
Optimising Unstructured Mesh Computational
Fluid Dynamics Applications on Multicores via
Machine Learning and Code Transformation

Roxana Rusitoru (rr908)
Supervisor: Prof. Paul Kelly

Second marker: Dr. Tony Field

Department of Computing
Imperial College London

June 19, 2012

Abstract

We show that case-based reasoning (CBR) and deterministic code analysis can
be successfully used in optimizing compilers of unstructured mesh applications
to obtain better execution times. With the recent shift of CPU architectures
towards SIMD capabilities, and of GPU architectures towards general purpose
computing, it is no longer clear what optimizations are optimal given a
particular problem and target architecture. As a result, we explore the use of
machine learning and deterministic algorithms on OP2 C++ Airfoil variations
to determine whether such methods can provide optimal or near-optimal
results. Our choice of optimizations are loop fusion and runtime parameter
variation (block size, partition size and warpsize).

The new perspectives we are exploring in this project are determining
optimisations by looking at OP2 code and user kernel complexity, irrespec-
tive of low-level architecture details, the integration of a CBR system and
deterministic methods to significantly prune our search space and our focus
on multiple heterogeneous architectures (CPUs, GPUs).

Acknowledgements

I would like to thank my supervisors, Prof. Paul Kelly and Dr. Tony Field,
and Dr. Carlo Bertolli for the great support and guidance they have given
me throughout this project. I would also express my deepest gratitude for all
the inspiring conversations we had and all the great ideas we shared.

My great thanks to Dr. Nicolas Loriant for all his advice and for his loop
fusion implementation into the OP2 compiler, and Dr. Adam Betts for his
help and initial implementation of the OP2 to OpenCL compiler.

Finally, I would like to thank my family and friends for their continuous
support throughout the year.

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Objectives . 6
1.3 Contributions . 7
1.4 Report outline . 8

2 Background 9
2.1 Architectures . 9

2.1.1 Multi-core . 9
2.1.1.1 AVX/SSE . 10

2.1.2 Many-core . 10
2.2 Languages . 11

2.2.1 CUDA . 11
2.2.2 OpenCL . 11

2.3 OP2 . 11
2.3.1 Direct and Indirect loops 14

2.4 Optimization Techniques . 15
2.4.1 Graph colouring . 15
2.4.2 Iteration reordering . 15

2.4.2.1 Polyhedral Models 16
2.4.3 Loop fusion . 17
2.4.4 Loop unrolling . 20
2.4.5 Code-block reordering 21
2.4.6 Spatial and Temporal Locality 22
2.4.7 Memory organization – Array of Structures vs. Struc-

ture of Arrays . 23
2.5 Machine Learning Techniques 25

2.5.1 Overview . 25
2.5.2 Case-based Reasoning Systems 25

2.5.2.1 k-Nearest Neighbour Learning 27
2.6 Summary . 28

1

3 Related work 29
3.1 Research goals . 30
3.2 Summary . 31

4 Tools: OP2 OpenCL runtime and compiler 33
4.1 OpenCL Airfoil and OP2 . 33

4.1.1 OP2 OpenCL Airfoil structure 34
4.1.2 Runtime . 34

4.1.2.1 OpenCL observations 38
4.1.3 Compiler . 39

4.2 Summary . 41

5 Machine learning techniques 43
5.1 Design choices discussion . 43

5.1.1 Choice of optimizations 43
5.1.2 Scope of machine learning and deterministic automation 44

5.2 OP2 Runtime support – OP Tuner 45
5.3 OP2 Compiler support . 47
5.4 Loop fusion evaluation . 48
5.5 Machine Learning . 50

5.5.1 Similarity measure . 52
5.5.2 Weighting and complexity calculations 53
5.5.3 Fail-safes . 54
5.5.4 Overtraining . 56
5.5.5 Training data quality 56
5.5.6 Validation of results 56

5.6 Script . 57
5.7 Summary . 57

6 Evaluation 59
6.1 Testing platforms . 59
6.2 Results for Airfoil variations 60
6.3 Tuning algorithm results . 72
6.4 Complexity . 75
6.5 Summary . 75

7 Real-world applications - Hydra case-study 77

8 Conclusions 79
8.1 Achievements . 79
8.2 Further work . 80

2

8.3 Final remarks . 81

9 Bibliography 83

A Code samples 87
A.1 OP2 Airfoil . 87
A.2 OP2 Tuner Runtime Support 94
A.3 Split Files Script . 95
A.4 Tuner script . 97

3

Chapter 1

Introduction

In this project we investigate machine learning and deterministic techniques
within an optimizing compiler. We show what impact such methods have
upon the performance of the program, by using case-based reasoning and code
analysis to select an optimal set of optimizations from a pool of possibilities.
This methodology is scalable and offers great advantages over brute-force
approaches, as it significantly reduces overall execution time whilst determin-
ing the optimal set of optimizations. To achieve this, we used OP2 and its
associated compiler, as a framework for the machine learning techniques.

1.1 Motivation
Recent developments in Central Processing Unit (CPU) architectures have
moved focus from a serial to a parallel program execution [1]. This change
was mostly driven by increasing power consumption requirements to run fast
serial programs. At the same time, in line with an idea of taking advantage
of existing parallelism, Graphics Processing Unit (GPU) architectures have
become more efficient at running general purpose code on them [2], as opposed
to just exclusive graphical workloads. In order to fully utilize the capabilities
of the hardware (CPU or GPU), we need to focus our abilities into adapting
or writing the software in a parallel manner. This is particularly important
in High Performance Computing, an area of computing focused on obtaining
maximum performance for a particular piece of software on a specific highly
parallelized architecture.

Given these developments, we need to rethink the way we write software
so that we can take advantage of multiple parallel processing units. This
can generally be achieved by applying a number of parallelization techniques
to the application. However, it is not always clear which ones are best

5

suited. This project explores the usage of a number of such techniques on
unstructured mesh applications, by making use of machine learning. The
Artificial Intelligence system is intended to aid us in making informed decisions
as to which optimization procedure is best. Machine learning is comprised of
a class of mechanisms that allow a computer to make informed decisions and
present evolving behaviours, much like a human.

Achieving such a goal requires an optimizing framework on top of which
we can add our contributions and the actual machine learning mechanism.
For the framework, we need a target language which we compile down to,
and that can be run across a number of architectures. As a result, we chose
to work with OpenCL [3], an open standard and framework, which allows the
user to run the same code across different platforms (GPUs, CPUs).

For the machine learning system we investigate a case-based reasoning
(CBR) mechanism. Case-based reasoning is an Artificial Intelligence technique
that allows a machine to solve problems based on past problems. Its main
advantage is that it keeps learning from new experiences and thus allows
it to adapt to previously unseen situations. We chose this policy decision
technique because it keeps learning even after the initial training phase and
adapts to new situations, which is something we expect to encounter.

In order to maintain future flexibility and practicality for our solution,
our framework of choice is an existing optimizing framework called OP2 [4].
OP2 is an open-source framework that is used to execute unstructured grid
applications on a number of platforms, such as GPUs and CPUs. This allows
the user to write one piece of code using the OP2 library, and then the
OP2 compiler takes it and generates code that runs on one of a number of
back-ends. Currently, the library supports few back-end implementations,
including OpenCL. Its main drawback, and our advantage, is that for each
given program it only has one output solution. This is given by the OP2
compiler. Therefore, we are going to add the policy decision mechanism in a
script that calls the compiler. Based on the machine learning optimization
result, we choose appropriate compilation flags. By using OP2 and its compiler,
we have a practical advantage of extending on an existing framework that
already has applications written for it. It is also beneficial that is saves us
implementation time, as there is no need to write a compiler from scratch,
thus allowing us to focus on the main aspects of the project.

1.2 Objectives
This project aims to investigate the performance of various optimization
techniques on unstructured meshes and the usage of a machine learning

6

system and code analysis to better choose between these options. This will
allow us to better understand the connection between different optimization
choices and existing platforms, to the extent that we can offer valuable
extensions to similar projects which do not make use of an informed decision
making process, when selecting their parallelization techniques. As OP2 is
one such framework, we are incorporating all changes in it.

It is important to show the role of machine learning systems and code
analysis within the context of software optimization, as alternatives generally
assume a brute-force approach when selecting an optimization. However,
applications such as industrial-scale ones can take weeks to run, therefore,
trying every single possibility is not feasible and an efficient search space
pruning method is preferred.

