
Imperial College London

Department of Computing

A unified performance query formalism

Matej Kohut
MEng Individual project - Final Report

Supervisor: Dr. Jeremy Bradley

Co-Supervisor: Dr. Giuliano Casale

Submitted in June 2012

Abstract

Stochastic Process Algebras can be used to model complex systems. Due to their direct mapping
to continuous-time Markov Chains, it is possible to analyse them and obtain steady-state
probabilities for finite models. Recent research has also come up with the Unified Stochastic
Probes formalism [24], which also allows monitoring the behaviour of such systems quickly and
reliably, while maintaining simplicity of expression.

In this project we explore the ideas for making this formalism widely accessible and better
applicable for users. We attempt to describe a mapping from Unified Stochastic Probes to a
graphical representation compatible with Performance Trees [30] and discuss alternative direc-
tions. We compare this to the original way of specifying passage time queries in Performance
Trees formalism and informally show that Unified Stochastic Probes surpass this definition.
Furthermore, the syntax is more intuitive and convenient.

We provide a full implementation of Unified Stochastic Probes formalism parser, along with the
support of passage time calculations using both simulation and fast fluid flow approximation
techniques. We also demonstrate the usefulness of the formalism on a range of examples and
compare our results to manually hand-crafted results from previous work.

As a side project, we introduce extensions to GPAnalyser open-source software, which increase
its modelling capabilities. We extended it with passive, weighted passive and immediate actions.
Additionally, by substituting Java dynamic compilation for C++ native libraries dynamically
loaded with JNI, we significantly increased the tractable state-space.

i

ii

Acknowledgements

I would like to express my extreme gratitude to all the people who made this project possible.
Namely:

� Dr. Jeremy Bradley, my supervisor, for the project idea and all the advices, insights and
enthusiastic support throughout the whole course of the project.

� Dr. Giuliano Casale, my co-supervisor, for all the hints and ideas for the report and the
overall support.

� Dr. Richard Hayden for the very detailed information about this fascinating topic.

� Anton Stefanek for all the assistance with the GPAnalyser software and its extending.

� All the personnel of Imperial College London, who were teaching me, for everything they
gave me.

� My family and friends, who have supported me throughout the studies and helped me
always when I needed it most.

iii

iv

Contents

Abstract i

Acknowledgements iii

Contents v

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Report structure . 2

1.4 Contributions . 3

1.5 Publication . 3

2 Background 5

2.1 Introduction . 5

2.2 Related work . 5

2.2.1 CSL and derivatives . 6

2.2.2 Performance Trees implementation in the PIPE tool 6

2.3 PEPA process algebra introduction . 7

2.4 iGPEPA . 9

2.4.1 iPEPA . 9

F-components . 10

2.4.2 GPEPA . 10

2.4.3 Example Consumer/Producer model . 11

2.5 Unified Stochastic Probes and passage-times . 12

2.5.1 Locating a local probe in the system . 13

2.5.2 Local probes grammar . 14

v

vi CONTENTS

2.5.3 Global probes grammar . 15

2.5.4 Calculating passage time densities using the Unified Stochastic Probes . 17

Steady-state individual passage time . 17

Transient individual passage time . 18

Global passage times . 19

2.5.5 Examples . 19

2.6 Unified Stochastic Probes translation to iGPEPA 21

2.7 Fluid-flow approximation of PEPA models . 24

2.7.1 State-Space Aggregation . 24

2.7.2 Fluid-flow approximation . 25

2.7.3 Approximating the passage time probabilities 28

Steady-state individual passage time approximation 28

Transient individual passage time approximation 29

Global passage time approximation . 30

2.8 Performance Trees . 31

2.8.1 Syntax . 32

2.8.2 Value nodes . 32

2.8.3 Operation nodes . 33

3 Performance Trees using the Unified Stochastic Probes 39

3.1 Motivation . 39

3.2 Unified Stochastic Probes sub-trees . 40

3.3 Examples . 42

3.4 Alternative approaches . 44

4 Implementation 45

4.1 GPAnalyser . 45

4.2 Architecture . 45

4.3 Used libraries . 47

4.4 Technologies used . 48

4.5 Parsing and compiling . 48

4.6 Parsing the Unified Stochastic Probes language 49

4.6.1 Translation of a probe expression . 50

4.6.2 Non-standard operations . 51

4.6.3 Global probes in the fluid flow approximation mode 52

4.7 Modifications to the GPEPA translation engine 52

4.7.1 Substitutions . 53

4.8 Increasing the possible state space - C++/JNI dynamic compilation 53

4.9 Probes engine . 55

4.10 Representation . 57

4.11 Overall workflow . 57

5 Evaluation and future work 59

5.1 Code validation . 59

5.2 Data validation . 60

5.2.1 Comparison of the simple Client/Server model 60

5.2.2 Comparison of the worked example . 62

5.3 Real-life models . 65

5.3.1 An example web-based application . 66

5.3.2 Example probes . 67

5.3.3 Complex database system . 69

5.3.4 Example probes . 72

5.4 Conclusion . 83

5.5 Future work . 83

A Translation of PTD node to a Probe PTD node 86

A.1 Model modifications . 86

A.2 Probe generation . 87

A.3 Conclusion . 88

B User guide 89

B.1 Program options . 89

B.2 iGPEPA syntax . 89

B.2.1 Example . 90

B.3 Unified Stochastic Probes syntax . 91

C QEST conference tool paper 94

Bibliography 97

vii

List of Figures

2.1 Vanishing state removal simplified process . 10

2.2 NFA example . 21

2.3 Signal transition from SigState . 21

2.4 Signal transition from SigState . 23

2.5 PEPA as graph, Client0
def
= (think , rt).Client1 24

2.6 Motivation example . 32

3.1 Steady-state individual passage-time probe example 42

3.2 Transient individual passage-time probe example 43

3.3 Global passage-time probe example . 43

4.1 Simplified GPAnalyser architecture, the blue components were changed, the
green added . 46

4.2 Simplified GPAnalyser parsers and compilators hierarchy, the blue components
were changed, the green added . 48

4.3 The basic ANTLR workflow . 49

4.4 Probes parsing and translation workflow . 50

4.5 Actions (standard actions, signals, ε and .) mapped to a simple DFA 51

4.6 Java dynamic compilation workflow . 54

4.7 C++/JNI compilation workflow . 55

4.8 Complete workflow of a probe. Grey parts were provided by original GPAnalyser.
Blue parts were provided in their Java version and we added the C++ version. . 58

5.1 Reference and our implementation results for simple Client/Server model 61

5.2 Reference and our implementation results for simple Client/Server model 61

5.3 Reference and our implementation results for worked example model - steady-
state individual passage time . 64

viii

5.4 Reference and our implementation results for worked example model - transient
individual passage time . 65

5.5 Reference and our implementation results for worked example model - global
passage time . 65

5.6 PM1 for n = 5 . 68

5.7 PM1 for n = 10 . 69

5.8 PM2 for n = 5 . 70

5.9 PM2 for n = 10 . 71

5.10 PM3 for n = 5 . 72

5.11 PM3 for n = 5 . 73

5.12 PM4 . 74

5.13 PM5 . 75

5.14 PM6 . 76

5.15 PM7 . 77

5.16 PM8 . 78

5.17 PM9 . 79

5.18 PM10 . 79

5.19 PM11 . 80

5.20 PM12 . 80

5.21 PM13 . 81

5.22 PM14 . 81

5.23 PM15 . 82

ix

x

Chapter 1

Introduction

When dealing with any system, we are usually interested in its performance and reliability.
Often it is part of an SLA (service level agreement) for clients, who require certain performance
standards to be met. It is thus increasingly important to evaluate performance of systems easily
and reliably, and to provide these assurances. The current performance evaluation techniques
of system models are more and more powerful. They allow users to find various performance
and reliability metrics (queries) of modelled systems; e.g. in your particular system, how
fast will some job be finished or how probable it is in long-term that a particular server fails
or even how many servers will serve at least 50 clients in the next 10 minutes. However,
it is quite hard to specify any more advanced queries. These require users to write a lot
of code in the modelling language (modelling formalism) of the original model, even though
users have no real need to know all the low-level details (i.e. they do not need to know
the modelling language). This project aims to simplify the process of defining performance
queries by providing an implementation of a convenient formalism called Unified Stochastic
Probes (Section 2.5). In addition, these are further developed and integrated into a graphical
performance queries representation called Performance Trees (Section 2.8).

1.1 Motivation

The state of the art of performance evaluation allows complex and detailed performance metrics
to be taken when dealing with abstract system models. Fluid approximation techniques already
simplify the simulation of such systems to mere mathematical evaluation of sets of ordinary
differential equations, which takes incomparably shorter time.

One of the most important and interesting performance metrics are passage time queries. These
express a probability of exhibiting certain system behaviour at various times. For example, how
long will it take till 10 different clients download some data from the servers. Another example
is the time until one particular client downloads data 10 times if the system is already in
the steady-state (equilibrium). Unfortunately, powerful techniques for performance estimation
currently available are not sufficient for wider user adoption. The main problem is that the
users need to know a lot about a particular modelling formalism (e.g. PEPA or other stochastic
process algebras, Stochastic Petri Nets, Stochastic π-calculus, etc.), in which the model of the
system is defined. They also need to know how to translate their performance queries to
the same formalism and compose them with the system model. They do not require this

1

2 Chapter 1. Introduction

knowledge to understand the system or the metrics they are interested in though. In addition,
augmenting the models directly to obtain the performance metrics is a discouraged practice,
since it obscures the model. In theory, the performance counting components could be written
as passive observers of the model, which is essentially what most of the existing performance
query formalisms do. Hand-crafting the queries is thus not only very complicated and error-
prone, but also pointless.

The previous research has come up with the Unified Stochastic Probes formalism which aims to
offer a convenient way of specifying passage time queries. These are independent of formalism
and much simpler to define, use and comprehend. However, the experience shows that for users
it is most intuitive when they are allowed to use their visualisation. For this, the Performance
Trees notation, which allows users to graphically express both quantitative and qualitative
queries, is the perfect fit. It is also a highly abstract notation which grants users the ability
to define complex queries with much less effort. We therefore decided that Performance Trees
should be provided as a user-friendly solution to this problem.

To simplify the development, we have decided to implement the Unified Stochastic Probes
formalism as an extension of an open-source project for analysing massively parallel systems,
GPAnalyser ([29]). This project utilizes its powerful backend system for fluid flow analysis or
simulation, which we built upon.

The novelty of this project is in completely implementing the Unified Stochastic Probes for-
malism, both syntax and evaluation, and describing how can they be linked to the Performance
Trees formalism to offer a simple graphical and very powerful formalism for passage time queries.

1.2 Objectives

This project had three main objectives.

� To introduce a complete working Unified Stochastic Probes parser implementation as
described by Hayden [22].

� To build a passage time computation module for GPAnalyser using the Unified Stochastic
Probes, also described by Hayden.

� To introduce the graphical syntax of Unified Stochastic Probes for using with Performance
Trees [30] directly.

1.3 Report structure

This report is further structured as follows:

� Chapter 2 gives an introduction to the background theory.

� Chapter 3 describes the translation of Unified Stochastic Probes to the Performance Trees
formalism.

� Chapter 4 explains how the project was implemented as an extension of GPAnalyser.

1.4. Contributions 3

� Chapter 5 shows the capabilities of the project on real-life models. It also concludes
this work, compares with the previously hand-crafted results and discusses the overall
achievements of the project as well as the future work.

1.4 Contributions

This project has multiple contributions divided into two categories.

� Theoretical:

– Proposes a way of linking the Unified Stochastic Probes to the Performance Trees
formalism (Chapter 3).

– Shows that this is superior to the originally proposed Performance Trees passage
time calculations (Appendix A).

� Implementation (Chapter 4):

– GPEPA parser in GPAnalyser was extended with passive, weighted passive and
immediate actions, thus making it a full iGPEPA Parser. Furthermore, the algorithm
for vanishing states removal was introduced.

– A complete parser for Unified Stochastic Probes formalism and algorithms for their
translation to iGPEPA.

– Passage time computations in both simulation and fluid flow approximation mode
using the Unified Stochastic Probes.

– The capabilities of GPAnalyser were extended to very large models. This is further
explained in the Section 4.8.

1.5 Publication

During the course of this project, a tool paper was written and accepted for the QEST 2012
conference. This is a short tool paper describing the implementation contributions of this
project. The paper is attached in Appendix C and will be presented at the QEST conference.

4 Chapter 1. Introduction

Chapter 2

Background

2.1 Introduction

The main objective of this project was to simplify the computation of passage times in system
models. We believe the best simplification for the user is if they can visualise the issue. The
best way to provide such a help is to use graph representation of the performance query. In
our case, we chose Performance Trees formalism.

There were many approaches possible. We considered translating performance queries from
graphical (Performance Trees, the Section 2.8) representation directly to the process algebra, i.e.
in our case iGPEPA (Section 2.4). However, direct translation would diminish the Performance
Trees advantage of abstraction from any particular process algebra. Furthermore, Performance
Trees are a very high level formalism and a direct translation to the desired process algebra
might require significant effort and development time. Even though that could be a great
contribution in itself, the same effort would have to be made for every other process algebra
we would like to use.

The best way how to approach this issue is to make a layered system. Performance Trees can
build upon a less high-level formalism x. Formalism x could in theory be built on top of another
less powerful formalism y, etc. The last layer would be the concrete process algebra. In our
case, we decided one middle level should be sufficient, for which we chose the Unified Stochastic
Probes formalism (or just Probes for simplicity), which we describe in the Section 2.5.

Unified Stochastic Probes are in theory also an abstract concept independent of the process
algebra. There has been a lot of research invested into the translation of Probes to a process
algebra called iGPEPA, which is a derivation of process algebra PEPA (the Section 2.3). Since
there are many tools, which work with PEPA, it was decided it will be best to continue in
this work and use iGPEPA in our case as well. The translation of Probes is shown in the
Section 2.6.

2.2 Related work

There have been other formalisms proposed for specifying the performance queries easily. The
most popular ones are CSL [12] and its derivatives, which we introduce below. Apart from

5

6 Chapter 2. Background

that, there are other implementations of Performance Trees and we talk about one particular.

2.2.1 CSL and derivatives

Continuous Stochastic Logic (CSL) is the most widely used logic for specifying performance
queries on Continuous Time Markov Chains (CTMCs) directly. It is popular, because its basic
rules are very simple and many tools already support it. However, as described in [30, Section
5], it can be easily subsumed by the more powerful Performance Trees formalism, which offers
much more abstract notions. Also, it is just another textual formalism, which has no visual aid
for the user.

There are other formalisms, which try to extend CSL and increase its power. Notable are aCSL,
asCSL and eCSL.

Formalism aCSL [26] extends CSL with expressing simple requirements on taken actions. The
basic premise is, that it is more natural to measure the overall behaviour of the system, rather
than just various state properties at certain times. This formalism is therefore much closer to
the idea of Performance Trees and queries possible with it can express much more than CSL.

Another formalism subsuming both CSL and aCSL is asCSL [14]. It provides new options for
specifying action sequences. It is not as advanced as any of the probes mechanisms introduced
in Section 2.5, but with this formalism, behaviour-oriented performance queries are already
possible.

Last formalism we could use is eCSL ([15]). This formalism is working with higher-level models
called Semi-Markov Stochastic Petri Nets (SM-SPN). It is powerful and allows transient and
passage time queries, including constraints. However, its strong reliance on SM-SPN is a disad-
vantage and we prefer Performance Trees for being an abstraction over modelling formalisms.

2.2.2 Performance Trees implementation in the PIPE tool

An open-source PIPE tool [9] was extended to support the full-range of Performance Trees
operators. As described in [16], it is an impressive work providing the performance evaluation
queries with a nice GUI toolkit. PIPE works with modeling formalism called Generalised
Stochastic Petri Nets (GSPN), which is the most important difference from our project. We
should note, that GSPNs are, after removing all immediate transitions, convertible to a CTMC.
Since we can achieve the same with iGPEPA, which also supports immediate transitions, the
expressible power of both formalisms is roughly the same. Petri Nets are considerably harder to
design without a GUI, whereas iGPEPA is easy to master in a textual representation. Another
difference from PIPE is in dealing with complexity of simulations and their performance. PIPE
supports simulation of Performance Trees queries on a high-performance cluster. We mainly use
fluid-flow approximation instead of simulation, which is an approximate, but computationally
faster technique and provide simulation only for comparison.

2.3. PEPA process algebra introduction 7

2.3 PEPA process algebra introduction

PEPA stands for Performance Evaluation Process Algebra and is a stochastic process algebra,
which is designed for modelling systems as complex state machines. Its syntax is very simple
and thus it is quite popular and there are many tools, which support it. Stochastic means
it is not deterministic when choosing the next state in the process. The next state is chosen
based on the negative exponential probability distribution, which, in form of rate, determines
the next performed action of a component. Actions essentially represent transitions - moving
from one state of the component to another, although it is possible, that after executing an
action, a component stays in the same state. The action to be executed is chosen by racing the
currently available actions in the component. Informally, with higher rate, action is likely to
occur sooner.

Another advantage of PEPA models is, that they can be straightforwardly translated to continuous-
time Markov chains (CTMC) [13]. There are known efficient numerical solutions for steady-state
probabilities of CTMCs, although they are computationally feasible only for small chains. Un-
fortunately, PEPA models with lots of replicated components are usually mapped to very large
CTMCs.

There have been a lot of materials about PEPA. Formal specification of PEPA operational
semantics can be found in [28, Chapter 20]. For our purposes, we do not need so detailed
information. All the information required will be summarised below. This section was inspired
by a similar introduction from [24, Section II.A].

The basic PEPA grammar can be expressed with these two rules:

S ::= (α, r).S | S + S | CS

P ::= P ��
L
P | S | CP

(2.1)

where α ∈ At is a timed action (or transition) and L ⊆ A, where A is the set consisting of
all action types (in case of PEPA only At). Parameter r ∈ R ∪ {n> | n ∈ Q, n > 0} is a rate
parameter.

There is intentionally a clear distinction between P and S. Component (or process) S is
intended to be a simple sequential component, whereas P is a parallel component. The syntac-
tic separation allows cooperation between sequential components only. Symbols CS and CP

represent constants for sequential or parallel components respectively.

We took the liberty to ignore some more advanced operations (e.g. action hiding), which can
be added later. The basic rules therefore are:

� Prefix specifies a possible transition to another component state. It is in the form (α, r).S,
which says that after executing the action α, the process will advance to the state S. We
say the process currently enables the action α. As we have mentioned, r is the rate for
the exponential distribution, which determines the duration of α action.

� Constant is a label for a component state. The notation is X
def
= P . It allows a recursive

definition, so X
def
= (α, r).X is a valid component, which will execute action α with rate r

forever.

8 Chapter 2. Background

� Choice P + S means that the component can behave either as P , or as S. It basically
races these components and behaves as the one, which is prepared to execute its action
earlier. Therefore; (α, rα).S+(β, rβ).Q, will execute either α or β, depending on the rates
and also cooperation with other components, as we will explain below.

� Cooperation is a way of expressing that two components work in parallel. It may be
the case, that some of the actions must be synchronized between them. The syntax
is P ��

L
Q, which says that components P and Q are executed in parallel and must

synchronise on actions in the set L. Actions enabled by these components and not in
the set L are raced in the usual way disregarding the other cooperating component. Set
L may be empty, in which case these components work completely independently. We
denote that as P ‖ Q, which is an abbreviation for P ��

∅
Q. Another useful abbreviation

is independent cooperation of n components of the same type (e.g. for component P)
P [n].

We define the apparent rate, rα(P) of an action as an overall observed rate with which a
component executes a timed action. Apparent rate is the only visible rate to the cooperating
component and determines the rate of the cooperation. It is defined as:

rα((β, λ).P) :=

{
λ if β = α
0 if β 6= α

rα(P +Q) := rα(P) + rα(Q)

rα(P ��
L
Q) :=

{
min(rα(P), rα(Q)) if α ∈ L
rα(P) + rα(Q) if α /∈ L

(2.2)

Once an activity in the set L, or shared activity, is enabled in one component in Cooperation,
it cannot be executed until both of the cooperating components enable this activity. When
both of them enable it, enabled actions in each component are raced in the usual manner
with a rate determined by the slower component - we assume bounded capacity, which means,
that no component can execute an action faster than its own rate for that action. Basically,
if a component is executing an action in synchronisation with another component, the whole
activity is finished only when the slower component finishes.

There are also components with passive activity. That means the component enables the action
specified, but can perform it only in cooperation with another component. This component
therefore needs no rate for an action and we write the passive rate as > (e.g. (α,>).P). The
rate is then determined during the cooperation as the apparent rate of this action from the
other component. It is important to note, that cooperation between two components on an
action, which is passively enabled in both of them, is forbidden. A standard PEPA component
is also prohibited to enable the same action both actively and passively.

For a PEPA component P , we can define its set of derivative states (ds(P)), which is the set
of all states of this component, reachable by taking any sequence of timed actions.

We also have to mention, that a Choice component can have multiple Prefixes with the same
passive action α. These are then attached some weight. When this component takes α in
synchronization with another component, it is probabilistically chosen which Prefix will be
used depending on the weights. The formal meaning of weights is defined below.

2.4. iGPEPA 9

m> < n> : for m < n and m,n ∈ Q
r < n> : for all r ∈ IR, n ∈ Q

m>+ n> = (m+ n)> : m,n ∈ Q
m>
n> =

m

n
: m,n ∈ Q

where n> is the abbreviation for n×>.

2.4 iGPEPA

iGPEPA is actually introducing two different extensions to the PEPA (the Section 2.3): iPEPA,
which can use immediate actions and GPEPA, which can use grouped components. We will in-
troduce them both in the subsections below. This section was inspired by a similar introduction
from [24, Section II.A].

