . f i e l d = x ;
6
7 /∗ Safe s i n c e x i s s t i l l uncommitted ∗/
8 y . f i e l d . mutate () ;
9 }

10
11 /∗ Not al lowed by the type system , s i n c e y , and thus any f i e l d o f y

, i s committed ∗/
12 y . f i e l d . mutate ()

7.8.3 Field Assignment

The type rules for field assignment go further than just checking that the value
being assigned subtypes the type of the field; it checks that this field has
‘Grounded’ type. This is because we need to avoid the situation where the

77

1 c l a s s C[i 0]< i1 ,> extends ob j e c t {
2 f : D[i1 , Nu l l ab l e]<,>
3
4 void m(
5 /∗ We don ’ t care f o r the committment po in t s o f the se

ob j ec t s , so long as they are the same ∗/
6 T −> C[Mutable , NotNull]<<? extends ReadOnly>,> th i s ,
7 T −> D[<? extends ReadOnly>, Nu l l ab l e]<,> x) {
8
9 /∗ The type o f x i s exac t l y the type o f t h i s . f in t h i s

exp r e s s i on ∗/
10 t h i s . f = x ;
11 /∗ The problem was that we al lowed f i e l d ass ignment when we

didn ’ t c on c r e t e l y know the type r equ i r ed f o r t h i s . f ∗/
12 }
13 }
14
15 . . .
16 de lay t {
17 a l l o c t −> C[Mutable , NotNull]<Immutable ,> as z1 ;
18 a l l o c t −> D[Mutable , NotNull]<,> as z2 ;
19 }
20 /∗ Fine to t r e a t z1 as C[Mutable , NotNull]<<? extends ReadOnly>,>
21 and to t r e a t z2 as D[<? extends ReadOnly>, Nu l l ab l e]<,> ∗/
22 z1 .m(z2) ;
23
24 /∗ We have j u s t put a Mutable r e f e r e n c e in z1 ’ s Immutable f i e l d ! ∗/

Figure 44: Figure showing that field assignment when the type of the field and
value are not concrete is unsafe.

field and the value are both typed as ReadOnly or Writable in a method, but
their types at the call-site are incompatible. For example see Figure 44 (which
omits effects and method-initialization-promises and assuming the presence of
a void type):

It is easy to construct a similar situation with fields that might be Nullable
(see Figure 45).

The solution is that when we do not concretely know the mutability or
nullity of a field (i.e. when it is the upper bound of some more concrete
possibilities, such as <? extends ReadOnly >, or <? extends Writable >),
we cannot assign to it. This is not surprising: covariance of generic argu-
ments is also a problem in Java, and it gives rise to the <? extends ...>
construct. We enforce that this kind of assignment is not allowed by the re-
quirement FieldType(σ′′) in the rule (T-FieldAss).

7.8.4 Nullity of the receiver is not parametric

It would be unsafe to allow method definitions (or field types) to be parametric
in the nullity of the receiver. The easiest way to illustrate this is through an
example: in Figure 46, we show a situation where we allow such parametric

78

1 c l a s s C[i 0]< ,n1> extends ob j e c t {
2 g : D[i0 , n1]<,>
3
4 void m(C[i0 , NotNull]< ,<? extends Nul lab le>> th i s ,
5 D[i0 , <? extends Nul lab le >]<,> x) {
6 /∗ The type o f x i s exac t l y the type o f t h i s . g in t h i s

exp r e s s i on ∗/
7 t h i s . g = x
8 /∗ The problem i s as be f o r e : we al lowed f i e l d ass inment

when we didn ’ t c on c r e t e l y know the type r equ i r ed f o r
t h i s . g ∗/

9 }
10 }
11
12 . . .
13 de lay t {
14 a l l o c C[Mutable , NotNull]< , NotNull> as z1 ;
15 a l l o c D[Mutable , NotNull]<,> as z2 ;
16 /∗ Must i n i t i a l i z e z1 . g s i n c e i t i s a NotNull f i e l d ∗/
17 z1 . g = z2 ;
18 } ;
19
20 /∗ nu l l i s a cceptab l e in p lace o f D[Mutable , <? extends Nul lab le

>]<,> ∗/
21 z1 .m(nu l l) ;
22 /∗ z1 . g i s now Null ! ∗/

Figure 45: Code listing showing that field assignment when concrete type is not
known is also unsafe in the case of nullity.

79

1 /∗ The d e f i n i t i o n o f the c l a s s i s parametr ic in i t s own n u l l i t y ∗/
2 c l a s s C[n0] extends ob j e c t {
3 /∗ The type o f f i s parametr ic in how we see the n u l l i t y o f the

r e c e i v e r ∗/
4 f : C[n0]
5
6 void
7 /∗ Formal time parameter T i s in the fu tu r e ∗/
8 {T}
9 /∗ t h i s i s NotNull , but x might be nu l l ∗/

10 m(T −> C[NotNull] th i s ,
11 T −> C[Nul l ab l e] x) {
12
13 i f n u l l x then
14 . . .
15 else :
16 /∗ Now we see x as C[NotNull] and x . f as C[NotNull] ∗/
17 t h i s . f = x . f
18
19 t h i s
20 }
21 }
22
23 . . .
24 de lay t {
25 a l l o c t −> C[NotNull] as z0 ;
26 z0 . f = z0 ; // z0 i s now cons ide r ed i n i t i a l i z e d
27 a l l o c t −> C[NotNull] as z1 ;
28 z0 . f (z1) ; // Sets z0 . f to nu l l !
29 z1 . f = z1 ; // z1 i s now i n i t i a l i z e d
30 }
31 /∗ z0 . f == nul l , even though z0 i s cons ide r ed i n i t i a l i z e d ! ∗/

Figure 46: Code demonstrating that allowing fields to be parametric in their
receiver’s nullity is not safe

definitions (omitting annotations for mutability and optional type parameters).

80

8 Soundness

We wish to be able to specify the goodness of a program, in terms of how it
operates on a Heap and Stack. We wish to express that, given that a program
has been typed by the rules in Figures 39 and 40, it will transform a heap
that is in a “good state” into another heap, also with a “good state,” and will,
eventually, evaluate to some result (a value).

We will show in this section that the combination of a well-typed expression
and a well-formed program will result in a complete evaluation to a result. We
will show that a well-typed expression has the following properties:

Progress Every program should evaluate to some result, or contain an infinite
loop (e.g. in the case of recursive function call). We will not prove this
property.

Well-formedness We define well-formedness in Section 47. Briefly, we require
that object on the heap have the fields we expect them to have, with the
nullity we expect them to have.

Mutability We define the Mutability properties in Section 8.4. In short: the
user cannot write to the fields of objects which are types as Immutable.

The rest of this section is concerned with showing that these properties hold
in the system which we have thus far laid out. We will begin by describing an
assumption that regards the way expressions are typed (our generation lemma),
then move on to the body of the arguments. In order to formally express the
properties above, we first need to define a notion of consistency between types
(Section 8.1). We are then able to specify what it means for the execution
environment to be well-formed with respect to associated type information (that
is, what it means for the system to be in a “good state”) in Section 8.2. From
there, we go on to show that this good state is preserved by the execution of the
program (Section 8.3). This preservation property, along with the properties of
a well-formed stack and heap, are exactly what is required to guarantee that
lookup of a value which the type system expects to be not-null will in fact not
be null. Finally, we discuss what it means for an object to be immutable in
Section 8.4, and formalize the guarantees that our system gives with regard to
mutability.

Generation Lemma Throughout this section, proofs will revolve around the
structure of derivations for types and runtime reductions as defined in Figures
39, 40 and 43. We will implicitly assume that these derivations are determined
by the structure of the expressions to which they apply: in particular we will
assume that, for example, when the type for an expression was derived, the
conditions for the associated derivation rule were satisfied. Such a lemma is
common in the literature, and is normally referred to as a Generation Lemma
(or Inversion Lemma, as in [13])

81

Lemma 8.1. Generation Lemma The most important case is field assignment;
we will assume, for example, that the following holds:

Ω,Γ,Λ ` p.f = e : σ′,Γ′′ =⇒

∃σ′ st. Ω,Γ,Λ ` e : σ′,Γ′

∃σ st. Ω,Γ′,Λ ` p : σ,Γ′

Λ ` σ ≤<? extends Writable >

` σ ≤ NotNull

σ = (Θ→ ς)ε

Ω(ςf) = ς ′

σ′′ = (Θ→ ς ′)notNullFields(ς′)

FieldTypeΩ(σ′′)
Ω,Λ ` σ′ ≤ σ′′

Γ′′ = Γ′[p 7→ Γ′(p){f}]

We assume similarly that expressions in any other form have been typed with
the appropriate typing rule.

Proof. We assume here that the lemma holds.

8.1 Consistency

Consistency is a property about types: we will use to describe two different types
being in some way compatible. The motivation for formalizing consistency is to
allow us to reason about the different ways in which we can reach an address
on the heap; we will argue that if there are two different ways of accessing the
same object, then they impose similar restrictions. Clearly this is a desirable
property from the point of view of arguing that the guarantees of the system
really hold: for example, we would like a formal way to describe that an object
cannot be reached via paths that describe it as both Mutable and Immutable
at the same time, or paths that give differing types to its fields.

Consistency between types is not a property of a heap (or stack); consis-
tency between paths will be – paths are a series of field lookups in a heap and
stack. When we talk about consistency of paths, we really mean the consistency
between the types given to those paths under a certain environment (and time-
environment). It is impossible to talk about the consistency of paths outside
the context of their type information, but it is quite possible to talk about the
consistency of types without them necessarily being applied to any expression.

We start by formalizing what it means for two types to be compatible. The
following definition is the intuition: two types are compatible if one subtypes
the other. But as we will see, it is too strong a condition for us (that is to say:
it does not hold in our system).

