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Abstract

In recent years there is a huge increase in real-time data, which cannot be stored in its whole
entirety. Nevertheless, its timely processing in a form of events exhibits enormous potential
for business intelligence. To allow for inferring high-level informations from vast amounts of
continuously arriving data, complex event detection systems, capable of discovering user-defined
event patterns, were developed.

The latest developments in these systems includes distribution of event detection by query
partitioning and their execution on multiple nodes. However, some applications, such as stock
monitoring or mobile fraud detection, need to deal with extreme input event rates, which may
be beyond the capabilities of the existing solutions.

In this report we present the Step complex event detection system, which goes further than
distributing queries and achieves better scalability by parallelising event detection, and also
higher efficiency through the use of many optimizations. Event queries specified in a high-level
language are compiled into data-flow graphs, parts of which may be replicated, and run on
a novel distributed computing platform Storm. The degrees of parallelism, as well as other
system parameters, are estimated using a performance model. Our evaluation shows that event
detection is fast and for some event patterns it scales linearly, however for others logarithmically.
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Chapter 1

Introduction

1.1 Complex event detection

In recent years there has been a huge increase in the data produced on the Internet, effectively
doubling in size every year [25]. In many cases, the data is continuously produced by software
applications in quantities that are not examinable manually. Only a small percentage of these is
of interest. However, the vast amounts of data exhibit an enormous potential for business intel-
ligence, possibly generating more revenues and better fitting customer needs. Examples of this
in practice include performing click-stream analytics, inferring information from market stock
data, detecting financial frauds, managing networks, and monitoring pervasive environments,
telecommunication systems or electricity grids.

Historically, the common approach for such applications was to store the generated data in
databases or logs, and process it afterwards in batch processing jobs, leveraging distributed
frameworks such as Hadoop. However, it is becoming increasingly inefficient to store all the
data in its whole entirety. Many businesses also require answers as soon as the data becomes
available. Furthermore, the businesses are not primarily interested in raw data, but rather in
the high-level intelligence that can be extracted from it. As a response, systems were developed
that can filter, aggregate and correlate data, and notify interested parties about its results,
abnormalities, or interesting facts.

The latest advance in such systems is the development of high performance complex event
processing (CEP) engines (a summary in [15]) that are capable of detecting patterns of activity
from continuously arriving data. As illustrated in figure 1.1, CEP systems receive continuous
streams of events from multiple data sources over underlying network, they discover patterns
of interest among the events, and notify the users.

Figure 1.1: Example of event pattern detection from three different streams.
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An applicability of such systems is for example fraud detection, often performed by financial
institutions [32] or mobile operators [31]. Patterns of unusual transactions or calls can be
encoded in a CEP language, and vast amounts of data can be effectively filtered in real-time,
yielding suspicions that can be confirmed or processed further. An example of such pattern
are a series of small transactions to multiple accounts, followed by a large transaction within
a short time period1. On the other hand, cloning type of mobile fraud could be discovered by
detecting a series of calls from distant areas within a short time, employing a so called velocity
trap.

CEP systems also have a huge applicability to financial stock monitoring (one system that
targets this is Cayuga [5]). By continuously analysing stock quotes, possible arbitrage opportu-
nities could be detected. For example, given that the CEP system receives all orders made on
a market, it could detect multiple orders on some equity with increasing prices within a short
time, indicating that there is a big demand for such equity. It could also detect a series of price
quotes for a company with an upward trend, indicating an interesting investment opportunity.

In many cases CEP systems are not used as standalone, but are rather coupled with components
that perform further processing. For example, in the case of fraud detection, the filtered and
aggregated data may later be processed by a slower machine learning system for confirmation
of unusual user behaviour.

1.2 Motivation

In recent years, research has focused on distributing complex event detection to achieve better
scalability. This is based on dividing event queries and running their parts on separate machines.
Most systems are designed to run a large number of queries simultaneously, and therefore simply
distribute event detection on query or operator granularity. Limitations of these systems arise
when there is abundance of resources, only a few submitted queries, and high event throughput
is required. In this case, queries can be distributed only up to a certain level, utilising only a
certain fraction of the available machines. However, there are applications that require extreme
throughput, fraud detection and stock market monitoring for example (e.g. New York options
exchange is capable of disseminating 1.5 million stock quotes per second [26]).

We can go beyond distributing queries and try to replicate detection, such that patterns for
the same query are detected in parallel at multiple nodes. This would improve scalability and
achieve higher event detection throughput. To our knowledge, such work has only been done
marginally in distributed Cayuga [7], which is capable of parallelising detection at operator
level. However, Cayuga does not solve the scalability problem for all queries, but only for those
that can be split on predicates. Thus, it is important to design an alternative approach, which
could scale complex event detection beyond the simple distribution of query parts.

In addition, most of the current CEP systems were designed to optimize for low network usage,
such that they fit into the common 100 Mbps network bandwidth range. However, there is a
trend towards cloud computing, where resources are offered on demand, can scale to hundreds
of machines, and 1 Gbps network connections are readily available. Thus, a novel system is
needed, which could exploit this environment, while also examining possibilities of automatically
scaling event detection depending on required throughput and available hardware.

Recently a Storm [33] stream processing platform was released that allows for a development
of applications that process streams of data in a cloud environment. Programmers in Storm

1Interestingly, a fraud of 540£ with this pattern was committed on our bank account, but was detected by a
similar system, thus preventing further damage.
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compose computation graphs from processing elements, which can be arbitrarily parallelised
depending on required throughput. However, coding Storm components is tedious and error
prone. This offers an opportunity for a development of a scalable complex event detection
engine, where event patterns would be expressed as computation graphs and query operators
would be implemented as replicable processing elements. Since Storm is a novel framework, we
are additionally looking for interesting performance measurements.

1.3 Project aims

The aim of this project was to design a dedicated CEP system that explores the possibilities of
parallelising complex event detection in cloud environments, and also achieves higher through-
put, while retaining low detection latency. Users of such system would define event patterns in a
domain specific language, which then would be compiled into a network of processing elements
and run in the cloud on the Storm computing platform. Given the available resources and
the desired detection throughput, the CEP system would utilise a cost model to determine the
optimal parallelism of event detection. Furthermore, the implementation would try to obtain
a balance between CPU, memory and available network usage, and also explore optimizations,
which could be applied to event detection for higher performance.

The main goals and contributions of this project are:

• Event pattern language. We designed a high-level language which allows for definition
of event patterns from the combination of a unique set of well-defined operators. The
designed language is very concise, contains a small number of operators, and is still very
expressive and simple to parallelise.

• Event detection system. We designed a framework that allows for complex event
detection at the Storm platform. We also implemented a compiler from the event pattern
language into a set of constructs that can run on this framework, and detect specified
complex event patterns. Additionally, we created a comprehensive GUI for specification,
compilation and submission of complex event queries to a Storm cluster, as well as remote
monitoring of their performance.

• Parallelism cost model. We developed a performance model that can infer optimal par-
allelism of complex event queries depending on event arrival rates and available resources,
combined with other runtime parameters.

• Optimizations We introduced a number of effective optimization heuristics that im-
prove cluster utilisation. In particular, these are expression indexing for fast predicate
evaluation, reuse of common event patterns, event batching for reduced communication
overhead, garbage collection of events that cannot be matched any more, two-phase event
stabilization, and efficient serialization through generation of external event payloads.

• Evaluation We evaluated how performance of individual language operators improves
with increased parallelism, and determined the applicability of our performance model on
full queries. We also examined some performance characteristics of the Storm framework
and its applicability to complex event detection.



1 Introduction 10

1.4 Report outline

We will start with the background chapter and describe the characteristics of complex event
processing systems and existing work in the field. Chapter 3 will then introduce a language
for the detection of event patterns, and its event and temporal model. We will continue in
Chapter 4 with the design of Step (STorm complex Event Processing) CEP system and its
approach to complex event detection. Particular Step algorithms and implementation issues
will further be described in Chapter 5. The parallelism cost model and our approach for
estimating various runtime metrics will be explained in Chapter 6. Chapter 7 then evaluates
the scalability and throughput of the Step CEP system on a granularity of individual operators,
as well as complete queries, and comments on some performance aspects of the Storm framework.
Chapter 8 concludes findings of this project, and explains possible future directions that similar
projects could take.



Chapter 2

Background

2.1 Introduction to complex event processing

2.1.1 Complex event processing

CEP - Complex event processing (as defined in [14]), is a technology for extracting higher level
knowledge from simple events received over messaging infrastructure from different sources. An
event is any happening of interest and contains business-sensory data, for example a tempera-
ture sensor measurement or a stock quote. A combination of such atomic (also referred to as
primitive) events is called a complex, or composite event. Complex events are specified using
event patterns, which are primitive events combined with event composition operators. An ex-
ample of an event pattern is A; (B|C), detecting event A followed by either event B or C. Here
composition operators are sequence ; and union |.

An event in a CEP system typically carries event attributes and one or more timestamps. The
timestamps can refer to its occurrence time, its arrival time to the system, or can specify its
duration. Different CEP systems implement different time models, as we will see later. The
event attributes specify the properties of an event (i.e. its carried payload), and must adhere to
an event schema. The schema usually specifies the types and names of the attributes, as well
as their format. Some systems use XML format, in which an event carries both its schema and
its properties, others rely on attribute ordering. It is common that a CEP system implements
adapters that transform incoming events from different sources into a unified internal schema,
which is later used during complex event detection.

The role of a CEP system is to continuously receive events from event sources on so called event
streams, detect user-specified event patterns and disseminate complex events to event sinks.
To specify complex event queries (i.e. event patterns), it is popular to use verbose, SQL-like
languages. Such high level language then gets translated into a number of CEP operators, which
will be used for the detection. Each CEP system uses a different detection method, tailored to
its own set of operators.

The design requirements of a CEP system can be summarised into three points:

• Expressiveness The event pattern language must contain enough powerful operators, to
be able to express many queries applicable to different scenarios. When designing a CEP
system, it is therefore important to carefully define operator semantics.

• Usability Complex event queries have to be expressible in a simple way. This affects the
design of the high level language, as well as operator semantics.
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• Efficiency CEP system efficiency could be measured in network bandwidth usage, in
event detection latency, or in the number of events the system is able to detect per unit
of time (throughput). Often trade-offs have to be made here, as for example both low
detection latency and low network usage may not be achievable. Each detection system
implements its own set of optimizations that are suited for the given operator semantics.
We will discuss this later on concrete systems. In many applications, a CEP system will
have to handle thousands of queries at the same time. As a result, most systems try to
implement multi-query optimizations, e.g. operator reuse. Other optimizations are query
rewriting using cost models, reordering or merging operators, or implementation-specific
optimizations like custom garbage collection or custom memory management. To deal
with event overload and resource shortage situations, it is also common to implement
approximation techniques, such as random dropping of events during processing.

2.1.2 Characteristics of CEP systems

We can summarize the characteristics of CEP systems in the following points (as explained in
[15, 22]):

• Input to CEP systems is continuous, possibly infinite stream of events.

• Event streams require real-time processing, low latency event detection and are usually
too big to be stored in their whole entirety.

• The input event streams are volatile. I.e. the arrival rate can vary, events can arrive in
bursts and out of order, be lost or intentionally omitted, and timestamps may be imprecise.

• Input events usually exhibit strong temporal relationships, and come from external sources
and not from a central database or permanent store.

• CEP systems must cope with large number of submitted queries in real-time and must
process a large number of events, out of which only a small percentage is of interest. As
such, they are often used for monitoring.

• CEP systems are usually concerned with relationships between events and their patterns,
rather than with individual events. They combine data from multiple sources and infer
from it more high-level and useful information.

• The processing in CEP systems is directed by newly arrived events rather than historical
data (as compared to databases).

• CEP systems follow DAHP (database active, human passive) model, in which a system
does continuous processing and notifies user. In comparison, traditional database systems
employ HADP model (human active, database passive), meaning that data is simply
stored and users query it manually.

2.2 Event-based systems

Complex event detection became popular with introduction of event-based communication
model in event-based enterprise systems. Event based systems (as explained in [11, 12]) are
systems consisting of distributed and loosely coupled components, generating and receiving
event notifications, where an event is any happening of interest. The service responsible for
disseminating event notifications is known as publish/subscribe middleware system. The pub-
lish/subscribe system consists of event consumers and event producers. Event consumers ex-
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press their interests in events in a form of subscriptions, where event notifications published by
producers will be delivered. The communication between subscribers and publishers is anony-
mous (a subscriber does not name the publisher and vice versa), asynchronous and similar to
multicasting (a publisher publishes events to many subscribers).

When comparing a publish/subscribe system to a database, events can be seen as data and
subscriptions can be seen as queries over it. However, instead of the data being stored, the
system stores only queries. The data continuously arrives from publishers, is matched against
the queries, and is delivered to subscribers.

To register subscriber’s interest in published events, there are different types of subscriptions:

• Topic (subject) based. Publishers always annotate events with a subject string. The
subscribers can express interest and receive events based on their subject.

• Type based. Type based subscriptions allow events to be received depending on their
type attribute. The event types can form a hierarchy and subscription can refer to any of
its type sub-trees.

• Content based. Content based subscriptions allow events to be received depending
on their attribute values and can include predicates (e.g. subscribe to all temperature
readings smaller than 20C).

An examples of publish/subscribe systems are Siena, Hermes and Gryphon (comparison can be
found in [13]). Gryphon provides an implementation of JMS (Java Message Service) topic based
subscription API, as well as content based filtering on predicate conjunctions. Content based
subscriptions are also provided by Siena; Hermes implements only type based subscriptions.

Publish/subscribe systems can typically scale to very high event rates with lots of publishers
and subscribers. By using subscriptions, events of interest can be sent from event sources to
event sinks. In some systems filtering on event attributes can be done. This can be seen as a
very simple form of complex event detection. For many applications though, the expressiveness
of subscriptions is not enough. To correlate multiple events, applications can be built on top
of publish/subscribe systems (e.g. DistCED [10] that will be described later), to enable for
complex event detection. These systems use the advantage of scalability and performance of
a publish/subscribe middleware, but are also capable of detecting variety of complex event
patterns.

2.3 Active databases

In this section we will briefly explain active databases (aDBS), where the early work on complex
event detection was done. The most influential works in this area were the object-oriented
database management system SAMOS [20] and the model independent event detection language
SNOOP [21].

2.3.1 ECA rules

Active databases differ from conventional databases in that they are able to automatically per-
form operations in response to a certain event occurring and a certain condition being satisfied.
The detection of events in a database and consequent action is specified by Event-Condition-
Action (ECA) rules. Event part of the rule specifies an event pattern, which consists of primitive
events composed with a set of operators. A primitive event can be any change of the database
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state (e.g. insertion, update or delete of a row). The condition part of an ECA rule is a predi-
cate that is evaluated after an event pattern is detected. On satisfied condition an action will be
invoked (also called event signalling). The action can execute an external program or perform
a database operation, which may in turn cause other ECA rules to be triggered. An example
of an ECA rule is: On insertion of two stock quotes (event) where second has smaller price
(condition), compute their price difference and save it into a separate table (action).

To implement ECA rules (i.e. triggers), active databases have introduced trigger specification
languages similar in style to the SQL language. These languages specify trigger rules in form
similar to:

<rule>: ON <event pattern> CONDITION <condition> ACTION <action>

For us the most relevant part of active databases is how event patterns are specified and what
detection techniques are used for them, which we will examine now closer.

2.3.2 Event pattern languages

SAMOS builds event patterns from primitive events, which describe a point in time of some
occurrence in the DBMS. Primitive events can be transaction events (e.g. signalled when
inserting an object to a database), time events (e.g. periodically signalling timers), and method
events (signalled when a method is executed on an object in a database). To compose these,
SAMOS offers six event operators. Composite events can be formed as a conjunction (E1, E2)
(requires both events to occur), disjunction (E1|E2) (at least one of the events needs to occur)
or sequence of events (E1;E2) (an event E2 occurs after an event E1 occurred). The other
three operators are history, negation and star. History operator (TIMES(n,E) IN I) signals
when an event E occurs n times within an interval I. Negated operator (NOT E IN I) signals
when E does not occur within an interval I. Here, intervals are specified as a pair of discrete
timestamps. Finally, star operator (∗E IN I) can be used to limit the signalling of multiple
event occurrences in an interval to at most one.

SNOOP is a model independent language, and as so it distinguishes between two types of
events: logical (conceptual) and physical (implementation specific). Logical events are atomic
(e.g. a point in time after row insertion), whereas physical can have duration (e.g. the insertion
procedure). The mapping between the two is specified using event modifiers. Event patterns
in SNOOP are composed only from logical events. Similarly to SAMOS, primitive events in
SNOOP include transaction events and time events. In addition, explicit (user defined) events
can be added. With regards to event patters, SNOOP also can express disjunction and event
sequence. The conjunction Any(m,E1, E2, ..., En) is more general and signals only when at
least m out of n declared events occur. A new operator is aperiodic operator A(E1, E2, E3),
which can be used to detect an occurrence of E2 during an interval bounded by events E1 and
E3. Last operator can detect a periodic event P (E1, [t], E2), which will periodically signal time
events in interval between E1 and E2. Similarly to SAMOS, SNOOP also has star variants of
periodic and aperiodic operators, which makes them signal at most once within an interval.

2.3.3 Event detection strategies

SNOOP and SAMOS use different algorithms for complex event detection. SAMOS is a cen-
tralised system based on Petri nets. A Petri net is a collection of places and transitions. Places
can be connected to transitions and vice versa via arcs, but an arc cannot connect two places.
Each place can store a number of tokens, in which case we say that it is marked. Each transi-
tion connects a set of input places and a set of output places. Whenever all input places of a
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transition are marked, the transition will be applied, removing one token from each of its input
places and adding one token to each of its output places.

Every operator in SAMOS language can be translated into a Petri net. Given a set of event
patterns, SAMOS will translate all their operators into Petri nets, which will be composed
together. The resulting single Petri net can be used to detect complex events, which is done as
follows: Every time a primitive event is received, a place in the Petri net is marked and a game
of tokens played. I.e. some transitions can be applied and token can traverse the whole net.
The token that moves across the Petri net can be seen as an event detected so far. Tokens that
reach an accepting place correspond to a fully detected complex event. An example of a Petri
net detecting events (E1|E2) and ((E1|E2), E3) can be seen in Figure 2.1.

Figure 2.1: Petri net for detecting events (E1|E2) and ((E1|E2), E3) after event E1 was received
(transition t1 was applied). Grey places are accepting, black dots represent tokens.

Petri net representation and algorithm are quite simple. The disadvantage is that composed
Petri nets can become quite big with many queries injected, and the algorithm becomes slow.
For our project, it is interesting to see that we could distribute the net across many machines.
This could be done on operator granularity, in which case each node would execute one partition
of the Petri net, or even on transition granularity, in which case each node would represent a
place or a transition. In both cases, the nodes would cooperate with each other by receiving
tokens and possibly sending tokens further. Accepting nodes would output complex events.

Figure 2.2: Event graph for detecting events
(E1|E2) and ((E1|E2), E3). Grey nodes are ac-
cepting.

SNOOP chose a different approach and uses
event graphs for complex event detection.
Each leaf in the graph (node with no ingo-
ing edge) can receive primitive events and
each internal node is an operator processing
them. When a primitive event occurs, its cor-
responding leaf node is activated, which will
in turn activate all nodes attached to it via
outgoing edges. Activating a node means no-
tifying it of an event. When a node is acti-
vated, it will process received event and may
activate nodes attached to it. A complex
event is signalled when an accepting node in
the graph is activated. Figure 2.2 shows a de-
tection graph for event queries (E1|E2) and ((E1|E2), E3). Arrival of the event E1 causes node
E1 to be activated, which will activate E1|E2, which will signal a detected complex event and
activate node (E1|E2), E3. The last node will store the event. When E3 arrives, node E3 is
activated, which activates node (E1|E2), E3. This node will signal a conjunction event, since it
previously stored an event E1|E2.

All queries in SNOOP are compiled into a single detection graph. The advantage of event
graphs is that even with many queries, they will stay relatively simple and small. Also, as we
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will see later, detection graphs can be easily distributed. The disadvantage is that processing
is not as uniform as in Petri nets; each node in the graph behaves differently when activated,
depending upon operator semantics that it implements (e.g. union just forwards events, whereas
conjunction needs to store and process them).

2.3.4 Conclusion

Primary function of database systems is to persist large number of data such that it can be
retrieved effectively. As such, they are primarily not concerned with continuous data processing
and hence do not store temporal relationships between data. Also, the events and their times-
tamps correspond to internal database state changes (e.g. insertion), rather than to external
sources from which they arrive. It should be noted that triggers are an addition to database
systems and as such are limited by their architecture. Typically, the functionality is centralised
and difficult to distribute. As a result, active databases do not scale to a large number of
triggers and high rate of arriving events. Active databases also do not have the mentioned
characteristics of a general CEP system, but their ideas are used by CEP and data stream
management systems (DSMSs), which we will discuss next.

2.4 Data stream management systems

Data Stream Management Systems - DSMSs (an excellent introduction in [23]) are systems
somewhat similar to databases, but better equipped to process large amounts of data contin-
uously arriving from input streams. DSMSs are not only capable of detecting complex events
among their input data, but also can compute analytics on it, manipulate with it as it was rela-
tional table, save it, or replay it. They are popular in business intelligence, as they can handle
large sets of data and apply many general queries on it. However, because of their generality,
they are not able to accomplish such performance as dedicated CEP systems.

The most important characteristic of DSMSs is that they can handle both permanent relational
data and continuous stream data. Thus, they support either standard SQL-like database queries
or continuous stream processing queries. Database queries are executed only once, whereas
continuous queries will execute forever on streaming data. A DSMS cannot store all streamed
data to answer continuous queries due to limited number of resources. Common technique to
deal with this is to evaluate the queries against a size-limited window of data that slides across
the stream. The outputs of the queries can be stored in permanent relational tables, or streamed
to external applications. An example use of DSMS query is: “Each day compute electric power
consumption of every customer segment, where measurements come on streams from customer
power meters”. Here, the DSMS needs to aggregate measurements over streams and correlate
them with customer type stored in a relational database.

In this section we will look at two examples of data stream management systems, STREAM
[1, 2] and Borealis [24]. In particular, we will examine closely their data model, event detection
language, event detection strategies, and implemented optimizations, as these design choices
are highly relevant to a successful CEP system.
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2.4.1 STREAM

Data model and query language

STREAM [1, 2] models an input as a continuous stream S of pairs 〈s, τ〉, where s is an input
data tuple (a row of attribute values) and τ is a discrete timestamp of tuple arrival time on
stream S. A relation in STREAM is modelled as a bag of tuples, corresponding to a window of
received data on stream S. Streams can be partitioned into windows in terms of the number of
tuples (tuple-based sliding window), the window time duration (time-based sliding window), or
by attribute values (partitioned sliding window).

Complex event patterns can be specified by continues query language (CQL), which is an exten-
sion to the SQL language. Internally, STREAM executes queries only on relational tables, and
not directly on streams. To implement querying continuous input streams, STREAM transforms
them into temporary relational tables and executes queries against the tables instead. CQL lan-
guage therefore contains three types of operators: relation-to-relation, stream-to-relation and
relation-to-stream.

Relation-to-relation operators can be used to execute complex data queries over relational tables.
These are specified using the SQL language, and support standard database operators such as
select, project, union, intersect, except, aggregate, duplicate-eliminate and different types of
joins. Stream-to-relation operators can be used to specify how input streams will be transformed
into temporary relational tables that can be queried. This can be defined in terms of three
different sliding windows, as mentioned earlier. Relation-to-stream operators are used to specify
translations of relational tables into output streams, i.e. when data from a relational table
should be output to a stream. These are Istream operator (outputs all data that is inserted
into a relation), Dstream operator (outputs all data that is deleted in a relation) and Rstream
operator (outputs all data present in a relation all the time).

The usage of different operator types is best visible on an example from [2]:

Select Istream(*) From S [Rows Unbounded] Where S.A > 10

Here an unbounded-length window is taken from stream S and is transformed into a temporary
relation (the relation continuously updates as the window slides). SQL algebra is then applied
on this relation to filter out tuples of interest. As specified by Istream operator, the newly
filtered tuples are then sent to an output stream.

Operation and optimizations

Submitted CQL query is compiled into a query plan, similar to event graph in SNOOP. The
query plan consists of processing operators connected to each other via input and output queues.
Each operator can also have an associated synapse, which stores its run-time state, typically a
materialized view of a relation. For example, a join operator needs to keep a window of tuples
for both of its input streams; hence, it will keep two synopses, each storing tuples from one
stream.

When data arrives on a stream, it is timestamped and put on a queue of some stream-to-
relation operator. Each operator in query plan consumes an input from its input queue, does
some processing (join will for example update its synopses, and join them), and outputs result
onto its output queue. STREAM is a centralised system and all operators run in the same
thread together with a scheduler. Scheduler assigns each operator a time slot in which it will
run.
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A critical part of STREAM system is efficient memory management, since synopses can grow
quickly. Therefore, synopses are shared across operators, thus not replicating data in the system.
Also, an optimizing scheduler is implemented, choosing operators in a way such that input
from queues is consumed as fast as possible. Furthermore, two approximation techniques are
implemented - load shedding and synopses shrinking. Load shedding (detailed description in [3])
is employed when running out of CPU resources, and is implemented as a sampling operator,
which probabilistically drops tuples. If required, it can be inserted into any part of the event
query. Shrinking synopses is a way to handle low memory conditions by limiting their size.
This is done by making their windows smaller, or introducing new windows. Finally, STREAM
utilizes operator reuse. Whenever a new CQL query is submitted, the resulting query plan is
merged with existing queries in the system and common operators reused, sharing memory and
computation load.

2.4.2 Borealis and Aurora

Borealis [24] is a DSMS based on Aurora [22]. It is a complex system due to its ability to
deal with dynamic query revisions (streams of data that correct errors in already received
data), dynamic query modifications (deployed query plans can be changed at run-time), and
implemented optimizations.

Data model and operators

The data arrives to Borealis as a sequence of append-only tuples of the form (k1, .., kn, a1, .., sn),
where k1, .., kn specify unique key of the tuple (to support data revisions) and a1, .., sn carry its
attribute values. Each arriving tuple can be an insertion, deletion or revision of already inserted
tuple. The tuples are timestamped on arrival and can carry quality of service metrics, such as
total resources consumed by its processing. These metrics are then used by load shedders and
optimizers to distribute load.

Borealis implements two types of operators - order-agnostic and order-sensitive. Order-agnostic
operators are filter (i.e. select), map (i.e. projection), and union. Order-sensitive operators
are aggregation (application of function to a stream window), sort (approximate sorting of
tuples), join (joining of two stream windows on predicate), and resample (aligning streams and
computing a function over them). Each order sensitive operator needs to specify assumed order
of input streams and a window size, over which they are applied. The operators in Borealis are
quite sophisticated, for example, filter is able to filter multiple streams on multiple predicates
and map can output multiple projections of one tuple.

Operation and optimizations

Queries in Borealis are represented as data-flow graphs. They consist of boxes (operators)
connected by arrows representing data flow. Input data flows into boxes, where it is processed
and sent further downstream. The graphs can also contain connection points, where new boxes
can be added and data-flow changed. They can also persist data (analogous to materializing a
view), which can be pushed downstream, or pulled by downstream boxes (e.g. join box pulls
data for efficiency).

Borealis is a distributed DSMS. Each node runs a component called query processor, which
executes one part of the data-flow graph. Query processor receives data from an input queue,
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processes it by a number of boxes and outputs it on another queue. Each query processor has
its own persistent storage, load shedder, scheduler and local optimizer.

Optimization in both Aurora and Borealis is done dynamically. Aurora gathers statistics such as
the average cost of box execution and box selectivity, which are then fed into a cost model. An
optimizer uses the cost model to optimize a sub-network of boxes. It can insert projections to
eliminate unneeded data attributes, it can reduce box execution overhead by combining boxes,
and it can reorder boxes to achieve higher selectivity early in the query plan (e.g. filters can be
sometimes pushed upstream).

Similar ideas are used in Borealis. During query processing, monitors gather quality of service
statistics on each site, such as CPU and bandwidth usage, and compare them to other sites. The
monitors then continuously refine box distribution by triggering local, neighbourhood and global
optimizers. Local optimizers are able to shed load with regards to event priority and quality of
service. This information is also used when scheduling boxes. Neighbourhood optimizers can
improve resource utilisation by migrating a box to a neighbourhood site, and can also initiate
distributed load shedding (tuples will be dropped in collaboration with upstream sites). Finally,
global optimizer has information about all sites and can try to improve throughput, latency,
lifetime of sensor network, or its coverage. It does this by identifying bottlenecks and migrating
operators to different sites (details in [24]).

2.4.3 Conclusion

DSMSs are complicated systems that provide general stream processing capabilities for any
kind of application. This includes complex event detection, aggregation of data, computing
of statistics, and data mining. Thus, DSMSs support similar functions as databases, but on
real-time streams. As such, they often try to implement SQL-like languages with operators
and expressiveness similar to the SQL. As a result, they support a broad range of queries,
but expressing complex event patterns can be cumbersome (e.g. event sequences have to be
expressed as joins). Even though DSMSs implement sophisticated optimizations such as moving
operators, combining them, and shedding load, they are not able to achieve the performance of
dedicated CEP systems. The data-flow graphs used by DSMSs are a convenient abstraction, on
top of which a scalable dedicated CEP system could be built. This is because data-flow graphs
closely match the streaming paradigm, support optimizations, and can be easily partitioned for
distribution.

2.5 Dedicated CEP systems

Complex event processing differs from data stream management in two major ways (as explained
in [5]): Firstly, it is dedicated to detecting event patterns, instead of providing general capabil-
ities to process streams. As a result, CEP systems provide languages that are more suitable for
expressing non-occurrence of events (e.g. safety conditions), order-related constraints and to
correlate long sequences of events. We could express such relationships also in DSMSs, but it
would be cumbersome and it would result in long queries that are difficult to optimize. Secondly,
dedicated CEP systems are similar in scalability and performance to publish/subscribe systems.
As such, they are able to process large number of concurrent queries, which outperforms the
scalability of stream management systems.

In this section we will describe four CEP systems - Next [4], Cayuga [5, 6], SASE [9, 8] and
DistCED [10]. In particular, we will address event representation, event pattern languages,
detection strategies and optimizations. Some of these systems are also able to distribute event
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detection and we will discuss how these ideas could be used to also parallelise event detection.
We will use the term distribution to refer to partitioning of query plans into smaller units,
which can be run on separate nodes. Under parallelism1 we will refer to replicating query plans
across many nodes, such that each query plan processes only some fraction of input streams,
thus detecting event patterns in parallel.