We evaluate the success of the added optimizations, code analysis and
machine learning mechanism by comparing new execution times against
existing ones, obtained by running code within the OP2 framework. For
benchmarking, we use a fluid dynamics toy application called Airfoil [5],
which simulates a good number of issues found in industrial-scale applications,
such as Hydra. This is a finite volume, unstructured mesh turbomachinery
computational fluid dynamics application used in production by Rolls Royce.
In the final stages, we offer a future work case study for an application of our
results onto Hydra.

1.3 Contributions
With this project, we make the following contributions:

• We adjusted the existing OpenCL OP2 runtime support to match the
OP2 standards and ensure its correct execution on both GPUs and
CPUs. We also added runtime support for our tuning mechanism.

• We fixed and improved the untested OP2 OpenCL compiler.

• We show the connection between various optimization parameters, such
as possible loop fusions, block size, partition size and warpsize and
a target architecture by using machine learning techniques and code
analysis. We also present a way of determining whether loop fusion is
possible or not, given two loops.

• We explore the efficiency of the optimizations and the use of machine
learning on a toy fluid dynamics application called Airfoil.

7

• We discuss the applicability of the presented solution on an industrial-
scale application called Hydra.

1.4 Report outline
The remainder of the report has the following outline:

• Chapter 2 contains a background of the notions necessary for a better
comprehension of the topic.

• Chapter 3 expands on related work and our research goals.

• Chapter 4 details on prerequisites for the successful utilisation of the
OP2 framework and compiler.

• Chapter 5 expands on machine learning design and implementation
details.

• Chapter 6 provides a performance evaluation of the techniques presented
in Chapter 5.

• Chapter 7 presents a case study for an application of our results onto
Hydra.

• Chapter 8 gives a summary of the project’s contributions and future
work.

8

Chapter 2

Background

In order to allow for a wider range of comparison possibilities we choose to use
a number of architectures and techniques that apply to those. This allowed
us to gain a better understanding of the connection between a parallelization
mechanism and a particular platform. For the purpose of this, we will
summarize all the notions that are needed to better understand the topic and
techniques used in this project.

2.1 Architectures

2.1.1 Multi-core
Multi-core architectures [6], traditionally, have the following structure: on a
die, they contain a few (typically 2–8) very complex cores. These can run
general purpose code without an issue, due to their advanced instruction sets
and capabilities. CPUs have, since their conception, been implementing this
model. This offers great flexibility with regards to accommodating many
types of applications, however it comes at a potential performance cost. CPUs
have two types of memory: local (called cache) and global, which is the actual
global memory of the system. The purpose of the caches is to store data
that is immediately needed by the CPU, as these memories are a lot faster
than main memory, thus not halting the CPU. An improper use of those,
such as not ever having the right data in the cache, can lead to significant
performance reductions. Furthermore due to their relatively low number of
cores, there is only so much application parallelism that can be exploited.

Lately, in order to improve the performance of these devices, Single
Instruction Multiple Data capabilities have been added to them, similarly
to many-core architectures. This means that we can now process multiple

9

array elements at the same time, instead of just one, assuming we only apply
one instruction to all of them. This approach is similar to what GPUs offer,
however, there is a significant difference between them, as CPUs allow the
execution of 4–8 elements in parallel, whilst GPUs can allow thousands. More
information about CPU architectures can be found on Intel or AMD’s website.

2.1.1.1 AVX/SSE

Advanced Vector Extensions (AVX) [7] and Streaming SIMD Extensions
(SSE) [8] are two sets of extensions to x86 architectures. As the name implies,
they are SIMD (Single Instruction, Multiple Data) or vector instructions
which allow to parallelize the their execution over independent sets of data,
where within each set, there is no dependency between any of the elements).
These instructions can be heavily used in applications such the unstructured
mesh one due to the fact that most parts of the mesh can be processed in
parallel. For example: if the mesh contains triangles as base elements, then
we can process in parallel data related to two unrelated triangles. This is
possible as we apply the same operations to all elements.

2.1.2 Many-core
Many-core architectures are typically based on many, simple, small cores,
thus being able to pack hundreds of them on one chip. These are then
grouped into higher-level units, such that all cores in a unit can run the
same instruction at the same time on multiple different pieces of data. Their
limitation, however, is that they do not offer the same capabilities as multi-
core architectures, due to the reduced complexity of the underlying cores.
Traditionally, GPUs implement many-core architectures and are used for
rendering various graphics scenes. Recently there have been improvements
and the graphics cards have been adapted such that they can run even general
purpose code efficiently [2]. This involved a number of architectural changes,
such as having write caches, instead of read-only. GPUs have the following
main structure: they contain Streaming Multiprocessors (SMs), which in turn
contain a number of Streaming Processors (SPs). As a result, a graphics card
can end up being able to process thousands of pieces of data simultaneously.
The challenge that comes with this is the ability of the developers to exploit
this massive parallelism and not waste resources. Another feature specific to
GPUs is that each SM can only execute one instruction at a time, therefore
all its SPs execute the same instruction or none at all. This offers another
challenge for the programmers, especially in the cases of conditionals, when
some elements evaluate to one branch, whilst the rest to the other one. More

10

information about GPU architectures can be found on CUDA Zone [9] or
AMD’s website [10].

2.2 Languages

2.2.1 CUDA
CUDA (Compute Unified Device Architecture) [11] [9] is developed by NVIDIA
to be a parallel computing platform and an associated programming model.
It can be used in conjuncture with C/C++ by using “C for CUDA”. It allows
the developers to manipulate lower level features of the hardware, such as
memory transfers between global and device memory [12]. When well used,
these lead to a significant increase in performance, as specifics of devices they
run on can be used to optimize the application. Currently, only NVIDIA
devices have CUDA support. Alternatives for CUDA are DirectCompute [13]
and OpenCL, which run on multiple platforms, including AMD graphics
cards.

2.2.2 OpenCL
OpenCL is an open, royalty-free standard for a low-level computing platform
started by Apple which is currently implemented by IBM, Intel, AMD and
Nvidia. It offers an alternative to platform-specific frameworks such as CUDA,
given that it is supported by both CPUs and GPUs. OpenCL follows a similar
programming model to CUDA and offers C/C++ extensions [14]. A reason
why OpenCL is still not the primary language used is due to the fact that the
standard is still relatively new and there are still problems with the existing
implementations.

2.3 OP2
OP2 is a library and framework that provides a high-level abstraction for
the parallel processing of unstructured mesh applications. It offers a set of
instructions that can be used to declare the mesh, dependencies between
elements and data related to them. It also provides specific for loops, which
take in data they work on and user supplied kernels that specify operations
to be performed on the data [15] [16]. One very important property of
the for loops is that the same results will be achieved, no matter in what
order the provided data is processed. Starting from this premise, the actual
optimization choices and target architectures are left as a choice to the library,

11

which provides an execution plan for each loop. In Listing 2.1 you can see a
sample of the Airfoil code which uses OP2. The full version of the OP2 Airfoil
C++ code, including the user-defined kernels, can be found in Appendix A.1.
Listing 2.1: Code sample from Airfoil illustrating the OP2 library statements.

1 int main(int argc , char ** argv) {
2 // OP initialisation
3 op_init (argc ,argv ,2);
4

5 // declare sets , pointers , datasets and global constants
6 op_set nodes = op_decl_set (nnode , "nodes");
7 op_set edges = op_decl_set (nedge , "edges");
8 op_set bedges = op_decl_set (nbedge , " bedges ");
9 op_set cells = op_decl_set (ncell , "cells");

10

11 op_map pedge = op_decl_map (edges , nodes ,2,edge , "pedge");
12 op_map pecell = op_decl_map (edges , cells ,2,ecell , " pecell ");
13 op_map pbedge = op_decl_map (bedges ,nodes ,2,bedge , " pbedge ");
14 op_map pbecell = op_decl_map (bedges ,cells ,1, becell ," pbecell ");
15 op_map pcell = op_decl_map (cells , nodes ,4,cell , "pcell");
16

17 op_dat p_bound = op_decl_dat (bedges ,1,"int" ,bound ," p_bound ");
18 op_dat p_x = op_decl_dat (nodes ,2,"float",x ,"p_x");
19 op_dat p_q = op_decl_dat (cells ,4,"float",q ,"p_q");
20 op_dat p_qold = op_decl_dat (cells ,4,"float",qold ," p_qold ");
21 op_dat p_adt = op_decl_dat (cells ,1,"float",adt ,"p_adt");
22 op_dat p_res = op_decl_dat (cells ,4,"float",res ,"p_res");
23