2.4.1 iPEPA

iPEPA is a simple extension of original PEPA operational semantics. It introduces a new type
of prefix - immediate prefix with an immediate action a. If a component (process) enables such
an action, it is executed instantaneously. With this new prefix, the augmented basic syntactic
rules of iPEPA are:

S ::= (α, r).S | [a, w].S | S + S | CS

P ::= P ��
L
P | S | CP

(2.3)

Formal operational semantics can be found in [24, Section II.A].

The syntax of immediate prefix with an immediate action is [a, w].S, An enabled immediate
action always takes precedence over any enabled timed actions. The parameter w is the weight
of the immediate action and is used when there are multiple enabled immediate actions in the
current component, in which case the next performed immediate action is chosen probabilisti-
cally using all enabled immediate actions weights. A useful shorthand is a.S, which is the same
as [a, 1].S. Since cooperation between immediate and timed actions is not a well-defined oper-
ation, we prohibit it in iPEPA. Therefore, to make the distinction explicit, timed actions are
drawn from set At, immediate actions from set Ai. Therefore, in iPEPA we have A := At∪Ai.
Also, in iPEPA, the derivative states of a component P , ds(P) is a set of all states reachable
by taking any immediate or timed actions.

An iPEPA component can still be translated to a CTMC. However, we require it to be well-
behaved. A well-behaved iPEPA component satisfies these two conditions:

� freedom from immediate cycles, meaning that there is no cycle of immediate actions in

10 Chapter 2. Background

the component. Simply put, in one component, we cannot travel from any state back to
itself using only immediate actions.

� deterministic initial behaviour, meaning that there cannot be more than one path of
immediate actions from the initial component state.

For translation of iPEPA component P to an CTMC, we can use its set of non-vanishing
derivate states ds∗(P). A non-vanishing state is a state which enables no immediate actions.
In order to eliminate immediate actions from an iPEPA component, we can do vanishing state
removal. This operation is in detail described in [24, Appendix B]. Basically, we do three simple
steps.

1. If a state St can reach a state Si, emanating an immediate action a, by taking a timed
action α, α will get a as a complementary action executed right after α. The next state
Sx will be the one where the a would originally lead from the state Si. If Sx has any
immediate action b, the process is repeated, so after executing α and a, b is performed
leading to a state Sy as b would lead from Sx, etc.

2. Remove the states with immediate actions.

3. New rates of the timed actions with complementary immediate actions are their original
rates multiplied by the multiplied weights of all their complementary actions. Formally,
R := r ×∏K

i=1 zi, where zi are the weights.

This is illustrated in the Figure 2.1.

S t S x S x
α a

S t S x
α, a

Figure 2.1: Vanishing state removal simplified process

F-components

An f-component, in some older works called a fluid component, is any standard iPEPA compo-
nent. For fluid flow approximation, we require all f-components to be well-behaved.

2.4.2 GPEPA

GPEPA or Grouped PEPA is a simple extension of PEPA. It allows to have component groups
with labels. A component group is a named cooperation of some components, or it can be a
single component. Formally, the grammar of a labelled group D is:

D ::= D oo D | P (2.4)

2.4. iGPEPA 11

where oo is unsynchronized cooperation between f-components and P is an f-component.

A grouped PEPA model is a model formed by cooperation between component groups. For
every component from one group, it has to synchronize with a component from the other group
on the actions specified in the set L. Formal syntax follows.

G ::= G��
L
G | Y {D} (2.5)

where Y is a group label unique for each group.

The oo is essentially equivalent to ‖ operation. However, we use two distinct combinators to
resolve any possible ambiguities between parallelism of the groups and f-components inside these
groups, which can have their own internal parallelism. The cooperation between the component
groups is forbidden to synchronize on passive transitions. That means, every action, on which
these two groups synchronize, must be internally associated with a rate (either it is a timed
action, or passive which is always internally synchronized with some timed action).

Finally, in the table Table 2.1, we introduce some useful functions for working with GPEPA.

B(G,H) The union of all non-vanishing derivative states of all f-components
in the component group of G which has group label H, e.g.
B(CP(Nc, Np),Consumers) = {C,C get,C use}.

B(G) The set of all pairs whose first element is a component group label, say,
H and whose second is an element of B(G,H), e.g. B(CP(Nc, Np)) =
{(Consumers,C), (Consumers,C get), (Consumers,C use),
(Producers,P ��

{get product}
T), (Producers,P ready ��

{get product}
T),

(Producers,P done ��
{get product}

T), (Producers,P ��
{get product}

T get),

(Producers,P ready ��
{get product}

T get),

(Producers,P done ��
{get product}

T get).

S(G,H) The size of the component group with label H. That is, the number of
f-components in the group, e.g. S(CP(Nc, Np),Consumers) = Nc.

Table 2.1: Frequently used iGPEPA notation, where C is short for Consumer, P is short for
Producer and T is short for Terminal from the example CP(Nc, Np) model 2.4.3. Source:
[24]

2.4.3 Example Consumer/Producer model

Here, we present a working simple Consumer/Produced model modelled in the GPEPA lan-
guage. This model represents a system of many cooperating Consumer and Producer com-
ponents, where each producer has its own Terminal and only when the Terminal is prepared,
the Producer can give out the produced information. It has only one-item buffer, and once
in a while, if no Consumer is interested, clears it. The overall system is then defined as a
cooperation between Nc Consumer and Np Producer components.

12 Chapter 2. Background

Consumer
def
= (think , rt).Consumer get

Consumer get
def
= (get product , rg).Consumer use

Consumer use
def
= (use, ru).Consumer

Terminal
def
= (setup, rs).Terminal

Terminal get
def
= (get product ,>).Terminal

+ (timeout , rti).Terminal

Producer
def
= (init , ri).Producer ready

Producer ready
def
= (produce, rp).Producer done

Producer done
def
= (get roduct , rgp).Producer

+ (clear , rcl).Producer

CP(Nc, Np)
def
= Consumers{Consumer[Nc]} ��

{get product}

Producers{(Producer ��
{get product}

Terminal)[Np]}

2.5 Unified Stochastic Probes and passage-times

Stochastic probes, as introduced in [10] and later extended in [18], are a mechanism for per-
formance querying of stochastic process algebras. They measure probability distributions of
how long it takes till a system model executes a certain sequence of actions, often termed as a
passage-time density calculation. They are an abstraction independent of all process algebras.

Unified Stochastic Probes are an extension of this concept. They are in detail introduced in [22,
Chapter 5] or more concisely in [24, Section III.], content of which we borrowed here. They are
passively observing components, which track the progress of a system model. They do it simply
by monitoring overall system model emitted actions, or, the extension, actions of a particular
component. This was heavily influenced by Location-aware Probes [11], but Unified Stochastic
Probes improved some of their shortcomings.

We know two basic types of probes. The main ones are called global probes. They monitor
the actions in the whole system and measure how long it takes until a certain sequence of
actions takes place. Apart from observing the system model, they can also observe other
probes, referred to as local probes. Local probes are attached to a certain particular component
forming a component group and monitor its actions only. If they perceive a specified sequence
of actions, they can send signals, which other probes, either global, or other local, can catch as
actions and advance their own state. Local probes monitoring other local probes are sometimes
called nested local probes.

Another important property of probes, both local and global, is that they may be repeating. If
a probe is repeating, than after observing the sequence of actions it is expecting and sending the

2.5. Unified Stochastic Probes and passage-times 13

signals it is supposed to, it just starts monitoring all over again, expecting the same sequence.
It also repeats the signals, when the action sequence expected occurs.

We have been using a word “sequence”. The reality is, probes are more flexible than that.
We can easily specify a probe, which will happily accept many different sequences of actions.
Thanks to using a language inspired by regular expressions, probes are quite easy to learn and
use. Before we get to their syntax, we need to show how to actually specify, that we want a
probe attached to a system:

ProbedModel ::= Probeg observes {Probel} (2.6)

where {Location}
in G

| Probeg in G

where Probeg is the global probe, {Probel} is a list of local probes, {Location} is a list of
component substitutions for components cooperating with some probe (or probes) and G is the
model we are probing (in our case an iGPEPA model).

2.5.1 Locating a local probe in the system

To better illustrate how {Location} are specified with GPEPA, a simple example:

Servers{Server[?n]} =⇒
Servers{(Server ��

L
Pb) oo Server[?n− 1]}

which says, substitute a component group Servers in the model with a new component group
Servers, which is formed by independent cooperation of n − 1 Server components and 1
Server component, which is directly observed by a probe Probel on actions in L.

The grammar for this operation is:

14 Chapter 2. Background

rule ::= group =⇒ group replacement rule

group ::= H{cpts} component group

| group ��
actions

group group cooperation

cpts ::= cpt f-component

| cpt oo cpt f-component parallelism

| cpt [expr] f-component array

cpt ::= P iPEPA component

| cpt ��
actions

cpt iPEPA cooperation

| ?p iPEPA component variable

actions ::= L action set

| ?l action set variable

expr ::= int number

| ?n numeric variable

| expr ⊕ expr binary expression

where H ∈ G(G), P ∈ B(G,H ′) for some H ′ ∈ G(G), L ⊆ At, int ∈ Z+ and n and p are drawn
from a set of variable names.

In our case, using this syntax has the advantage that attaching a local probe to an iGPEPA
f-component results again in a standard f-component. Models like these can then be analysed
using existing techniques for analysing iGPEPA. Nested local probes also keep this advantage.

2.5.2 Local probes grammar

Now we can advance to the grammar of local probes. A local probe is specified using an actions
specification Rs

l and an optional repetition denoted by a ←↩ superscript:

Probel ::= Rs
l | Rs

l
←↩ (2.7)

where

Rs
l ::= Rs

l , R
s
l sequence (2.8)

| Rl : signal transmitted signal

which formally shows that after observing a specified sequence (or rather specified set of se-
quences, as this is regular expression based), the local probe will send out a signal.

2.5. Unified Stochastic Probes and passage-times 15

Rl ::= Rl, Rl sequence (2.9)

| Rl | Rl choice

| Rl;Rl both

| Rl[n] iterate n times

| Rl[m,n] iterate m to n times

| R?
l zero or one

| R+
l one or more

| R∗l zero or more

| Rl/Rl reset

| Rl∅Rl fail

| R!
l not

| . any action or signal

| action eventual specific action or signal

| action subsequent specific action or signal

| ε empty action or signal sequence

where action ∈ A is an action (or signal) type.

In performance measurement, we are always interested in the shortest sequence of actions
leading to a desired (probe) state. Therefore these expressions are evaluated lazily (in the
minimal manner) - as soon as a sequence satisfying the expression occurs, the expression
advances and sends the signal.

The subsequent specific action matches the action only, whereas the eventual specific action is
just a shorthand for

.∗, action, .∗

where . is a shorthand for (a1 | a2 | . . . | a|A(P)|) and a1 . . . a|A(P)| ∈ A(P), which represents the
set of actions in component P to be observed. Informally, . specifies any action.

There are also some operations not present amongst standard regular expressions. “Both”
construction Rl; Rl matches if an only if both expressions match. The “reset” operation Rl/Rl

matches when first expression matches. Anytime the second expression matches, matching of
the first expression starts all over again. The “fail” construction Rl∅Rl is similar to the “reset”
construction, but if second expression ever matches, the whole expression fails. Their formal
semantics is given in [24, Appendix C].

2.5.3 Global probes grammar

Global probes are similar to the local probes. In the case of a global probe, there is a guarantee,
that no other probe observes it. Therefore it makes no sense to define signals in a global
probe, thus it is disallowed. However, we still wish to announce start and stop of global
measurement and thus we augment the grammar to allow sending two special signals - start

16 Chapter 2. Background

and stop. Formally:

Probeg ::= Rg : start, Rg : stop (2.10)

| Rg : start, Rg : stop←↩

The measured passage time is then the time between sending start and stop signals. In the case
of a repeating probe, this will give us enough data for steady-state measurement, since the data
are identically-distributed. Steady-state, or equilibrium, is when all the system model states
have stable probabilities of being active at some time.

Rg is defined as:

Rg ::= {pred}Rg | Rg, Rg | . . . | action | action | ε (2.11)

Apart from {pred}Rg rule this is identical to the Rl grammar.

The rule {pred}Rg allows to start matching Rg only if the state guard predicate pred , a boolean
expression, is true. The syntax of predicates:

pred ::= true | false boolean (2.12)

| ¬pred not

| pred ∨ pred disjunction

| b expr expression

b expr ::= r expr � r expr comparison

r expr ::= H : P component count

| int number

| r expr ⊕ r expr arithmetic

� ::= = | ≥ | ≤ relational ops

⊕ ::= + | − binary ops

where, if G is the iGPEPA model to which the global probe is to be attached, (H,P) ∈ B(G).

The formal semantics for the predicate language for a iGPEPA model in a state s is given by:

s |= true for all s
s |= false for no s
s |= ¬ψ iff s 6|= ψ
s |= ψ1 ∨ ψ2 iff s |= ψ1 ∨ s |= ψ2

s |= b expr eval(b expr , s)

where b expr is, as above, a boolean function of H1 : P1, H2 : P2, ... expressions, which reference
specific f-component derivative states Px in the component groups Hx. The eval function
evaluates the boolean function by dereferencing the Hx : Px expressions as the number of Px
components active in the component group Hx in the particular state of the model s.

2.5. Unified Stochastic Probes and passage-times 17

2.5.4 Calculating passage time densities using the Unified Stochas-
tic Probes

The Unified Stochastic Probes were specifically designed to measure passage-time densities, e.g.
the time it takes to transfer from a component state S to a component state T, or the time it
takes a certain sequence of actions to occur, when in state S. There are number of passage-time
analyses used, depending on the circumstances. We can observe passages while the system is
in the steady-state, or we can observe the system from certain time t. The former analysis is
often termed as the steady-state passage time, whereas the latter as the transient passage time
analysis. The steady-state passage time analysis is a special case of the transient passage time
analysis, with the time t chosen to be approaching the infinity.

We also distinguish between observing the system as a whole and observation of its individual
components. When we observe one individual component, we are interested in the individual
passage time of this component cooperating with a large number of identical components. It
is not important, which particular component from these we observe, since they are identical
and probabilistically, they will expose the same behaviour. We can also monitor multiple
(not necessarily identical) components. In this case we are interested in the global passage
time. Location-aware probes simplify this process, since we can attach them to a particular
component in its arbitrary state. If we do not use probes, we can achieve the same using the
GPEPA models [25].

Steady-state individual passage time

To specify a probe observing a steady-state individual passage time, we use the following form:

PM
def
= begin : start, end : stop←↩

observes Probel
def
= Rl : begin, Rl : end←↩

where H{P[?n]} =⇒
H{(P ��

∗
Probel) oo P[?n− 1]}

in G

This form formally requests, that we measure the system with a repeating local probe attached
to the component of interest, P. We then leave the model running until a time t approaching
the infinity. At this time, the model should be stable and have stable state probabilities. Only
then we substitute the local probe for another, non-repeating (absorbing) one. Formally, we
consider our model G at the time t and start running a new model G′ with the same initial
component counts as were the component counts of G at time t. The component P is attached
to a non-reapeating version of the local probe Probel , called Probel

′, and we leave the G′ running
until the Probel

′ is in an accepting state. We can repeat this simulation many times over to
obtain the frequency distribution of the finishing times. After normalising, this is our passage
time density, which is then easy to convert to a cumulative distribution function (CDF).

There is one small catch. For certain probes, the state space of repeating and non-repeating
probes combined with the model might differ considerably. If we ignore one extra state in

18 Chapter 2. Background

non-repeating version, which causes no trouble, since we just expect the simulation to reach
this state in second run, it might be the case, that some combined states are reachable with
repeating probe, but not reachable with its non-repeating version. This may cause issues when
assigning from G to G′, since at that particular moment, the probed component in G may be
in one of these states.

One way to solve this problem is to wait enough time after the begin signal, when the probe
reaches a combined state common to both models. This approach could work, if we generated
all the possible states for both models and all the possible events leading from each of them.
This is quite computationally inefficient.

Another approach is to choose the state after the begin signal probabilistically. We assign
weights to the each state representing the probability of being there right after the begin signal.
We generate a random number from uniform distribution between 0 and 1.1 Then we simply
consider our combined states in an ordering we chose beforehand, and cumulate their weights.
The first one in the order, which has the cumulative weight equal or larger to our generated
number, will be chosen. The question here is how to assign the weights. We can borrow a
formula from [24], where a similar approach was taken but for fluid flow approximation.

∑
α∈At,C∈ds∗(P��∗ Pb),C

(α,λ),(...,begin,...)−−−−−−−−−−→Q

(
Rα(G,V,H,C)λ

rα(C)

)
∑

α∈At,C∈ds∗(P��∗ Pb),C
(α,λ),(...,begin,...)−−−−−−−−−−→

(
Rα(G,V,H,C)λ

rα(C)

) (2.13)

where V ∈ B(G)→ Z+ is defined by Ṽ (Y,Q) := vY,Q for all (Y,Q) ∈ B(G).

The probability of a state Q being active right after the begin signal has been fired is the
sum of the expected rates of begin transitions leading to Q divided by the sum of all expected
rates of begin transitions. To better understand the inner term, imagine that as the rate of
the transition given our model multiplied by the probability of this action occurring in the
component C. This is the approach we adopted.

Transient individual passage time

For transient individual passage time, we require similar form to the steady-state individual
passage time; however, the local probe is non-repeating. In case of probes, we can consider the
starting time t of transient individual passage time analysis to be the time, when the monitored
local probe sends the begin signal (or equivalently the global probe sends the start signal).

1In a uniform distribution, each number in range has the same probability of being chosen.

2.5. Unified Stochastic Probes and passage-times 19

PM
def
= begin : start, end : stop

observes Probel
def
= Rl : begin, Rl : end

where H{P[?n]} =⇒
H{(P ��

∗
Probel) oo P[?n− 1]}

in G

This is evaluated by simply attaching the Probel to the G and running the model, until the
Probel is in an accepting state. By repeating the experiment, we can again obtain the frequency
distribution of the times when this happens and after normalising our passage time density.

Global passage times

These leave much more freedom for specification. The user can use the full global probes
grammar with predicates, and optionally arbitrary local probes and substitutions. Formally,
the form is allowed to be as follows:

PM
def
= ε : start, Rg : stop

observes {Probel}
where {Location}
in G

The evaluation consists of applying the substitutions in the order of specification. Next step is
to attach the global probe to the model, run it and obtain the time when the global probe sends
the stop signal. Once again, we obtain the passage time density by obtaining the frequency
distribution of measurement completion times. We should note that currently, simulation does
not support predicates. This is still an open research question, as there are multiple ways how
to achieve its support. They require some extension of PEPA, for example to support functional
rates (rates dependent on some factor rather than constant rates).

2.5.5 Examples

In this section we present some simple examples of probes. We are interested in particular
kinds of probes for determining individual or global passage time distributions. For individual
passages of a single component, we either determine the distribution from certain time t (tran-
sient individual) or in equilibrium (steady-state individual). These probes will be attached to
the GPEPA example model from the Subsection 2.4.3.

In such a system, it would make sense to specify an SLA. For instance, one that guarantees that
any Consumer will at least in 99% of time use minimum of two pieces of information within
250ms after performing think action for the first time. This can be expressed by an individual
steady state passage time calculated by a global probe observing a local probe attached to a

20 Chapter 2. Background

single Consumer component. Asterisk as cooperation actions set stands for all the model
actions monitored by Probel , in this case think and use.

PM1
def
= begin : start, end : stop←↩

observes Probel
def
= think : begin, use[2] : end←↩

where Consumers{Consumer[Nc]} =⇒
Consumers{(Consumer ��

∗
Probel) oo Consumer[Nc − 1]}

in CP(Nc, Np)

Or we might be interested in the time it takes one Producer to empty its buffer. This can be
observed with a transient individual passage time probe:

PM2
def
= begin : start, end : stop

observes Probel
def
= ε : begin, clear : end

where Producers{(Producer ��
get product

Terminal)[Np]} =⇒
Producers{((Producer ��

get product
Terminal) ��

∗
Probel) oo

(Producer ��
get product

Terminal)[Np − 1]}
in CP(Nc, Np)

We might also be interested in the overall system behaviour, for example how long will it take
at least 30% of Consumer components to obtain at least 10 products. For this we can use a
global passage time probe:

PM3
def
= ε : start, end[Nc ∗ 0.3] : stop

observes Probel
def
= get product [10] : end

where Consumers{Consumer[Nc]} =⇒
Consumers{(Consumer ��

∗
Probel)[Nc]}

in CP(Nc, Np)

Please note the rather clumsy and complicated description in English even for so simple probes
and compare it to the clear formal syntax of Unified Stochastic Probes.

2.6. Unified Stochastic Probes translation to iGPEPA 21

2.6 Unified Stochastic Probes translation to iGPEPA

The process of translating the Unified Stochastic Probes to iGPEPA is straightforward. It
consists of only few steps, which we will introduce below, details in [24].

The usual practice when working with regular expression is their conversion to a non-deterministic
finite automata (NFA). An NFA is a simple automata graph, which is characteristic by being
non-deterministic. A usual NFA graph has plenty of so-called empty transitions, which do
nothing else than just move the current state, where different transitions may be available.
Since they are empty, they do not match anything. The execution could follow them, but it
does not have to. A simple example graph is shown in the Figure 2.2.

start

ε

ε

fetch

upload

Figure 2.2: NFA example

In this graph, we can take either ε and then match fetch or upload respectively. We cannot
match both, after we take any of the εs. That is exactly the disadvantage of the NFAs - to
match with them, we need a fair amount of backtracking (returning to states we have already
visited), which adds computational complexity. Furthermore, PEPA has no equivalent to an
empty transition. Thus we first need to convert the NFA to a deterministic finite automata
(DFA).

Since probes syntax is based on regular expressions, it is easy to find a literature on how to
translate their Rl to NFAs, with the exception of the non-standard operations - “both”, “reset”
and “fail”. These are better described in the implementation chapter (Subsection 4.6.2) and
formally in [24, Appendix C]. To translate Rs

l , we do the following steps:

1. Translate Rl .

2. Add a new state SigState with a transition named after the signal s from Rs
l , which leads

to a new accepting state A.