Definition 8.1. Type compatibility (intuition)

82

Ω,Λ ` σ ≤ σ′ ∨ Ω,Λ ` σ′ ≤ σ
Ω,Λ ` σ ≈ σ′

Whilst this property is both symmetric and reflexive, it is not necessarily
transitive. Consider:

Ω,Λ ` (t→ ς){b} ≤ (t→ ς){a,b}

Ω,Λ ` (t→ ς){b} ≤ (t→ ς){b,c}

so
(t→ ς){b} ≈ (t→ ς){a,b}

and
(t→ ς){b} ≈ (t→ ς){b,c}

but
(t→ ς){a,b} 6≈ (t→ ς){b,c}

In particular, this initial, strong condition is not an equivalence relation.
Not only that, but it does not hold for types in our system which we do want
to be able to consider to be compatible. Consider:

(Now→ C[<? extends ReadOnly >, NotNull] <,>)

6≈

(Now→ C[Mutable, <? extends Nullable >] <,>)

Now, it is perfectly reasonable to apply either of these types to an object which
has the type:

(Now→ C[Mutable, NotNull] <,>)

What makes it reasonable to use either of the above types instead of the more
specified one is that it is a subtype of them both, while neither one is a subtype
of the other. The condition is too strong to apply to these types which we wish
to consider compatible.

Now we give a new definition for type compatibility (which we call “consis-
tency”), specifying that two types are consistent if and only if they have some
common subtype:

Definition 8.2. Type consistency

∃σ′′ st. Ω,Λ ` σ′′ ≤ σ′ ∧ σ′′ ≤ σ
Ω,Λ ` σ ∼ σ′

As before, it’s clear that this property is both symmetric and reflexive. In
general, this property is not transitive, but when considering different views on
fields, we can show transitivity. The following lemma gives us an equivalence
result for the types that can be given to a field, given that one of those types
allows field assignment.

83

First let S be the set of maps from unqualified types to unqualified types by
the action of substitution of formal parameters, e.g.:

s ∈ S : s(C[i, n] < i, n >) = C[Immutable, NotNull] < I,N >

s′ ∈ S : s′(C ′[i, n] <,>) = C ′[Mutable, Nullable] <,>

We want to talk about functions in S because it allows us to characterize
types which are associated with a field of an object. If

Ω,Γ,Λ ` p.f : (Θ→ ς)ε

then
∃s ∈ S, C ∈ Ω, st. σ = (Θ→ s(Ω(C, f)))ε

(substitution on a lookup Ω(C, f) is exactly how we determine the type of a
field).

Lemma 8.2. Consistency is a transitive relationship through types which can
be assigned to fields of objects with a given class.

Ω,Λ ` σ ∼ σ′

Ω,Λ ` σ′ ∼ σ′′

FieldTypeΩ(σ′)
s, s′ ∈ S

E ∈ Ω
σ = s(Ω(E, f))

∧ σ′ = s′(Ω(E, f))

=⇒ Ω,Λ ` σ ∼ σ′′

Proof. Start by writing:

σ ≡ (Θ→ C[I,N] < I,N >)ε

σ′ ≡ (Θ→ C ′[I′,N′] < I′,N′ >)ε
′

σ′′ ≡ (Θ→ C ′′[I′′,N′′] < I′′,N′′ >)ε
′′

Note that σ ∼ σ′ =⇒ time(σ) = time(σ′) and for the same reason
time(σ′) = time(σ′′) Then let:

σa = (Θ→ D[Ia,Na] < Ia,Na >)εa

σb = (Θ→ D′[Ib,Nb] < Ib,Nb >)εb

with
Ω,Λ ` σa ≤ σ ∧ σa ≤ σ′

Ω,Λ ` σb ≤ σ′ ∧ σb ≤ σ′′

(we know such types exist; this is the definition of the ∼ relationship)

84

Notice that we have single inheritance with respect to classes, so we know
that either Ω ` D ≤ D′, or vice versa. Whilst the number of mutability and
nullity parameters may be different across each of the types, these are dictated
by the classes, with the highest number of parameters being at the bottom of the
hierarchy. In particular, we know that since σa and σb both subtype σ′, the first
n mutability parameters and the first m nullity parameters are the same (where
n and m are the number of mutability and nullity parameters expected by class
C ′ respectively), with the possible exception of the first nullity parameter.
Since ∃E, a class which specifies the form of both σ and σ′ up to the number
of mutability and nullity parameters, we know that they both have the same
number, so if σa and σb have a differing set of mutability and nullity parameters,
we can set all mutability parameters after position n and all nullity parameters
after position m to be just those from σb (yielding a new type, σ′a, which satisfied
all the subtype relationships that we had for σa); the resultant types will still
subtype σ and σ′. If there are more parameters in σ′′ then we must pick the
parameters after n and m to match with σ′′ (which is safe for the same reason).
We will see that if the first nullity parameter is not the same for both σa and
σb it is safe to use NotNull.

We know (from inspection of the subtyping rules) that:

Ia ≤ I′

Ib ≤ I′

Na ≤ N′

Nb ≤ N′

Ia ≤ I′

Ib ≤ I′

Na ≤ N′

Nb ≤ N′

And since we know FieldType(σ′), we know that these relationships are in fact
equality relationships (by inspection of the possibilities for the Is and Ns) for
all but the first nullity parameter. So:

Ia = I′ = Ib

Ia = I′ = Ib
Na = N′ = Nb

The only chance for the first nullity parameter to be different is if one of
the σ... have NotNull as the first parameter, but the others have Nullable. In
that case, notice that substituting NotNull for the first nullity parameter of
σa or σb is does not violate the subtyping relationship (so, just re-write σa or
σb with the NotNull parameter if necessary).

85

Without loss of generality, say Ω ` D′ ≤ D. Then

Ω,Λ ` σb ≤ σ′a

and so
Ω,Λ ` σb ≤ σ

which is exactly what we need for the statement:

Ω,Λ ` σ ∼ σ

Notice that the conditions in Lemma 8.2 hold whenever σ and σ′′ are the re-
sult of field lookup, and when σ′ permits field assignment (see rule (T-FieldAss)).

Lemma 8.3. Basic Consistency:

Ω,Γ,Λ ` e : σ,Γ′

Ω,Γ,Λ ` e : σ′,Γ′′

}
=⇒ Ω,Λ ` σ ∼ σ′

Proof. By induction on the structure of type derivations. In particular, by
inspection of the last rule applied in the derivation. The last rule applied is
uniquely determined (up to subsumption) by the structure of e, so the last rule
applied in the derivation of each type σ and σ′ will be the same; it suffices to
show that the types derived from any one particular judgement obey this rule.
In the case where one of the types σ, σ′ is derived with (T-Subsum) as the final
step, the result is clear.

(T-env) Then e = y and by the well-formedness of Γ there is no possibility
for variation: σ ∼ σ′.

(T-FieldAss) e is p.f = e′. The type of the expression is determined com-
pletely by the type of p. If p is typed with both σ and σ′, then we assume
(induction hypothesis) that σ ∼ σ′. Then ∃σ′′ which is a subtype of both.
The rule (T-FieldAss) does not care for the uninitialized fields of the type
of p, So write:

σ = (Θ→ C[I,N] < I,N >)ε

σ′ = (Θ→ C ′[I′,N′] < I′,N′ >)ε

σ′′ = (Θ→ C ′′[I′′,N′′] < I′′,N′′ >)ε

Note that whilst the number of mutability and nullity parameters in
σ, σ′, σ′′ may be different, single inheritance and the rules for well-formed
classes guarantee that there is some common supertype, and the field-type
lookup will only require some fixed number of these parameters, which is
identical in each case.

To determine the type of the expression, we check Ω(ς, f) or Ω(ς ′, f).

86

Claim Ω(ς ′′, f) is a subtype to both.

Proof The result of Ω(ς ′′, f) has only one chance for variation: in the
I′′s or N′′. Since σ′′ is a subtype of σ and σ′, we know that

I′′ ≤ I

I′′ ≤ I′

N′′ ≤ N

N′′ ≤ N′

so we have everything we need to apply (S-Mut) and (S-Null), which gives
the result.

Now, since we have found a subtype of both Ω(ς, f) and Ω(ς ′, f), we
satisfy the relationship ∼ (for the whole expression).

(T-FieldLookupUninit, T-FieldLookup) The argument here is identical to
field assignment: in either case, we determine the type for the field lookup
uniquely from the type of the path to the receiver.

(T-Concat) By our induction hypothesis, and noting that the derivation for
the type of the full expression is one rule-application larger than the deriva-
tion for a sub-expression (but has the same result).

(T-InitRegion) As with concatenation, by our induction hypothesis, noting
that the derivation for this rule is one rule-application larger than that of
the sub-expression, from which we take the type directly.

(T-Allocate) The result comes directly from the definition of the rule, which
has type determined directly by the expression.

(T-NullDeref) As before, the type for the whole expression comes directly
from the type of a sub-expression with a shorter derivation.

(T-MethCall) e is < I,N > p.m(y). The type of the expression is completely
determined by the type of p, the parameters I, N, and the method name.
The only chance for variation in the type of the call method is in the type
of p. Assume that the expression as a whole is typed with σe and σ′e. Then
we must be able to type p as both σ and σ′, such that the expression as a
whole is typed as σe and σ′e. From our induction hypothesis, σ ∼ σ′. Let
σ′′ be the common subtype of σ and σ′. Then

Claim The return type for Ω(σ′′,m,< I,N >) subtypes both σe and
σ′e (i.e. it subtypes the return types yielded by looking up the method
signature for σ or σ′).

87

Proof First writing

σ = C[I0,N0] < I,N >

σ′ = C ′[I′0,N′0] < I′,N′ >

σ′′ = C ′′[I′′0 ,N′′0] < I′′,N′′ >

Note: Inheritance rules allow only for single inheritance. In particular,
the method signature for m is defined in some class D which is a super
class of all of C,C ′, C ′′, and takes only a fixed number of parameters. This
means that whilst σ, σ′, σ′′ might all have a different number of mutability
and nullity parameters, only the first n are relevant, with n determined
by the signature in D.