24 op_decl_const (1,"float" ,&gam);
25 ...
26

27 // main time - marching loop
28 niter = 1000;
29

30 for(int iter =1; iter <= niter; iter ++) {
31

32 // direct loop
33 op_par_loop (save_soln ," save_soln ", cells ,
34 op_arg_dat (p_q , -1,OP_ID , 4,"float",OP_READ),
35 op_arg_dat (p_qold ,-1,OP_ID , 4,"float",OP_WRITE));
36

37 for(int k=0; k <2; k++) {
38

39 op_par_loop (adt_calc ," adt_calc ",cells ,
40 op_arg_dat (p_x , 0,pcell , 2,"float",OP_READ),
41 op_arg_dat (p_x , 1,pcell , 2,"float",OP_READ),
42 op_arg_dat (p_x , 2,pcell , 2,"float",OP_READ),
43 op_arg_dat (p_x , 3,pcell , 2,"float",OP_READ),
44 op_arg_dat (p_q , -1,OP_ID , 4,"float",OP_READ),

12

45 op_arg_dat (p_adt ,-1,OP_ID , 1,"float",OP_WRITE));
46

47 // indirect loop
48 op_par_loop (res_calc ," res_calc ",edges ,
49 op_arg_dat (p_x , 0,pedge , 2,"float",OP_READ),
50 op_arg_dat (p_x , 1,pedge , 2,"float",OP_READ),
51 op_arg_dat (p_q , 0,pecell ,4,"float",OP_READ),
52 op_arg_dat (p_q , 1,pecell ,4,"float",OP_READ),
53 op_arg_dat (p_adt , 0,pecell ,1,"float",OP_READ),
54 op_arg_dat (p_adt , 1,pecell ,1,"float",OP_READ),
55 op_arg_dat (p_res , 0,pecell ,4,"float",OP_INC),
56 op_arg_dat (p_res , 1,pecell ,4,"float",OP_INC));
57 ...
58 }
59 ...
60 }
61 ...
62 }

The front-end of the library is currently in C, C++ or Fortran, and there
are currently back-end implementation for CUDA and OpenMP [17]. OpenCL
and AVX/SSE implementations under C++ are currently in development.

One of the main purposes of the library is to abstract away detailed
implementation choices from the user and allow them to program by using
a more familiar and easily understandable interface. This also gives a lot
of freedom to the OP2 developers, as to the choice of optimizations and
the target architectures. As a comparison, languages such as C, C++ offer
little exposure to the underlying architecture; therefore platform-specific
optimizations cannot be created easily. For most pieces of software available,
that is sufficient. However, for a subset such as scientific or engineering
simulators, that does not render the desired performance. The next step is to
use a language such as OpenCL, which exposes a lot more functionality of the
underlying architecture. This is what we chose to use with OP2, as it provides
the most flexibility in the choice of optimizations and target platforms. A
further possibility would be to use CUDA or, for Intel CPUs, AVX/SSE
intrinsics, however, this would add far too much complexity to the project
and would prove a distraction from our goals. Furthermore, there already
exist CUDA back-end implementations for OP2.

Similar to OP2, there exists a domain-specific language developed at
Stanford, called Liszt [18]. It is a Scala [19] based language used for writing
mesh-based applications used to solve partial differential equations. Given its
more targeted audience, Liszt offers a wider range of features, such as already-
implemented mesh operations (example: a Jacobi iteration), in addition to
the instructions to declare the meshes. Just as OP2, it offers parallel for-

13

comprehension loops that do not contain any loop-carried dependencies. Its
advantage is that by using a domain-specific constructs, it can better choose
the implementation for each of them. In OP2, we compensate for their lack by
using machine learning algorithms that determine the best set of optimization
choices for a given problem.

More specifically, for each problem there exists an optimal set of opti-
mizations for a particular architecture. With the aid of the machine learning
algorithm, we carefully choose those, as when applying multiple levels of
optimizations, some might interfere with the efficiency or application of sub-
sequent ones. Therefore, we need to ensure that the chain of optimizations is
optimal for the chosen target device.

In order to achieve the aim of having optimal optimizations, we need to
maximize data reuse and parallelism. In both OP2 and Liszt, the latter is
obtained by making use of partitions and colouring. The data is partitioned
such that if two edges want to update the same node, only the owner of
the node data performs the update. Redundancy appears when a node has
multiple owners. Graph colouring is used to ensure that no two edges update
the same node. Maximum data reuse can be obtained by reordering the
iterations to make sure that two consecutively computed partitions make use
of the same nodes and edges.

2.3.1 Direct and Indirect loops
As the main performance issues to be tackled are generated by the for loops,
we will describe them in more detail. Each iterates over a given set (example
from Listing 2.1: edges) and accesses related data through mapping arrays
(example from Listing 2.1: pedge), which it then processes and writes back to
some data array. If there is no level of indirection (i.e. accessing data through
no mapping array), then the loop is direct. If there a level of indirection, then
it is an indirect loop. OP2 currently limits the number of indirection levels
to one. This is due to the fact that each level of indirection generates a loss
of parallelism by increasing the data dependency.

Direct loops only access data directly related to the elements being pro-
cessed. For example, if we iterate over nodes, then we write to the node data
p_x, and we not use explicitly a map, as this is a direct access. Therefore, we
have only used one level of indirection. An example of this can be seen in
Listing 2.1, by looking at the save_soln loop.

If, however, we want to loop over cells and write over node data in p_x,
we would then have to use one mapping to pcell, therefore we would have one
level of indirection and an indirect loop. Furthermore, given that two different
cells can have the same nodes, the data dependency earlier mentioned arises

14

and then various optimization techniques can be used to minimize its effects.
An example of an indirect loop is res_calc in Listing 2.1.

2.4 Optimization Techniques

2.4.1 Graph colouring
Graph colouring is a parallelization technique that labels with the same colour
all elements of a dataset that can be processed concurrently. In the case of
an unstructured mesh that has as a base element a triangle, any two adjacent
triangles will have different colours, as a data dependency is created due to
the shared edges. By applying this, we allow for a parallel execution of same
colour elements, followed by a synchronization step. Figure 2.1 shows an
example of how a graph is coloured.

Figure 2.1: Example of graph colouring on a triangle-based unstructured
mesh.

2.4.2 Iteration reordering
In order to reuse as much of the data in local memory as possible, one way
is to reorder the iterations that apply to it. Within the Airfoil example, we
have 5 loops within each time step, and each iterates over the same data.
In this case, we can merge and rearrange the loops to compute all kernels
related to a particular subset of data at a time. If we choose to not merge
the loops, but keep them as they are, we can still reorder the iterations by

15

making sure we that if now we compute the first set of data, say coloured
red, then immediate set will be blue, where all the elements in the second set
are adjacent to the first set. This will ensure that the underlying data that is
used by the triangles is reused, as it is the same.

2.4.2.1 Polyhedral Models

A polyhedral model is a mathematical representation used for optimizations
regarding nested loops. The basis of the model relies on it treating each
nested loop iteration as a grid point inside a polyhedron, and then performs
transformations (such as affine or tiling) on a mesh which contains the
polyhedra. The result is a mesh representing an optimized and equivalent
iteration space of the nested loops.

Such a model is of great value in computer optimizations as it offers an
abstract model for reasoning with nested loop transformations that is easily
used with a great number of changes. In practice, attempting to do the same
without such a model can prove impossible, due to the complexity of the
transformations when they are not abstracted away.

Sparse computations using polyhedral frameworks are slow, as the gen-
erated models do not take into account the properties of the data. As a
result, a whole set of sparse computations, such as finite element analysis, are
inefficient when using traditional models. This also applies in our case, as
each element we iterate over is connected to very few others, thus generating
sparse connectivity matrices. A solution to this was developed by Michelle
M. Strout et al. from Colorado State University who introduced the Sparse
Polyhedral Framework (SPF) [20] [21].

One of the main challenges in traditional approaches is the inability
to properly reorder data and computation at compile-time in such appli-
cations. Another issue is that polyhedral models use Inspector/Executor
strategies [22] [23], however, few have been automated. SPF overcomes
these issues by choosing run-time reordering transformations and by adding
uninterpreted functions to the polyhedral framework. The end result is
inspector/executor code.

Each statement in SPF has the following representation: an iteration space,
a scheduling function and access functions for the indirect references to the
data array. This specification is currently being generated with IEGenCC [24].
From those, SPF generates a data space specification and the uninterpreted
functions. From these, a transformation specification is constructed repre-
sented as tuple relations of the data and iteration reordering. IEGen [24]
generates the inspector/executor code from this specification, by using a full
sparse tiling strategy [25] [26].