SigState A
s

Figure 2.3: Signal transition from SigState

3. All the accepting states in Rl are changed to non-accepting and given an empty transition
to SigState.

22 Chapter 2. Background

If there are multiple Rs
l , all of them are joint together - the starting state of the next Rs

l is
linked with the accepting state of the current Rs

l by an empty transition. This accepting state
is then made non-accepting.

The next step is to convert the complete NFA to a DFA. DFA is a graph, which contains no
non-deterministic decisions and no empty transitions. They are very fast to use for pattern
matching. Their disadvantage is, that in general, we need much more states for a DFA than
for an equivalent NFA. In the worst case, when converting from NFA, we need 2n states, where
n is the number of the states in the original NFA.

There is one more difference between DFA and NFA. DFAs have an explicit failure state. If
they are matched against a pattern, which has no available transition in the current state,
we end up in the failure state. Once the failure state is entered, it cannot be left (it has the
self-loops for all the possible transitions). However, for our purposes, we do not need a failure
state and we will ignore it.

The conversion from NFA to DFA is a well-known problem and we will not describe it in
detail. For interested to read further, a good source is [19]. After conversion, the DFAs are
usually quite clumsy. Another well-known algorithm, also described in the given link, is then
minimisation (optimisation) of the DFA. It can be shown, that for each pattern matched by
a DFA, there exists a DFA m with a minimum number of states. There may be many more
DFAs correct for this pattern, but they can all be reduced to m.

Next we make the translation of our local probes to iGPEPA. This step is very simple. Each
state is translated to one component state. All these component states belong to the same
compponent. The transitions are then translated as the available choices with passive rates. If
there is a signal transition, then instead of a passive rate it will become an immediate action.
For each state, if there is no transition corresponding to an action from cooperation between
the probe and the observed component, we will add a self-loop passive prefix with this action.
If the probe is non-repeating, the accepting state will have all its actions as self-loops.

Below we present a simple example from Subsection 2.5.5. The local probe would be translated
to an NFA as in the Figure 2.4.

PM1
def
= begin : start, end : stop←↩

observes Probel
def
= think : begin, use[2] : end←↩

where Consumers{Consumer[Nc]} =⇒
Consumers{(Consumer ��

∗
Probel) oo Consumer[Nc − 1]}

in CP(Nc, Np)

The global probe cannot be fully translated to iGPEPA because of the predicates. For the
simulation purposes, we impose a restriction on grammar to not contain any predicates. For
fluid flow approximation (described in the Subsection 2.7.3), we do not translate them at all.

2.6. Unified Stochastic Probes translation to iGPEPA 23

Probel

Probel2

Probel3

Probel4

Probel5

Probel6

think

begin

use

use

end

ε

Figure 2.4: Signal transition from SigState

24 Chapter 2. Background

2.7 Fluid-flow approximation of PEPA models

As we have previously stated, PEPA models are easily translatable to CTMCs. We know some
methods for solving these and therefore we are able to state our performance queries. How-
ever, translating more complicated models directly usually causes a problem called state-space
explosion. This essentially means that the resulting CTMC has too many states to be compu-
tationally tractable. Even without this problem though, solving CTMCs is computationally a
very demanding process. Improving the performance of CTMC solving has thus been a topic
for recent research. Although there have been some advancements, it is still a slow process. We
do not talk about CTMCs in this work, but we would like to point out [13], which introduces
the subject.

A new approximation method for PEPA models was proposed in [27]. It is called fluid-flow
approximation and it avoids the direct translation of the model to a CTMC. Instead, it first does
a state-space aggregation of the model states and after that uses ordinary differential equations
to represent the overall model behaviour which can be solved in incomparably shorter time
than simulation would take.

2.7.1 State-Space Aggregation

When we consider a PEPA model, it is straightforward to translate it to a graph. Each com-
ponent state will represent a node and each action with associated rate is represented as an

arc. For example, if we have Client0
def
= (think , rt).Client1, we could translate it as in the

Figure 2.5.

Client0 Client1
(think , rt)

Figure 2.5: PEPA as graph, Client0
def
= (think , rt).Client1

When two components are cooperating, a simple way of making a graph then is to consider the
cooperation as one state. When an unsynchronized action occurs, left or right-hand side will
evolve. If synchronized, than both. A little example:

Client0
def
= (think , rt).Client1 Server0

def
= (initialise, ri).Server1

Client1
def
= (request , rr1).Client2 Server1

def
= (request , rr2).Server2

SC(1, 1)
def
= Clients{Client0} ��

{request}
Servers{Server0}

Let’s suppose the following actions occurred: think , initialise, request .

Then the model will go through these states:

2.7. Fluid-flow approximation of PEPA models 25

Client{Clients0} ��
{request}

Servers{Server0}

Client{Clients1} ��
{request}

Servers{Server0}

Client{Clients1} ��
{request}

Servers{Server1}

Client{Clients2} ��
{request}

Servers{Server2}

For two components that is not such a problem. Imagine though, we have 100 Client0 and 60
Server0 components. The number of required states would grow exponentially. Fortunately,
this can be easily avoided. Instead of considering each component individually, we can ag-
gregate the components of the same type and represent them by one number in the vector of
component counts. For the example mentioned, the initial state would be (100, 0, 0, 60, 0, 0),
which says, there are 100 Client0 components, 0 Client1, 0 Client2, 60 Server0, 0 Server1

and 0 Server2. After executing our example actions, the vector would develop in this way:
(99, 1, 0, 60, 0, 0), (99, 1, 0, 59, 1, 0) and (99, 0, 1, 59, 0, 1). Simply put, if there is an action per-
formed in an aggregated group of components in the same state, one of the entries in the
component counts vector will be increased, one decreased and these entries may be the same
one. If this is a shared action, this will happen to each aggregated group participating in the
action.

This simple change of thought drastically decreases the state space for usual PEPA models. In
addition, it appears there is no significant information loss, since the replicated components
are identical and thus we can disregard the knowledge about the particular component, which
evolved. With aggregated space we could already create a CTMC (called PCTMC, Population
CTMC) with much less complexity and try to solve it instead of the original one. However, we
can go even further.

2.7.2 Fluid-flow approximation

As presented in [27, Section 3], we can avoid the CTMC computation altogether. Instead, we
can derive a set of ordinary differential equations, which will describe the behaviour of the
system. They will allow us to regard a system as a set of count vectors at certain times.

Conversion to PCTMC (or CTMC) is an optional step. It allows to use PCTMC as an abstrac-
tion of process algebras (PEPA, Stochastic Petri Nets, etc.), as long as we can convert these to
a PCTMC. This is the approach GPAnalyser [29] has adopted. As discussed in the Section 2.3,
we do not describe CTMCs in this work.

The component count vector presented in the previous section is discrete and its entries are
always increased or decreased by one. However, with a large number of components, we can
accept the assumption, that the vector is continuous and its entries can change by a very small
amount. In that case we are able to approximate these values at all times.

First, some preliminary definitions. An activity a is an exit activity for component C, if the

activity is enabled by C, in other words if there is a transition of type C
(a,r)−−→. Entry activity,

if there is a transition of type
(a,r)−−→ C. For each of the components and their states we will

define their sets of entry (entering) and exit activities. We will also define the entry and exit

26 Chapter 2. Background

sets for each action, which will contain all the component states, for which this action is an
entry or exit action respectively.

Now we are prepared for the technique itself. Change of number of components being in some
component state s during an [t, δt] interval can be interpreted as the difference of components
entering and leaving the state s during this period. Formally, we can write a formula:

N(Cij , t+ δt)−N(Cij , t) =

−
∑

(a,ri)∈Ex(Cij)
min

Ckl∈Ex(a,r)
(r ×N(Ckl , t))δt

+
∑

(a,ri)∈En(Cij)
min

Ckl∈Ex(a,r)
(r ×N(Ckl , t))δt

where Cij represents the i − th component type in the system and its j − th derivative state,
and N(Cij , t) the number of Cij in the system at time t.

The second line represents the decrease of the number of Cij by pursuing their exit activities.
If a is an unsynchronized activity of this component state then minCkl∈Ex(a,r)(N(Ckl , t)) will
be simply N(Cij). Naturally, there may be another component, for which a is an exit activity,
however, since there is no synchronisation, we consider it to be in a different scope. According to
the definition of apparent rate, n replicated components C will execute (d , r) with the apparent
rate n× r.
By the semantics of the apparent rate, cooperating components execute a synchronized action
with the apparent rate of the slower one. If Cij shares this activity, we will take the cooperating
party with the lowest apparent rate as the new apparent rate.

Analogically to that, we can explain the third line of the equation representing the impact of
entry activities, which are represented as the exit activities of other component states entering
this component state.

With this equation, we can continuously compute this change for any component state in the
system and for any two times. However, dividing the whole equation by δt and by taking the
limit with δt converging to 0 we obtain:

dN(Cij , t)

dt
=−

∑
(a,ri)∈Ex(Cij)

min
Ckl∈Ex(a,r)

(r ×N(Ckl , t))

+
∑

(a,ri)∈En(Cij)
min

Ckl∈Ex(a,r)
(r ×N(Ckl , t))

We can see this ordinary differential equation represents the evolution of the system for a
component state at certain time. This is the key technique to approximating the development
of the system model. Experiments, as provided in [27] show that for large numbers of replicated
components, we can obtain results very similar to the CTMC numerical solving or the plain
simulation, which has been formally proved in [21].

As shown in [23], this concept can be easily extended to GPEPA models. We can define

2.7. Fluid-flow approximation of PEPA models 27

vH,P (t) to be the real-valued fluid flow approximation of NH,P (t) in GPEPA and also Vt to be
a function defined as Vt(H,P) = vH,P (t). Then we can borrow the definition of the component
rate function.

Definition 2.1 (Component rate). Let G be a iGPEPA model. For (H,P) ∈ B(G), timed
action type α ∈ At and Vt ∈ B(G)→ R+, the component rate function is defined as follows.

Rα(M1 ��
L
M2, Vt, H, P) :=

Rα(Mi,Vt,H,P)
rα(Mi,Vt)

min(rα(M1, Vt), rα(M2, Vt))

if α ∈ L and H ∈ G(Mi), for i = 1 or 2
Rα(Mi, Vt, H, P)

if α /∈ L and H ∈ G(Mi), for i = 1 or 2

Rα(Y {D}, N,H, P) :={
Vt(H,P) rα(P) if H = Y and P ∈ B(G,H)

0 otherwise

Terms with zero-valued denominators are defined to be zero.

Intuitively, it specifies the rate of an action occurring in a GPEPA component, or set of com-
ponents in relation to the rest of the model. For cooperation between two GPEPA groups, we
either have unchanged rate for each of them for an action α, if they do not synchronise on it,
or the rate is limited by the slower component. For a single component type, its rate of action
α is given by the number of such components at that particular time, which is expressed by
the second part of the definition. This follows from the superposition property of a Poisson
process, on which PEPA actions are based.

This function is specified in terms of the count-oriented apparent rate function for GPEPA
models.

Definition 2.2 (Count-oriented apparent rate). Let G be an iGPEPA model. Let α ∈ At be a
timed action type and Vt ∈ B(G)→ R+. Then the apparent rate is defined as follows.

rα(M1 ��
L
M2, Vt) :={

min(rα(M1, Vt), rα(M2, Vt)) if α ∈ L
rα(M1, Vt) + rα(M2, Vt) otherwise

rα(Y {D}, Vt) :=
∑

P∈B(Y {D},Y)

Vt(Y, P) rα(P)

Informally, this function expresses similar ideas as the component rate function, however it
deals with the apparent rate of an action in this subsystem only - the rate with which the
action would occur if we ignored the rest of the system.

We also define the derivative weighting function, which expresses the probability, that from a
state P we travel to state Q.

Definition 2.3 (Derivative weighting function). Let G be an iGPEPA model and H ∈ G(G)
a component group label. Let P,Q ∈ B(G,H) be f-component derivative states and let α ∈ At

28 Chapter 2. Background

be a timed action type. Then pα(P,Q) := 1
rα(P)

∑
P

(α,λ),·−−−→Q
λ. This is defined to be zero when

rα(P) = 0.

With these definitions, we can simplify the equation we obtained to

v̇H,P (t) =
∑
α∈At

 ∑
Q∈B(G,H)

pα(Q,P)Rα(G, Vt, H,Q)


︸ ︷︷ ︸

(1)

(2.14)

−
∑
α∈At
Rα(G, Vt, H, P)︸ ︷︷ ︸

(2)

which, although not really expressing new ideas, simplifies the notation and generalizes it to
GPEPA models.

As shown in [24, Section IV.], we can also estimate the number of times a certain action a has
occurred:

v̇a(t) = ra(G, Vt)

Intuitively, this says the number of action a occurred will increase with the statistical rate of
them happening in the system.

2.7.3 Approximating the passage time probabilities

With fluid-flow approximation, we can already query the system for the number of components
or executed actions at a certain time. We can go even further though. The approximated
component counts can serve as the basis for the passage time calculations.

As discussed in Subsection 2.5.4, with the Unified Stochastic Probes we can easily measure
steady-state individual, transient individual and global passage times. Rather than using the
slow simulation, we can use the obtained component counts for approximation of the passage
time densities. This is thoroughly demonstrated in [22, Chapter 5]. For our needs, we only
discuss it briefly.

Steady-state individual passage time approximation

In this mode we run the model similarly to the approach described in the Subsection 2.5.4.
Given a probe for steady-state passage time, we first attach the repeating local probe to the
model G according to the substitution. We then run the model fluid flow approximation for
the time approaching the infinity. Afterwards, as in simulation, we initialise the model G′ with
the initial counts of components obtained from this run. Again, in G′ we use the non-repeating
(absorbing) version of the local probe. In the case of fluid flow approximation, it is perfectly
acceptable for the counts to be non-integer numbers.

2.7. Fluid-flow approximation of PEPA models 29

The tricky part is which state we should initialise the observed component to. We are essentially
looking for a state, where the component will be immediately after firing the begin signal. For
simple models, this might be one particular state reached by immediate begin transition. In
general however, the more complicated probes in synchronization with our component will have
multiple states, to which begin signal may lead. Since Vt is a real numbered function, we can
directly assign the probabilities of each state to be active at this stage to it. The probability of
a state Q being active right after the begin signal has been fired is the sum of the expected rates
of begin transitions leading to Q divided by the sum of all expected rates of begin transitions.
Formally:

∑
α∈At,C∈ds∗(P��∗ Pb),C

(α,λ),(...,begin,...)−−−−−−−−−−→Q

(
Rα(G,V,H,C)λ

rα(C)

)
∑

α∈At,C∈ds∗(P��∗ Pb),C
(α,λ),(...,begin,...)−−−−−−−−−−→

(
Rα(G,V,H,C)λ

rα(C)

) (2.15)

where V ∈ B(G)→ Z+ is defined by Ṽ (Y,Q) := vY,Q for all (Y,Q) ∈ B(G).

To better understand the inner term, imagine that as the rate of the transition given our model
multiplied by the probability of this action occurring in the component C. This function then
defines the initial setup for the probed component P and is directly assigned to v′H,P (0) for
our second model. For all the unprobed components, as mentioned above, we will simply use
v′H,C(0) = vH,C(t).

After we run the second model G′ for a given amount of time, we can inspect the model at
each of the time instances. For each of these we define the passage time density simply as
the probability that that observed component is in the probe accepting state, as the probe is
non-repeating. Formally:

Fsi(t) :=
∑

C∈—��
∗

PbAcc

v′H,C(t) (2.16)

where PbAcc is an accepting state of the local probe.

Transient individual passage time approximation

Transient analysis is similar to the steady-state analysis from the previous section. This time,
we only need one model, since the probe is already non-repeating. We can define the formula to
compute a CDF of density of reaching the accepting state of local probe given that we started
measuring at time s (i.e. the begin was sent at time s).

F s
ti(t) :=

∑
C∈—��

∗
PbAcc

vsH,C(t)

This is principally identical to the formula from the previous section (2.16). We can then obtain
the unconditional CDF with the following formula:

30 Chapter 2. Background

Fti(t) :=

∫ ∞
0

F s
ti(t)×

dK(s)

ds
ds

where K(s) :=
∑

Q∈Q vH,Q(s) symbolizes the probability of being in a state, which was reached
after firing the begin signal at time s, i.e. Q is the set of all states reachable after emitting
the begin signal. We use its derivative, representing the probability that begin was signalled at
time instant s, for weighing the CDFs. The overall K(s) will eventually converge to 1, since
we have exactly one probed component. When it does so, the instantaneous probability, its
derivative, will converge to zero. That means we can, with some acceptable error, truncate
the integral computation for shorter time than infinity, usually in magnitude of hundreds or
thousands units, although this heavily depends on the model.

Lastly, we need to define the initial conditions vsH,C(0) for each component C for each time
s. Since these represent the model state given the begin was emitted at time s, we can reuse
the formula from the previous section (2.15). For unprobed components we will simply use the
vsH,C(0) = vH,C(s) assignment. For the probed component P, we will use the formula in the
same manner.

For local probes of the form ε : begin, Rl : end the begin signal is fired immediately and therefore
the formula can have some other value than 0 at v′H,P (0), which is vH,P (0). With local probes
defined in this way, we know that the begin signal will be always fired immediately after starting
the model. Therefore we can simplify the overall computation and compute just F 0

ti(t) as the
unconditional CDF.

Global passage time approximation

Global passage time can provide us with point-mass-approximation of the passage time. We
should note, that user is free to specify arbitrary local probes and their substitutions, as for the
simulation. Sadly, for the global probes, only a limited set of operations is currently permitted,
since there has not been a formal proof for the rest of the operations. This grammar is specified
as:

Rg ::= {pred}Rg | Rg, Rg | Rg | Rg (2.17)

| Rg;Rg | Ra
g [n]

where:

Ra
g ::= Ra

g | Ra
g | action

and action ∈ A is an action (or signal) type.

Informally, we are able to measure predicated probes (cf. to simulation), and some basic
operations - “sequence”, “both” and “choose” on operands. Operands are either another of
these operations, or, in Ra

g case, n occurrences of actions from the specified set of actions.

The way to evaluate this is then to apply all the substitutions in the order of appearance. Then,
with a model G′ changed in such way, we can run the fluid flow approximation. At all the
times, we look at the component and executed action counts and evaluate, if we should progress

2.8. Performance Trees 31

our state. In this mode, unlike in the simulation mode, we cannot translate the global probe to
the iGPEPA. That would mean cooperating on immediate actions between the groups, which
would lead to ill-formed differential equations system, as discussed in [22]. Instead we can
formally define a function U(R, e). It is mapped to the time, when the expression R will finish
evaluation if starting in time e. Since we are interested in the overall execution of the global
probe, the time of interest is defined as U(R, 0), where R is the sequence of Rg expressions for
start and stop signals. It is defined as follows:

U((R1, R2), e) := U(R2,U(R1, e)) R2 starts when R1 finishes (2.18)

U((R1 | R2), e):= min(U(R1, e),U(R2, e)) minimal time of finish preferred

U((R1;R2), e) := max(U(R1, e),U(R2, e)) both R1 and R2 must be satisfied

U({pred}R, e) := U(R, inf{t ≥ e : pred(t)})

The last formula simply says, that we pick the earliest time, when the pred is satisfied, to start
evaluating the R. Each component count expression H : P , where (H,P) ∈ B(G), is computed
simply as the number of all components P in the system at time t, or

∑
Q∈P��

∗
— vH,Q(t).

The base case is n actions from the specified set of expected actions, Ra[n]. We are looking
for the time, when the number of all these actions is higher by n in comparison with the start
time e. Formally:

U(Ra[n], e) := inf{t ≥ e : U ′(Ra, e, t) ≥ n}

for U ′(a1 | . . . | ak, e, t) :=
∑k

i=1 vai(t)−
∑k

i=1 vai(e).

2.8 Performance Trees

Performance Trees are a hierarchical tree structure representing performance queries in a simple
graphical form. Their main purpose is to aid user’s understanding of the query by the visual
clarity. Apart from that, they are one of the most powerful formalisms developed, focused on
testing both actions and states of the system behaviour. Their simple syntax makes them a
feasible candidate for wider user adoption as well. A very informative summary of their options
and examples of use can be found in [30], from where we borrowed our grammar and examples
in this section.

One of the greatest advantages is, that they are independent of the model’s formalism. They
are abstract queries and not concerned with how the actual implementation will deal with
them. That makes them easily portable between formalisms and simplifies their syntax even
more, since they need no special constructs for handling models in any particular modelling
formalism.

All of the operations used have already been developed or implemented in one way or another
in other tools. That means they are perfectly feasible, which is proven by their existing full
implementation (the Section 2.2). There appears to be no major problem with potentially

32 Chapter 2. Background

incorporating them into other popular tools too.

As we said, Performance Trees are capable of very complicated performance queries and still
are well comprehensible. A simple example can be:

What is the average time required to complete the passage defined by the convolution of the
passage from the set of start states S1 to the set of target states T1 with the passage from the
set of start states S2 to the set of target states T2, having the additional constraint that the set
of states E is excluded from both passages?

When one reads this query, it is rather hard to comprehend and remember it, even though this
is quite simple query. With Performance Trees, this is turned into a simple graph, as can be
seen in Figure 2.6.

?

Moment

Conv

PTD

States

exclE

States

targetT2

States

startS2

PTD

States

exclE

States

targetT1

States

startS1

Num

moment1

Figure 2.6: Motivation example

2.8.1 Syntax

Now we will introduce the syntax. The nodes in Performance Trees are of two different types
- value nodes and operation nodes.

2.8.2 Value nodes

First, let us introduce the value nodes. These are the leaf nodes representing the concrete
values, such as numbers, or sets of some objects.

We need a preliminary definition of two sets: SAL = {state and action labels} and TYP =
{start, target, incl., excl., time, prob., reward,moment, ∅}.
The Bool node represents either falsity or truth. We have that Boolean ∈ {true, false}.

Bool ∼ Boolean

The Num node represents a numerical value. The second annotation, Type, represents the type
of the numerical value. We define the types like this: Integer ∈ ZZ, Real ∈ IR and Type ∈ TYP.