Now, since σ′′ subtypes σ and σ′, a brief inspection of the subtyping rules
reveals that

I′′ ≤ I

I′′ ≤ I′

N′′ ≤ N

N′′ ≤ N′

The return type for the method is identical in every case, apart from the
parameters specified by the I′′s, N′′s (and their counterparts). This is
exactly what we need to apply the subtyping rules (S-Mut) and (S-Null).

Now, we have found a common subtype between the two alternative
return types for the expression as a whole, which is exactly what we need
for the ∼ relationship.

So, any two types for an expression have a common subtype.

We have not proved a principal type property for our type system. We may
have such a property, but we make no claim about that here.

We would like any two paths to the same variable to have types that are
consistent. This will be a property of a well-formed stack and heap, and we
would like to maintain it.

8.2 Well-formedness of ψ and φ

The well-formedness of the ψ and φ will be properties that speak to the way the
heap and the stack are constructed. The result will be that we will be able to
judge that objects really do contain the fields they say they do (including their
null ity parameters).

In simple terms, we want to be able to express:

• An object on the heap has the same fields that are expected from the type
of its reference when the program is typed. Specifically:

88

• Anything that is typed in the environment (i.e. all the locals that the type
system expects) is in the stack.

• Anything that is typed as non-null by Γ , Λ is not only in the stack, but
also evaluates to a NotNull address in the heap.

• Any address on the heap that can be reached by evaluating one of the
values on the stack agrees with the type given to it by the environment.

Agreement between an address and a type requires that:

• The address has runtime class consistent with the class associated with
that type.

• Each of the fields that is non-nullable in the class is not null.

• Each of the fields with its type given by the class of the original address.

Consistent paths We would also like to have a situation where any two paths
through the stack and heap to the same address have consistent types. Notice
that we do not store any type information in the heap beyond class; whilst
we can check whether an address agrees with a type’s nullity constraints by
checking the values of its fields, there is no way to say that an address in some
sense “agrees” with mutability constraints from a type. We will note, however,
that in an empty stack and heap (that is, the initial stack and heap), there are
no paths, so the condition that all paths to the same address are consistent is
trivially satisfied.

The formal rules for the well-typedness of the stack and heap with regard to
an environment and set of time constraints are laid out in Figure 47 (recall the
auxiliary functions Fields and possiblyNull defined in Section 7.3.1).

Lemma 8.4. Agreement with a subtype implies agreement with a supertype:

Ω, ψ,Λ ` v C σΩ,Λ ` σ ≤ σ′
}

=⇒ Ω, ψ,Λ ` v C σ′

Proof. We know that
Fields(σ) ⊆ Fields(σ′)

and in particular that the types of the fields in σ which are also in σ′ are
exactly the same (from the definition of a well-formed class). So we have all the
conditions we require for agreement with σ′.

Lemma 8.5. Paths agree with their types

Ω,Γ,Λ ` p : σ
Ω,Γ,Λ ` ψ, φ Well formed

Ω, ψ, φ ` p v, ψ, φ

 =⇒ Ω, φ,Λ ` v C σ

89

6` σ ≤ NotNull
(WF-Null)

Ω, ψ,Λ ` null C σ

σ = (Θ→ ς)ε

Ω ` ψ(v) ↓1≤ Class(σ)

Fields(σ) = {f : σ}
Ω, ψ,Λ ` ψ(v, f) C σ′

where

{
σ′i = possiblyNull(σi) if Λ ` Θ > Now ∧ fi 6∈ ε
σ′i = σi otherwise

(WF-Fields)
Ω, ψ,Λ ` v C (Θ→ ς)ε

∀y ∈ Γ : Ω, ψ,Λ ` φ(y) C Γ(y)
y ∈ φ =⇒ y ∈ Γ

Ω,Γ,Λ ` p : σ,Γ
Ω,Γ,Λ ` p′ : σ′,Γ

Ω, ψ, φ ` p ι, ψ, φ

Ω, ψ, φ ` p′ ι, ψ, φ

 =⇒ Λ ` σ ∼ σ′

Ω,Γ,Λ ` ψ, φ Well formed

Figure 47: A well-formed stack and heap with regard to an environment pair

90

Proof. In the case where p is just a variable lookup, the result is just the def-
inition of well-formedness. Otherwise, we can write p as p′.f , and the proof is
by arithmetic induction on the length of the path. First we define:

length(y) = 1

length(p.f) = 1 + length(p)

Now assume ∀p : length(p) < n =⇒ the result. Then the type of p.f with
length n is given by one of the field lookup rules. We know that the address
given by p agrees with p’s type (say, σ′), so if the type of p.f is σ then σ is
given directly by lookup up the field f of σ′ in the program (subsumption is
permitted when typing p.f , but Lemma 8.4 covers this case). Agreement with
the result of this lookup is exactly the requirement that well-formedness places
on the field f for the address given by p. We don’t need to check the fields
of p.f since they are given by p’s agreement with σ′ (notice the definition of
agreement is recursive).

The following two corollaries come directly from the lemma and the defini-
tions.

Corollary 8.1.

Ω,Γ,Λ ` p : σ
` σ ≤ NotNull

Ω, ψ, φ ` p v

Ω,Γ,Λ ` ψ, φ Well formed

 =⇒ v 6= null

Corollary 8.2.

Ω,Γ,Λ ` p : σ
Ω, ψ, φ ` p ι

ι 6= null

Ω,Γ,Λ ` ψ, φ Well formed

 =⇒ ψ(ι) ↓1≤ ClassId(σ)

8.3 Preservation of well-formed ψ and φ

For this section, we will work with a more limited version of the language. The
capabilities will be equivalent, but there will be less flexibility with regard to the
expressions we allow. We limit method call and field assignment, as in Figure
48. Notice that field assignment is limited to using local variables for the value
assigned, and that the result of method call is always stored in a local variable
(in the stack). The new type and reduction rules augment those in Figures 40
and 43, but the system is more limited because it is not possible to write all of
the previously available expressions.

91

e : p | p.f = z | . . . | z =< I,N > p.m(y)

Ω,Γ,Λ `< I,N > p.m(y) : σ,Γ′

z 6∈ Γ′

Γ′′ = Γ′[z 7→ σ]
(T-MethCallLim)

Ω,Γ,Λ ` z =< I,N > p.m(y) : σ,Γ′′

Ω, ψ, φ ` p.m(y) v, ψ′, φ
(R-MethCallLim)

Ω, ψ, φ ` z = p.m(y) v, ψ′, φ[z 7→ v]

Figure 48: Field assignment and method call are limited to allow us to reason
about them more easily

Theorem 8.1. Types and well-formed heaps and stacks are preserved by exe-
cution:

Ω,Γ,Λ ` ψ, φ Well formed

Ω,Γ,Λ ` e : σ,Γ′

Ω, ψ, φ ` e v, ψ′, φ′

 =⇒

{
Ω,Γ′,Λ ` ψ′, φ′ Well formed

Ω,Λ ` v C σ

Before we can prove the theorem, we will need some intermediate lemmas:

Lemma 8.6. If we restrict our view on a typing environment and make the
corresponding restriction on the stack, then we maintain the well-formedness
property:

Ω,Γ,Λ ` ψ, φ Well formed

y ∈ Γ
y ∈ φ

Γ′ = Γ
∣∣
y

φ′ = φ
∣∣
y

=⇒ Ω,Γ′,Λ ` ψ, φ′, Well formed

Proof. We require that:

• All items in the new stack are in the new environment,

• All items in the new environment are in the stack, and agree with the type
given by the environment.

Since the two are restricted to the same domain, and (by their well-formedness)
they were both originally over the same domain, we clearly have the first re-
quirement, and most of the second requirement: we only need to demostrate
that agreement is preserved.

Pick y ∈ Γ′. Then y ∈ Γ, and so (by well-formedness) φ(y) C Γ(y). But
also y ∈ φ′ and φ′(y) = φ(y), and Γ′(y) = Γ(y) so φ′(y) C Γ′(y), which is all we
need.

92

Figure 49: Two paths through the same object

Lemma 8.6 will be required for the proof (not given here) that method-call
preserves the well-formedness of the stack.

Lemma 8.7.

Ω,Γ,Λ ` ψ, φ Well formed

φ(y) = ι ∈ ψ
Γ(y) = (Θ→ C[I0,N0] < I,N >)ε

Γ′ = Γ[y 7→ (Θ→ C[I0, NotNull] < I,N >)ε]

 =⇒ Ω,Γ′,Λ ` ψ, φ Well formed

Proof. Since the types of the fields of y are not parametric in N0, and since the
rule (WF-Null) did not apply to y under the environment Γ, the conditions for
agreement of y are exactly the same. Agreement of any other variable is not
affected.

Lemma 8.8. Subtyping is preserved through field lookup:

Ω,Λ ` σ ≤ σ′

σ = (Θ→ ς)ε

σ′ = (Θ→ ς ′)ε
′

 =⇒ Ω(ς, f) ≤ Ω(ς ′, f)

Proof. Since σ ≤ σ′, then ∃C ∈ Ω, s, s′ ∈ S such that Ω(ς, f) = s(Ω(C, f)),
Ω(ς ′, f) = s′(Ω(C, f)), and also we know that if m and n are the numbers of
mutability and nullity constraints in σ′, then ` I ≤ I′

∣∣
0...m

and ` N ≤ N′
∣∣
0...n

,
where Ii is the ith mutability constraint in σ, I ′i is the ith mutability constraint
in σ′, and so on. Now note that s(Ω(C, f)) and s′(Ω(C, f)) are determined
by no more than m mutability constraints and n nullity constraints from the

93

types σ and σ′ (the number of constraints used is determined by the class C,
which has no more formal constraints than σ′ has parameters). In particular,
Ω(ς, f) ≤ Ω(ς ′, f).

