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Abstract

Urban cycling is becoming increasingly popular. For many commuters and
tourists alike it is the cheaper and more pleasant alternative to traditional
modes of public transport. Urban cycling is supported by many cities world-
wide through introduction of cycling lanes and, more importantly to those who
do not own a pair of wheels themselves, also the creation of bicycle sharing
schemes.

City public transportation networks are not easy to navigate. This is why most
provide on-line journey planners that allow users to search for a desired mix
of transport links to reach destination. We believe that such journey planners
should also incorporate the bicycle sharing schemes. However, to build an effec-
tive journey planner one has to know the future arrival times of various modes
of transport such that waiting time whilst connecting is minimised.

The latter is a non-trivial task when it comes to bicycle sharing schemes because
there is no schedule of bicycle arrivals at various docking stations. This makes it
hard to plan cycling journeys that are to occur in the future and is the reason no
journey planner built thus far has fully catered for the needs of urban cyclists.
We aim to change all this by designing and implementing a journey planner
for London, UK that integrates a bicycle sharing scheme with other modes
of public transport whilst minimizing wait times at docking stations through
bicycle availability prediction.
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Chapter 1

Introduction

Bicycle sharing systems are being introduced as the latest mode of public trans-
port all over the world (see section 2.2). The providers are driven by their
positive environmental impact to increase their popularity. The cyclists often
see these systems as a cheap and cheerful alternative to more traditional modes
of urban transport. Apart from introducing the systems themselves, the city
planners attempt to make their streets more bicycle-friendly. Most journey plan-
ning software allows the user to set a number of parameters before the route is
calculated, such that most desirable journey path can be found.

The amount of time an urban journey maker spends waiting whilst travelling on
public transport has a significant influence on their choice of transport and the
willingness to use it again. The more a passenger has to wait throughout their
journey, the less reliable the transport mode in question will seem. Journey
planners often consider current traffic and network conditions in their attempts
to find routes that are most desirable to the user yet avoid any ongoing delays.
This works well with modes of public transport that run according to a timetable
as alternative routes that avoid these problems can be easily found.

The vast majority of journey planners that are capable of incorporating cycling
into their routes assume the user owns a bicycle. Finding a cycling route is
then relatively easy as all we have to do is to take into account users’ prefer-
ences and find a path that satisfies them. This is done very successfully by a
number of free route planning solutions. Apart from turn-by-turn navigation,
cyclestreets.net [12] is able to provide a very impressive feedback on the pro-
posed cycling journey, including the number of burnt calories, CO2 avoided and
even the number of traffic lights and crossings that are passed on the way. A
number of OpenTripPlanner implementations [31] provide a similar service for
a number of cities around the world. Created from data gathered by the cyclists
themselves, they have the potential of containing information not found in other
cycling route planners, such as picturesqueness.
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However, trying to include cycling into routes, when no assumption about bi-
cycle ownership can be made, is more difficult. This is because, while we are
keen to utilise the bicycle sharing systems, these have a limit on the number of
bicycles that are available at docking stations. The journey planning software
is unable to guarantee that the user will be able to start and finish their cycling
journey at the elected docking stations, since the docking stations of interest
may either be out of bicycles or have no free parking space left. This is partic-
ularly problematic if the bicycle sharing system charges their users for bicycle
hire - then, any delay that occurs because of inability to complete the cycling
journey as planned by the routing software is not only putting the user off using
that journey planning software and the bicycle sharing scheme again, but is now
also costly.

The problem is tackled by both the bicycle sharing systems’ providers as well
as the cycling journey planners. Transport for London, who own a large bicy-
cle sharing system in London, UK (called BCH and described in section 2.3),
provide the following guidelines when problems with picking up or dropping off
bicycles occur:

• if there are no bicycles at the docking station, the passenger can use the
docking station’s map to locate other docking stations nearby. There is
no guarantee there will be a bicycle available at those stations

• if the docking station is full, the passenger can get up to 15 minutes extra
time to cycle to another station before extra charges for late bicycle return
start to apply. As above, there is no guarantee that there will be a parking
space at the nearby stations

Often, this is not a good enough solution [24]. That is why we have seen a
number of mobile phone applications being developed that can locate the nearest
docking station and provide the latest available information on the number of
working bicycles and free parking spaces at that station. However, with this
solution the task of planning the journey is left to the user.

The most sophisticated solution to the problem is provided by journey planning
software that bases its suggested cycle routes around the use of bicycle sharing
schemes, but additionally considers the latest bicycle availability at all active
docking stations. If a docking station is currently out of working bicycles or all
of its docks are in use, the software seeks an alternative route that uses other
docking stations. Transport for London is the best example of such a journey
planner the author was able to find and we examine it in more detail in section
2.3.

All of the above routing software misses one important point - a user is rarely
able to begin their cycling journey the very moment they ask for a route to be
found. Normally, some time will pass between journey planning and the time
the user arrives at a docking station to start their journey. As such, using live
data on bicycle and parking space availabilities is not helpful as the state of the
world is likely to change between now and journey start time. From the time
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of planning the journey to actually reaching one of the docking stations the
bicycles that were available when we planned our journey might have by now
been taken away by other members of the public. The time a bicycle will be
returned to this station such that we can continue on our journey is unknown.
This is not the case for more traditional modes of public transport such as a
train or a bus, where a timetable of arrivals exits.

The only true way of improving the reliability of journey planning software that
includes cycle path routing based on bicycle sharing systems is to predict bicycle
availability at journey origin/destination docking stations at the time the user
is set to reach the docking station in question.

With this project, we aim to:

1. collect data on past BCH cycle journeys and current bicycle availability
across all BCH stations

2. devise a model capable of predicting future availability of bicycles at
BCH’s docking stations based on above historical evidence

3. devise a route planner that will combine walking, cycling and the London
Underground network to create a route that is most desirable to the user.
It should be capable of calculating routes based on distance, time and
route busyness

4. allow the user the control over the setting of those preferences such that
they are able to define what the most desirable route would be (mention
achieving this (maths wise) in cost models functions, and UI-functionality
wise when evaluating user experience)

5. incorporate the bicycle availability prediction model into said route plan-
ner in the aim of creating a more accurate and satisfying journey planning
experience

The end-product is an implementation of a journey planner capable of finding
routes combining walking, cycling and travel on the London Underground across
Greater London area. The journey planner tries to find a cycling route and when
this is not possible given user-defined preferences, a mix of walking, cycling and
London Underground routes is suggested as well. Our journey planner makes
no assumption of bicycle ownership and instead utilises a large bicycle sharing
scheme that exists in the city centre. It goes further than all other routing
software has ever gone before by attempting to predict future bicycle availability
within this system using density estimation techniques, such that the users feel
cycling can be a reliable mode of public transport. The journey planner interacts
with the users via map-based web interface that allows the users to specify their
most desirable journey across a number of parameters.

Whilst working on this project, we have also been able to contribute to Net-
workX, a Python language software package for the creation, manipulation,
and study of the structure, dynamics, and functions of complex networks. We
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have extended the functionality of NetworkX’s astar path to finding short-
est paths in directed and undirected multigraphs, where only simple graphs were
handled before [22].

The report is structured to describe our approach to each of the above aims in
turn. Thus in Chapter 2 we describe the data we will use in developing bicycle
availability models, themselves described in Chapter 4. In Chapter 5 we describe
our routing methods that combine user’s preferences as to the desired journey
with the predicted bicycle availabilities at docking stations. Our journey planner
is built as a number of components whose design is briefly described in Chapter
3. Chapter 6 shows our results and asses the suitability of our methods. To see
the journey planner in action, investigate figures in Appendix A.



Chapter 2

Background

2.1 Terminology

The following definitions will be used frequently throughout this report. We
clarify their indented meaning below:

• BCH is an acronym we will use when referring to Barclays Cycle Hire
scheme

• Bicycles refers to bicycles that are part of the BCH

• Docking station refers to the London-wide BCH terminals where bicycles
can be parked and picked up form

• Bicycle dropoff refers to the act of arriving at a docking station that is
part of the BCH and parking the bicycle at an available dock

• Bicycle pickup refers to the act of departing from a docking station that
is part of the BCH by taking an available and functional bicycle out of its
dock and cycling away

2.2 Bicycle Sharing Systems

Bicycle sharing system is a service that provides affordable access to bicycles to
individuals who do not own any themselves. Run mainly by local government
agencies, the systems are an alternative to motorized public transport on short-
distance trips. The authorities hope the systems will reduce traffic congestion,
noise and air pollution. As of 2011, around 300 such schemes were operating
worldwide [3]. Examples of successful implementation are manifold:

8



2.3. TRANSPORT FOR LONDON 9

• Dublinbikes, setup in September 2009, reached 1 million uses in less than
a year

• Cyclocity programs, launched by JCDecaux, spread out of France into
Brisbane, Australia and Vienna, Austria

• New York City, USA plans to introduce its own Citibike system in July
2012. With 10,000 bicycles available from 600 stations spread throughout
the city, this will be the largest system of its kind in North America

Operating the bicycle sharing schemes can be very profitable too - Bixi [6],
a system developed by Public Bike System Company in Montreal, Canada,
recorded net income of CAD1.5 million in the financial year 2011 [33]. Since
most systems charge passengers on a per-trip basis, the providers are interested
in increasing the popularity of their bicycle networks.

2.3 Transport for London

Transport for London (TfL) is the local government body responsible for most
aspects of the transport system in Greater London. We are interested in TfL
for two reasons:

1. they own and operate BCH, described next, on which we shall use for the
cycling parts of the routes calculated by our journey planner

2. they provide data that we can use to build bicycle availability models.
This data, described in sections 2.4.1 and 2.4.2, is provided free of charge
and available to anyone who registers in TfL’s Developer’ Area [16].

Barclays Cycle Hire

BCH is a bicycle sharing system owned by Transport for London (TfL) that was
launched on 30 July 2010. Available 24 hours a day, this self-service operates
8,000 bicycles across 570 docking stations spread around 65 km2 of central
London. By March 2012, the system has registered 10 million ’hires’, making it
one of the most successful in the world [2]. This also means we will have access
to a substantial amount of historical data on which to build our availability
model.

TfL already provides a cycle journey planner that incorporates BCH. Figure 2.1
shows the cycling journey planner following a request to calculate an exemplary
cycling journey across central London. The start and finish points are entered
manually by the user and we found that our home postcode was not recognised.
The route is calculated by finding BCH docking stations nearest to user-defined
start and finish locations. The route is then formed of three parts:
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Figure 2.1: TfL’s Cycle Journey Planner[17]
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1. using the user-defined start location and the location of starting docking
station, the start-walk part of route is found. This helps the passenger
reach the nearest docking station

2. using the locations of starting and finishing docking stations, as well as
preferences for route busyness (set in options), the cycling part of resulting
route is found

3. finally, using the user-defined finish location and the location of the fin-
ishing docking station, the finish-walk part of the route is found

We can see in Figure 2.1 that the user can check live availability of a docking
station to check if bicycles are available. This is an availability check made at
the time the planner is used and no attempt is made to estimate the future
availability.

2.4 Journey Planning Data Sets

In this section we describe the data that we were able to and needed to obtain
as part of this project. We first describe the data we will need to build our
model of bicycle availability. We then briefly mention other data that is needed
to build our journey planner.

2.4.1 Past cycle journeys

We have obtained access to data listing all BCH journeys made from 30 July
2010 to 31 May 2011 [18]. Each journey record lists:

• bike ID

• journey start date and time

• start docking station

• end date and time

• end docking station

Methods described in sections 4.2 and 4.3 will use this data to estimate the
number of pickups and dropoffs for each docking station at different time points
of the day.

2.4.2 Live bicycle availability

We have also obtained access data listing the current status of every docking
station. Unlike the past cycle journeys data described above, this is a live feed
that comes directly from Serco Group’s database and is updated in three-minute
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intervals, 24 hours a day, seven days a week [19]. Serco Group are the service
providers of BCH. Each update includes the following information on every
operation docking station:

• update time stamp

• name, location and co-ordinates

• availability for usage

• total number of bicycles available at a docking station

• number of docking points available at a docking station, excluding any
defective bike docks

• total number of docking points available at a docking station

Methods described in sections 4.2 and 4.3 will use this data to improve the
estimated number of pickups and dropoffs for each docking station at different
time points of the day, as calculated using past cycling journeys data described
above.

London Underground Data

Our journey planner will be capable of mixing journeys on the London Under-
ground into the routes it suggests to the user. For this, we need the following
information on every London Underground station:

• station name

• station co-ordinates

We would also like to know how the stations are connected, such that we can
find paths through the underground network. This means that for any two
connected London Underground stations we would like to know:

• the London Underground lines that connect these stations

• the distance travelled by the underground train between these stations
and the time this takes.

TfL does not provide a straight-forward access to above data. We have found
alternative sources [26][27][11]. Later we find that the data is not always 100%
accurate. Though we consider the accuracy good enough for a prototype appli-
cation, we note in Chapter 3 that our journey planner has been designed with
future improvements in mind - the underlying data can be easily swapped inside
our database for a more accurate set without any code changes.
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Greater London data

Finally, we need a data set from which a model of Greater London can be built.
We need such model so that we can apply the techniques described in chapter 5
for finding street-level paths for walking and cycling. The data has to comprise a
list of nodes (street level feature points such as junction) and edges (representing
connections between pairs of nodes, such as a footpath, road or a bridge). An
introduction to graph theory is provided in section 2.6. For now, we note that
for this data we turned to OpenStreetMap - a collaborative project to create a
free editable map of the world.

There are several reasons explaining our choice:

• our mapping needs require access to underlying data - the information,
listed below, about every street, path and other street-level link that forms
a network representing Greater London. If we were to collect data from
Google Maps, for example, we would be creating derived work. The data
Google uses in its maps service is either its own or licensed from mapping
companies (for example NAVTEQ and Tele Atlas) or national mapping
agencies, who made significant financial investment to obtain it and are
understandably protective of their copyright. In practice, if our jour-
ney planner used the Google Maps API, we could be subject to licensing
fees and contractual restrictions of these map providers. Use of Open-
StreetMap for our purposes is completely free

• there exists a number of usage limits that apply to the Google Maps API

• we find that OpenStreetMap provides more information for built-up areas
than Google Maps - house numbers are an example. There also exist a
number of layers that can be applied on top of the underlying map tiles
that show additional information, such as cycling routes or more points of
interest

Of course, we are only interested in the area of Greater London. Having obtained
an extract from OpenStreetMap that covers the city [10], we find it contains
the following information:

• co-ordinates of nodes

• for every edge:

– source and target nodes

– edge length and geometry (an edge does not have to be a straight
line)

– car accessibility, which also tells us what type of road this edge is

– bicycle accessibility, which also tells us how safe the edge is for cycling

– foot accessibility
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The accessibility information will help us calculate routes that suite our journey
planner users’ route busyness preference.