16

Main features of SPF and IEGen are that they traverse the access rela-
tions and data dependencies, then generate optimization changes for them,
iteratively. This results in a refined model, which is then transformed into
code in the following way: Cloog [27] is used for the outer loops, whilst the
framework deals with the sparsity in inner loops and access relations.

The overall process for generating inspector/executor code for sparse
polyhedral models is:

• identify the indirect nested loops with IEGenCC

• enable the specification of computations and run-time reordering trans-
formations with SPF

• sparse tilings are computed at run-time with transformation writers

• generate the inspector/executor code with IEGen

The full sparse tiling algorithm splits sparse matrices into tiles, which can
be further parallelised by using graph colouring, and then their size can be
adjusted in order to improve parallelism. One of the main advantages of this
algorithm is that it turns data reuse into data locality, thus improving the
overall execution time of an application.

2.4.3 Loop fusion
Loop fusion is an optimization which involves combining two or more loops
into one, as seen in Listing 2.2.

Listing 2.2: Original versions of the save_soln and adt_calc loops, and then
a fused version of the two. Loop fusion is possible here as we can see that
they use nearly all of the same parameters, and thus it is advantageous to
fuse the loops.

1

2 // Original code of op_par_loop save_soln and adt_calc .
3

4 op_par_loop (save_soln ," save_soln ", cells ,
5 op_arg_dat (p_q , -1,OP_ID , 4,"float",OP_READ),
6 op_arg_dat (p_qold ,-1,OP_ID , 4,"float",OP_WRITE));
7

8 op_par_loop (adt_calc ," adt_calc ",cells ,
9 op_arg_dat (p_x , 0,pcell , 2,"float",OP_READ),

10 op_arg_dat (p_x , 1,pcell , 2,"float",OP_READ),
11 op_arg_dat (p_x , 2,pcell , 2,"float",OP_READ),
12 op_arg_dat (p_x , 3,pcell , 2,"float",OP_READ),

17

13 op_arg_dat (p_q , -1,OP_ID , 4,"float",OP_READ),
14 op_arg_dat (p_adt ,-1,OP_ID , 1,"float",OP_WRITE));
15

16 // A fused version of the above loops.
17

18 op_par_loop (save_soln_adt_calc_fused ,
19 " fused_save_soln_adt_calc ", cells ,
20 op_arg_dat (p_x , 0,pcell , 2,"float",OP_READ),
21 op_arg_dat (p_x , 1,pcell , 2,"float",OP_READ),
22 op_arg_dat (p_x , 2,pcell , 2,"float",OP_READ),
23 op_arg_dat (p_x , 3,pcell , 2,"float",OP_READ),
24 op_arg_dat (p_q , -1,OP_ID , 4,"float",OP_READ),
25 op_arg_dat (p_qold ,-1,OP_ID , 4,"float",OP_WRITE),
26 op_arg_dat (p_adt ,-1,OP_ID , 1,"float",OP_WRITE));

This can significantly increase performance, given that instead of copying
an array of data, portion by portion and processing it, then copying it again
in memory and doing another set of operations, it is beneficial to perform
both operations for each portion, as it is in memory. Figure 2.2 contains an
example.

18

Partition 1 Partition 2 ... Partition n

Operation 1

Operation 2

Partition 1 Partition 2 ... Partition n

Operation 1

Operation 2

Figure 2.2: The top graph shows the memory transfers between the partitions,
for each operation. In this case, each operation is equivalent to a computational
kernel. We observe that the same data is resent to device for each operation,
then copied back, in order (operation 1 first, then for operation 2). We can
tell that this has double overhead, compared to the fused version which is
represented in the second graph. In the bottom graph we observe that for
each partition, we only copy it once, perform all operations and then move it
back.

19

2.4.4 Loop unrolling
Loop unrolling is an optimization technique that involves extracting a loop’s
body outside of the loop n-times, where n represents the number of iterations.
The order of operations is preserved, and thus, the code’s output. In Listing 2.3
we can see an example of loop unrolling.

Listing 2.3: A generic example of loop unrolling. Here we see that it involves
copying the body of the loop n-times, where n is the loop’s number of iterations.
This optimization helps reduce the number of loop control arithmentic, thus
reducing branch penalties.

1 // Original loop
2

3 for (int i = 0; i < n; ++i) {
4 Statement1 ;
5 Statement2 ;
6 ..
7 StatementM ;
8 }
9

10 // Unrolled loop - we have n groups of Statements 1-M
11

12 Statement1 ;
13 Statement2 ;
14 ...
15 StatementM ;
16

17 Statement1 ;
18 Statement2 ;
19 ...
20 StatementM ;
21

22 ...

This can be used in conjuncture with other optimizations, such as loop
fusion. In OP2, the number of possible, efficient loop fusions is 1, until we
perform a loop unrolling, which unlocks another loop fusion optimization.
Listing 2.4 shows this.

Listing 2.4: Original versions of the save_soln and adt_calc loops, and then
a fused version of the two. The loop fusion is possible here as we can see that
they use nearly all of the same parameters, and thus it is advantageous to
fuse the loops.

1

2 // Original version of save_soln and adt_calc
3 n = 1000;
4

20

5 for (int i = 0; i < n; ++i) {
6 op_par_loop (" save_soln ");
7 for (int j = 0; j < 2; ++j) {
8 op_par_loop (" adt_calc ");
9 op_par_loop (" res_calc ");

10 op_par_loop (" bres_calc ");
11 op_par_loop (" update ");
12 }
13 }
14

15 // Inner loop is unrolled and we fused save_soln
16 // and adt_calc
17

18 n = 1000;
19

20 for (int i = 0; i < n; ++i) {
21 op_par_loop (" fused_save_soln_adt_calc ");
22 op_par_loop (" res_calc ");
23 op_par_loop (" bres_calc ");
24 op_par_loop (" update ");
25 op_par_loop (" adt_calc ");
26 op_par_loop (" res_calc ");
27 op_par_loop (" bres_calc ");
28 op_par_loop (" update ");
29 }

2.4.5 Code-block reordering
Code-block reordering is a technique that involves re-arranging the code’s basic
blocks in order to improve locality of reference and to reduce branching. This
optimization can be successfully used with others, such as loop unrolling and
loop fusion. By reordering the blocks, we can create loop fusion opportunities,
as seen in Listing 2.5.

Listing 2.5: In this code example we show a code-block reordered and simplified
version of the Airfoil. The next part of the code example contains a fully
optimized Airfoil, which adds loop unrolling and fusion. This example clearly
shows the previously unexistent fusion possiiblities without having to unroll
the outside loop.

1

2 // For this example we use a reordered , simplified version of the Airfoil .
3 // This is a code -block re - ordered version , without fusion .
4 n = 1000;
5 op_par_loop (" save_soln ");
6

7 for (int i = 0; i < n -1; ++i) {

21

8 for (int j = 0; j < 2; ++j) {
9 op_par_loop (" adt_calc ");

10 op_par_loop (" res_calc ");
11 op_par_loop (" bres_calc ");
12 op_par_loop (" update ");
13 }
14 op_par_loop (" save_soln ");
15 }
16

17 for (int j = 0; j < 2; ++j) {
18 op_par_loop (" adt_calc ");
19 op_par_loop (" res_calc ");
20 op_par_loop (" bres_calc ");
21 op_par_loop (" update ");
22 }
23

24 // Now we have added loop fusion and loop unrolling .
25

26 op_par_loop (" save_soln ")
27

28 for (int i = 0; i < n -1; ++i) {
29 op_par_loop (" adt_calc ");
30 op_par_loop (" res_calc ");
31 op_par_loop (" bres_calc ");
32 op_par_loop (" fused_update_adt_calc ");
33 op_par_loop (" res_calc ");
34 op_par_loop (" bres_calc ");
35 op_par_loop (" fused_update_save_soln ");
36 }
37

38 for (int j = 0; j < 2; ++j) {
39 op_par_loop (" adt_calc ");
40 op_par_loop (" res_calc ");
41 op_par_loop (" bres_calc ");
42 op_par_loop (" update ");
43 }

2.4.6 Spatial and Temporal Locality
Spatial locality is based on the premise that, if a particular memory location is
accessed at some time, then nearby locations are very likely to be accessed in
the immediate future. For this situation, it is good to make sure that all these
locations are found in the local memory to not waste time retrieving them
from memory. For an unstructured mesh with a triangle base, we can explore
spatial locality by making sure that, for example, all edges of a triangle are
in memory. If one of them is being accessed at a particular time, it is very

22

likely that all of them will.
Temporal locality is a special type of spatial locality, in which a prospective

location is the same as the actual one, and that relies on a particular memory
location being accessed multiple times in the near future. In the case of the
mesh, we can see this as executing a kernel over two sets of adjacent triangles
that use the same node and edge information.