Notation We will write p.f for p.f1.f2.fn.

Lemma 8.9. When the types of two paths are consistent, that consistency is
preserved by successive field lookup (e.g. Figure 49):

Ω,Γ,Λ ` p : σ,Γ
Ω,Γ,Λ ` p′ : σ′,Γ

Ω,Λ ` σ ∼ σ′

Ω,Γ,Λ ` p.f
∣∣
1...n

: σ′′

Ω,Γ,Λ ` p′.f
∣∣
1...n

: σ′′′

=⇒ Ω,Λ ` σ′′ ∼ σ′′′

Proof. By arithmetic induction on n.

Induction Hypothesis:

Ω,Γ,Λ ` p.f
∣∣
1...n−1

: σ′′−1,Γ

Ω,Γ,Λ ` p′.f
∣∣
1...n−1

: σ′′′−1,Γ

}
=⇒ Ω,Λ ` σ′′−1 ∼ σ′′′−1

We want to show that σ′′ ∼ σ′′′. We know from the consistency of the types of
p and p′ that the delay times are the same for all the types we consider here.
Now write:

σ′′−1 = (Θ→ ς)ε

σ′′′−1 = (Θ→ ς ′)ε
′

Inductive step: Define:

σ′′′′−1 = (Θ→ ς ′′)ε
′′

such that:
Ω,Λ ` σ′′′′−1 ≤ σ′′−1 ∧ σ′′′′−1 ≤ σ′′−1

(such a type exists, since σ′′−1 ∼ σ′′′−1).
Then σ′′ is given by Ω(ς, f), and σ′′′ is given by Ω(ς ′, f) – up to subsumption,

the time parameters (which are common between the types), and the initializa-
tion states of the types σ...−1. The differing initialization states are irrelevant,
since we only track initialization states in the environment, Γ , for paths of length
1; otherwise we assume all NotNull fields are as-yet possibly-uninitialized (if the
commitment point is in the future; otherwise we ignore them entirely). Then
writing:

σ′′′′ = (Θ→ Ω(ς ′′, f))notNullFields(Ω(ς′′))

Such a type is well-formed; σ′′′′−1 must have the field f since it subtypes two other
types which do, and the form of the type is determined (up to substitution of

94

mutability and nullity parameters) entirely by the class (and is common to all
three).

Note also that (along with Lemma 8.8):

Ω,Λ ` σ′′′′ ≤ σ′′ ∧ σ′′′′ ≤ σ′′′

Which is exactly what we need for Ω,Λ ` σ′′ ∼ σ′′′.
So, by induction on n, we have that the consistency of the whole paths comes

directly from the consistency of the sub-paths.

Lemma 8.10. Fields of a path with grounded type also have grounded type:

Ω,Γ,Λ ` p : σ,Γ
FieldTypeΩ(σ)

Ω,Γ,Λ ` p.f : σ′

 =⇒ FieldTypeΩ(σ′)

Proof. By induction on length(p.f)− length(p) (which is just length(f)). First
assume the difference is 0. Then there is nothing to show. Now assume the
difference is n+ 1. Then:

Ω,Γ,Λ ` p.f
∣∣
1...n

: σ′′

Now, we have a path q such that:

Ω,Γ,Λ ` q : σ′′

FieldTypeΩ(σ′′)

So
Ω,Γ,Λ ` q.f : σ′

and this is just the single-step case, so it’s clear that

FieldTypeΩ(σ′′) =⇒ FieldTypeΩ(σ′)

Proof. Proof of Theorem 8.1. Proof will be by induction on the structure of the
expression.

y No change is made to the heap, stack, environment, or time environment.
Well-formedness is preserved.

p.f Again, no change is made to the heap, stack, environment, or time environ-
ment. Well-formedness is preserved.

p.f = z We assume that:
Ω,Γ,Λ ` p.f = z : σ′′,Γ′

95

via the rule (T-FieldAss), and that:

Ω,Γ,Λ ` z : σ′,Γ

Ω,Γ,Λ ` p : σ,Γ

σ = (Θ→ ς)ε

σ′′ = (Θ→ Ω(ς, f))notNullFields(Ω(ς,f))

FieldType(σ′′)

Λ ` σ′ ≤ σ′′

Γ′ = Γ[p 7→ Γ(p)f]

We know that the expression is reduced by the rule (R-FieldAss):

Ω, ψ, φ ` z v, ψ, φ

Ω, ψ, φ ` p ι, ψ, φ

Ω, ψ, φ ` p.f = z v, ψ′, φ

ψ′ = ψ[ι 7→ ψ(ι)[f 7→ v]]

The result of evaluating the expression, v, agrees with the type of the
expression, since it agrees with the type of z and the type of z is a subtype
of the expression as a whole. Now we need to show that the agreement of
ι is not violated. Note that Ω, ψ,Λ ` ι C σ The only change is in the field
f , so we only need to check that v C Ω(ς, f): since σ is Grounded and
field definitions do not change between subtypes, this is sufficient (any
other path to ι must be typed in a way that is consistent with σ, so if
the agreement of the stack relies on ι C σx 6= σ then Ω(ClassId(σx), f)
gives rise to no more specific requirements on ψ(ι, f) than does σ). Since
Ω,Λ ` v C σ′ = Γ(z) (by the well-formedness of ψ, φ), and σ′ ≤ σ′′, so
v C σ′′, which is enough.

So what remains to be shown is that any new paths also satisfy our con-
sistency conditions. We need only consider new paths – in particular,
those that pass through the address given by v. If v = null, then there is
nothing to show. Now assume v = ι′. So the only possibility for a change
is paths through ι, through field f . Now, let:

Ω, ψ′, φ ` q ι, ψ′, φ

(we know ψ′(ι, f) = ι′; this is the result of the field assignment). Then let

Ω, ψ′, φ ` q.f.f ι′′, ψ′, φ

Ω, ψ′, φ ` q′ ι′′, ψ′, φ

Ω,Γ′ ` q : σq

96

Ω,Γ′ ` q.f : σq,f

Ω,Γ′ ` q.f.f : σa

Ω,Γ′ ` q′ : σb

Then we need to show that:

Ω,Λ ` σa ∼ σb

If we can show this, then by the generality of q and q′, we will have shown
that any new paths created by our modification to the heap (new paths
are q.f.f) are consistent with any other paths in the heap evaluating to
the same address. Since these are the only paths we need to consider, this
is sufficient. We will do this by showing that both paths (q.f.f , q′) are
consistent with z.f , and since FieldTypeΩ(σ′′), will will know that the
two paths are consistent with each other (by Lemma 8.2).

Claim Ω,Λ ` σq,f ∼ σ′

Proof Assume there are no cycles in q or p. If there are, then we can just
use a shorter version of the paths with the cycles omitted. Specifically, p
and q do not rely on ψ(ι, f) (or indeed ψ′(ι, f)). Then:

Ω, ψ, φ ` p ι, ψ, φ

Ω, ψ, φ ` q ι, ψ, φ

Also:
Ω,Γ,Λ ` q : σ′q,Γ

Ω,Λ ` σq ≤ σ′q
(the only change to Γ makes the types of paths through ι more specific).

By the well-formedness of ψ, φ with respect to Γ,Λ, we know that Ω,Λ `
σ ∼ σ′q. By Lemma 8.9, the type of q.f is consistent with the type of
p.f . By inspection of the formulation of σ′′, and the generation lemma
together with the rule (T-FieldLookup), we know that the type of p.f is
exactly σ′′. So:

Ω,Λ ` σq,f ∼ σ′′

Ω,Λ ` σ′ ≤ σ′′

∴Ω,Λ ` σ′ ∼ σ′′

FieldTypeΩ(σ′′)
∴Ω,Λ ` σq,f ∼ σ′

That is, the type of q.f is consistent with the type of z. Also note that
since σ′ is a subtype of a field-assignable-type, so FieldTypeΩ(σ′). So we
have Ω,Λ ` σq,f ∼ σ′

97

Claim Ω,Λ ` σa ∼ σb

Proof First assume that the evaluation of q′ does not pass through ι. If
it does, then σb ∼ σ′′′ by the argument above. Assuming it does not, it’s
clear that Ω, ψ′, φ ` q′ ι′′ =⇒ Ω, ψ, φ ` q′ ι′′. By the consistency
of paths in the well-formed ψ and φ with respect to Γ, z.f has type
compatible with q′:

Ω,Γ,Λ ` z.f : σ′′′,Γ

Ω,Λ ` σ′′′ ∼ σb
By Lemma 8.10, FieldTypeΩ(σ′′′), and by Lemma 8.9, σa ∼ σ′′′, so
Lemma 8.2 gives us:

Ω,Λ ` σa ∼ σb

e; e′ Preservation of well-formedness comes directly from the preservation of
well-formedness in the sub-expressions. We will assume this from our in-
duction hypothesis. The value that is the result of reducing the expression
is just the result of reducing e′, and the type of the expression also types
e′, so we also assume that the resultant value agrees with the type for the
expression as a whole.

delay t{e} The heap, stack, and environment are unaltered. We introduce a
new time variable, t. The expression is typed by the rule (T-InitRegion),
which requires that t is not present in the existing time-environment. Since
commitment points become Now when they leave their initialization region
(that is, any time they are not in the time-environment), any non-Now,
non-delayed times must be time parameters (θs), and so by the form of ex-
pressions they are not t. So, we have not affected the type information for
any path, and the well-formedness of the heap and stack are maintained,
and we can use our induction hypothesis that e results in a well-formed
heap and stack. Note also that the rule (T-InitRegion) – which must be
used in the typing of the expression, by the generation lemma – requires
any new addresses to be fully initialized; in particular, their fields must be
assigned values agreeing with their types. Since any values assigned to the
fields of an object with commitment point t must also have commitment
point t, they must also be newly allocated addresses in this scope, and in
particular they are also required to be fully initialized. So we not only
have agreement at the end of e for any newly allocated addresses, but also
their non-null fields are guaranteed to be initialized, and so we can set
their commitment points to Now, and the well-formedness of the stack and
heap are maintained for the whole expression. Any new paths are created
within the expression e, so if they reduce to the same address, then their
types are consistent (and their commitment points are the same, so any
substitution for Now that we perform when leaving the initialization scope
applies to them both, and does not affect their consistency).