2.5 Probability Theory

Our approach to bicycle availability prediction will rely heavily on probability
theory. Below we introduce the basics concepts that are required for under-
standing the topics discussed in later parts of this section.

2.5.1 The Basics

A random variable is a mapping from the sample space S to the real numbers,
such that if X is a random variable, X : S → R. Each element of the sample
space s ∈ S is assigned by X a numerical value X(s).

Probability distribution P is a function that describes the probability of X
taking certain values in R.

For a discrete random variable it holds that:

p(x) =
∑
s

P (X = x) = 1,∀s ∈ S (2.1)

p(x) is then called the probability mass function and it gives us the probability
that a discrete random variable is exactly equal to some value [20].

The cumulative distribution function of random variable X tells us the proba-
bility that X takes a value less than or equal to x:

F (x) = P (X ≤ x),∀x ∈ R

We can express the cumulative distribution function of a discrete random vari-
able in terms of its probability mass function:

F (xk) =

k∑
i=1

p(xi) (2.2)

Similarily

P (X < xk) =

k−1∑
i=1

p(xi) (2.3)
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2.5.2 Density Models

Chapter 4 describes bicycle availability models. These models need to estimate
the number of bicycle pickups and dropoffs that occur at every bicycle docking
station at different times of the day. We can think of these numbers as discrete
random variables. They do this by estimating unobservable probability mass
functions p(X) that underlay these pickup/dropoff numbers. These models
of the true distributions of random variables are otherwise known as density
estimators or density models.

Density models can be parametric or non-parametric. The parametric density
models are assumed to be of particular form that is characterised by a set of
adjustable parameters θ, where θ ∈ R. In section 2.5.4 we introduce a method
for calculating these parameters. First, however, we introduce two parametric
forms of density models that will prove essential in our attempts to predict
bicycle availability at docking stations.

Binomial Distribution

Binomial distribution is a discrete probability distribution defined as

Pp(k|N) =

(
N

k

)
pk(1− p)N−k (2.4)

Since the above definition involves the combination(
N

k

)
=

N !

k!(N − k)!
(2.5)

the binomial distribution can be thought of as describing the probabilities of
obtaining k successes on N trials. In our case the k can be thought of as the
number of dropoffs or pickups per some time interval in a day and N as the
number of days for which we have sample data.

Poisson Distribution

For reasons listed in section 4.1 we are mainly interested in the Poisson distri-
bution. Poisson distribution is another example of a parametric discrete prob-
ability distribution. It builds on the binomial distribution mentioned above to
describe the probability of the number of events that are likely to occur within
a fixed period of time. It is defined as the binomial distribution in the limiting
case where N →∞, with p in (2.4) as the probability of a success.

If we set λ = Np, where λ can intuitively be thought of as the expected number
of occurrences of an event in some time interval i, equation (2.4) can be rewritten
as

Pλ/N (k|N) =
N !

k!(N − k)!
(
λ

N
)k(1− λ

N
)N−k (2.6)
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Considering the mentioned limit, equation (2.6) becomes

Pλ(k) = lim
N→∞

Pp(k|N)

= lim
N→∞

[
N !

Nk(N − k)!

]
(
λk

k!
)(1− λ

N
)N (1− λ

N
)−k

= lim
N→∞

[
N(N − 1)...(N − k + 1)

Nk

]
(
λk

k!
)(1− λ

N
)N (1− λ

N
)−k

= (1)(
λk

k!
)(e−λ)(1)

=
λke−λ

k!
(2.7)

Formally, λ is a positive real number such that

λ = E(X) = var(X) (2.8)

2.5.3 Density Estimation

Density estimation helps us define the set of parameters θ that characterises a
density model, such as a Poisson distribution, given observed data, such as that
discussed in sections 2.4.1 and 2.4.2. Because we consider the observed data
as having been drawn from the true distribution that we are trying to describe
with our density model, we can make the assumption that such model inferred
from such data is a good representation of this true distribution. In this context,
the observed data can be referred to as the sample data.

Formally, density estimation is the problem of modelling a true, unobservable
probability density (for continuous variables) or mass (for discrete variables)
function p(X) of a random variable X given a finite set of observations {xi}Ni=1

drawn from that true density function [9].

In section 2.5.2 we mentioned that assuming a parametric form of a density
model is akin to limiting the hypothesis space of what the true distribution can
possibly be. We note here that this means the parametric approach to density
estimation introduces a number of assumptions that are made about the true
distribution that we are attempting to estimate with our density models. These
assumptions may or may not be true and they form a good basis for evaluating
the density estimation methods described in section 2.5.4.

There exist a number of approaches to parametric density estimation [5]. In the
next section we detail one of the methods.
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2.5.4 Maximum Likelihood Estimation

As mentioned in sections 2.4.1 and 2.4.2, we have access to a number of obser-
vations about bicycle docking stations and some of the cycling journeys made in
BCH’s first year of operation. Considering this data as a sample of N random
observations {xi}Ni=1, we wish to estimate the true value of a set of adjustable
parameters θ of the probability distribution of the random variable X (repre-
senting the number of pickups or dropoff that occur) from which the sample
was drawn. In other words, we assume the observed data is drawn from the
true distribution and so we adjust the parameters that characterise our density
model to make the observed data most likely, believing that this approximates
our density model to the true distribution well.

Maximum likelihood estimation allows us to find θ̂, an estimator as close to the
true value of θ as possible. The method works by building on the assumption
that the probability of observing the sample data {xi}Ni=1, given θ, is a measure
of the likelihood of θ given this data. By maximising the former we also effec-
tively maximize the latter [32]. In other words, MLE will allow us to estimate

the value of θ̂ by finding specific values for the parameters in θ that define a
density model giving the random sample data the greatest probability.

It is easy to find θ̂ - this will be the set of density models parameters that max-
imises a likelihood function `. A likelihood function describes the probability of
obtaining exactly the observed data sample x = {xi}Ni=1 given some values for
the parameters in θ

likelihood(θ,x) = `(x|θ) (2.9)

When we consider that the random observations {xi}Ni=1 are drawn indepen-
dently from the same probability distribution, the above joint frequency func-
tion can be expressed as the product of the marginal frequency functions. This
allows us to rewrite equation 2.9 as

likelihood(θ,x) =

n∏
i=1

`(xi|θ),∀xi ∈ x (2.10)

For convenience, we maximise a log of the likelihood function and not the like-
lihood function itself. Since a logarithm is a monotonically increasing function
of its arguments, in an attempt to maximise the function all we have to do is
maximise its log

likelihood(θ,x) = ln

n∏
i=1

`(xi|θ),∀xi ∈ x

=

n∑
i=1

ln`(xi|θ),∀xi ∈ x. (2.11)
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Since the desired set of parameters θ is that which maximises the likelihood of
sample data, we have that

θ̂MLE = arg max
θ

(likelihood(θ,x)) (2.12)

2.6 Graph Theory

As well as attempting to predict future availability of BCH bicycles, we are also
looking to develop our own router that will combine walking, cycling and London
Underground paths into complete journeys suitable to users’ requirements and
preferences. Building the router requires an understanding of graph theory,
which we introduce next.

2.6.1 The Basics

A graph G is a set of vertices V (also known as nodes) and a set of edges E (also
know as arcs). An edge is a binary relationship between vertices (a, b) where
a, b ∈ G. In this case a and b are known to be adjacent. If a, b ∈ V and a = b
then the relationship (a, b) is called a loop. Edges can be directed or undirected.
A directed edge distinguishes (a, b) from (b, a), whereas an undirected edge does
not. A cost function C(e) evaluates weights attached to an edge e, ∀e ∈ E, to
return the expense of travelling along e.

A simple graph is one in which only a single edge can exist between any two
vertices and no loops are allowed. A multigraph removes the first of these
constraints. A pseudograph removes both. See Figure 2.2 for the illustration of
each of these graphs.

2.6.2 Path finding

A path between a source vertex v1 and a target vertex vn, where v1, vn ∈ V , is a
sequence of adjacent vertices {v1, v2, ..., vn}. In a connected graph there exists
a path between any two different vertices. If only a single path exists then this
is the optimal shortest path. Otherwise, the optimal path is one of the lowest
overall cost [13]. Methods for finding shortest paths in graphs have been studied
extensively and a number of algorithms have been developed. The choice of an
algorithm is influenced by the properties and types of graphs through which
shortest paths will be looked for.

One of the properties governing the choice of an algorithm is its density D. For
a simple undirected graph

D =
2× ‖E‖

‖V ‖ × (‖V ‖ − 1)
(2.13)
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Figure 2.2: Graph types.

Figure 2.3: Graph edge types.

where 0 ≤ D ≤ 1. D = 1 means every single vertex is connected to every single
other vertex by an edge, in which case the graph is maximal. A sparse graph is
one of low density.

Many shortest path algorithms have been developed, each one of varying time
complexities that are normally governed by the challenges that different types
of graphs present. In general, they can be divided into:

• non-informed search algorithms - so called brute-force searching - use no
information about the likely ’direction’ towards target vertex, instead only
utilising the information already present in the problem description. Di-
jkstra’s algorithm is an example [14]

• informed search algorithms - also know as best-first algorithms - attempt
to establish some ’direction’ to the search process using heuristics. Having
to examine fewer vertices reduces the search space and as a result better
running time performance is achieved

One of the most popular informed shortest path algorithms is the A* algorithm
[13]. The algorithm improves on Dijkstra because it uses a heuristic function to
estimate not just the cost of reaching the candidate node, but also the estimated



20 CHAPTER 2. BACKGROUND

distance from the node to the target vertex. Formally, the cost associated with
node k is given as a sum of two functions

f(k) = g(k) + h(k) (2.14)

where g(k) is the cost of reaching the node k from v1 and h(k) is a heuristic
estimate of the cost from k to vn. The A* algorithm finds the shortest path
in a graph (if one exists) by expanding the lowest-cost node from among the
candidate nodes - the successors to the latest nodes it was able to examine.
To keep track of the vertices it visits, A* maintains a list of open nodes O,
which is initialised with v1. This list contains the candidate nodes and at each
iteration a node in O with the lowest f cost is examined. As Algorithm 1 shows,
A* terminates when the next node picked for examination is the target vertex
vn.

Algorithm 1 A* search algorithm for finding shortest path in a graph.

1: function find shortest path(G, v1, vn, c, h)
2: O = v1
3: while O not empty do
4: remove i ∈ O such that f(i) is least
5: if i == vn then
6: return path to i
7: end if
8: for all k ∈ children(i) do
9: calculate h(k)

10: calculate f(k)
11: insert k into O ordered by f(k)
12: end for
13: end while
14: fail
15: end function

In section 5.2 we will discuss our implementation of this algorithm in detail,
including a small modification we hope will decrease the algorithm’s search
space further still. For now, we simply note that A* has been proven to be
an optimal algorithm for finding a shortest path provided h(k) is admissible,
meaning it never overestimates the true cost of reaching target vertex vn from
node k, ∀k ∈ V [13].



Chapter 3

System Architecture

Our cycling journey planner is written mostly in Python. We chose this lan-
guage because of the relative ease with which it can manipulate large datasets.
The author also had a personal interest in learning the language. Our journey
planner is built of several components, which we now briefly describe.

Data feed handler

As mentioned in section 2.4.2 we have obtained access to a feed of updates about
BCH docking station statuses. The datafeed package handles the function-
ality of listening for updates from TfL, downloading each one, processing its
contents to update our database with the latest information and also restarting
the update-downloading thread after system down time.

Database Manager

This journey planner relies heavily on information stored in databases. We
wanted to make sure that our journey planner is:

• independent of the database type and version

• not overpopulated with strings representing SQL commands

We achieved this by utilising an object-relational mapper (ORM) provided by
SQLAlchemy [34]. It provides the data mapper pattern, where classes can be
mapped to the database tables. This decoupling of the object model from
the database schema allowed us to almost completely avoid hand-written SQL.
The disadvantage of any ORM in terms of slower database access and lack of
support for complex queries did not outweigh the advantages of clearer code,
database independence (in fact, we did have to shift from an SQLite3 database

21
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to the departamental PostgreSQL database during the project and the switch
was almost painless) and provision of database connection management (which
we found useful as a number of data insertions lasting several hours had to be
made and SQLAlchemy handled database connection recycling and others for
us).

Data Loaders

Our bicycle prediction models and route calculators will need to frequently ac-
cess various data held in the database. For example, the routing engine will
require access to graphs of networks through which it is to find paths. It
would be inefficient to build a new graph for every request so basic caching
using module variable instantiation was implemented. Additionally, we can-
not assume the underlying data is stored by ourselves - often, journey plan-
ners retrieve positional data from remote servers. This is why the methods for
building such graphs are constructed with data loader objects as parame-
ters. Listing 3.1 shows how the graph building functionality combines caching
of built graphs and independence of data source. A graph is built using a
call similar to tube graph = build graph(get tube data loader()),
where get tube data loader() is a method that returns an instance of a
data loader that aggregates graph-related data from some source.

User Interface

Displays a map over which our journey suggestions are drawn. The modes of
transport are color-coded. Additionally, this web-based user interface allows the
users to specify the start time of their journey, its desired duration as well as
their preferences towards being able to arrive at target on time, being certain
about bicycles and free parking space availabilities at starting and finishing
stations as well as preferred route busyness. The web-based interface sends a
POST route request to our server which parses the route request parameters
and initialises a route calculation.