2.5.1 Cayuga

Cayuga [5, 6] is a centralised general purpose event processing system that allows event detection
through a small number of well-defined composable operators.

Data model

Event streams in Cayuga have a fixed schema and are (possibly infinite) sets of event tuples
〈a, t0, t1〉, where a = (a0, ..., an) are the attribute values of an event (payload), t0 is the start
timestamp and t1 is the end timestamp of the event. The timestamps are discrete and for
instantaneous events identical. Duration events, overlapping events and simultaneous events
are also allowed. Events arrive and are processed in time order: event e1 comes before event e2
if e1.t1 < e2.t0. Thus, overlapping events are not assumed to arrive in order.

Query language

Cayuga expression language consists of four unary and three binary operators. The operators
are explained in the following list:

• Selection (σθ) filters out all events not satisfying θ predicate.

• Projection (πATTR) selects those attributes of events, as provided in the ATTR set.

• Renaming (ρf) renames attributes and changes the schema of a stream according to
function f .

• Aggregation (αg) applies an aggregation function g over a stream, adding a new attribute-
value pair to the event schema. This enables for example computation of an average over
last stock prices.

• Union (S1 ∪ S2) detects all events from stream S1 and stream S2.

• Conditional sequence (S1;θ S2) detects an event from S1, followed by event from
stream S2, satisfying θ predicate. The predicate can refer to events from both streams.

• Iteration (µτ,θ(S1, S2)). Similarly to semantics of Kleene star operator, this detects
event S1 followed by any number of events S2 satisfying predicate θ. Informally, this
is equal to S1 ∪ (S1;θ S2) ∪ (S1;θ S2;θ S2) ∪ .... Cayuga avoids unbounded memory by
storing just S1 values and most recent S2 values in iteration. The τ expression enables to
modify the result on on each iteration, and can contain projection, selection and renaming
operators.

To detect for example stock quotes of the same stock falling for at least 30 minutes, we could
express the query as: σθ3(µσθ2 ,θ1(S1, S2)), where S1 and S2 are streams of quotes, and θ1 =
S1.name = S2.name, θ2 = S1.price >= S2.price.last, θ3 = DUR ≥ 30min

1Later it will be seen that Cayuga refers to distribution/parallelism, as column/row scaling.
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To submit queries, Cayuga provides an SQL-like language, in a form of:

SELECT attributes FROM stream-expression PUBLISH output-stream

Note that unlike other systems, both event patterns and predicates are specified in the stream-
expression part. The stream-expression contains constructs like FOLD, NEXT and FILTER,
which are translated into mentioned Cayuga operators. Also note that input and output of an
event query is a stream, enabling queries to be arbitrarily nested inside other queries.

Operation

Cayuga is based on non-deterministic finite state automatons, where an input event can cause
an automaton instance to non-deterministically explore all outgoing edges. The input alphabet
to automaton is all possible events, and every edge between states P and Q is annotated with
a pair 〈θ, f〉. θ is a predicate over events from P , and f is a transformation function over the
events (e.g. renaming function). In each state, the automaton also stores so called bindings,
which are events that contributed to a state transition of an instance.

Cayuga translates a query expression into an NFA. Each node in the NFA has a forward edge
(apart from last one), filter edge (self-edge) and possibly a rebind edge. Forward edge corre-
sponds to an operator detecting an event, filter edge to a predicate filtering (e.g. θ predicate
in the iteration operator) and a rebind edge to a function that changes the binding stored in
a state (e.g. τ function in the iteration operator). The automaton works as follows: given it
is in a state P , storing binding x, it will transition into state Q only if an event e arrives that
satisfies the edge predicate θ(x, e). The new binding stored at state Q will be f(x, e), where f
is the above-mentioned transformation function.

To explain the formal definition, we will use an example from [5]. Suppose we want to output
consecutive stock quotes with the same name. The event algebra and corresponding NFA are
shown in Figure 2.3. Here, P is the starting state, S is the accepting state, and the renaming
operator gets translated into the edge e1. Since the predicate on e1 is true, any input event e
will cause a new automaton instance to be spawned and transitioned into state Q. During the
transition, the renaming e.Name → N will take place. At state Q, any event not satisfying
the next predicate will cause self-edge transition. A sequence of events is detected when the
Q state’s forward edge is traversed. By definition, this will happen when the edge predicate is
satisfied (true) and predicate associated with state P is satisfied (Q1.name = e.Name). If this
holds, automaton will apply the projection function on edge e3 and transit to the accepting
state S.

Figure 2.3: Detection of πName((ρName→NStock);N=Name Stock) in Cayuga (no rebind edges)

Distributed Cayuga

Cayuga was implemented as a monolithic centralised system. Input events were stored in a
central priority queue that was consumed by a Query Engine. Query Engine managed instances
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and transitions of the NFA. However, a work has been done in [7] on distributing Cayuga by
using techniques called row/column scaling and pipelining.

Figure 2.4: Distributing 6 queries across 3x2
matrix of machines.

Row/column scaling is distribution of event
queries across an n × m matrix of available
nodes (see Figure 2.4). The number of queries
in the system is divided between n machines,
forming one row in the matrix. The rows are
then replicated m times. A received event is
then uniformly routed to all machines in one
of the rows, for example in a round robin fash-
ion. All queries in a row will process the event.
By adding a column to the matrix, we reduce
the number of queries processed at each node (i.e. increase query distribution). By adding a
row to the matrix, we reduce the number of events being processed at each row (i.e. increase
parallelism). Both ways, we increase throughput. The smallest unit of distribution is a single
query. A caveat is that a simple round robin event dispatching will not work because to be able
to correlate events, they have to be dispatched to the same row. Thus, a dispatcher is employed
that depending on query selectiveness, dispatches related events to the same row (stock exam-
ple: if each query operates only on one stock, all events from stock exchange can be partitioned
on stock name). Dispatcher might be also parallelised, to avoid it being a bottleneck.

Pipelining makes the unit of distribution smaller. That is, a single query is split into sub-queries
to be executed at separate machines. Each machine executes a part of Cayuga automaton and
its output is routed to another machine in the pipeline. The last machine contains an accepting
state and detects a complex event.

Conclusions

Cayuga has a very powerful language with well-defined semantics and high throughput. It
also implements many optimizations, such as custom garbage collection and query indexing.
Query indexing keeps track of which events affect which transitions. Consequently, only the
predicates on affected edges are evaluated, thus greatly reducing CPU load. Also, multi-query
optimization is performed by merging automaton instances into one instance (each state in
Cayuga automaton will represent multiple instances).

Techniques implemented in distributed Cayuga are important in our project. Pipelining is a
common technique, and it was implemented, such that the smallest unit of distribution is an
operator. Row/column scaling is a nice idea for parallelising operators on predicates. The
problem arises when an operator does not contain a split-able predicate and thus cannot be
parallelised, e.g. A;trueB. In this case different technique should be used, e.g. replicating A
stream and splitting B stream across different nodes.

2.5.2 Next

Next [4] is a distributed CEP system implemented in Erlang that specifies event patterns in an
SQL-like language and detects them using finite state automaton (FSA).
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Data model

Input streams in Next are infinite sequences of events that arrive from event sources with the
same schema. An event is a pair 〈s, t〉, where s is a set of fields as defined by a schema S, and t
is a sequence of timestamps. The timestamps are discrete and include the start and end time of
an event, and for composite events also all primitive event times. There are four types of events
- instantaneous, duration, empty and failed-detection. To enable for operator associativity and
optimization, an event E1 with timestamps (ts1, ..., te1) is considered to occur before another
event E2 with timestamps (ts2, ..., te2) when te1 < ts2.

Query language

Queries in Next can be defined using a high-level SQL-like event query language, which consists
of two parts: the Stream Definition Language, which is used to define schemas of data sources,
and the Event Query Language, which is used to specify the complex event queries. The latter
has the form of:

SELECT selection FROM eventpat WHERE qualifications

Here, selection specifies the output fields of the detected event, event pattern is built by using
next, exception, union and iteration operators, and qualifications contain filtering predicates
and time constraints. Queries specified in this way are then translated into core language,
which is a set of event composition operators with well-defined semantics. The Core Language
has six operators:

• Filter (Eθ) detects all events satisfying θ predicate

• Union (E1|E2) detects occurrence of event E1, or event E2, or both

• Next (E1;E2φ,θ) detects event E2 satisfying predicate θ, which follows event E1, but
skipping any intermediate events E1 not satisfying predicate φ.

• Iteration (E+φ,θ) detects events E satisfying θ, but skipping intermediate events E not
satisfying φ

• Exception (E1 \ E2λ) detects event E1, but fails if E2 satisfying λ occurs

• Time (E@time) detects time point after specified time from occurrence of an event E

Operation

Each operator can be translated into a finite state automaton. Given a complex event query,
Next will translate all of its operators and compose them into one single FSA. The states in
the FSA correspond to partially detected events; the start state represents an empty event, and
accepting states correspond to fully detected complex events. The transitions in the FSA are
labelled with an event, a predicate, and a transformation function (e.g. aggregation function).
At any time, there will be a number of existing automaton instances detecting different event
patterns. Whenever a new event arrives that causes a transition in any of the instances, a new
automaton instance will be spawned, extending the transitioned instance. When a transition
is made into an accepting state, a complex event is output. When a failed-detection state is
reached, the automaton instance will be discarded. Instance will be also discarded if received
events do not cause any transitions.
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To distribute the detection, Next partitions the FSA across multiple nodes. Each node has
a source and a sink proxy to receive and publish events, and runs a generic event automaton
corresponding to a single event operator. For example, a node detecting A;Bφ,θ will receive
events A and B on its source proxy and publish complex event A;Bφ,θ to its sink proxy. To
detect the event A;Bφ,θ, it will spawn and discard automaton instances corresponding to the
next operator FSA.

Optimizations

Next tries to optimize for low CPU usage and low event detection latency. This is justified by
high computational demand of event pattern detection. The cost model used by Next estimates
costs of operators as a function of arrival rates and input streams’ burstiness, by considering
the worst case scenarios. Next uses the cost model to implement query rewriting techniques
that utilise operator associativity to bracket query for minimal cost execution. For example,
if in the event pattern E1; (E2;E3) event E1 occurs rarely and event E2;E3 occurs often, it
is more cost effective to rewrite this pattern to equivalent (E1;E2);E3. Union and exception
operators are optimized in a similar way.

Next also implements a cost model for optimal placement of operators on nodes, which takes
into account CPU utilisation of different nodes, as well as communication overhead. Operators
are distributed such that deployment cost is minimized. Furthermore, Next also implements
operator reuse optimization, which means that common operators across multiple queries are
deployed only once.

Conclusion

The finite state automaton that Next uses is a common technique for event detection. Since
the FSA can be arbitrarily partitioned, it is also suitable for distribution and same ideas for
parallelism as in distributed Cayuga apply. However, all operators have to be treated uniformly
and mapped into an FSA. This increases complexity and could also lower performance, since for
example next and iteration operators consist of many states. Therefore, we consider data-flow
graphs where each operator can have its own implementation more superior performance-wise.

Furthermore, the data model in Next is designed to allow query rewriting optimization. As a
result, it does not allow detection of a sequence of overlapping events, which could be a dis-
advantage for some applications. Also, complex events in Next can carry potentially a lot of
timestamps (two for each primitive event they contain), which may pose significant communi-
cation overhead on large event patterns.

Finally, the query language is much simpler than in Cayuga, but yet quite expressive and has
well-defined semantics. Because of a small number of simple operators, the language could serve
as basis for our project.

2.5.3 SASE

SASE [9, 8] is another complex event processing system, designed to cope with high rate and
variability of RFID chip readings. SASE is interesting because it introduces operators and
optimization techniques that have not been yet mentioned, and it uses both data-flow graph
and a non-deterministic finite state automaton for simple complex event detection.
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Event model and language

SASE receives infinite sequences of events on input streams, each event having a type and a set
of attributes. A received event is assumed to be timestamped by its originator. Events do not
have duration, and are assumed to be totally ordered. The SASE language has the form:

EVENT <event-pattern>

[WHERE <qualification>]

[WITHIN <window>]

The language will get translated into 5 operators, which have the following semantics:

• ANY (A1, A2, ..., An) is a union operator over multiple streams.

• SEQ(A1, A2, ..., An) detects a sequence of events (equivalent to applying Cayuga’s next
operator multiple times, but without a filtering predicate).

• SEQ WITHOUT (S1, B, S2) specifies that no event of type B can occur between two
sequences of events S1 and S2. The negative event B can also be located at the start
of a sequence or at its end, in which case the WITHIN clause should be used to bound
computation.

• SELECTION(pattern, P ) filters event pattern on predicate P , where P refers to event
attributes contained in the pattern.

• WITHIN(pattern, T ) - specifies a time window T in which pattern should be detected.

An example of an event query constructed using such operators is (from [9]):

EVENT SEQ(SHELF_READING x, !(COUNTER_READING y), EXIT_READING z)

WHERE x.TagId = y.TagId && x.TagId = z.TagId

WITHIN 12 hours

Here, SHELF READING, COUNTER READING and EXIT READING are primitive events.
The event pattern will get translated into the SEQ WITHOUT operator because it contains a
negative event, and the within clause into the WITHIN operator. One neat feature of SASE
is that events are named (e.g. SHELF READING x), which aids readability when referring to
them in filter expressions.

Operation

SASE translates each query into a query plan, which consists of a subset of five operators
connected in a pipeline. Each stage of the pipeline does some processing on events, with only
the last one detecting a complex event. Each of the stages work on their own data structure
and can be implemented differently. The query plan pipeline contains the following stages:

1. Sequence Scan and Construction (SSC). Firstly, all arrived events are processed by
the SSC stage, which detects sequences of positive events. Any negative events are left
for the the negation stage.

2. Selection. Selection stage filters detected sequences of events on predicates.

3. Windowing. At this stage, the sequences are filtered according to their duration, as
specified by within operators.

4. Negation. Here, sequences containing specified negative events are filtered out.
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5. Transformation. Finally, a complex event is output by concatenating all attributes of
events in the detected sequence.

Most of these stages are trivial, apart from SSC, which does the actual detection of event
sequences. The operation of the SSC is illustrated in Figure 2.5 and is based on an NFA. A
runtime stack is used to keep track of active states, which will grow after an event contained in
a sequence is received. Each active state instance in the stack also keeps track of predecessor
instance, from which it was constructed (in the figure this is displayed with arrows). Every time
an accepting state is reached (here state 3), sequence construction (SC) will take place. SC will
output an event sequence by scanning runtime stack backwards; it will start at the accepting
state and follow its predecessors, until a starting state is reached. Figure 2.5 displays three
event sequences detected this way for the last accepting state.
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Figure 2.5: NFA-based Sequence Scan and Construction (figure from [8])

Optimizations

Firstly, since each stage is implemented differently, SASE can apply optimizations on a stage
level. Such optimization is compressing the number of predecessor links in the SSC NFA by
using Active Instance Stack. Secondly, SASE also optimizes on pipeline level. It tries to move
selection predicates and windows down the operator pipeline to the SSC stage, to increase SSC
stage selectivity and reduce the number and length of detected sequences.

Evaluation of predicates in the SSC stage is implemented by partitioning the NFA runtime
stack on attribute values (Partitioned Active Instance Stack). Thus, SASE is able to push down
only equivalence predicates. Windows can also be pushed down and applied during sequence
construction, in which case they will limit the backward predecessor search for a sequence.
They can be also be applied during sequence scan, in which case the events that are outside of
a window will be dynamically pruned from the runtime NFA stack.

Conclusions

The SASE language is not as expressive as languages described earlier - it does not support
aggregates or detection of event sequences of arbitrary length, as it focuses mainly on RFID
applications. Also, it allows only for composition of primitive events into complex events, but
not arbitrary composition of complex events. One issue that prevents this is assumption that
events are totally ordered.

However, the language uses a concept of negated events, which are a neat way to easily express
safety conditions (i.e. that no event occurs). Secondly, even though SASE is centralised, the
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pipeline concept enables to distribute each processing stage onto a separate machine. Further-
more, selection, transformation, negation and window stages could be easily parallelised, since
they are stateless. Parallelising the SSC stage is more difficult, as it needs to see all incoming
events. To achieve this, we could replicate the SSC stage and deliver a sliding window of events
to each replica. This would be similar to partitioning of input streams in STREAM.

Finally, moving predicates and windows in a query plan is an interesting optimization, since
it definitely reduces the load on later stages of the detection pipeline. However, it also intro-
duces higher complexity and makes computation more centralised, a trade-off that has to be
considered.

2.5.4 DistCED

DistCED [10] is a complex event detection framework that works on top of JMS publish/sub-
scribe system, detecting events in a distributed environment.

Data model

Unlike SASE, events in DistCED are treated uniformly and the event model allows for composi-
tion of complex events into other complex events. Events arrive on subscriptions by underlying
publish/subscribe system and carry a pair of timestamps, thus being able to represent both in-
stantaneous and duration events. Such interval timestamp can also include clock uncertainty on
event sources, which may be significant in distributed setting when using time synchronization
protocols, such as NTP. DistCED implements two event orderings - partial and total. Events
are partially ordered by a single timestamp, and total order is imposed by taking both event
timestamps into account. Based on ordering, an event can follow another event weakly (partial
order) or strongly (total order). Different orderings are implemented by different operators.

Query language

The event queries in DistCED are specified by composition of seven core operators. Atoms
are able to filter out arriving primitive events according to their type. Similarly to Next,
the language also contains sequence A;B (event A strongly followed by event B), iteration
A∗ (detects any number of A events) and alternation A|B (union) operators. Additionally,
it introduces concatenation AB (event A weakly followed by event B), parallelisation A ‖
B (similar to alternation, but any order and overlapping of events is allowed), and timing
(A,B)time (detection of an event pattern within a time interval) operators. The language is
rich in considering different variation of a single operator. However, the operators are not
parametrized with predicates, or aggregation and transformation functions, which makes them
less powerful. In this paradigm, incoming events could be filtered on predicates using the
underlying publish-subscribe system.

Operation and optimizations

The event patterns in DistCED are split into sub-patterns, which are detected using a Composite
Event Detector (CED). Each CED can be deployed on a separate node, thus distributing event
detection. Since all operators are at most binary, CED consumes events from at most two
subscriptions and can publish one detected composite event. The smallest unit of distribution
is an operator, which is implemented using a standard finite state automaton. For each state,
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the automaton processes only the events associated with the state’s input domain Σ. The
automaton will transition from state s0 to state s1 when an event corresponding to the transition
is received. Composite event is published when the automaton reaches an accepting state. An
example automaton for sequence A;B is shown in Figure 2.6.

Figure 2.6: DistCED FSA for sequence A;B. s0 is initial state, A;B is accepting state. Σ are
alphabets associated with each state.

In distributing event detection, it is important to consider optimal distribution of CEDs across
network. Optimality here means finding a balance between low bandwidth usage and low
latency. Composite event detectors in DistCED are mobile, and can migrate to a different
location depending on what is optimal. Secondly, already deployed CEDs could be reused to
minimize network bandwidth. However, the reuse of CEDs might not be ideal when trying to
achieve low latency, in which case replication is better. DistCED specifies the behaviour of a
mobile detector using distribution policies. These define the locations of detectors, the degree
of their decomposition and the reuse of CEDs. It would be interesting to replace the policy with
a cost model, which takes into account the available network bandwidth, deployment costs and
event arrival rates.

2.6 Stream processing frameworks

To implement a distributed complex event detection system that works over streams, we use the
Storm stream processing framework. This section describes the Storm framework, the reasons
for choosing it, and other similar frameworks that also enable distributed applications to be
made out of arbitrarily composed stream processing elements.

2.6.1 Storm

Storm [33] is a distributed real-time stream processing platform that can be used to assemble
and execute stream processing elements. The applications that run on top of Storm cluster are
called topologies.

Storm topologies

A topology in Storm is a data flow graph of computation, which consists of elements called Bolts
and Spouts, connected together with streams. Streams are unbounded sequences of tuples, and
a tuple is a list of values of any type. The sources of streams are Spouts, which read data
from an external source, for example stock exchange, sensors or program logs. The streams
are consumed by Bolts, which do some processing and possibly emit new streams that can
be consumed by further Bolts. The processing done at Bolt can be anything, from filtering or
aggregation, to saving tuples to a database. An example of a topology can be seen in Figure 2.7.

Topology can be seen as a blueprint for a runtime computation graph. At runtime, each
component of a topology will run within a number of tasks, which are specified by a parallelism
of that component. Every task for the same component executes the same blueprint code, but
is a different instance and runs in a separate thread of execution. A task receives a tuple on its
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Figure 2.7: An example of a Storm topology.

input queue, processes it and may emit new tuples to its output streams. Streams are divided
between multiple tasks depending on specified stream grouping. Available stream groupings
include shuffling stream in round robin fashion, replicating stream to all tasks, or shuffling
stream depending on tuple attributes. An illustration of component tasks communicating over
streams can be seen in Figure 2.8.

Figure 2.8: Each topology component runs in multiple tasks. The tasks exchange tuples on
streams. A stream grouping specifies which tuple is delivered to which task.

To sum up, topology is a computation graph, where one specifies Bolt and Spout components,
the stream connections between them with stream groupings, and parallelism for each com-
ponent. A Storm cluster can run multiple topologies at the same time. From the time it is
submitted, a topology will run forever, or until it is killed.

A submitted topology is run on a cluster by specified number of worker processes. Every worker
runs an equal share of topology tasks (as seen in Figure 2.9) and the number of workers or tasks
cannot change during topology run. Each Bolt task receives tuples from an input queue and can
emit tuples to other Bolt tasks. Spout tasks only emit tuples. This interaction is implemented
using an open-source messaging middleware, ZeroMQ [35]. ZeroMQ is a native transport layer
implementation of asynchronous messaging, supporting publish/subscribe, request/reply, N to
N and pipeline communication. Storm uses ZeroMQ through native Java binding library JZQM.

Components of a Storm cluster

A Storm cluster consists of three components: a distinguished Nimbus node, a number of
Supervisor nodes, and a number of Zookeeper nodes, as illustrated in Figure 2.10.

The Nimbus node runs a daemon, which is responsible for receiving submitted topologies,
distributing their code around the cluster, assigning topology tasks to workers, and monitoring
for failures. Every Supervisor node runs a daemon, which stops and starts worker processes
at its node. The maximum number of worker processes is configurable per node, and workers
are spawned only after a topology is submitted (a topology specifies how many workers it
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Figure 2.9: Storm topology (count in brackets means parallelism) and its organization at run-
time, when two physical nodes run two workers each. A total number of 6 tasks is divided
between the workers.

Figure 2.10: Storm cluster consists of nimbus, zookeeper and supervisor nodes.

requires). The spawned workers will be exclusively reserved for running only tasks of the
submitted topology, which do the actual stream computation.

Apart from Nimbus and Supervisors, a Storm cluster needs to run a number of Zookeeper
servers. Zookeeper [36] is an open source centralized coordination service, which maintains
configurations, naming and synchronization across distributed processes. Since Nimbus and
Supervisors are stateless and fail-fast, Storm keeps their configuration and state in a Zookeeper
cluster. In addition to Zookeepers, a fourth component, Storm UI can be run, which is a
graphical web frontend for basic monitoring of topologies.

Other features of Storm

One feature of Storm is high resiliency through usage of reliability API. If Nimbus, Supervisors,
or Workers are restarted at any time, Storm will continue to correctly execute topologies without
loosing any tuples. Furthermore, Storm implements guaranteed tuple processing by keeping
track of all tuples in the topology by special acknowledger tasks and resending undelivered
tuples.

Although Storm is written in Clojure and runs on JVM, its topologies can be implemented in
any language (though most supported are Java, Python and Ruby). This is because components
in Storm are implemented as services in the Thrift framework. Thrift [37] is a framework for
cross-language services development, where user defines a service interface, from which client
and server implementation stubs can be generated. Using the Thrift interface, users can write
applications that interact with Nimbus and Supervisors. We use this capability to connect to
the UI service and hence are able to monitor topology performance.
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Conclusion

The Storm programming model enables developers to specify application logic without the need
to care about component distribution, their communication and the underlying network. This
makes it very simple to write topologies and enables developers to focus on the application logic.
However, even for simple topologies, it still requires a lot of code to be written, and there are
many caveats to watch for. It is also worth noting that the Storm programming abstractions
map closely to the complex event processing: the tuples in Storm can be thought of as events,
Spouts can represent event sources and input adapters, and Bolts can represent complex query
operators that filter, aggregate and join events.

A big disadvantage of Storm is that it does not support migration of tasks across machines
to improve utilisation of resources. Once a topology is submitted, a task will be fixed to one
worker (i.e. one machine) until a manual rebalance command is issued. However, rebalance
command just reassigns workers in a round-robin fashion, not taking into account resource use
at each node. Another disadvantage of Storm is that as a relatively young framework, it still
changes a lot, and its community is relatively small2.

2.6.2 InfoSphere Streams

InfoSphere Streams (also known as System S) [16, 17] is a commercial large-scale distributed
data stream processing middleware developed at IBM Research. Similarly to Storm, user can
define data flow graphs that consist of a set of processing elements connected together with data
streams. The processing elements implement data operations and their connection is specified
in a configuration file as pairs of input/output ports. However, System S does not have the
capability to parallelise processing elements and does not implement stream groupings, all of
which would have to be done manually.

The data flow graphs in InfoSphere can be specified in three ways: using Java or C++ generic
API, using SQL-like query language called SPADE [17], or by simply selecting from a number
of predefined domain-specific enquiries. SPADE can be used to detect complex events by com-
bining many available operators, such as aggregation, join and functors. Queries specified in
SPADE, as well as predefined enquiries will be first compiled into data-flow graphs and then
deployed. As a result, the system can be considered to be both a DSMS (because of SPADE)
and a general stream processing framework (because of generic processing API). Its disadvan-
tage is that it is more heavyweight than Storm, lacks parallelism of processing units, and most
importantly is not open source.

2.6.3 S4

S4 [18, 19] is a free stream processing platform developed at Yahoo and is considered the
predecessor of Storm and InfoSphere systems. Stream applications in S4 are graphs of connected
processing elements (PEs), each consuming input from a queue, processing it and possibly
sending it to another PE. As in Storm, this graph specifies only the logical computation, and
runtime organization is determined by the platform. The events in S4 arrive on named streams
and contain a key and attributes. Each PE processes only events from one stream with one
specified key. As a result, the S4 runtime will create one PE for each possible combination of
stream/event key pairs. The PEs will be then equally distributed across available machines and
events with the same key will be routed to the same PE for processing.

2However, recently there are many ongoing related projects - e.g connecting Storm to Kestrel, RabbitMQ or
using it together with Hadoop.
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S4 is less powerful than Storm, since it does not support guaranteed message processing, and
computation graphs are inconveniently specified in Spring XML files, which have to be submitted
manually (in Storm topologies are submitted programmatically). Also, S4 supports routing
events only on keys, which is implemented in Storm through field groupings.

2.7 Cloud platforms for evaluation

Once developed, it is necessary to test and evaluate a CEP system in a target cloud environment.
In this section we describe Emulab and Amazon EC2 clouds as candidates for the system’s
evaluation.

2.7.1 Emulab

Emulab [39] is a free network testbed in University of Utah containing around 500 PC nodes.
The available hardware is very variable, ranging from computers with 2.4GHz Quad Core Xeon
to older Pentium III processors. Emulab is a public facility that allows researchers to run
networking and distributed systems experiments typically on a scale of tens of nodes. The
experiment sizes are usually limited to the availability of nodes, shared across many research
groups. When creating an experiment, users specify a set of machines with required OS images
and a network topology between them. Custom OS images can be created, though they will
be visible and available to other users. The nodes in Emulab cluster run emulation software,
which can throttle system resources as required by an experiment (e.g. it can emulate link
loss rate and network bandwidth). Once experiment is swapped in (nodes are allocated), users
can use SSH to interact with each physical machine. Also, there is no graphical interface
for monitoring resource use. The disadvantage of Emulab is a big demand for high-end PCs,
sometimes resulting in a relatively small experiment not being able to swap in, and common
downtimes3.

2.7.2 Amazon EC2

Amazon EC2 [38] is a paid service that provides resizable compute capacity in the cloud. When
using EC2, a user configures an image and chooses an instance type depending on required
number of computational units, memory and storage size. The service is charged accordingly.
EC2 can automatically scale an instance depending on resource utilisation and also provides
a resource monitoring service (Amazon CloudWatch). The advantage of EC2 is its reliability
(guaranteed 99.95% uptime) and availability. The disadvantage of EC2 is that it provides fully
virtual environment for users - users receive virtual CPU cores and not a whole physical PC,
as it is in Emulab. Also, as compared to Emulab, users cannot specify and emulate network
bandwidth, topology and packet loss.

2.8 Conclusions

In this chapter we introduced many systems that implement some form of complex event de-
tection: High throughput publish/subscribe systems enable for event selection and filtering.
Active databases can handle a small number of very expressive event queries, but work mainly

3In short time we encountered more of these than expected - nodes not being able to boot, nodes do not react
to SSH, there are power outages and most commonly, the web interface is down
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on historical data. Distributed stream management systems provide a generic method to work
with streams, support many expressive queries and also are equipped to process complex events.
Expressing these with generic languages could however be cumbersome. Finally, dedicated CEP
systems are optimized for high throughput and a large number of queries, and have languages
tailored for this task. All of these systems implement different data models, detection strategies
and optimizations.

The data model of events is usually based around a fixed schema, specifying the count and type of
event attributes. The events also carry timestamps and sometimes keys that uniquely represent
them (e.g. in Borealis). Some systems timestamp events upon arrival (e.g. active databases),
while others assume arriving events to be timestamped by event sources (e.g. dedicated CEP
systems). Some implementations only support instantaneous events with one timestamp (e.g.
SASE), some can cater for duration events by including two timestamps (e.g. DistCED), and
others include even more timestamps (e.g. Next).

Techniques for event detection vary greatly. These include finite state automaton (e.g. in
Cayuga and Next), Petri nets (e.g. in SAMOS), detection graphs (e.g. in SNOOP), and data-
flow graphs (e.g. boxes and arrows in Borealis or pipelines in SASE). Some systems are also
able to distribute event detection across many nodes. This can be done on a query level (e.g. in
Cayuga), operator level (e.g. in Next and DistCED), or a combination of the two (e.g. Borealis).
Distribution techniques depend on how the underlying detection model can be partitioned into
independent parts. Parallelism is implemented by distributed Cayuga, and also in a limited
form by DistCED.