2.4.7 Memory organization – Array of Structures vs.
Structure of Arrays

When dealing with structured data (example: data representing triangles),
there are two ways of representing it: Array of Structures and Structure of
Arrays.

For unstructured meshes with a base element of a triangle, we represent
coordinates of nodes and edges for each of them. This can be seen in Figure 2.3.

A(1.5, 3)

B(3, 0)C(0, 0)

a

b

c

Figure 2.3: Example of an unstructured mesh triangle with node and edge
data.

In the case of array of structures, each entry in the array represents a
triangle structure. It contains a list of nodes and a list of edges. Examples
can be seen in Listing 2.6 and Figure 2.4.

Listing 2.6: Array of Structures code example
1 typedef struct triangle {
2 int nodeA [2];
3 int nodeB [2];
4 int nodeC [2];
5 int edgeA;
6 int edgeB;
7 int edgeC;
8 }

23

9

10 int main(int* argc , int ** argv []) {
11 ...
12 triangle meshData [n];
13 ...
14 }

Triangle1 Trianglei

nodeA0 nodeA1 nodeB0 nodeB1 ... nodeA0 nodeA1 nodeB0 nodeB1 ...

Figure 2.4: One-dimensional Array of Structures in-memory representation
example.

If the organisation is structure of arrays, then we would have a structure,
with the following elements: one array for all top nodes, one for all right nodes
and one for all left nodes. Analogous arrays exist, as part of the structure,
for the edges. Examples can be seen in Listing 2.7 and Figure 2.5.

Listing 2.7: Structure of Arrays code example
1 typedef struct triangle {
2 int nodeA [2,n];
3 int nodeB [2,n];
4 int nodeC [2,n];
5 int edgeA[n];
6 int edgeB[n];
7 int edgeC[n];
8 }
9

10 int main(int* argc , int ** argv []) {
11 ...
12 triangle meshData ;
13 ...

Triangle1Trianglei Triangle1Trianglei

Triangle1Trianglei Triangle1Trianglei

nodeA0 nodeA0 ... nodeA1 nodeA1 ...

nodeB0 nodeB0 ... nodeB1 nodeB1 ...

Figure 2.5: One-dimensional Structure of Arrays in-memory representation
example.

24

Each representation traditionally offers advantages and disadvantages on
each type of architecture (CPU or GPU). With modern developments, it is
not fully clear which option is best in which case, therefore, we are exploring
both in this project. Traditionally, due to the significant parallelism offered
by GPUs, a structure of arrays representation was chosen, whilst for CPUs,
array of structures is more commonly met.

2.5 Machine Learning Techniques

2.5.1 Overview
Machine learning is a branch of artificial intelligence that focuses on designing
algorithms that describe evolving behaviours based on empirical data. In
order for a learning problem to be well-posed, it needs to satisfy three main
requirements: it needs a measure of success, experience gained through
training examples and the ability to better its results with experience. A
widely accepted definition by Tom M. Mitchell [28]:

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P , if
its performance at tasks in T , as measured by P , improves with
experience E.

Every machine learning system contains the following main steps: it takes
a new problem (by creating it or by having it as a given), it uses the current
knowledge to come up with a solution, then it analyses how good the result
is and finally, it creates a hypothesis based on the example. By using this
procedure, the system keeps adapting itself to based on each experience.
Within this, there exist variations based on whether the system is eager or
lazy to learn. The main difference is that lazy systems just store data and
only generalize beyond it until there is an actual request, whilst eager ones
construct general, explicit descriptions of their target function (problem to
solve), based on already provided training examples. This difference makes
lazy learning to be very suitable for problem domains that are either complex
or incomplete, where their target function can be represented by a collection
of less complex smaller approximations.

2.5.2 Case-based Reasoning Systems
Case-based reasoning is a lazy machine learning technique that relies on finding
solutions for new similar problems based on a set of previously solved problems.

25

It is based on work by Roger Schank [29] [30], which was inspired by findings in
cognitive sciences on human reasoning and memory organization. All similar
concepts or experiences of a human are organized in memory packets. When a
person experiences something new and there already exists a memory packet
that has successfully solved a similar problem, then the previous experience
is recollected and the same steps are followed to reach a solution. Therefore,
case based reasoning systems reapply previously successful solution schemes
to find an answer for a new problem, instead of applying a general set of
rules.

Schank’s memory-based reasoning model contains the following steps:
there is a set of observed cases stored in memory organization packets, from
which the memory of experiences is derived. Then if the new experience
matches an existing one, then that one will be retrieved, otherwise, we use
similarities to come up with a solution. This memory-based model follows
an automatic, online learning technique, which implies that we keep learning
with every new case, as opposed to typical eager systems, where we cease to
learn when the training is complete.

Algorithmically, we will have the following steps, also seen in Figure 2.6:

1. search through known cases for a similar instance

2. retrieve these instances

3. adapt the solutions to the current one

4. add the new solved case to the known experiences

26

Problem

Proposed SolutionConfirmed Solution

Case Base

RETRIEVE

REUSE

REVISE

RETAIN

Figure 2.6: A representation of the steps employed by a case-based reasoning
system [28], from the moment a problem arrives, to the retrieval and choice
of a solution, and then saving the current experience in the database of cases.

2.5.2.1 k-Nearest Neighbour Learning

For the retrieval step of the most similar cases, we can use the k-Nearest
Neighbour learning algorithm [31]. The list of possible nearest neighbours
is the one of previously observed instances xi, i = [1..n], with n being the
number of instances. Given query xq, we can select the most similar cases by
using an Euclidean distance d(xi, xq). As a refinement of this algorithm, we
can assign weights wi to each neighbour xi of the query instance xq based on
the distance d(xi, xq), such that (d(xi, xq) ↓ ←→ wi ↑).

With this refinement, we get: given a target function V : X → C and
a set of n observed instances (xi, cj), where xi ∈ X, i = [1..n], cj ∈ C,
j = [1..m], V (xi) = cj, distance weighted k-NN algorithm will decide the
class cl, l = [1..m], of the query instance xq based on its k nearest neighbours
xr, r = [1..k], in the following way:

V (xq)← cl ∈ C ←→ ∀(j 6= l)
∑

r

wr ∗ E(cl, V (xr)) >
∑

r

wr ∗ E(cj, V (xr))

where E(a, b) = 1 if a = b, else 0, and wr = 1/(d(xr, xq))2

One of the main advantages of the refined algorithm is that it is more
robust to noisy training data, as it calculates V (xq) based on weighted V (xr)
values of all its k nearest neighbours xr, thus eliminating the effects of noisy
data. However, as the algorithm calculates the distance between instances

27

based on all the attributes, including irrelevant ones, we can end up with the
wrong classification. As a result, we can just weight each attribute differently,
based on its importance for the particular class.

2.6 Summary
In this chapter we detailed on the main tools and techniques that we use
throughout this project, to offer a better insight into the aims and complexity
of the work. We detailed on the OP2 framework in which all the work
is integrated, a set of possible optimization techniques, languages and the
machine learning algorithm we use for the purpose of this project.

28

Chapter 3

Related work

The idea of having an optimizing compiler that can learn from its past
experiences and choose the best speed-ups is not a new idea. With the recent
developments in microarchitectures, the requirement for such frameworks and
libraries has increased significantly, as the best options of optimizations and
architectures are no longer as clear.

As mentioned in the OP2 section, Stanford’s Liszt framework is a very
similar language to OP2, that employs the same for-comprehension loops and
domain-specific language for declaring the necessary data structures (nodes,
edges, maps etc.). Liszt offers further statements that concern the actual
processing of the data, unlike OP2, which relies on user-supplied kernels
that describe the operations that need to be performed on the data. OP2’s
approach gives the user more flexibility, as they can define operations not
included by default in Liszt. Nevertheless, both frameworks rely on the same
ideas of running unstructured mesh programs across heterogeneous platforms
optimally and abstracting any low-level and platform-specific implementation
details from the user. This approach ensures maximum reuse of the user’s
code.

With regards to choosing which optimizations are best for a particular
architecture by making use of learning algorithms, researchers from University
of Edinburgh have presented a portable optimising compiler [32] that can
automatically adapt to underlying microarchitectural changes. Currently,
it is only targeted at multiple generations of a microprocessor, however, it
represents the first step to a universal compiler that can target any plat-
form without requiring extensive tuning. Its machine learning algorithm is
based upon building a model that provides a mapping from a given set of
program/microarchitecture properties to a set of good optimisations passes.
They learn the mapping from the properties to a probability distribution
over good optimisation passes. Afterwards, they sample at the mode of the

29

distribution to obtain a prediction on a new program and on a new microar-
chitecture. They obtain the predicted set of optimizations by finding the set
that gives the greatest probability of being a good optimisation.