Router

The router is responsible for calculating the single, overall journey that is most
desirable to the user as per the received preferences. It fetches the required data
using a number of different loaders that are designed similar to that in Listing
3.1. It uses NetworkX library for the manipulation of necessary networks, chosen
for its Python language data structures for graphs, scalability (it is capable
of handling graphs in excess of 10 million nodes and 100 million edges) and
reasonable efficiency.
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Listing 3.1: route data loader module used for building NetworkX graphs from
nodes and edges data held in databse

1 class GraphLoader(object):
2 ’’’Abstract class for all graph loaders.
3 Child classes are expected to implement build_graph() method ’’’
4

5 __metaclass__ = abc.ABCMeta
6

7 def __init__(self, data_loader):
8 self.data_loader = data_loader
9 self.graph = None

10

11 @abc.abstractmethod
12 def build_graph(self):
13 return NotImplementedError("Your child class should implement

this method")
14

15 def load_graph(self):
16 return NotImplementedError("Your child class should implement

this method")
17

18 _tube_graph = None
19

20 class TubeGraphLoader(GraphLoader):
21

22 def build_graph(self):
23 tube_graph = nx.Graph()
24 #steps for building the graph from data accessed through self.

data_loader, omitted for readability
25 return tube_graph
26

27 def load_graph(self):
28 global _tube_graph
29 if _tube_graph is None:
30 _tube_graph = self.build_graph()
31 return _tube_graph
32

33

34 def build_graph(graph_loader):
35 ’’’Common point of access for retrieving a networkx graph’’’
36 return graph_loader.load_graph()



Chapter 4

Predicting Bicycle
Availability

As described in chapter 2, we have access to two kinds of information about
BCH

• the live bicycle availability data can tell us the current number of bicycles
good for hire and the number of free docs into which bicycles can be parked

• the past cycle journeys data can tell us how many journeys were completed
in and out of any docking station that was part of the system at the time
of data collection, at various time intervals throughout the day

If were looking for current bicycle availability, we would simply have to look
up the latest bicycle availability feed update the TfL have sent us for that
station. Most of the time, however, we will instead be interested in predicting
future bicycle availability. Even if our journey planner’s users are wanting to
immediately begin their journey, usually they will first have to reach, for example
by walking, whichever docking station we suggest to them as the starting point
of the cycling part of their overall journey - this will take some time. Similarly
for the finishing docking station - we need to estimate the arrival time at that
docking station and predict, for that future time point, the availability of a free
docking space.

One of the approaches to predicting future bicycle availability at any given
docking station is to estimate the number of people who will be picking up or
dropping off bicycles at the docking stations between now and the future time
point for which the availability prediction has been requested. Specifically, if
we treat the number of pickups or dropoffs as discrete random variables and
we heuristically divide the time between now and said future time point into
a number of time intervals then, as outlined in section 2.5.3, we are interested
in estimating the true, unobservable probability distribution of the number of

24
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dropoffs and pickups that occur at the starting and finishing docking stations
in each of those time intervals.

Existing Transport Models

If we compare a bicycle pickup to a passenger arrival at a public transport
station and a bicycle dropoff to the arrival of the public transportation unit
at that station, then there are a number of existing transport models we could
apply to predict these numbers of dropoffs and pickups.

Normally, the presence of passengers at a public transport station at any given
time point in the future is influenced by the knowledge of the arrival time of
whatever mode of transport said passengers want to get onboard (a bus, for
example, or a bicycle in our case). Thus past research [21] concentrated on
clustering passengers into

• those who know the timetable

• those who do not know the timetable of arrivals

This clustering allowed for establishing the parametric form of the density mod-
els of arrivals of these two groups of passengers, since it was shown that passen-
gers who do know the timetable arrive in a non-random pattern, whilst those
who do not arrive at the stations in uniform distribution. A passenger arrival
distribution curve for any station can then be calculated by combining these
two groups of passengers.

Apart from passenger clustering, the existing transport models additionally rely
on establishing public transport’s headway [30]. Found to be the most impor-
tant influence on passenger arrival distributions [25], it can be used to calculate
the arrival median wait time at a public transport station - another factor influ-
encing passenger arrivals. As with passenger clustering, these models depend on
the existence of an arrival timetable for the transport mode in question.

However, there exists no schedule that would outline the presence of a bicycle
at any given BCH docking station at different time points in the future. The
presence of a bicycle at a docking station (equivalent to a bus arriving at a bus
station) is instead influenced by the ratio of the number of drop-offs and pick-
ups that occur between the latest time point when we had true data about the
number of bicycles present at the docking station in question and the time in
future for which we would like to estimate the bicycle availability. For example,
if it is likely that there will be more pickups than drop-offs then it is less likely
that a bicycle will be available.
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4.1 Model Definition

Since we are unable to differentiate passengers based on their knowledge of
the schedule of bicycle availability at different stations (a schedule does not
exist), we could follow [21] in assuming that all passengers will arrive in uniform
distribution. However, by investigating data described in section 2.4.1 we see
that this is not true for bicycles. As an example consider Figure 4.1, which shows
how the frequency of departures from four different stations varies throughout
the day.

Since we cannot assume uniform distribution for our density estimator of the
true distribution of the number of bicycle dropoffs and pickups, we look for a
different parametric form for our density model.

Pickups and Dropoffs as Poisson Processes

Let us assume a typical scenario ω where there exists a docking station that
contains several bicycles that can be picked up and a couple of free docks into
which arriving bicycles can be dropped off. Since there are roughly 15,000
docking points across 570 docking stations and only 8,000 bicycles [2], this
scenario is very common. Let us further define Nt(ω) as the number of pickups
or dropoffs (generally, arrival events) that occur in the timer interval [0, t] given
the assumed scenario. Under certain assumptions, the following four conditions
hold:

1. N0(ω) = 0

2. Nt(ω) increases by integer amounts, since it is impossible for two pickups
or dropoffs to occur at exactly the same time. This is always true, since
we can keep decreasing the time interval [t, s] until only a single pickup or
dropoff event occurs

3. ∀t ≥ 0, u > 0, Nt+u −Nt is independent of the history up to t, i.e. arrival
events are independent of other such events that occurred in the past -
the arrival of John at a docking station with the intention of picking up a
bicycle is assumed to be unrelated to the arrival or Merry and Adam, who
is instead terminating his journey at that docking station by dropping off
a bicycle

4. ∀t ≥ 0, u > 0, Nt+u −Nt is independent of t, i.e. N , which we defined as
the number of dropoffs or pickups (generally, arrival events) that occur in
the future, is an independent random variable identically distributed over
time
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In this case we can refer to N as a Poisson Process. For non-negative integers k,
the increments in N are found to follow the Poisson distribution we introduced
in section 2.5.2 [35]

P (Nt+u −Nt = k) =
(λt)

k
e−λt

k!
(4.1)

where λ is the expected number of pickups (equally, dropoffs) per period.

This result tells us that, under the assumptions outlined above, we can estimate
the true, unobservable probability mass function of bicycle pickups and dropoffs
using the Poisson distribution. We have therefore moved on from supposing the
true, unobservable distribution of these is of uniform distribution and will now
adopt exponential form for our density estimator. In section 4.2 we will show
how the density estimation method described in section 2.5.4 can be used to
find the parameter λ that characterises Poisson distributions.

Before we do this, we would like to discuss the implications of using Poisson
distribution as our density estimator - do we think it is going to estimate the
true distribution of the number of pickup and dropoff events at various times
throughout the day well? This obviously depends on whether the assumptions
of Poisson processes hold for these discrete random variables. The choice of
Poisson distribution expresses our inductive bias about the true density of the
number of pickups and dropoffs that occur in some time interval

• that there exists a single mode representing the most likely number of
occurrences of an event

• that this density decays as we move away from the mode

This inductive bias motivates an important design decision in our approach to
estimating the true density of the number of pickups and dropoffs that will occur
in the future - rather than estimating the true density of pickups and dropoffs
at docking stations throughout the entire day with just a single Poisson distri-
bution, we instead consider the day to be split into a number of time intervals
of smaller durations. It becomes our task to find a separate parameterization
of the density estimator for each of the shorter intervals.

Estimating true, unobservable density of pickups and dropoffs that occur through-
out the entire day with just a single Poisson estimator would be incorrect for two
reasons: Firstly, consider the average number of pickups that occur at Regency
Street station, shown in Figure 4.1. Clearly, the true distribution of pickups at
this station is multi-modal. This goes against our inductive bias that the true
probability mass function has a single (global and local) maxima and the fact
that density of the number of pickups should decay in every direction away from
the mean. Estimating the density of pickups for this station across an entire
day with just a single distribution would require adopting a more sophisticated,
multi-modal parametric form for our density estimator.
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• However, the fact that a Poisson estimator is characterised by just one
parameter λ and therefore of single degree of freedom is a big advantage
to us, because it means we should be able to learn the value of λ from
relatively small sample data set. This is important as the cycling journeys
data has been collected in the first several months of BCH’s operation,
when the system was still gaining popularity and not all stations were
active from the first day.

• Estimating the true density of the number of pickups and dropoffs for
smaller intervals of the day solves this problem because in any sufficiently
small time interval, the distribution of the number of pickups and dropoffs,
from investigation, always seems to obey the two assumptions of our in-
ductive bias

Secondly, consider the average number of pickups that occur at Waterloo station,
shown in Figure 4.1. It tells us that the average number of pickups at this station
throughout the entire day is roughly 48 (this is simply the sum of average number
of arrivals in each 1 hour interval). As proved in the next section, this becomes
the distribution parameter λ of the Poisson distribution estimating the number
of pickups in that interval, shown in Figure 4.2. If we compare the predicted
number of pickups that are likely to occur in the interval 5am-10pm of any day
against the frequency density of the different number of pickups that we have
on record for this station in our cycle journeys data (shown in Figure 4.3) we
can see that the Poisson distribution does not estimate the true probability very
well. In particular, the Poisson estimator gives low likelihood to the number
of pickups being less than around 35 and more than 65, which by looking at
Figure 4.3 we know is not entirely true.

However, the far bigger problem is that the most likely number of pickups
to take place, as predicted by the Poisson estimator, is far higher than any
average number of pickups we would expect in the time until the future time
point for which we require a bicycle availability prediction. To explain, let us
consider that a user has just put in a request for a journey they would like
to start at their home near Waterloo in 1 hour. Using their house location
and the location of the nearest docking station we can calculate the walking
route to said docking station. Thus we know the exact time for which the
bicycle availability prediction is to be made to be about 1/1.5 hours from now.
Knowing that 48 pickups are likely to take place a day, we could divide this into
the number of pickups likely to take place every hour and combine this similar
reasoning about likely number of dropoffs and our knowledge of current bicycle
availability, which we receive as updates from TfL every 3 minutes. However,
since a single Poisson distribution is unable to describe the true density of the
number of pickups and dropoffs that are likely to take place throughout the
course of the day, our prediction is not likely to be accurate.

As before, the solution is to use the Poisson distribution as our estimator of
choice but instead attempt to estimate the true number of pickups and dropoffs
that will take place for much smaller time intervals. If our inductive bias is
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Figure 4.2: Per Figure 4.3 the average number of pickups in the interval 5am-
10pm is 48.
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Figure 4.3: Frequency density of the number of pickups between 5am and 10pm.
For example, of the 8261 journeys started at this station across 172 days, there
were 0.035× 172 = 6 days when the number of pickups was 44.
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correct, the Poisson estimator should then perform well. However, if the true
density within each interval does not have these properties then our estimator
will perform very poorly. We hope that combining our estimations about true
density in each smaller interval will guide us towards more accurate predictions
for future time points. In section 4.3 we motivate the chosen duration for
these intervals, as well as introduce two methods which take advantage of this
approach to make predictions about future bicycle availability.

4.2 Parameterizing the Model

As mentioned in previous section, we are interested in estimating the true,
unobservable probability mass function of the number of pickup and dropoff
events that occur at every docking station at different time intervals throughout
the day by fitting a Poisson distribution to the samples of the numbers of pickups
and dropoffs that have previously occurred for those stations and time intervals.
These numbers can be calculated from the historical cycle journeys data set
described in section 2.4.1 and, as explained in section 2.5.3, we consider that they
must be discrete random variables distributed according to the true probability
mass function since they are real samples that have been drawn from it.

Density Estimation in Practice

For every docking station and every time interval throughout the day (discussed
later), we need to establish two distribution parameters:

• λp parameter that characterises the Poisson distribution describing the
probability of different number of pickups that occur for that docking
station and time interval

• λd parameter that characterises the Poisson distribution describing the
probability of different number of dropoff that occur for that docking
station and time interval

One approach for finding these parameters is to find their value that will max-
imise the probability of sample data x. This can be done with maximum likeli-
hood estimation, introduced in section 2.5.4.

Formally, we can rewrite our result from (2.11) as

λ̂MLE = arg max
λ

(

n∑
i=1

ln`(xi|λ)),∀xi ∈ x

In our model, the likelihood of a single sample data point is given by the Poisson
distribution. If we set k from 4.1 equal to 1, the above formula can be written
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as

λ̂MLE = arg max
λ

(

n∑
i=1

ln(
λxie−λ

xi!
)),∀xi ∈ x

= arg max
λ

(-nλ+ (

n∑
i=1

xi)ln(λ)−
n∑
i=1

ln(xi!)),∀xi ∈ x (4.2)

Often, instead of maximising the log likelihood, we minimise the negative log
likelihood, then referred to as an error function. Finding λ that minimises the
error function can be done using gradient descend. However, here we can apply
a more direct approach of solving for λ by taking the derivative of the error
function with respect to λ and equating to zero. This gives us the maximum
likelihood estimator for a Poisson distribution

λ̂MLE =
1

n

n∑
i=1

xi (4.3)

This result implies the estimate of true λ is in fact the sample mean, i.e. the
mean of the observed number of pickups (dropoffs, similarly) for the station and
time interval of interest. This is just what we would expect. By definition, the
sample mean is also an unbiased estimate of true λ. The second order derivative
of the log likelihood from (4.2) is always positive, thus we know we have found
minimum of the error function.

We note that the BCH scheme has expanded since May 2011, when our historical
cycle journeys data stopped being collected, and this means we will not be able
to directly calculate the number of pickups and dropoffs for the stations that
became active since. We solve this problem by assuming that the number of
dropoffs and pickups that occur in any time interval of the day at a docking
station which did not exist at the time the cycle journey data was collected are
the same as those of the nearest docking station that did exist at the time.

4.3 Making Predictions

We have so far been able to establish the desired parametric form of the density
model estimating the true, unobserved distributions of the number of pickups
and dropoffs that occur for every station and each time interval of the day.
We have then discussed a method for finding the parameters of each of these
distributions using the sample data we have been able to obtain. Now we would
like to discuss two methods that use these parametrised models to predict bicycle
and parking space availability at any station at any time of the day.