98

alloc σ as z The type rule (T-Allocate) adds one new variable to the environ-
ment, and the runtime rule (R-Allocate) adds one new variable to the stack
(the same new variable). We need to show that the new address (added to
the heap) agrees with the type of the new variable (that is: φ′(z) C Γ′(z)).
The runtime rule gives us that the runtime class of the new address agrees
with σ , and that it has the correct fields, but they are all initialized
to null. For agreement, all the fields must agree with their types. Note
that the commitment point of the type is required to be in the future by
(T-Allocate), and that all the NotNull fields are noted as uninitialized
in the resultant environment (i.e. uninit(Γ′(z)) = notNullFields(σ)): so
agreement just requires that all the fields have well-defined values (that
they are all null is fine). The only new paths are the path z, and Lemma
8.5 gives us that any such path is guaranteed to be consistent with any
other such path. The value resulting from this reduction is just the newly
allocated address, and we have already argued that it agrees with the
expression’s type.

ifnull y then e else e′ By assumption, noting that Lemma 8.7 guarantees
the well-formedness of the stack and heap when evaluating the sub-expression
e′ (and that in e they are unchanged). A violation of well-formed heap
and stack for the expression as a whole requires such a violation in either
e or e′, and we will assume such a violation does not occur.

< I,N > p.m((y)) We will not give a formal proof for this case. An argument
that should serve as the basis of the proof is as follows: The reduction
rule (R-MethCall) leaves the stack unchanged, but allows transformations
of the heap within a new (more restricted) stack. We need to show that
transformations within the new stack cannot affect the well-formedness
of the old one. By Lemma 8.6, the method body is evaluated in a well-
formed heap and stack (allowing for re-labelling), and by assumption (and
the well-typedness of the method body), the resultant heap and stack
are well-formed (with respect to the more limited environment and time-
environment). The challenge is to show that the original stack is still
well-formed with the new heap.

• First consider the parts of the heap that were directly accessible to the
new stack (that is, the arguments to the function). The arguments
themselves do not change (we do not change any of the values on
the stack) – only their fields do. Note that any path through the
arguments to the method (the parts of the call-site stack accessible
in the method body) is also a path in the call-site stack. Any changes
to the fields of addresses accessible through those paths are equivalent
to changes in the call-site stack and heap; in particular, any operation
that is permitted in the method body is also a well-typed expression
under the environment and stack at the call-site (up to re-labelling).
So, the possibilities for changes to the heap within the method body
are more limited than the changes to the heap permitted at the call-

99

site, and (along with our induction hypothesis) the well-formedness
of the stack and heap are preserved.

• Now consider any addresses which were not accessible through the
call-site stack. When we leave the method body, the only possibility
for these addresses to be accessible is through the fields of the argu-
ments (or any other objects in the call-site stack), which is what we
dealt with in the previous case.

The well-formedness of the stack and heap are preserved.

So any well-typed expression (apart from the case of method call, which we
have given only the outline of an argument for) preserves the well-formedness
of the heap and stack with respect to the environment and program. The case
of method call should be tackled in future work.

8.4 Mutability

We wish to express that, given that a variable is declared to be Immutable, it
cannot change during the course of a program’s execution (that is, the evaluation
of a well-typed expression).

Definition 8.3. An address ι is Immutable if there is a path p such that:

Ω,Γ,Λ ` p : σ,Γ
Ω,Λ ` σ ≤ Immutable

Ω, ψ,Γ ` p ι, ψ, φ

First, we wish to guarantee that if an address is seen as Immutable via any
path through the heap, then no path through the heap allows it to be treated
as Writable. This condition distinguishes the notion of true immutability from
more limited notions, such as C++’s const; const is a guarantee to the caller
about how the local scope will treat an object. Immutable is a guarantee to the
local scope about how an object will be treated globally.

Theorem 8.2.

Ω,Γ,Λ ` ψ, φ Well formed

Ω,Γ,Λ ` p : σ
Ω, ψ, φ ` p ι

Ω,Γ,Λ ` p′ : σ′

Ω, ψ, φ ` p′ ι

Λ ` σ ≤ Immutable

=⇒ Ω,Λ 6` σ′ ≤<? extends Writable >

Proof. The proof is direct from the definition of a well-formed heap and stack,
which gives us that:

Ω,Λ ` σ ∼ σ′

100

1 c l a s s D[i]<,> {
2 }
3
4 c l a s s C[i]<,> {
5 f : D[Immutable , NotNull]<,>
6
7 Now −> C[i , Nu l l ab l e]<,> {x0 −> f } {T} m0(
8 (T −> C[<? extends ReadOnly>, NotNull]) ˆ{ f } x0) {
9 a l l o c T −> D[Immutable , NotNull]<,> as z ;

10 x0 . f = z ;
11 nu l l ;
12 }
13
14 Now −> C[i , Nu l l ab l e]<,> {} {} m1(
15 Now −> C[<? extends Writable >, NotNull]<,> x0) {
16 de lay t {
17 a l l o c (t −> D[Immutable , NotNull]< ,>) as z ;
18 }
19 x0 . f = z ;
20 nu l l ;
21 }
22 }
23
24 . . .
25 de lay t {
26 a l l o c C[Mutable , NotNull]<,> as z0 ;
27 z0 .m0()
28 /∗ z0 . f i s an immutable object , l ∗/
29 }
30
31 z0 .m1()
32 /∗ z0 . f i s a new immutable ob j e c t ; the r e
33 i s no remaining path to l ∗/

Figure 50: Immutable paths are not necessarily maintained

By inspection of the subtyping rules, there is no σ′′ such that

Ω,`` σ′′ ≤<? extends Writable > ∧σ′′ ≤ Immutable

So Ω,Λ ` σ′ ≤<? extends Writable > is a contradiction.

Inspection of the typing rules (specifically, (T-FieldAss)) will reveal what
guarantees this gives us: namely, that field assignment on an object that is
typed Immutable is impossible through any path.

We would like to know that, given that an object is seen as Immutable at
some stage in our program, it will remain that way. We cannot guarantee that
if we have an immutable path to an address, then we will have one for the
remainder of the program’s execution; it is easy to construct a counter example;
see Figure 50.

Note that in Figure 50, there is no way to construct a new (writable) path
to the address l. We formalize this property (without proof):

101

Theorem 8.3.

ι ∈ ψΩ,Γ,Λ ` e : σ′,Γ′,Λ′

Ω, ψ, φ ` e v, ψ′, φ′

Ω,Γ′,Λ ` p′ : σ′,Γ′

Ω, ψ′, φ′ ` p′ ι, ψ, φ

Ω,Λ ` σ′ ≤<? extends Writable >

=⇒

Ω,Γ,Λ ` p : σ,Γ
Ω, ψ, φ ` p ι, ψ, φ

Ω,Λ ` σ ≤<? extends Writable >

for some path p

The argument for the correctness of this theorem is that the only way to
create new paths to an address already on the heap is through field assignment
or method call (more specifically, field assignment within the new scope created
by method call). In either case, the type of the assignee must be Grounded.
Lemma 8.10 grants us that we will have a Grounded view on the address to
which we are about to create a Writable path; for a new Writable path to be
created, we must already have a path which is either Immutable but not yet
committed, or Mutable – in either case, we already have a Writable path.

The promise of Immutability The two theorems above are important prop-
erties of the system, but we should formalize the guarantees this gives us at a
higher level. The following Theorem comes directly from Theorems 8.3 and 8.2,
along with the fact that the only chance for field assignment is an expression of
the form p.f = z. In plain English, the theorem is a statement that, given that
we have an immutable view on an address, its fields will not change throughout
the life of the program.

Theorem 8.4.

Ω,Γ,Λ ` p : σ,Γ
Ω,Λ ` σ ≤ Immutable

Ω, ψ, φ ` p ι, ψ, φ

Ω,Γ,Λ ` e : σ′,Γ′

Ω, ψ, φ ` e v, ψ′, φ′

=⇒ ψ′(ι) = ψ(ι)

Proof. From theorem 8.2, we know that there are no Writable paths to ι in
ψ, φ (under the original environment). From theorem 8.3 we know that the only
way for there to be a Writable path to an address already in the heap is if
one already exists. In particular, no new Writable paths can be created to ι.
The only chance to change ψ(ι) is through field assignment. The type rule for
field assignment requires a Writable path to the address of which the field is
being assigned. Since there are no Writable paths to ι, there is no possibility
to assign to its fields.

102

This final theorem is exactly what we require from a type system for muta-
bility.

103

9 Contributions

There are four main contributions, which we will detail in the following section:

Generic Nullity The system approaches nullity constraints in a novel way:
a whole type is parametric in nullity, not just a single reference or field.
We give a little more discussion below in the hope that it will inform any
future work on parametric nullity constraints.

Flexible initialization We achieve a great degree of flexibility in initialization
which is as free as systems of nullity, whilst allowing us the constraints
offered by systems of mutability.

A unified treatment nullity and immutability These two concepts share
a common challenge, and we present a unified system which caters for
both.

Lightweight Soundness We do not need to add any extra constructs to our
idea of runtime semantics in order to demonstrate that our system’s prop-
erties hold.

9.1 Generic Nullity

We achieve a greater degree of flexibility than existing systems, in the sense that
we allow a distinction between instances of a class which can have null-able
fields, and those which cannot (whilst allowing them to be treated generically
where safe). This type of flexibility allows us to construct generically-Nullable
collections, as in Figure 52 (which has a usage example in Figure 53). Such
genericity is not possible in other systems for nullity.