Num ∼ Integer, Type | Real, Type

2.8. Performance Trees 33

The Actions node represents a set of actions. The first annotation contains the actions them-
selves, referenced by a set of labels, or directly. Labels identify actions by specifying con-
ditions on the model. The second annotation describes the type of the action. We have
Action ::= a | tt | Action ∧ Action | ¬Action, where a ∈ SAL and Type ∈ TYP.

Actions ∼ Action, Type

The Sets node represents a set of states. The first annotation contains the states themselves,
referenced by labels, or directly. Labels identify states by specifying conditions on the model.
The second annotation describes the type of the state. Here, State ::= a | tt | State ∧ State
| ¬State,where a ∈ SAL, and Type ∈ TYP.

States ∼ State, Type

Last value node represents a range (interval). It has two annotations, both of which are
numerical.

J. . .K ::= ([⊕ | Num | Moment | ProbInInterval |
ProbInStates | SS:P | FR] × (⊕ | Num))

| Moment, Moment | SS:P, SS:P | FR, FR

| ProbInInterval,ProbInInterval

| ProbInStates,ProbInStates

2.8.3 Operation nodes

Operation nodes define mathematical or logical functions on their arguments. Inputs are their
sub-nodes, which have a predetermined order. Outputs are then then plugged into their super-
nodes, which are essentially operations on their results, with the exception of the root node,
“?”.

The “?” operator is the root node, which represents the overall result of the performance query.

? ::= ; | ∨∧ | ¬ | ./ | ⊕ | PTD | Dist | Moment

| Conv | InInterval | InStates | ProbInInterval

| ProbInStates | SS:P | SS:S | FR | StatesAtTime

The “;” operator is the sequential execution operator, which composes multiple performance
requirements or metrics together into a single performance query. This operator is especially
useful for the identification of optimisation opportunities across several sub-queries. It accepts
at least two sub-nodes (sub-queries) as arguments. It returns a list of sub-queries combined.

34 Chapter 2. Background

; ::= (∨∧ | ¬ | ./ | ⊕ | PTD | Dist | Moment

| Conv | InInterval | InStates | ProbInInterval

| ProbInStates | SS:P | SS:S | FR

| StatesAtTime)2..∗

The ∨∧ operator performs a boolean disjunction or conjunction operation. ∨∧ ∈ {∨, ∧}. It has
two truth value arguments.

∨∧ ::= (∨∧ | ¬ | ./ | InInterval | InStates | Bool)2

The ¬ operator performs a boolean negation. It has one truth value argument.

¬ ::= ¬ | ∨∧ | ./ | InInterval | InStates | Bool

The ./ operator performs a binary comparison. ./ ∈ {<, ≤, =, ≥, >}. Its arguments are
numerical, but it returns a truth value.

./ ::= ([⊕ | Num | Moment | ProbInInterval |
ProbInStates | SS:P | FR] × (⊕ | Num))

| Moment, Moment | SS:P, SS:P | FR, FR

| ProbInInterval, ProbInInterval

| ProbInStates, ProbInStates

The ⊕ operator performs an arithmetic operation. ⊕ ∈ {+, −, ∗,÷}. Its arguments and result
are numerical.

⊕ ::= ([⊕ | Num | Moment | ProbInInterval

| ProbInStates | SS:P | FR] × (⊕ | Num))

| Moment, Moment | SS:P, SS:P | FR, FR

| ProbInInterval, ProbInInterval

| ProbInStates, ProbInStates

The PTD operator represents a passage time density. Its arguments specify the passage and
result is the density of time for a passage between two sets of states. Start and target sets
of states are compulsory arguments, but optional constraints relating to actions (inclusion,
exclusion), states (inclusion, exclusion) or rewards (represented by the range operator J. . .K)
can also be supplied.

PTD ::= States2..4 | States2..4, Actions1..2 | States2..4,

J. . .K | States2..4, Actions1..2, J. . .K

2.8. Performance Trees 35

The Dist operator represents a (cumulative) passage time distribution, which is obtained by
converting a passage time density.

Dist ::= PTD

The Conv operator represents the convolution of two passage time densities or distributions.

Conv ::= PTD, PTD | Dist, Dist

The Moment operator represents the raw moments of a passage time density function. It can
calculate a moment of any order. The first argument is a number representing the order, second
is PTD, Dist or a Conv that we calculate the moment for. This operator returns a numerical
value.

Moment ::= Num, PTD | Num, Dist | Num, Conv

The SS:P operator represents the steady-state probability for a given set of states.

SS:P ::= States

The SS:S operator represents the set of states whose steady-state probability is equal to or in
range of given probabilities. Its argument is a probability or an acceptable range of probabilities.

SS:S ::= States, Num | States, J. . .K

The FR operator represents the average firing rate (and thus occurrences) of a certain transi-
tion.

FR ::= Actions

The InInterval operator determines whether a numerical value is within a certain interval or
within multiple intervals and returns a truth value.

InInterval ::= [ProbInInterval | Moment | FR | ⊕
| SS:P | ProbInStates] × [J. . .K]1..∗

The InStates operator evaluates, if a certain state or set of states is contained in another set
of states. Returns a truth value.

InStates ::= States, States

The ProbInInterval operator returns the transient probability with which the passage takes
place in a certain amount of time, defined by a time range.

ProbInInterval ::= PTD, J. . .K1..∗ | Conv, J. . .K1..∗

36 Chapter 2. Background

The ProbInStates operator corresponds to the probability of being in a set of states at the
time given, if we started in any of the states provided. The first argument is the set of start
states, the second the set of target states and the third the time instant of interest.

ProbInStates ::= States, States, Num

The StatesAtTime operator returns the set of states that the system might occupy at a
given time instant with a provided probability. The first argument is time instant, second the
probability.

StatesAtTime ::= Num, Num | Num, J. . .K

This concludes the syntactic rules. For the type system, the following basic types are used:

num : a numerical value

range : a range of numerical values

bool : a truth value

func : a distribution or density function

states : states of the system

actions : actions that can occur in the system

2.8. Performance Trees 37

The type system for the operators used in the formalism is is summarised as follows:

? ` (bool | num | func | states)1..∗

; ` (bool | num | func | states)2..∗

∨∧ ` bool, bool : bool

¬ ` bool : bool

./ ` num, num : bool

⊕ ` num, num : num

PTD ` states2..4 | states2..4, actions1..2 |
states2..4, range | states2..4,

actions1..2, range : func

Dist ` func : func

Conv ` func, func : func

Moment ` num, func : num

SS:P ` states : num

SS:S ` states, num | states, range : states

FR ` actions : num

InInterval ` num, range1..∗ : bool

InStates ` states, states : bool

ProbInInterval ` func, range1..∗ : num

ProbInStates ` states, states, num : num

StatesAtTime ` num, num | num, range : states

J. . .K ` num, num

38 Chapter 2. Background

Chapter 3

Performance Trees using the Unified
Stochastic Probes

In this chapter we will demonstrate how can we increase the expressivity of Performance Trees
(the Section 2.8) and make them more intuitive by usage of the Unified Stochastic Probes
formalism (the Section 2.5). In the Appendix A we also show that the renewed Performance
Trees formalism is more powerful than the one proposed in the [30]. To prove that this system is
feasible, it is enough to say, that our tool implements the Unified Stochastic Probes formalism
thoroughly. The graphical notation is just a different representation of the same concepts. A
tool that simply translates this representation to our defined Unified Stochastic Probes can
easily be written and is planned as an extension of the GPAnalyser [29] tool.

3.1 Motivation

Previously proposed Performance Trees formalism offers a very expressive way of specifying our
performance queries and requirements. It provides quantitative analyses over the obtained per-
formance measurements specified in a simple and intuitive graphical manner, such as cumulative
distribution of passage time density, their convolution or higher order moments. Behavioural
(qualitative) performance requirements can be also easily specified, such as a passage between
two sets of states.

In the previous versions however, it was very hard to specify individual passage time queries,
both transient and steady-state ones. One needed to alter the model itself with an independent
observer, called a probe, manually and monitor solely its actions using the PTD node. This
process was very low-level and error prone. Furthermore, since we are interested in behaviour-
oriented queries, such as a set of actions executed in a sequence, we are not usually interested
in the states visited or reached. With the originally defined PTD node and also its extensions,
it was necessary to specify not only the starting, but also the target states of the passage. If
there are multiple possible target states after the given sequence of actions, which is very usual
for a global passage in large-scale distributed systems, we need to specify all of them as unions
of states. This brings even more complexity to specifying queries. Lastly, previously specified
PTD node could only globally observe a set of actions required or forbidden to occur. This is
very limited, as it does not allow to specify their ordering, or optional actions.

39

40 Chapter 3. Performance Trees using the Unified Stochastic Probes

From this perspective, we can see the Unified Stochastic Probes with their expressiveness and
simple syntax are far more powerful and easier to specify. That is the motivation for using
them for these kinds of queries rather than the previously defined nodes.

3.2 Unified Stochastic Probes sub-trees

We are proposing a new way of specifying Unified Stochastic Probes as a sub-tree for PTD
node instead of the previously defined arguments. We will simply add a new non-top level node
called Probe. PTD will now take a Probe as its argument. Even though we could use Probe on
its own, we also keep a PTD to allow alternative behavioural measures in the future. Below,
we represent the overall Probe structure.

Probe ::= GlobalProbe,LocalProbe∗, Subst∗, (Steady | Transient)? (3.1)

The first annotation is the Global Probe, for which we propose the GlobalProbe node. It needs
two parameters - both PredActionSeq nodes. First argument represents the behaviour to expect
before starting the measuring (start signal is emitted, when executed), the second represents
the stop signal. PredActionSeq closely follows Unified Stochastic Probes global probe grammar.
The last optional argument is Repeating.

PredActionSeq ::= | | ! | * | ? | + | (3.2)

, | ; | / | ∅ |
ε | . | Iterate | Specific | Predicate | Action

Probe operator nodes are either unary (‘!’, ‘∗’, ‘?’, ‘+’) represented as nodes with the respective
symbol and one argument, or binary (‘,’, ‘|’, ‘;’, ‘/’ and ‘∅’) with two PredActionSeq arguments.
Iterator operator is unary operator with extra one or two numerical arguments. Furthermore,
we have a Specific node for specifying subsequent specific action (argument is the Action), ε
node for empty sequence and ‘.’ node for any action.

The Predicate nodes represent a logical predicate which has to be satisfied to advance the probe
state. This closely follows the grammar of predicates as proposed in the Unified Stochastic
Probes formalism (2.12), again separated into nodes. The second argument is a PredActionSeq.
If there is a Predicate as the second argument, it represents a conjunction of predicates. H : P
represents plain group:component string denoting active instances of a component state P in
group H. For simplicity, we also added more numerical and relational operations.

3.2. Unified Stochastic Probes sub-trees 41

Predicate ::= pred,PredActionSeq (3.3)

pred ::= false | true | ¬ | ∨ | b expr

¬ ::= pred

∨ ::= pred , pred

b expr ::= r expr � r expr

r expr ::= int | H : P | r expr ⊕ r expr

� ::= <|≤|>|≥|=
⊕ ::= + | − | ∗ | /

Next arguments of the Probe can optionally be LocalProbe nodes, which represent local probes
from the Unified Stochastic Probes formalism. Their first parameter is the name of the local
probe. The second and further arguments are specified as SignalAction nodes. Their first
argument is ActionSeq and the second argument is the signal emitted afterwards. Here, all the
operator arguments are ActionSeq instead of PredActionSeq, since predicates are not allowed
in local probes. Again, last optional argument is Repeating.

ActionSeq ::= | | ! | * | ? | + | (3.4)

, | ; | / | ∅ |
ε | . | Iterate | Specific | Action

Next optional set of arguments for the Probe are nodes representing the substitutions, the
Subst nodes. These have two arguments - the original component group of the system and the
altered component group to replace it with (incorporating the previously defined local probes).
The Subst nodes are applied in their specification order. The optional “[number]” after the
component right in the Group represents replicated components working in parallel.

Component ∼ (name | ��
action names

), ([n])? (3.5)

Subst ::= group, group group has a custom name

group ::= Component n ∈ Z+

��
action names

::= Component, Component

The last Probe argument is the probe type node. This can be Steady for a steady-state indi-
vidual passage probe, Transient for a transient individual passage probe or omitted, if we wish
to determine the global passage. These need to follow the forms as specified in the Subsec-
tion 2.5.4.

42 Chapter 3. Performance Trees using the Unified Stochastic Probes

PTD

Probe

SteadySubst

Consumers

Consumer[Nc − 1]��
∗

ProbelConsumer

Consumers

Consumer[Nc]

LocalProbe

RepeatingSignalAction

endActionSeq

Iterate

2Action

use

SignalAction

beginActionSeq

Action

think

Probel

GlobalProbe

RepeatingPredActionSeq

Action

end

PredActionSeq

Action

begin

Figure 3.1: Steady-state individual passage-time probe example

3.3 Examples

In this section we will show concrete examples of how we can transform Unified Stochastic
Probes to the new Probe node. We will use the examples in Subsection 2.5.5.

In the Figure 3.1 we demonstrate how the steady-state individual passage example can be
translated with our proposed method. We start with an PTD node with a Probe child. Now we
can split up the example probe definition into a global probe, local probe Probel , substitution
and the “steady” flag. Each of these is a child of the Probe node. We follow by splitting
the global probe start and stop expressions into the minimal subexpressions recursively and
defining subtrees for them, which are then attached to our main tree. We do the same for the
Probel local probe. In this simple case, we have only one type of a local probe used, but this
easily generalises to an unlimited number of local probe definitions. Substitutions are then
also split into the components of the same type working in parallel (or possibly just one) and
synchronizations are represented by internal tree nodes. Lastly, the “steady” flag needs no
further arguments.

The transient individual passage example (Figure 3.2) can be mapped to a tree as follows.
Again, we separate the definitions for the global probe, local probe Probel and substitutions.
In this case however, we have “transient” flag instead, again with no arguments. We recursively
split the global and local probes definition, as well as substitutions in the same manner as in
the previous example and attach them to the main tree.

The last example was for the global passage time. This closely follows the same procedure as
the previous two examples, although there is no flag, since this is the default mode. Thus we
have only a PTD node with a Probe node child. This in turn has only the global and the local
probe, and the substitutions as its children.

3.3. Examples 43

PTD

Probe

TransientSubst

Producers

��
get product

[Np − 1]

TerminalProducer

��
∗

Probel��
get product

TerminalProducer

Producers

��
get product

[Np]

TerminalProducer

LocalProbe

SignalAction

endActionSeq

Action

clear

SignalAction

beginActionSeq

ε

Probel

GlobalProbe

PredActionSeq

Action

end

PredActionSeq

Action

begin

Figure 3.2: Transient individual passage-time probe example

PTD

Probe

Subst

Consumers

Consumer[Nc − 1]��
∗

ProbelConsumer

Consumers

Consumer[Nc]

LocalProbe

SignalAction

endActionSeq

Iterate

10Action

get product

Probel

GlobalProbe

PredActionSeq

Iterate

Nc ∗ 0.3Action

end

PredActionSeq

Action

ε

Figure 3.3: Global passage-time probe example

44 Chapter 3. Performance Trees using the Unified Stochastic Probes

3.4 Alternative approaches

We have also considered alternative ways of specifying the PTD node using the Unified Stochas-
tic Probes formalism. Namely, we could simplify the global and local probes sub-trees by not
splitting their grammar into so many nodes. Rather we would just leave the original regex-
based expression as their argument. That would make the trees much more concise and would
possibly leave some more freedom to the user. But it also has disadvantages. Firstly, the
explicit division into nodes allows better visualising the concepts and seeing the ordering and
structure of the expression. Also, it orients tree downwards rather than to the sides, which
makes it more comprehensible as a tree.

Another alternative approach was to split the regex syntax, as we did in the end, but leave the
global probe predicates intact. This approach leaves the freedom to the user for predicates,
but imposes the strict representation rules for the rest of the expression. That means the main
expression maintains all the advantages of the strict syntax. On the other hand, the predicates
are then very easy to specify with the “free” syntax (in the Probes predicates grammar bound-
aries). Although it might appear that this approach gives the best of the two worlds, we have
to consider that this system is also more chaotic, since we do not adopt a unified approach.
Also, predicates are used only for a particular kind of passage-time computation (currently only
global passage time in the fluid-flow approximation mode) and therefore the freedom would be
unlikely to have a massive impact on the usage of these Probe PTD nodes.

Lastly, we also considered letting the user to specify the substitutions in the original manner.
Again, this would simplify the rules for the user for the price of less clear specification. To
achieve the best user adaptability, we prefer the proposed approach.

Chapter 4

Implementation

In this section we present how we implemented a working parser for Unified Stochastic Probes
as well as the passage time computations using both fluid-flow approximation and simulation.
We summarise the technologies used, as well as the existing work - GPAnalyser capabilities.
We also explain what we had to modify and introduce into this tool to prepare it for Probes
computations. Furthermore, we talk about the newly added components and about increasing
the current capabilities to accommodate for our needs and make much larger models tractable.
Finally, we explain how to use our implementation in the Appendix B.

4.1 GPAnalyser

GPAnalyser tool ([29]) is a very powerful engine for performance evaluation of system models.
It allows specifying models in restricted GPEPA. Originally, there was no support for passive
actions, which we added along with the support for weighted passive actions (Section 4.7). GP-
Analyser then translates this model to a population continuous-time Markov chain (PCTMC).
Afterwards, it can analyse this PCTMC in both plain simulation and the faster fluid flow ap-
proximation mode. Using these techniques, it can estimate the mean component counts at all
times, as well as their higher-order moments. Furthermore, it is capable of evaluating the mo-
ments for action occurrences and even user-specified rewards, such as engine fuel consumption
over the time.

4.2 Architecture

In the Figure 4.1 we present the high-level view of the current version of GPAnalyser. The
newly added components are highlighted in green, modified components in blue. Our main
additions were the Unified Stochastic Probes parser and the Probes passage times computation
engine, which is capable of working in both simulation and fluid flow approximation mode.
We also present a novel method of overcoming Java method size limitation for projects, which
need to generate large methods, by using C++. We implemented and used the C++ code
output rather than existing Java and Matlab code outputs, which is used to either simulate the
model (simulation mode) or approximate it (fluid flow approximation mode). This is done in
an uninterrupted run of the tool and in no way interferes with inexperienced users.

45

46 Chapter 4. Implementation

Probes parser

GPEPA Parser

GPEPA translation engine

PCTMC Analyser

Java code output

Java FFA Runner Java Sim Runner

Matlab code output C++/JNI code output

C++ FFA Runner C++ Sim Runner

Probes engine

Representation

Figure 4.1: Simplified GPAnalyser architecture, the blue components were changed, the green
added

4.3. Used libraries 47

Since we were extending the GPAnalyser tool, for simplicity of the project, we decided to
follow up with the usage of most of the technologies rather than solve problems with inter-
operation between various execution platforms. That means we used Java for the main logic
too. Small exception include Runge-Kutta ODEs (ordinary differential equation) solver for
fluid flow approximation, which we rewrote to C++ to better utilise the performance, when
using our novel C++ on the fly compilation. Our parser was also generated by ANTLR and
extended the original GPEPA parser. Like the original authors, we adopted the unit testing
JUnit framework.

4.3 Used libraries

The original GPAnalyser tool was using a lot of external libraries. Some of them were used
directly in our extension. Furthermore, we have used some new libraries as well. Below we
present a short introduction to these.

� ANTLR [2] is a compiler generator. One only specifies a grammar for a language in
a simple manner and ANTLR transforms this into a powerful compiler in the target
language, in our case Java. ANTLR can produce lexers for reading input tokens into
streams and parsers for analysing the streams and, for simple languages, directly executing
the desired behaviour. More preferably, since this is very limited, it can produce an
Abstract Syntax Tree (AST). One can then generate a compiler, sometimes termed as
the tree-walker, which parses the AST of the input and finally exhibits the required
behaviour, or transforms the AST for another compiler. In our case, it simply walks the
Unified Stochastic Probes ASTs and translates these into the iGPEPA language. This
library is distributed under the BSD license.

� Guava [5] is a Java library, which supports various extensions to the original Java API.
In our case, we only made use of the new collections, such as MultiSets, MultiMaps and
BiMaps (namely their hash implementations). These were useful chiefly for simplifying
the implementation of automata and their conversion. Guava is licensed with Apache
License 2.0.

� JFreeChart [7] library is a free java library for producing various graphs and diagrams.
The original project used it for all the graphical representations of the results and we
continued the trend - our Probes output passage-time densities can (optionally) be seen
in a JFreeChart graph. This library is distributed under the LGPL license.

� Java Deep-Cloning library [3] serves for deep cloning Java objects with all their member
objects using the reliable Reflection technique. It was the perfect fit for copying large
sets of automata, since we are using regex-like syntax and we have also some repetition
operations, such as iterate. Again, this library is under the Apache License 2.0.

� JUnit [8] is a simple freely available unit testing framework for Java. It is integrated into
many Java IDEs (Integrated Development Environment). It was used to automate the
testing of probes parser and compiler. It is distributed under the Common Public License
1.0.

48 Chapter 4. Implementation

4.4 Technologies used

We have also used other technologies, which are required for running the project or which we
used to improve the quality of the project during the development.

� JDK (Java Development Kit) [6] - GPAnalyser is relying on the Java technology intro-
duced with Sun Java 6 (or JDK 1.6) called dynamic compilation, unlike most of the
software in Java, which only requires JRE (Java Runtime Environment) to run. It es-
sentially means that we can generate Java code from within a running Java program,
compile it, load it and use it without restarting the program. We use this feature both for
dynamic compiling of predicates (Subsection 4.6.3) in global probes and for generating
and loading the native class wrappers for C++ (Section 4.8).

� Apache Ant [1] is used to provide a setup, building and running system for GPAnalyser.
The original project relied on Ant rather than more Unix-oriented Makefile. It is easily
integrable into Java IDEs and a well-portable. We extended the main file in order to fully
support our extension.