In this section we will use the following notation:

• t represents time
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• xt is the number of bicycles present at a docking station at time t that
are good for hire

• bt is the number of empty docs present at a docking station at time t that
are functional

• pst is the number of pickups that occur at a docking station between times
t and s

• dst is the number of dropoffs that occur at a docking station between times
t and s

• pmfdst (x) is the probability mass function describing the probability of dst
being exactly equal to x

• pmfpst (x) is the probability mass function describing the probability of pst
being exactly equal to x

Trivally, the following logical equality holds

xs > 0 ⇐⇒ pst < dst + xt (4.4)

Let us set t to be the time we receive the request for a route and s to be the
time we estimate the person will reach a docking station (found by considering
user-specified journey start time and the duration of any routes that are needed
for the user to reach said docking station). The above equality tells us that to
predict if there will be a bicycle available for hire at s, we need to know the
current number of bicycles available at that station and additionally be able to
estimate the number of pickups and dropoffs that will occur between t and s.
We know the former from the updates TfL sends us every three minutes. Below,
we describe two methods for establishing the latter using the Poisson estimator
we have been discussing so far.

4.3.1 Using Cumulative Distribution Function

The simplest approach to estimating the number of pickups and dropoffs that
will occur between t and s is to fit the Poisson density estimator to all samples
of cycle journeys that begin and end, respectively, at that docking station in
that time interval. As we have shown in previous section, the λ parameter of the
Poisson distribution estimating the true probability mass function of the number
of pickups and dropoffs that occur can be calculated as the mean number of each
type of journeys.

We are thus looking to calculate P (pst < dst + xt). We can express it using
the cumulative distribution function we have previously defined in (2.3) remem-
bering that, since dst is itself also a random variable, we need to consider its



4.3. MAKING PREDICTIONS 35

probability too:

P (xs > 0) = P (pst < dst + xt)

=
∑
dst

pmfpst (dst + xt)× pmfdst (dst ) (4.5)

Of course, dst can take on any non-negative value - we therefore do not know
the value of xk−1 from (2.3) and will instead terminate the calculation when the
value of pmfdst (dst ) becomes negligibly small. The resulting algorithm is shown
as pseudo-code in Algorithm 2.

Algorithm 2 Predicting bicycle availability - single Poisson

1: function prob bike available(station id, request dt, journey start dt)
2: prob = 0
3: dropoffs = 1
4: acc error = 0.00001
5: curr num bikes = get curr num bikes(station id)
6: mean pickups = get pickups mean(station id, request dt,
7: journey start dt)
8: mean dropoffs = get dropoffs mean(station id, request dt,
9: journey start dt)

10: prob dropoffs = poisson.pmf(dropoffs, mean dropoffs)
11: while prob dropoffs > acc error do
12: cdf pickups = poisson.cdf(dropoffs + curr num bikes, mean pickups)
13: prob += cdf pickups × prob dropoffs
14: dropoffs += 1.0
15: prob dropoffs = poisson.pmf(dropoffs, mean dropoffs)
16: end while
17: return prob
18: end function

The calculation of the probability of there being a free parking space at the
finishing docking station follows a similar methodology

1. we wish to find P (dst < pst + bt)

2. we calculate
∑
pst
pmfdst (pst + bt)× pmfpst (pst )

The request dt and journey start dt in Algorithm 2 are, in reality, parameters to
the model’s constructor. The pseudo-code omits these and other implementation
details for readability.

The model’s predictive performance is evaluated in section 6.1. However, we
note here the expense of this algorithm:

1. in terms of database accesses:
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• the time interval for which we will be estimating the number of pick-
ups and dropoffs is unknown - it is based on the user-defined jour-
ney start dt and the desired journey

• this means we have to calculate the sample mean of the number of
cycle journeys that start and end at the docking station of interest
for every request the user makes

• since the availability of a free parking space at the finishing docking
station is dependant on route duration, we will have to perform a
separate calculation of this for every route we wish to suggest to the
user

2. in terms of algorithm complexity:

• Basic implementations of get pickups mean(station id, request dt,
journey start dt) and get dropoffs mean(station id, request dt, jour-
ney start dt) will run in O(n) to find the cycle journeys that concern
the docking station and time interval of interest. In section 7.3 we
suggest a useful method for decreasing the complexity of this search,
but now it is evident the method will run relatively slowly

For these reasons we have developed another model that uses sample means of
the number of pickups and dropoffs that can be accessed O(1).

4.3.2 By Sampling the Density Estimator

Previously, we have not been able to efficiently obtain the sample mean of the
number of journeys beginning and finishing at the docking stations of interest,
from which the expected values can be calculated, since the time period for
which these were to be calculated was unknown. We now present a second
model. The model is motivated by the fact that since the data set containing
historical cycle journeys is static, we can divide the 24 hours of a day into a
number of intervals of certain duration and pre-compute the sample means for
every station and every time interval. Storing this information in a database
and caching it at run-time allows us to look it up in constant time.

To motivate the chosen duration for these intervals (and thus effectively the
number of them), we first introduce a further improvement to the model outlined
in previous section. We noted at the end of section 4.2 that the BCH system
has been extended a number of times since our historical cycle journeys data
set was collected. As the system expands and becomes more popular, we would
expect the true numbers of pickups and dropoffs to have changed since our data
was collected.

The only data that we have access to which would characterise the BCH system
as it functions today has been described in section 2.4.2. It cannot tell us
anything about current number of pickups or dropoffs at docking stations at
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different times of the day. However, since we keep being updated about the
current number of working bicycles and empty docks at every station, we can
track the average change in both of these for any interval of a day whose duration
is a multiple of 3 minutes. We can therefore attempt to account for increased
popularity and usage of the BCH system by scaling the sample means we were
able to calculate from the data collected between 2010 and 2011 with these
differences.

To be able to scale the sample means of the number of pickups and dropoffs we
must introduce some new notation and a new assumption:

• pst (′10) is pst calculated from our historical cycle journeys. Similarily for
dst (
′10)

• pst (′12) is pst for cycle journeys that are being made under current size
and popularity of BCH. This is unknown since we do not have any live
updates on cycle journeys. But we would like to use them as input to our
density estimation techniques instead of pst (

′10) so that we can estimate
the true distribution of the number of pickups and dropoffs currently being
experienced by the docking stations

• It follows that the average change in the number of bicycles present at a
docking station in the time interval [u, t] can be expressed as

x̂tu = dtu(′12)− ptu(′12) (4.6)

where u < t and we can calculate x̂tu as xt−xu, where xt and xu are both
known from the live updates TfL provides us

• We re-iterate the assumption about expected number of pickups and
dropoffs for a station that did not exist when our cycle journeys data
was collected, mentioned at the end of section 4.2

• We additionally assume that the following equality holds

pst (
′10)

pst (
′10) + dst (

′10)
=

pst (
′12)

pst (
′12) + dst (

′12)
(4.7)

that is the ratios of the number of pickups to all ’arrival events’ remained
constant throughout time, even if the absolute numbers might have in-
creased

In the above we have two unknowns and two equations. Solving the simultaneous
equations, we are able to calculate the estimated sample means of pickups and
dropoffs currently being experienced at every docking station in the following
manner

pst (
′12) =

x̂tu × pst (′10)

dst (
′10)− pst (′10)

(4.8)

dst (
′12) =

x̂tu × dst (′10)

dst (
′10)− pst (′10)

(4.9)
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which is what we would expect as the formula simply scales the number of
pickups/dropoffs as calculated from our historical cycle journeys data by the
ratio between mean change in the number of bicycles available at the docking
station that occurs now and the change mean change that was occurring when
cycle journeys data was collected in 2010-2011.

What should be the duration of the intervals that we will split a day into? This
decision is a trade-off between wanting to decrease their duration, so that we
can estimate the local density well, and increasing their duration, such that
we have a higher number of historical cycle journeys on which to train our
model. To understand the second point, consider setting the duration of said
interval to just three minutes - few cycle journeys will fall into this interval,
which is not desirable. We settle for a duration of 15 minutes as, looking over
historical cycle journeys data, at least a couple of pickups and dropoffs occur
every 15 minutes. The time interval is still short enough for our density model
to hopefully estimate the true density well.

Sample Mean Change in Bicycle Availability

We would like to scale the sample means as accurately as possible. By collecting
updates about xt every three minutes and from them calculating the average
mean change for every 15 minute interval - every day - we are able to calculate
one x̂tu for each of the 96 intervals in a day. As the days pass, rather than using

whatever latest value of x̂tu we have for the interval [u, t], we would instead like

to learn from all the samples of x̂tu that we have observed so far.

We calculate x̂tu as a running mean - during every update from TfL, we work out
the latest value of dtu(′12)− ptu(′12), where t is the starting time of the interval
within which the update time falls and u is the starting time of the previous
15-minute interval. We then calculate a mean of this latest evidence and all
the samples we have witnessed for the interval [u, t] in the previous days. To
prevent having to consider (thus store) all historical values of dtu(′12)− ptu(′12),
we do this calculation using a stable one-pass algorithm.

Formally, assume we have observed n − 1 samples of x̂tu before examining this

latest update. x̂tu[n − 1] is the mean change in x̂tu across these samples. If we

analyse the latest update and calculate its x̂tu as per (4.6), the new sample mean
change in xtu after n samples is defined as

x̂tu[n] =
(n− 1)× x̂tu[n− 1] + x̂tu

n

= x̂tu[n− 1] +
x̂tu − x̂tu[n− 1]

n
(4.10)

Recalculating the average change in bicycle availability in this manner means our
density model is using the latest data available to us, resulting in a continuously
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improving density model.

We now have a time-efficient method for calculating sample means of pickups
and dropoffs of every station for every 15 minute interval in a day, scaled to cater
for increased size and popularity of BCH. As before, let us set t to be the time
we receive the request for a route and s to be the time we estimate the person
will reach a docking station (found by considering user-specified journey start
time and any routes that are needed for the user to reach said docking station).
In this approach, we will predict the availability of a bicycle at a docking station
at time s by predicting the number of bicycles present at the end of each 15
minute interval that starts inside [t, s]. The latter is done in three steps:

1. We know the number of bicycles present at the station at t - this is the xt
we get in the latest update from TfL.

2. For every 15 minute time interval in [t, s]:

(a) we draw from each Poisson estimator (estimating the number of pick-
ups and dropoffs that will occur at that docking station in that in-
terval) a random value for the number of pickups and dropoffs

(b) using the drawn values and the number of bicycles from the previous
interval, we calculate the new, predicted number of bicycles at the
end of that interval

(c) we set this as the new value of xk, where k is the starting time of the
next interval, to carry the predicted value through to next iteration
of the algorithm

3. At s, xs is our predicted number of bicycles

At each iteration of the algorithm we expect the points generated from an
appropriate Poisson density model to fall at some positive distance from the
sample mean of the number of pickups or dropoffs that have historically occurred
in that interval. As we repeat steps 1-2-3 a large number of times, we can record
how many times the predicted number of bicycles at s was strictly greater
than zero. By dividing this value by the total number of runs, we obtain the
probability that there will be a bicycle available at s.

The above method is summarised as Algorithm 3. Figures 6.1 and 6.2 show the
first 10 traces of this method as it tries to predict the number of bicycles present
at a station a number of time intervals into future.

As with the first model, the calculation of the probability of there being a
free parking space at the finishing docking station follows a similar methodol-
ogy:

1. we know the number of functioning free parking docks available at a station
from the latest update from TfL.

2. for every 15 minute time interval in [t, s]:
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Algorithm 3 Predicting bicycle availability - sampling the Poisson

1: function prob bike available(station id, request dt, journey start dt)
2: counter = 0
3: num iterations = 1000
4: timestep = 15 minutes
5: next interval start dt = request dt
6: curr num bikes = get curr num bikes(station id)
7: for i = 1→ num iterations do
8: while next interval start dt < journey start dt do
9: num pickups = get scaled pickups mean(station id, request dt)

10: num dropoffs= get scaled dropoffs mean(station id, request dt)
11: drawn pickups = poisson.rvs(num pickups, size=1)
12: drawn dropoffs = poisson.rvs(num dropoffs, size=1)
13: curr num bikes = max(min(curr num bikes + drawn dropoffs

- drawn pickups, num docks all), 0)
14: next interval start dt += timestep
15: end while
16: if curr num bikes > 0 then
17: counter += 1
18: end if
19: i += 1
20: end for
21: end function
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(a) we draw from each Poisson estimator (estimating the number of pick-
ups and dropoffs that will occur at that docking station in that in-
terval) a random value for the number of pickups and dropoffs

(b) using the drawn values and the number of empty docks from the
previous interval, we calculate the new, predicted number of empty
docks at the end of that interval

(c) we carry this predicted value through to next iteration of the algo-
rithm

3. we terminate when we reach an interval that contains s.

As with bicycle availability, we divide the number of times we predicted the
number of free docks to be greater than zero by the total number of iterations
we chose to perform to obtain the probability of there being an empty docking
space at the station of interest at s.



Chapter 5

Routing

As mentioned in the introduction, the purpose of our journey planner is to con-
struct suggestions of origin-destination trips in a multi-mode transport network.
We are particularly interested in combining walking, cycling and travel on the
London Underground. This is because our journey planner should try to find a
cycling route that would satisfy user-defined preferences, such as trip duration,
but when this is not possible a mix of walking, cycling and London Underground
routes is to be suggested as well. The calculation of these trip suggestions has
to be guided by preferences the users are able to specify and the availability
of bicycles, the modelling of which we have already discussed in the previous
chapter.

The problem of finding the most desirable journeys that combine walking, cy-
cling and travel on the London Underground is two-fold:

1. firstly, we need to be able to separately calculate walking, cycling and
tube routes between any two coordinate positions on the map of Greater
London, taking into account a number of hard-constraints that we have
no control over, such as road accessibility, and soft-constraints, which are
user’s preferences for the journey such as the desirable busyness of the
suggested route

2. secondly, we need to be able to find a combination of the above such that
the overall journey incorporates as much cycling as is possible considering
the desired trip duration, and walking and travel on the London Under-
ground in case the cycling on its own would take too long

The first three sections of this chapter will describe our solution to the first
problem. In the fourth section we will describe how they can then be brought
together to form an integrated London journey planner. In section 5.5 we exam-
ine a small optimisation we hope will improve the performance of our routing
algorithm from section 5.2 further still.

42
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graph node attributes edge attributes
tube graph station name, its

coordinate position
source station, target station,
edge length, time to travel by
train, connecting lines

london graph node id, its coordi-
nate position

source node, target node, edge
length, car accessibility, bicy-
cle accessibility, foot accessibil-
ity, geometry1

Table 5.1: Summary of nodes and edge attributes of tube graph, london graph
and bike graph.