For the CUDA-back-end of OP2, there exists an auto-tuner called Flamingo [33],
that chooses the optimum optimization for each kernel in turn. However, the
tuner, written in Python, uses approach close to a brute force one, which
severely restricts the number of available applications. Furthermore, it relies
on all of its input parameters, such as size of partition, number of threads in
a block etc. of being independent. This also limits the number of parameters
that can be used. The application builds a tree of variable dependencies,
where siblings in the tree are considered independent. The algorithm is
exponential with respect to the depth of the tree.

Flamingo and the optimising compiler offer a good foundation and a
promising premise for this project. They show that there is not just room for
improvement, but a strong possibility that a machine learning algorithm that
chooses between different optimizations, across multiple platforms, used in
conjunction with OP2, can achieve a speed-up over traditional hand-tailored
approaches. Furthermore, they both show that there is a correlation between
a program’s various parameters and its performance, when run on a particular
architecture.

3.1 Research goals
Within this project, we explore a different perspective that combines ideas
from Flamingo and Edinburgh’s optimising compiler. Here we use machine
learning algorithms, instead of a brute force approach, to determine the best
set of optimizations for a given program on a particular architecture, from
a number of speed-ups and target platforms. This allows us to generalize
over the optimising compiler and improve on the search space compared to
Flamingo. Given OP2’s structure that relies on user supplied kernels for
the computation, we obtain maximum freedom in choosing the optimization
choices such as loop fusion and runtime parameter tweaking. We also use
a different approach, compared to Edinburgh’s, with respect to deducing
optimal sets of optimizations from a given program and architecture. They
use detailed low level architectural information, which we do not include,
and derive the optimizations statistically. We use a weighting system applied
to a vector of properties that gives us the desired runtime parameter and
optimization suggestions.

As a result, we aim to determine whether there is a generalized connection
between various program and architecture parameters from which we can

30

learn and that can lead to better overall optimization and platform choices.

3.2 Summary
In this chapter we presented related work and offered details on how this
project builds up on it, thus offering a novel proof of concept.

31

Chapter 4

Tools: OP2 OpenCL runtime
and compiler

In order to automatically generate Airfoil variations which we require for
testing the machine learning algorithms presented in Section 5.5, we require
a fully working up-to-date OpenCL runtime and OP2 to OpenCL compiler.

In this chapter we detail on the work that had to be done on existing tools
that we used for the completion of the project. All code and experiments
mentioned in this chapter have been run on the following hardware and
software configurations: AMD , NVIDIA and Intel OpenCL 1.1, and NVIDIA
Tesla M2050 GPU, Intel Xeon X5650 and Intel Core i7 2620M.

4.1 OpenCL Airfoil and OP2
We have decided to use OpenCL as the back-end for the compiler because the
generated code runs on both CPUs and GPUs without further modifications.
This meant that we needed both an OpenCL runtime and for the OP2 compiler
to generate working OpenCL code. The advantage of this back-end was that
tools and implementations already existed for both the runtime and the
compiler. Now we will detail on the code’s structure and on the work that
had to be done in order to ensure these results.

33

4.1.1 OP2 OpenCL Airfoil structure
The OP2 OpenCL Airfoil is composed of:

• airfoil.cpp – this file contains all the OP2 code and the op_par_loop
calls of the 5 Airfoil loops.

• Host file(s) – Host code can be found in one or more files (one containing
all host codes, or one file for each loop host code). In the OpenCL
implementation, the host code is responsible for calling the respective
kernels with appropriately set parameters. The host code gets executed
on the processor.

• Kernel file – contains all the computational kernels, including the user
supplied ones as inline functions. These are the kernels that actually
execute on the device.

4.1.2 Runtime
For the runtime we have used an existing OpenCL implementation of Airfoil
written by a past Imperial College London MSc student. The advantages of
this implementation are that it already contained all the extra runtime code
needed to ensure the proper initialization of the OpenCL code, appropriate
host and kernel methods, all in the context of the OP2 runtime. The dis-
advantages of this codebase were that it initially gave wrong results when
the code was run on CPUs and that it was tightly integrated with an older
version of the OP2 runtime.

The first step was to get the code to work on a CPU, as part of the
project’s goals is to decide on the optimizations based on a given architecture.
When initially run, the given code gave NaN results. On GPUs, no issues
with the results were observed. For each loop, we considered arrays that were
written to as our result arrays. We saw that the results went wrong after the
save_soln loop shown in Listing 4.1.

Listing 4.1: Initial save_soln code sample
1

2 for (int n = get_global_id (0); n < set_size ; n+= get_global_size (0)) {
3 int offset = n - tid;
4 int nelems = MIN(OP_WARPSIZE , set_size - offset);
5 for (int m = 0; m < 4; m++) {
6 arg_s[tid+ m* nelems] = arg0[offset *4 + tid + m* nelems];
7 }
8

9 for (int m = 0; m < 4; m++) {

34

10 arg0_l [m] = arg_s[tid *4 + m];
11 }
12

13 save_soln (arg0_l , arg1_l);
14 }

After careful inspection of the code, we observed two issues: memory
accesses to outdated memory locations. This was likely caused by the fact
that on a CPU threads do not run in lockstep. In order to access the memory
locations written to by other threads, we first need to synchronize all threads
to make sure all write operations have completed before other threads read
those memory locations. This can be achieved by adding barriers and we
have used barrier(CLK_LOCAL_MEM_FENCE), as seen in 4.2.

Listing 4.2: save_soln with barriers code sample
1

2 for (int n = get_global_id (0); n < set_size ; n+= get_global_size (0)) {
3 int offset = n - tid;
4 int nelems = MIN(OP_WARPSIZE , set_size - offset);
5 for (int m = 0; m < 4; m++) {
6 arg_s[tid+ m* nelems] = arg0[offset *4 + tid + m* nelems];
7 }
8

9 barrier (CLK_LOCAL_MEM_FENCE);
10

11 for (int m = 0; m < 4; m++) {
12 arg0_l [m] = arg_s[tid *4 + m];
13 }
14

15 barrier (CLK_LOCAL_MEM_FENCE);
16

17 save_soln (arg0_l , arg1_l);
18 }

At this stage we observed correct values, however, the last two values
in the result array were not written to. This likely meant that the kernel
was suffering from thread divergence. Thread divergence occurs when in a
block, some threads evaluate a conditional expression to true, some to false.
In this context, this came in the shape of for loop that iterated through all
elements of the array. The code assumed that there are 4 threads in a block
(through OP_WARPSIZE), however, the number of elements in the array was
not a multiple of 4. As a result, when we had to update the last two elements,
two of the threads entered the for loop, whilst two did not. Furthermore, the
code had barriers which have the property that all threads in a block must
execute the exact same barriers, otherwise they can block. As a result, the
code that was supposed to execute the update of the result array elements

35

was not reached, as the threads would block, waiting at the barrier for the
two threads that did not actually even enter the for loop. A solution for this
problem is to let all threads enter the loop and add appropriate if statements
around computational blocks, whilst the barriers stay on the outside of those
blocks. This ensures that all threads execute the same barriers and the thread
block cannot block. This can be seen in Listing 4.3.

Listing 4.3: save_soln with barriers and thread divergance safety code sample
1

2 for (int n = get_global_id (0); n < set_size + set_size % OP_WARPSIZE ;
3 n+= get_global_size (0)) {
4 int offset = n - tid;
5 int nelems = MIN(OP_WARPSIZE , set_size - offset);
6 for (int m = 0; m < 4 && n < set_size ; m++) {
7 arg_s[tid+ m* nelems] = arg0[offset *4 + tid + m* nelems];
8 }
9

10 barrier (CLK_LOCAL_MEM_FENCE);
11

12 for (int m = 0; m < 4 && n < set_size ; m++) {
13 arg0_l [m] = arg_s[tid *4 + m];
14 }
15

16 barrier (CLK_LOCAL_MEM_FENCE);
17

18 if (n < set_size) {
19 save_soln (arg0_l , arg1_l);
20 }
21 }

At this stage in the debugging process, the code should have worked,
however, despite not having any NaN results, the output values were incorrect.
After careful further examination of the code, we deduced that the wrong
results were due to OP_WARPSIZE. This variable shows how many threads run
in lockstep. As we were running the code on a CPU, and we observed that at
any time, it was running on a maximum number of cores, we assumed that we
can simulate lockstep by using barriers and capturing thread divergence cases.
We also assumed that OpenCL’s workgroups were equal to the maximum
number of cores. If this were true, the above methods should have fixed
the problem. However, this assumption was wrong and the workgroups only
contained 1 work-item, thus only 1 thread. This meant that the hard-coded
value of OP_WARPSIZE = 4 was wrong, and was causing the wrong results. In
Listing 4.4 we give a sample of code that is broken if OP_WARPSIZE and the
workgroup size are not the same. In Figure 4.1 we provide an explanation as
to why this is the case.