Some optimizations introduced in presented CEP systems can be applied in general: pushing
window and predicates up or down in a query tree, reusing already deployed operators, moving
operators to different nodes depending on utilization, rewriting queries into a more efficient
form, and combining, distributing or reordering operators. Furthermore, some systems use cost
models for optimization (e.g. Borealis and Next) and also develop important approximation
techniques, such as load shedding.

Finally, we have looked at available frameworks that could be used to build a CEP application
and also cloud environments to evaluate it on. Here, due to its advantages we have chosen to use
the Storm stream processing framework and the Emulab cloud. Note, that we only presented
a small fraction of all the available CEP systems. In particular, there are other commercially
available solutions. Out of these, the most known are Coral8, StreamBase, Oracle CEP, Sybase
CEP or Esper (free). A list of many others, whether ECA-based or rule-based engines can be
found in [30].
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The Step event query language

In this chapter we will describe the Step (STorm complex Event Processing) query language for
specifying complex event patterns. We will explain the its goals and motivation, then specify its
event and temporal models, and finally describe syntax and semantics of individual operators.
We will finish with a brief discussion on design choices and possible extensions.

3.1 Goals and motivation

Our goal was to develop an efficient, scalable and fast system for complex event detection. Many
CEP system implementations exist, each applicable to different scenarios. Some process only
historical data (active database), some process only streaming data (dedicated CEP systems)
and others are combinations of both (data stream management systems). We discovered that in
general the more expressive a system, the slower and less scalable it is. In the extremes, advanced
messaging middleware is the fastest system for filtering of events, whereas expressive data stream
management systems are much slower. Some solutions (e.g. dedicated CEP systems) design
their event detection languages to enable query optimizations and query distribution. As such,
they sacrifice some expressiveness for higher throughput (e.g. Cayuga and Next) or better
operator placement near the event sources (DistCED).

Ideally, an event detection language should be expressible with regards to many scenarios, be
simple enough to use, and be structured in a way that enables easy implementation, optimiza-
tion, distribution and detection of events in parallel. It should be noted that all of the required
attributes are not achievable and that the design of a query language is a difficult process of
finding a balance between them. For example, expressibility does not favour distribution and
parallelism. Also, design for convenient usage often results in a language, of which syntax
does not resemble the runtime structure of event queries, leading to complicated compilers and
optimization techniques.

We wanted to explore complex event detection in environments where there is abundance of
computational resources (e.g. cluster environments), and very high event throughput is required.
We did not necessarily aim for being able to process high number of event queries (e.g. Cayuga
is optimized for this), since, given enough queries, we can always saturate available resources.
Our focus was rather on how single queries can be distributed and parallelised, thus enabling
extreme throughput and scalability to all of the available hardware. As such, the design goals
of the Step event detection language were:

• Good expressiveness with regards to a fixed set of scenarios. We did not attempt to create
a language applicable to all complex event detection scenarios, but rather implemented a
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small number of expressive operators, which can be used with regards to some scenarios.

• Rigid structure. We wanted to design the language to be well structured with respect to its
runtime query representation. As a result, the implementation of its compiler, parallelism
and optimization techniques would be simpler.

• Ability to distribute and parallelise event detection. We aimed for operator semantics that
allows for detection of events in parallel.

The expressiveness of semantics was chosen according to two CEP-applicable domains: mo-
bile/financial fraud detection and financial stock monitoring. Both of these scenarios exhibit
characteristics of CEP systems. They deal with continuous real time data and require fast event
detection due to high input event rates. These domains require the inferring of high-level event
knowledge in a form of event patterns. Also, the input events show strong temporal relation-
ships (e.g. the order of financial transactions made). In general, scenarios of fraud detection,
network intrusion detection, and monitoring in their various forms are common applications
of CEP systems. They are often discussed at CEP blogs (e.g. [14]) and various commercial
systems include these scenarios in their sample use cases (e.g. use cases of StreamBase in [27]).

The most common type of mobile fraud is cloning. The attacker steals identity of user’s phone
and programs his device to identify itself as the user. As a result any expensive calls made
by the attacker are billed to the victim. Companies try to deal with these frauds by usage
profiling (keeping history of calls for a user and spotting deviations), by detection of duplicate
calls (multiple calls from the same number at the same time), or by velocity traps (calls from
the same number within short time but very different locations). Other detection techniques
and types of mobile frauds are explained in [31]. Credit cards and financial transactions are
also subject to cloning and identity thefts, and are detected by similar tools. Here, attackers
often follow the same patterns, specifiable in a form of rules. For example, when attacker clones
a card, he will make a number of small online transactions to test it, followed by one or two
big amount transactions, possibly in different currencies. If such pattern is spotted, user will
be required to confirm these, for example by a text message. Examples of credit card fraud and
its detection can be found in [32].

In general, detection of fraud happens using different tools at once. For example, usage profiling
is often done by using neural networks and other kinds of machine learning systems, whereas
spotting patterns of particular attacker behaviour is done by CEP systems. In these scenar-
ios, the CEP systems are usually required to detect sequences or overlapping of events within
some time constraints and satisfaction of some predicates. On the other hand, financial stock
monitoring requires specification of trends (for example that the stock was rising for the last
hour), and filtering on long-run statistics. We will now describe the design of our language for
the detection of some of these patterns.

3.2 Event and temporal model

Events in Step are triples 〈p, t0, t1〉 that continuously arrive from external sources at some
specified mean event arrival rates. Throughout the report we refer to these events as to ex-
ternal or primitive events. Here p corresponds to event’s payload, which contains values that
correspond to event’s attributes, as specified in an event schema. The values are populated
by an input source (e.g. by stock market or messaging system adapters), and their types and
order of occurrence must be the same as declared in the event schema. For efficiency and low
communication overhead, the payload does not carry attribute names or their types. As we will
see later, these can be effectively inferred.
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Apart from the payload, each event carries a pair of timestamps t0 and t1 that are populated
by event’s originator. These are arbitrary integer values representing respectively the start
timestamp and the end timestamp of the event, where timestamps follow logical time (i.e. they
do not need to correspond to system time). We require that start timestamp is smaller or
equal to the end timestamp, i.e. t0 ≤ t1. The pair of timestamps allows us to handle not
only instantaneous events (when t0 = t1), but also duration events (when t0 < t1). This
approach is very similar to Cayuga or DistCED solutions. When we compare this to systems
with only one timestamp, this allows for better expressibility and more interesting operator
semantics. However, it does not incur high overhead, as compared to systems that include
multiple timestamps (e.g. Next CEP).

Furthermore, we require all events on the same input stream to be ordered by their end times-
tamps. Once an event was received with timestamp t, only events with timestamps t′, such that
t′ ≥ t, can be received on the same stream. The start timestamp of an event can be arbitrary
even in the cases when end timestamps are equal. We can afford these semantics since the
key algorithms proceed only if the end timestamps are strictly bigger. The choice of ordering
input events on end timestamp, instead of start timestamp was not arbitrary. When using end
timestamps, operators detecting sequences of events can be optimized for faster detection, but
require more memory to store pending events. When using start timestamps, the detection
at these operators takes much longer, but we can be more efficient at event garbage collection
that cannot be matched any more. We have decided to use end timestamps, since we require
high-throughput and memory is usually available.

Since events include two timestamps, some care has to be taken when defining their ordering.
That is, answering the question “What does it mean for an event to occur after another event?”.
To specify the semantics of various operators, we need to make this clear. First, let us specify
the set of all possible external events as:

E = {〈p, t0, t1〉 | p is a valid payload ∧ t0, t1 ∈ N ∧ t0 ≤ t1}

Then we can define an ordering on events ≺ as a tuple (E, <), where < is the usual ordering
on natural numbers and:

∀e, e′ ∈ E. e ≺ e′ ⇔ t1 < t′0, where e = 〈p, t0, t1〉 and e′ = 〈p′, t′0, t′1〉

This means that an event e precedes another event e′ only if the end timestamp of e is smaller
than the start timestamp of e′. This is a partial ordering since overlapping events or events with
the same end timestamp are incomparable. Take an example from Figure 3.1. Here E1 ≺ E3
and also E2 ≺ E3, but E1 ⊀ E2 and E2 ⊀ E1.

Figure 3.1: Illustration of interval timestamps for events.

Some operators in the Step language receive input from multiple streams and output a complex
event, which contains values from all composed events. To be able to specify what is the result
of these operators, we define the notion of event composition. A composition t of two events
ex = 〈px, tx0 , tx1〉 and ey = 〈py, ty0, t

y
1〉 is an event exy = 〈pxy, txy0 , t

xy
1 〉, such that:

txy0 = min(tx0 , t
y
0) ∧ txy1 = max(tx1 , t

y
1) ∧ pxy = [px, py]
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Here [px, py] is a composite payload, which contains both payloads from composed events. Also
we will use the following shorthand:

e1 t e2 t e3 t ...en ≡ (...((e1 t e2) t e3) t ...en)

3.3 High-level event pattern language

The first step in specifying an event query is to create a file containing a sequence of declarations.
We will call this file a Step program. The program has to start with a declaration of its unique
name, also referred to as the topology name, and contains two sections - event schema definitions
and event query definitions. The former specifies the schemas of events that continuously arrive
on streams from source adapters and the latter describes the complex event queries that should
be run against continuous streams of input events. An example of the simplest Step program
is shown here:

topology "Stock Quote Filter"

external Stock(name: string, price: int) < "SourceAdapter" [25000.0]

Filter(S.name, S.price): Stock/S[S.name = ’MSFT’ && S.price > 100] > "OutputAdapter"

This program is known under the unique name “Stock Quote Filter” and outputs all stock
quotes of Microsoft that have value above 100. On the second line we see a schema definition
of an input stream called “Stock”. The events that arrive on this stream are provided by the
“SourceAdapter” and carry a name value of type string and a price value of type integer. Also,
we see that the mean event arrival rate for this stream is 25,000 events per second. The last line
of the example contains an event query called “Filter”. The query outputs the event attributes
S.name and S.price into “OutputAdapter”, which is a component that collects detected complex
events. The event pattern renames the Stock stream to S, and the filter specified in square
brackets filters out events with name “MSFT” and price above 100.

The first thing to notice is that we do not use an SQL-like syntax. Our first implemented
prototype featured an SQL-like language, however it proved itself to be very verbose. We wrote
a large amount of event queries for the purpose of acceptance testing, which would be too
tedious with an SQL-like syntax. Instead, our intention in the final implementation was to have
a very concise language, where simple queries fit into one line. It should also be noted that the
structure of the query does not resemble common select - from - where paradigm, but rather
omits the where clause and is similar to the select - from - publish style used by Cayuga. In
fact, since Cayuga had a very well structured queries that were easy to compile into abstract
concepts, its syntax was the main source of inspiration for the Step language.

3.3.1 Event schema definitions

Event schemas are specified prior to execution and stay fixed during the complex event detec-
tion. The main reason for this restriction is that we later perform optimizations depending on
attribute ordering within an event. Each input source has exactly one event schema, which
declares the types and names of event attributes, as well as their unique name. We refer to
event schemas also as input stream schemas, as they fully describe the system input streams.
The syntax for event schemas is following:

external Event-Name(Attr1 : TYP, Attr2 : TYP, ...) < "Adapter-Class(params)" [EventRate]
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The external keyword is used to indicate that events come from an external event source and
thus are primitive. Event-Name identifies an input stream and the attribute values carried by an
input event are specified in round braces. This is a list of attribute - type pairs, corresponding
in the order of the values that an event will carry. The attributes can be of type string,
integer, boolean and real. Additionally, the event schema specifies an input adapter, which
is a component implementing an interface for event retrieval from input streams (the ’<’ and
later ’>’ notations were adopted from Unix pipes). The input adapter can also take parameters,
which are provided to it at its initialization. Finally, an event schema also contains an estimated
input event rate, which is the mean number of events that are estimated to arrive to the CEP
system in a time window.

The event rate must be specified in events per second and is a real number. Since event times-
tamps and query time constraints are arbitrary numbers, the rates could theoretically be in
arbitrary units. In practice, however, a specific time window is required to correctly implement
event throttling and stream flushing (described in implementation chapter). Furthermore, the
ideal implementation would infer the event rates at runtime by counting incoming events. How-
ever, since Storm framework does not allow for dynamic topology changes and thus parallelism
changes, this is not possible and we have to determine most of the topology properties at compile
time.

An interesting question is whether each adapter should be used only once in the event schema
definitions. Using two streams from the same adapter under different names has only the effect
of renaming them, but this can also be accomplished with the renaming operator. As such, we
require one to one correspondence between streams and input adapters.

3.3.2 Event query definitions

After event schemas are defined, an arbitrary number of event queries can follow. The general
syntax for an event query is:

Complex-Event-Name( Projection ): Event-Pattern > "Event-Sink-Adapter(params)"

This syntax follows the select - from - publish paradigm of Cayuga. The complex event query
needs to specify a unique identifier for the event, a projection pattern (the select part), an
event pattern of interest (the from part) and a sink adapter for receiving of detected events (the
publish part).

The sink adapter is specified by its class name, should be located in a specific directory, and can
be parameterized. This introduces more flexibility and allows different queries to use the same
sink adapter class, but instantiated differently. We do not require one to one correspondence
between a complex query and an event sink adapter.

The projection pattern describes the set of fields that should be output upon detection of a
complex event, and is implemented by a projection operator.

The event pattern specifies a complex event, which the user is interested in detecting. The pat-
tern consists of external operators composed with event detection operators. External operators
are the basic building blocks of event patterns, and can be seen as streams on which external
events arrive.

Apart from projection and external operators, the Step language contains five additional event
detection operators: union, next, conjunction, exception and iteration. Each operator takes in-
put events from one or multiple input streams and outputs some detected events on its output
stream. A detected event can be either one of the input events, or their composition. Union,
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next, conjunction and exception operators are binary, and iteration is a unary operator. The
syntax of the event patterns formed by operators is best described using a BNF grammar form
(the complete grammar for Step can be found in Appendix B):

pattern ::= union | conjunction | next | iteration
| exception | external

union ::= pattern | pattern
conjunction ::= pattern , [expr]? pattern
next ::= pattern (; | ;?) [expr]? pattern
iteration ::= pattern (+ | +?) [expr]? pattern
exception ::= !pattern ; pattern |

pattern ; !pattern ; pattern
external ::= event schema ref (/ alias)? [expr]?

As we can see, pattern can be composed from external operators by using characters ‘|’, ‘,’,
‘;’, ‘;?’, ‘+’, ‘+?’, and ‘!’. An external operator contains a reference to an event schema, and
provides input events for this schema. It also may be aliased or renamed by the ‘/’ operator.
Some of the event detection operators may also be annotated with an expression, which further
specifies its semantics. The left-factored BNF grammar for expressions is shown below:

expr ::= comparison ((|| | &&) expr)?
comparison ::= arithmetic (Opc comparison)?
arithmetic ::= basic (Opa arithmetic)?
basic ::= field ref | prev(field ref) | dur Opc Int | len Opc Int

| !basic | −basic | Int | Float | String | true | false
field ref ::= external ref . field name
Opc ::= ! = | contains | = | <= | >= | < | >
Opa ::= + | − | ∗ | /

In short, this is a standard expression grammar as seen in most programming languages, but
enriched with extra constructs. Top-level expressions are built from comparisons by using
logical operators && (and) and || (or). A comparison is built from arithmetic expressions using
standard comparison operators: ‘! =’, ‘=’, ‘<=’, ‘>=’, ‘<’, ‘>’. We have added an extra
operator ’contains’ for checking if a string is contained within another string (e.g. S.name
contains ’MSFT’). Arithmetic expressions are built from basic expressions using arithmetic
operations ‘+’, ‘-’, ‘*’ and ‘/’. A basic expression is any number, string or boolean, as well as
boolean negation (!) and unary integer negation (-).

Basic expressions can contain additional constructs that are specific to the Step language. First
of these are field references, which retrieve value of a particular field from an event. Other
constructs are specific to individual operators, which are previous event field selection (prev),
event duration specification (dur), and maximum or minimum iteration length specification
(len). We will explain these shortly on individual operator semantics. The following example
demonstrates how field referencing works:

external Stock(name: string, price: int) < "SourceAapter" [25000.0]

// S1.name and S2.name are field references

Example(*): Stock/S1 ;[S1.name = S2.name] Stock/S2 > "OutputAdapter"

This example detects a stock quote followed by another quote from the same stream and with the
same name. Here, Stock/S1 and Stock/S2 are external operators that provide external events
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from the Stock input stream. In order to disambiguate between the two operators we have to
rename them to S1 and S2 respectively. Now it is clear that using the field references S1.name
and S2.name we access field name of events from S1 stream and S2 stream respectively.

External operator

The syntax of external operator is following:

InputStreamSchema (/ alias)? [expr]?

External operators are the sources of primitive events. The inputs of the operator are primitive
events that arrive from input adapters, as declared in corresponding InputStreamSchema. The
operator may rename the events using the ‘/’ operator, or filter them on associated predicate
expr. Only primitive events satisfying the predicate are output. Renaming and filtering is
illustrated in the following event queries:

Renaming(S.name): Stock/S > "OutputAdapter"

Filtering(Stock.price): Stock[Stock.name = ’MSFT’] > "OutputAdapter"

The first query renames Stock events to S events. The second query shows how events are filtered
on a predicate - in this case only events with attribute name equal to ‘MSFT’ are detected. The
external operators in the example are Stock/S and Stock[Stock.name =′ MSFT ′] respectively.

Projection operator

The syntax of the projection operator is:

QueryName(E1.field1, E2.field2, ...) or QueryName(∗)

The operator is used to select a set of fields from an event and report them to the associated
output adapter. There are two types of projection:

• All projection (QueryName(∗)) outputs the values of all fields of all payloads that a com-
plex event contains. These are the values of individual external events that the detected
complex event contains.

• Field projection (QueryName(E1.field1, E2.field2, ...)) specifies in brackets an exact set
of fields that should be output to an event sink. The selection of fields has the same
syntax as field referencing, i.e. external ref.field ref .

Union operator

Syntax of this operator is:
P1 | P2

The union operator detects the event pattern P1 or the event pattern P2. I.e., it outputs
all events detected by at least one of these event patterns. This can be seen as the merging of
output streams of operators detecting P1 and P2 patterns, where the resulting events are output
in increasing order of their end timestamps. The operator is also commutative, i.e. P1 | P2 is
equivalent to P2 | P1

Consider the scenario shown in Figure 3.2. The query S1 | S2 will output events b, c and the
query S1 | S3 will output events a, b, d, e (assuming a is received on input stream before b).
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Figure 3.2: A scenario of five event arrivals from three different streams.

Next operator

The syntax of the next operator is:

P1 ; [expr] P2 or P1 ;? [expr] P2

The operator detects an event e1 of the pattern P1 followed by an event e2 of the pattern P2,
such that e1 ≺ e2 and predicate expr is satisfied. A detected event is a composition e1 t e2
of both events. Depending on different selection policies, we define two different types of next
operator:

• Greedy next (P1 ; [expr] P2) implements single selection policy, which specifies that for
each event of the pattern P1 at most one event of the pattern P2 can be matched, and
hence at most one complex event output. In other words, the operator will detect the first
event e2 of P2 that occurred after event e1 of P1 such that predicate expr was satisfied.
Similar semantics are implemented by Cayuga and Next CEP.

• Any next (P1 ;? [expr] P2) implements multiple selection policy, which specifies that for
each event e1 of pattern P1, infinitely many events e2 of pattern P2 can be matched, as
long as expr predicate is satisfied and e2 occurred after e1. This means that for each event
e1 multiple complex events can be output. These semantics are for example implemented
by detection language TESLA [28], which also includes both versions of next operator.

The difference between the two types of next operators is best understood through examples.
Consider Figure 3.2, queries S1;S3 and S1;? S3. Both events d and e occur after the event b.
The any next query will output both complex events b t d and b t e, whereas the greedy next
will only output the event b t d.

The different semantics are applicable to different scenarios. Consider a scenario where we are
interested in detecting a sequence of transactions, in which the first transaction is for a small
amount and the second is for a large amount. For a transaction stream T we can define the
patterns:

T/T1 ; [T1.amount < 50 && T2.amount ≥ 50] T/T2

T/T1 ;? [T1.amount < 50 && T2.amount ≥ 50] T/T2

The first pattern can be used to detect the first fraudulent transaction per stream, whereas the
second pattern can detect all the fraudulent transactions.

The predicate of the next operator can refer to fields of any events from pattern P1 or P2, and
can contain a duration predicate. The duration predicate can be used to limit the duration of
a detected complex event. For event e = 〈p, t0, t1〉 the duration is calculated as t1 − t0. This
allows us to detect events with some minimum duration, and bound detection for events up to
some maximum duration. For example the query:

S1 ; [S1.name = S2.name && dur > 10 && dur < 100] S2



3 The Step event query language 42

will detect an event from stream S1 followed by event from S2, such that both events have the
same value for field name and the duration for the detected event is between 10 and 100 time
units.

Conjunction operator

The syntax for conjunction operator is:

P1 , [expr] P2

The operator detects an event e1 of the pattern P1 that occurs at the same time as event e2 of
the pattern P2 while predicate expr is satisfied. The output complex event is the composition
e1 t e2. An event e1 occurs at the same time as event e2 only if the events overlap, that is:

e1 = 〈p1, t10, t11〉 overlaps e2 = 〈p2, t20, t21〉 iff t10 ≤ t21 ∧ t11 ≥ t20

Consider the events from Figure 3.2. The query S1, S2 will detect the complex event b t c
whereas the query S2, S3 will output the event c t a. A more complex query S1, S2, S3 would
first detect the conjunction of S1, S2 and then conjunct the result with events from S3, thus
detecting event b t c t a.

The condition of conjunction operator can refer to fields of any event from patterns P1 or P2, and
can also contain the duration predicate. Similarly to the next operator, the duration predicate
specifies the bounds on duration of a detected complex event. For example the query:

Call/C1 , [C1.number = C2.number && dur < 100] Call/C2

could detect two calls from the same number at the same time, given that their complete
duration shorter than 100 time units.

Iteration operator

The syntax of iteration operator is:

P + [expr] or P +? [expr]

The operator detects one or more consecutive events of pattern P in ≺ ordering, satisfying
the predicate expr. The operator is similar to Kleene Plus operator for regular expressions
and is very expressive when correlating long sequences of events. It should be noted that for
efficiency reasons iteration operator does not emit the whole detected sequence of events, but
simply the first and last events (Cayuga uses this approach as well). We argue that usually only
these events are of interest: for example in detecting an increasing stock price sequence, only
the smallest and highest price are important (length of the sequence can be computed from
timestamps).

Similarly to the semantics of next, Step also implements two variations of the iteration operator:

• Any iteration can be used to detect any sub-sequence of consecutive events satisfying
predicate expr. These semantics correspond to the semantics of Kleene Plus operator
or the iteration operator in Next CEP. Although any iteration results in many detected
complex events, the iteration sub-sequences are detected independently, thus enabling
distribution and parallelism.
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• Greedy iteration can be used to detect the longest sub-sequence of consecutive events
satisfying some predicate. In other words, the greedy iteration will detect the longest
sequence of events from e1 to en such that e1 ≺ e2 ≺ ...en, where en is the last event
satisfying the iteration predicate. Once the longest sequence is output, the matching is
restarted at event en+1. Greedy iteration cannot be easily distributed, since the longest
sequence would have to be known at all times by all nodes.

The difference between these operators is best understood by examining Figure 3.3. The query
S3+[len < 4] will detect only the sequence a, b, c and hence output the event atc. It should be
noted that the event will not be detected until the predicate evaluates to false (i.e. when event
d arrives). After the complex event is detected, new matching will be started, at this point
containing only the sequence d, e. On the other hand, the query S3 +? [len < 3] will detect all
sub-sequences of events up to the length of 3, i.e. events a, b, c, d, e, a t b, a t c, a t d, a t e,
b t c, b t d, b t e, c t d, c t e, d t e.

Figure 3.3: A scenario of five event arrivals from stream S3. d and e are instantaneous events.

The iteration predicate can be built from the same constructs as conjunction and next predi-
cates, with addition of two special operators:

• len can be used to specify the minimum and maximum length of iteration sequence, which
is output. For example the query S+? [len > 2 && len <= 3] will output all sub-sequences
from stream S of length 3. This is not equivalent to S + [len > 2 && len <= 3], which
outputs one sequence of length 3 at a time.

• prev(field ref) can be used to access a field of a previous event in the iteration sequence.
This is very useful for specifying properties that must hold between two consecutive events.
Because of this operator, the predicate for the first event in the iteration sequence always
evaluates to true 1.

Note that the behaviour of dur predicate is different from the next and conjunction cases and
cannot be used to limit iteration sequence, but rather refers to durations of individual events
in the sequence. This decision was made for implementation simplicity and can be changed if
required.

For example to detect the longest stock rises (price going up) which are at least 10 quotes long
for the Microsoft company we could use the query:

Stock/S[S.name =′ MSFT ′] + [prev(S.price) <= S.price && len >= 10]

Here, we first filter out all stock quotes with name ‘MSFT’ and then detect their longest price-
increasing sequences. The iteration is not bounded by length and it might lead to infinite
sequence (e.g. if the stock price never goes down). To illustrate the use of any iteration, we
could detect all possible combinations of transactions with the same currency using the query:

Transactions/T +? [prev(T.currency) = T.currency]

1We assume that the iteration predicate is mainly used to specify constraints between two consecutive events
and will always contain previous field selection. Therefore, it is inevitable to evaluate the predicate for the first
event to true.
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Exception operator

The syntax of exception operator is very similar to SEQ WITHOUT (S1, B, S2) found in
SASE, which detects sequences of events S1;S2, but fails to detect them if an event B occurs
in between. Step allows using exception only in combination with the next sequence and comes
in two variations:

!P ; P1 or P1 ; !P ; P2

Step has two types of exception operator:

• Exception not before (P1 \b P2) detects an event pattern P1 only if an event pattern P2

did not occur earlier by the ≺ ordering. If an event of pattern P2 already occurred, no
complex event would be output.

• Exception not during (P1 \d P2) detects an event pattern P1 only if an event pattern P2

did not occur in between. We say that an event e2 = 〈p2, t20, t21〉 occurs in between an
event e1 = 〈p1, t10, t11〉 iff t10 ≤ t20 ∧ t21 ≤ t11.

It should be noted that exception is the only operator where we denote syntax differently from
its semantics. The syntax of exception is unary, whereas the semantics are binary. To be
precise, the syntax !P2 ; P1 corresponds to the semantics P1 \b P2 and the syntax P1 ; !P2 ; P3

corresponds to the semantics (P1 ; P3) \d P2. Since we find it more natural to use a unary
operator to specify a position of undesired event in an event sequence, the exception syntax is
different from the semantics. The transformation of syntactic representation into semantic will
be described in the implementation chapter.

The different semantics of exception operator can be illustrated by Figure 3.2. The query
(S3 ; S3) \d S2 will detect only the event d t e. It will fail to detect events a t d and a t e, as
event c from stream S2 occurs in between. Similarly, the S3 \b S2 will detect only the event a,
but omit events d, e, as event c from stream S2 happens before them.

The semantics of exception can be used when a detection of sequence must be cancelled be-
cause of the occurrence of some event. For example, a detection of a sequence of fraudulent
transactions may be cancelled if an event occurs that they were deleted.

3.4 Conclusion

We described the semantics and syntax of each individual operator. To see how different oper-
ators can be composed to detect more complicated patterns, we present some applicable stock
and mobile fraud detection queries. Suppose we are receiving stock quotes and want to detect
a peak price for each company within some time window, for which the company price was
initially rising and then falling for specified duration. This could be done by the following
query:

Spike(S1.name, S1.price):

(Stock/S1+[prev(S1.price) < S1.price && prev(S1.name) = S1.name && len > 75])

;[S1.name = S2.name && dur < 7200]

(Stock/S2+[prev(S2.price) > S2.price && prev(S2.name) = S2.name && len > 100])

The following pattern could detect mobile cloning fraud by detecting two calls happening at
the same time (duplicate trap), or two calls happening from different areas within short time
period (velocity trap):
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CloningFraud(*):

(Call/C1 ,[C1.number=C2.number && dur<600] Call/C2) |

(Call/C3 ;[C3.number=C4.number && dur<600 && C3.area!=C4.area] Call/C4)

It also calls for suspicion when a sequence of international calls happens within a short period
of time, where the subsequent calls are fairly long and no national calls happen in between (the
adversary first tries whether a number works and then uses it). This can be detected by:

Suspicious(C1.number):

Call/C1[C1.international && dur<300]

; !Call/C0[!C0.international]

;[C2.number=C3.number && dur<7200] Call/C3[C3.international && dur>600]

Another common mobile fraud is when Eve (adversary) has a premium account with hidden
number and performs many missed calls to victims within a short time period. The curious
victims cannot see the caller number and often call Eve back at a premium price; Eve then
earns money. This could be detected with the following pattern:

Fraud(Eve.accNo):

(Call/Eve[dur=0 && Eve.userTyp="hidden"]

;[Eve.fromNo=Alice.toNo && dur<3600]

Call/Alice[Alice.unitprice > 10])

+[prev(Eve.accNo)=Eve.accNo && len > 10]

We designed the syntax of Step to be concise and well structured, such that it does not require
much transformation during its compilation process. In order to have a more concise syntax of
the exception operator, we however deviated a bit from the second requirement.

We argue that the semantics of Step are much richer than that of the dedicated CEP systems
mentioned in the background chapter. Even though count and types of event detection operators
are roughly the same, Step adapts some new ideas from recent development of the TESLA [28]
language. Thus, the semantics of different Step operators can be fine-tuned by specifying
different detection policies (e.g. exception before vs. exception during, greedy next vs. any
next, or greedy iteration vs. any iteration) and by specializing operator behaviour by the use
of predicates. As a result, the Step language is applicable to more complex event detection
scenarios.

The expressiveness of Step could by further extended by adding an aggregation operator ca-
pable of performing user-defined data analytics on sequences of events. As such, it could be
implemented on top of greedy iteration (an approach similar to fold operator in Cayuga), and
could detect for example the mean or standard deviations of a window of recently seen events.
Clearly, the data analytics functions would have to be user-definable and we would require extra
syntax for this purpose. It should also be noted that aggregation operator would be difficult to
parallelise and its implementation is beyond the scope of this project. Thus, we leave this idea
for future work.



Chapter 4

The Step CEP design

This chapter will describe the design of the Step CEP system. First, we will introduce the
general structure of the system and explain its input, internal and output streams. Then
we will describe the runtime organization for event detection and how Storm is used for this
purpose. We conclude with explanations of how detection is parallelised and how Step programs
are compiled. This chapter intends to give a general idea of how Step CEP works. Individual
aspects of the design will be later detailed in Chapter 5.