5.1 Graphs

In order to be able to find a path that connects a starting point to the finishing
point, we first need to be aware of the structure of the network through which
this path is to be found. Taking the London Underground as an example, in
order to be able to find a route from South Kensington station to Green Park
station we need to know that South Kensington station is connected to Sloane
Square station, itself connected to Victoria station, from which we can reach
Green Park by Victoria Line. We would also like to know that there is an
alternative route involving Piccadilly Line which allows us to reach Green Park
without having to change at Victoria. Being able to examine alternative paths
is useful because then we can compare these alternatives for their desirability
to the user. Similarly, we need to know how streets, footpaths and other street-
level features of the network representing a city are connected such that we can
find sensible walking and cycling routes.

The most suitable way of encoding the above relationships is by representing
the London Underground and Greater London networks as graphs, introduced
in section 2.6.1. Table 5.1 lists the information held by the node and edge
components of each of the resulting graphs. The data that is used for the
attributes of both graphs has been previously described in sections 2.4.2 and
2.4.2.

5.2 Modified astar path

Having defined the required graphs, we can now turn towards the problem
of finding paths through them. Let us define C to be a cost function of the
attributes of an edge in a graph that can tell us how undesirable travelling
down that edge is under user-specified preferences (we will discuss how we can
incorporate user preferences into our path finding using said cost function in

1Often, street-level links are not straight lines.
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the next section) Our path-finding problem can then be seen as the problem of
finding a path between the source and destination points that will minimise the
total cost (sum of the individual costs of each edge in the route). This is then
just a shortest path problem and there exists a number of algorithms designed
to solve it. We have decided to use the A* algorithm, introduced in section
2.6.2, for the following reasons:

• we wanted an algorithm that will calculate the route efficiently - the time
A* takes to find a path is proportional to the number of nodes in the
resulting route and not the number of nodes in the graph being searched -
it is a non-exhaustive search algorithm. This is desirable since the graph
representing the Greater London area is of considerable size, as discussed
later in this section, and this is the reason we were not interested in brute-
force approaches to search

• the edge attributes we have listed in Table 5.1 will be the input to the
cost function described in section 5.3. None of these attributes can ever
be negative

• we have easy access to a heuristic that can inform our search - when
examining nodes that could be part of the path (lines 8-12 in 2.6.2), we
can calculate the great-circle distance of each node to the target vertex.
We know that this would form an admissible heuristic since it is impossible
to reach the target node any shorter way, particularly so in a city full of
old, twisty roads and footpaths. Access to an admissible heuristic means
we would like to (in the average case) improve on the time complexity of
Dijkstra’s algorithm

• both of our graphs are not dense, in the sense described in section 2.6.2.
We find that with 267 stations and 309 connections, the density of tube graph
is 8.7× 10−3, whilst with 221,233 nodes and 285,798 links, the density of
the london graph is expectedly even smaller at 1.7 × 10−5. Low density
means we have little reason to be interested in shortest path algorithms
for dense graphs such as the Floyd-Warshall algorithm

In section Chapter 3 we have motivated the use of NetworkX library. Its graph
object stores information as dictionaries of dictionaries - this data structure
allows the library to be very scalable and capable of handling graphs far larger
than any we will be dealing with. It also means we can obtain fast direct access
to the graph data using subscript notation, which is important since we will
need to be frequently accessing edge attributes when evaluating edge costs, as
described in section 5.3. A dictionary can hold any hashable object and thus
NetworkX is very flexible when it comes to the definition of node objects -
this allows us to store the node name/id together with its coordinate data as,
for example, a tuple. Since our nodes will always be unique, NetworkX’s data
structuring allows us access to node and edge attributes in O(1).

Our decision to use NetworkX was additionally motivated by the fact that it has
built-in functionality for finding shortest paths in graphs using the A* algorithm,
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which, as discussed above, we would like to employ for our journey planner. The
astar path function is presented in Listing 5.1. We like their implementation
for a number of reasons:

• it uses the heap queue algorithm, also known as the priority queue algo-
rithm, for storing the list of already-examined nodes (the O from section
2.6.2). Heaps are binary trees for which every parent node has a value
less than or equal to any of its children. This gives us ability to lookup
node of lowest f cost in O(1). Using binary trees is also an improvement
on storing nodes as an ordinary list as insertions and deletions are now of
the order O(log2n) instead of O(n)

• astar path never actually removes from O the nodes it examines. In-
stead, explored is used to keep track of previously examined nodes. When
a shorter path to some previously seen but not yet examined node has
been found (see lines 35-38 in Listing 5.1), rather than deleting the old
entry and inserting a new one, which is costly, the same node is added to
the queue again, but with the lower cost. Lines 36-38 ensure that the old,
higher-cost path to that node is never investigated again

• the heuristic function is a parameter to the algorithm so it can be cus-
tomised

However, we are unable to use the source implementation of astar path as-is
for two reasons:

1. the native implementation of astar path allows us to select only one of
the edge attributes (it uses weight as the default attribute) for evaluation
of an edge cost. Our cost function, as defined in section 5.3, will instead
be interested in all the edge attributes in the given graph

2. the algorithm does not handle finding the shortest path in multigraphs.
This is a big problem for us - whilst tube graph is a simple, undirected
graph, london graph needs to be a directed multigraph

The first issue is specific to our problem domain, where we give the user an op-
portunity to prioritise the importance of edge attributes, as described in section
5.3. To enable astar path to consider multiple attributes when evaluating
the cost of travelling along an edge, we extract the cost-evaluation functional-
ity from astar path altogether (see lines 1,38,40 in Listing 5.2). The cost
function is now a parameter to the algorithm just like the heuristic function
h was before. It takes as input all the attributes of the edge being currently
evaluated and returns a number. Because of the efficient edge attribute lookup,
the operation maintains the constant time complexity in the case of a single
edge (line 40 ).

The second problem needs some explanation. The requirement for edge direc-
tion in london graph stems from the fact that the attributes which apply to
one direction of the london graph may not necessarily apply in the opposite
direction. An edge may be car or bicycle accessible one way and not the other
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Listing 5.1: NetworkX’s astar path function for finding shortest path in
graphs using A* algorithm

1 def astar_path(G, source, target, heuristic=None, weight=’weight’):
2

3 if G.is_multigraph():
4 raise NetworkXError("astar_path() not implemented for Multi(Di)

Graphs")
5

6 if heuristic is None:
7 def heuristic(u, v):
8 return 0
9

10 queue = [(0, hash(source), source, 0, None)]
11 enqueued = {}
12 explored = {}
13

14 while queue:
15 _, __, curnode, dist, parent = heappop(queue)
16

17 if curnode == target:
18 path = [curnode]
19 node = parent
20 while node is not None:
21 path.append(node)
22 node = explored[node]
23 path.reverse()
24 return path
25

26 if curnode in explored:
27 continue
28

29 explored[curnode] = parent
30

31 for neighbor, w in G[curnode].items():
32 if neighbor in explored:
33 continue
34 ncost = dist + w.get(weight, 1)
35 if neighbor in enqueued:
36 qcost, h = enqueued[neighbor]
37 if qcost <= ncost:
38 continue
39 else:
40 h = heuristic(neighbor, target)
41 enqueued[neighbor] = ncost, h
42 heappush(queue, (ncost + h, hash(neighbor), neighbor,
43 ncost, curnode))
44

45 raise nx.NetworkXNoPath("Node %s not reachable from %s" % (source,
target))
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and we need to consider this information when finding the path. This is not
the case with the tube graph, where the train has to travel the same distance
and takes the same amount of time in both directions between any two sta-
tions. london graph additionally needs to be of multigraph type as it is entirely
possible for any two nodes to be connected by more than one edge in either
direction. A simple example is a one-way road that splits around a pedestrian
crossing - both lanes/edges connect the same node, but we have a choice which
one to travel along and need to make an informed decision rather than pick
one of the available edges at random. The simple solution would be to convert
a multigraph to a simple directed graph before path-finding by investigating
every single pair of nodes ∈ london graph, evaluating it using the injected cost
function and deleting every edge other than that of minimal cost. However,
consider the case when we want to find the path from vertex v1 to one of its
neighbours - in this case having to perform the conversion would be a significant
overhead.

Our solution is more time efficient. Consider some node i and one of its succes-
sors k. The existence of multiple edges to k does not have to negatively impact
our ability to find the shortest path if we are careful to check for it when we
expand i in lines 31-43 of the original astar path. The resulting algorithm is
presented in Listing 5.2.

Because this is not an issue with our problem domain but instead a general
deficiency of the current implementation of astar path, we contacted the
lead developer of NetworkX and will be submitting our solution to the second
issue as a contribution to the future release of the library [22].

5.3 Cost Models

Using our journey planner’s web interface, shown in Appendix A, the user, apart
from picking the start and finish locations for their desired journey, is also able
to express how important it is to them that:

1. they are able to complete their journey on time

2. they are able to pickup and dropoff their bicycle at the starting and finish-
ing stations that they have been directed towards by our journey planner

3. that the calculated route is safe in terms of congestion level and road type

To find a journey that will aim to be most desirable to the user, we must take
into account the relative importance of each of these factors when exploring
the graph for a possible passage from start to finish point. Luckily, we have
all the data we need - when finding shortest paths through tube graph, we can
investigate the edge’s length and travel duration to satisfy user’s settings of the
first two preferences. london graph additionally stores information on bicycle
accessibility that will help us define how desirable is it to cycle along each edge
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Listing 5.2: Our A* algorithm for finding shortest paths in NetworkX graphs

1 def astar_path(G, source, target, heuristic_func=None, cost_func=None
):

2

3 if heuristic_func is None:
4 def heuristic_func(s_node, t_node):
5 return 0
6

7 if cost_func is None:
8 def cost_func(edge_attributes):
9 return 0.5

10

11 queue = [(0, hash(source), source, 0, None)]
12 enqueued = {}
13 explored = {}
14

15 while queue:
16 _, __, curnode, curr_cost, parent = heappop(queue)
17

18 if curnode == target:
19 path = [curnode]
20 node = parent
21 while node is not None:
22 path.append(node)
23 node = explored[node]
24 path.reverse()
25 return path
26

27 if curnode in explored:
28 continue
29

30 explored[curnode] = parent
31 curr_h = heuristic_func(G.node[curnode], G.node[target])
32

33 for neighbor, edge_attributes in G[curnode].items():
34 if neighbor in explored:
35 continue
36

37 if G.is_multigraph():
38 cost_to_reach_neighbour = min(map(lambda edge_key:

cost_func(edge_attributes[edge_key]),
edge_attributes.keys()))

39 else:
40 cost_to_reach_neighbour = cost_func(edge_attributes)
41

42 ncost = curr_cost + cost_to_reach_neighbour
43 if neighbor in enqueued:
44 qcost, h = enqueued[neighbor]
45 if qcost <= ncost:
46 continue
47 else:
48 h = heuristic_func(G.node[neighbor], G.node[target])
49

50 pathmax_h = max(h, curr_h-cost_to_reach_neighbour)
51 enqueued[neighbor] = ncost, pathmax_h
52 heappush(queue, (ncost + pathmax_h,
53 hash(neighbor),
54 neighbor,
55 ncost,
56 curnode))
57

58 raise nx.NetworkXNoPath("Node %s not reachable from %s" % (source
, target))
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in the graph. Because london graph provides no information on time taken
to travel along each edge, we calculate it manually from edge length using the
average walking and cycling speeds [23] [7] when examining walking and cycling
routes respectively.

However, finding a path through a multiply constrained graph is a NP-complete
problem. Our solution is to develop a cost function C that maps the multiple
constraints in each graph edge attribute into a single cost. The single cost allows
us to examine the attractiveness of travelling along the edge in the same way
as we have been doing so far. We can thus optimise against user preferences
towards multiple aspects of a route whilst maintaining the path searching as
a P-complete problem that we can solve as described in the previous section.
Formally, the cost of travelling an edge from some vertex a to its neighbour b is
defined as

C(a, b) =

#edgeattributes∑
i=1

wi × ci(a, b) (5.1)

where ci returns the cost of travelling along the edge (a, b) in terms of ith

attribute of that edge. The wi are the weights which let us calculate the total
cost of an edge in terms of weighted costs in each of that edge’s attributes,
where the weights, thought of as expressing relative importance of the cost in
each attribute, are set by the user at request-time using the sliders shown in
Appendix A. For example, sliding the top slider to the right increases wi such
that, from among other attributes, longer travel time makes travelling along
that edge less attractive by a relatively bigger amount.

Before choosing a suitable cost function, we note that any cost function for
travelling along the edge (a, b) should have the following properties [8]

1. If γi = 0, ∀γi ∈ ψ, where ψ is the set of attributes of edge (a, b), then
ci(ψ) = 0

2. ∂ci(ψ)
∂γi

> 0 if γ1i > 0, i.e. the cost of travelling along an edge of ’no
resistance’ should be zero

3. ∂ci(ψ)
∂γi

≥ 0 if γi = 0, i.e. ci should be increasing in each of the edge’s
attributes

4. ∂2ci(ψ)
∂γ2

i
< 0, i.e. the cost function ci should be concave [1]

It follows by linearity that if each ci has the above properties, so will C. We
will thus concentrate on establishing the functional form of ci. Our choice is the
following

ci(a, b) = 1− e
−xi
di (5.2)

where xi is that edge’s value for ith attribute and di is the average value of ith

attribute across all edges in the considered graph. It fulfils all four requirements
of a cost function and additionally bounds above the costs returned by ci at
1.
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Figure 5.1: A cost function 1− e−x for the tube graph, where x = edge length.
95% of edges in tube graph are shorter than 5000m.
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Figure 5.2: A cost function 1− e−x
d for the tube graph, where x = edge length

and d is the average length across all edges, calculated to be 1340.2 meters. 95%
of edges in tube graph are shorter than 5000m and now they are discriminated
by this cost function far more sensibly compared to the cost function shown in
Figure 5.1.
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The fact that the cost in each edge attribute is bounded above is important.
A* express the overall desirability of travelling to any node k by evaluating its
f cost, which we know from section 2.6.2 to be the sum of

• the cost of reaching the current node i

• the cost c of travelling along an edge to i’s successor k

• the heuristic cost h(k)

If our edge cost function was, for example, a simple sum in edge attributes,
weighted by user-specified wi, the c in f could be overshadowed by a large h(k)

value, particularity if units of measure were not taken into account. 1 − e
−xi
di

gives the cost in each attribute and the heuristic cost an equal share in the
overall f cost2.