36

Listing 4.4: adt_calc code sample that breaks when OP_WARPSIZE and the
workgroup size are not the same.

1

2 // This is a code sample from adt_calc
3 int tid = get_local_id (0)% OP_WARPSIZE ;
4

5 __local float *arg_s = shared + offset_s *(get_local_id (0)/ OP_WARPSIZE)
6 / sizeof (float);
7

8 // process set elements
9 for (int n= get_global_id (0); n< set_size ; n+= get_global_size (0)) {

10

11 int offset = n - tid;
12 int nelems = MIN(OP_WARPSIZE ,set_size - offset);
13

14 // copy data into shared memory , then into local
15 for (int m=0; m <4; m++)
16 arg_s[tid+m* nelems] = arg0[tid+m* nelems + offset *4];
17

18 for (int m=0; m <4; m++)
19 arg0_l [m] = arg_s[m+tid *4];

We see that tid = 0 in all cases, as get_local_id(0) always returns 0.
As a result, inside the for loop on line 8, offset = n and nelems = 4
or 2 (at the end of the set).

The problem starts being more clear on line 15, where the arg_s
indexes are given by tid+m*nelems, which are:
tid + m* nelems => 0 + m * 4 => [0, 4, 8, 12]

On line 18, the arg_s indexes are:
m + tid * 4 => m + 0*4 => [1, 2, 3, 4]

Here we clearly see that we allocate indexes 0, 4, 8, 12, but we
read from 1, 2, 3, 4, thus reading the wrong data.

Figure 4.1: Explanation as to why the code in Listing 4.4 can break when
OP_WARPSIZE and the workgroup size are not the same.

Correcting OP_WARPSIZE has managed to fix all of the original Airfoil
OpenCL codebase. All changes, including the thread divergence and syn-
chronization were rendered unnecessary, given that we then learned OpenCL
actually had workgroups with 1 workitem each.

37

Though fixed, the original codebase still had compatibility issues. The
OpenCL changes were tightly integrated with the OP2 runtime, thus making
the codebase unusable with any future versions of OP2. At this point, we
started working on correcting its structure so that it uses the latest OP2
runtime and it complies with standards respected by all other OP2 Airfoil
implementations (CUDA, OpenMP, etc.).

This process involved modifying some OP2 functions and mostly exporting
all non-core OP2 functions in separate appropriate files.

Overall, the entire process of debugging the original OpenCL codebase took
5 weeks. This was due to our original assumptions about OpenCL and a lack
of comments and proper design of the given code. Overall, this experience has
taught us about OpenCL’s limitations, differences between various OpenCL
versions and given us a better understanding of how parameters vary based on
architecture. Furthermore, we also learned what we can and cannot change
with respect to the codebase, thus allowing us to reshape the project’s scope.

4.1.2.1 OpenCL observations

Despite initially believing that any OpenCL code will give the exact same
results when run on CPUs or GPUs, we have learned that this is not always
the case. This very much depends on the code itself and, if not properly
designed, there can be discrepancies between the code running on different
platforms. This was shown by the usage of the OP_WARPSIZE variable, which
prevented the code from giving right results when run on a CPU. Further
differences have been observed when using an implementation that did not
perform memory coalescing. This meant that, despite the fact that the code
would run on a CPU, it would not be able to run at all on a GPU. From
this we conclude that in order to achieve the best results when working with
OpenCL, we need to design our programs based on a GPGPU design model.

Whilst testing the Airfoil with a number of OpenCL implementations
on multiple platforms, we have observed that there are differences of both
performance and correctness based on the combination of platform and
OpenCL implementation. With optimizations turned on (-cl-mad-enable
and -cl-fast-relaxed-math), on a Tesla M2030, both NVIDIA and AMD
OpenCL gave similar performance. However, when running the Airfoil on a
CPU, AMD with optimizations enabled ran in approximately 140 seconds,
whilst the Intel one ran approximately 3 times faster, in 45 seconds. However,
in this case, Intel OpenCL gave NaN results, whilst with optimizations off, it
did not run any slower and gave the correct results.

Other differences include accepted syntax between NVIDIA, AMD and
Intel. We have observed that Intel gave errors when it came to having enum

38

statements inside the kernels. We have thus adjusted the code appropriately.
For debugging purposes, we have also observed that there were differences

between the level of features supported by various implementations. As
NVIDIA OpenCL is strictly directed at GPUs, it has no support for printf
statements, whilst AMD’s and Intel’s offer this feature. More specifically,
the feature is the ability to use printf statements inside the computational
kernels, which is very useful, as the entire computation happens at that stage
and there is minimal information we can gather from the host code.

4.1.3 Compiler
The next step we needed to make in order to have a fully working set of tools
was to fix the OP2 to OpenCL compiler. A major issue was that the compiler
was not tested, therefore, we had no knowledge of the time required to fix it,
nor of the necessary changes.

In order to find out what changes needed to be made, we used the compiler
to generate OpenCL code and then we started fixing it. An initial problem
that prevented the code from compiling was the fact that both the OpenCL
and the host C++ code were generated in the same file. After splitting up
the project, according to the original handmade OpenCL code (all kernel
methods in one .cl file, and the rest into another a .cpp file containing the
host code), we started to work on the correctness of the host methods. Some
of the issues included improper usage of clSetKernelArgument with respect
to buffers. As the name implies, this method sets the arguments for a given
kernel. Other issues included improper or missing variable/pointer casting, or
unallocated constants on device. Overall, the host functions contained minor
errors.

Next to fix were the kernel functions and these had more complex errors.
First of all, there were problems with constants that were not passed to
the user supplied inline functions. Other problems included mismatched
or missing address space qualifiers (also known as storage modifiers within
the compiler’s back-end). These are qualifiers that state in which memory
region data associated with the variables is declared. One greater problem
was a lack of qualifiers for formal parameters of the user defined function.
This was due to the fact that the compiler’s component that dealt with
generating corresponding code had no knowledge of the kernel, and the formal
parameter’s variable names are different from the kernel’s variables of the
user defined function call. After exhausting options that relied on trying to
define the address space qualifiers in the kernel function, we decided to use
knowledge of the associated parallel loop parameters. We made one valid,
working assumption that the order in which the parameters are stored is the

39

same as the order in which they are declared in the parallel loop.
Having solved this issue, we moved on to fixing casting and typing issues

for shared memory objects. With respect to both kernels and user defined func-
tions, we also solved issues around improper passing of arguments (example:
all data arguments passed to the kernel have to be passed by reference).

At this point, we only had to solve two issues: correctly generating pointers
that require more than one address space qualifier, and splitting of files.

The OP2 compiler is built with a tool called ROSE [34], which is an open
source compiler infrastructure that can be used to generate source-to-source
transformations. Despite officially having OpenCL support, ROSE does not
offer a built-in option of generating declarations with two or more address
space qualifiers. Therefore, we had two options to obtain this, both involving
a hard-coded generation of the necessary output: we can either generate
the test with addTextForUnparser, which is a string generated verbatim, or
buildOpaqueType, which is a verbatim type. The advantage of the latter is
that it is far easier to use and requires a lot less extra changes, as it can be
given as a parameter to the declaration. However, the first option is far more
complex to implement, as it affects the entire variable declaration and thus
affects what we know of it. As a result, we chose to build the custom type
with buildOpaqueType.

We then saw that generating more than one file within the compiler was
not easily achievable and we needed extra scripts to deal with the process,
as the compiler’s back-end refuses to generate any files with extensions it
does not recognize. Therefore, converting from a .cpp to a .cl file has to
be done afterwards. As a result, we chose to write a Python script as shown
in Appendix A.8 that splits the files appropriately. This method worked
much better and allowed us to focus more on the machine learning algorithms
instead of hacking the compiler.