Under the system presented here, it is possible to create a linked data struc-
ture which is guaranteed to be cyclic after initialization. This is difficult to
express through the model of genericity presented by [18], which simply allows
nullity conditions to be a part of a generic type, but not as parameters in their
own right: compare

List<Item!>!

to

List[NotNull]<NotNull>

In the former case (which is proposed by [18]), we specify a List which contains
Item!s. In the latter (which is our model), we specify a List which contains
NotNull items (though in our system there is no possibility to specify the class
of the items contained).

We chose not tackle class-based genericity, but instead separate the class
from the other type information in a way not possible in other systems for
nullity. Figure 52 provides an example of a single linked list class which can
be instantiated to contain either non-null or possibly-null references (this is

104

1 c l a s s C[i 0]< ,n1> {
2 next : C[i0 , n1]< ,n1>
3 }
4 . . .
5 de lay t {
6 a l l o c t −> C[Immutable , NotNull]< , NotNull> as c y c l i c ;
7 /∗ I f we f a i l to i n i t i a l i z e c y c l i c . next , i t
8 i s a type e r r o r ∗/
9 c y c l i c . next = c y c l i c ;

10
11 a l l o c t −> C[Immutable , NotNull]< , Nul lab le> as nonCycl ic ;
12 /∗ There i s no requirement to i n i t i a l i z e
13 nonCycl ic . next ∗/
14 }
15
16 /∗ c y c l i c i s a 1−cy c l e . ∗/
17 /∗ c y c l i c . next . next . next . next == c y c l i c ∗/
18 /∗ I t i s impos s ib l e to cons t ruc t an in s t ance o f C[Immutable ,

NotNull]< , NotNull> that does not have t h i s property (i . e . i t
must be c y c l i c) .

19
20 /∗ nonCycl ic . next i s j u s t nu l l ∗/
21 /∗ We see that the c y c l i c nature i s determined by the s p e c i f i c

i n s t a n t i a t i o n o f the c l a s s . ∗/

Figure 51: Example of leveraging generic nullity constraints to enforce a cyclic
structure

easy to specify in any nullity type system with support for generics). Figure
51 gives an example of leveraging the nullity parameter to guarantee the cyclic
property of a structure: this is hard to specify in previous systems for nullity,
which do not treat it as a generic parameter in its own right.

Considerations with generic nullity It is clearly sensible and desirable
to be able to assign a NotNull reference in place of a Nullable one, so in
general we say that a NotNull reference subtypes a Nullableone. But an
object with NotNull fields does not subtype one with Nullable fields: we
saw in Section 7.8.4 this was unsafe. So whilst C[I, NotNull] will do in
place of C[I, Nullable], C[I, Nullable]<,NotNull> will not do in place of
C[I,Nullable]<,Nullable>. There is no obvious analogue in the case of muta-
bility constraints, but this is because the case of C[I, NotNull] subtyping C[I,
Nullable] is a special one – the first nullity parameter in a type describes the
particular reference (or path) that we are typing, rather than the object that
lies at the other end of it. We have treated the first nullity parameter as a
generic parameter just like all the others, but it really is different, in the sense
that the others describe the object, whereas the first describes the reference.

The upper bound of null and NotNull Whilst we cannot use a reference
like C[. . .] < NotNull > in place of C[. . .] < Nullable >, we would still like

105

to be able to handle these two different possibilities in a generic way. In other
systems which do not treat nullity as a type parameter, the upper bound of
Nullable and NotNull is just Nullable. Since this is not possible here, we
instead write <? extends Nullable > where we wish to say: “We do not care
the nullity of this reference; we will treat it with all the restrictions of either.”

9.2 Flexible initialization patterns

We retain a great degree of flexibility in initialization, whilst providing the safety
and guarantees traditionally offered by systems of both nullity and mutability.
We allow expressively typed, generic factories to be created (such as the one in
Figure 55, with a usage example in Figure 56), that can initialize cyclic, im-
mutable, non-null structures in a natural way. The not-null fields of objects
can be initialized by helper methods (as in [4], and unlike [18]). One of the
challenges of a system which combines mutability constraints and nullity con-
straints is ensuring that non-null fields are initialized before the object becomes
immutable, and our system overcomes that difficulty neatly and naturally. [21]
allows for factories and the initialization of cyclic structures through ownership;
we achieve this aim without the extra concept, but by instead associating the
initialization of an object with a section of the method body in which it is cre-
ated, as in [4] and [6]. We include more detail in the type about initialization
state than other systems for nullity (although not as much as all systems for
initialization: see Masked Types in [15]), and a possible application of this is
in the design of fluent interfaces for initialization, such as in Figure 54. In
standard Java, we can achieve this affect by casting through otherwise-useless
“micro-interfaces.”

9.3 Exploration of the crossover between nullity and Mu-
tability

We gain a better understanding of combining mutability with nullity, and in
particular with regard to the way we initialize objects. The overlap between
these systems is in two main areas:

The initialization region itself We unify initialization: in particular, an
object is either initialized with respect to both mutability and nullity, or
neither. This is exactly the intuition.

The way we treat objects with different initialization states We can
be less relaxed about allowing objects with different initialization states
hold references to each other than in systems for nullity alone. In this
regard, we have all the constraints of systems for mutability. In particular,
we cannot initialize data objects with fields having differing commitment
points to the objects themselves, which previous systems of nullity have
been able to do.

106

1 c l a s s Item [i 0]<,> {
2 Item [i0 , Nu l l ab l e]<,> {} {} mutate (
3 Item [Mutable , NotNull]<,> t h i s) {
4 . . .
5 nu l l
6 }
7 }
8
9 c l a s s L i s t [i 1]< i2 , n1> {

10 next : L i s t [Mutable , Nu l l ab l e]< i2 , n1>
11 item : Item [i2 , n1]<,>
12
13 L i s t [Mutable , Nu l l ab l e]< i2 , n1> {} {} getNext (
14 L i s t [Mutable , NotNull]< i2 , n1> t h i s) {
15
16 t h i s . next ;
17 }
18
19 L i s t [i 1]< i2 , n1> {} {} add (
20 L i s t [Mutable , NotNull]< i2 , n1> th i s ,
21 Item [i2 , n1]<,> i) {
22
23 z0 = th i s . getNext () ;
24 i f n u l l z0 then
25 t h i s . item = i ;
26 de lay t {
27 a l l o c t −> L i s t [Mutable , NotNull] as z1
28 } ;
29 t h i s . next = z1
30 else
31 t h i s . next . add (i) ;
32
33 t h i s
34 }
35
36 Item [i2 , n1]<,> {} {} get (
37 L i s t [<? extends ReadOnly>, NotNull]< i2 , n1> th i s ,
38 i n t index) {
39
40 i f (index == 0)
41 t h i s . item
42 else
43 z = th i s . getNext ()
44 i f n u l l z then
45 throw new IndexOutOfBoundsException () ;
46 else
47 z . get (index − 1)
48 }
49 }
50 . . .

Figure 52: A linked list with generic nullity. Assumes the presence of integers
with the standard operations, standard booleans, an if-statement, and excep-
tions, and omits time annotations. We present a usage example in Figure 53

107

1
2 de lay t {
3 // A l i s t o f Immutable , NotNull e n t r i e s
4 a l l o c t −> L i s t [Mutable , NotNull]<Immutable , NotNull> as l i s t 1 ;
5 // A l i s t o f mutable , po s s ib ly−nu l l e n t r i e s
6 a l l o c t −> L i s t [Mutable , NotNull]<Mutable , Nul lab le> as l i s t 2 ;
7 }
8
9 l i s t 1 . get (4) ; // nu l l ; l i s t index out o f range

10
11 de lay t {
12 a l l o c t −> Item [Immutable , NotNull]<,> as item1 ;
13 a l l o c t −> Item [Mutable , Nu l l ab l e]<,> as item2 ;
14 }
15
16 /∗ Okay ∗/
17 l i s t 1 . add (item1) ;
18
19 z1 = l i s t 1 . get (0) ; // z1 : Item [Immutable , NotNull]
20 /∗ No need to t e s t i f z1 i s nu l l ∗/
21 /∗ z1 . mutate () would be a type e r r o r
22 because z1 i s Immutable ∗/
23
24 /∗ Type Errors : ∗/
25 l i s t 1 . add (item2) ; // Cannot accept Mutables
26 l i s t 1 . add (nu l l) ; // Cannot accept nu l l
27 l i s t 2 . add (item1) ; // Cannot accept Immutables
28
29 /∗ Okay ∗/
30 l i s t 2 . add (item2) ;
31 l i s t 2 . add (nu l l) ; // Can accept nu l l
32
33 z2 = l i s t 2 . get (0) ; // z2 : Item [Mutable , Nu l l ab l e]
34 z3 = l i s t 2 . get (1) ; // z3 : Item [Mutable , Nu l l ab l e]
35 i f n u l l z2 then
36 /∗ L i s t can conta in nu l l ∗/
37 else
38 /∗ z2 : Item [Mutable , NotNull] ∗/
39 /∗ l e g a l ∗/
40 z2 . mutate () ;
41
42 i f n u l l z3 then
43 /∗ L i s t can conta in nu l l ∗/
44 else
45 . . .