Lastly, we note that the reason (5.2) divides the edge’s attribute value by the
average value of that attribute across all edges is to stop the cost function
from assigning high utility (i.e. low cost) to very short edges and uniformly
penalising all other edges (strictly, all edges are assigned a different cost already
since the cost function outlined is always increasing in its parameters - but
only relatively short distances are discriminated meaningfully and for greater
distances the differences in cost assignment are very small)3. As an example
consider Figure 5.1, which shows the cost function that does not employ this
trick. We can see that the function considers any edge longer than about 100m.
as equally costly (in the non-strict sense we just described). This behaviour is
not desirable, since the average value of the length attribute in tube graph is
1340m, meaning the cost function will penalise most edges equally much - this
is not the informative behaviour A* requires. Figure 5.2 shows the improved
formula from (5.2), where the 95% of edges in tube graph that are less than 5000
meters long are discriminated by our cost function far more sensibly.

As described in section 5.2, the cost function used for evaluating the attractive-
ness of every edge in a graph is not defined inside our A* algorithm. As with
a heuristic function, the cost function is a parameter to our search algorithm.
This gives us the ability to develop other, different cost functions in the future.
As long as the new cost function will accept as input a list of edge attributes,
will not try to evaluate non-existing attributes and, finally, return a number, it
could alter the way user’s preferences are considered any way it liked. This gives
us the added flexibility of allowing the user to set more journey preferences in
the future as we obtain more edge information from new data sources.

2So that the cost of travelling along the edge is not larger than the heuristic cost by the
number of edge attributes, we first normalise c as defined in (5.2) before including it in f

3Our heuristic function, which will be calculating straight-line distance to target node, will
take on this functional form also, with the exception that the calculated straight line distance
x shall be divided by d where d = straight-line distance between that route’s starting and
finishing coordinates, i.e. the shortest possible route length.
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5.4 Complete Journey Planning

In the previous section, we have described a heuristic-driven shortest path al-
gorithm. It is based on A* and modified to search for paths in multigraphs. It
enables us to find routes by successively selecting nodes the path to which meets
a number of search-related criteria (for example if including it in the path will
create a loop) and a number of other criteria, such as time taken to travel to
that node or the busyness of said travel, whose relative impact on the decision
to include the node in path is directly influenced by user-defined journey prefer-
ences. We are ready to tackle the second problem which we have mentioned at
the beginning to this chapter - the problem of combining sub-routes of different
transport modes to suggest single, overall journeys.

As mentioned in the introduction, this journey planner is to favour cycling
among other modes of public transport. When receiving a journey-suggestion
request, the routing engine should first consider if it is possible to find a jour-
ney that involves only cycling. Of course, walking sub-routes are added so that
the user can reach the suggested starting and finishing docking stations from
the journey starting position4. Whether searching for the main cycling route,
or the walking sub-routes, we take into account user’s preferences using meth-
ods described in section 5.3. The algorithm for finding the walking+cycling
journey is straight-forward (see Algorithm 5). We explain two aspects of this
algorithm:

• bike availability model is initialised with desired journey start time, hence
we can find a docking station nearest to the starting coordinate position
quite easily whilst taking into accounting the bicycle availability

• finding the finishing docking station is harder, because we don’t know
in advance the precise time for which we need to predict the availability
of a docking space - this depends on the duration of the walking route
to starting docking station and the duration of the cycling route. Our
solution is to find a list of finishing stations, ordered by distance away
from finishing coordinate position as selected by the user, and iterating
through that list looking for the first station that would satisfy user’s
preference towards certainty of docking space availability.

If the resulting walking+cycling journey’s duration does not exceed the user-
specified desired trip duration, the journey planner achieved success and the
found route is displayed on the journey planner’s webpage interface as a color-
encoded line on top of the map of local area. If, however, the returned walk-
ing+cycling journey is too long and the user specified earlier desired arrival time
at the target, the journey planner attempts to find a shorter journey by includ-
ing travel on the London Underground, assumed to provide a sort of ’short-cut’

4We make an implicit assumption that users want to begin their journeys in and around
Central London, where the abundance of BCH docking stations means most can be reached
on foot.
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Algorithm 4 Handling journey plan requests

1: function calculate routes(start pos, finish pos, journey start dt,
user preferences)

2: london graph = build graph(get london data loader())
3: tube graph = build graph(get london data loader())
4: bike availability model = PoissonSamplingModel(request dt=now,
5: journey start dt)
6: cost model = DefaultCostModel
7: cycling route = get cycling route(start pos, finish pos,
8: london graph, bike availability model,
9: user preferences, cost model)

10: desired journey duration = user preferences[trip duration]
11: if cycling route.duration > desired journey duration then
12: mixed route = get mixed route(start pos, finish pos, london graph,
13: tube graph, bike availability model,
14: user preferences, cost model)
15: end if
16: return cycling route, mixed route
17: end function

Algorithm 5 Finding walking and cycling journeys

1: function get cycling route(start pos, finish pos, london graph,
bike availability model, user preferences, cost model)

2: start dock = find nearest bch doc(start pos, bike availability model)
3: start walk,sw duration = astar path(london graph, start pos,
4: start dock, cost model[cost func])
5: finish docs = order docs by(finish pos)
6: for finish dock ∈ finish docs do
7: route,c duration = astar path(london graph, start dock, finish dock,
8: cost model[heuristic func],cost model[cost func])
9: get dock availability ∈ bike availability model

10: if get dock availability(finish dock, sw duration + c duration) ≥
user preferences[availability certainty] then

11: finish walk,fw duration = astar path(london graph, finish dock,
12: finish pos, cost model[heuristic func],cost model[cost func])
13: return start walk+route+finish walk
14: end if
15: end for
16: end function
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whilst preserving at least parts of the cycling route.

The algorithm for finding this combined journey is harder to design, because
it involves finding paths through london graph and tube graph and combining
them into a chain trip. We solve this problem by first calculating a tube route
as though the user wanted to travel on London Underground only. We then
use this tube route as a ’guide line’ along which we can investigate if adding
a cycling sub-route will increase the overall journey duration beyond the user-
specified limit. We begin the iteration at the end-points of the tube route. This
is because, under assumption that London Underground is the fastest way to
travel from among the modes of transport available to us, if a journey involving
sole tube travel is already longer in duration than what the user requested
than we should not attempt to find further combinations involving cycling as
the resulting chain-journey’s duration will only increase. Otherwise, we iterate
through the stations of tube route, finding cycling sub-routes that would connect
us to each of the stations if we decided to cycle to that station and not reach
it by train. We do this until the duration of the next chain trip calculated
this way would exceed the requested duration. The chain trip is returned as
a ’mixed route’ since it’s the journey suggestion that maximises the amount of
cycling in a journey that nonetheless manages to get the user to desired target
location on time.

The pseudo-code for the route request handler module that implements the
above route chaining behaviour is outlined in Algorithm 4. It is called by our
web server whenever the latter receives a POST request for a journey plan. Of
interest are lines 2− 4 - as mentioned in section 3, london graph and tube graph
are both cached at run time, so that they can be accessed in O(1) instead of
having to be built from data held in database every time a new journey planning
request is received.

5.5 Pathmax Optimisation

In this section we examine a small optimisation we hope will improve the per-
formance of our routing algorithm further still. We mentioned in section 2.6.2
that for the A* algorithm to be optimal, the heuristic function h(k) it uses to
estimate the remaining cost of reaching target vertex vn needs to be admissible.
An admissible heuristic guarantees that our A* algorithm will find the shortest
path if it exists.

Another property of a heuristic function is whether it is consistent. An A* algo-
rithm that uses a consistent heuristic is known to be admissible, complete and
optimally effective [13]. Formally, if k is a successor of some node i and

h(i) ≤ c(i, k) + h(k) (5.3)

h(vn) = 0 (5.4)
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Figure 5.3: S is the source vertex and T is the target vertex. Edges are labelled
with costs c. Nodes are labelled with h costs. f is not monotonically non-
decreasing in depth. Since A* examines vertices in order of depth, in this
example it fails to examine them in the f -order.

Vertices
Step S A T

0 15
1 15 10
2 15 10 20

Table 5.2: f costs of nodes in Figure 5.3 as calculated at each step of A* without
pathmax optimisation.

then the heuristic h is known to be consistent. Intuitively, as the search al-
gorithm builds up its search tree by moving from some node i to its successor
node k, the value returned by the heuristic function at vertex k cannot decrease
by more than c(i, k). This necessarily causes the f cost function to become
monotonically non-decreasing in depth - as we examine the successors of node
i in the ’direction’ of the goal vertex, the f cost of these successor nodes is at
least as large as that of i.

As an example, consider the network presented in Figure 5.3. Table 5.2 sum-
marises the f costs A* assigns to each node as it searches for the shortest
path to vertex vn = T . We can see that the f costs of nodes on path SAT
are not monotonically non-decreasing. Thus A* fails to visit the vertices in f
order.

Examining nodes in f -order is important, because it means that once a vertex
has been visited, the cost by which it was reached was the lowest possible
(under assumption of no negative weights). An inconsistent heuristics may
cause the A* algorithm to find shorter paths to nodes that were previously
examined. If that case the re-visited node must be removed form the list of
previously examined vertices, meaning it could be chosen for expansion again.
This phenomenon is known as node re-expansion. This could be a problem
when finding shortest paths through very large graphs since the A* requires
memory linear in the number of visited vertices. The graph representing the
area of Greater London contains a reasonable 221,233 nodes and 285,798 edges
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Vertices
Step S A T

0 15
1 15 15
2 15 15 20

Table 5.3: f costs of nodes in Figure 5.3 as calculated at each step of A* with
pathmax optimisation.

but many cities worldwide that could use our journey planner are larger still -
we are therefore interested in countering node re-expansions.

We described in previous section how our implementation of the A* algorithm
allows for future development of other cost models. Whilst we expect the future
contributors to recognise the importance of an admissible heuristic, we make no
requirements for the consistency of the heuristic. To prevent node re-expansion,
we adjust our A* algorithm by introducing the pathmax optimisation. Pathmax
is a way of propagating inconsistent heuristic values in the search from a parent
node to all of its successor vertices [28]. It causes the f-values of nodes to be
monotonic non-decreasing along any path in the search tree by evaluating the
heuristic cost at any node k which is a successor to some vertex i in the following
manner:

ĥ(k) = max(h(k), h(i)− c(i, k)) (5.5)

This alters the f costs seen in Table 5.2 to those shown in Table 5.3. We add it
to the already-modified implementation of astar path hoping it will decrease
the search space of our algorithm (see lines 31, 50−56 in Listing 5.2). In section
6.2 we will evaluate the effect this optimisation has on the performance of our
A* algorithm.



Chapter 6

Results and Evaluation

6.1 Bicycle Availability Model Performance

The performance of our journey planner depends on the correctness of our bi-
cycle availability prediction. As we have outlined in section 5.4, the choice of
the starting docking station for a cycling route depends on matching the user’s
willingness to take risk of not being able to pick up a bicycle from nearest dock-
ing station at the benefit of not having to walk to a different station further
away where bicycle presence is more likely. This risk preference is also taken
into account when searching for a suitable finishing docking station. We there-
fore need our models to predict bicycle availability correctly, such that users of
varying risk preferences are not guided to stations nearer of further away for the
wrong reason. This section will present and evaluate the predictive capabilities
of the two models, which we use to make the bicycle availability predictions as
described in section 4.3.

6.1.1 Functional Performance

By default, our journey planner predicts the availability of a bicycle at a docking
station at some point in the future using the sampling method described in
section 4.3.2. There, we described how the method splits the difficult problem of
estimating the true, unobservable density of the number of pickups and dropoffs
that will occur between the time a request for the journey is received and the
time a docking station is reached by splitting it into a number of smaller sub-
problems of estimating this very same density but for a number of short intervals
that occur between the two times. We hope that in each of these intervals the
number of pickups and dropoffs, as a discrete random variable, behave in a way
that allows us to model their density more accurately.

58
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Figure 6.1: Showing 10 iterations of sampling method described in Algorithm
3 as run for Waterloo Station 2 docking station. The request time is 7:18am
and the desired journey start time is 9:48am, ten 15-minute intervals later. At
request time, the station was holding 53 bicycles in its 55 docking stations. At
9:48am, the station was estimated to hold between 29 and 41 bicycles. The
algorithm returned p(x9:48am > 0) = 1. This result is discussed further later in
this section.

We will now examine three different scenarios to see if our model gives sensible
predictions about bicycle availability. First, consider Figure 6.1. Plotted are
10 traces of the sampling method as it iterates through the time intervals that
occur between the time a route request is received and the time the availability
is to be checked for (see Algorithm 3 for details). In this case, we were looking to
predict the number of bicycles available at Waterloo Station 2 (station id=361).
We made a route calculation request at 7:18am, when there were 53 bicycles at
the station, and specified that we would like the journey to start at 9:48am, 2.5
hours later. The sampling method iterated through each of the ten 15-minute
intervals that fit inside this timedelta, each time altering the number of available
bicycles by the possible number of pickups and dropoffs in that interval (drawn
from Poisson distribution of the expected number of pickups and dropoffs in
that interval).
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Figure 6.2: Showing 10 iterations of sampling method described in Algorithm 3
run for Waterloo Station 2 docking station. The request time is 11:18am and the
desired journey start time is 12:48am, six 15-minute intervals later. At request
time, the station was holding 53 bicycles in its 55 docking stations. At 12:48am,
the station was estimated to hold between 50 and 54 bicycles. The algorithm
returned p(x12:48am > 0) = 1

Figure 6.5 shows that the expected number of pickups significantly exceeds the
expected number of dropoffs at this station in the morning hours - possibly
explained by the fact that Waterloo Station 2 is located near a major trans-
portation hub that a lot of workers would have arrived at and who would be
looking to cycle the final leg of their journey to the office. Thus the sampling
method is correct in predicting a sharp decrease in the number of bicycles that
will be present at this station by 9:48am. However, from the updates we receive
from TfL we knew that at 7:18am there were 53 bicycles present at the station.
Despite a number of bicycles being taken away by the morning commuters, we
have never arrived at a conclusion that not a single bicycle will be available. As
such, the sampling method predicts the user will indeed be able to find at least a
single bicycle ready for pickup when they arrive at the station at 9:48am.