4.1 Overview

We have chosen the Storm stream processing framework as the basis for implementing complex
event detection. The reason for this decision was that it seemed to be relatively powerful,
simple to use, and novel 1. As it is a novel framework, we wanted to determine its properties
and applicability to CEP detection. This also proved to be the most problematic part of the
project because of a lack of documentation and ongoing change in APIs. Nevertheless, we
believe that we have succeeded in creating an interesting system worth studying further.

Figure 4.1: Overview of Storm topology submission and cluster structure.

Apart from Storm, technologies were chosen such that the development proceeds fast, by reusing
many existing tools, choosing appropriate development languages, and reusing our industrial
experience. The majority of our design decisions were governed by the Storm design and the
Step language design. The most significant trait of Storm is that after topologies are submitted

1Version 0.5 of Storm was released only in September 2011
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to a cluster for execution, they are fixed. This means that the parallelism of components, the
component code, the number of workers and the overall configuration for a topology always stays
the same. Due to this lack of capabilities, many sophisticated runtime optimizations or features
could not be designed. However, we were able to explore many compilation optimizations and
tricks, which result in highly efficient topologies.

The design at a very high level can be seen in Figure 4.1. It consists of a client side which
interacts with a cluster side. We will now briefly explain how these form a CEP system together.

4.1.1 The client side

The components of the client can be divided into three categories:

• Query compiler

• Cluster interaction scripts

• Graphical user interface

Once a set of complex event queries were specified (the so called Step program), the query
compiler is used to produce a set of topology fragments, which are constructs that form a base
for a Storm topology. The topology fragments will then be packaged together with the Step
runtime framework and submitted to the cluster where they will run on Storm. The Step
runtime framework implements general functionality for event detection, and will be described
shortly.

The client also contains cluster interaction scripts. They are used to manage cluster processes
and interact with them. The scripts are for example capable of starting or stopping desired
processes at the cluster, packaging topology fragments with runtime framework, submitting
or killing topologies, downloading logs, or rebooting the cluster. These scripts also contain
cluster-specific configuration of IP addresses, ports, directory and logs locations.

Finally, the functionality of writing Step programs and compiling, submitting or killing them is
provided by the Step GUI. The Step GUI also provides ability to change configuration files and
manage the cluster through interaction scripts. We have built the GUI on top of the Eclipse
Rich Client Platform and will describe its architecture in Chapter 5.

4.1.2 The cluster side

The cluster contains a standard installation of the Storm framework2. This means that our
Storm cluster needs to run a Nimbus daemon, a number of Zookeeper and Supervisor daemons,
and must have the messaging middleware of ZeroMQ and JZMQ installed. Optionally, Storm
UI daemons can be run to enable monitoring of topologies over http protocol.

We divided the cluster into two types of nodes: the master nodes and the slave nodes. The mas-
ter nodes run replicated Zookeeper daemons, a Nimbus daemon and a Storm UI daemon. These
nodes are not used to perform topology computations, but are only used for their management
and storage of the Storm global state. On the other hand, the slave nodes are dedicated to
running actual topologies and perform distributed complex event detection. They only run Su-
pervisor daemons, which spawn worker processes as topologies are submitted. Experimentally,
we observed that using one master node (no resiliency here) has enough resources to manage at

2Because of the constant API changes we have fixed to use the stable branch 0.6.2
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least 15 slave nodes. Hence, for better resource utilization it is also possible to run additional
Supervisor daemons on the master nodes3.

The cluster also contains a number of management scripts, called by the client side, and a
number of configuration files for Zookeeper and Storm. Furthermore, we also included some
standard utilities on all nodes to enable monitoring and profiling. In particular, we use a scalable
distributed monitoring system Ganglia [40], which runs monitoring daemons at all nodes, and
statistics collecting processes at the master node. We also included Jstad, a daemon that
enables remote profiling of JVM processes, which was helpful when determining performance
bottlenecks.

4.1.3 Topology structure

Specified complex event queries are compiled into a set of topology fragments and packaged with
the runtime framework into a full Storm topology. The structure of the submitted topology can
be seen in Figure 4.2. In summary, the runtime framework encapsulates the key data structures
with event handling and detection algorithms. The generated topology fragments then provide
the framework with query-specific information, the names of event streams for example, the
implementation of predicate conditions, the maximum and minimum event matching window
sizes, or the stream specifications between different topology components. The distinction be-
tween the abstract runtime framework and the topology fragments simplifies the Step compiler,
enables it to unit test key algorithms and minimizes the topology code size.

Figure 4.2: The components of a Step topology: topology fragments packaged with the Step
runtime framework.

The runtime framework contains the following elements:

• Abstract components specify a set of abstract topology classes (abstract Bolts and Spouts)
that are the building blocks of a topology and are capable of complex event detection.
The topology fragments generated for concrete event queries are subclasses of these com-
ponents.

• Source and sink adapters are used to receive external events from input sources and publish
detected events to output sinks.

• Data structures specify the interfaces and formats of events that are exchanged between
different topology tasks.

• Utilities contain tools to initialize topology at runtime and also provide common features,
like event throttling capabilities.

3We did not experience any global state management issues with running topology computations on the master
node.
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The submission of the topology as shown in Figure 4.1 is done by a Storm client utility. The
Storm client will connect to the Nimbus daemon running at a master node and upload the
topology together with its configuration (e.g. its required number of workers or component
parallelisms). Once Nimbus receives a topology it will distribute its complete code to all Super-
visors running at slave nodes and instruct some of those Supervisors to spawn worker processes,
each with an equal share of topology tasks. After topology tasks are created, the topology starts
running.

4.1.4 Failure model

Before we describe how topologies detect complex events, we have to consider the type of failures
the system can cope with. The Storm framework provides us with three types of reliability API:

• Unreliable delivery - a tuple (in our case an event or a batch of events) may not be
delivered to its destination in the occurrence of crashes. Additionally, if Spouts produce
tuples faster than Bolts can consume them, Bolt input queues may overflow leading to low
memory conditions and kernel panic. We say that Storm does not throttle event queues
in this case.

• At least once delivery - enables a tuple to be re-sent from a Spout, if it was not acknowl-
edged as processed within some time-out. Note, that a tuple t can cause a Bolt to emit
multiple tuples, and thus t can be considered as processed only if all emitted tuples were
processed. Storm takes care of this situations by keeping a tree of processing dependencies
for each tuple. Using this approach, it is also possible to avoid buffer overflows, as tuples
are not emitted if destination queues are full. Unfortunately, this type of reliability re-
quires twice the number of messages as compared to unreliable delivery, since every tuple
must be acknowledged by every Bolt. Using time-outs for detection of lost tuples may
also cause reception of duplicates, thus making it more difficult to establish correctness.

• Exactly once delivery - the newer versions of Storm also introduce transactional processing
of tuples that guarantee that every Bolt will process a tuple exactly one time. However,
this requires more messages and additional global state, as compared to at least once
delivery.

It should be noted that the underlying ZeroMQ message middleware delivers messages in the
order sent and implements a quasi-reliable channel, i.e. it does not loose messages if nodes
do not crash. Also, note that even if we use the exactly once reliability API, a correctness of
complex event detection is difficult to establish in the presence of node failures. This is because
operators need to keep some internal state (e.g. a window of events seen so far), that is wiped
out in the case of a crash. As a result, we would have to store this state at a permanent storage,
or share it through Zookeeper, thus leading to severe performance slowdown.

Instead, Step tries to implement safe best effort semantics by using at least once delivery API,
without tuple replaying in the case of crashes. The safety semantics are specified by the following
axioms:

• If a complex event is detected, its pattern of events is guaranteed to have occurred even
in the presence of crashes.

• Without the presence of node crashes and load shedding (system overload), if a desired
pattern of events occurs, a complex event will be detected.

• Network buffers never overflow or lead to unexpected node crashes.
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Since tuples are never replayed leading to duplicates, we can guarantee that when a complex
event is detected, the desired pattern must have occurred (i.e. the first axiom). The second
axiom justifies that the implementation of complex event detection is correct. The third axiom
is guaranteed by Storm API, since tuples are never sent if destination input queues are full.
However, the message overhead of at least once delivery API was experimentally determined
to halve event throughput if each tuple corresponds to only one event. We have solved this
problem by introducing batching optimization, making the overhead of this API insignificant.

4.2 Event streams

Events to Step CEP arrive on continuous input streams from input adapters and detected
events are consumed by output adapters. We will now briefly discuss the Step input, output
and internal streams.

4.2.1 Input streams

The input to the system is handled by Storm components called Spouts. As seen in Figure 4.3,
Spouts receive events from external sources by means of input adapters, and distribute them
to different Bolts corresponding to operators detecting events. A single Spout may emit input
events to multiple Bolts.

Figure 4.3: The input and output of Step runtime framework.

Input adapters are user defined, enabling data to arrive from a variety of sources, for example
sensors supplying measurements, databases providing historical data, or event queues providing
data from stock exchanges. A structure of an external event provided by an input adapter can
be seen in Figure 4.4. As explained in the previous chapter, the event carries start and end
timestamps, and a list of values corresponding to some schema as defined in the Step program.

Figure 4.4: Transformation of external event into an internal Step event.

Since detection in Step is based on Storm framework, which implements a pull-based data input,
input adapters are required to be pull-based. That is, the adapters are being called to request
new events, instead of them calling the Step framework. This approach is justified by the fact
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that events will typically already reside in some system queue (for example JMS, Kestrel or
Kafka queues), from which they can be pulled. If this is not the case, a push-based adapter can
be turned into a pull-based by introducing buffering of events. Thus, our choice is purely an
implementation simplification.

Recall that we require one to one correspondence between input streams and input adapters.
Each input adapter is therefore handled by a single Spout. As seen in Figure 4.3, Spouts are
responsible for instantiating input adapters, pulling external events from them and feeding them
into a topology. Upon creation, a Spout will instantiate the corresponding input adapter by
calling the prepare method on it. The input adapter should connect to any external source of
events and be ready for their consumption. Once prepared, the Spout will only request new
events from the input adapter if it is capable of emitting more events to Bolts without their
input queues overflowing. Events must be provided by input adapters in the order of increasing
(recall our event model) end timestamps and must contain values that correspond to a schema
as defined in the Step program. The schemas will be used by Spouts to translate external events
into an internal representation. If an input adapter is not capable of providing a new event (e.g.
the event did not arrive yet or connection to source failed), it should return null events.

Note that to handle high event rates (circa above 8x105 events per second) we require input
adapters to be parallelisable. This is because for high input event rates more than one task
for a Spout will be spawned, such that input can be consumed in parallel. Each task will
instantiate one input adapter and will request events from it in the order of increasing end
timestamps. It may be the case that different instances of the same adapter will run on different
nodes. Therefore, upon instantiation we provide the adapter with information about topology
parallelism (in particular, the adapter parallelism and the index for this adapter among its other
instances). A simple strategy for an adapter handling parallelism n is each adapter instance
only providing events where end timestamp modulo n is the same as adapter index4.

4.2.2 Internal streams

After an external event is received, a Spout will transform it into an internal event as shown in
Figure 4.4. All events in Step are uniformly handled as internal events and have the structure
illustrated in Figure 4.5.

An internal event can be seen as a composition t of one or more external events. It contains a
start timestamp, end timestamp and payloads. In Figure 4.4 we also see that internal payloads
are capable of reporting the name of the event stream from which they originate and the
attribute names for the values they carry. This information is needed when reporting detected
events to event sinks, but for network efficiency we do not include it in payloads. Instead, since
event schemas do not change at runtime, Step is able to compile a new payload class for each
declared external event. The payload class contains fields with types as declared in the event
schema, and also contains hard-coded event and field names. Thus, when an event is sent over
the wire, only value fields are sent, but not their names. When a Spout transforms an external
event into an internal one, it first instantiates the corresponding payload and then fills its fields
with values from the received external event.

Each operator in Step receives a number of internal events on internal streams and can output a
number of internal events to all of its output streams. Thus, internal events are also composable
by using the t operator - the composed event e1 t e2 will contain all the payloads from event
e1 followed by all the payloads from event e2.

4For example, at parallelism 2, first adapter instance would provide events with odd end timestamps, whereas
second with even end timestamps.
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4.2.3 Output streams

Figure 4.5: The structure of internal events in
Step runtime.

After a complex event was detected, it will
be reported by a projection operator to the
corresponding event sink adapter, as seen in
Figure 4.3. Similarly to input adapters, event
sinks cannot be singleton objects, but should
be designed to run in multiple instances. This
is because for high event rates projection op-
erators will be parallelised, and each projec-
tion task will instantiate its own sink adapter.
This will also be the case when different pro-
jection operators (queries) report to the same
sink adapter class. Thus, it may happen that
different adapter instances will run on differ-
ent physical nodes.

The structure of reported complex events can
be seen in Figure 4.6. Since detected events
consist of multiple external events, each hav-
ing their own fields, the reporting format is
different from external event format. An out-
put complex event contains start and end timestamps, and a list of fields. A field is described
by its name, value, and a name of an external event stream, from which the value originates.

Figure 4.6: The format of complex events reported to event sinks.

4.2.4 Event ordering

The assumptions of our event model specify that events on input streams are received in the
order of increasing end timestamps and also detected events are emitted to output streams in
the same order. The guarantees given by Storm also ensure that events are received in the
order sent (i.e. streams do not reorder events). To simplify the implementation of event detec-
tion, we strengthen these guarantees and maintain the following three event ordering invariants:

Ordering invariant 1. Events that are emitted by any topology component are emitted in the
order of increasing end timestamps. If an event was already sent with end timestamp t, no event
with timestamp t0 < t can be sent.

Ordering invariant 2. Events that are received on each stream (input, internal or output
streams) are received in the order of increasing end timestamps. If an event was received with
end timestamp t, no event with timestamp t0 < t can be received from the same stream.

Ordering invariant 3. The event matching algorithms implemented by individual Step oper-
ators process the events in the order of increasing end timestamps.
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The first invariant extends the input stream ordering assumption to internal and output streams.
This is maintained by the implementations of individual Spouts and Bolts. Given the first
invariant holds, the second invariant is guaranteed by Storm and ZeroMQ. The third invariant
simplifies event detection algorithms and is maintained by an event stabilization algorithm,
which will be described later.

4.3 Event detection

4.3.1 General idea

The event detection in Step happens on data-flow graphs, which is a method also used by some
DSMS systems (e.g. Borealis). Data-flow graphs consist of boxes connected by streams, where
each box performs some computation over its input streams and may emit some events to its
output streams. It can be seen that data-flow graphs exactly resemble the Storm topology
paradigm, and hence are the best design choice when using Storm as an underlying framework.
From now on we will refer to event detection graphs as Step topologies.

Step topologies consist of Spouts and Bolts connected by streams with a specified grouping5.
We already know that one of the responsibilities of Spouts is to handle event input and pro-
jection Bolts handle event output. In fact, each topology component (whether Bolt or Spout)
corresponds to some operator in the Step language and performs its function. For example,
Spouts are implementations of the external operator and projection Bolts of the projection
operator. An illustration of a general topology built from operators can be seen in Figure 4.7.

Figure 4.7: A Step topology containing components that correspond to operators in the Step
language.

Each topology component acts upon a number of input streams and may emit some events
to its output streams. The events from input streams are received on a single input queue.
Each component works as follows: it receives an event on its input queue, possibly decides
from which input stream it originated from and then does some processing on it - for example
matches the event to already received events or filters the event on a predicate. Afterwards, the
component may decide to emit one or more events that will be sent to all of its output streams
and delivered to other components. Before we describe how individual components implement
functionality of Step language operators, let us consider an example of Step queries and describe
some peculiarities of their translation into a topology:

Query1(*): (A | C) ; B > "..."

Query2(*): B > "..."

The topology for the above queries can be seen in Figure 4.8. Firstly, note that even though we
have specified multiple event queries, for efficiency they are translated into a single topology.

5Stream groupings will become only relevant when we start parallelising individual components. This will be
described at the end of this chapter.
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The topology contains only Spouts for the external operators that occur in the event pattern
(here event streams A, B and C). The event schema could have specified more external event
sources (e.g. E and F ), but we do not need these to be included in the topology. Secondly,
note that the queries contain two external operators for events from stream B (one in Query1
and another in Query2), but the topology contains only one Spout. Recall that we required
one to one correspondence between Spouts and input adapters, and thus we cannot create two
different Spouts for events of type B. Instead, we merge them into one Spout, which will then
emit events to two different streams.

Figure 4.8: An example topology for two event queries.

Even though some operators are binary or unary, their corresponding generated topology com-
ponents may consume input from more streams. This can be seen on the next Bolt, which
receives events from Spouts A, C and B, but is a binary operator. The reason for this are
union operators, which are implemented for efficiency as a merging of two streams. Therefore
the next operator can still be seen as binary, but acting on streams A|C (merged stream of A
and C) and B. Also note that operators in the Step language always output only events on
one stream, whereas corresponding Spouts and Bolts may emit events to multiple streams. For
example, this is the case for SpoutB.

Please also note that the projections for Query1 and Query2 are translated into two different
projection Bolts, as they correspond to different operators. The fact that they may use the
same output adapter does not affect this - the projected fields may be completely different and
thus it is not possible to handle such cases with only one projection Bolt.

4.3.2 Topology components

We can now explore how individual topology components implement Step operators.

External operators

External operators (EventName (/alias)? [expr]?) are implemented by Spouts and their struc-
ture can be seen in Figure 4.9. A Spout has an associated input adapter, which is polled for new
events. When a new external event is received, it will be transformed into an internal event.
External operators sometimes need to be merged, since all events from the same stream must
originate from the same component. The merging of external operators is simple, since each
operator has only one output stream and only one predicate to filter events for that stream.
To merge external operators, the Spout will contain multiple output streams, each with an
associated filtering predicate. An internal event will be emitted to an output stream only if the
filtering predicate is satisfied. This approach is highly efficient, since events are sent only after
filtering was applied, minimizing the number of events in the system already at its input. The
time of emitting event is linear in the number of contained external operators.

Consider for example the following queries which require external operators to be merged:
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Figure 4.9: The structure of a Spout in Step CEP.

Query1(*): Stock/S[S.Name = ’MSFT’] > "..."

Query2(*): Stock/S[S.Price > 100] > "..."

First query contains an external operator that filters events on the name attribute and an
external operator in the second query filters events on the price attribute. The topology merging
these operators is shown in Figure 4.10.

Figure 4.10: An example of a Spout, for external operators Stock/S[S.Name = ‘MSFT ′] and
Stock/S[S.Price > 100].

Also note that the Spout does not need to handle aliases or event names, since internal events
do not carry them. This information is only used during compilation to implement correct
referencing and distinguish between different external operators.

Projection operator

A projection operator (QueryName(projection)) is implemented by a projection Bolt, as shown
in Figure 4.14. The projection Bolt takes an internal event from its input queue and transforms
it into a detected event, which it reports to the associated output adapter. Recall that event
payloads are capable of reporting the field names of values they carry, as well as the external
event to which they belong. A field projection Bolt needs to go through all payloads and their
fields, and only report those that were specified in the projection. All projection reports all
values to the output adapter. Thus, the time to create a detected event from an internal event
is linear in the number of fields of all of its payloads.

Figure 4.11: The structure of Step projection Bolt.

Union operator

Union operators are implemented by stream merging. Consider for example the union query
A | B. Its topology will not contain any additional Bolts besides the projection Bolt, which
will take as its input all the events from Spout A and all the events from Spout B. Because of
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the event stabilization described later, the events will be received in the order of increasing end
timestamp, as required, effectively merging both streams.

Binary operators

All binary operator Bolts - next, conjunction and exception have the same structure, which can
be seen in Figure 4.12. Events from all input streams are received on a single input queue.
Depending on the stream name, a binary Bolt first decides to which stream an event belongs -
whether to the left (or the first) or to the right (or the second) stream. Note that because of
the union operator multiple streams can be merged into the left stream or the right stream.

Figure 4.12: The structure of binary Step operators.

The input event will be processed according to the stream on which it arrived (left or right)
and the semantics of a particular operator. An event that may be detected will be first filtered
by a predicate condition. If the condition is satisfied, the detected event will be emitted to all
Bolt output streams. An example of a topology with a binary Bolt for the query !A ; B can be
seen in Figure 4.13.

Figure 4.13: An example of exception Bolt topology for the query !A ; B.

The matching of events performed by each operator will be detailed in the next chapter. A Bolt
will typically keep a history of events that it has already seen and new events will be matched
against that history, subject to satisfaction of some time constraints. Sometimes input events
will be stored for future matching and some newly detected events may be output. In the case
of an exception operator, an event from the left stream will be output only if an event from
the right stream was not received subject to some time constraints. In the case of next and
conjunction operators, pairs of matched events may be composed into a new internal event (the
detected complex event) that will be output. Recall from the event model that the internal
event resulting from composition of events e1 and e2 will have the start timestamp min(t10, t

2
0),

the end timestamp max(t11, t
2
1), and will contain all payloads from event e1 followed by the

payloads from event e2.

It should also be noted that every operator tries to garbage collect the events in its history,
which can no longer match any new events. This is usually done by exploiting time constraints
specified for each operator, and leads to lower memory footprint and faster event detection.

Iteration

An iteration operator is implemented by a Bolt as seen in Figure 4.14. It receives events on an
input queue and matches them against event sequences that it has seen so far. New sequences
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may be added, existing sequences extended, or a sequence emitted depending on the iteration
predicate. The exact algorithm of this will be described in the next chapter. The output of the
iteration operator is a composition of the first and last event in the iteration sequence. That is,
the resulting internal event will contain the payloads of the first event followed by the payloads
of the last event.

Figure 4.14: The structure of iteration Bolt.

4.3.3 Evaluation of predicates

We have seen how complex events are detected, but did not specify how predicates are evaluated
against internal events. In particular, we are interested in evaluation of field accesses, event
duration, and accesses of previous event in an iteration sequence.

The simplest way to access fields is by searching for them within an internal event. This is slow
if events contain many payloads with many fields each. However, we can do better and access
fields in constant time, by knowing an offset to a desired payload within an internal event and
an offset to the desired field within the payload. This is possible, since we can determine the
order of events and fields for any operator at compile time. The algorithm that achieves this is
called expression (or predicate) indexing and will be described in the next chapter.

Event duration can simply be calculated for any internal event by subtracting the event start
timestamp from the event’s end timestamp. Also, accessing a previous event field in an iteration
sequence is simple, since we just need to perform normal field access (using the same offsets)
on the previous event in a sequence, which is kept by the iteration operator. The evaluation of
other arithmetic, boolean or comparison predicates is straightforward.

4.3.4 Component hierarchy

We have described how event detection works in Step. Most of this functionality is implemented
by the Step runtime framework, in particular by the abstract components part. The hierarchy of
abstract components is illustrated in Figure 4.15. We can see that it contains an implementation
for each variation of operators found in the Step language. These implementations can easily
be replaced by alternative ones, depending on optimizations. We can also see that all Bolts are
subclasses of AbsBatchedBolt and AbsSimpleBolt, and all Spouts are subclasses of AbsSpout.
These abstract components implement a couple of essential algorithms, which we will briefly
introduce, with their implementation being explained in the next chapter.

The first important algorithm is event stabilization, which ensures that events are processed
by Bolts in the order of increasing end timestamps. We require this to satisfy event ordering
invariants, which will lead to more efficient implementations of operator matching algorithms.
Since we have no assumptions on the ordering of events between different streams, cases can
occur when events will be received out of order. Consider for example a binary Bolt, which
takes input from two streams, as shown in Figure 4.16. If event B(3) arrives first, it cannot be
processed until all events from stream A with smaller timestamps are processed. In general, an
event can be processed if events from all streams with higher timestamps were received prior.
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Figure 4.15: Hierarchy of abstract topology components provided by the runtime framework.

Figure 4.16: The need for the stabilization of events. Events are instantaneous and their
timestamp is shown in brackets.

Another important part of event detection is the usage of punctuations to flush stabilization
queues. Event streams might be finite, and an event with a higher timestamp may never be
received. This is particularly true for an exception operator, which guards against undesired
events that occur very rarely. If a desired event occurs, it must be processed by an exception
Bolt as soon as possible. Thus, stream punctuations are used occasionally to flush queues in
cases when the next event on a stream does not arrive within a time-out.

We shall also introduce techniques of load shedding, which are used to handle low memory
conditions. By using Storm reliability API we already guard against network buffer overflows
and having too many events in the system. However, low memory conditions can still be achieved
when stabilization queues or operator matching queues grow too long. For this purpose, and
also for evaluation purposes we shall additionally consider event throttling, which is a way of
limiting of input event rates.

4.4 Parallelising event detection

In this section we will explain how Step parallelises individual components to achieve higher
throughput, and also consider an alternative approach.

Through profiling we detected that the most time and CPU-consuming operation is the matching
of events against events that were already seen, the evaluation of predicates and the stabilization
of events. Thus, when parallelising event detection, we want each component task to process
only a fraction of all events, such that CPU-usage is divided among all parallel replicas. When
partitioning events between parallel operator replicas, we require the following:
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• An equal share of events should be delivered to each replica. This ensures equal workload.

• Each parallel replica should handle only a fraction of all events. This allows for increased
detection throughput with higher parallelism and requires a mechanism that divides events
between replicas.

• No two parallel replicas can detect the same event. This avoids detection of duplicate
events.

• Correctness with regard to non-parallelism. If an event is detected by a single component,
then the same event must be detected also when the component is parallelised.

Parallelising complex event detection at operator level is simple, as each operator corresponds
to a topology component. Each component in Storm runs in a number of tasks, which are its
parallel threads of computation. That is, each task is a parallel replica of that component,
detecting a fraction of all events. Storm divides input events between the tasks of the same
component according to stream groupings. We will mostly be concerned with two of them -
shuffle grouping, which divides events equally between tasks in round robin fashion, and all
grouping, which replicates an event and sends it to all tasks. For these cases we also use the
expression that events on operator input streams are shuffled or replicated. It can be seen that
achieving parallelism in Storm is simply a question of dividing events between operators using
stream groupings such that the above correctness criteria hold.

4.4.1 Parallelism through stream replication

Step implements parallelism through stream replication. Some event streams are replicated
such that parallel tasks see the same events for correct functioning, whereas other streams are
shuffled between different replicas, effectively distributing the workload.

Consider for example the binary exception operator that receives desired events and undesired
events that result in the cancellation of desired events. The undesired events have to be sent
to all replicas of the exception operator by using the all stream grouping, such that each oper-
ator correctly cancels desired events. However, the desired events can be shuffled between the
replicas, dividing the workload. Each replica can then detect only those desired events that
were received (i.e. no duplicates), but still correctly cancels them because of undesired event
replication (correctness). Also, each replica handles an equal share of events, and no replica
handles all events, as required. An illustration of this approach is shown in Figure 4.17.

Figure 4.17: The replication of exception operator for the pattern !A ; B. On the left side we
see part of the topology and on the right its runtime organization, where exception Bolt got
parallelised. The full arrows show replicated streams and dotted arrows show shuffled streams.

Similarly to the exception operator, other operators can also be parallelised, which is shown in
similar fashion in Figure 4.18.

The operation of a projection operator does not depend on previously seen events, but only on
the current event. Thus, its input stream can be shuffled. Each projection replica will receive
an equal share of events and will work correctly, since processing is independent.
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Figure 4.18: Replication and shuffling of streams for different operators. Dotted lines represent
shuffled streams and full lines represent replicated streams.

In the case of the next Bolt, one stream needs to be replicated such that one replica will detect
a complex event if it occurs (correctness). For a greedy next Bolt we have no choice, but to
replicate its right stream, since for each event from its left stream at most one complex event
may be detected (i.e. an event from left stream can be delivered only to one replica). In the
case of any next Bolt the choice of which stream to replicate can be arbitrary and will depend
on estimated event rates (we want to replicate streams with lower event rates).

Similarly, at least one stream of a conjunction Bolt must be replicated, so one replica will be
able to spot a conjunction of events. However, since semantics of the conjunction Bolt do not
depend on the event order, we can choose the stream to replicate arbitrarily. This will depend
on the estimated event rates, as we will replicate the stream with the lower estimated event
rate.

Recall that it is problematic to parallelise greedy iteration Bolts because of the need to share
information about the longest event sub-sequence between parallel tasks6. However, any iter-
ation Bolts ca be parallelised in an interesting way. First, note that the whole input stream
has to be replicated among all iteration tasks, since each replica requires to see all events in
order to correctly extend iteration sequences that it already holds. However, creation of new
iteration sequences can be divided among different replicas. In other words, each replica will
detect a sequence of events starting from different events. Consider for example having two
replicas. The first replica will start matching a new sequence of events only if it receives an
event with an odd end timestamp, and the second replica will start a new sequence from events
with an even timestamp. As a result, the first replica will detect all sub-sequences starting
with odd timestamps and second with even timestamps. It might be surprising, but evaluating
shows that even though this approach results in significant increase in messaging overhead, it
still improves performance of the iteration Bolt up to a certain level.

It should also be noted that Spouts can be parallelised if higher throughput is required. Since
we required input adapters to be parallelisable, this constitutes no problem.

4.4.2 Alternative: parallelism through windowing

Replicating some events and shuffling others is not the only solution to achieving parallelism.
This could also be achieved by using windowing.

Windowing is a simple technique, where events are sent on streams as part of larger groups
called windows. Each window contains a fixed number of events and overlaps with consequent
windows. Each detection operator waits until it receives event windows from all input streams,
which form a view used for complex event detection. Any event matching algorithms will be
run only on the view and then the view will be discarded. The detected events will be sent
to further operators, which will go through the same windowing process. The overlap between

6Sharing of state between replicas is not acceptable, as it requires synchronization and leads to performance
bottleneck.
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windows guarantees that events at the end of the first window will be correctly matched with
the events that are at the start of the following window. Windowing is illustrated in Figure 4.19.

Figure 4.19: Using windowing to achieve parallelism: each parallel replica acts on a different
window of events.

Widowing could be implemented by a centralised manager that would divide an input stream
of events into windows. However, the manager could become a bottleneck. Instead, we suggest
that windowing on Storm could be implemented using field groupings. A field grouping divides
events between replicas according to a value of some field. Through the use of hashing, tuples
that have the same value for that field will be sent to the same replica. We could use this
mechanism to bucket events into windows according to their end timestamp (e.g. timestamps
0 - 100 will be in the first bucket, timestamps 50 - 150 in the second, 100 - 200 in the third,
etc.). This can be achieved by simple modulo arithmetic on timestamps. As a result, we would
eliminate the central manager bottleneck, since replicated Spouts would still correctly categorize
events into buckets, and Storm would deliver the same buckets to the same operator replicas.

4.4.3 Comparison

We chose to implement the replication technique because of the following:

• Replication was not explored before and we are looking for interesting performance mea-
surements.