� We also used g++ (part of the [4]) for compilation of C++ code. As described in the
Section 4.8, we did this to increase the tractable complexity of the models. It is an
optional feature, which requires g++ to be set up on the host machine and accessible
from the command line.

4.5 Parsing and compiling

In this project we have extended the original set of parsers and compilers for GPEPA language
and also added the new Unified Stochastic Probes parser and compiler. This is demonstrated
in the Figure 4.2.

Probes parser and compiler

GPEPA parser and compiler

PCTMC parser and compiler

Figure 4.2: Simplified GPAnalyser parsers and compilators hierarchy, the blue components were
changed, the green added

The parsers and compilers were all generated using the ANTLR library. We have chosen this
library chiefly because the original GPAnalyser project used it and there has been a large
reference code base reusable. In addition, all the parsers and compilers have their own, also
gradually extended, lexer. With this architecture, we are able to separate concepts into different
logical levels and substitute/add new parsers and compilers. For example, we could now add
another stochastic process algebra language, or Stochastic π-calculus and easily adapt the
Unified Stochastic Probes compiler for it simply by reusing this component.

4.6. Parsing the Unified Stochastic Probes language 49

Unfortunately, because of some ANTLR technical limitations, we were not able to absolutely
separate Probes and GPEPA parser. ANTLR has difficulties with more than one level of
grammar inclusion and it appears it is not yet well prepared for such complicated grammars.
However, we did our best to keep Probes and GPEPA as separate as possible, although they
reside in the same file, both parser and compiler.

We would like to better explain the workflow of ANTLR-generated compilers. As we have
previously briefly mentioned, ANTLR can provide three basic grammar types - lexer, parser and
compiler (or tree-walker) grammars. Although ANTLR grammar is limited to LL(*) grammars,
it can optionally turn on back-tracking if necessary. This back-tracking is currently limited to
one level, which is good for performance. An LL(*) grammar is the one which parses the input
from left to right and uses the leftmost derivation of the input, with an unlimited number of
look-ahead tokens.

� Lexer is the simplest grammar type. Its purpose is to filter out whitespaces and comments
from the input and mainly, split the input into some reasonable tokens. These are then
fed into a token stream.

� Parser serves for validating the token stream and for analysing the meaning of tokens
sequences. It can execute some commands and one can use a parser directly to generate
the full compiler for their language. Although this approach works, it does not utilise
the full power of the ANTLR. Parser commands can only use the information which the
parser has already processed. The more recommended approach is then to transform the
simple token stream into an Abstract Syntax Tree (AST) with one’s own defined rules.
One can then write a tree walker manually, but much simpler approach is to use the
third type of grammar in ANTLR. The advantage is, one can have multiple levels of
tree-walking to do more complicated AST processing.

� Compiler, or tree-walker, is a grammar for parsing ASTs. It walks the AST from the root
and executes our defined commands along the path. It uses depth-first walking of the
AST. One can execute the commands when first encountering a node, between visiting its
children or when leaving the node back to its parent. With the compiler grammar, one
can write a full reliable compiler for a language adhering to the ANTLR limitations. One
can also have multiple compilers, each parsing the AST, transforming it into a different
AST and passing to the next compiler, although the “last” compiler needs to output the
final code, for this process to be useful.

This workflow is demonstrated in the Figure 4.3.

Lexer Parser Compiler
ASTtoken stream

Figure 4.3: The basic ANTLR workflow

4.6 Parsing the Unified Stochastic Probes language

As we have stated, we used an ANTLR-generated compiler for parsing the Unified Stochastic
Probes. We largely followed the rules of the [24], along with the Appendix C section. As the

50 Chapter 4. Implementation

Unified Stochastic Probes syntax is regex-based, this has not caused any major issues, since
there has been a lot of research into this topic. Our main goal is to translate this regex syntax
into the iGPEPA. Rather than doing that directly, which would diminish the portability of the
Probes formalism to other process algebras; we first translate it into a deterministic finite state
automaton (DFA). It is simple to map this onto an iGPEPA component, as demonstrated in
Section 2.6. The focus of this section is therefore the translation of Probes syntax into a DFA.
There are many existing algorithms for this process and we took our inspiration here.

However, rather than utilising existing libraries, we built a new set of algorithms for handling
the automata, mainly because we had some operations, which are not standard. As we needed
to build automata for these operations already, there was no major challenge in using these
automata techniques for the standard operations as well, rather than adding a dependency on
another external library and using its particular API.

For our finite-state machine, we adopted the OOP approach as compared to more widespread
table-based approaches to set up paths between the states. A state is a basic unit and the
simplest automata possible. In our package for automata, uk.ac.imperial.doc.gpa.fsm we rep-
resent it as a NFAState class. NFA emphasizes, that we are working with a non-deterministic
finite automata. In our case, these surpass the deterministic finite automata (DFA), since, as
discussed in Section 2.6, we ignore the failure state in DFAs.

States are then joint by various kinds of transitions. These are named after the actions from the
probe definition directly. Normal transitions are standard Transition instances and will be later
mapped to passive actions. Probe signals are mapped to SignalTransition instances. We treat
these in a special way, since they will eventually be mapped into immediate iPEPA actions.
Similarly, we have special types of transitions for ε, EmptyTransition, and ’.’ (an arbitrary
transition), AnyTransition. The ε transitions will eventually be disposed of by converting the
automata to a DFA. On the other hand, AnyTransition will be removed after generating the
final DFA. In each state we will simply substitute it for all the actions our probe synchronises
on with the observed component, except for those which have already been used in this state.

We also have two specialised SignalTransition classes, representing the start and stop signals
in global probes respectively. Although, as discussed in [24], we do not wish to translate the
global probes to iGPEPA for fluid-flow approximation, we do wish to do so for plain simulation
of global passages. In the simulation mode, the cooperation over immediate actions between
the global probe process and the model does not cause any trouble, even when they are each
in their own group.

In the Figure 4.4 we present the complete workflow of our parser. Probe stands for any allowed
Unified Stochastic Probe definition with the syntax as described in the user guide (Appendix B).

Probe Tokens AST DFA iGPEPA
translateanalyseparsetokenise

Figure 4.4: Probes parsing and translation workflow

4.6.1 Translation of a probe expression

Probes use regex-based syntax and as such, they are naturally suited for recursion. Essentially,
we can split these expressions into the minimal subexpressions, which are simply two states

4.6. Parsing the Unified Stochastic Probes language 51

joint by one transition, as shown in the Figure ??. Then gradually wrap them up in more
complicated expressions for more complicated operations specified.

Sa Sb
a transition

Figure 4.5: Actions (standard actions, signals, ε and .) mapped to a simple DFA

For each operation, except for the non-standard operations described in the Subsection 4.6.2,
we then simply take its regex operand expression(s) and recursively analyse and convert them
to NFAs. For the less complex operations, such as ’∗’, we simply use this in a standard manner
as described in the literature (e.g. for ’∗’, we add an ε transition from all the accepting states
to the initial state of the operand expression). For more complex operations, to save resources
in the state space, we first use our conversion algorithm to convert the NFA operands to the
minimal DFAs and then continue with the recursive approach. This way we can build the
complete NFA when we reach the highest level. The only thing left to do is to convert this final
NFA to a minimal DFA.

As discussed in the Section 2.6, we do not describe the conversion or minimisation algorithm
here, as there are already many resources about this issue.

4.6.2 Non-standard operations

As explained in the Section 2.6, we do not describe the standard regex operations to automata
conversion, as there are many materials about that already. However, we demonstrate how we
tackled the non-standard operations, which are called “both” “reset” and “fail”. Again, “both”
specifies, that both of the operand expressions have to be in an accepting state, in order for the
overall expression to finish. “Reset” advances when the subexpression 1 gets to the accepting
state, but restarts the evaluation to the initial state every time the subexpression 2 gets into
an accepting state. “Fail” is the same as “reset”, except when the subexpression 2 reaches an
accepting state, the whole expression fails and can never advance.

As described in [24, Appendix C], these operations can be handled by using the Cartesian
product of the both expressions state spaces. Initial state is then defined as the state, where
substate 1 and substate 2 are initial states of their respective subexpressions. Then we choose
which states are accepting. For“ both” operation, it is every state when both its substates are
accepting. For “fail” and “reset” it is all the states, where substate 1 is accepting and subbstate
2 is not. For each transition α from the alphabet, we choose the next state from (S1, S2) as
(S ′1, S

′
2), where in the subexpression 1, α leads from S1 to S ′1 and in the subexpression 2 it leads

from S2 to S ′2.

For the “reset” operation, to handle the restart to the initial state, we simply add an ε transition
from every (S1, S2), where S2 is accepting, to the initial state. For the “fail” operation, we create
a new failure state (with self-loops for every transition). Every (S1, S2), where S2 is accepting,
will then reach this state with an ε transition.

The next step is to convert this complex structure into a simple NFA. The simplest algorithm
is to map each of the states (S1, S2), also the new failure state for the “fail” operation, to an
unique NFAState and simply join them accordingly with the transitions from the Cartesian
product.

52 Chapter 4. Implementation

These operations are handled directly in the Probes compiler with simple procedures for each
of the operations. The common code is inside our helper CartesianUtils class from automata
package. This class contains all the required operations for creating the Cartesian product state
space from two NFAs, searching Cartesian product states and converting them to an NFA.

4.6.3 Global probes in the fluid flow approximation mode

As we have mentioned in the Subsection 2.7.3, the global probes supported operations in the
fluid flow approximation mode have largely restricted grammar. In fact, the grammar is cur-
rently so limited, that we decided to specify special global probes grammar for this mode.
It exactly follows the structure from the aforementioned subsection. ANTLR supports rule
guards, which basically means we are able to switch between grammars conditionally. With
this feature, for this particular mode of operation, we were able to impose restrictions of this
grammar.

Another speciality is the predicates. They have their own subgrammar. We adopted the OOP
approach here and each predicate is, after parsing, represented as a Java object. Since they
have a lot of available operations and we would prefer them to be evaluable fast, as well as
the simplest solution possible, we used the Java dynamic compilation for them. That means
after they are parsed, the component group specifications are immediately substituted by the
proper code for accessing them at various time instants. Then they are simply recompiled and
loaded immediately. Although we could have also build a complicated set of classes with recur-
sive functions for logical operators, this approach was much simpler and allows the predicates
objects, represented by derivatives of the NFAPredicate class, to be easily copied or recreated.
For the expressions, which have no predicates, we can use an DummyPredicate object, which
always evaluates to true.

4.7 Modifications to the GPEPA translation engine

There were small changes to the GPEPA engine in order to fully support the Unified Stochastic
Probes formalism. The foremost important change, applicable to also models in general, was
introduction of the passive actions, which were originally lacking in GPAnalyser. These are
absolutely essential for correctly using probes, since probes are independent observers and
must not contribute to the rate of system actions in any way. Already in the process, we also
implemented the weighted passive (Section 2.3) actions to allow for more interesting models
specification.

The existing structure of the GPEPA engine allowed factorising the Prefix code to more classes.
The original Prefix code, along with all the PEPA related code, used to be situated in the
uk.ac.imperial.doc.gpepa.representation.components package. It was now split into Abstract-
Prefix with common code and interface, Prefix, which is a standard active prefix, PassivePrefix
which is a weight-enabled passive prefix representation and also ImmediatePrefix.

ImmediatePrefix is very special. It is forbidden to be used directly. Rather it is used as
a placeholder before the vanishing state removal (the Subsection 2.4.1) algorithm execution.
This algorithm is included in the PEPAComponentDefinitions class. It has been implemented
following the same steps, with one exception. Well-behaved components require only deter-

4.8. Increasing the possible state space - C++/JNI dynamic compilation 53

ministic initial behaviour. For the purpose of implementing the probes, we did not require to
support well-behaved components fully. Rather we assumed the model has deterministic all
its signalling paths. This algorithm is called before the simulation or fluid flow approximation
analyses are run on the model, in order to dispose of all the immediate actions in the model.
They are still recorded as immediate paths executed right after an active or passive prefix, as
described in the algorithm.

The main challenge was to implement all the possible interactions between the components.
The basic structure had already been laid out for the cooperation of two active prefixes. We
had to extend it to more cases, such as active and passive or weighted passive prefixes. This
has been done for standard PEPA (Cooperation class). However, we also needed to implement
the cooperation over immediate actions (hidden behind a non-immediate prefix). This needed
to be done in order to support the nested local probes (so that they can observe the signal
from another local probe). Likewise, we had to extend the GPEPA part of the code as well.
Although, for fluid flow approximation, cooperation on signals leads to ill-formed system of
ODEs equations (as discussed in [22]), this was essential for global passage times computation
in the simulation mode, as in such case, the global probe is enclosed in its own group and
cooperates with the main model in a different group, monitoring all the local probes.

4.7.1 Substitutions

Since local probes need to be attached to some component, we had to add another major
algorithm, which searches the GPEPA model recursively, finds the group we are looking for
and substitutes it for the group specified in the probe definition. Given the recursive nature of
PEPA (and indeed GPEPA as well), the recursive searching is very simplified. What is more
interesting about this algorithm is making sure we substituted the right component. Essentially,
groups are uniquely defined in GPEPA by their label. Therefore we could, in theory, simplify
the substitution process by just replacing the group specified with our new group using its
label. No needs to specify the original group definition inside the probe definition or to pattern
match the components to replace.

In our case, however, we decided to adopt the pattern matching approach. The reason is, that
it ensures user does not make a mistake. Simply put, if the user specified the wrong group
without pattern matching, there would be no means how to inform them, since our system
would have no way of knowing. If we pattern match the group exactly though, and the group
specification mismatches, because user made mistake in specifying the group label and we can
immediately output an error.

4.8 Increasing the possible state space - C++/JNI dy-

namic compilation

The original GPAnalyser code handles the translation of GPEPA to a PCTMC. We heavily
used this feature, as the PCTMC is the immediate format, with which GPAnalyser back-end
works. After executing the conversion, GPAnalyser either works in the simulation mode or in
the fluid flow approximation mode. The difference has been explained in the Chapter 2. What
is important to note here is, that these two modes work in very similar way from the technical

54 Chapter 4. Implementation

point of view.

In both of the modes, GPAnalyser generates an abstract code for transfer events. This code
represents the model and it contains all the necessary mathematical operations to execute it and
obtain the component counts, action counts and rewards of interest, at any given time. Natu-
rally, this is different for fluid flow approximation and simulation. Later, GPAnalyser translates
it into a concrete programming language. By default, this is Java but can be switched to Mat-
lab via program arguments. In Java mode, the code is then directly compiled by GPAnalyser
and used in the real-time (Java dynamic compilation, the Figure 4.6).

Java dynamic compilation is a feature of Java language and is naturally suited for similar
applications, because it is faster than building complicated object-oriented model in memory.
It allows using optimized Java bytecode instead. Unfortunately, there is a strong limitation
in Java Virtual Machine official specification on the possible code size of any method. It
basically forbids Java to compile any code, which contains a method larger than a certain
amount of kilobytes (after translating to bytecode). Although this limit is set very high and
people usually do not write so long code inside a single method (and it is by many software
development practices regarded as a sign of a very poor design and/or code), it is often the case
for automatically generated code to step over this limit. We run into the same problem with
GPAnalyser. Essentially, for even averagely complex models, such as the working model from
[24, Section V.], the generated rates expressions for events were extremely large and reflected
the model intractable with the tool. This hindered our progress, as we were not able to evaluate
the correctness of our algorithms.

generate Java code compile

load and use

Figure 4.6: Java dynamic compilation workflow

One way how to solve this problem is to simplify the generated expressions beforehand. Al-
though such an algorithm might nicely improve the performance during the execution of the
model, it would be very long running initially. What is worse, model would potentially over-
grow the limit anyway, unless separated into small methods very carefully. This would again
introduce a lot of overhead. It is also a non-trivial task and would take a considerable time to
implement.

We therefore adopted a different approach. Since C++ language has no such low method
size limitation and was a good candidate also for fast execution, we decided to make use of it
instead. Java supports a technique of calling natively written and compiled methods, which is
called JNI (Java Native Interfaces). We could therefore write C++ output instead and compile
it with g++. This is called automatically from GPAnalyser (and needs the host system to have
g++ set up). Apart from the generated code, we also generate a JNI wrapper, which calls the
native code. From inside GPAnalyser, we can therefore generate the C++ code for the model
system, JNI wrapper for the native code and also Java class, which calls this JNI. Since Java
supports dynamic class loading used for dynamic compilation, we can compile the generated
Java class immediately, load it and used it in the same run. What we essentially obtained is a
C++ dynamic compilation system used from Java. Informally, we call it C++/JNI dynamic

4.9. Probes engine 55

compilation. This system is further demonstrated in the Figure 4.7. Since we alleviated the
method size limit considerably, we are now able to work with much larger models.

JNI enabled library

generate C++ code

generate JNI
wrapper code

generate and use
Java wrapper class

compile

compile

use

Figure 4.7: C++/JNI compilation workflow

We wrote all the required code for both fluid flow approximation and simulation. They both use
the same C++ code printer for translating the abstract code obtained from GPAnalyser. They
differ in the execution itself however, in the same way as the original Java dynamic compilation
mode differed for these two modes. The runners are also implemented. They have virtually the
same interface as the Java runners (simulation or fluid flow approximation respectively) and
therefore can be easily switched over. We therefore made the C++ compilation an optional
feature switchable from command line.

We have to point out that there are still limitations with this approach. GPAnalyser first
generates the target language code in the RAM memory and then outputs it into a file. If
the code is too large, it might outgrow the Java memory heap and essentially crash the JVM.
However, on the modern computers with lots of RAM memory, this is considered unlikely.

4.9 Probes engine

We have also written the engine to execute the Probes and evaluate all the passage time den-
sities described in the Subsection 2.5.4, namely steady-state individual, transient individual
and global passage time density. We are directly using the GPAnalyser capabilities to evaluate
component and action counts at certain times, for both the simulation and fluid flow approx-
imation. We can use either our C++/JNI setup, or equivalently the original Java setup. In

56 Chapter 4. Implementation

our package uk.ac.imperial.doc.gpa.probes we have an abstract class AbstractProbeRunner to
specify the interface for running our probes. It also unifies the code for running both simula-
tion and fluid flow approximation of GPAnalyser. This is then extended by SimProbeRunner,
which runs the probes using the GPAnalyser runner set to simulation mode and then evalu-
ates the passage times according to the Subsection 2.5.4. ODEsProbeRunner works similarly,
although uses GPAnalyser in fluid flow approximation mode and uses the algorithms from the
Subsection 2.7.3.

For the steady-state individual passage density in simulation, we therefore set the model up with
the substitutions as specified in the probe definition, which means we attach a repeating local
probe to the component of interest and run the simulation for a very long time. Then we use
an equivalent probe definition with a non-repeating local probe and attach it to the component
in the state we left it in in the last simulation. We generated this definition while compiling the
probe with our compiler, since it is a simple change of one flag (repeating). We also remember
the original GPEPA model so that we can substitute the non-repeating (absorbing) probe as
well. When we enter the Probe engine, we simply remember two models with their respective
substitutions applied. We keep the component counts for all the unprobed components and use
the probabilistic approach for the probed component assignment. Afterwards, we just rerun
the simulation and obtain the time, when our local probe is in an accepting state. Repeating
the experiment then provides the density. For the fluid flow approximation, we keep the two
models generated. After the first run, we use the obtained data to initialise the second model
with the method described in Subsection 2.7.3, run it and sum the probabilities of being in a
local probe accepting state at various times, as described in the aforementioned section.

Transient individual passage time in simulation mode is even simpler. We attach the probe to
our individual, run the simulation and just wait till the local probe is in an accepting state.
Naturally, we ignore the time until the begin signal has been emitted. Again, multiple runs of
the experiment then provide the density function. In fluid flow approximation, we in theory
should run the model until the infinite time initially and then for each of the time instants, run
the model from that instant, as described in the Subsection 2.7.3. However, as discussed in that
section, we do not need to do so, since with the time approaching the infinity; the integral inner
term weighting is decreased rapidly and converging to zero. We can therefore obtain a fixed
point of the weighting and run only up to that time instant. Afterwards, we just recover the
unconditional CDF. Unfortunately, current version of GPAnalyser does not support fixed point
solving and we have to estimate manually the good time for truncation of the integral. For the
user, it might be simpler to just set very a long time and wait, since the fixed point/manual
time truncation is only about reducing the waiting time.

Lastly, for global passage, we first attach the local probes as specified in substitutions (if any).
Then we translate the global probe to the NFA and later minimal DFA, just as with local
probes. Afterwards, we simply translate it to the iPEPA and wrap in its own group. We
also wrap the main model, make them synchronized and run the simulation. When the stop
signal is sent, we record the time and rerun the simulation with the same set up. This way
we efficiently obtain the density. For this mode, we ignore the predicates, as discussed in the
Subsection 2.5.4.

For fluid flow approximation we adopt a completely different approach. We wrote a set of classes
representing the recursive U(R, e) function from the Subsection 2.7.3, which is situated in the
uk.ac.imperial.doc.gpa.probes.GlobalProbesExpressions package. There are classes representing
each of the operations (“both”, “choice”, “sequence” and predicated expression). Also we have

4.10. Representation 57

a class to represent U ′(Ra, e, t) expression and simple “action”. We evaluate them using the
visitor pattern, which is naturally suited for evaluation of recursive expressions. This allows
simple potential extensions to other operations in the future. When using our modified ANTLR
grammar specific for global passage time in this mode, rather than building the global probe
automata, we directly build up the overall expression (where the highest level is the sequence
between the expression preceding the start signal and the one preceding the stop signal). Then
we simply run the fluid flow approximation on the main model with applied substitutions as
specified in the probe definition and evaluate this expression on the resulting snapshots of the
system.

4.10 Representation

After we run a probe, we would like to show the user a nicely formatted output. We have
written a simple class CDF in our uk.ac.imperial.doc.gpa.probes package, which represents the
final CDF obtained from passage time computations. As we have unified their output into a
simple class representation, we can now write many different convertors of this class into any
target output.