In Figure 6.1, to calculate the number of bicycles that will be available we had
to consider intervals in which the expected number of pickups was significantly
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Figure 6.3: Showing 10 iterations of sampling method described in Algorithm 3
run for Waterloo Station 2 docking station. The request time is 10:45am and the
desired journey start time is 11:48am, five 15-minute intervals later. At request
time, the station was holding 0 bicycles in its 55 docking stations. At 11:48am,
the station was estimated to hold between 0 and 2 bicycles, where the number
of bicycles was estimated to be larger than 0 by only two of 10 iterations of the
algorithm. The algorithm returned p(x11:58am > 0) = 0.2

higher than the number of dropoffs. Figure 6.2 shows how the sampling method
behaves when it iterates through intervals in which the expected number of
pickups and dropoffs is similar. Again, we are trying to estimate the number of
bicycles at Waterloo Station 2, but his time we made the request at 11:18am,
when there were again 53 bicycles at the station, and specified that we would
like the journey to start at 12:48am. From historical cycling journeys we know
that the mean number of pickups and dropoffs at Waterloo Station 2 across the
time intervals involved more or less match, and again we are pleased to see that
our method has therefore estimated the number of bicycles at 12:48am to be
roughly similar to the number of bicycles available at 11:18am.

So far we have examined how the sampling method behaves in regards to the
estimated number of pickups and dropoffs across the time intervals of concern.
Next, we would like to examine how our method will be influenced by a lack
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Figure 6.4: Database bikestationrate record for Waterloo Station 2 showing
the station information following the latest update from TfL on 18/06/2012 at
10:45am. The update told us the number of bicycles available at this station is 0
and has been this way since 8:17am. This makes perfect sense when we consider
that the station is located near a major hub of other modes of transport and
passengers coming into work during the morning rush hour use the bicycles at
this station to begin the final leg of their morning trips to work. Figure 6.5,
which shows the historical mean number of pickups and dropoffs during morning
hours shows that, indeed, the expected number of pickups prior to 10:45am is
far greater than the expected number of dropoffs.

of available bicycles at route request time at the docking station of interest.
Figure 6.3 shows the estimated number of bicycles at Waterloo Station 2 at
11:48am, five 15-minute time intervals after the route request was received at
10:45am. We specifically chose a similar time of the day to that of Figure 6.2
so that the expected number of pickups and dropoffs were similar. However,
whilst the two previous tests where run on 08/06/2012, this test was instead
run on 18/06/2012, when the number of bicycles present at 10:45am happened
to be 0 (as seen in Figure 6.4). Figure 6.3 suggests that the distribution of
the estimated number of available bicycles should have as its mean the number
of bicycles available at route request time, i.e. 0. However, at every time
interval we consider if the expected number of bicycles is less than 0 and adjust
our estimate as shown in line 13 of Algorithm 3. As expected, a number of
iterations were estimating the number of bicycles to be less than 0 at various
time intervals of concern and have therefore ended up simply tracing the x-axis
in Figure 6.3.

6.1.2 Non-Functional Performance

We have so far discussed the correctness of our sampling model for bicycle avail-
ability. We have seen that it is being correctly influenced by the expected num-
bers of pickups and dropoffs in intervals spanning the timedelta between route
request time and journey start time, and also by the number of bicycles that are
available at the station of interest at route request time. We would now like to
examine its merits and limitations relative to the method outlined in Algorithm
2 as well as list of potential issues the choice of this model introduces.
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Figure 6.5: The historical mean number of pickups and dropoffs at Waterloo
Station 2, Waterloo, in the 15-minute intervals between 5:15am and 10:45am.
As the expected number of pickups during morning rush hour intervals is far
higher than the expected number of dropoffs, we are not surprised to find that
by 10:45am, the number of available bicycles may be 0, as we did when the test
underlying Figure 6.4 was run.
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Sampling Model Merits

Estimating the probability of the number of events by drawing a large number
of random variables from the corresponding density estimator introduces, by
definition, uncertainty. In our case, the uncertainty in the number of pickups
or dropoffs that occur at a station in a certain time interval is desired because
it allows us to account for the different values these random variables may take.
However, we want the uncertainty in the number of pickups or dropoffs in some
time interval to apply only to that time interval.

The method shown in Algorithm 2 ignores this. In predicting bicycle availability
at journey time, it models the density of the number of pickups and dropoffs
that will occur across the entire timedelta using the expected number of pickups
and dropoffs in just the first time interval that fits inside this timedelta multi-
plied by the number of time intervals that apply. This technique is motivated
by (4.1), but it does not model well the uncertainty in the number of pickups
and dropoffs across all time points between route request time and desired jour-
ney start time, since the uncertainty may be different at different time points.
The sampling model was developed to counter this problem. If we estimate
a different Poisson distribution for every time interval and only consider that
interval’s distribution when sampling for the possible number of pickups and
dropoffs, then by combining the results from each interval we should obtain a
more accurate estimate.

Sampling Model Limitations

However, the sampling method distorts our prediction about future bicycle avail-
ability in a different way. As mentioned in section 4.1, if we split the day into a
number of shorter time intervals, the expected number of pickups and dropoffs
in that interval is not very large. In particular, for the intervals of 15 min-
utes that we elected to use, the expected number of pickups and dropoffs in
that period can sometimes be less than 0.5. This is particularly true for time
intervals during the night and very early morning. Let us consider Waterloo
Station 2 again, and in particular the expected number of pickups that occur
at this station between 10:00am and 10:45am. As the sampling method iter-
ates through these three intervals, it is most likely to estimate the number of
bicycles available at 10:45am to be the same as the number of bicycles available
at 10:00am. But looking at the expected number of pickups in those intervals,
we would expect a single bicycle pickup by the time the second interval, from
10:15am to 10:30am, is over.

Consider now our other model - it will assume that the expected number of
pickups that will occur in the interval 10:00am-10:45am will be 3× 0.37209, the
latter being the expected number of pickups in the interval 10:00am-10:15am.
It will use the result as the parameter for the Poisson distribution estimating
the number of pickups between 10:00am-10:45am. Thus, in a sense, the model
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we have chosen not to use in our bicycle predictions works better when the
expected number of arrival events (pickups or dropoffs) is very small. To avoid
this problem as much as possible, we have made a heuristic decision to let our
time intervals be of a 15 minute duration. This duration seems large enough
to guarantee that we will have some samples of the number of pickups and
drop-offs for that interval while at the same time it is short enough to allow us
to consider the uncertainty in the number of pickups and dropoffs that occur
during busy, ’rush-hour’ times of the day more accurately.

Another surprising property of our bicycle availability model based on the sam-
pling method is that the method, as shown in Figures 6.1 and 6.2, can return
a result of 1 for the probability of there being a bicycle as some point in the
future. That is to say we are absolutely certain that a bicycle will be present.
This occurs when, throughout every iteration of the sampling algorithm, we
have never ended up estimating the number of bicycles at the journey start
time to be less than one. However, we agree that future is uncertain and it is
incorrect to be guaranteeing bicycle (and, similarily, free docking space) pres-
ence. This is particularity true because of the random events the BCH network
is subjected to which we are unable to predict. One such event is the relocation
of bicycles - done ad-hoc by TfL to maintain the network load. As this does
not constitute a cycle journey, we have no history of these events, using which
we could try to account for them. This is most probably the reason behind the
number of bicycles available at Waterloo Station 2 on 08/06/2012 being near
that station’s capacity, as seen in the results of an experiment we made that
day shown in Figures 6.1 and 6.2, and zero when another experiment involving
the same station and time of day (including the type of day, i.e. workday) was
run 10 days later.

Density Model Selection Evaluation

In section 4.1 we noted that Poisson is a particularly useful distribution to us
because, being parameterised only by λ, we should require little historical data
to train our model. The parametric density models do not suffer from course
of dimensionality in the same way that non-parametric methods do - the latter
need exponential amount of data as the number of parameters that describe
them grows.

However, this also means that our model adjusts to this data very well. If
the calculated average numbers of arrival events are not truly representative
of the true, unobservable probability mass function of the number of pickups
and dropoffs that occur, then our model would be known to be over-fitting the
sample (in this context also known as training data). Consider Figure 6.6 which
shows the Poisson distribution fitted to the 7:30am-7:45am interval at Water-
loo Station 2. The mean of this distribution is 7.35 - from our historical cycle
journeys data set we know that to be the average number of pickups that occur
at this station in this time interval. Now consider Figure 6.7 which shows the
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Figure 6.6: Showing the frequency density of the different number of pick-
ups that occur at Waterloo Station 2 in the interval 7:30am-7:45am. Mean is
7.3488373 pickups.



6.1. BICYCLE AVAILABILITY MODEL PERFORMANCE 67

−5 0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Waterloo Station 2, Waterloo (station id=361)

F
re

q
u
e
n
c
y
 d

e
n
s
it
y

Number of pickups in the interval 7:30am−7:45am

Figure 6.7: Showing the frequency density of different number of pickups that
occur at Waterloo Station 2 in the interval 7:30am-7:45am.

frequency density of the different number of pickups that occur at Waterloo
Station 2 in the same interval. This is the frequency of the occurrence of a
particular number of pickups, divided by the total number of observations. We
can view this as the empirical probability. Clearly, whilst the average number
of pickups is indeed 7.35, this is because relatively rarely a really high num-
ber of pickups occurs. In contrast to what our Poisson model estimates, most
frequently 0 pickups occurred.

If our historical cycle journeys data was not representative of the true distribu-
tion of cycle journeys that take place every day, the density models we build
using this data would not allow us to predict future bicycle availability accu-
rately. We suspect this is true because:

1. the cycle journeys data was collected only in the first few months of BCH’s
existence and the network has since increased in size and popularity.

2. it seems strange that on a random pattern of non-consecutive days an
average of 22 pickups occur, followed by four weeks of no pickups.

We attempted to deal with the first problem by scaling the expected numbers
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of pickups and dropoffs at docking stations (see section 4.3.2). To make this
scaling reflect our latest view of the BCH network, we have employed a one-pass
algorithm for calculating the average change in the number of bicycles and free
docking stations present at docking stations in each of the intervals in a day.
Recalculating the average change in bicycle availability in this manner means
our prediction uses the latest data available to us - our bicycle prediction model
self-improves as the time goes on.

Examining the second problem, we would suggest that the station might have
been closed in that time. As with the network-load-related relocation of bicycles,
we do not take these events into account in any way other than by decreasing
our expected number of pickups for the time interval concerned. We note that
a ’fresher’ data set listing all cycling journeys from May 2011-February 2012,
which TfL have recently made available, could help clear up the confusing results
we see in Figures 6.6 and 6.7.

For now, we conclude that the best method of assessing the suitability of a
density estimator is to test its predictive capabilities. A method called n-cross-
validation can do this well - it involves splitting the historical observations about
the number of pickups and dropoffs into n sets. Our density estimator is then
trained on the n−1 sets and validated against the single set left out. This is done
n times and every time the sets are shuffled, so that we don’t cross-validate on
the same data n times. At each fold the root mean squared error in prediction
is calculated. The accuracy of the model can thereafter be expressed as the
mean of these individual RMSEs, and in other forms like confusion matrices,
from which useful statistics like recall and precision rates can be obtained. The
author will evaluate our model using these methods in the coming days.

6.2 Routing Algorithm Performance

6.2.1 Functional Performance

As mentioned in the opening paragraphs of Chapter 5, the problem of finding the
most desirable journeys that combine walking, cycling and travel on the London
Underground is a two-fold problem. Before we investigate the performance of
the algorithms underlying our journey planner, we would first like to see if the
intended behaviour, as specified in Chapter 1, has been obtained. Appendix
A contains screen shots of our journey planner in action. It shows the journey
planner behaves as intended when the users alters their preferences, redefining
the requirements of the ’most desirable journey’ each time.

It is difficult to evaluate the correctness of the calculated sub-routes. Apart from
user-defined preferences, the path of a route through london graph or tube graph
is influenced by other factors such as accessibility. We have therefore tested the
correctness of routes being found by asking a number of users to request routes
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they know well - those users have the expert knowledge over these routes and can
assess the quality of our suggestions. From this point of view, the quality of our
journey planner will also depend on the accuracy of data we base our routing
on. We mentioned in section 2.4.2 that the data describing Greater London
as a network was obtained from OpenStreetMap community. It is generally
very accurate for densely populated areas such as London, but we have found
instances where our planner was suggesting to cycle along a currently closed
bridge, for example. Additionally, whatever improvement the community will
make to the map will not be incorporated into our journey planner as we are
working off a local copy of the dataset representing Greater London. A similar
case can be made for our London Underground data - we have 267 stations on
record but this is expired data since the current number of stations is higher.
Nonetheless, these problems can be easily fixed by obtaining more accurate
datasets and are therefore not considered to be an issue to do with our routing
functionality.

6.2.2 Non-Functional Performance

Path Finding Performance

As mentioned in section 5.2, we expected out modified implementation of astar path
to perform well in finding shortest paths, both through simple graphs like
tube graph, and directed multigraphs like london graph. An easy way to test
the performance of a search algorithm is to count the number of nodes it exam-
ines as part of finding the shortest path to target vertex. When the heuristic
function is ill-defined, A* algorithm can behave like a breadth-first-search algo-
rithm and then the number of vertices it needs to examine before finding the
shortest path could be exponential in the number of nodes in said path. How-
ever, as argued in section 5.2 we have access to an admissible heuristic (that
can be additionally made into a consistent one using pathmax optimisation,
introduced in section 5.5) that we believed would result in a very reasonable
performance of our algorithm. We were surprised to find that our modified im-
plementation of astar path, as shown in Listing 5.2, was examining a larger
number of nodes with the pathmax optimisation than without it. After some
analysis we concluded that, in contrast to author’s original belief, the pathmax
optimisation is not guaranteed to introduce monotonicity to A* algorithm’s f
cost function.

To explain why, let us consider the simple graph in Figure 6.8. Table 6.1 shows
f costs of different vertices A* knows about as it searches its way towards target
vertex T . We can see that the pathmax optimisation from (5.5) makes the f
costs along the thus-far-explored paths towards T non-decreasing (consider how
the f cost of C in step 2 is set to 9 instead of 3). However, what we failed to
account for is that this monotonicity of f cost function holds only along the
paths traversed thus far [29] - the f costs of nodes on paths that A* has not yet



70 CHAPTER 6. RESULTS AND EVALUATION

Figure 6.8: S is the source vertex and T is the target vertex. Edges are labelled
with costs c. Nodes are labelled with h costs. f is not monotonically non-
decreasing in depth despite pathmax optimisation.