• Replication results in a lower detection latency, as events can be sent to operator Bolts for
detection as soon as they are available. Windowing instead requires sending events in big
windows (some cases). If operator matching windows are large, the windowing technique
is infeasible.

• Windowing also requires replication of events, since events in overlaps will be sent twice.
Thus, for windowing to be effective, the windows must be at least twice or three times
larger than the operator matching windows. In general, if matching windows are kept
small, then windowing would replicate less events. If operators require big matching
windows, there will be more replication.

• Windowing requires detection of duplicates since events in window overlaps may be de-
tected twice. This may cause additional overhead.

Ideally both approaches should be considered and compared, but due to project time limitations
this was not possible. We leave windowing thus for future work.

4.5 Query compilation process

We have already described how complex event detection is implemented and how Step CEP
is structured. Now we will conclude the Step design by describing a high-level process of
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transforming Step program into a Storm topology. The compilation process, as performed by
the Step compiler is visualised in Figure 4.20.

Figure 4.20: The compilation process of Step program.

The input to the Step compiler is a Step program, which is a collection of event schemas and
event queries. The first phase of the compilation translates the program into an abstract syntax
tree (AST), a tree representation of program syntax. This is done using standard parsing tools
and in the process also validation of input and linking is performed. Validation of input does not
only check that program is syntactically correctly structured, but also performs many semantic
checks. The linking process establishes references between nodes in the abstract syntax tree.

The second compilation phase constructs a set of operator trees from the AST. An operator tree
is the most abstract representation of a single Step query (levels of compilation abstractness are
illustrated in Figure 4.21), which contains its operators as described in the Step language. Also,
predicates are transformed into a shape that is later suitable for code generation. An operator
tree is a perfect representation for rewriting queries and estimating of operator event rates.

Multiple operator trees are afterwards merged into a single topology graph, which contains
Bolts and Spouts that are connected by streams. Each stream has a defined grouping, name
and endpoints. Each graph node has associated names (unique file name and Bolt name),
estimated event rates and parallelism, corresponding predicates, input and output streams, and
source or sink adapters. Here, external operators are merged into single Spouts and common
sub-queries are reused. The graph also contains structures of concrete payloads, which will be
generated for each input stream.

An abstract topology graph is used to generate topology fragments. These are concrete Spout
and Bolt implementations that subclass abstract components from the runtime framework.
Additionally, we generate a topology configuration with a main set-up method, which defines
stream wirings between different components and a big number of topology parameters.

Generated topology fragments are then joined together with the runtime framework and pack-
aged into a topology that can be run by Storm. Each phase of the compilation process will be
described in more detail in the next chapter.
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Figure 4.21: The compilation process visualised with regards to abstractness. Elements that
are higher are more abstract representations.

4.6 Summary

In this chapter we outlined our method of performing complex event detection on Storm. We
explained how the Step client is structured and how we organized and communicated with the
cluster. Then, we described how event detection topologies look, including their input, output
and internal streams, the failure model we use, and the required orderings of events. Then,
we explained individual components of a topology, how they correspond to operators in the
Step language, and which common event detection algorithms are provided by the runtime
framework. Finally, we described how parallelism of event detection is achieved, comparing
this to an alternative approach, and also outlined how Step programs are compiled into Storm
topologies.



Chapter 5

The Step CEP implementation

This chapter will detail on the implementation of some aspects of Step CEP, that were already
mentioned in the previous chapter. In particular, we will describe technologies that we used,
explain some algorithms of the runtime framework and detail more on the compiler design.
Addition of some optimizations and the structure of the Step GUI will be also described. We
conclude with our approach to profiling and testing the system.

5.1 Technology choices

We used two development languages - Scala and Java. Even though Storm is capable of running
topologies in other languages, at the start of the project using Java was the only documented
approach. Thus, the generated topology fragments, the runtime framework and the GUI are
written in Java. However we found Java too bulky for some purposes, in particular we used
much more powerful and concise Scala for implementation of the Step compiler. Scala [41] is a
functional object oriented language and was a good technology choice because of the following:

• Pattern matching is a powerful way to work with trees, which are common representation
in compilers. It yields a powerful tool when also combined Scala extractors (used to
retrieve only relevant informations from any data structure).

• Implicit Scala methods are an easy way to enrich existing behaviour (e.g. to define meth-
ods on existing AST). Also Scala case classes, singleton objects, type definitions and
functional language capabilities (e.g. map, yield, fold) make development much faster.

• Code written in Scala is much more intuitive and concise as compared to Java. Triple
quoted strings are ideal for code generation.

• Scala seamlessly integrates with Java. Java features like annotations, dependency injection
or reflection work with Scala as well.

The Step language was developed using the Xtext [42] framework for development of domain
specific languages1. Apart from lexing and parsing capabilities (provided by standard tools like
ANTLR) Xtext also has:

• Validation and linking capabilities - it provides a framework where semantics of language
constructs can be validated and also automatically resolves references.

1Xtext claims on their website that IBM InfoSphere Streams uses Xtext to also define a complex event
detection language.
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• Can generate an editor GUI for the specified language, which could be used to write
programs in that language.

• The generated editor for the language has many advanced features, for example syntax
highlighting, auto-completion, continuous compilation, outline or error markers.

Xtext is a technology based on Eclipse Rich Client platform (RCP) [46]. The compiler and
the editor that it generates have a form of Eclipse plug-ins. The decision of using Xtext in
combination with Eclipse RCP spared us a lot of development time with regards to client GUI
(most of it was generated) and implementation of low level compiler details. The detailed
structure of Step client resulting from usage of these technologies can be seen in Figure 5.13.

Figure 5.1: Step CEP client is built using Xtext on top of Eclipse RCP platform and consists
of two plug-ins - compiler and UI. Eclipse RCP platform is based on the OSGI framework,
contains standard Eclipse plug-ins, UI widgets (SWT) and the standard Eclipse UI (Workbench
and JFace).

Other technologies that we used were Bash for scripting, Apache Maven [44] for library de-
pendency management and building of Storm topologies, and Apache Ant [43] for automation
of minor build tasks (mainly packaging during deployment). Analysis of data from evaluation
and curve-fitting for parallelism cost model were done using the Matlab [47] tool. Last, but not
least, testing was done using the JUnit [45] framework and source code was versioned in an
SVN repository.

5.2 Runtime event detection

In this section we will describe some runtime concepts of event detection into more detail. In
particular, we will explain event matching algorithms, event stabilization, punctuations, event
serialization, throttling and load shedding.

5.2.1 Event matching

Event matching is a process of detecting event patterns among events arriving from multiple
streams. We will now briefly explain event matching techniques for binary operators next,
conjunction and exception, and for the unary iteration operator. The external operator and the
projection operator do not belong here, since they do only simple filtering or post-processing of
events. Also the union operator does not require any matching algorithm, since it is implemented
as a simple merging of streams.
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Binary operators

Recall that each binary operator Bolt processes an event according to the operator semantics
and the stream from which the event arrived, whether left or right2. Each binary operator Bolt
thus needs to declare which streams are left and which right.

The next Bolt keeps a queue of events received from the left stream, which is ordered in increas-
ing end timestamps (i.e. in the order of event processing). If a new event is received from the
right stream, it is matched against every enqueued left event. If the operator is greedy, then the
first left event e1 occurring before the new event e2 will be used to create the composite event
e1 t e2. If the composite event satisfies the next predicate, then it will be output and event e1
will be removed from the enqueued events (so that it cannot match more events). In the case
of the any next operator, event e1 will not be removed and the matching will continue. Note
that we do not need to store events received from the right stream3.

The conjunction Bolt keeps two queues for events received from left and right streams. When
a left event is received, it will be added to the left queue and matched against all enqueued
right events. If a right event is received, it will be enqueued to the right queue and matched
against all left events. Matching consists of iterating over all events and checking whether their
timestamps overlap with the timestamps of the new event. In case of a match, composite event
is created and predicate evaluated against it. Only composite events that satisfy predicate are
output.

The exception operator needs to enqueue all undesired events (no events). When a desired
event e arrives, it will be matched against all enqueued events e′. The event e will be output
only if exception condition is not satisfied, otherwise it will be discarded. That is, for not
before exception semantics, e will be output if no e′ happens before it. For not during exception
semantics, e will be emitted if no e′ happens in between e.

Figure 5.2: Event garbage collection at the next Bolt. Events from left stream that are outside
matching window will be removed from the matching queue (here a).

The next and conjunction operators also implement garbage collection of events, which means
that they remove events from their queues that cannot be matched any more. This can be done
if matching window is specified by the duration predicate. The next Bolt (see Figure 5.2) will
for each right event eR remove all enqueued left events eL such that the difference between the
end timestamp of eR and the start timestamp of eL is bigger than maximum event duration (i.e.
tR1 − tL0 > maxDur). Similarly, when a right event eR is received at the conjunction operator,
all left events eL such that tR1 − tL0 > maxDur can be discarded, as they cannot ever satisfy the
conjunction predicate. Also if left event is received, all right events such that tL1 −tR0 > maxDur
will be removed.

Note that event garbage collection cannot be applied to the exception operator as enqueued

2For an event pattern P1 op P2 we say that events of pattern P1 arrive from the left stream and events of
pattern of P2 arrive from the right stream

3Any received left event will always have a higher end timestamp than any stored right event because of event
stabilization. Thus, received left event will never match any right event and hence right events do not need to
be stored.
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events may always match desired events4. Thus, the exception queues may grow infinite. In
practice we deal with this through load shedding. If the queue of undesired events becomes too
long, we will start dropping the oldest enqueued events.

Iteration operator

The iteration operator is unary and it handles events received from different streams uniformly.
When a new event is received, the operator might create a new event matching sequence, or it
might extend sequences that it already stores. Recall that if an iteration Bolt is parallelised,
then a new event sequence will be started only by one parallel replica. Assume the component
parallelism is P , the index of a replica among all parallel replicas is I, and an event e2 was
received. The replica will start a new event matching sequence only if t21 % P = I. The event
sequences that are already stored by an iteration operator will be always matched against the
new event.

Figure 5.3: Data-structure used to keep sequences of matched events.

Event sequences are stored in a data-structure pictured in Figure 5.3. For efficiency we store
only the first e0 and the last e1 events in the sequence, and only the event sequences that satisfy
the iteration predicate are stored. A sequence e0 to e1 can be extended by a new event e2 only
if the predicate for events e2 and e1 evaluates to true5. In this case, the sequence e0 to e1 will
be copied and the copy will be extended with the new event e2. Thus, the operator will now
store two matching sequences: e0 to e1 and e0 to e2 (i.e. all sub-sequences of observed events
satisfying the predicate will be stored).

Any iteration operator will always output the extended sequence. The output event will be the
composition of the first event in the iteration sequence and the last event. In the case when
iteration predicate is not satisfied, the matching sequence e0 to e1 will be simply discarded.

On the other hand, greedy iteration will never output the extended sequences. A sequence
can be output only if the predicate evaluates to false and the failed sequence is the longest
one among all stored sequences6. Otherwise, the failed sequence will be discarded. Also note
that after the longest matching sequence is output, all stored sequences will be discarded, thus
starting a new matching process7.

5.2.2 Event stabilization

Recall event ordering invariants specified in the previous chapter. We required that each opera-
tor processes events in the order of increasing end timestamps. This is established by the event
stabilization algorithm. Because of the other invariants, we know that events are received on

4For example, each desired event may have start timestamp 0, and thus any received undesired event can
match it.

5Previous field accesses in iteration predicate are evaluated against the last event in the sequence, i.e. e1.
6If there are multiple sequences with the same longest length, all will be output.
7Recall that the semantics of greedy iteration state that after a longest sequence is output, the matching of

new longest sequence starts from scratch.
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each stream in the order of increasing end timestamps. Stabilization algorithm merges these
streams, such that the resulting events are also ordered by increasing end timestamps.

To implement this, we note that an event e can only be processed by an operator after events
with higher end timestamps were received from all operator input streams. Because otherwise,
an event from some stream may still be received with smaller end timestamp, which would
have to be processed before e. This formulation of the problem forms a basis for the event
stabilization algorithm.

Figure 5.4: Illustration of the stabilization process. Events are put on a queue, each being
marked by events with higher timestamps (displayed in circles). An event fully marked (green
circle) can be released.

The algorithm is illustrated in Figure 5.4. It maintains a queue of events received from all input
streams, in which events are ordered by their end timestamps. Each event has a set of marks.
A mark is a stream identifier indicating that an event with a higher timestamp than the event
marked was already received from that stream. The algorithm proceeds as follows: When an
event is received from stream s with end timestamp t, all events with end timestamps t0 < t will
be marked by stream s. The event is then inserted into stabilization queue and inherits marks
from all following events. Note that inheriting marks from all following events is equivalent to
just inheriting marks from the events with the same end timestamp plus all the marks from the
first event with strictly higher timestamp. This is a bit faster, since it does not require always
iterating till the end of the queue. Events that have been marked by all streams are removed
from the queue in order of end timestamps and can be processed. The pseudo code for the
algorithm is shown here:

stabilize(stream, newEvent):

streamMark = mkMark(stream)

foreach event in queue:

if (event.endtime < newEvent.endtime)

// mark all events with smaller timestamp

event.mark(streamMark)

if (event.markCount == inStreamCount)

releaseEvent(newEvent)

remove event from queue

else // found a place to add new event. Following events should not be marked.

add newEvent to queue

break

// the new event will inherit all marking from few following events

foreach event after newEvent:

newEvent.mark(event.allMarks)

if (event.endtime > newEvent.endtime)

newEvent.mark(event.streamMark)

break

// if the new event was marked by all streams, process it directly

if (newEvent.markCount == inStreamCount)

releaseEvent(newEvent)

remove newEvent from queue
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Assume N is the size of the stabilization queue. First for-loop iterates until a place is found to
insert a new event. Second for-loop iterates from that point until the first event with strictly
higher end timestamp is found (worst case till the end). Thus, the algorithm takes O(N) steps
in the worst case. We consider marking an event a constant time operation, since it is an
insertion of a string into a set8. It should be noted that if all events have different timestamps
and events arrive from each stream at the same rate, then the stabilization queue will have size
on average the number of streams S and the complexity will be only O(S). If the streams have
different event rates, the average length of the queue will be the number of events that arrive
during the time between receiving two events from the slowest stream are received.

5.2.3 Punctuations

Consider the case when an input stream is finite or when events do not arrive to the system
with expected rate. This will result in events being blocked in the stabilization queue either
indefinitely or for a long time, making the Step system stuck9. Consider for example the
exception operator, for which exception events do not occur very often, but events to be cancelled
arrive on high rates. The exception operator might not proceed unless some indication is received
that an exception event was not received. To handle these cases, Step implements flushing of
streams by using punctuations (further explained in [29]).

A punctuation is just a place holder for an event that was expected to arrive from an input
stream (given the expected event arrival rate), but did not. Punctuations originate at Spouts,
which monitor the external event arrival rates. If an event was not received from the corre-
sponding input adapter for some time10, punctuations will be sent to all output streams. Since
output streams may be shuffled, we need to make sure that each destination task receives a
punctuation. Thus, for each output stream the Spout will emit n punctuations, where n is the
destination component parallelism.

When a component receives a punctuation from stream s, all events in the stabilization queue
will be marked by s. The is because punctuation indicates that events that were blocked waiting
for an event from stream s should not wait any more, which enables progress to be made. Also
note that if a component receives punctuations from all of its input streams (i.e. all input
streams are stalled), it will propagate the punctuations further, to all of its output streams. In
the case when there are no more input events, the punctuations will eventually reach the last
projection Bolts.

Punctuations are very useful for acceptance testing which will be described later. Here, we have
a finite number of input events and we want to check whether all event patterns get detected.
Thus, punctuations are needed to flush streams.

8Initially we have used constant time hash sets. Profiling with 20 input streams has shown though that tree
sets perform better. This is because hash sets require computation of a hash code (and thus iteration over each
character in stream identifier), whereas tree set just needs to compare the first few characters of the inserted
mark.

9 All following operators waiting for output from this operator will be stuck and might start dropping events
that arrive from fast streams. This will result in high detection latency and some event patterns might not be
detected.

10The time by which punctuations will be sent is configurable. By default we set it as 1/mean event rate
seconds, which corresponds to expected event arrival rate.
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Type of serializer Size (bytes) Time to serialize (ms*10−4)

Custom implementation 30 2.512
Public array Kryo 33 15.13
Private array Kryo 33 17.06
Explicit fields Kryo 28 6.289
Java fallback 374 296.53

Table 5.1: Comparison of different serializers performance with respect to the size of serialized
data and the time it takes to serialize one event.

5.2.4 Event serialization

Before events can be sent on the wire they have to be efficiently serialized to an array of bytes.
The Storm framework offers for this purpose the fast Kryo serialization framework11 [48]. We
designed the internal event data structures with respect to efficient stabilization, such that
communication overhead between different components is minimized. The structure of internal
events can be seen in Figure 5.5.

Figure 5.5: Recall the structure of internal events and payloads.

Recall that we decided to generate payloads for each type of input event, instead of using one
generic data structure. The main reason for this was that we needed a payload to contain event
and field names, but we did not want to send them over the wire. However, another reason was
that it provided an opportunity for optimized serialization.

To see this, first let us have a look at a small benchmark that we tried for different Kryo and
Java serializers. We were serializing an internal event as seen in Figure 5.5, containing two long
timestamps and one payload. The payload contained following values: a five-character string,
a one-character string, an integer and a byte value. We tried different types of payload with
regards to storage of these values: first payload carried the values in a private array, second in
a public array, and the third had a declared field for each value (this is the case in Figure 5.5).
The results of the benchmark are shown in Table 5.1.

The fastest serializer was a custom one that serialized payloads with explicitly declared fields.
When using an array of values, the Kryo serializer performed better if the array was declared
public, as compared to private12. The best performance of Kryo was achieved by explicitly
listing declared fields and making them public. Java serialization was proved to be very slow.

For simplicity we did not want to generate custom serializers for each payload. Rather, as
a result of these measurements, we decided to use the Kryo field serializer for classes with
explicitly declared fields. Thus, we have achieved payload serialization two or three times faster
as compared to using a generic data-structure. This performance improvement is significant,
since it allows for serialization of 1.6 million internal events per second.

11Storm does though not use Kryo by default, but rather defaults to slow Java serialization. It should be noted
that to use Kryo, we need to explicitly register data-structures with it.

12The documentation explains that for classes with public fields a faster bytecode generation approach is used,
instead of a bit slower reflection with setting access permission flag.
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5.2.5 Event throttling

Event throttling is a process of limiting event rates on input streams, to avoid system overload.
This can be for example caused by overflow of Storm messaging queues, leading to low memory
conditions and possible crashes. Event throttling is also useful for evaluation of the CEP system,
as we sometimes need to receive external events at some constant event rate. Additionally,
throttling can be also seen as a feature used to bound resource usage of a CEP system. This
might be useful when resources are limited and some topologies should be given priority over
others by setting their throttled event rates higher.

We will briefly describe three types of event throttling that we have implemented, each with its
own features:

• Using Storm reliability API

• Local throttling at components

• Centralized throttling

We solved the problem of overflowing messaging queues through usage of Storm reliability
API. The API requires each topology Spout and Bolt to acknowledge events that it received.
Acknowledgements are collected by special acknowledger tasks, which keep track of tuples that
are in the system. If tuples were not acknowledged, they are assumed to be in a component
input queue and additional tuples will not be sent. The length of the queue does not take into
account size of received events. Thus, the input queue should be shorter if received events are
big, but can be longer if events are relatively small. The disadvantage of using Storm reliability
API is that it generates twice that many messages as there are events in the system, and our
experiments have shown halved event throughput because of the CPU overhead of sending and
receiving acknowledgements. We have later solved this problem by using event batching, where
only batches are acknowledged, thus minimizing the overhead.

Local throttling can be used to limit input event rates to a constant number and is implemented
by Spouts. A Spout knows at runtime how many parallel replicas it runs in and can use this
knowledge to request only specified number of events from its input adapter within a time
window. If the required input event rate is C, and there are P parallel Spout replicas, each Spout
will throttle its input to C/P events per second. The throttling in each task is implemented
through use of timers and counting of events that were received within a time window. If quota
per time window was reached, the Spout will back off and request new events only after some
time elapses.

We also experimented with having a dedicated centralised manager, which would receive batch
acknowledgements over standard network sockets and grant permissions to Spouts to emit new
batches. The idea was that we would only acknowledge many events at once, thus minimizing
acknowledging overhead. We have however encountered problems with components lagging
behind and this approach proved to be inferior to the Storm reliability API, since it was creating
a bottleneck. Thus, we abandoned this idea.

5.2.6 Load shedding

Since events in Storm are sent on streams using a push-based approach, some care needs to be
taken to avoid low memory conditions when system is under heavy load of incoming events.
We have already explained that we avoid overflows of component input queues by using event
throttling. However, these are not the only cases when system can run out of memory. We
have to consider every queue in the system and the possibilities of how it can grow too big.



5 The Step CEP implementation 72

In particular, event matching queues at individual operators may grow indefinite if matching
windows are not specified, or stabilization queues can become too big. The problem does
not concern only low memory conditions but also performance of event detection - long queues
mean that matching algorithms take longer, which may dramatically decrease event throughput.
Therefore we use load shedding to limit degradation of performance.

Load shedding in Step is implemented for the cases of event stabilization and event matching.
We try to implement best effort semantics for event detection. If event stabilization queues
start overflowing, the oldest stabilizing events will be prematurely released for processing, such
that space is made for new events. If event matching queues start overflowing, the oldest
events in the queues will be permanently dropped. The disadvantage of this approach is that
maximum queue lengths have to be specified at topology start and stay the same change during
execution. An alternative and far better approach is specified in [3], where load shedding is
applied according to dynamic metrics of topology performance (if performance is poor, events
will be automatically dropped).

It should be noted that premature releasing of events from stabilization queues and dropping
oldest events from matching queues does not affect correctness of event detection. The safe
semantics of Step state that if a complex event is detected, then pattern must have occurred.
If load shedding is applied, the backwards direction does not need to hold.

5.3 Step language compiler

In Chapter 4 we described a high-level overview of the compilation process that Step performs.
In this section we will detail on some of the compilation phases and explain what they do.

5.3.1 Abstract syntax tree

The first phase of compilation process is construction of abstract syntax tree (AST) from a Step
program, by rules specified in the Xtext grammar. The AST is a simple tree representation of
a Step program, obtained by process of input parsing (an example can be seen in Figure 5.8).
The AST is used to perform input validation and linking.

Input validation checks whether provided Step program is semantically correct. This is very
important, such that we can guarantee that generated topology code will be compilable and will
not cause runtime errors when submitted to the cluster. If invalid input is provided, compiler
will abort and the offending code will be highlighted in the Step editor with corresponding error
message. For validation support we use the Xtext framework and check the following points:

• Existence of adapters - whether input and output adapters exist in corresponding direc-
tories and whether they are correctly parametrized.

• Correct naming - we need to verify uniqueness of identifiers (e.g. aliases of events).

• Use of predicates with certain operators - some predicates may only be used in combi-
nation with some operators (e.g. previous event field access is allowed only in iteration
predicates). Any other use should result in incorrect code.

• Usage of predicates with respect to union - we do not allow field accesses for events merged
with the union operator, since these are ambiguous. For example, consider the pattern
(A|B) + [A.price > 100]. The predicate A.price is not available when event B is received
at the iteration operator.
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• Correct typing - we check that arithmetic, comparison and boolean operators in expres-
sions really act on values with the corresponding type.

• Negation syntax - the unary syntax of negation pattern must allow for the pattern to be
translated into binary exception operator (this cannot be specified in a grammar). In
particular only the patterns !E;E or E; !E;E are allowed.

Linking is a process of resolving references between event schemas, external operators and event
field accesses. During this process we check whether events in a pattern refer to an existing
event schema, and that event field accesses access fields that really exists. This process is
highly leveraged by the Xtext framework, which allows us to specify these references directly
in the Step grammar. An example of references we need to establish between queries and event
schemas is shown in Figure 5.6.

Figure 5.6: Example of links that have to be established. After the linking process it is clear
where S, Nyse-Stock or company refer to.

Linking is connected with a concept of scoping - a reference from an element A to an element
B can be established only if B is in the same or a sub-scope of A, i.e. it is visible. In Step
language we implement only two scopes: global and query scope. The global scope contains
event schemas and query identifiers, meaning that event schemas and query names have to be
unique within a whole Step program. On the other hand, the query scope contains all elements
that occur in a query pattern. In practice this means that a predicate in one query cannot refer
to an external operator from a different query, as they belong to two different query scopes.

5.3.2 Operator tree

Figure 5.7: Illustration of operator tree.

Second compilation phase is transformation of
AST into an operator tree. The operator tree
(illustration in Figure 5.7) does not contain
any syntactic elements, but is rather the most
abstract representation of user input. We con-
struct one operator tree for each user event
query. The tree contains binary and unary
operator nodes (i.e. external, union, next,
conjunction, projection, exception and itera-
tion operators). Each operator has specified
semantics (e.g. operator type) and may have
an associated predicate expression (e.g. ex-
ternal, next, conjunction and iteration opera-
tors). The expression has a form of a tree and
differs from AST in usage of objects instead
of syntactic constructs. An operator tree can
be seen as a complete abstract specification of event detection semantics that the user intends
to use.
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The transformation of AST into an operator tree firstly translates syntactic constructs into
their object representations. For example types in AST are translated to Scala type objects,
logical values true and false are translated into boolean objects, and characters +, -, *, / into
arithmetic operator classes. The goal is to provide a suitable abstraction for the next phases of
compilation.

Secondly, the transformation deals with the cases when syntax of an operator does not corre-
spond to its semantics. In Step, the syntax of event patterns is mostly structured in the same
way as the operator tree, thus making it easy to translate abstract syntax tree into an operator
tree. However, this is not the case for the exception operator. Recall that the operator’s syntax
permits patterns !A;B and A; (!B;C), whereas the corresponding binary exception operator se-
mantics are B \b A and (A;C) \d B. As a result we need to rewrite the AST exception pattern
into a binary exception operator pattern. The transformation that we perform is illustrated
in Figure 5.8. Other case when the bracketing of the pattern is different (i.e. (A; !B);C) is
handled similarly.

Figure 5.8: Illustration of how syntactic exception pattern !A;B gets translated into exception
operator B \b A and A; !B;C gets translated into (A;C) \d B.

Thirdly, the operator tree is a suitable representation for estimating operator input and output
event rates, which will be explained in the next chapter. Also, the tree could be used to perform
query rewriting optimizations, for example as explained in Next CEP13.

5.3.3 Topology graph

Topology graph is a data-structure which represents a real topology. The nodes represent
abstract Spouts and Bolts, and arcs represent streams on which these components are connected.
The graph contains all the information about a real Storm topology and is a very detailed
representation. We will not go into much detail here, but only explain the role of the topology
graph in the compilation process.

Firstly the topology graph contains information about how many resources a topology will use
- for example the number of workers, parallelism of each component or the number of reliability
API tasks14. Secondly, it contains abstract representations of Bolts and Spouts, which will
be later compiled into concrete classes. Each Bolt and Spout knows their parallelism, their
input and output streams, and the shape of payloads received and sent on these streams (this is
required for expression indexing). Some components might also contain associated predicates,
operator types, detection windows, and other details used for code generation (e.g. unique class
and package names). Thirdly, the topology graph contains streams that connect Spouts and
Bolts. Each stream has an associated name, endpoints and grouping, which can be shuffle or
all. Finally, the graph representation also contains a list of payloads, corresponding to the input

13However, we have not explored these optimizations, as this was already done by other CEP systems.
14Estimation of these will be described in next chapter.
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events. Each of them contains fields and types, as declared in event schema, and will be used
to generate payload data structures.

Also note that there is only one topology graph, which is built from all operator trees. The
common nodes of the trees are deployed as one component (see later optimizations) and each
topology node corresponds to an operator - for example external operators correspond to Spouts,
other operators correspond to Bolts, but union operator is deployed as merging of streams. To
be brief, note that the topology graph looks exactly like a real topology that was explained in
the previous chapter.

Expression indexing

When translating operator trees into a topology graph, we perform expression indexing. Internal
events contain a list of payloads of external events. When internal events are composed together
(e.g. by next Bolt) the lists of payloads are concatenated. Some operator may contain a
predicate, which needs to access a field of one of these payloads. Accessing a field within a
payload is done by using offsets determined at compile time (an example of accessing field
B.Fld2 is shown in Figure 5.9). The computation of offsets is done by the expression indexing
algorithm.

Figure 5.9: An example of how field B.Fld2 can
be accessed by using offsets.

The expression indexing first figures out what
payloads will be received at each operator.
Examples for input and output payloads for
some operators are shown in Figure 5.10.
For example if iteration takes as input pay-
loads ps, then it will output payloads [ps′, ps],
where ps′ are the payloads of the first event
in iteration sequence, and ps the payloads of
the last event. Next and conjunction opera-
tors output concatenation of payloads of com-
posed events. Exception outputs the payloads
of desired events.

Union operator is the most interesting case,
since output payload may come from two dif-
ferent input streams. Recall though that these payloads cannot be referenced by predicates and
thus we only care about their size15. Our rule is to output the bigger payload of the two input
ones, by padding payloads if they are smaller. Consider the right-most case in Figure 5.10. If
event A;B is received at the union operator, then payloads [payloadA, payloadB] will be output.
If event C is received, then we need to pad its payloads from left to the size of 2. Thus, the
payload [null, payloadC ] will be output. As a result, the output payload size is always fixed,
thus enabling for static calculation of offsets.

Thus, for each field access, we can calculate the payload offset and access it in constant time.
Generating a code that accesses a field within a payload can then be done by using the field
name from the corresponding external event schema.

5.3.4 Code generation

15We need to determine at least the size of output payloads, such that expression indexing works for other
predicates higher up in the operator tree.
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Figure 5.10: Examples of payloads input and output by different operators (yellow boxes are
payloads; crossed boxes cannot be referred to in predicates, A’ means previous A payload).

Figure 5.11: The output of compilation process.

After topology graph was constructed, it will
be used to generate code, which we call topol-
ogy fragments. As shown in Figure 5.11, the
output of the compilation is a set of Java
classes: configuration, topology runner, pay-
loads and Bolts and Spouts implementations.

The configuration class contains information
about which components topology contains,
how they are connected on streams, what is
their parallelism, how many workers are re-
quired, which serializers are used, and what is
the event batch size, or the lengths of input,
stabilization and matching queues. Topology runner contains the main method and uses the
configuration to instantiate a topology and submit it to Storm. The payloads are generated data
structures that will carry values of external events and that will be sent over internal streams.
Finally, generated Bolts and Spouts are subclasses of abstract components from the runtime
framework, and implement their abstract methods. Most important of these need to evaluate
predicates, provide matching window durations, component output streams, or initialize input
and output adapters.