The basic output is a graph representation, which we generate using the JFreeChart library. It
is a simple graph mapping time to probability. Conciseness was the main idea, as the user is
most interested in this metric. This feature is optional.

For more advanced users we also prepared a simple textual output. With a special syntax
construct inside the probe definition, they can easily specify the output to be a file on their
hard-drive. This is not mutually exclusive with the graphical output and the user can choose
to have both outputs. The textual output are simple time-probability pairs per each line and
therefore easy to convert to any required format with a simple script. In addition, many graphic
plotters, such as gnuplot or pgfplot (a Latex library) can work directly with this format.

4.11 Overall workflow

We would like to illustrate the overall workflow of working with probes. This is demonstrated
in the Figure 4.8. We provide GPAnalyser with a model file. This includes the iGPEPA
model of interest, possibly some other metrics or rewards, and finally, a probe or even multiple
probes definitions. GPAnalyser parses this file and builds up an overall iGPEPA model, with
substitutions from the probe applied. Then we remove the vanishing states and obtain a
more basic GPEPA model. This is translated to a PCTMC, which GPAnalyser uses as the
intermediate form portable between the most process algebra formalisms. Then, depending on
specifying the simulation or fluid flow approximation, the appropriate mathematical model is
generated in an abstract syntax. As discussed in the Section 4.8, this is then translated to some
concrete programming language. In case of Java or C++, this is taken even further. They are
dynamically compiled and the model is solved. Afterwards, using the results, we analyse the
passage time and present the results in the form of CDF.

58 Chapter 4. Implementation

Model and Probe

iGPEPA

GPEPA

PCTMC

ODE Abstract Code

generate

Sim Abstract Code

generate

convert

vanishing states removal

translate

CDF

Component and action counts

ODE Concrete Code

solve

Sim Concrete Code

simulate

passage computations

translate translate

Figure 4.8: Complete workflow of a probe. Grey parts were provided by original GPAnalyser.
Blue parts were provided in their Java version and we added the C++ version.

Chapter 5

Evaluation and future work

In this chapter we discuss how we validated the project, both data and the code. First we
elaborate on the techniques used to ensure the code correctness. Then we prove the data
validity by comparing our results with those hand-crafted from the [24]. Lastly, we demonstrate
the power of this implementation by analysing some real-life models.

5.1 Code validation

In this project we used multiple ways to validate the code. The original GPAnalyser [29] project
heavily used unit testing and we also adopted this practice for our extension. Since writing
unit tests with a complete coverage of all the new code is an enormous effort demanding in
time, we took another approach.

The unit tests are thus used only to verify the new probes parser. The technique is simple - we
provide a text file with a local probe definition. This is then parsed with our parser up to the
point, when we create a PEPA representation. This representation is then compared with the
reference PEPA model prepared for this probe. We have multiple test probes, each targeting
some probe operation. This way, we do test all the algorithms in the probe translation process
at once. The disadvantage is, that if there were an error in the translation, we would have to
delve deeper into the process to find the exact cause. However, due to the code structuring
into small blocks, this has not caused a major trouble.

The rest of the added and modified code, especially dynamic C++/JNI compilation, could also
be unit tested. Although it would be possible, it would require significant time. Also, these
algorithms were often continually improved and changed to extend the expressiveness power or
provide better performance. It was decided writing unit tests during this process is not a wise
time investment, since the unit tests would have to be changed too often. Therefore, for the
overall results we used the acceptance testing. For that, we directly compared our data to the
reference hand-crafted data from [24].

59

60 Chapter 5. Evaluation and future work

5.2 Data validation

Passage time computations over PEPA models generate a lot of analysable data. The most
interesting ones for us were the passage time density itself. We implemented both textual and
graphical representation output. Textual representation could be compared to the reference
data in an automatic manner. The original models and their passage time calculations from [24]
were hand-craftily implemented in Matlab, both the simulation and fluid-flow approximation
using ODEs. In this section, we show our automated implementation in the direct comparison
with these manually generated results, which we obtained with the original authors’ permission.

5.2.1 Comparison of the simple Client/Server model

First we will show the simpler Client/Server model and a sample Unified Stochastic Probe
operating on it from [24].

The model was defined as:

Client0
def
= (fetch, rt).Client1 Client1

def
= (reset , rs).Client0

Serv0
def
= (initialise, ri).Serv1 Serv1

def
= (fetch, rt).Serv0

Serv2
def
= (recover , rr).Serv0 + (fail , rf).Serv2

SC(n,m)
def
=

(Client0 ‖ . . . ‖ Client0)︸ ︷︷ ︸
n

��
{fetch}

(Serv0 ‖ . . . ‖ Serv0)︸ ︷︷ ︸
m

The first sample probe was a steady-state individual passage probe to compute a time density
till a recovered server will fetch twice without failing.

PM6
def
= begin : start, end : stop←↩ (5.1)

observes

Probel
def
= recover : begin, (fetch[2])\fail : end←↩

where Servers{Serv0[?n]} =⇒
Servers{(Serv0 ��∗ Probel) oo Serv0[?n− 1]}

in SC(n,m)

Here we present the original results compared with our implementation. The parameters for
the model were rt = 0.4, rs = 0.15, ri = 0.6, rr = 0.35 and rf = 0.1. The numbers of generated
ODEs in our implementation were 13 and 16 respectively. The actual computation of the
fluid-flow approximation took us about 10 seconds, whereas simulation with 5000 repetitions,

5.2. Data validation 61

minutes, depending on the model size.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

n = 10, m = 6
n = 25, m = 15
n = 50, m = 30
n = 100, m = 60

ODE approximation

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

n = 10, m = 6
n = 25, m = 15
n = 50, m = 30
n = 100, m = 60

ODE approximation

Figure 5.1: Reference and our implementation results for simple Client/Server model

We also present a direct comparison. One can easily notice that although the results are
similar, there are some marginal differences. After consultations with the original authors we
determined, that the difference is caused by the different method they used to quicken the
computation of this example. They first ran the unprobed version of the model for certain
time (until equilibrium). Then they remembered the component counts and added one probed
server in its state after end has been fired, effectively executing 61 servers rather than 60 for
the second step of the algorithm. The ratio 1 : 60 was favourable enough to introduce only
small approximation error.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
ab

il
it
y

Our results

Original paper’s results

Figure 5.2: Reference and our implementation results for simple Client/Server model

62 Chapter 5. Evaluation and future work

5.2.2 Comparison of the worked example

Now we can demonstrate the main worked example from the [24]. This was a more complex
model representing a large wireless sensor network of autonomous battery-powered agents. The
GPEPA model was specified as follows.

The main agent component was a simple component with multiple possible actions.

ClientHibernate
def
= (clt on, ron).ClientStandby

+ (clt shutdown,>).ClientHibernate

ClientStandby
def
= (clt off , roff).ClientHibernate

+ (radio init , rinit).ClientRadioUse

+ (cont tfr , rcont).ClientStandby

+ (clt shutdown,>).ClientHibernate

ClientRadioUse
def
= (data tfr , rradio).ClientStandby

+ (clt shutdown,>).ClientHibernate

Various actions are possible with various levels of battery.

BatteryEmpty
def
= (clt charge, rcharge).Battery1

Battery0
def
= (clt shutdown, rshutdown).BatteryEmpty

Batteryi
def
= (data tfr , ωtfr ×>).Batteryi−1
+ (data tfr ,>).Batteryi
+ (cont tfr , ωtfr ×>).Batteryi−1
+ (cont tfr ,>).Batteryi
+ (radio init , ωinit ×>).Batteryi−1
+ (radio init ,>).Batteryi
+ (clt off ,>).Batteryi
+ (clt on,>).Batteryi
+ (clt charge, rcharge).Batterymin(Nb,i+1)

: for 1 ≤ i ≤ Nb

To each agent, we then connect a single battery parameterised with Nb, which represents the
maximum capacity of the battery.

CB
def
= ClientHibernate ��

L1∪L2
BatteryNb

Lastly, we need a communication channels for the agents:

5.2. Data validation 63

Chan
def
= (data tfr , rradio).ChanBusy1

+ (cont tfr , rcont).ChanBusy2

ChanBusy1
def
= (data tfr , rradio).Chan + (tmt , rtmt).Chan

ChanBusy2
def
= (cont tfr , rcont).Chan + (tmt , rtmt).Chan

And the overall system is then defined as cooperation of the clients using the provided channels:

DWN(Nc, Nh)
def
= Clients{CB[Nc]}��

M
Net{Chan[Nh]}

Finally, we can define a sample steady-state individual passage probe, which determines how
long till an agent shuts down due to the battery, given that it already has sent some control
information and data without shutting down.

SC
def
= begin : start, end : stop←↩

observes Probel
def
=

(data tfr ; cont tfr)\clt shutdown : begin,

clt shutdown : end←↩

where Clients{CB[?n]} =⇒
Clients{(CB ��

∗
Probel) oo CB[?n− 1]}

in DWN(Nc, Nh)

Here we present the original results compared with our implementation. The parameters for
the model were ron = 0.3, roff = 0.6, rinit = 0.5, rcont = 0.85, rradio = 0.16, rcharge = 0.02,
rshutdown = 1.5 and rtmt = 0.2; weights: ωinit = 0.07 and ωtfr = 0.15; and Nb = 3. The numbers
of generated ODEs in our implementation were 59 and 71 respectively. The actual computation
of the fluid-flow approximation took us about one and a half minute. Simulation with, 50000
repetitions, minutes or tens of minutes up to few hours.

Another example for a probe is a transient individual passage probe measuring sending four
data packages from the time a probe sends a control package.

64 Chapter 5. Evaluation and future work

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 10, Nh = 4

Nc = 20, Nh = 8

Nc = 50, Nh = 20

Nc = 100, Nh = 40

ODE approximation

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 10, Nh = 4

Nc = 20, Nh = 8

Nc = 50, Nh = 20

Nc = 100, Nh = 40

ODE approximation

Figure 5.3: Reference and our implementation results for worked example model - steady-state
individual passage time

SC
def
= begin : start, end : stop

observes Probel
def
=

cont tfr : begin, data tfr [4] : end

where Clients{CB[?n]} =⇒
Clients{(CB ��

∗
Probel) oo CB[?n− 1]}

in DWN(Nc, Nh)

Below we show the original results compared with our implementation. The parameters for the
model were ron = 0.3, ron = 0.3, roff = 0.6, rinit = 0.5, rcont = 0.85, rradio = 0.35, rcharge = 0.05,
rshutdown = 1.5 and rtmt = 0.2; and weights: ωinit = 0.07 and ωtfr = 0.15; and Nb = 3. The
number of generated ODEs in our implementation was 87. The actual computation of the fluid-
flow approximation took us about one minute. Simulation with, 50000 repetitions, minutes or
tens of minutes up to few hours.

The last example in the paper was a global probe measuring a time until a half of the agents
shuts down at least once.

SC
def
= ε : start, end[Nc/2] : stop

observes Probel
def
= clt shutdown : end

where Clients{CB[?n]} =⇒
Clients{(CB ��

∗
Probel)[?n]}

in DWN(Nc, Nh)

5.3. Real-life models 65

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 10, Nh = 4

Nc = 20, Nh = 8

Nc = 50, Nh = 20

Nc = 100, Nh = 40

ODE approximation

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 10, Nh = 4

Nc = 20, Nh = 8

Nc = 50, Nh = 20

Nc = 100, Nh = 40

ODE approximation

Figure 5.4: Reference and our implementation results for worked example model - transient
individual passage time

The comparison of the results is presented below. The parameters for the model were ron = 0.3,
roff = 0.6, rinit = 0.5, rcont = 0.85, rradio = 0.4, rcharge = 0.1, rshutdown = 1.5 and rtmt = 0.2;
and weights: ωinit = 0.07 and ωtfr = 0.15; and Nb = 3. The number of generated ODEs in our
implementation was 28. The actual computation of the fluid-flow approximation took us less
than 10 seconds. Simulation with, 5000 repetitions, minutes or tens of minutes, depending on
the model size.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 10, Nh = 6

Nc = 20, Nh = 12

Nc = 50, Nh = 30

Nc = 100, Nh = 60

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 10, Nh = 6

Nc = 20, Nh = 12

Nc = 50, Nh = 30

Nc = 100, Nh = 60

Figure 5.5: Reference and our implementation results for worked example model - global passage
time

5.3 Real-life models

In this section we describe two models we devised for testing and evaluation purposes. The
first is a very simple model, but it fully demonstrates the new iGPEPA capabilities, namely
passive, weighted passive and immediate transitions. The second model is more complex and
has much greater state space, especially after applying the probes. Without our C++/JNI
dynamic compilation, we would not be able to analyse this model.

66 Chapter 5. Evaluation and future work

5.3.1 An example web-based application

For the purpose of demonstration, we modelled a client-server application. The clients request
certain complex computations. They either get hold of a server, in which case the server will
deal with the request, or, after some time, the computation is pointless and cancelled. Client
is very easy to model:

Client
def
= (think , rthink).Client think

Client think
def
= (request , rrequest).Client

+ (timeout , rtimeout).Client

Servers know two algorithms for dealing with the requests. The first algorithm is very complex
and also very fast. Unfortunately, its domain range is quite limited and for certain inputs, an
alternative slower algorithm has to be used.

Modelling the Server component is a little bit trickier. Unfortunately, in GPEPA, when coop-
erating between groups of components, we cannot model a following situation easily: Client
sends a request, which is answered by a Server. Later, when Server resolves the request, it
would get back to this particular Client. GPEPA simply cannot remember, which Client and
Server were communicating before. If we tried to model something similar to Client waiting
for a certain action from the Server, then the action might occur in a different Server dur-
ing that time and be considered by this Client as the one awaited, since servers are identical
iPEPA components.

Therefore we have to adopt a different approach. Rather than doing the decision process after
the request arrived, we will set the Server to one of the algorithms as preparation before the
request. Although this might appear odd, it makes no difference - the next request will be
dealt with either fast or slow algorithm with certain probability. For this we use a Solver
component.

Solver
def
= (prepare, ωprepare fast ×>).Solver fast

+ (prepare, ωprepare slow ×>).Solver slow

Solver fast
def
= (request , rsolve fast).Solver

Solver slow
def
= (request , rsolve slow).Solver

We will then attach such a Solver component to our Server components. A Server thus first
does preparation. With that, it is set to either slow or fast algorithm. Afterwards, it initiates
the algorithm by instant randomization of some constants. Then it simply waits for a request.
Alternatively, we also consider a case that the server might break during the preparation.

5.3. Real-life models 67

Server
def
= (prepare, rprepare).Server prepare

+ (fail , rfail).Server fail

Server prepare
def
= randomize.Server randomize

Server randomize
def
= (request , rrequest).Server

Server fail
def
= (recover , rrecover).Server

Complete server
def
= Solver ��

{prepare,request}
Server

The system is then defined as a cooperation between Client and Complete server processes.

System(Nc, Ns)
def
= Clients{Client[Nc]} ��

{request}
Servers{Server[Ns]})

5.3.2 Example probes

With the defined model, we can finally show few useful passage time calculations. For all these
examples we used the same parameters, which were rthink = 0.5, rrequest = 2, rtimeout = 0.07,
rprepare = 2, rfail = 0.5, rrecover = 0.2, rsolve fast = 0.7 and rsolve slow = 0.4. The probabilities for
choosing between the algorithms were ωprepare fast = 0.2 and ωprepare slow = 0.8.

As our first probe we chose, something which is an important indicator of any such system -
how long will it, in the steady state, take, till our Client will get n different calculations. For
our examples, we chose n to be 5 and also 10. This is represented in the figures 5.6 and 5.7
respectively. The definition of such a probe follows.

PM1
def
= begin : start, end : stop←↩

observes Probel
def
= think : begin, request [n] : end←↩

where Clients{Client[Nc]} =⇒
Clients{(Client ��

∗
Probel) oo Client[Nc − 1]}

in System(Nc, Ns)

Similarly, we might be interested in the time, when a Client will endure n timeouts. We will
measure transiently for a change and the probe definition follows. Again, we used n = 5 and
also n = 10, in the figures 5.8 and 5.9 respectively.

68 Chapter 5. Evaluation and future work

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 100, Ns = 30

ODE approximation

Figure 5.6: PM1 for n = 5

PM2
def
= begin : start, end : stop

observes Probel
def
= think : begin, timeout [n] : end

where Clients{Client[Nc]} =⇒
Clients{(Client ��

∗
Probel) oo Client[Nc − 1]}

in System(Nc, Ns)

From these results, we can clearly see that for simple models, the approximation is very precise.

In the next example we will look at the population of Server components (or Complete server
components respectively) and determine the time it takes at least half of them to handle n re-
quests. Results for n = 5 and n = 10 can be then seen in the figures 5.10 and 5.11 respectively.
As we can clearly see, the lowest population is not very close to the approximation, at least
when compared to greater populations. This simple example proves that fluid flow approxi-
mation still has some limitations. In particular, that we still need to work on estimating good
population bounds on the rate of convergence.

5.3. Real-life models 69

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 100, Ns = 30

ODE approximation

Figure 5.7: PM1 for n = 10

PM3
def
= ε : start, end[Ns/2] : stop

observes Probel
def
= request [n] : end

where Servers{Complete server[Ns]} =⇒
Servers{(Complete server ��

∗
Probel)[Ns]}

in System(Nc, Nb, Ns)

5.3.3 Complex database system

Our second model is much more complex. Firstly we also have clients, who send transactions.
These are handled by a scheduling system, which checks the requests and the valid ones are
added to transactions buffers. Later, they are dealt with by some of the servers. Although it
might sounds as a complicated system, in iGPEPA it is surprisingly easy to model.

The Client component is the simplest. It decides on a transaction and then simply requests
it to be processed. Sometimes, it decides on a batch of transactions at once.

Client
def
= (think , rthink).Client think

Client think
def
= (request , rrequest).Client

+ (request , rrequestbatch).Clientthink

70 Chapter 5. Evaluation and future work

0 20 40 60 80 100 120 140 160 180 200 220 240
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 100, Ns = 30

ODE approximation

Figure 5.8: PM2 for n = 5

We then have multiple transaction buffers. Each of these, before adding a request to its queue,
checks, whether it is a valid transaction. If it is, it proceeds, and adds it to the buffer, when
there is a free space. If not, it waits. That is the reason why optimally setup system uses
multiple buffers.

Scheduler
def
= (request , rrequest).Scheduler request

Scheduler request
def
= (check , rcheck success).Scheduler check

+ (check , rcheck fail).Scheduler

Scheduler add
def
= (add , radd).Scheduler

Buffer0
def
= (add ,>).Buffer1

Bufferi
def
= (add ,>).Bufferi+1

+ (serve,>).Bufferi−1

BufferB
def
= (serve,>).BufferB−1

ManagedBuffer
def
= Scheduler ��

{add}
Buffer0

Finally, our Server. Each of them uses a special DatabaseDriver subsystem, which needs
to be running, in order to allow the Server to handle a transaction. If there is an error in the
DatabaseDriver during initialisation, it will cause a system restart. Similarly, if the Server
itself restarts after overloading, we have to restart its DatabaseDriver too.

5.3. Real-life models 71

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 100, Ns = 30

ODE approximation

Figure 5.9: PM2 for n = 10

DatabaseDriver
def
= (initialise, ωinitialise success ×>).DatabaseDriver initialise

+ (initialise, ωinitialise fail ×>).DatabaseDriver fail

DatabaseDriver fail
def
= (reset , rreset).DatabaseDriver

DatabaseDriver initialise
def
= (serve,>).DatabaseDriver initialise

+ (reset ,>).DatabaseDriver

Server
def
= (initialise, rinitialise).Server initialise

Server initialise
def
= (serve, rserve).Server initialise

+ (reset ,>).Server

+ (overload , roverload).Server overload

Server overload
def
= reset.Server

CompleteServer
def
= Server ��

{initialise,serve,reset}
DatabaseDriver

The complete system is then defined as a cooperation between Client, ManagedBuffer and
Server components.

72 Chapter 5. Evaluation and future work

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 10, Ns = 3

Nc = 20, Ns = 6

Nc = 100, Ns = 30

ODE approximation

Figure 5.10: PM3 for n = 5

System(Nc, Nb, Ns)
def
= (Clients{Client[Nc]} ��

{request}
Buffers{ManagedBuffer[Nb]})

��
{serve}

Servers{CompleteServer[Ns]}

5.3.4 Example probes

Now we can demonstrate some useful metrics on our system. For this section, we used the pa-
rameters defined as rthink = 0.1, rrequest = 0.5, rrequest batch = 0.3, rcheck success = 0.6, rcheck fail =
0.3, radd = 0.7, rserve = 0.2, rinit = 0.6, roverload = 0.1 and rreset = 1. The probabilities of success-
ful or unsuccessful initialisation of DatabaseDriver were ωinit success = 0.9 and ωinit fail = 0.1.
We defined B = 2, so that buffers could hold up to 2 transactions.