Figure 53: Code demonstrating the use of differently parametrized generic list
example from Figure 52

108

1 c l a s s Rectangle [i] extends ob j e c t {
2 he ight : I n t eg e r [Immutable , NotNull]<,>
3 width : In t eg e r [Immutable , NotNull]<,>
4
5 T −> Rectangle [i , NotNull]
6 { t h i s −> he ight }
7 {T}
8 withHeight (
9 (T −> Rectangle [i , NotNull]< ,>)ˆ{ height , width} th i s ,

10 (T −> I n t eg e r [Immutable , NotNull]< ,>)ˆ{} he ight) {
11
12 t h i s . he ight = he ight ;
13 t h i s
14 }
15
16 T −> Rectangle [i , NotNull]
17 { t h i s −> width }
18 {T}
19 andWidth (
20 /∗ Require that the he ight has been i n i t i a l i z e d ∗/
21 (T −> Rectangle [i , NotNull]< ,>)ˆ{width} th i s ,
22 (T −> I n t eg e r [Immutable , Nu l l ab l e]< ,>)ˆ{} width) {
23
24 i f n u l l width then
25 /∗ We know he ight has been i n i t i a l i z e d ∗/
26 t h i s . width = he ight ;
27 else :
28 t h i s . width = width ;
29
30 t h i s
31 }
32 }
33 . . .
34 de lay t {
35 a l l o c t −> Rectangle [Immutable , NotNull] as z ;
36 /∗ Assume we can i n i t i a l i z e he ight to some i n t e g e r ∗/
37 a l l o c t −> I n t eg e r [Immutable , NotNull] as he ight ;
38 /∗ z . andWidth () i s a type e r r o r because i t r e qu i r e s he ight

to be i n i t i a l i z e d ∗/
39 z . withHeight (he ight)
40 /∗ f a i l u r e to i n i t i a l i z e width i s a type e r r o r ∗/
41 /∗ We can now c a l l z . andWidth () because he ight i s

i n i t i a l i z e d ∗/
42 z . andWidth ()
43 }

Figure 54: A demonstration of statically-enforced fluent interfaces for initializa-
tion. Assumes the presence of integers.

109

1 c l a s s Wheel [i]<,> {
2 next : Wheel [i , NotNull]<,>
3 prev : Wheel [i , NotNull]<,>
4 }
5
6 c l a s s WheelFactory [i]<,> {
7 Now −> Wheel [I , NotNull]<,> {} {}
8 makeWheel ((Now −> WheelFactory [i , NotNull]) ˆ{} th i s ,
9 i n t s i z e) {

10
11 de lay t {
12 a l l o c t −> Wheel [Immutable , NotNull] as wheel ;
13
14 /∗ ‘ i n i t ’ promises to i n i t i a l i z e ‘ cur r ent . next ’ and

‘ root . prev ’ . Both are ‘ wheel ’ , so i t w i l l
i n i t i a l i z e a l l our NotNull f i e l d s . ∗/

15
16 t h i s . i n i t (wheel , s i z e , wheel) ;
17 } ;
18
19 wheel
20 }
21
22 T −> Wheel [i , NotNull]<,>
23 /∗ Promise to i n i t i a l i z e ‘ cur r ent . next ’ and ‘ root . prev ’ .

This makes r e c u r s i v e i n i t i a l i z a t i o n p o s s i b l e . ∗/
24 { cur rent −> next , root −> prev}
25 /∗ Require time parameter T to be in the fu tu r e ; the Wheel

i s under i n i t i a l i z a t i o n . ∗/
26 {T}
27 i n i t (
28 /∗ Committed ob j e c t s must be f u l l y i n i t i a l i z e d ! ∗/
29 (Now −> WheelFactory [i , NotNull]) ˆ{} th i s ,
30 /∗ Wheel which can be complete ly u n i n i t i a l i z e d ∗/
31 (T −> Wheel [i , NotNull]< ,>)ˆ{prev , next} current ,
32 i n t s i z e ,
33 /∗ S im i l a r l y , ‘ root ’ can be u n i n i t i a l i z e d ∗/
34 (T −> Wheel [i , NotNull]< ,>)ˆ{prev , next} root) {
35
36 i f (s i z e == 1)
37 /∗ F u l f i l our i n i t i a l i z a t i o n ob l i g a t i o n s ∗/
38 cur rent . next = root ;
39 root . prev = cur rent ;
40 else
41 /∗ Parametric time c on s t r a i n t s a l low us to a s s i gn a new

Wheel with the same commitment po int as ‘ current ’
and ‘ root ’ ∗/

42 a l l o c T −> Wheel [i , NotNull]<,> as z ;
43
44 /∗ F u l f i l our i n i t i a l i z a t i o n ob l i g a t i o n s ∗/
45 cur rent . next = z ;
46 z . prev = cur rent ;
47 /∗ I f we f a i l to i n i t i a l i z e ‘ z ’ the method w i l l not

type−check ∗/
48 t h i s . i n i t (z , s i z e −1, root) ;
49
50 root
51 }
52 }
53 . . .

Figure 55: A cyclic, non-null, Immutable linked structure with no distinguish-
able root node. Assumes the presence of integers, booleans, and an if statement
(with the normal behaviour).

110

1 de lay t {
2 a l l o c t −> WheelFactory [Immutable , NotNull]<,> as f a c t o r y ;
3 }
4
5 wheel = <Immutable ,> f a c t o r y . makeWheel (3) ;
6
7 /∗ wheel i s now a c y c l i c immutable s t r u c tu r e . ∗/
8 /∗ The f o l l ow i n g i s guaranteed by the type system to be non−nu l l ∗/
9 wheel . next . next . next . next . next . next . next . next . next

10
11 /∗ I t i t impos s ib l e to i n i t i a l i z e a ‘Wheel ’ f o r which
12 ‘ wheel . next . next . next . . . next . next ’
13 i s not guaranteed non−nu l l ∗/
14
15 /∗ wheel . next i s an i n d i s t i n g u i s h a b l e c y c l i c immutable s t r u c tu r e ;

the re i s no root ob j e c t which must own the othe r s ∗/
16
17 /∗ We can a l s o make mutable Wheels : ∗/
18 wheel2 = <Mutable ,> f a c t o r y . makeWheel (4) ;
19 wheel3 = <Mutable ,> f a c t o r y . makeWheel (4) ;
20 wheel2 . next . next = wheel3 . next . next ;
21 wheel2 . next . next . next . prev = wheel2 . next . next ;
22 wheel3 . next . next = wheel2 . prev . prev ;
23 wheel3 . next . next . next . prev = wheel3 . next . next ;
24 /∗ Now we have a f i g u r e o f e i gh t ; a s t r i c t ownership t r e e would not

a l low the nodes to be shared between wheels in t h i s way . ∗/

Figure 56: Listing demonstrating the usage of a WheelFactory from Figure 55

111

Initialization Region We began this document by noticing that the two
concerns of nullity and mutability have an obvious point of cross-over: the
challenge of initialization. In either case, the guarantees and constraints of the
type system must be relaxed while an object is initialized. It is not enough
just to notice the commonality; we must ensure the initialization period of
an object with regard to nullity is compatible with its initialization period
with regard to mutability. By making these initialization periods one and the
same, we both create a simpler system (an object is either under initialization
or not), and ensure that the two concerns (of initializing non-null fields, and
avoiding mutation of immutable objects) do not interfere with one another: it
would be impossible to initialize the non-null fields of an object after it became
immutable.

Objects with differing levels of initialization In systems for nullity,
including [18] and [4], objects which will be initialized at different times are
allowed to hold references to one another: the condition is that for one object
to be stored as a field in the another, the former must be initialized no later
than the latter. If that is the case, it is always safe to treat the fields of an
object as being as initialized as the object itself. The reason this is safe is that,
in nullity systems, it is always safe to treat an object as being less initialized
than it actually is. In mutability systems, on the other hand, this is not the
case: if we treat an immutable object as being less initialized than it is, then we
might see it as mutable when it is not. This is exactly what we want to avoid in
systems of mutability. For this reason, we must give up some of the flexibility
possible in systems of nullity with regard to which objects we can store in the
fields of others, in order to meet the requirements of a system of mutability. We
saw an example in Section 7.8.2 of allowing such a situation.

112

10 Further Work

Whilst we have presented a full and detailed picture of the treatment of generic
mutability and nullity types, there are several avenues for further work. Per-
haps most important is completing the proofs of language properties.

10.1 Proofs of language properties

Maintaining a well-formed heap through method call We have given
an argument, without proof, that the well-formedness of a heap and stack is
maintained through method call. Before the system can be considered complete,
it is necessary to prove this claim.

Generation Lemma As we noted at the beginning of Section 8.1, we implic-
itly assume a generation lemma, which allows us to assume that the typing of
expressions is carried out by rules exactly determined by the structure of the
expression; in particular, we assume that we do not have to take account of
arbitrarily many subsumption steps. Whilst we do not think that such a lemma
will be difficult to prove, for the sake of time and concision, we have left it
out. It would be preferable to return to the proofs and make these assumptions
explicit throughout, then prove that they hold.

Maintaining immutability We have shown in Theorem 8.2 that when a
path is typed as Immutable, we can be sure that no other part of the program
types it as Writable. We know that the fields of an object that we believe to be
Immutable cannot be written to. We did not prove Theorem 8.3, i.e. that this
property (that the address is not typed as Writable) is maintained throughout
the life of the program. Theorem 8.2 enables us to make better judgements as
programmers than in systems which do not speak to mutability: for example,
we need not worry that we can accidentally changed an Immutable object via an
alias. Theorem 8.3 property would have allowed us to make optimizations in a
runtime environment, or in the context of multithreading; for example, we could
allocate Immutable objects in read-only memory, and if we could guarantee that
subsequent execution did not affect the mutability of the object, we could avoid
the need to lock on Immutable objects that are shared between threads (without
this theorem, we could not guarantee that another thread does not reach a
point in the program where the object was no longer seen as Immutable). We
presented an outline of the argument for a proof, but did not formalize it. This
is an important next step.

10.2 Expected features

Class-parametric types Types are not parametric in their classes. There
is no possibility to have a List<Hat> instead of a List<Item>, for example.
Further, there is no casting construct in this language, so it would be impractical
to simple use a List of Objects, and then cast to the appropriate more specific

113

type. Whilst it is practical to use languages without types that are parametric
in their class, it would make the language more usable (and we should note that
the other type systems to which we compare ours do allow parametric classes).