To see how generated fragments look like, consider the following Step program detecting in-
creasing sequence of Microsoft quotes with some length:

topology "Topology"

external Stock(name: string, price: int) < "StockAdapter" [250000.0]

Query(S.price): Stock/S[S.name = ’MSFT’]+ [S.price >= prev(S.price) && len > 50]

> "DiscardingAdapter"

The classes that will be generated from this program can be seen in UML diagram in Fig-
ure 5.12. Most of the methods in the diagram have obvious meaning. Those to notice are
processNewEvent(extEvent) in StockSpout, which takes a new external event, converts it into
an internal event and sends it to those output streams, for which predicates are satisfied; se-
lect(event, prevEvent) from IterBolt0, which evaluates iteration predicate; and project(event)
from ProjectBolt1, which selects the event fields to be output into an output adapter.
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Figure 5.12: The UML diagram of generated topology fragments from the topology graph of
the stock query. The classes are color-coded in the same way as in Figure 5.11.

5.4 Step client GUI

In this section we will briefly explain the capabilities of the Step client GUI and how it is built
on top of the Eclipse RCP platform. It should be noted that a great part of it (in particular
the Step editor) was generated using Xtext, thus sparing us a lot of development time. Some
GUI screenshots can be found in Appendix D.

Recall that GUI is implemented as one Eclipse plug-in, which structure can be seen in Fig-
ure 5.13. The plug-in contains five components: cluster overview, console, monitoring GUI,
Step editor and Step project.

Figure 5.13: The components of Storm GUI build on top of Eclipse RCP platform by using
Xtext.

The cluster overview part of GUI shows general information about the Storm cluster and topolo-
gies that run on it. This information is periodically pulled from the Nimbus service running
at the cluster by using the Thrift framework. We display for example the cluster uptime, the
number of used workers, the total number of worker slots and the physical node count. For each
topology (i.e. Step program) we display the number of tasks it runs, the number of workers
it uses, the total count of detected complex events, the number of external events that it con-
sumed, and throughput of consumed input events per second. These statistics are provided by
Storm, which counts received events on individual streams. Thus, to count how many events
were consumed from an input adapter, Spouts have an extra “dead end” stream (i.e. without
subscribers), where new external events are always emitted and counted (note, that this causes
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only minimal overhead, since events on the stream are not sent).

The console part of GUI is used to notify a user of progress or errors that may occur when
performing cluster-related tasks, such as topology packaging and submission, or stopping and
starting cluster processes.

The monitoring part of GUI allows user to monitor resource use across the cluster and view
topology information through Storm UI. Resource use is monitored using a distributed moni-
toring system called Ganglia [40], which shows for each node its CPU, memory, disk and buffer
usage, as well as summaries of these. It is a very rich and powerful monitoring tool commonly
used in industry. On the other hand, the Storm Web UI can display statistics about topol-
ogy Spouts, Bolts and streams, in particular their counts of emitted, transferred and received
events16. The integration of both monitoring systems into Eclipse is simple, as we use the
internal Eclipse browser to display both web UIs as web pages.

Another part of GUI is the Xtext-generated Step editor, which provides an environment for
writing Step programs. Any change to a Step program will automatically cause compilation
of the program into a topology, without the user having to explicitly request it. Apart from
continuous builds, Step editor offers syntax highlighting for keywords, strings and comments,
and auto-completion for keywords. The editor has almost the same capabilities and design as
the popular Eclipse Java editor.

To create a Step program, the first step is to create a new Step project. This task is handled by
the Step project GUI, which will create directory structure for the project, containing sources
and build scripts. After the project is formed, new programs may be created in a specific
directory and context menus used to submit and kill topologies on the cluster. The Step
project GUI also allows for configuration of the cluster - for example specification of nodes’ IP
addresses and ports.

The implementation of GUI is based on extending Eclipse GUI. Eclipse allows this through the
use of so called extension points. For example, Step editor is implemented as an editor extension,
and new items are added to context menus through menu extensions. The GUI of the newly
added elements is implemented by using SWT widgets, which are the standard graphical library
for Eclipse.

5.5 Optimizations

5.5.1 Batch processing

We observed that events arriving on streams with high throughput are typically small17. How-
ever, by profiling runtime topologies we noticed that for these small events Storm does not
perform well. More precisely, we observed high CPU load when sending and receiving events,
which in some cases accounted for up to 50% of the CPU use. We hypothesise that this could
have been due to messaging layer overhead, which had to process each event individually.

It is of course implausible for a system to spend half of its resources on doing I/O. Therefore,
we were trying to find a workaround and we found it in terms of event batching (interestingly
Storm does not do this). Event batching is simple - the sender component will buffer multiple
outgoing events for the same output stream. When the buffer is full, events will be packaged

16Storm Web UI is only useful when user understands topology structure, as it displays information only about
individual Bolts and Spouts.

17Consider for example stock quotes, which arrive on fast streams, but contain only about ten numerical fields
and two small string fields.
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into an event batch, which will be sent to the corresponding stream. The component receiving
an event batch will simply unpack it and process (i.e. first stabilize) all its events one by one,
in the order of sending (event batch preserves this order). The data-structure used for batching
is shown in Figure 5.14 and is really just a container for variable number of internal events.

Figure 5.14: The structure of batched events.

The number of events in a batch is config-
urable, but is fixed per topology. In Chap-
ter 6 we will show what we consider the opti-
mal batch size and also illustrate the incred-
ible performance gain that this simple opti-
mization caused. It may appear that bigger
batches are generally better, as they cause
better saturation of network and lower CPU
resource use due to sending and receiving of
events. However, it is also important to note
that they lead to higher processing latency.

Furthermore, some extra care has to be taken to handle punctuations, which are sent separately
from event batches. If a punctuation is received on a stream, some events may be released from
the stabilization queue. Additionally, with regards to batching, it pays off to release the current
batch of outgoing events, even though it might not be full yet. This is purely an optimization
with regards to lowering processing latency, as receiving a punctuation means that we may not
receive more events to fill the outgoing batch.

5.5.2 Two-phase stabilization

Introduction of batching caused some unexpected performance issues. We found out that a lot
of events were being held in the stabilization queues, thus making the stabilization algorithm
take much longer. Consider for example an operator, which takes input from S streams, where
events are sent in batches of size B. Also assume that events have strictly bigger end timestamps
(which will often be the case). After a batch is received at the operator, its contained events
will be put onto the stabilization queue. An event will be released from the queue only after it
has been acknowledged by events with higher timestamps from all streams. Thus, a batch from
each stream has to be received and put onto the queue. This results in a queue of average size
B ∗ S and O(B ∗ S) operations are needed to release an event.

Now consider the case without batching. On average there will be only S events in the queue
(assuming events arrive from each stream at the same rate). Considering that B is in order
of hundreds, the performance of stabilization degrades significantly when using batching. The
problem can be solved by an algorithm we call two-phase stabilization.

The idea of two-phase stabilization is that we stabilize events not in the order of received batches,
but rather in the order in which they would be received without the batching optimization. The
operation of the algorithm can be seen in Figure 5.15 and consists of two phases:

• The first phase buffers event batches for each input stream. If an event batch was received
from all streams, we start removing events. The events are removed in the order of streams,
instead of in the order of batches. In other words, the 1st event from the 1st stream is
removed, then the 1st event from the 2nd stream, up to the the 1st event from S-th
stream. Then we continue by removing the 2nd event from the 1st stream, the 2nd event
from the 2nd stream, and so up until the B-th event from the S-th stream. The removed
events are sent for stabilization to the second phase. Now suppose that events on one
stream get exhausted, and that the last event from the stream had end timestamp t. We
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continue removing events from other streams in round robin fashion, as long as they have
end timestamp less than t. This results in better order or released events, in the case
when batches on one stream arrive faster than on the other streams.

• The second phase is actual stabilization of events, using the same algorithm as described
earlier in this chapter.

Figure 5.15: Illustration of two-phase stabilization. The first phase buffers event batches for
each stream and releases individual events in the order shown by the red box. Second phase is
the original stabilization algorithm.

If a batch of size B was received from a stream, it will take constant time to buffer it during
the first phase. For any event released during the first phase, the second phase will take O(N)
steps, where N is the length of the stabilization queue. Since events are stabilized in the order
in which they would be without batching, we achieve the performance of the original algorithm.
In fact, the performance will be even better in cases when streams have different event rates.
This is because events from fast streams will be sent to stabilization queue only if events from
other streams were received, thus not always saturating the stabilization queue. Two-phase
stabilization is correct because all events are stabilized by the original correct stabilization
algorithm.

Note that with regards to load shedding, batches that are buffered during the first phase will
be released if maximum queue sizes per stream are reached. This means that oldest events will
be passed to the second stabilization phase. During the first phase we also need to deal with
received punctuations. If a punctuation is received, we will remove all events waiting in the
first phase of the algorithm, such that progress can be made.

5.5.3 Reuse of common event patterns

Another optimization that is implemented on top of already described system is reuse of com-
mon event patterns among different queries. Consider for example the following two queries:
(A ; B) |C and (A ; B) |D. The generated topology for this query is shown in Figure 5.16, and
includes the next operator twice, for each specified query. Both of these operators perform
the same detection, as they operate on the same input streams. The topology also requires an
event to be sent twice to each operator and hence twice that many CPU resources are used
when detecting a next pattern.

We can improve the performance in these cases by deploying operators common among multiple
queries only once. An example of a topology for the earlier queries utilizing this optimization is
shown in Figure 5.17. Note that the next operator now outputs detected events not to one, but
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Figure 5.16: The topology of two queries (A ; B) |C and (A ; B) |D if common sub-queries are
not reused.

to two different streams. The grouping of the new stream will depend on whatever the following
operator expects (in the example it will be shuffled) and thus stays the same as without the
sub-query reuse optimization.

Figure 5.17: The topology of two queries (A ; B) |C and (A ; B) |D with common sub-query
reuse.

The optimization is performed by compiler during the transformation of the query operator
trees into a topology graph. When adding a new operator sub-tree to the topology, we first
check whether a Bolt for such sub-tree does not already exist. If it does, we just add an extra
output stream to it. Otherwise, we deploy a new Bolt for the operator and recursively continue
with deployment of its sub-trees. That is, reuse of common sub-queries happens from top to
bottom - we first try to reuse the biggest common pattern and if we do not succeed, we continue
with its sub-patterns.

It should be noted that we consider two sub-patterns identical, if they have exactly the same
operator trees. For example the patterns S[S.price > 100] and S[S.price > 100] are equal, but
are not the same as the pattern S/T [T.price > 100]. I.e. for simplicity we do not consider
structural equality.

5.6 Acceptance testing framework

The correctness and validity of Step is established in two ways:

• Unit testing is used to establish the correctness of the compiler and the runtime frame-
work at a component level. It tests individual complex event detection and compilation
algorithms using the JUnit framework.

• Acceptance testing is used to establish the correctness of the whole system from its input
to its output. That is, we test that the specification of Step programs, their compilation,
deployment, and running works correctly as a whole. Since it is not simple to test a
distributed system, we will explain our approach, for which we have implemented an
acceptance testing framework.
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Firstly note that Storm provides us with an ability to simulate a cluster on a single node, a
so called local cluster. The purpose of this is an ability to try out topologies locally before
they are submitted to a real cluster. Local cluster resembles a distributed environment fairly
closely. A Zookeeper server is started that holds global Storm state and multiple tasks are
spawned for each component according to their parallelism. The events are exchanged between
tasks through localhost network interface and arrive on input queues, as in a normal Storm
framework. Thus, the local cluster provided by Storm is a good basis, on top of which we built
the acceptance testing framework.

The Step acceptance framework takes as input a Step program18 and a list of events that should
be detected by the program. The program will be compiled, run and the events that it detects
will be compared against the list of expected events.

The whole process of running a test is illustrated in Figure 5.18. First, Step program is saved
into a file and is compiled into topology fragments by the Step compiler. To test variability in
topology parameters, the compiler can be parametrized by different event batch sizes or event
queue lengths. Generated fragments are then joined with the runtime framework and dynam-
ically compiled and loaded. Afterwards, local Storm cluster is initialized and the compiled
topology is submitted to it. Some parameters can be overridden, for example component paral-
lelism can be changed to test correctness of parallelised topology at low input event rates. The
local cluster will start running the topology and will be killed after some fixed time. The events
detected by the topology are always sent to a mock sink adapter, which stores them. After
topology is killed and cluster shut down, the detected events are compared against expected
ones, which determines whether the test succeeds or fails.

Figure 5.18: The operation of acceptance test framework.

We have implemented 46 acceptance tests (each having multiple event queries) that run on
this framework and test individual operators on their own, as well as in combination with
complex predicates and other operators. Two examples that illustrate the simplicity of defining
acceptance tests are shown in Appendix C.

5.7 Remote profiling

To spot performance bottlenecks, we profiled the Step CEP system at runtime. An interesting
aspect of this was remote profiling of topology tasks running on the cluster. For this purpose
we used the VisualVM software from Oracle [49], which was connected via JMX connections to
jstat deamons and worker processes running at the cluster. We had to configure Storm to start
workers with parameters that enable JMX profiling connections. An overview of this set-up can
be seen in Figure 5.19.

18The Step program has usually parametrized adapters, where parameters specify which events should be
emitted
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Figure 5.19: Remote profiling of Storm and Step runtime.

For each aspect of complex event detection we could see the CPU time that it used. Using
this approach we discovered that too many CPU resources were spent by Storm on receiving
and sending events, which led us to implement event batching. Profiling was also used to
determine the optimal data structures for the stabilization algorithm. Additionally, after event
batching was introduced, it led us to realise that original stabilization algorithm became the
bottleneck, which resulted in the implementation of two-phase stabilization. A screenshot of
profiling showing that input and output IO consumed too many CPU resources without event
batching is shown in Figure 5.20.

Figure 5.20: Profiling Storm remotely showing bottleneck in the ZeroMQ messaging layer.

5.8 Summary

In this chapter we detailed on implementation aspects of the Step CEP system, as well as
our technology choices. We described algorithms provided by the runtime framework, such as
event stabilization, throttling and punctuations, as well as algorithms used by the individual
operators to match events. We also explained how Step optimizes for efficient serialization and
deals with overloads through load shedding. Then we outlined the whole compilation process
of a Step program into a runnable Storm topology, and also the functionality of the Step GUI.
Finally, some performance optimizations were introduced, as well as a framework for testing
the correctness of complex event detection.



Chapter 6

Estimating system parameters

6.1 Goals

Complex event patterns specified in the Step language are compiled into a topology to run on
the Storm framework. The topology can be tweaked through changing many parameters, which
specify how many resources will be used and how many events per second it will be able to
process. Since topologies cannot change at runtime, we need to estimate their values during
compilation. We are interested in computing the optimal set of parameters, such that the
compiled topologies are capable to detect event patterns at specified input event rates, without
being too wasteful. These are the parameters that affect topology performance:

Topology parameter Description

Component parallelism The number of tasks that each component will run in.

Workers count The number of workers the topology needs to use.

Acknowledger count The number of the acknowledger tasks for Storm reliability API.

Batch size The number of internal events contained in one event batch.

Internal queue sizes The maximum sizes of component input queues, event matching
and stabilization queues.

The most important parameters are component parallelism and workers count. Increasing par-
allelism of individual operators increases their event processing throughput. However, setting
this parameter too high might waste resources, as unneeded component tasks will be spawned.
Furthermore, this may result in lower performance of operators that require input stream repli-
cation. Take for example the greedy next operator, which replicates its left stream across all
parallel tasks. Unneeded tasks will also receive replicated events, resulting in higher network
usage and wasting of CPU resources.

The number of topology workers can be seen as the number of processes that will run topology
tasks (i.e. event processing threads). Each worker contains input and output queues for the
tasks it runs and handles the messaging IO. We need to determine how many tasks a worker
can handle and how many workers can be run on a single CPU core. Apart from workers count
and component parallelism, we also need heuristics for the number of acknowledger tasks and
the optimal batch size. For simplicity we abandon estimation of internal queue sizes, which we
only limit to some maximum values.
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6.2 Approach

The basis for determining topology performance parameters are user-specified input event rates.
We use these to estimate the input and output event rates for each operator in the topology.
This is done by the Step compiler, independently for each event query, by using the operator
tree representation of a Step program. In general, the output event rate of an operator is a
function of its input rates, as seen in Figure 6.1. Input event rates, the performance of sending
and receiving events, and the type of operator output stream are the main factors in determining
operator parallelism.

Figure 6.1: Output event rates are calculated as a function of input event rates.

Recall that compilation process merges multiple operator trees into one topology graph. It may
be the case that multiple external operators are merged into one Spout, or multiple detection
operators are merged into one Bolt due to sub-query reuse. However, this does not affect the
operator input event rates. That is, if the operator were estimated to receive x events per
second, its corresponding Bolt or Spout would also receive x events per second. To compute the
component parallelism, we use the topology graph representation, as it contains information
not only about input event rates, but also about predicates and streams.

Each Bolt or Spout has its own model of parallelism, which is based on performance measured
during its evaluation. The performance of each operator is evaluated with regards to varying
parallelism on a fixed scenario (illustrated in Figure 6.21). Here, enough event sources (Spouts)
and event sinks (projection Bolts) are created for operator Bolts, such that the evaluated Bolt
always has new events to process and is able to emit detected events. Then we vary the
parallelism of the Bolt and plot it against the measured throughput of processed events.

Figure 6.2: Evaluation of individual Bolts and Spouts with respect to parallelism.

The evaluating of Spouts is similar to that of Bolts. For a given Spout parallelism we always
create enough sink tasks, such that the Spout has the capacity to emit new events. Then we
plot the number of events that a Spout outputs per second with regards to different parallelism.
Afterwards, we use the Matlab curve fitting toolbox to process our data, and hence empirically

1Exact evaluation scenarios for each operator as well as their performance graphs will be explained in the next
chapter.
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obtain a model that describes Spouts and Bolts parallelism. In the case of Bolts, the model
depends on input event rates and the structure of associated predicates. In the case of Spouts,
we also need to include the types and the count of output streams.
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Figure 6.3: Fitting measured data from projection Bolt.

An example of measured projection Bolt performance is shown in Figure 6.3. The evaluation
scenario in this case consisted of receiving an event with twenty fields from a Spout and pro-
jecting all of its fields to an output adapter that would discard them. Measured data (red line)
are then fitted into a model, in this case a linear model depending only on the input arrival
rate (green line). We also could have included the number of projection fields in the model,
but this would have exponentially increased the number of evaluation experiments. Instead,
we try to use conservative scenarios during experiments and any errors or variation introduced
by new parameters are approximated with an error margin. To include the error margin into
the model, we simply multiply expected input event rate with a constant to obtain higher rate
(model with the error margin is displayed by blue line).

We estimate input event rates for each operator, which are then fed into the model to predict
component parallelism. This then serves as a base for computing number of required workers
and acknowledger tasks, which are estimated using heuristics obtained by observing properties of
the Storm platform. It should be noted that our method of modelling performance is hardware-
specific. However, the models can be crudely transposed for use on a different hardware. We
could for example evaluate one model on a different hardware and determine a performance
scaling factor. All other operator models could then be scaled by the same value. We will now
describe into more detail how event rates are estimated, what are the performance models of
individual operators and which heuristics we use.

6.3 Modelling event rates

For each operator we estimate its input and output event rates. The summary of these can be
seen in Table 6.1. The input event rates are straightforward, since they are just a sum of rates
of all input streams. The base case is the external operator receiving events from an external
stream, which has declared mean event arrival rate. More interesting are operator output event
rates, which are functions of the input event rates.

We use the terminology that ratein is the input event rate for unary operators. For any binary
operator P1 opB P2, we denote rateleft to be the rate of events of pattern P1, and rateright to
be the rate of events from pattern P2. For predicates, dur specifies the maximum duration of a
detected composite event and maxLen/minLen the maximum or minimum length of iteration
sequence if provided.
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Operator type Input event rate Output event rate

External declared declared
Projection ratein ratein
Union rateleft + rateright rateleft + rateright
Conjunction rateleft + rateright rateleft + rateright
Exception rateleft + rateright rateleft
Next (greedy) rateleft + rateright rateleft
Next (any) rateleft + rateright rateleft ∗ rateright ∗ dur
Iteration (greedy) ratein ratein/minLen
Iteration (any) ratein ratein ∗maxLen

Table 6.1: Parameters that affect topology performance.

For the external operator, the worst case scenario is that on each output stream it will emit
all the events that it receives (i.e. its declared input event rate). It should be noted that for
simplicity we do not take into account selectivity of logical, arithmetic or boolean predicates that
can be associated with operators. This requires more information about the received events,
in particular their typical distributions of values and event durations. However, we take into
account the duration and length predicates, which may occur in next, conjunction and iteration
operators. When estimating event rates, we try to be fairly conservative, so that the CEP
detection system can also cope with particularly bad combinations of input events. However,
using the worst case scenario is an ineffective estimate for some operators (e.g. conjunction)
and we will need to make some simplifying assumptions.

The output event rates of union and projection are the same as their input rates, since these
operators do not drop or create new events. Conjunction operator is more interesting, since
we need to estimate how many complex events may be output per input event. The operator
will output an event only if it overlaps with some other event. Thus, the question is with how
many left events can a received right event overlap and vice versa. The worst case scenario is
when all events have the same start timestamp and hence all overlap. If the duration predicate
is not specified, the output event rate will rise to infinity. Even with specified event duration
predicate, the rate2 would be

rateleft ∗ dur + rateright ∗ dur

This is very pessimistic and unrealistic, as it presumes that within a time window every event
would overlap with every other event. Instead, we assume that each received event will overlap
at most one other event in the same time window, and hence the output rate will be rateleft +
rateright

3.

The output event rate for the exception operator is simply the input event rate of the desired
events. This is the worst case that can occur in the absence of undesired events. Similarly,
the worst case output event rate of greedy next operator is the rate of left events, since a left
event can match at most one right event. Thus, only one composite event per left event can
be output. The worst case for any next is different, since left event can match all right events
within a matching window. Within a matching window there will be rateright ∗ dur events, and
thus the output rate will be rateleft ∗ rateright ∗ dur4.

2Justification: each left event will match every right event within a window. There will be rateright ∗ dur
right events in a window. Also vice versa, every right event will match every left event within a window.

3This assumption is still very conservative. Consider detecting two calls from the same number happening at
the same time. An overlap will be detected only as often as a detected fraud occurs (i.e. very rarely).

4If maximum duration is not specified, the event rate may be infinitely high. In this case we assume that
duration window is only 1 and use the output event rate rateleft ∗ rateright
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Greedy iteration will output one detected sequence and will restart its matching from scratch.
If the shortest sequence to be detected is of size minLen, then for every minLen events one
sequence can be output. Thus, the output event rate is ratein/minLen, or ratein if we do not
know the minimum iteration length. Here we assume that iteration predicates fail often. If
predicates would never fail, we could use the estimation ratein/maxLen. Now consider the any
iteration, which detects any sub-sequence up to length maxLen. That means that in the worst
case if an event is received, a sub-sequence of size 1, 2, ..., or maxLen can be output. Thus,
the estimated worst case output rate is ratein ∗maxLen.

6.4 Parallelism model

Now we will describe our parallelism models for each operator. We will present our theory and
the evaluation results on which it is based will be presented in the next chapter.

Consider the structure of a general topology component in Figure 6.4. The time to detect an
event can be decomposed into three parts: the time to receive an event, the time to process an
event and the time to send a detected event. The time to receive an event and to process it
will depend purely on the operator input event rates and its operator semantics (i.e. operator
type and its predicate). The time to send an event will depend on the number of subscribers
and the type of output stream grouping.

Figure 6.4: Three phases on which Bolt spends most of its time.

We make a simplifying assumption and do not take into account the sub-query reuse optimiza-
tion5. This means that in general operator Bolts will have only one output stream and Spouts
will have multiple output streams. As a result, we will model Spouts slightly differently from
Bolts.

6.4.1 Model of Spouts

In general, the performance of Spouts will depend on the performance of sending and filtering
events. As we can see in Figure 6.5, performance of filtering can be measured in predicate
complexity, the number of comparisons that the predicate contains. In this benchmark we used
the following predicate, which always evaluates to false (thus avoiding lazy evaluation):

x == 0 || x == 1 || x == 2 || ...

The figure shows that filtering is a very fast operation. In particular, consider the filtering
complexity of 200 (a really big predicate), which results in the filtering throughput of 107

events per second. This is roughly ten times more than the maximum task sending throughput.
To keep things simple, we exclude the predicate complexity from the Spout model, and include
just the performance of sending events.

5This optimization would not be applied unless queries share some part.
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Figure 6.5: Performance of filtering events on predicates.

The performance of sending an event depends on the number of output streams (i.e. the
number of subscriber Bolts) and also on their type. Replicating an event to all output streams
is obviously slower than sending an event to a shuffled stream. The performance of one Spout
task sending events to different types and count of output streams can be seen in Figure 6.6.
We notice that the time (here inversely proportional to throughput) to send a single event
on a shuffled stream stays constant, whereas for replicated streams it increases linearly with
the number of subscribers. However, in the latter case the total number of sent events per
second stays roughly the same (the dash blue line)6. It is also interesting to see that sending an
event to one subscriber on replicated stream is about twice as fast as sending it on a shuffled
stream. This is caused by the overhead of randomly shuffling events to decide their destination.
These observations suggest that we could use the actual number of events sent as a basis for a
performance model. This way we abstract from different stream types.
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Figure 6.6: Sending throughput for one task with varying number of subscribers and different
stream groupings (no event batching).

Let Sshuffle be the set of Spout’s output streams that are shuffled and Sall the set of replicated
streams. Also let Ps be the number of subscribers for a stream s (i.e. the parallelism of target
component), ratein be the declared Spout input adapter rate and R be a constant ratio of
the speed of sending events on a replicated stream, as compared to shuffled stream. We first
compute the number of events that must be sent by Spout to different Bolt tasks per second as:

ratesend = |Sshuffle| ∗ ratein +
1

R

∑
s∈Sall

Ps ∗ ratein

6This means that the time to send an event to a single subscriber of a replicated stream is constant
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That is, for each shuffled output stream an input event has to be sent only once, but for each
replicated stream the event has to be sent as many times as there are subscribers. However,
since sending of events for replicated stream is twice as fast as compared to a shuffled stream,
we scale the number of events that have to be sent by R. Hence, we obtain the number of events
that have to be sent on a single shuffled output stream.

Now we evaluate the sending performance of a simple Spout for only one shuffled output stream,
but with changing parallelism. As we will see in the next chapter, the sending throughput
increases linearly with increased parallelism, and hence we fit a linear model. Let P be Spout
parallelism, K error margin7 and A, B constants. We obtain the following model for the
parallelism of Spouts:

P = A ∗K ∗ ratesend +B

We compute the parallelism by plugging in the number of events that a Spout has to send (i.e.
ratesend). Since this is a real number, we need to round it up to the nearest integer. The model
constants are shown in Appendix A.

6.4.2 Model of Bolts

Modelling of Bolts is simpler than modelling of Spouts. We evaluate each type of Bolt indi-
vidually with regards to different parallelism. The evaluation will determine what is the usual
composite throughput of receiving, processing and sending events for the Bolt. That is, we
do not distinguish individual parts of a Bolt, but rather look at its performance as a whole8.
An alternative approach is to evaluate and model each individual part of a Bolt and try to
estimate composite throughput through queuing network analytics. However, this would result
in complicated equations, which might not resemble true Bolt performance.

Previously, we assumed that Bolts will typically have only one output stream. Thus, we do
not need to include output stream count in our model. However, it would be useful to include
the type of output stream, since the performance of a Bolt with replicated output stream may
be slower than with a shuffled stream. This would require doubling the amount of evaluation
experiments made9, and hence we omit it for simplicity. We know that the slowest part of a
Bolt is processing an event and variations in sending events can be covered by an error margin.
Also note that the performance of receiving depends only on input event rates and will be
implicitly included in a model. Because of the above reasons, our model depends only on event
arrival rates10. We will now present the models that we obtained by curve-fitting the evaluated
performance of each individual Bolt on a fixed evaluation scenario (concrete constants used are
shown in Appendix A). ratein will denote the sum of all input event rates and K the error
margin.

For the projection Bolt, we observed that throughput increases linearly with increased paral-
lelism (recall Figure 6.3). Thus, to compute parallelism we use the linear model:

P = A ∗K ∗ ratein +B

We use the same model for the exception operator. Since in exception undesired events, which
have to be replicated occur only rarely, the performance increases linearly with new replicas.

7To cope with imprecise model and filtering overhead, we artificially increase the number of events that have
to be sent by 10%.

8In the case for Spouts we based our model only on performance of sending events.
9Also in the case of replicated streams we would need to take into account target Bolt parallelism.

10We also assume that events arrive at the same rates for all input streams.



91 6 Estimating system parameters

With slight modification the linear model also appears to be a good fit for the any iteration
operator:

P = min(A ∗K ∗ ratein +B, Itmax)

The iteration performance rises linearly until Itmax parallelism is reached and performance
gain from replication diminishes. At this point, event replication overhead starts dominating
performance gain from parallelising detection. Thus, we bound the parallelism of any iteration
by Itmax. Also, as greedy iteration is not parallelisable, we always set its parallelism to one.

The relationship between event arrival rates and parallelism for next Bolts (greedy or any) and
conjunction Bolt nicely fits the exponential equation:

P = A ∗ eK∗ratein∗B

This is because the higher parallelism we have, the smaller improvement in throughput we see.
In other words, to achieve higher throughput we require exponentially more parallel replicas.
This result can be attributed to the fact that with more replicas we need to replicate more
events, thus increasing demand for time spent doing IO instead of event processing. However,
the exponential growth of parallelism is slow and we will see in the next chapter that each new
replica leads to a fair improvement of event processing throughput.

6.4.3 Effects of event timing

So far we have not taken into account effects of operator predicates, in particular the event
durations. The described models were obtained by evaluating performance of operators on
fixed scenarios with fixed predicates. However, the performance of operators detecting events
within some matching windows (i.e. next, conjunction and iteration operators) highly depends
on the size of the windows, which is usually specified through maximum event duration or
iteration length sequence. To see this, consider the performance of greedy operator for different
parallelism and event durations in Figure 6.711. The event throughput is higher if the used
duration windows are smaller. This is because smaller windows lead to shorter event matching
queues, and hence less operations have to be made during event matching.

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10
x 10

4

Parallelism

T
hr

ou
gh

pu
t e

v/
s

Greedy next bolt wtih different parallelism
and matching windows (no batching)

 

 

Dur. 250
Dur. 5000
Dur. 25000
Dur. 50000

Figure 6.7: Bigger matching windows result in lower throughput.