The first example, PM4, measures how long it takes a Client to send 10 requests, given it has
sent at least a batch of two requests already. We take this measurement in the steady state.
(Figure 5.12)

PM4
def
= begin : start, end : stop←↩

observes Probel
def
= (request [2]/think) : begin, request [10] : end←↩

where Clients{Client[Nc]} =⇒
Clients{(Client ��

∗
Probel) oo Client[Nc − 1]}

in System(Nc, Nb, Ns)

5.3. Real-life models 73

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 10, Ns = 3

Nc = 20, Ns = 6

Nc = 100, Ns = 30

ODE approximation

Figure 5.11: PM3 for n = 5

PM5 measures the time, since a CompleteServer initialises till it resets 12 times. (Fig-
ure 5.13)

PM5
def
= begin : start, end : stop

observes Probel
def
= initialise : begin, reset [12] : end

where Servers{CompleteServer[Ns]} =⇒
Servers{(CompleteServer ��

∗
Probel) oo CompleteServer[Ns − 1]}

in System(Nc, Nb, Ns)

In the PM6, we expect 80% of the servers to 8 times overload and also 8 times handle a request.
(Figure 5.14)

PM6
def
= ε : start, end[Ns ∗ 0.8] : stop

observes Probel
def
= (overload [8]; serve[8]) : end

where Servers{CompleteServer[Ns]} =⇒
Servers{(CompleteServer ��

∗
Probel)[Ns]}

in System(Nc, Nb, Ns)

PM7 measures the time to add 5 transactions into a ManagedBuffer. However, we start the

74 Chapter 5. Evaluation and future work

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 10, Nb = 6, Ns = 8

Nc = 20, Nb = 12, Ns = 16

Nc = 50, Nb = 30, Ns = 40

ODE approximation

Figure 5.12: PM4

measurement in the equilibrium, wait until we send a request and a successful add operation
is performed, not necessarily on this request. (Figure 5.15)

PM7
def
= begin : start, end : stop←↩

observes Probel
def
= (request , ((check , add)/request)) : begin, add [5] : end←↩

where Buffers{ManagedBuffer[Nb]} =⇒
Buffers{(ManagedBuffer ��

∗
Probel) ooManagedBuffer[Nb − 1]}

in System(Nc, Nb, Ns)

PM8 measures the time from initialisation of a CompleteServer to serving a request 3 times
without resetting in between. (Figure 5.16)

PM8
def
= begin : start, end : stop

observes Probel
def
= initialise : begin, (serve[3]/reset) : end

where Servers{CompleteServer[Ns]} =⇒
Servers{(CompleteServer ��

∗
Probel) oo CompleteServer[Ns − 1]}

in System(Nc, Nb, Ns)

Now in PM9 we are interested in the time it takes 95% of Client components to send 20

5.3. Real-life models 75

0 20 40 60 80 100 120 140 160 180 200 220 240
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 10, Nb = 6, Ns = 8

Nc = 20, Nb = 12, Ns = 16

Nc = 50, Nb = 30, Ns = 40

ODE approximation

Figure 5.13: PM5

requests. (Figure 5.17)

PM9
def
= ε : start, end[Nc ∗ 0.95] : stop

observes Probel
def
= request [20] : end

where Clients{Client[Nc]} =⇒
Clients{(Client ��

∗
Probel)[Nc]}

in System(Nc, Nb, Ns)

Probe PM10 demonstrates the combinatory capabilities of the probes language. In the steady
state, we expect a server to initialise and serve, and also reset twice, while not overloading
(so that we count only resets from the DatabaseDriver). Additionally, we repeat this three
times. (Figure 5.18)

PM10
def
= begin : start, end : stop←↩

observes Probel
def
= ε : begin, (((initialise, serve); reset[2]), overload)[3] : end←↩

where Servers{CompleteServer[Ns]} =⇒
Servers{(CompleteServer ��

∗
Probel) oo CompleteServer[Ns − 1]}

in System(Nc, Nb, Ns)

76 Chapter 5. Evaluation and future work

0 20 40 60 80 100 120 140 160 180 200 220 240
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 10, Nb = 6, Ns = 8

Nc = 20, Nb = 12, Ns = 16

Nc = 50, Nb = 30, Ns = 40

Nc = 100, Nb = 60, Ns = 80

ODE approximation

Figure 5.14: PM6

PM11 simply measures when will a server handle its first 12 transactions. (Figure 5.19)

PM11
def
= begin : start, end : stop

observes Probel
def
= eE : begin, request [12] : end

where Clients{Client[Nc]} =⇒
Clients{(Client ��

∗
Probel) oo Client[Nc − 1]}

in System(Nc, Nb, Ns)

Next in the probe PM12 we will measure the time until half of the buffers successfully add 25
transactions. (Figure 5.20)

PM12
def
= ε : start, end[Nb/2] : stop

observes Probel
def
= add [25] : end

where Buffers{ManagedBuffer[Nb]} =⇒
Buffers{(ManagedBuffer ��

∗
Probel)[Nb]}

in System(Nc, Nb, Ns)

With PM13 we are interested in the time until a buffer adds or pushes out 20 transactions,
given that it has already seen a request in equilibrium. (Figure 5.21)

5.3. Real-life models 77

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 10, Nb = 6, Ns = 8

Nc = 20, Nb = 12, Ns = 16

Nc = 50, Nb = 30, Ns = 40

ODE approximation

Figure 5.15: PM7

PM13
def
= begin : start, end : stop←↩

observes Probel
def
= (request) : begin, (add |serve)[20] : end←↩

where Buffers{ManagedBuffer[Nb]} =⇒
Buffers{(ManagedBuffer ��

∗
Probel) ooManagedBuffer[Nb − 1]}

in System(Nc, Nb, Ns)

Here in the probe PM14 we query the system for the time, when a buffer adds and also removes
transactions at least 8 times. (Figure 5.22)

PM14
def
= begin : start, end : stop

observes Probel
def
= ε : begin, (add ; serve)[8] : end

where Buffers{ManagedBuffer[Nb]} =⇒
Buffers{(ManagedBuffer ��

∗
Probel) ooManagedBuffer[Nb − 1]}

in System(Nc, Nb, Ns)

The last example, PM15 shows, when will at least 60% of the servers handle 5 transactions
without resetting in between. (Figure 5.23)

78 Chapter 5. Evaluation and future work

0 20 40 60 80 100 120 140 160 180 200 220 240
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 10, Nb = 6, Ns = 8

Nc = 20, Nb = 12, Ns = 16

Nc = 50, Nb = 30, Ns = 40

ODE approximation

Figure 5.16: PM8

PM15
def
= ε : start, end[Ns ∗ 0.6] : stop

observes Probel
def
= (serve[5]/reset) : end

where Servers{CompleteServer[Ns]} =⇒
Servers{(CompleteServer ��

∗
Probel)[Ns]}

in System(Nc, Nb, Ns)

5.3. Real-life models 79

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 10, Nb = 6, Ns = 8

Nc = 20, Nb = 12, Ns = 16

Nc = 50, Nb = 30, Ns = 40

Nc = 100, Nb = 60, Ns = 80

ODE approximation

Figure 5.17: PM9

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
ab

il
it
y

Nc = 10, Nb = 6, Ns = 8

Nc = 20, Nb = 12, Ns = 16

Nc = 50, Nb = 30, Ns = 40

ODE approximation

Figure 5.18: PM10

80 Chapter 5. Evaluation and future work

0 20 40 60 80 100 120 140 160 180 200 220 240
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 10, Nb = 6, Ns = 8

Nc = 20, Nb = 12, Ns = 16

Nc = 50, Nb = 30, Ns = 40

ODE approximation

Figure 5.19: PM11

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
ab

il
it
y

Nc = 10, Nb = 6, Ns = 8

Nc = 20, Nb = 12, Ns = 16

Nc = 50, Nb = 30, Ns = 40

Nc = 100, Nb = 60, Ns = 80

ODE approximation

Figure 5.20: PM12

5.3. Real-life models 81

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Nc = 10, Nb = 6, Ns = 8

Nc = 20, Nb = 12, Ns = 16

Nc = 50, Nb = 30, Ns = 40

ODE approximation

Figure 5.21: PM13

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
ab

il
it
y

Nc = 10, Nb = 6, Ns = 8

Nc = 20, Nb = 12, Ns = 16

Nc = 50, Nb = 30, Ns = 40

ODE approximation

Figure 5.22: PM14

82 Chapter 5. Evaluation and future work

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
ab

il
it
y

Nc = 10, Nb = 6, Ns = 8

Nc = 20, Nb = 12, Ns = 16

Nc = 50, Nb = 30, Ns = 40

Nc = 100, Nb = 60, Ns = 80

ODE approximation

Figure 5.23: PM15

5.4. Conclusion 83

5.4 Conclusion

We have shown how the Unified Stochastic Probes formalism for computing complex passage
time queries can be more accessible by combining it with the graphical Performance Trees
formalism. We have also proved this combination subsumes the originally proposed Performance
Trees way for computing passage-time densities (the Appendix A).

These concepts were demonstrated to be feasible by a full working implementation of the
Unified Stochastic Probes formalism along with passage-time calculations in both simulation
and fluid flow approximation modes. This was achieved by adding the support of the Probes
formalism to the open-source GPAnalyser software and also extending its implementation of the
GPEPA language to support passive, weighted passive and immediate actions. Furthermore,
the complexity of the tractable models was significantly increased by using C++ and JNI rather
than pure Java dynamic compilation technique.

Finally, we have demonstrated the power of our implementation by comparing its computations
with the manually hand-crafted results from [24] and by analysing our own iGPEPA models.
We have also shown a range of new examples for passage time calculations to reinforce the
concepts.

5.5 Future work

During the course of this project, there have been multiple areas discovered, which deserve a
further research. We have also identified several possible extensions to our implementation,
which could increase the usefulness of the Probes formalism.

� We plan to introduce passage time computations using the higher-order moments.

� We would like to explore the idea of spatially extending the Unified Stochastic Probes
formalism and provide a simple way for using it with spatially-enabled process algebras,
such as Bio-PEPA ([17]) or MASSPA ([20]).

� We are looking into functional rates in PEPA so that we can support global probe pred-
icates in the simulation mode.

� Global probes in the fluid flow approximation mode need formal reviewing and developing
their permitted grammar beyond the current limited scope.

� Future work includes an implementation of a tool for the newly proposed graphical syntax
of the Unified Stochastic Probes formalism.

� We plan to increase the support for immediate actions in our implementation to non-
deterministic signalling paths from the non-initial states and thus allowing for specifying
any well-behaved components.

84 Chapter 5. Evaluation and future work

Appendices

85

Appendix A

Translation of PTD node to a Probe
PTD node

In this appendix, we will show how even the weakest kind of Unified Stochastic Probes can
achieve the same as the PTD node originally defined in [30]. Since we will use a very small
subset of the operations permitted in Unified Stochastic Probes formalism, we can conclude
that behavioural-oriented probes subsume and surpass the original definition. Furthermore,
they are more intuitive to define.

The weakest kind of Unified Stochastic Probe is a global probe which observes a system with
no local probes attached. With this type of Probe we can only monitor the overall, global,
behaviour of the system and its passages. In this section, we will assume two simple extensions
of global probe predicates here - testing for impulse and accumulated rate rewards. For impulse
rewards we will use action-counting ODEs, as proven in [22, Section 5.4.1]. Current GPAnalyser
version supports both of these reward types, therefore using these in predicates is not unrealistic
in the future versions. In our case, impulse rewards track how many times an action has been
executed in the model. Accumulated rate rewards track a quantity of interest as some function
of the system over time, e.g. fuel consumption in a motor model.

Before we demonstrate translation of our first Performance Query into the probes language, we
will need some model modifications to accommodate for some functional requirements of the
originally defined PTD node.

A.1 Model modifications

In order to accommodate for excluded actions and states from the original PTD node, we will
make some simple modifications to the model.

Every Prefix with an excluded action α leading to a state s will be substituted by an α self-loop
with the same rate/weight. This is to ensure the model will not use any excluded action during
the passage time evaluation. This change will have no probabilistic impact on the overall run
of the model. We did preserve all the actions and their rate/parameters in all the reachable
states, which means no rates, or action weights will be altered.

We can also prove, that by keeping these dummy self-loops, we do not alter the race between

86

A.2. Probe generation 87

the available transitions. There are two cases:

� An allowed transition wins the race. In this case, the overall behaviour was not affected
by any changed self-loops.

� An excluded transition wins the race.

The second case is trickier to prove. Suppose the excluded transitions wins the race after a
time interval t since the start of the race. Then we end up in the same state where we started,
since we used a self-loop and a new race starts right away. The probability of an allowed action
α in a time period s occurring is then P (S < s).

For comparison, lets assume the excluded action did not win the first race and the original race
continued until this α is performed. This is the case we are interested in. Since we know, that
in time t no action has occurred, we can write the probability of action α occurring in the next
time period s after t as P (S < s+ t|S ≥ t).

Now we can use the Markov property of CTMC, since the structure underlying a GPEPA model
is a CTMC and the transitions are Markov Processes. By this property the aforementioned
probabilities are equal. From that, we can conclude the passage time probabilities of interest
have not been altered by this simple change.

We can use the same tactics for all excluded states - we substitute every Prefix leading to an
excluded state by a self-loop Prefix with the same action and rate/weight. Again this did not
affect any probabilities or rates of actions. We can use the same proof as for excluded actions
to show that the passage time of interest has not been affected.

A.2 Probe generation

The original PTD definition allowed specifying multiple different starting states of the complete
system. Because of the way the GPAnalyser works, we are only interested in a single starting
state. For other starting states we can just alter the overall model. We can then use the
function specified in (A.2) to obtain the final CDF.

While global probe predicates do not support conjunction operation in their original definition,
it can be emulated by stacking up the predicates. For predicate 1 and predicate 2, the con-
junction would be defined as {predicate 1}{predicate 2}, which follows from the global probe
predicates grammar.

For the other requirements (included states, included actions, target states, rewards) we can
use the global probe predicate logic. We are essentially interested in global probes of the form

ε : start, {end condition(s)}ε : stop (A.1)

since these measure the time until the whole system reaches a state satisfying certain conditions.

The reaching of any of the target states can be easily detected by a global probe predicate.
For each of the target states, we have a set of statements determining how many particu-
lar system components should be in what component state. For example, returning back to

88 Chapter A. Translation of PTD node to a Probe PTD node

the model from Subsection 2.4.3, we can be interested in a state system, where we have Nc

Consumer get and Np Producer components. This can be expressed by a global probe
predicate {Consumer get = Nc}{Producer = Np}.
If we have n target overall states, we can in this manner generate multiple probes, each for one
of them. Then we join the obtained CDFs with a function defined as

∀t ∈ R+ : f(t) = max x1, ..., xn|xi = CDFi(t) (A.2)

where CDFi(t) represents the numerical value of the CDF generated from i-th probe at time t.
The intuitive explanation is, we are interested in the maximal density probability at each time.

For included actions, we can use the extended predicate logic. For each included action α, we
add one predicate with {α = n}, where n is the number of times this action is included.

For accumulated rewards we can again use the extended predicate logic and simply test these
with a simple predicate in conjunction with the others so far.

Included states are bit trickier. Lets assume we have n different included states. First step is to
generate a probe from the start state to all of them as if they were the target states, but we do
not use the other conditions yet (included actions and rewards). Since this is a Global Probe
culminating in the fluid-flow mode to a point mass approximation, we can use the time of the
probability turning into 1 directly. We than pick the minimal time obtained from these results
and take the state it is associated with it as our new start state. We than generate probes for
all the included states starting from this new start state, except for the one, which has won the
previous race. We evaluate the next winner in a similar manner as the first one and continue
with this process until there are no included states left. Only then we will go on to evaluate
race into the end states as previously described and use the other conditions in the predicate
(included actions and rewards). In the end, we need to add the winning accumulated times to
get the resulting time of the point-mass approximation.

A.3 Conclusion

We have shown we are able to use probes to emulate the originally defined PTD node. Even
though in this case probes’ use is inconvenient, since probes do not directly work with system
states, except for the global probe predicates, it is still possible to use them as a substitute.
However, as previously stated, the PTD node was originally proposed in this manner because
there was no other viable alternative. In truth, we are rarely interested in the states of the
system when considering its behaviour over the time. We are more interested in the actual
actions executed by an individual or all components. Probes are therefore far superior in
both intuitiveness and expressive power, since they easily allow also observing either transient
or steady-state individual passage times, unlike the original PTD node. Furthermore, they
also provide the option to specify the ordering and necessity of the executed actions, which is
impossible with a PTD node.

Appendix B

User guide

In this appendix we present the useful program options and the newly introduced syntax for
GPAnalyser. We end this guide with some examples of both models and probes.

B.1 Program options

GPAnalyser supports a range of extra options. For our purposes, we introduce only some
interesting ones.

� Option noGUI specifies, that all the graphical output, including CDF from Probes, should
be supressed. It can be used for automated runs or runs in a cluster.

� Option cpp chooses our C++/JNI (the Section 4.8) compilation rather than the default
Java one (currently for Probes only). It requires g++ to be set up on the host computer
and accessible from the command line. This option takes one argument - the directory,
where all the generated files will be stored.

B.2 iGPEPA syntax

Here we present syntax we use in GPAnalyser. It is resembling of the traditional iGPEPA
syntax, however there are minor differences. These were introduced to simplify writing of the
models and make models clearer. Sometimes, it was necessary (synchronization symbol from
PEPA).

� Prefix - uses the same syntax as in iGPEPA, (alpha, ra).Component. It says action alpha
is available, with rate “ra” and will result in the Component component.

� Passive prefix - comes in two variants. First is (alpha, T, wa).Component. It specifies alpha
as a passive action with weight “wa”. The second is simply (alpha, T).Component, which
is a shorthand for (alpha, T, 1).Component.

� Immediate prefix - again there are two flavours. First is [alpha, wa].Component. It specifies
immediate alpha action with weight “wa”. The second form is simply alpha.Component,

89

90 Chapter B. User guide

which is a shorthand for [alpha, 1].Component. Since we only support deterministic sig-
nalling paths, the second flavour is currently preferred and the weights are ignored.

� Choice - we also use the “+” (addition) operator. (alpha, ra).ComponentA + (beta, rb).ComponentB

will either result in ComponentA or in ComponentB by racing the alpha and beta in
the usual manner.

� Cooperation - we use angle brackets. For example, ComponentA<alpha>ComponentB specifies
a cooperation between ComponentA and ComponentB synchronized on action alpha.

� Parallel cooperation between multiple components of same type - we use the same syn-
tax as iGPEPA. For example, Component[nc] means nc components of type Component
cooperating independently in parallel.

� Group - we use the same syntax as iGPEPA. For instance, Group1{Component[nc]} spec-
ifies Group1 as a group uniquely labelling nc particular Component processes cooper-
ating in parallel.

� Groups cooperation - for synchronized cooperation we use the same syntax as for PEPA
cooperation. That means Group1{Component}<alpha>Group2{Component} specifies coop-
eration between two groups of components synchronized on action alpha. For unsynchro-
nized cooperation, simple “|” suffices, so Group1{Component} | Group2{Component}.

B.2.1 Example

Returning to our example from the Subsection 5.3.1, it’s syntax would then be represented as
follows. The first line illustrates how to define constants.

nc = 5;

Client = (think, r_think).Client_think;

Client_think = (request, r_request).Client;

+ (timeout, r_timeout).Client;

Solver = (prepare, T, prepare_fast).Solver_fast;

+ (prepare, T, prepare_slow).Solve_slow;

Solver_fast = (request, r_solve_fast).Solver;

Solver_slow = (request, r_solve_slow).Solver;

Server = (prepare, r_prepare).Server_prepare;

+ (fail, r_fail).Server_fail;

Server_prepare = randomize.Server_randomize;

Sever_randomize = (request, T).Server

+ (clear, rcl).Producer;

CompleteServer = Solver<prepare, request>Server;

Clients{Client[nc]}<request>Servers{CompleteServer[ns]}

Please note the overall system is unnamed. This is our practice in GPAnalyser - each file
represents one iGPEPA model, followed by optional Unified Stochastic Probe definitions (or

B.3. Unified Stochastic Probes syntax 91

other analyses, which GPAnalyser supports). Due to this, we do not explicitly name system in
probes definition either.

B.3 Unified Stochastic Probes syntax

In this section we would like to introduce the syntax for using Probes with GPAnalyser. Again,
there are small differences. Below, we present the probes operations quick guide. Please note,
that we require all binary operations to be enclosed in brackets for clarity.

Rl ::= {pred}R state guarded probe, global probes only

| Rl, Rl sequence

| Rl | Rl choice

| Rl;Rl both

| Rl : signal signal

| Rl[n] iterate n times

| Rl[m,n] iterate m to n times

| Rl? zero or one

| Rl+ one or more

| Rl∗ zero or more

| Rl/Rl reset

| Rl@Rl fail

| Rl! not

| . any action or signal

| action eventual specific action or signal

| − action subsequent specific action or signal

| eE empty action or signal sequence

Predicates, or state guards, stay as originally defined.

For the complete probes, syntax is also very similar to the original. It also keeps the same
semantics. Please note that as discussed in the previous section, we do not name the system in
the probe definition, which we wish to measure. We simply use the system previously defined in
the same file. It will all be easier to demonstrate on examples. We will return to the examples
from Subsection 2.5.5. These are represented below:

92 Chapter B. User guide

Probe ["output.dat"] (stopTime=250, stepSize=1, density=10)

steady 500

{
GProbe = begin: start, end: stop <-

observes {LProbe = think: begin, use[2]: end<- }
where

{
Consumers{Consumer[N_c]} =>

Consumers{(Consumer <think, use> LProbe)

| Consumer[N_c - 1]}
}

}

Informally, the structure is first a Probe definition, its parameters and then global probe spec-
ification. Symbols <- specify repetition. Keyword “observes” with the following local probe
definition(s) and substition(s) is optional.

The Probe definition is interesting here. First, we specify Probe for probing in the fluid flow
approximation mode or SimProbe for simulation. After that, optional definition of an output file
(“output.dat”) follows.

Simulation and fluid flow approximation modes differ in the third parameter provided in the
parentheses. The first common parameter, stopTime specifies the time until which we will be
solving/simulating the probed system. The second common argument, stepSize is used for
increasing the precision of analysis - smaller steps mean higher precision, but take longer to
finish. Here, we specified fluid flow approximation mode and the third parameter in such case,
density, also helps with precision. For SimProbe, the third parameter is replications, which
specifies number of times the simulation will be repeated. For simulation probe, we would
therefore start with this definition instead:

SimProbe ["output.dat"] (stopTime=250, stepSize=1, replications=5000)

Next, the type of probe is chosen. This can be “steady” for steady-state individual passage
time, “transient” for transient individual passage time or, the default, global passage time.
Both “steady” and “transient” take one numeric argument, which determines the expected
steady-state time for the model. In the case of steady-state individual analysis, we will start
passage time analysis at this time of model execution. For transient individual passage time,
this determines the time for truncation of the unconditional CDF computation, as discussed in
Subsection 2.5.4.