Vertices
Current node S A B C T

S 0 11 9
B 0 11 9 9
C 0 11 9 9 13
A 0 11 9 11 13
C 0 11 9 11 12
T 0 11 9 11 12

Table 6.1: f costs of nodes in Figure 6.8 as calculated at each step of A* with
pathmax optimisation.

explored may be decreasing in the direction of the target vertex (consider the
f costs of C and A after B is examined). As discussed in section 5.5, lack of f
cost function monotonicity can lead to node re-examination, which we wanted
to avoid by incorporatin pathmax. However, here we see that node C needs
to be re-examined after, two iterations earlier, A* found the f cost of T to be
higher than A, leading to examination of A and the re-adjustment of C’s f cost
that followed (shown in bold in Table 6.1).

The real problem here is as follows - suppose we could reach a number of other
nodes from C whose f costs were less than that of A. The implementation
shown in Listing 5.2 would examine each of those nodes before returning to
A. This would explain the reason we were seeing a higher number of nodes
being explored with the pathmax optimisation than without it. As a result, we
have removed the pathmax optimisation from our version of the A* algorithm
as presented in Listing 5.2. The resulting algorithm, which now powers our
journey planner, is shown in Listing 6.1.
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Listing 6.1: Version of our A* algorithm for finding shortest paths in NetworkX
graphs that excludes the the malfunctioning pathmax optimisation

1 def astar_path(G, source, target, heuristic_func=None, cost_func=None
):

2

3 if heuristic_func is None:
4 def heuristic_func(s_node, t_node):
5 return 0
6

7 if cost_func is None:
8 def cost_func(edge_attributes):
9 return 0.5

10

11 queue = [(0, hash(source), source, 0, None)]
12 enqueued = {}
13 explored = {}
14

15 while queue:
16 _, __, curnode, curr_cost, parent = heappop(queue)
17

18 if curnode == target:
19 path = [curnode]
20 node = parent
21 while node is not None:
22 path.append(node)
23 node = explored[node]
24 path.reverse()
25 return path
26

27 if curnode in explored:
28 continue
29

30 explored[curnode] = parent
31

32 for neighbor, edge_attributes in G[curnode].items():
33 if neighbor in explored:
34 continue
35

36 if G.is_multigraph():
37 cost_to_reach_neighbour = min(map(lambda edge_key:

cost_func(edge_attributes[edge_key]),
edge_attributes.keys()))

38 else:
39 cost_to_reach_neighbour = cost_func(edge_attributes)
40

41 ncost = curr_cost + cost_to_reach_neighbour
42 if neighbor in enqueued:
43 qcost, h = enqueued[neighbor]
44 if qcost <= ncost:
45 continue
46 else:
47 h = heuristic_func(G.node[neighbor], G.node[target])
48

49 enqueued[neighbor] = ncost, h
50 heappush(queue, (ncost + h,
51 hash(neighbor),
52 neighbor,
53 ncost,
54 curnode))
55

56 raise nx.NetworkXNoPath("Node %s not reachable from %s" % (source
, target))
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Trip-Chaining Performance

Having introduced the fix described in previous section, our algorithm for find-
ing shortest paths in simple graphs or multigraphs is of the expected complexity.
Finding a cycling path from author’s house to Imperial College London, a dis-
tance of around 8 miles across London’s city centre, in in the order of hundreds
of miliseconds. However, when more complicated trip chaining occurs and we
need to find an optimal route that chains together walking, cycling and tube
sub-routes, the performance of our journey planner slows down significantly,
into the order of couple of seconds or even tens of seconds, depending on the
length of request trip.

The bottleneck is in our trip-chaining method is the fact that we are trying
to calculate the single, overall route by finding sub-routes in separate graphs
representing different transport networks. To combine these routes, we need to
know how the nodes in graphs are geographically related to each other. Since
the nodes are in different graphs and as such no neighbouring relationships
exist between them, whenever we try to switch from a sub-route of one mode of
transport (e.g. cycling) to the other (e.g. London Underground), we must search
the latter graph (tube graph) for a node geographically closest to our current
position. Unless we are able to intelligently partition our graphs according to
their coordinate position, this search is of time complexity O(n), where n is the
number of nodes in the graph being searched.

As an example, in our partition-less approach, we need to consider all the nodes
in london graph every time we try to:

• find a node in london graph nearest to the coordinate position specified by
the user on map as the desired starting point for the overall journey - this
node becomes the starting point of a walking sub-route that will take us
to the nearest BCH docking station or the nearest London Underground
station

• find a node in london graph nearest to the coordinate position specified by
the user on map as the desired finishing point for the overall journey - this
node becomes the finishing point of a walking sub-route that allows us to
arrive at the desired target location from the end-point of the cycling or
tube route that brought us this far

• find a BCH docking station or a London Underground docking station
nearest to the coordinate positions specified by the user on map as the
desired starting and finishing points of the overall journey - these sta-
tions become the starting and finishing points for the cycling and London
Underground sub-routes

• find a node in london graph nearest to the coordinate position of a BCH
docking station or a London Underground station - this node becomes the
starting or finishing points of a walking sub-route that connects a cycling
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Listing 6.2: Function for sorting nodes in a graph according to their distance
from some coordinate position pos

1 def sort_nodes_by_loc(graph, pos):
2

3 node_iter = graph.nodes_iter(data=True)
4

5 def comparison_function(node):
6 nodeLatLon = (node[1][’latitude’],
7 node[1][’longitude’])
8 return get_distance_in_m(pos, nodeLatLon)
9

10 return sorted(node_iter,key=comparison_function)

or a tube route to another sub-route in the trip chain.

Speedy route calculation was outside the aims of this project. This journey plan-
ner is a proof-of-concept, rather than an enterprise-quality solution. However,
we attempted to mitigate some of the problem in two ways:

1. we improved the implementation of our sorting function. We use an it-
erator to traverse the list of nodes in a graph, which in Python is known
to save both time and space for larger dataset compared to list-based
approaches. The resulting function is shown in Listing 6.2

2. we precompute and cache a dictionary that maps every BCH docking sta-
tion and London Underground station to its nearest node in london graph.
This is particularly useful inside the function for calculating routes com-
bining all three modes of transport of interest to us which, as described
in section 5.4, performs a number of sub-route-chaining iterations

We have briefly studied two approaches which could be used to further improve
the complexity of our trip chaining functionality. The first of these approaches
performs pre-computation to partition the nodes in a graph according to their
geographic location. The second approach removes the need for linking sub-
routes in different graphs all together. Both approaches are briefly discussed in
section 7.3.



Chapter 7

Conclusions and Future
Work

7.1 Conclusion

Through this project we wanted to develop a journey planner for the area of
Greater London that would combine cycling, walking and London Underground
journeys. We wanted it to promote cycling but combine it with the other two
modes of transport if the trip duration as desired by the user was less than
that of our cycling journey suggestion. We wanted the route calculation to take
into account user-defined preferences such as its busyness and how important
it was to arrive at the destination on time. However, the journey planner was
to stand out because of its unique ability to predict future bicycle availability
across the docking stations of a bicycle sharing scheme. We have so far shown
that these aims were achieved. The trips suggestions are displayed across an
attractive-looking web page and the user has a choice of displaying any of them
over the map of Greater London.

As part of building the model of bicycle availabilities, we have developed two
methods based on estimating the true, unobservable density of the number
of pickups and arrivals, which we can then use to calculate the probability
of there being a bicycle available at some station at some time point in the
future. We needed to know this so that we could start the cycling sub-routes of
our journey suggestions at BCH docking stations that suited the user’s bicycle
availability risk preferences. Similarly, we developed an equivalent method for
predicting future free docking space availability. We found that these models
train well on even small sample sets and have shown how the different expected
numbers of pickups and dropoffs as well as the live bicycle availability affect our
predictions.

74
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We also noted that the data we use to build these models from is now fairly old
and may not represent the true density of cycle arrival events well. We developed
a method that accounts for the increased size and popularity of the BCH system
by scaling the expected numbers of dropoffs and pickups by the average changes
in bicycle and free docking space availabilities across some time intervals of a
day. We have used a one-pass algorithm to keep the latest sample mean of
these changes so that we can trace the latest state of the network. However,
we have also noted that there are cases when our model fails to predict the
number of pickups and dropoffs as evident from the frequency density of the
different numbers of pickups and dropoffs that actually occurred and note that
the proper investigation into predictive performance of our models is a subject
of further work.

We have also developed a routing engine that uses the A* shortest path algo-
rithm to find cycling, walking and tube sub-routes which are then combined
into single, overall routes we can suggest to the user. We have modified and
improved an A* shortest path algorithm of a popular network management li-
brary NetworkX and are currently in the process of contributing our source
code to this library. Specifically, we have introduced a capability of finding
shortest paths through multigraphs, and allowed the evaluation of the cost of
edges to neighbouring nodes to be more sophisticated by considering multiple
edge attributes. We made an attempt at applying the pathmax optimisation
to our algorithm but have arrived at the conclusion that it will not introduce
monotonicity to the f cost function in the expected manner.

Overall, we have arrived at an encouraging observation that the duration of
cycling routes involving BCH tends to be less than the combinations of other
modes of public transport.

These types of journey planners, we believe, will improve the quality and at-
tractiveness of public transport that combines cycle schemes and the techniques
that give us increasingly accurate predictions of bicycle availability should be
investigated in future research.

This project involved many fields of computer science and there are many things
we would like to improve in our journey planner. Listed below are topics which
would be interesting to explore.

7.2 Improving Bicycle Availability Predictions

Our approach to predicting bicycle availability is known as the frequentist ap-
proach [5]. In this approach, we viewed the probabilities of events in terms
of their relative frequency in a large number of repeatable events, which is to
say that the maximum likelihood method allowed us to obtain point estimates
for the adjustable parameter λ of Poisson distributions - our assumed density
model - by calculating the sample mean of the number of pickups and dropoffs
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that occurred within the corresponding time interval at the station of interest.
However, a numerical estimate of λ does not indicate how good an estimate it
is. It would be very interesting to compare our model to one that would employ
the Bayesian approach to estimating

Instead of calculating a point estimate for λ, the Bayesian approach estimates
the true value of λ using a probability distribution. It is generally viewed that
such generative models will perform better. Whenever a new observation about
the true number of pickups and dropoffs is made, we could apply the Bayes’
Theorem to compute corresponding posterior distribution of λ. This would
enable sequential learning of the parameters of Poisson distributions describ-
ing the expected number of pickups and dropoffs in a similar manner to our
one-pass algorithm for calculating an up-to-date expected change in number of
bicycles/free docks between time intervals, as opposed to the current solution
where the estimates of λ parameters of all distributions are static and calculated
using old and possibly unreliable data.

TfL has recently released another dataset of cycle journeys for a number of
months covering late 2011 - early 2012. We would expect the incorporation of
this data into our prediction models to improve its predictive performance, as
the more recent data would account more truthfully for the increased size and
popularity of BCH then we can with our method for scaling the sample means
of number of pickups and dropoffs, as outlined in section 4.3.2.

In estimating the true density of the number of pickups and dropoffs that occur
at a station throughout the day, it could be worth considering days of the week,
since we suspect the true, unobservable density of the number of pickups and
dropoffs is different throughout the weekend intervals compared to their weekday
counterparts.

7.3 Improving Router

In evaluating the complexity of our trip-chaining function, we noted that the
majority of the computation time is spent not calculating the routes themselves
(our A* algorithm does this satisfactorily well) but in chaining the found sub-
routes together. Though we have been able to mitigate an issue to a certain
extend, we are still forced to search the large london graph a number of times.
We have investigated two possible solutions to this problem:

• we could pre-compute a spatial decomposition of london graph’s nodes
(based on their coordinate position) using some tree-based structure. Of
interest could be quadtrees [15], which are used to partition a two-dimensional
space into four quadrants (so-called buckets). Each bucket has a maximum
capacity and when this is reached it splits into four smaller buckets. When
looking for a node nearest to some coordinate position, we would traverse
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the tree, decreasing the area containing the nearest london graph node by
a factor of four for each level traversed.

• We could forgo trip-chaining by calculating sub-routes on separate graphs
altogether and instead merge the graphs of all available modes of trans-
port into one, multimodal graph [4]. This would rid us of the problem of
chaining separately found sub-routes. By developing a smart multimodal
model of the resulting network, the task of mode-chaining would be in-
corporated into path finding itself. A multimodal shortest path algorithm
would do all the hard work for us.

We could also improve the sophistication of our implementation. We would look
to introduce concurrency to our journey planner, so that a calculation of a trip
suggestion for one user does not hold up a route request coming from another
user. An enterprise-level caching system such as memcache should be employed
instead of our current, primitive caching solution.

We can think of a number of ways in which the desirability of trips our journey
planner suggest to users could be increased beyond the consideration of user-
specified route preferences. If we allows users to rank the journeys we suggest to
them, we could use this grading as feedback in later journey planning, effectively
customising our journey planner to each user. We could also give the users an
opportunity to provide feedback on journeys completed as per our suggestions,
so that the information received could be used to reinforce our understanding
’of the world’. For example, a user could provide feedback on the busyness of
various sections of the suggested cycling journey and we could combine this feed-
back with our current knowledge to obtain more accurate busyness information
for each section of the suggested route.
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Journey Planner - In
Action
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Figure A.1: The users can specify the start time of their journey, its desired
duration as well as their preferences towards being able to arrive at target on
time, being certain about bicycles and free parking space availabilities at starting
and finishing stations as well as preferred route busyness. Journey start and
finish points are set by right-clicking on the map at the desired location and
choosing the point to set from a drop-down menu.
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Figure A.2: The user elected to travel from outside Imperial College London
towards Edgware Road. As the route involving just cycling (blue) and walking
(green) is of a duration less than the desired trip duration, no alternative route
combining other modes of transport was looked for.
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Figure A.3: The user elected to travel from outside Imperial College London
towards Edgware Road. The user specified in preferences that they will not like
to be late. As the route involving just cycling (blue) and walking (green) is of
a longer duration (23 minutes) than the desired trip duration (10 minute), an
alternative route combining other modes of transport was looked for. Both the
cycling+walking route, and the alternative tube+walking routes are displayed.
Interestingly, the faster route suggestion fails to beat the duration of the cy-
cling+walking route. This is probably because the user has a longer walk to the
starting London Underground station than to the nearest BCH docking station,
and the faster tube travel is not enough to make up for the lost time.
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Figure A.4: The user elected to travel from outside Imperial College London
towards Edgware Road. The user specified in preferences that they will not
like to face uncertainty about the availability of a bicycle at the starting BCH
docking station. The probability of there being a bicycle available at the station
suggested as the starting point of the journeys seen earlier in this Appendix must
have been less than required, hence a different starting BCH docking station was
used.
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