Our aim is to include duration windows into models of individual operators, to better predict
their performance. We demonstrate our approach only on the greedy next operator, but this
could be applied to other operators as well. The starting point is to evaluate how the operator’s
event throughput changes for different duration windows. Thus, we only compare performance

11Note that we are not using batching here and hence the performance is low.
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of each window size for some fixed parallelism. The goal is to determine how throughput changes
with increased matching window size. In the case of greedy next operator we discovered that
this follows a rational function of a form 1/x. Let W be a matching window size and Wa, Wb

be constants. Then under fixed parallelism, the throughput for window W can be calculated
as:

T (W ) =
1

Wa ∗W +Wb

This just simply says that if we fix parallelism, then increasing window size results in smaller
throughput. The exact value is determined by the fitting constants Wa and Wb. Now consider
that we have a greedy next Bolt parallelism model for default window Wdef (e.g. we evaluated
the Bolt for window size 5000), which is defined by:

P = f(ratein)

I.e. parallelism is a function of input event rate. However, we would like to take into account
the user-specified matching window Wreal. We can do this by scaling the input event rate (i.e.
throughput for default window) by a ratio of Wdef to Wreal. Let ratedef be the new scaled
input event rate resulting from scaling event rate for window Wreal into event rate for window
Wdef . We compute it as follows:

ratedef = ratein
T (Wdef )

T (Wreal)

The new scaled event rate ratedef is the number of events per second that the operator would
have to process if window Wdef was used instead of Wreal. Thus, we can just take the scaled
input event rate and plug it into original parallelism model to compute component parallelism:

P ′ = f(ratedef )

We will see how this approach fits real measured performance in the evaluation chapter.

6.5 Modelling of other parameters

6.5.1 Batch size

Since batches significantly improve performance, we are interested in determining an appropriate
batch size in terms of the number of internal events, which it carries. To do this, we set up the
following experiment: A non-filtering Spout will send event batches over shuffled stream to a
projection Bolt, which will discard them. The Bolt will have enough projection tasks, allowing
a single Spout task to always emit new events. The number of internal events contained in a
batch will be varied, but their payload sizes will be fixed (here 64 bytes). We will measure the
number of events that the Bolt can receive per second and the network usage.

The measurements of sending throughput and network utilization for different batch sizes can
be seen in Figure 6.8. Note that the experiment was performed over 1 Gbps LAN network.
We can see that if batching is not applied (i.e. batch size is 1), the sending throughput is only
about 50 000 events per second. The throughput rises in a logarithmic curve, radically up to
the event batch of size 100 and then increases at a slow steady rate. The corresponding network
usage rises accordingly, but does not saturate the available 1 Gbps capacity.

For small batch sizes (e.g. up to 50) the bottleneck is in high CPU overhead at the Spout. This
is caused by generation of message IDs, determination of destination Bolt task, serialization,
context switching between native ZeroMQ and Storm, and ZeroMQ overheads of sending a
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Figure 6.8: Determining optimal batch size.

single message. As we increase the batch size, the CPU usage gets smaller and the bottleneck
starts shifting towards network. This is what we want, since we want to free CPU resources for
event processing and saturate available network resources. From the figure it can also be seen
that the design of Storm allows only to use of up to 80% of available network bandwidth12.

We chose the batch size which yields a high sending event throughput. This allows CPU
resources to be used for event detection instead of IO. Figure 6.8 demonstrates that any size
above 300 is good, as it maximizes the throughput. We set our system to use an arbitrary batch
size of 500. Going beyond this does not significantly improve performance, but rather results
in higher event detection latency.

6.5.2 Workers count

The role of workers is to receive and send events by a dedicated IO thread and to run component
tasks. These perform CPU-intensive operations, and we observed that a single task under heavy
load will use all the resources of one CPU core. However, usually the task will never be perfectly
saturated by incoming events because of the error margin that we include in the models and
because of rounding up the required number of tasks. This suggests a joint use of one CPU
core by IO thread and the component task, which works well in practice, as we see a CPU use
of between 100% (one full core) and 200% (two full cores) depending on the type of component
and output streams. For example, a Bolt that outputs events onto one stream will not require
to do so much IO as a Spout, which needs to replicate events to many outgoing streams. For
Bolts we observe that using one component task per worker uses up to 120% of a single CPU
core (in the presence of multiple cores). As a result, we decided that a node with n CPU cores
can accommodate up to n workers.

It might be a good idea to run multiple tasks on a single worker, since the tasks could com-
municate over shared memory, thus lowering IO overhead. If this was the case, a node with n
CPU cores could run exactly one worker with n tasks. To verify this, we set up the following
experiment: A Spout was sending 64-byte payload events to a projection Bolt, both of them
with parallelism 1. The component tasks were run at one worker, on two separate workers
on the same machine, and on two separate workers on two different machines. We measured
the throughput of sent events per second13. Results of repeated runs of these experiments are
shown in Table 6.2.

The communication between tasks at the same machine yielded approximately the same through-

12By using iperf tool, we measured that a single TCP/IP connection between two nodes can use up to 92% of
available bandwidth. Storm is not too far from this.

13If communication between two tasks happens through shared memory, the measured throughput should be
higher
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Positioning of Spout and Bolt Throughput (ev/s) (batch size 500)

Same worker, same node 368 407
Different workers, same node 832 706
Different workers, different node 825 169

Table 6.2: IO performance measurements resulting from different positioning of tasks.

put as communication between tasks on different machines. This implies that IO between tasks
on the same machine is not done through shared memory, which is backed up by the fact that
we also observed exchange of events over the localhost network interface. After discussion with
Storm developers we realised that Storm does not perform this optimization. Furthermore, we
noticed slow performance of exchanging events when tasks run on the same worker. We hypoth-
esise that this is due to a single ZeroMQ thread handling both event receiving and sending14.
We obtained the same relative results when event batching was not used.

As a result of these measurements, we position one component task per one worker, and each
machine will run as many workers as it has CPU cores. Each worker will roughly consume about
one CPU core, or a bit more if it is heavy on sending events (e.g. Spouts). Thus, resources will
not be wasted. Also note that the worker count is computed by using real numbers for estimated
number of component tasks. For example, if model estimated that two components require 1.1
and 1.2 tasks, the total of 2.3 tasks, only three workers will be used for 4 spawned tasks. This
may have the disadvantage that some workers might be overloaded, but avoids wasting total of
one whole CPU core by unneeded fourth worker.

6.5.3 Acknowledger count

The number of acknowledger tasks for throttling is computed as half of the number of required
workers. The heuristic suggested by Storm community is to use the same number of acknowl-
edger tasks as there are workers for the topology. Since batching is always used, we observed
that using only half of the tasks is more than enough. However, we do not need to be too
precise and can afford to have more acknowledger tasks as needed, since these are extremely
lightweight. A precise estimation of their count could be done by modelling acknowledger tasks
in the same way that we modelled operators.

6.6 Summary

In this chapter we explained computation of parallelism for each topology component by first
estimating operator input and output event rates, and then using a parallelism model obtained
by evaluation and curve-fitting of individual Bolts. We also focused on the computation of
other parameters, in particular determination of optimal batch size, and the required count of
workers and acknowledger tasks. We omitted the performance plots, from which parallelism
models originate, as this is described in the next chapter.

14We could configure multiple ZeroMQ threads per worker to improve this, but this is inconvenient.



Chapter 7

Evaluation

7.1 Goals

In Chapter 5, we described how correctness of complex event detection is established. This is
done by using unit testing at component level and extensive acceptance testing at the system
level. Thus, the validity of the Step compiler and the Step runtime framework will not be
discussed further. Instead, we are now interested in the performance of complex event detection,
and its improvement due to parallelism and optimizations.

Therefore the evaluation goals are the following:

• Measure performance of individual event detection operators and its improvement due to
parallelism

• Investigate the applicability and limitations of our models

• Determine the role of optimizations in improving performance

• Examine performance of real event detection queries

• Summarize properties of Storm

We will first explain the used configuration of the Storm cluster and the method used to measure
the performance of topologies. Afterwards, we will evaluate individual operators. The goal
is to determine operator event processing throughput with regards to different parallelism,
examine how well our models fit the measured data and explain the measurements. Finally,
we will evaluate more complex queries applicable to real scenarios of fraud detection or stock
monitoring, and describe the most important traits of Storm.

7.2 Our approach

All evaluation was done on the Emulab cluster facility provided by University of Utah and was
done by running generated topologies with different parameters on a fixed number of physical
nodes. The nodes were 64-bit 2.4GHz Quad Core Xeon CPU machines1 running Ubuntu 11.10
and connected in a star topology over 1 Gigabit Ethernet, as illustrated in Figure 7.1. We
distinguished between two types of nodes: the master node and multiple slave nodes. The
master node was used to keep the state of the Storm cluster and run Zookeeper, Ganglia,

12.4 GHz 64-bit Quad Core Xeon E5530 ”Nehalem” processor, 5.86 GT/s bus speed, 8 MB L3 cache, 12 GB
1066 MHz DDR2 RAM. Based on the Dell Poweredge R710
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Nimbus and Storm UI daemons. Actual complex event detection was done on the slave nodes,
which ran Supervisor daemons. The Supervisors were configured to be able to create as many
workers as there were CPU cores on a machine (in our case four). The usual set-up consisted
of one master node and ten slave nodes.

Figure 7.1: Emulab cluster organization during evaluation.

The performance of Storm topologies was measured primarily by event throughput metric,
i.e. the number of input events that a topology or individual operator could process during
a fixed time period. The topologies were run with the reliable Storm messaging API, such
that component input queues were throttled and did not overflow. This meant that apart
from topology tasks, there were a number of acknowledger tasks running at the slave nodes, as
determined by our models.

For most experiments, an event query was specified in the Step language, compiled into a
topology and deployed to the cluster. Then the topology was left to run for 60 seconds, for
its processing to settle down and the throughput to become steady2. Afterwards, three event
throughput measurements were taken, each over a time period of 100 seconds, which were then
averaged to yield the final throughput. If the three measurements showed higher standard
deviation than 6-10%, the experiment was repeated.

The throughput for each topology was measured by a custom utility called monitor (illustration
in Figure 7.2). Monitor used the Storm Thrift interface to periodically poll topology statistics
from the Storm UI daemon running on the cluster, which was collecting the counts of sent
and received events for each topology stream on a second granularity. Depending on a type of
experiment, the monitor accordingly summed up statistics for relevant individual streams and
determined the throughput of a component. The measurements were collected in spreadsheets
and later examined in the Matlab tool. For some topologies the CPU, memory and network
resource usage were also measured, which was done by using the Ganglia monitoring system.

Evaluation of a single topology took typically about 7 minutes, which was the reason why we
decided to automate some of its aspects. We implemented a program called batch monitor which
automatically submits, evaluates and kills a single topology with different configurations. The
program took its input from an experiment file, which could specify the component parallelism,
the length of internal event queues and the number of needed acknowledger tasks. The topology
could then be submitted to the cluster with different combinations of these parameters and its
results were stored in a spreadsheet file, thus simplifying some tedious work.

2The initialization time was used to let input and processing queues of individual components grow to their
average length.
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Figure 7.2: Monitoring topology throughput: statistics from different nodes were collected by
Storm UI and reported to the monitor.

7.3 Evaluation of individual operators

Figure 6.2 from the previous chapter, explains the evaluation method for individual operators.
Each operator was evaluated on a fixed scenario, but with varying parallelism and predicates.
The scenarios were chosen such that they were conservative, as we wanted to make sure that the
measured performance is easily achievable by typical queries. All operators except the union
were compiled into a single parallelisable Bolt, and were tested as a part of a topology.

When evaluating Spouts, the topology needed to have enough projection Bolts, such that they
would not block when sending events. Then the sending throughput was measured, by summing
up the events that were sent on Spouts’ output streams per second. When evaluating operator
Bolts, enough parallel Spouts and projection Bolts needed to be created, so that the opera-
tor could always process new events and would not block on sending detected events. When
measuring Bolt’s processing throughput we distinguished between effective throughput and total
throughput. Total throughput measured the total number of events that were processed by all
replicas of a Bolt, which could have included replicated events multiple times. Let Sall be the
set of Bolt’s replicated input streams, Sshuf the set of shuffled input streams, and Es be the
number of received events from stream s. Then total throughput was calculated as:

Ttot = [
∑
s∈Sall

Es +
∑

s∈Sshuf

Es] / time

On the other hand, the effective throughput indicated how many unique events were processed
by a Bolt. This was a more useful measure, since it counted each replicated event only once
and corresponded to the number of actual input events processed. We calculated it as follows:

Teff = [

∑
s∈Sall Es

|Sall|
+

∑
s∈Sshuf

Es] / time

Every experiment was performed on input events that were generated by input adapters. The
data were often random or followed some fixed pattern. An alternative approach to this would
be to set up a central or distributed event queue, such as Kestrel or Kafka, which would contain
pre-generated events. Input adapters would then receive events from this queue and possibly
replay them many times. This would measure more realistic performance of Spouts, since the
time needed for receiving and input event from external source would be included. However,
for simplicity we did not use this approach and rather expect input adapter overhead to be
included in error margins. Similarly, detected complex events received by output adapters were
not logged into an external queue, but discarded.
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7.3.1 Spouts

In Figure 6.5 and Figure 6.6 from the previous chapter, we discovered that the predicate filtering
time for an event increased linearly with its complexity, but overall was very high. This could
be attributed to our approach of using offsets to access event fields in a constant time. We also
found that the performance of sending depended much on the type of the output stream and
sometimes on the number of subscribers, which was taken into account when modelling Spouts.

To see the effects of parallelism affects on sending and receiving of events, consider Figure 7.3.
Here, 64 byte payload events were sent between two Storm components on a shuffled stream, and
event batching was not used. When evaluating sending, the target component had parallelism
three times higher than the sending, and when evaluating receiving, the sender had three times
the parallelism of the receiver3. The sending performance increased linearly with parallelism.
Doubling the parallelism resulted in 65 - 70% increase in sending throughput. For example,
sending event rate at parallelism 4 was measured to be 184, 732, and at parallelism 8 to be
315, 694. Additionally, the event receiving throughput was slightly higher than the sending
throughput. This is best visible at parallelism 2, when receiving was about 29% faster than
sending. This can be due to higher overhead of sending, which needs to perform event shuffling
to determine event destination task4.
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Figure 7.3: Comparison of sending and receiving events.

Consider now Figure 7.4, which demonstrates the improvement of the sending performance with
the introduction of batching. For parallelism of 1, the performance increased almost ten times,
from 85, 330 to 820, 821 events per second. This is due to the fact that Storm required a lot of
CPU resources for sending and receiving events. If we send events individually, each of them
needs to be shuffled, serialized and given a new message ID. We also suspect that Storm calls
ZeroMQ layer for each event individually, which requires a context switch between JVM and
its native code. With events batching, this CPU overhead gets amortized over many events
and bottleneck shifts towards network5. It is interesting to see that doubling the parallelism
resulted in 80% increase in sending throughput, which was more than in the case of sending
individual events. This means that batching also leads to a better scalability.

In Figure 7.4 it can be seen that using a linear Spout parallelism model fits the measured data
well. Here, the fitted curve was always under the measured data, because of the inclusion of a
10% error margin.

3So senders or receivers do not block waiting for each other to consume/provide events.
4We consider points 3 and 12 for sending to be outliers.
5Recall Figure 6.8, where similar sending event rates lead to 70% network saturation.
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Figure 7.4: Evaluation of Spout sending performance.

7.3.2 Bolts

Projection

During evaluation, a projection Bolt was receiving 64-byte payload events organized into batches
of 500 from many Spout tasks. The Bolt performed all projection on eight 8-byte payload fields,
and we measured its effective throughput of receiving, processing and discarding events. Since
the all projection has the same complexity as the field projection, we did not distinguish between
them.

The evaluation results of the projection Bolt can be seen in Figure 7.5. The throughput of
projected events increased linearly with parallelism. This was because each projection replica
received only a fraction of events, but events were never replicated. Thus, with doubled paral-
lelism, the projection Bolt had almost twice that much capacity to process events. For example
a single task was able to project 274, 000 events per second. When we increased the parallelism
to 2, the throughput almost doubled to 527, 000, and with parallelism 4 it again doubled to
1, 027, 000 events per second.

A linear model for parallelism fits the measured data well. The model without error margins
(dashed green line) was not sufficiently conservative, as it sometimes predicted higher perfor-
mance than the actual. However, the inclusion of 10% error margin (dashed blue line) resulted
in a better performance estimation, which was always lower than the measured, thus also leaving
some margin for the processing of the output adapters.
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Figure 7.5: Evaluation of the projection Bolt.
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Recall that for simplicity we did not include the number of projected fields in the operator model.
Figure 7.5 shows that this affects performance of projection. If the total number of fields in a
received event was 200, the linear projection algorithm was only capable of processing about
241, 000 such events per second. The result could be a halved total processing throughput,
which would not be estimated by our model. Thus, it would be useful to also include number
of projected fields in the Bolt model.

Next

Both greedy next and any next Bolts were evaluated on the following query, which detected a
pair of stock quotes for the Google company, only when the second quote had a higher price:

external Stock(name: string, price: int) < "StockSourceAdapter" [500000.0]

NextEval(*):

Stock/Stock1

;[Stock1.name = "GOOG" && Stock2.name = "GOOG" &&

Stock1.price < Stock2.price && Stock1.price > 0 && dur < X]

Stock/Stock2 > "DiscardingAdapter"

The input stock quotes were generated by input adapters and contained price fluctuating ran-
domly around one value6. Every ten consecutive events had the same end timestamp, to simulate
multiple stock quotes arriving at the same time. Also to simulate a conservative scenario, when
many events get detected, all generated stock quotes were filtered for the Google company. As a
result, the number of events detected by the next Bolt was as high as half of the events received.

The evaluation results for the greedy Bolt can be seen in Figure 7.6. We ran the same query with
different parallelism and event batch sizes, and measured the effective throughput of received,
processed and sent events. Notice that with increased parallelism the throughput did not scale
linearly, but rather logarithmically. This was because the next Bolt required one of its streams to
be replicated. Increasing parallelism of tasks caused higher IO overhead due to each parallel task
receiving all replicated events. The number of total processed events hence increased linearly,
but the effective throughput increased only logarithmically. We will explain and validate this
further in the next section.
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Figure 7.6: Evaluation of the greedy next Bolt (B is batch size and W is event duration).

6This would ensure that many events were detected.
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Note that the change in batch size from 1 to 500 radically increased the effective throughput.
If the parallelism was 2, then not using batching (blue line) resulted in effective throughput
of 40, 469, whereas when using batching (red line) the Bolt could process as many as 111, 811
events per second. Also, with batching, the operator scaled better. For example, if we increased
parallelism from 2 to 6 in the case without batching, the effective throughput would increase
only by 75%. However, with batching, the throughput would increase by 230%. This was
because batching significantly reduced IO overhead, and thus overhead of receiving replicated
events. This was the main factor that reduced scalability.

It is also interesting to examine how well our greedy next model predicted performance. The
model correctly estimated that parallelism increased exponentially with increased throughput.
This meant that throughput increased logarithmically with higher parallelism. The fitted model
is displayed in Figure 7.6 by dashed lines, each showing estimated performance for different
window sizes. The estimated curve for a duration window of 5000 only roughly fit the measured
data. The fitted exponential function was too steep. This could be improved with more data,
especially for higher parallelism. However, this was not possible due to limited computational
resources.

The evaluation of the any next Bolt with different parallelism and matching windows can be
seen in Figure 7.7. The evaluation method and query were the same as for the greedy next Bolt.
Notice that any next Bolt was significantly slower, as it matched and output many more events
for each received. For example, at duration 100 and parallelism 4, any next was capable to
detect 323, 605 events per second, whereas the effective throughput of greedy next was 605, 138.
Given that the maximum duration of the any next predicate was D, the operator would output
on average D/2 detected events for each received event7. This meant that the Bolt was mostly
affected by the performance of sending events, rather than matching them (the windows were
relatively small).
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Figure 7.7: Evaluation of the any next Bolt (B is batch size and W is max. event duration).

The scalability of any next Bolt was similar to that of the greedy next Bolt. This was because in
both cases replication caused high overhead. Looking at the batched performance, we noticed
that effective throughput of any next Bolt also followed adjusted logarithmic curve8, and our
exponential model for parallelism applied. Also notice that the performance of the any next Bolt
significantly increased with batching, as this improved the performance of sending events. For
parallelism 2 the performance improved by a factor of 6. Also note that bigger event matching
windows resulted in lower effective throughput. For example, at parallelism 6 without event

7A single quote from left stream would match D/2 quotes from the right stream, since all stock quotes were
for Google and had random price (i.e. either smaller or bigger/equal).

8We can consider measured data for parallelism 5 and 6 to be slight outliers.
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batching, increasing the maximum event duration from 50 to 100 resulted in 10% slowdown.
For simplicity we did not include these matching windows in the any next model, but this could
be done the same way as for the greedy next Bolt.

Note also that the evaluation of any next is fairly conservative. Firstly, we assumed that it
detects and sends many events, which is a time consuming operation. Typically, less than a
half of matched consecutive events will satisfy next predicate. Secondly, the input event rates
are the same for replicated and shuffled streams, which is the worst case scenario with regards
to replication9.

Exception

For evaluation of the exception Bolt we used a scenario where no exception events and only
desired events were received. Note that this was a pessimistic scenario, as all received desired
events had to be sent further, thus requiring many slow IO operations. As such, this scenario
could be also seen as measuring the performance of receiving an event, stabilizing it, and sending
it further. We evaluated only the “not before” type of exception Bolt, which we expected to
show the same performance as the “not during” type of exception10. During evaluation the
Bolt was receiving desired events with payload sizes of 64 bytes from a Spout and was sending
them to further to a projection Bolt. More precisely, the following query was run:

external YesEvent(payl: string) < "FixedStringAdapter(64)" [100000.0]

external NoEvent(payl: string) < "NoSourceAdapter" [0.0]

Query(*): !NoEvent ; YesEvent > "DiscardingAdapter"

The measured effective throughput can be seen in Figure 7.8. The use of a linear model can
be justified by considering the high variability of the measurements. The estimation error was
relatively high and ranged between 4% (parallelism 10) and 28% (parallelism 2 and 4). However,
the estimation was pessimistic, and in almost all cases correctly predicted lower performance
than the actual. The high variability in seen performance can be the result of a single IO thread
having to handle both high receiving and sending event rates. It could be that the thread first
sent buffered events and then received new events, causing bursty behaviour and fluctuating
throughput.
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Figure 7.8: Evaluation of the exception operator (B is batch size).

9Recall that this is because any next Bolt always replicates the stream with smaller event rate.
10From the implementation point of view, the two cases have the same event matching complexity.



103 7 Evaluation

From Figure 7.8 we can also see that a maximum achievable throughput of receiving and sending
events at parallelism 1 is 230, 000 events per second. This seems to be the limit imposed by
the Storm IO implementation. For our hardware configuration this was quite slow and meant
that in some cases it would be more useful to group multiple operators into one task. This
would remove IO bottleneck, as operators within one task could communicate through shared
memory. For example, since the exception operator would mostly forward received events, we
could merge it with the following operator in the event pattern. We could also do this for Spouts
that emit events into only one Bolt, by merging both operators into one, perhaps by some cost
model rules11.

Also notice that similarly to the other operators, the performance significantly increased when
using event batching. For example, at parallelism 2 the experiment with batching performed 13
times faster than without. The exceptionally high increase in performance was due to the fact
that the exception Bolt was IO bound and batching improves IO performance. For example,
any next Bolt spent more time on matching events, and thus its performance improvement due
to batching was not as high as for the exception Bolt.

Conjunction

Conjunction operator was evaluated on the following query:

external Event(name: string, x: int, y: int) < "DurationSourceAdapter(0)" [100000.0]

Query(*): Event/A

,[A.x + A.y = A.y + A.x && true && true && A.name = "event" && dur < X]

Event/B > "DiscardingAdapter"

The events generated by the input adapter were instantaneous with increasing end timestamps,
but always two events had the same timestamp. The conjunction predicate always evaluated
to true and also specified the maximum event matching window. The effect of this was that
within a window each input event matched exactly one other event and so the input event rates
were identical to the output event rate12. Since there were always two events with the same
timestamp, for duration D the length of the operator queue was 2D. We varied the operator
parallelism and maximum event duration, and measured the effective throughput of receiving,
matching and sending detected events.

The evaluation results can be seen in Figure 7.9. Let us first examine the graph on the left
side, which demonstrates how performance of the conjunction operator changed with different
event duration and parallelism. Bigger matching windows resulted in slower event detection.
E.g., for parallelism 1 the event duration of 25, 000 yielded the effective throughput of only
930 events per second, whereas the duration of 250 resulted in 20 times higher performance
of 18, 860 events per second. More interesting is that the scalability of the conjunction also
depended on the event duration. For example, if using duration 5000 or 25, 000 the effective
throughput increased almost linearly with parallelism, whereas on duration 250 the increase
was logarithmic. Recall from the next operator that logarithmic increase was caused by IO
overhead of receiving replicated events. When using small event duration window this overhead
began to dominate the event matching time earlier, as the event matching was fast. On the
other hand, using bigger windows meant that IO overhead was just a fraction of event matching
time, and resulted in more linear scalability. This result also applies to other operators that
require replication of input streams.

11Such optimization is done for example in Borealis system and we leave this idea as a future work.
12Recall that when modelling event rates, we also assumed that each input event will match exactly one other

event within a matching window



7 Evaluation 104

Another interesting anomaly is that, with the extremely short event duration of 250, the per-
formance of conjunction started to deteriorate at high parallelism. The reason for this was that
at high parallelism the IO overhead of event replication started to dominate the time that the
operator spent on matching events. In this case, the exponential model broke down for high
parallelism. To fix this, we could bound the conjunction model by some maximum achievable
parallelism. We would never scale the operator beyond the maximum parallelism, as we would
know that this leads to a smaller effective throughput.
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Figure 7.9: Evaluation of the conjunction operator.

Consider now the graph on the right in Figure 7.9, which shows how batch size affects per-
formance for event duration of 5000. Similarly to other operators, we observed a significant
performance improvement when using batching. At parallelism 2, batching doubled the effec-
tive throughput. Note that the performance improvement was much smaller than that of the
exception Bolt. This was because we used large event matching window and the Bolt was heavy
on event processing, instead of event IO. Batching optimization improves only event IO. Also
note that our exponential parallelism model (dashed blue line) fits the measured data quite
well. For a better fit we would need to measure performance for a higher parallelism and need
more cluster resources.

Iteration

Both types of iteration operator (greedy and any) were evaluated against the following query:

external Stock(name: string, price: int) < "StockSourceAdapter" [100000.0]

Query(*): Stock/S

+[prev(S.name) = S.name && prev(S.price) != S.price &&

dur >= 0 && len < X] > "DiscardingAdapter"

The query detected sequences of stock quotes of the same company, in which no two consecutive
quote prices were the same. Since the performance of the iteration Bolt depended on how many
event sequences it stored, the query predicate bounded detected sequences by some maximum
length. The input stock quotes were generated for the same company and had prices fluctuating
randomly. We varied the maximum length of the iteration sequence and the operator parallelism,
and measured the operator’s effective throughput.

The results of any iteration evaluation can be seen in Figure 7.10. Examining the plot on
the left, increasing maximum sequence length resulted in slower detection. This was because
more matching sequences had to be kept at the operator and when a new event arrived, all
were extended. However, the effective throughput was not high and the performance did not
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change significantly with different windows. Consider having a sequence of length L. In the
worst case, the any next operator needs to keep all 2L sub-sequences and with increased L
the performance should deteriorate fast. The reason this was not observed, were high operator
output event rates. For the given predicate, 10 sequences were detected and output for each
input event. This meant that the operator was bound by its sending capabilities and not by
the event matching algorithm.

We can justify that any iteration was IO bound also by looking at the plot on the right, which
compares performance of different batch sizes. Since input event rates were low, a significant
performance improvement due to batching could only be caused by reduction of sending over-
head. For example, the effective throughput at parallelism 1 increased by a factor of 20 due
to batching, which was even more than for the IO bound exception operator.This was because
the input event rates were very low and the output rates were very high. Therefore, since itera-
tion lengths had a small effect on performance, they can be excluded from the operator model.
We should rather consider merging any iteration with other operators in the event pattern to
minimize sending overhead.
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Figure 7.10: Evaluation of any iteration operator.

Recall that we modelled the parallelism of any iteration by a bounded linear model. Figure 7.10
shows, that this resulted in a perfect fit up to the parallelism of 7. Beyond this point the effective
throughput did not improve significantly and thus we always limit maximum parallelism to 7
(i.e. the maximum achievable effective throughput is 470, 000 events per second). Alternatively,
we could try to fit an exponential parallelism model, which would better account for the observed
logarithmic decrease in throughput. However, we could not measure higher parallelism than 10
due to large number of needed projection tasks. As a result, fitting the exponential model on
our data is not accurate.

Table 7.1 presents the evaluation results of greedy iteration with different iteration sequence
lengths. Even without parallelism, the operator performed much better than any iteration
(about five times faster). This was because for N received events the maximum of N/minLen
events were detected and sent (minLen is the smallest iteration sequence length). Thus, the
operator spent most of its resources on matching events.

Notice that the best performance of greedy iteration was achieved when the maximum iteration
length was not too high and not too low. This was because with small iteration length the
operator had to output many detected sequences, leading to higher IO overhead. On the other
hand, higher iteration sequence length resulted in operator storing more sub-sequences, and
hence in higher event matching overhead. The maximum performance was seen with length 50,
when there was a balance between event processing and IO.
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Max. iteration sequence length Throughput (ev/s) (batch size 500)

10 439,123
25 424,228
50 592,129
75 526,957
100 524,729

Table 7.1: Performance of greedy iteration Bolt.

7.4 Replication overhead

Consider a next Bolt with parallelism 1, receiving R events from a replicated stream and S
events from a shuffled stream. The Bolt will have to match S events with R events, by using
R ∗ S comparisons. If we change its parallelism to P , each replica will receive R replicated
events and match them against S/P shuffled events13 by using R ∗ S/P comparisons. Thus, all
replicas will do R ∗ S comparisons in total, which is the same as without parallelism.

Even though the number of comparisons that have to be made stays the same, increasing
parallelism of operators with replicated streams does not scale linearly. This is because we did
not take into account the overhead of receiving events. With parallelism P , each parallel task
will receive R replicated and S/P shuffled events, the total received events being R ∗ P + S.
These events also have to be stabilized, requiring an order of R ∗P +S stabilization operations.
Thus, when we increase parallelism, more time will be spent by each parallel task on receiving
and stabilizing replicated events, as compared to matching shuffled events against them. This
means that the more CPU resources will be hogged by event receiving, instead of being available
for event matching.