For the completeness, we also present the transient individual passage time example from the
Subsection 2.5.5, followed by the global passage time example.

B.3. Unified Stochastic Probes syntax 93

Probe (stopTime=250, stepSize=1, density=10)

transient 300

{
GProbe = begin: start, end: stop

observes {LProbe = eE: begin, clear: end }
where

{
Producers{Producer<get product>Terminal} =>

Producers{((Producer <get product> Terminal) <clear> LProbe)

| (Producer <get product> Terminal)[N_p - 1]}
}

}

Probe (stopTime=300, stepSize=1, density=10)

{
GProbe = eE: start, end[nc * 0.3]: stop

observes { LProbe = get product[10] : end }
where

{
Consumers{Consumer[nc]} =>

Consumers{(Consumer<get product> LProbe)[nc]}
}

}

Appendix C

QEST conference tool paper

Below we attached a paper, which we wrote during the course of the project, submitted to
QEST 2012 conference. It has already been accepted and will be presented in September,
2012. This paper shortly summarises the implementation contributions of this project and
demonstrates the functionality on a simple example.

94

Specification and efficient computation of
passage-time distributions in GPA

Matej Kohut Anton Stefanek Richard A. Hayden Jeremy T. Bradley
Department of Computing, Imperial College London

{mk508,as1005,rh,jb}@doc.ic.ac.uk

Abstract—We present a significant extension to the Grouped
PEPA Analyser tool. We have augmented the tool with the ability
to specify complex passage-time distributions with the Unified
Stochastic Probes formalism and implemented efficient fluid
analysis techniques to compute the distributions. The extension
incorporates immediate signalling and weighted passive rates and
permits two classes of passage time, namely global and individual
passage times, to be computed.

We summarise how the different classes of passage-time query
can be expressed using the Unified Stochastic Probe formalism
and present some results from probed GPA models.

I. INTRODUCTION

Fluid analysis or mean-field techniques, e.g. [1], allow
us to analyse stochastic systems with large populations of
identically behaved components. These techniques enable the
study of increasingly more complex behaviour described in
a variety of formalisms such as process algebras, Petri nets
or systems of chemical equations. Traditionally, these give
access to the time evolution of means and higher moments of
populations of individual component types. However, various
derived metrics are often needed, such as the distribution of
the time it takes for the system to exhibit a desired observable
sequence of actions. In the field of performance analysis, this
can be useful when guaranteeing performance or reliability of
a system. In particular Service Level Agreements (SLA) can
be established as a contract between a service supplier and
each individual client. For example, an agreement can state
that “each client receives a service within 60ms at least 99%
of the time”.

The recent work of Hayden et al. [2] describes the Uni-
fied Stochastic Probes language that allows specification of
complex passage-time queries. These can be defined outside
of the main behavioural description and then used to produce
an extended model. The results from the fluid analysis of this
model are transformed to provide passage-time distributions
in the original model. This method can quickly check whether
the system satisfies a given SLA and can be further used in
optimisation frameworks that help with the design of efficient
systems.

The probe language allows a concise and user-friendly
specification of complex behaviour-based queries. However,
the translation to the extended model and the computation of
the distribution is too complex to be performed by hand. In
this paper, we introduce an extension to the Grouped PEPA
Analyser (GPA) tool [3] that, for the first time, accepts a
sophisticated passage-time query specification, automatically
produces extended probed models and then applies fluid

analysis techniques to produce the resulting passage-time
distributions.

In the following section we describe the syntax added to
the tool and the individual improvements to the fluid analysis
techniques of GPA that were necessary to fully automate the
above method. We illustrate the tool on examples that had to
be up until now hand-crafted. We believe that the combination
of user-friendly model specification and efficient fluid analysis
computation have significant potential for these techniques to
be applied in practice.

II. UNIFIED STOCHASTIC PROBES

The Unified Stochastic Probes formalism [2], allows a
specification of an observable behaviour of a model. This
can be given as a combination of regular expressions that
accept sequences of actions exhibited by individual system
components as well as logical predicates on the global model
state space. Crucially, the resulting probe can be attached to
the original model without changing the model definition. The
fluid techniques then give access to the cumulative density
function (CDF) of the distribution of the time it takes for the
model to fully complete the specified behaviour.

A. Example

We demonstrate the new features of GPA on a simple pro-
ducer/consumer model defined in the GPEPA process algebra
[4]. The system consists of a large number of producers and
consumers. Each consumer can synchronise with a producer
to obtain some data. Producers have a buffer that can become
full, requiring a reset. The model can be defined in the original
GPA syntax:
Consumer = (think, rt).Consumer_get;
Consumer_get = (get_product, rg).Consumer_use;
Consumer_use = (use, ru).Consumer
Terminal = (setup, rs).Terminal;
Terminal_get = (get_product, T).Terminal

+ (timeout, rti).Terminal;
Producer = (init, ri).Producer_ready;
Producer_ready = (produce, rp).Producer_done;
Producer_done = (get_roduct, rgp).Producer

+ (clear, rcl).Producer;
Consumers{Consumer[N_c]}<get_product>

Producers{(Producer <get_product> Terminal)[N_p]}

Formally, the system consists of N_c consumers and N_p

producers with attached terminal components, synchronised
on the get_product action.

In such a system, it would make sense to specify an SLA,
for example, one that guarantees that each consumer will not

take longer than 250ms at least 99% of the time to use two
sets of data from the producers. This can be expressed by
an individual steady state passage-time calculated by a global
probe observing a local probe attached to a single consumer
component [2]:
Probe ODEs(stopTime=250, stepSize=1, density=10)

steady {
GProbe = begin: start, end: stop <-
observes {LProbe = think: begin, use[2]: end<- }
where { Consumers{Consumer[N_c]} =>

Consumers{(Consumer <think, use> LProbe)
| Consumer[N_c - 1]} } }

The specification consists of 4 parts. An analysis is specified
(using the standard GPA syntax) that will be used to calculate
the passage-time distribution. The keyword steady determines
that the steady state passage-time will be considered.

The body of the probe first contains a global probe definition
that determines which pair of signals will be used as the
start and stop of the passage-time. The observes block
defines local probes that will observe individual components
and report signals to the global probe. The where block defines
how the local probes are attached to the system, in terms of
a transformation of the model. In this example, we attach the
probe to a single consumer component and leave the remaining
Nc − 1 consumer components unchanged.

To obtain the CDF of the passage-time computed from
the first occurrence of the start signal instead of the steady
state, the keyword steady can be replaced by the keyword
transient and the repeating operators <- removed.

Another type of passage-time measure the tool supports
is the global passage time. This is the time it takes until a
proportion of given components in a group satisfy a probed
behaviour. For example, we can look at the time until 30% of
consumers consume 10 products:
Probe ODEs(stopTime=300, stepSize=1, density=10) {

GProbe = eE: start, end[nc * 0.3]: stop
observes { LProbe = get_product[10] : end }
where { Consumers{Consumer[N_c]} =>

Consumers{(Consumer<get_product> LProbe)[N_c]} } }

This is achieved by attaching the local probe to each consumer
component and stopping the global probe only when the count
of end signals reaches 30% of Nc. This command gives
a point mass approximation to the passage-time when used
with the ODEs analysis or empirical CDF when used with the
Simulation analysis respectively.

Each command produces a graphical output of the CDF
from each defined global probe and also export the raw data
for further processing. Figure 1 shows an example for the
three passage-time classes. The transient example is for the
passage-time until an individual producer empties its buffer.

B. Implementation details
To support the complete probe syntax and related ODE

analyses techniques, following features were introduced to
GPA:
• Passive and weighted passive actions [2], to allow more

general component specification and for direct translation of
probes into GPEPA.

0 100 200
0

0.2

0.4

0.6

0.8

1

Time, t

Pr
ob

ab
ili

ty

Steady
Transient

0 200 400 600
0

0.2

0.4

0.6

0.8

1

Time, t

ODEs
21
42
84
105

Fig. 1. Plots of individual passage time CDF (left) and global passage-
time point mass approximation (right). The dotted lines are obtained from
simulation. The global passage-time figure compares the point mass to the
CDFs obtained from simulation of the model with increasing scale (the
number shown is the value of N_c).

• Immediate actions (signals) from iPEPA by implement-
ing vanishing state removal [2]. Originally well-behaved f-
components [2] require only deterministic initial behaviour,
but we further restrict this to deterministic signalling paths
for all states.

• Full set of Unified Stochastic Probe operations [2] along
with the ODE based distribution computation for steady-
state individual, transient individual and global passage time
shown above. For comparison, these are also implemented in
the built-in simulator in GPA.

• Originally, GPA dynamically generates Java classes for nu-
merical solution to the underlying ODE systems. To support
more complex models with larger component states, we
added the option of dynamic generation of C++ code for
the numerical computation.

III. CONCLUSION & FUTURE WORK

We introduced an extension to the GPA tool that gives
access to complex passage-time measures in large scale sys-
tems. The source code is available on the GPA website
code.google.com/p/gpanalyser. We tested the techniques on a
range of examples, including the large wireless sensor network
case study in the original paper [2].

Apart from optimising probe translation algorithms, further
improvements include full support for immediate signalling
and passage-time computation using higher order moments.
We plan to introduce a visual representation of probes and
translation from Performance Trees [5], making the techniques
even more accessible and potentially applicable in practice.

REFERENCES

[1] J. Hillston, “Fluid flow approximation of PEPA models,” in
QEST’05, pp. 33–42, IEEE, Sept. 2005.

[2] R. A. Hayden, J. T. Bradley, and A. Clark, “Performance
Specification and Evaluation with Unified Stochastic Probes and
Fluid Analysis,” IEEE Transactions on Software Engineering,
Jan. 2012.

[3] A. Stefanek, R. A. Hayden, and J. T. Bradley, “GPA - A Tool
for Fluid Scalability Analysis of Massively Parallel Systems,” in
QEST’ 11, pp. 147–148, IEEE, Sept. 2011.

[4] R. A. Hayden and J. T. Bradley, “A fluid analysis framework
for a Markovian process algebra,” Theoretical Computer Science,
vol. 411, pp. 2260–2297, May 2010.

[5] T. Suto, J. Bradley, and W. Knottenbelt, “Performance Trees:
A New Approach to Quantitative Performance Specification,” in
14th IEEE International Symposium on Modeling, Analysis, and
Simulation, pp. 303–313, IEEE, Sept. 2006.

Bibliography

[1] Apache Ant, . URL http://ant.apache.org. 48

[2] ANTLR: ANother Tool for Language Recognition, . URL www.antlr.org. 47

[3] Java Deep-Cloning library. URL http://code.google.com/p/cloning. 47

[4] GCC, the GNU Compiler Collection. URL http://gcc.gnu.org. 48

[5] Guava: Google Core Libraries for Java 1.6+. URL http://code.google.com/p/

guava-libraries. 47

[6] Java Development Kit. URL http://www.oracle.com/technetwork/java/javase/

overview/index.html. 48

[7] JFreeChart. URL http://www.jfree.org/jfreechart. 47

[8] JUnit. URL http://www.junit.org. 47

[9] Platform Independent Petri net Editor 2. URL http://pipe2.sourceforge.net. 6

[10] Ashok Argent-Katwala, Jeremy T. Bradley, and Nicholas J. Dingle. Expressing Perfor-
mance Requirements using Regular Expressions to specify Stochastic Probes over Process
Algebra Models. In WOSP’04, 4th International Workshop on Software and Performance,
volume 29 of ACM SIGSOFT Software Engineering Notes, pages 49–58, January 2004.
URL http://pubs.doc.ic.ac.uk/regular-probes/. 12

[11] Ashok Argent-Katwala, Jeremy T. Bradley, A Clark, and Stephen T. Gilmore. Location-
Aware Quality of Service Measurements for Service-Level Agreements. In TGC’07, Trust-
worthy Global Computing, volume 4912 of Lecture Notes in Computer Science, pages 222–
239, November 2007. URL http://pubs.doc.ic.ac.uk/location-probes/. 12

[12] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Verifying Continuous
Time Markov Chains. pages 269–276. Springer, 1996. URL http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.53.3391. 5

[13] Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost-Pieter Katoen. Model-
Checking Algorithms for Continuous-Time Markov Chains. IEEE Trans. Softw. Eng.,
29:524–541, June 2003. ISSN 0098-5589. doi: 10.1109/TSE.2003.1205180. URL http:

//dl.acm.org/citation.cfm?id=1435631.859038. 7, 24

[14] Christel Baier, Lucia Cloth, and Boudewijn Haverkort. Model Checking Action- and
State-Labelled Markov Chains. In DSN04, Proceedings of International Conference on
Dependable Systems and Networks, pages 701–710. IEEE CS Press, 2004. URL http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.1615. 6

97

http://ant.apache.org
www.antlr.org
http://code.google.com/p/cloning
http://gcc.gnu.org
http://code.google.com/p/guava-libraries
http://code.google.com/p/guava-libraries
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.jfree.org/jfreechart
http://www.junit.org
http://pipe2.sourceforge.net
http://pubs.doc.ic.ac.uk/regular-probes/
http://pubs.doc.ic.ac.uk/location-probes/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.3391
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.3391
http://dl.acm.org/citation.cfm?id=1435631.859038
http://dl.acm.org/citation.cfm?id=1435631.859038
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.1615
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.1615

98 BIBLIOGRAPHY

[15] Jeremy T. Bradley, Nicholas J. Dingle, Peter G. Harrison, and William J. Knotten-
belt. Performance Queries on Semi-Markov Stochastic Petri Nets with an Extended
Continuous Stochastic Logic. In PNPM 2003, 10th International Workshop on Petri
Nets and Performance Models, Urbana IL, USA, pages 62–71, August 2003. URL
http://pubs.doc.ic.ac.uk/ecsl-pnpm2003/. 6

[16] Darren Brien. Performance Trees: Implementation and Distributed Evaluation. Mas-
ter’s thesis, Imperial College London, 2008. URL http://pubs.doc.ic.ac.uk/

fluid-spa-modelling/. 6

[17] Federica Ciocchetta and Jane Hillston. Bio-pepa: A framework for the modelling and
analysis of biological systems. Theor. Comput. Sci., 410(33-34):3065–3084, August 2009.
ISSN 0304-3975. doi: 10.1016/j.tcs.2009.02.037. URL http://dx.doi.org/10.1016/j.

tcs.2009.02.037. 83

[18] Allan Clark and Stephen Gilmore. State-aware performance analysis with extended
stochastic probes, 2008. URL http://www.dcs.ed.ac.uk/home/stg/PEPA/xsp.pdf. 12

[19] Amer Gerzic. Writing own regular expression parser, November 2003. URL http://www.

codeproject.com/KB/recipes/OwnRegExpressionsParser.aspx. 22

[20] Marcel C. Guenther and Jeremy T. Bradley. Higher moment analysis of a spatial stochas-
tic process algebra. In EPEW 2011, 8th European Performance Engineering Workshop,
volume 6977 of Lecture Notes in Computer Science, pages 87–101, October 2011. URL
http://pubs.doc.ic.ac.uk/masspa-higher-moments/. 83

[21] Richard Hayden. Addressing the state space explosion problem for PEPA models through
fluid-flow approximation. Master’s thesis, Imperial College London, 2007. URL http:

//pubs.doc.ic.ac.uk/fluid-spa-modelling/. 26

[22] Richard Hayden. Scalable Performance Analysis of Massively Parallel Stochastic Systems.
PhD thesis, Imperial College London, March 2011. URL http://pubs.doc.ic.ac.uk/

hayden-thesis/. 2, 12, 28, 31, 53, 86

[23] Richard Hayden and Jeremy T. Bradley. A fluid analysis framework for a Markovian pro-
cess algebra. Theoretical Computer Science, 411(22–24):2260–2297, April 2010. URL
http://pubs.doc.ic.ac.uk/fluid-framework-mpa/. Submitted to TCS, September
2008. Accepted 5 Feb 2010. 26

[24] Richard Hayden, Jeremy T. Bradley, and A Clark. Performance specification
and evaluation with Unified Stochastic Probes and fluid analysis. IEEE Transac-
tions on Software Engineering, December 2011. URL http://pubs.doc.ic.ac.uk/

fluid-unified-stochastic-probes/. Submitted 14 August 2010. Revised 24 October
2011. Accepted 24 December 2011. i, 7, 9, 10, 11, 12, 15, 18, 21, 28, 49, 50, 51, 54, 59, 60,
62, 83

[25] Richard Hayden, Anton Stefanek, and Jeremy T. Bradley. Fluid computation of passage
time distributions in large Markov models. Theoretical Computer Science, 413(1):106–141,
January 2012. URL http://pubs.doc.ic.ac.uk/fluid-passage-time/. Submitted to
TCS November 2010. Accepted July 2011. Available online August 2011. Extended version
of June 2009 technical report entitled “Fluid passage-time calculation in large Markov
models”. 17

http://pubs.doc.ic.ac.uk/ecsl-pnpm2003/
http://pubs.doc.ic.ac.uk/fluid-spa-modelling/
http://pubs.doc.ic.ac.uk/fluid-spa-modelling/
http://dx.doi.org/10.1016/j.tcs.2009.02.037
http://dx.doi.org/10.1016/j.tcs.2009.02.037
http://www.dcs.ed.ac.uk/home/stg/PEPA/xsp.pdf
http://www.codeproject.com/KB/recipes/OwnRegExpressionsParser.aspx
http://www.codeproject.com/KB/recipes/OwnRegExpressionsParser.aspx
http://pubs.doc.ic.ac.uk/masspa-higher-moments/
http://pubs.doc.ic.ac.uk/fluid-spa-modelling/
http://pubs.doc.ic.ac.uk/fluid-spa-modelling/
http://pubs.doc.ic.ac.uk/hayden-thesis/
http://pubs.doc.ic.ac.uk/hayden-thesis/
http://pubs.doc.ic.ac.uk/fluid-framework-mpa/
http://pubs.doc.ic.ac.uk/fluid-unified-stochastic-probes/
http://pubs.doc.ic.ac.uk/fluid-unified-stochastic-probes/
http://pubs.doc.ic.ac.uk/fluid-passage-time/

BIBLIOGRAPHY 99

[26] Holger Hermanns, Joost pieter Katoen, Joachim Meyer-kayser, and Markus Siegle. Towards
Model Checking Stochastic Process Algebra, 2000. URL http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.32.1466. 6

[27] J. Hillston. Fluid Flow Approximation of PEPA models. In Proceedings of the Sec-
ond International Conference on the Quantitative Evaluation of Systems, pages 33–
, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2427-3. doi:
10.1109/QEST.2005.12. URL http://www.dcs.ed.ac.uk/pepa/fluidflow.pdf. 24, 25,
26

[28] Jane Hillston. A compositional approach to performance modelling. Cambridge University
Press, New York, NY, USA, 1996. ISBN 0-521-57189-8. URL www.dcs.ed.ac.uk/pepa/

book.pdf. 7

[29] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. GPA - A Tool for Fluid
Scalability Analysis of Massively Parallel Systems. In QEST’ 11, pages 147–148. IEEE,
September 2011. ISBN 978-1-4577-0973-9. doi: 10.1109/QEST.2011.26. 2, 25, 39, 45, 59

[30] Tamas Suto, Jeremy T. Bradley, and William J. Knottenbelt. Performance Trees: A
New Approach To Quantitative Performance Specification. In MASCOTS’06, 14th Inter-
national Symposium on Modelling, Analysis, and Simulation of Computer and Telecom-
munication Systems, pages 303–313, August 2006. URL http://pubs.doc.ic.ac.uk/

performance-trees/. i, 2, 6, 31, 39, 86

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.1466
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.1466
http://www.dcs.ed.ac.uk/pepa/fluidflow.pdf
www.dcs.ed.ac.uk/pepa/book.pdf
www.dcs.ed.ac.uk/pepa/book.pdf
http://pubs.doc.ic.ac.uk/performance-trees/
http://pubs.doc.ic.ac.uk/performance-trees/

	Abstract
	Acknowledgements
	Contents
	Introduction
	Motivation
	Objectives
	Report structure
	Contributions
	Publication

	Background
	Introduction
	Related work
	CSL and derivatives
	Performance Trees implementation in the PIPE tool

	PEPA process algebra introduction
	iGPEPA
	iPEPA
	F-components

	GPEPA
	Example Consumer/Producer model

	Unified Stochastic Probes and passage-times
	Locating a local probe in the system
	Local probes grammar
	Global probes grammar
	Calculating passage time densities using the Unified Stochastic Probes
	Steady-state individual passage time
	Transient individual passage time
	Global passage times

	Examples

	Unified Stochastic Probes translation to iGPEPA
	Fluid-flow approximation of PEPA models
	State-Space Aggregation
	Fluid-flow approximation
	Approximating the passage time probabilities
	Steady-state individual passage time approximation
	Transient individual passage time approximation
	Global passage time approximation

	Performance Trees
	Syntax
	Value nodes
	Operation nodes

	Performance Trees using the Unified Stochastic Probes
	Motivation
	Unified Stochastic Probes sub-trees
	Examples
	Alternative approaches

	Implementation
	GPAnalyser
	Architecture
	Used libraries
	Technologies used
	Parsing and compiling
	Parsing the Unified Stochastic Probes language
	Translation of a probe expression
	Non-standard operations
	Global probes in the fluid flow approximation mode

	Modifications to the GPEPA translation engine
	Substitutions

	Increasing the possible state space - C++/JNI dynamic compilation
	Probes engine
	Representation
	Overall workflow

	Evaluation and future work
	Code validation
	Data validation
	Comparison of the simple Client/Server model
	Comparison of the worked example

	Real-life models
	An example web-based application
	Example probes
	Complex database system
	Example probes

	Conclusion
	Future work

	Translation of PTD node to a Probe PTD node
	Model modifications
	Probe generation
	Conclusion

	User guide
	Program options
	iGPEPA syntax
	Example

	Unified Stochastic Probes syntax

	QEST conference tool paper
	Bibliography