Immutable fields We currently allow only for object-level immutability: it
is possible to specify that an object as a whole is immutable, or that an object
pointed to by a field is immutable, but not that we have a (single) immutable
field. It would be desirable to have a construct like Java’s final, to indicate
that a field cannot be changed, even though the object as a whole (or the object
referenced by the field) might be Mutable.

Local (temporary) variables The only opportunity to assign new variables
to the stack is currently as the result of object allocation or method call. Ob-
viously it makes sense to allow local variables to be stored as the result of field
lookup as well; this would allow us to remove the method List.getNext() from
Figure 52

10.3 Creating a usable language

Implementation There is no implementation of either our type checker, or
an interpreter for runtime expressions. It would be a reasonable extension to
our work to create such an implementation, and there are no obvious barriers
to doing so (a proof of Theorem 8.3 and the soundness of method call aside).

Shorthand and defaults As it currently exists, the language is extremely
verbose. Even when viewed in the context of other comparatively heavy-weight
type systems, such as OIGJ, the type annotations required for our system are
laborious to write. This is, perhaps, to be expected; we introduce three major
new concepts to a traditional object-oriented programming language: Mutabil-
ity, nullity, and initialization time. We also require the programmer to specify
uninitialized fields of objects expected as arguments to methods.

In [18], the authors give a sensible set of defaults for their nullity constraints
on references. It would be good to investigate whether it was sensible to provide
a similar set of defaults, so that, for example:

C[<? extends ReadOnly>, <? extends Nullable>]<,>

could become simply:

C?

with ? meaning that an object was possibly-null and ReadOnly being the
default mutability. Since the class C does not expect any extra parameters, it
should not be necessary to specify an empty list. It is more than possible that
we could construct a much more succinct system by common-sense defaults such
as these. Likely candidates include:

114

• Uncommitted method parameters should implicitly expect all not-null
fields to be uninitialized. In Figure 55 we specify them explicitly.

• Committed method parameters should implicitly expect all not-null fields
to be initialized. Whilst the type hierarchy treats committed objects
in this way, the user must still specify the (empty or otherwise) list of
possibly-uninitialized fields.

• Initialization of arguments should be committed or unknown by default.
Where the initialization state of an argument does not matter, the user
should not have to specify. Either committed of unknown might make a
sensible default.

• The receiver of a method is always NotNull. There should be no need to
specify.

Case studies Whilst we have shown through extensive example a range of
possibilities for initialization patters under our system, it would be informative
to attempt to port “in-the-wild” programs into the language; are there situ-
ations which require initialization patters that we are unable to type check?
[18] and [21] both annotated large bodies of existing code in order to show
the expressivity of their systems, and for the sake of comparison we could do
similarly.

10.4 Language extensions

Standard imperative constructs In Figure 55 we noted the assumption
of integers, booleans, and an if-statement. Additionally, looping constructs are
universal in imperative languages. We know that it is possible to encode all these
constructs in a polymorphic object-oriented language (for example, we encoded
booleans in Figure 24), but most programmers expect them as a first-class part
of the language.

Standard constructs in higher-level languages We do not support im-
plicit constructor call, nor do we support common features such as method
overloading or contravariant method signatures in subtypes. Such capabilities
would probably be uncomplicated to implement, and would add flexibility to
the language, but we did not consider them important to the idea of nullity or
mutabililty types.

Threading The system as a whole was considered in the context of threading;
one of the major advantages to immutability in a type system is to eliminate
the need for locking on shared data-structures. We would like to investigate the
practicalities of adding basic multi-threading constructs to the system. There
should be no new challenges presented by our system, with one consideration:
objects which are uncommitted should not be shared between threads. We

115

would also require a proof of Theorem 8.3, that new Writable paths are not
created once an object is seen to be Immutable; otherwise we run the risk that
one thread creates a new Writable path whilst another is still in a scope that
considers the object to be Immutable.

Static method resolution At the end of Section 10.3 we noted that the
receiver to a method-call is always NotNull. This is true because the run-time
semantics resolve method-call by the runtime class of the method’s receiver. In
compiled languages like C++ or C#, we use the type information (that we found
when we type-checked the program) to resolve method call ahead-of-time for
certain methods, and we require runtime information only for methods which
are declared virtual. This is also true of Java – but in Java, all methods are
virtual, unless declared otherwise. If we followed a static strategy for method
resolution like these languages, we could allow the receiver of a non-virtual
method to be null without any problem resolving method lookup, since it would
be decided when we type-checked the program.

116

Conclusion

We have given a formal system for treatment of mutability and nullity con-
straints. We unify the two concepts in a natural way, creating a type system
that is expressive and intuitive. The main novel concept here is the treatment
of nullity constraints in a generic way, and we hope this will form the basis of
future work on the topic of nullity (in particular, the subtleties noted in Section
7.8 will warrant consideration by authors considering parametric nullity). We
treated the initialization problem on the basis of previous work ([6], [4]), and
provided concrete examples of the power and flexibility of the system presented.

References

[1] Martn Abadi and Luca Cardelli. A theory of primitive objects. In Masami
Hagiya and JohnC. Mitchell, editors, Theoretical Aspects of Computer Soft-
ware, volume 789 of Lecture Notes in Computer Science, pages 296–320.
Springer Berlin Heidelberg, 1994.

[2] Gilad Bracha. Generics in the java programming language.
java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf.

[3] Microsoft Corporation. Specsharp. https://research.microsoft.com/en-
us/projects/specsharp/, Dec 2011.

[4] Manuel Fähndrich and Songtao Xia. Establishing object invariants with
delayed types. In OOPSLA, pages 337–350, 2007.

[5] Manuel Fhndrich and K. Rustan M. Leino. Declaring and checking non-null
types in an object-oriented language, 2003.

[6] C. Haack, E. Poll, J. Schäfer, and A. Schubert. Immutable objects for
a java-like language. In Proceedings of the 16th European conference on
Programming, ESOP’07, pages 347–362, Berlin, Heidelberg, 2007. Springer-
Verlag.

[7] Jon Harrop. F# for Scientists. Wiley-Interscience, New York, NY, USA,
2008.

[8] Shan Shan Huang, David Zook, and Yannis Smaragdakis. cj: enhancing
java with safe type conditions. In Brian M. Barry and Oege de Moor,
editors, AOSD, volume 208 of ACM International Conference Proceeding
Series, pages 185–198. ACM, 2007.

[9] JetBrains. Kotlin. http://confluence.jetbrains.net/display/Kotlin/Null-
safety, May 2012.

[10] Andrew Kennedy and Don Syme. Design and implementation of generics
for the .net common language runtime. In PLDI, pages 1–12, 2001.

117

[11] Philippe Leybaert. Can I change a private readonly field in C# using
reflection? http://stackoverflow.com/a/934942.

[12] Digital Mars. Const and immutable. http://www.d-programming-
language.org/const3.html, Dec 2011.

[13] Benjamin C. Pierce. Types and Programming Languages. MIT Press, Lon-
don, England, 2002.

[14] polygenelubricants. change private static final field using java reflection.
http://stackoverflow.com/a/3301720.

[15] Xin Qi and Andrew C. Myers. Masked types for sound object initialization.
SIGPLAN Not., 44(1):53–65, January 2009.

[16] Inc Red Hat. Ceylon. http://ceylon-lang.org/, May 2012.

[17] Alexandra Rusina. Covariance and contravariance faq.
https://blogs.msdn.com/b/csharpfaq/archive/2010/02/16/covariance-
and-contravariance-faq.aspx?Redirected=true, Febuary 2010.

[18] Alexander J. Summers and Peter Müller. Freedom before commitment: a
lightweight type system for object initialisation. In OOPSLA, pages 1013–
1032, 2011.

[19] Mads Torgersen, Christian Plesner Hansen, and Erik Ernst. Adding wild-
cards to the java programming language. In Journal of Object Technology,
pages 1289–1296. ACM Press, 2004.

[20] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, and Michael D. Ernst.
Object and reference immutability using java generics. In In ESEC/FSE,
pages 75–84. ACM Press, 2007.

[21] Yoav Zibin, Alex Potanin, Paley Li, Mahmood Ali, and Michael D. Ernst.
Ownership and immutability in generic Java. In Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA 2010), pages 598–
617, Revo, NV, USA, October 19–21, 2010.

	Introduction
	In this document

	Background
	Parametric Types
	Static Polymorphism through Templates
	Static Polymorphism through Generic Types

	Immutability
	Immutability in C++
	Immutability in Java and C#
	An extension to Java's immutability model
	Parametric Immutability Constraints

	IGJ: Immutability Generic Java
	Nullity
	Areas of commonality

	Goals
	Existing systems in more detail
	The initialization problem
	What do we require from initialization?
	Approaches to initialization
	Delay Types and initialization using stack-local regions
	Replacing [Free] pets with delayed ones

	System Design
	Initialization Regions
	Generic nullity and Mutability
	Runtime model
	The language

	The Type System: Informally
	Initialization Regions
	Types for immutability
	Types for nullity
	Field initialization as part of the type information
	The type rules

	The Type System: Formal Description
	Type statements
	Notation
	Program definition
	Auxiliary functions

	The programming language
	Typing Expressions
	Well-formedness of a type
	Well-formedness of ,

	The Type System
	Typing Method Calls
	Well-formed Programs

	Runtime semantics
	Design decisions
	Changing time environments
	Subtyping between types with different commitment points
	Field Assignment
	Nullity of the receiver is not parametric

	Soundness
	Consistency
	Well-formedness of and
	Preservation of well-formed and
	Mutability

	Contributions
	Generic Nullity
	Flexible initialization patterns
	Exploration of the crossover between nullity and Mutability

	Further Work
	Proofs of language properties
	Expected features
	Creating a usable language
	Language extensions