We conclude that the reason for which operators with replicated streams scale logarithmically is
increased IO overhead of each added parallel task. This can be best seen in Figure 7.11, where
we compare the total throughput of any next Bolt with its effective throughput on different
parallelism. For the parallelism 1, these measurements are equal, as no events are replicated.
With increased parallelism, the total throughput is higher than the effective throughput, because
of more events being replicated. We can see that total throughput scales linearly, as each new
replica is able to process the same amount of events as any other existing replica. However,
the effective throughput scales logarithmically, as with each added replica more time has to be
spent on receiving replicated events.

Another way to show that overhead of event replication leads to non-linear operator scalability
is to perform the following two experiments: In both experiments we evaluated greedy next
Bolt with different parallelism on the same query as in the previous section, but with varying
the event rates of replicated and shuffled streams. In the first case, the Bolt would receive
X replicated events and X shuffled events14, and thus would have to perform X ∗ X event
matchings. In the second case, the Bolt would receive X/2 replicated events and X ∗ 2 shuffled
events15, and thus would also have to perform X∗X event matchings. We compared the effective
Bolt throughput of the two cases.

The results of the experiments can be seen in Figure 7.12. In the second case, the effective
throughput was much higher than in the first case, and also appeared to scale linearly. Since the
number of comparisons in both experiments stayed the same, the improvement in performance
was caused only by the decreased number of replicated events. Thus, replication of events was

13S events were shuffled to P streams.
14Ratio replicated events to shuffled events is 1:1.
15Ratio replicated events to shuffled events is 1:4.
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Figure 7.11: Illustration of how many events are processed in total due to replication, as com-
pared to effective processed events.

the main reason why operators did not scale linearly. This experiment also illustrates how
processing throughput depended on event rates. We obtained the best scalability if event rates
on replicated streams were low.
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Figure 7.12: Validation of replication overhead hypothesis.

7.5 Stabilization algorithms

Performance of every Bolt is significantly affected by how fast received events can be stabilized.
Therefore, we also evaluated the performance of our simple and two-phase stabilization algo-
rithms. Both algorithms were run on the cluster hardware, but not as a part of a topology. We
measured the throughput of stabilized events per second. The performance depended on the
number of input streams S and the length of the stabilization queue, which was determined by
the event timestamps and the input event rates. For example, if events arrived faster from one
stream, the queue length would be higher, as opposed to events arriving at the same rates from
all streams.

During evaluation, we simulated events to arrive at fast rate from one stream and at the same
rates from the other streams. This enabled us to create scenarios where the stabilization queue
would grow large, even with small number of streams. Let L be the number of events that arrive
on the fast stream, before an event is received from all other slow streams. We can simulate
the stabilization queue of size L + S by sending L events from the fast stream and then one
event from each slow stream. For example, if L = 2 and S = 3, we simulate the average queue
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size of 5 by stabilizing the following pattern of events (A,B,C are different event streams, and
instantaneous event timestamps are in brackets):

A(1), A(1), B(2), C(3), A(4), A(4), B(5), C(5) ...

The evaluation results for simple stabilization algorithm are shown in Figure 7.13. As the
number of input streams S increased, the stabilization throughput decreased at the rate of 1/S,
i.e. the time to stabilize an event increased linearly. This was because with each added stream,
every event in the stabilization queue had to be marked by it, which required constant number
of operations. Also note that to have 20 input streams is easily achievable in practice. Consider
for example a binary operator Bolt, which receives events from two components, each of them
having parallelism of 10. With 20 input streams a Bolt was able to stabilize events at the rates
from 470, 000 to 820, 000 events per second depending on the parameter L.

If L was large, i.e. events arrived from one stream at much higher rates than from the other
streams, the stabilization performance deteriorated. This was because average size of stabi-
lization queue increased, as it had to store many events from the fast stream. If L was small,
i.e. input events arrived from all streams at about the same rates, the stabilization throughput
went up, as less events were simultaneously present in the stabilization queue.
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Figure 7.13: Performance of simple stabilization with regards to input stream count and variable
stream event rates (high L means that one stream is much faster than others).

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
x 10

7

Number of input streams

S
ta

bi
liz

ed
 e

v/
s

Comparison of two−phase (2P) to simple event stabilization

 

 
2P
Simple

Figure 7.14: Comparison of batch to simple stabilization algorithms.

In Figure 7.14 we compare the simple with the two-phase stabilization algorithm, where events
were received in batches on streams with the same input event rates. The simple algorithm
enqueued all events in a batch onto the stabilization queue. With many streams this resulted
in a very long queue, as events were only removed when batches from all streams were received.
The two-phase algorithm solves this problem by enqueueing events in the same order as without
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batching. In the figure we can see extreme performance improvement. With 10 input streams,
the two-phase batching was 35 times faster, and with 20 input streams up to 82 times. With 50
streams, the performance improved by a factor of more than 300. This was because the simple
algorithm was very sensitive to multiple events arriving from one stream at the same time. The
two-phase algorithm could cope with this by buffering events and stabilizing them in order that
keeps the stabilization queue short.

7.6 Evaluation of whole queries

When evaluating bigger queries that consisted of multiple connected operator Bolts, we were
interested in observing the performance of individual query components. The first goal was to
determine whether the parameters of the compiled topology were sufficient to cope with the
declared number of input events. The second goal was to observe how the estimated input event
rates for each operator compared to the real measured input event rates. The last goal was
to observe whether the modelled topology parameters were optimal, or should be adjusted. In
particular, we were concerned about the number of workers and parallelism of each component.

Stock monitoring

The first query that we evaluated consumed generated stock data and detected a spike in a
stock price with certain length that occurred for any company. This was done by first detecting
an increasing sequence of prices for the same company and also detecting a decreasing sequence,
with the use of greedy iteration. Then we used the greedy next to match an increasing sequence
with the closest decreasing sequence for the same company, which effectively detected a spike.
The evaluation query was following:

external Stock(name: string, price: int) < "StockAdapter2" [500000.0]

Spike(S1.name, S1.price):

(Stock/S1+[prev(S1.price) < S1.price && prev(S1.name) = S1.name && len > 75 && len < 200])

;[S1.name = S2.name && dur < 7200]

(Stock/S2+[prev(S2.price) > S2.price && prev(S2.name) = S2.name && len > 100 && len < 300])

> "DiscardingAdapter"

The input adapter provided events that contained string name and an integer price. The name
could belong to one of 30 companies and the price for each company was simulated to increase
and decrease. The length of the iteration sequence was governed by a random variable. The
events were instantaneous and had strictly higher timestamps.

The evaluation results for this query where half a million events were input per second can be
found in Table 7.2. We see that the maximum topology event processing rate was slightly higher
- 518, 000 input events per second. For this input event rate and computed parallelism of 1 the
Spout was emitting events at a rate of one million events per second. However, increasing its
parallelism to two did not improve the performance, so our Spout model was correct. The cause
of the performance bottleneck was the greedy next iteration, which could not be parallelised.
The event rate of 518, 000 was also correct, since similar values were measured during evaluation
of individual operators. The input event rates to the iteration Bolts were also estimated correctly
at half a million events per second.

The measured input event rate of the next Bolt was 1, 644, which was smaller than the rate
of 11, 666 events estimated by our model. This is because our estimation did not take into
account iteration predicate, which filtered some sequences out, resulting in lower input rate.
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Because of the low input event rate, there was no need to parallelise the next Bolt. Similarly,
the projection Bolt was estimated to process only 5, 000 events per second and thus did not
have to be parallelised. The real effective throughput was merely 197 events per second because
of the filtering in the previous operators.

We could improve the event rate estimations by measuring them at runtime and dynamically
adjusting component parallelism (similarly to the Borealis system). However, Storm does not
allow this. Instead, we could try to estimate selectivity of operators, but this requires some
knowledge about the input data. For example, if we knew that the stock values were evenly
distributed in the range between 0 and 1000, the predicate price < 500 could result in estimating
only half of the detected events.

Stock Spout Iter. Bolt 1 Iter. Bolt 2 Next Bolt Proj. Bolt

Component parallelism 1 1 1 1 1
Measured eff. throughput 1,037,645 sent 518,788 518,856 1,644 197
Estimated input rate 500,000 500,000 500,000 11666 5000

Table 7.2: Performance measurements and estimation of the stock monitoring query. Through-
put and input rates are in events per second.

Recall that to estimate the number of required workers, we sum up the real computed parallelism
of components. In this case, even though there were 5 topology tasks, the model suggested to
use only 3 workers. Their usage of cluster resources can be seen in Table 7.3. As we can see,
each worker used 140% of a CPU, which is more than the desired 100%. The reason for this
is not under-estimation of CPU resources required by topology tasks, but rather non-inclusion
of IO and acknowledging overhead in our model16. We can remedy the under-estimation by
observing that IO tasks use between 20% and 40% of the CPU, and increasing the number of
required workers by this flat rate.

The total network use by all workers was at the rate of 221 Mbit/s, which meant that each
worker handled IO at a low average rate of 73 Mbit/s (i.e. 7.3% of available capacity per node).
When measuring memory usage, each worker had a fixed JVM heap size of 784 MB, in total
2304 MB. This meant that the rest of 2181 MB were used by the native ZeroMQ layer (i.e.
cache and input event queues), Supervisors and Nimbus processes.

Worker count CPU/worker Network Mbit/s Memory total (MB)

Measured resource use 3 140% 211 4,485
Ideal parameters 4 105% n/a n/a

Table 7.3: Resource use of the stock monitoring query.

Mobile fraud

Another evaluated query was detects one type of mobile fraud (further explained in [31]): an
adversary (Eve) with secret number performs many missed calls to different customers. The
adversary has a premium account, which means that any calls made to her are above the
standard price, earning her money. Victims (Alice) that receive a missed call are often curious
and call the adversary back, while being charged. The query for the detection of this fraud can
be expressed as:

external Call(fromNo: string, toNo: string, unitPrice: int,

16Recall that we assumed that there will be some capacity left for IO tasks, as each topology task cannot be
fully utilized.
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accNo: string, userTyp: string, fromArea: string,

toArea: string) < "CallAdapter" [180000.0]

Fraud(Eve.accNo, Eve.fromNo):

(Call/Eve[dur=0 && Eve.userTyp="secret"]

;[Eve.fromNo=Alice.toNo && dur<3600]

Call/Alice[Alice.unitPrice > 10])

+[prev(Eve.accNo)=Eve.accNo && len > 10 && len < 50] > "DiscardingAdapter"

The topology generated for this query consists of one Spout with two predicates, greedy next
Bolt and greedy iteration Bolt. The next Bolt detected a missed call followed by a returned
call from a victim. The iteration Bolt detected a sequence of such actions per adversary. The
input events were generated and contained increasing end timestamps. Twenty-five percent of
all calls were made by the adversary and were instantaneous events. Other 25% of calls were
made by victims and had random duration. The rest of the calls were between other customers.
The calls were made between 100 customers, each with their own number and billing account.
Only one of the customers was the adversary.

The evaluation results for this query can be seen in Table 7.4. We evaluated the query for event
arrival rates of 180,000 calls per second. Our utility for throttling delivered input events at the
rate of 174,000 per second17. The Spout had to send events at double of this rate, which was
easily handled by the parallelism of 1. Also, most of the events were filtered, and so only about
a half of the estimated events were delivered to the next Bolt. Because of the predicate filtering,
the measured effective throughput of the next, iteration and projection Bolts was lower than
the estimated, thus proving that our event rates estimation was very conservative.

Spout input Next Bolt Iter. Bolt Proj. Bolt

Component parallelism 1 6 1 1
Throttled eff. throughput 174,295 169,215 45,373 295
Maximum eff. throughput 227,096 211,793 54,411 397
Estimated input rate 180,000 360,000 180,000 18,000

Table 7.4: Performance measurements and estimation of the fraud detection query. Throughput
and input rates are in events per second.

We also measured the maximum performance of this topology with the same parallelism, but
without throttling. The maximum throughput was 30% higher, with the topology being able
to process about 227,000 events per second. At the maximum event rate, the bottleneck of the
topology was the next Bolt, detecting 211,000 events per second. However, the throughput did
reach the estimated maximum of 360,000 events per second. This meant that our parallelism
model was not applied correctly. Parallelism under-estimation could be caused by imprecise
scaling of next input event rates for a shorter event matching window18, different Bolt predicate
and higher input event rate for the replicated stream19.

The estimation model did a crude job, but it appeared to have worked well, since the over-
estimation of input event rates and under-estimation of greedy next Bolt performance cancelled
each other out. The computed component parallelism for this query was optimal. If we decreased
the parallelism for the any next Bolt from 6 to 5, the maximum achievable throughput would be
only between 168,000 to 175,844 events per second, which would be below the required 180,000.
Thus, our parallelism model correctly estimated the optimal parallelism of 6. Interestingly, the

17Throttling of input event rates is a bit imprecise due to the use of timings
18Because of shorter matching window, input event rate was estimated to be smaller.
19The number of events that had to be replicated was higher than shuffled.



7 Evaluation 112

threshold rate, at which our model recommends the parallelism of 5, was 175,000 input events
per second, which was also correct.

The number of resources used by the query can be seen in Table 7.5. If we used the estimated
number of 7 workers, the average CPU use of each worker would be 104%, which was almost
ideal when the input event rate was throttled. However, when using the maximum capacity of
the topology, the average CPU use increased to 128%. If we were to use 40% more workers, as
suggested by the stock monitoring query, the maximum throughput would result in nearly ideal
89% average CPU use per worker. Thus, adding a flat 40% IO processing margin to computed
worker count seems a reasonable adjustment for our worker model. Comparing throttled and
un-throttled topology, we can also see that the 30% increase in throughput caused also almost
a 30% increase in network usage. Also, in the case of maximum throughput, the memory
consumption rised to the average of 948 MB per worker. This can be explained by noting
that, at the maximum throughput, the input event queues of some tasks would grow to their
maximum size due to processing bottleneck.

Worker count CPU/worker Network Mbit/s Memory total (MB)

Throttled resource use 7 (10) 104 (72.8) % 398 5854
Maximum resource use 7 (10) 128 (89.6) % 501 6635

Table 7.5: Resource use of the fraud detection query. The values in brackets show how many
workers would be used and what their CPU usage would be with addition of 40% IO margin.

We can conclude that our model does a crude, but satisfactory job when estimating topology
parameters. Our parallelism models for individual Bolts are not very accurate, which could be
improved by doing more experiments. However, thanks to conservative estimated event rates,
which are always higher than the actual, we can make up for the parallelism model inaccuracy.

7.7 Storm characteristics

We have worked with Storm for six months and consider it to be a simple and powerful frame-
work, which nevertheless contains some limitations. In this section we summarize our opinions
on this platform, in particular what are its advantages and disadvantages. We consider the
following traits as the main advantages of the Storm framework:

• Component parallelism. Storm makes it very easy to arbitrarily parallelise topology com-
ponents through use of powerful streams groupings. Spawning and distributing parallel
tasks is all done by the framework.

• Scalability. The Storm platform can be used with dozens or hundreds of nodes, since its
global state is distributed across a Zookeeper cluster, acknowledger tasks are independent,
and only a small part of management tasks is handled by singleton Nimbus and Storm UI
daemons.

• Simplicity. Writing simple topologies in Storm is straightforward after initial steep learn-
ing curve. In short, users simply need to define components and connect them together
on streams in a configuration.

• Reliability. Storm offers different reliability APIs, thanks to which it can cope with task
or node failures. Also it is fail-fast and behaves correctly after tasks or processes fail,
which may recover, provided that the Zookeeper cluster survives.

• Support for testing. The local cluster provided by Storm can be used to test and debug
topologies locally, before they are submitted to a real cluster.
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• Community. Storm community grows very fast, is helpful and significantly contributes to
new features.

The main disadvantages and difficulties that we had with Storm are summarized in the following
points:

• Installation. Performing manual install is difficult because of the number of dependencies
that Storm requires and its reliance on particular versions. We had to do manual install,
since Storm provides an installation script only for Amazon EC2.

• Documentation and APIs. The APIs constantly change, as new major features are being
added. The framework is young, under development and still contains bugs. Even though
documentation is well written now, early in the project it was insufficient.

• Static topologies. A topology cannot change at runtime, which severely limits Storm’s
applicability to complex event detection. For example, it is not possible to dynamically
adjust parallelism according to load, or adjust event queue lengths. Also, the user cannot
determine the positioning of component tasks at particular nodes, as this function was
not yet made available.

• Slow IO. Our evaluation shows that Storm incurs very high CPU overhead for sending
and receiving events. In particular, this is notable on events with small payloads and on
shuffled streams.

• Intra-worker communication. Intra-worker communication happens over network inter-
faces, instead of shared memory. Furthermore, we measured intra-worker communication
throughput, which was smaller than inter-worker communication rates. This is likely
because of Storm using a single input/output queue per worker.

• Performance estimation. Storm is internally a very dynamic system and the measured
stream event rates vary significantly, which caused us difficulties during evaluation, as we
had to run one topology multiple times. It is also difficult to derive the heuristics for the
number of acknowledger tasks and workers, as the Storm documentation does not address
these issues.

7.8 Summary

In this chapter we presented the measured performance of individual event detection operators,
saw how their increased parallelism leads to higher event detection throughput, and justified
how and why the replication of events caused non-linear scalability. We also evaluated how
well our parallelism models fit the measured data and examined the performance of event
stabilization algorithms. Additionally, we examined the applicability of our model for more
complicated queries of stock monitoring and mobile fraud detection, as well as the resource use
on a Storm cluster. In the last section we summarized what we consider the main advantages
and disadvantages of the Storm framework, based on our project experience.
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Conclusions

We designed a scalable system capable of efficient complex event detection. This system is
applicable to many different scenarios, in particular to high-throughput stock monitoring and
fraud detection. The basis for the system is a concise and expressive event pattern language with
a small number of well-defined operators, which semantics can be adjusted by predicates and
through the use of different operator types. We believe that we achieved a good balance between
expressibility and speed of complex event detection. Also, the operators are parallelisable, and
have a well-structured syntax of event patterns, which resembles their runtime organization.

We based complex event detection on data-flow graphs, where event detection operators cor-
respond to individual nodes and event streams to edges. The data-flow graphs, which we also
call topologies, are obtained by compilations of queries specified in the Step language, and they
run on the Storm framework in a cluster environment. Since Storm topologies cannot change at
runtime, we employed a sophisticated compilation process. This optimizes event serialization
by generating payload classes for each input event, speeds up predicate evaluation by using
expression indexing, and improves performance by reusing already deployed operators. Addi-
tionally, we achieved more efficient event detection through the merging of external operators
and fast stabilization algorithms, we improved communication overhead by batching events,
decreased latency and dealt with stalled streams through the use of punctuations, and sped
up event matching by garbage collecting unmatchable events. We validated the correctness of
these algorithms by executing system tests on a custom acceptance testing framework.

Furthermore, we achieved high event detection throughput by distributing event queries at
an operator level, and parallelising each operator. We suggested two methods of achieving
parallelism, out of which one was implemented. This required replication of some streams and
shuffling of others. We saw that this approach led to significant performance improvement
and linear scalability for some operators, whereas others were proved to scale non-linearly due
to the IO overhead of replication. Additionally, we created a model based on the measured
performance, which conservatively estimates input event rates for each operator and computes
optimal topology parameters, e.g. the component parallelism, the batch size and the required
worker count. The evaluation on real queries has shown that even though our method of
estimating parameters is crude, it still computes correct or nearly-correct values, due to the
inclusion of error margins.

Even though the most difficulties of this project were caused by the problems when using
Storm, we believe that this framework is usable and will become popular in the industry when
dealing with continuous data streams and their computations. However, we think that we could
build a better complex event detection system, if we designed a custom framework instead.
This would enable dynamic query optimizations and would have more predictable performance.
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Furthermore, Storm is still under development, as major features are being added and some
important optimizations are not implemented, which caused us some additional difficulties.

8.1 Future work

Throughout the report we mentioned a few suggestions that would improve the performance or
lead to a more usable CEP system. To conclude, we present these suggestions as a possible future
work: aggregation operators, operator merging, parallelism through windowing and predicate
selectivity.

Aggregation and custom operators The most useful addition to the existing Step CEP
system would be an addition of operators that can compute data statistics. The operator
predicates could then refer to results of these operators, and the system would be more appli-
cable to stock monitoring or data analysis scenarios. Rather than providing a set of common
statistical functions (finding maximum, mean or standard deviation in a sequence), the most
useful approach would be to create a general framework, where users could define their own
operators. An operator could subclass existing operators and would have to declare its event
processing function, the shape of its input and output payloads and the input stream count.
Such system could become marketable, as it would be applicable to a broad set of scenarios.
However, at the same time it would leverage the difficult parts of complex event detection, such
as event batching, stabilization, matching, load-shedding, throttling, submission or topology
construction.

Operator merging During the evaluation we found that the performance of operators with
high output event rates, such as exception or any iteration, depends critically on the throughput
of sending events. In order to reduce the IO overhead, it would be advantageous for these
operators to be merged with the following operators in an event pattern, thus forming one
parallelisable topology component. Step CEP already implements one case of operator merging
- the union operator, which is implicitly included in other Bolts. A similar approach could be
used for other IO-heavy operators, however not for processing-heavy operators, such as greedy
iteration, or operators with multiple output streams.

Predicate selectivity Since Storm does not allow for dynamic adjustment of operator par-
allelism, we could attempt to improve our estimation of complex event detection performance
by incorporating selectivity of operators into our model. By examining large amounts of data
we could possibly find an approximate relationship between predicate complexity and the per-
centage of filtered events. We could also require users to specify input/output event rates for
each operator manually, or to define their typical values distributions. From this we could cal-
culate predicate selectivity. Any of these could improve our model and thus make estimation
of topology parameters very accurate.

Parallelism through windowing Recall an alternative approach to parallelism, described
in Chapter 4. The approach does not replicate streams, but rather sends overlapping windows
of events to each parallel task. It would be interesting to implement this and compare its
performance and scalability with our system. Both approaches require replication of events. The
superiority of one approach over the other would most likely depend on evaluation scenarios.
Our Step runtime framework already contains some support for processing events as part of
windows, since it was our first considered approach.
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Appendix A

Model constants

Table A.1 shows the list of all constants that we use in different component parallelism models.
These constants were obtained by fitting evaluated data from Chapter 7 and are used by the
Step compiler to estimate parallelism of topology components.

Component model Constant Value

Spout A 1.427e-06
B -0.6818
R 2.058

Projection Bolt A 5.448e-06
B -0.9008

Conjunction Bolt A 1.08
B 1.829e-05

Exception Bolt A 7.748e-06
B -1.353

Next (greedy) Bolt A 1.087
B 4.325e-06
Wa 1.381e-09
Wb 1.685e-05

Next (any) Bolt A 0.6142
B 1.36e-05
K2 0.2

Iteration (any) Bolt A 1.4113e-05
B -0.54603

Itmax 7

Common K 1.1

Table A.1: Summary of constant values used in different component models.
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Xtext grammar for event patterns

grammar step.Step hidden(WS, ML_COMMENT, SL_COMMENT)

import "http://www.eclipse.org/emf/2002/Ecore" as ecore

generate step "http://www.Step.step"

Model:

"topology" name=STRING

primitiveEvents+=PrimitiveEvent+

complexEvents+=ComplexEvent+;

Event:

PrimitiveEvent

| ComplexEvent;

PrimitiveEvent:

"external" name=ID "(" fields+=Field ("," fields+=Field)* ")"

"<" source=STRING

"[" rate=MYFLOAT "]";

Field:

name=ID ":" type=("real" | "int" | "string" | "bool");

ComplexEvent:

name=ID "(" ("*" | (fieldRefs+=FieldReference ("," fieldRefs+=FieldReference)*)) ")"

":" pattern=UnionPattern

">" sink=STRING;

BooleanExpression returns Expression:

ComparisonExpression ({BooleanExpression.e1=current} op=("&&" | "||") e2=BooleanExpression)?;

ComparisonExpression returns Expression:

ArithmeticExpression ({ComparisonExpression.e1=current}

op=("!=" | "contains" | "=" | "<=" | ">=" | "<" | ">") e2=ComparisonExpression)?;

ArithmeticExpression returns Expression:

BasicExpression ({ArithmeticExpression.e1=current}

op=("+" | "-" | "*" | "/") e2=ArithmeticExpression)?;

BasicExpression returns Expression:

{IntExpression} number=MYINT

| {FloatExpression} number=MYFLOAT

| {StringExpression} string=STRING

| {BoolExpression} bool=("true" | "false")

| {FieldSelectExpression} fieldRef=FieldReference

| {PreviousFieldSelectExpression} "prev" "(" fieldRef=FieldReference ")"
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| {DurationExpression} "dur" typ=("<"|">"|"="|"<="|">=") dur=MYINT

| {IterationLengthExpression} "len" typ=("<"|">") len=MYINT

| {NegatedExpression} "!" expr=BasicExpression

| {UnaryMinusExpression} "-" expr=BasicExpression

| "(" BooleanExpression ")";

UnionPattern returns Pattern:

NextPattern ({UnionPattern.pattern1=current} "|" pattern2=UnionPattern)?;

NextPattern returns Pattern:

ConjunctionPattern ({NextPattern.pattern1=current} type=(";"|";?")

("[" condition=BooleanExpression "]")? pattern2=NextPattern)?;

ConjunctionPattern returns Pattern:

IterationPattern ({ConjunctionPattern.pattern1=current} ","

("[" condition=BooleanExpression "]")? pattern2=ConjunctionPattern)?;

IterationPattern returns Pattern:

BasicPattern ({IterationPattern.pattern1=current} type=("+?"|"+")

("[" condition=BooleanExpression "]")?)?;

BasicPattern returns Pattern:

PrimitiveEventRef

| {EventNegation} "!" pattern=BasicPattern

| ’(’ UnionPattern ’)’;

PrimitiveEventRef:

event=[PrimitiveEvent|ID] ("/" aliasName=ID)? ("[" condition=BooleanExpression "]")?;

// this is a reference to event in a pattern, which in turn refers to external event declaration

FieldReference:

eventRef=[PrimitiveEventRef|ID] "." field=[Field|ID];

/**

* TERMINALS

*/

terminal MYINT returns ecore::EInt:

(’-’)? (’0’..’9’)+;

terminal MYFLOAT returns ecore::EBigDecimal:

(’-’)? (’0’..’9’)+ (’.’ (’0’..’9’)+)?;

terminal ID:

’^’? (’a’..’z’ | ’A’..’Z’ | ’_’) (’a’..’z’ | ’A’..’Z’ | ’_’ | ’0’..’9’)*;

terminal STRING:

’"’ (’\\’ (’b’ | ’t’ | ’n’ | ’f’ | ’r’ | ’u’ | ’"’ | "’" | ’\\’) | !(’\\’ | ’"’))* ’"’ |

"’" (’\\’ (’b’ | ’t’ | ’n’ | ’f’ | ’r’ | ’u’ | ’"’ | "’" | ’\\’) | !(’\\’ | "’"))* "’";

terminal ML_COMMENT:

’/*’->’*/’;

terminal SL_COMMENT:

’//’ !(’\n’ | ’\r’)* (’\r’? ’\n’)?;

terminal WS:

(’ ’ | ’\t’ | ’\r’ | ’\n’)+;
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Acceptance tests examples

The following acceptance test is for testing greedy next operators with filtering predicates. We
can see that the test is very concise. Firstly it specifies tested Step program, which takes input
from a parametrized adapter (the parameters are events that it will emit). Then, we just need
to specify the events that should be detected and the test is ready to be run.

@Test

def testCond {

val query =

"""

topology "GN3Topology"

external A(a: int, b: bool, c: real) <

"ParamIntBoolFloatAdapter(

new int[]{1, 2, 3},

new boolean[]{true, false, true},

new double[]{1.1, 2.3, 1.0},

new int[] {1, 2, 3}

)" [100.0]

Q1(A1.c, A2.c): A/A1;[A1.c < A2.c]A/A2 > "MockSinkAdapter"

Q2(A1.c, A2.c): A/A1[A1.b];[A2.b]A/A2 > "MockSinkAdapter"

""";

val expected = List(

mkEvent(1, 2, List(mkField("A1", "c", 1.1), mkField("A2","c",2.3))),

mkEvent(1, 3, List(mkField("A1", "c", 1.1), mkField("A2","c",1.0)))

);

runTest(query, "GN3Topology", expected)

}
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The following test again shows simplicity of acceptance framework, where only topology and
expected events have to be specified. Here, the query is fairly complicated, using events from
four different streams and joining them using the union, any next and any iteration operators.

@Test

def testWithIterationMany {

val query =

"""

topology "U5Topology"

external A(a: int) <

"ParamIntAdapter(new int[] {11}, new int[] {1}, new int[] {1})" [100.0]

external B(a: int) <

"ParamIntAdapter(new int[] {22}, new int[] {2}, new int[] {2})" [100.0]

external C(a: int) <

"ParamIntAdapter(new int[] {33}, new int[] {3}, new int[] {3})" [100.0]

external D(a: int) <

"ParamIntAdapter(new int[] {44}, new int[] {4}, new int[] {4})" [100.0]

Q1(*): (A|(B ;? C ;? D))+? > "MockSinkAdapter"

""";

val expected = List(

// seq of length 4

mkEvent(1, 4, List(mkField("A", "a", 11), mkField("B","a",22),

mkField("C","a",33), mkField("D","a",44))),

// seq of length 1

mkEvent(1, 1, List(mkField("A", "a", 11))),

mkEvent(2, 4, List(mkField("B","a", 22), mkField("C","a", 33),

mkField("D","a", 44)))

);

runTest(query, "U5Topology", expected)

}
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Step client GUI

This appendix shows some screenshots of the Step client GUI and illustrates how it is integrated
into the Eclipse platform. The screenshots are explained by their captions.

Figure D.1: This figure shows the Step editor used for writing topologies that also supports
basic syntax highlighting. The project directories generated after the creation of a new Step
project are also displayed. The directories contain automatically generated topology fragments
as well as the runtime framework and input/output adapters. Context menus enable topol-
ogy deployment/killing and switching between individual GUI views. The console view shows
information about the currently executed task (e.g. starting a cluster).
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Figure D.2: Ganglia cluster resource monitoring system integrated into Eclipse. It displays
total CPU, memory, buffers, network and disk usage of a whole cluster, as well as statistics for
each individual nodes.

Figure D.3: Step overview shows some basic information about the cluster and summaries
about all topologies running (note that this information in not contained in the Storm UI).
Also, individual topologies can be terminated here.
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