For us to have usable generated code, we needed extra statements to be
added to the generated code. These were lines of code that help calculating
timing information, and a number of #define statements that allow us to
control runtime parameters. Due to errors encountered with the compiler’s
back-end, for which all known workarounds failed, we resorted to adding all
method calls through addTextForUnparser. For all other declarations and
assignments, we used usual methods, which involved no hard-coding.

The overall process of fixing the compiler took an extra 5 weeks. Issues
related to multiple address space qualifiers and their generation, splitting
of files and generating appropriate storage modifiers were more difficult to
debug and implement. Furthermore, problems with the compiler’s back-end
stalled our performance further as none of the workarounds available were
successful, nor were the errors caused by code we added.

40

Nevertheless, we managed to have a fixed OP2 to OpenCL compiler,
which now generates correct code for all variations of Airfoil it was tested
with. However, as we have no other OP2 code examples available, due to the
nature of converting C++ code into OpenCL code, there is a chance that
the compiler will not generate working code. This is not due to compiler
issues, but rather due to the fact that all the appropriate host code and kernel
code, with the exception of user defined inline kernels, has to be generated
from scratch. If the process is similar to all applications of this sort that
use unstructured mesh applications, then the compiler will generate correct,
working code.

4.2 Summary
In this chapter we talked about the technical difficulties that we have encoun-
tered in order to bring the necessary tools to a working state. We detailed
on the process through which we fixed and improved the OP2 OpenCL run-
time and described the methods we employed in fixing the OP2 to OpenCL
compiler. In the end, we had both working OpenCL runtime and an OpenCL
compiler which generated correct code. Furthermore, due to difficulties with
the compiler’s back-end, we chose to write a separate script which splits the
resulting file which contains the host and kernel code.

41

Chapter 5

Machine learning techniques

In this chapter we discuss design and implementation choices of the machine
learning techniques and how previous debugging experiences shaped the scope
of the project. We present changes made to the scope of the project, additions
made to the OP2 runtime and OP2 compiler, in shape of OP Tuner and a
machine learning algorithm. We also describe the process we use for loop
fusion evaluation and present a final script that achieves this.

5.1 Design choices discussion
When this project began, we envisaged it having a slightly different scope
than the current one. An initial idea was to come up with a greater number
of optimizations and choose machine learning algorithms to choose between
them. However, this has changed when we realized the state of tools we
wanted to use and the months required for getting them to work. Furthermore,
some optimizations would have required a significant redesign of the OP2
runtime, changes that would have made the project’s contributions unusable
for anything else.

5.1.1 Choice of optimizations
We initially considered adding two main types of optimizations: implementation-
based ones, such as AOS/SOA, and source-to-source ones, such as loop fusion
and iteration reordering.

OP2 currently uses AOS and we believed it would be an interesting
experiment to use SOA instead and see how it affects Airfoil’s performance.
There have always been debates and discussions as to when each way of
storing data is preferred, and we believed that by using machine learning we

43

can more easily find a connection between a storage layout and an underlying
architecture. This was possible as we had OP2 OpenCL to use, which works
on a number of different back-end types (CPUs, GPUs, etc.). However, we
soon realized that, despite being an interesting experiment, SOA was not
a feasible option as it would have required major changes to the OP2 core
runtime. As OP2 is used for multiple projects, within or outside of Imperial
College London, any modifications brought to the OP2 core functions would
break compatibility with all projects that use it. This would mean that our
results would be isolated and unusable by anyone else. Furthermore, it would
have also required significant changes to the OpenCL codebase. All of these
reasons made us change our focus from implementation-based optimizations.

Iteration reordering was another optimization we considered as we believed
it could improve performance, but we had no clear measure of its improvement.
However, when we started discussing loop fusion, we experimentally observed a
significant improvement in performance in other OP2 Airfoil implementations.
Due to time constraints, we chose to go ahead with loop fusion, as we saw
more clear benefits for using it on multiple codebases, as opposed to iteration
reordering, which is more complex and might provide better performance.

When manually analysing the code, we realized that if we applied further
transformations, we would be able to obtain extra loop fusions. Examples
of this can be found in the Background chapter under code-block reordering
example in Listing 2.5. Due to time constraints, we chose to only apply
loop unrolling and code-block reordering manually, as they are not a core
requirement of the project, and as long as we provide code examples with
those optimizations enabled, we do not restrict our results’ scope.

5.1.2 Scope of machine learning and deterministic au-
tomation

Initially, we aimed at using machine learning algorithms to determine an
optimal and compatible combination of optimizations, however, the lack of
options and time constraints have restricted this possibility. Furthermore, we
also initially aimed to do all decisions whether optimizations were possible
within machine learning. However, we later realized that such an attempt
would only overcomplicate the algorithm and would not bring any benefit.
Within this project we aim to show the impact of machine learning in con-
junction with optimizing compilers, with respect to deciding on parameters
and choice of optimizations based on a given architecture. We do not look to
explore machine learning techniques’ full capabilities. As a result, we decided
to determine certain properties automatically, outside of machine learning.

44

More specifically, we are determining which loops are fusable, by using basic
control flow information, automatically. We pass the possibilities onto the
machine learning algorithm that further generates an optimal choice of loop
fusions.

In addition to which fusions we should perform, the machine learning
algorithm, based on a given architecture, decides on values for runtime
parameters. We chose to have those, as different values render variations in
performance, which is what we aim to optimize.

Due to time constraints, we only chose to implement and offer support
for loop fusion and runtime parameter tweaking, whilst code-block reordering
and loop unrolling are performed manually. This choice does not limit the
experimental side of the project, nor its scope. We still have a clear proof of
concept by using this combination of optimizations. By using the tools we
improved for this project, we can extend this work in a great number of ways,
as we only provide the first step towards architecture-based optimization
choices. Further details of extension possibilities are discussed in Chapter 8:
Conclusions, under Further Work 8.2.

5.2 OP2 Runtime support – OP Tuner
At this stage, all the tools we chose to use are fixed. As a result, we first
implemented the runtime support for the machine learning algorithm. This
is minimalistic, as we have no runtime optimizations. We have tweaking of
runtime parameters, which is done through the runtime support. Furthermore,
this allows manual manipulation of parametefrs, from within Airfoil. Despite
having a minimal effect at the moment, the runtime support can be extended
further, depending on the choice of optimizations we have.

We chose to create a C structure called op_tuner which can be declared
within the airfoil.cpp file, which then controls the runtime parameters
of BLOCK_SIZE, PART_SIZE and OP_WARPSIZE. BLOCK_SIZE represents the
number of threads in a workgroup, from the OP2 plan function’s perspective,
OP_WARPSIZE represents the number of threads executing in lockstep inside
the kernel, whilst PART_SIZE shows the number of elements in a partition.
Due to the changed scope of the project, the op_tuner structure has fields
which are no longer used. Listing 5.1 shows the structure of op_tuner.

45

Listing 5.1: Here we show the op_tuner structure, and associated helper
elements. As we can see, it contains the block, partition and warp size. The
cache line size was originally considered, but it did not affect the code as much
as the others, thus was not used in the final implementation. The structure
also contains a name, an active flag, and whether it is a loop or global tuner.
The architecture shows on which architecture the code is running. Currently,
this functionality is not enabled, as we do not have any runtime optimizations.

/*
* The core of the runtime op_tuner
*/

typedef enum {ANY , CPU , GPU , ACCELERATOR } arch;

typedef struct {
int block_size ;
int part_size ;
int cache_line_size ;
int op_warpsize ;
arch architecture ;
char const *name;
int loop_tuner ;
int active ;

} op_tuner ;

struct node {
op_tuner * OP_tuner ;
struct node * next;

};

From an implementation perspective, in order to ensure the correct-
ness of the op_tuner declaration, we have created two functions called
op_create_global_tuner() and op_create_tuner("tuner_name"). This
is to ensure that all fields are properly initialized as, for example, having
a PART_SIZE = 0 will lead to erroneous results. Furthermore, we have two
tuner declaration functions, as our original design involved having two types
of control over the program parameters: one involving general changes that
apply to the entire code, and the second involved changes that apply only
to particular op_par_loops. As an example, consider the case of choosing
between AOS and SOA. If we had this optimization, we would have to apply it
throughout the entire program, thus it would be a feature of the global tuner.
However, choosing whether we want a particular loop to have a different
partition size compared to others is a change that only affects that particular
loop, thus it would be controller by loop tuners. This approach ensures that
loop tuners cannot overwrite the global tuner, and thus maintain optimization

46

correctness and consistency throughout the program. However, as the scope
of the project has changed, the role of the global and loop tuners has adapted
as well. We maintain a possibility for them to fulfill their intended purpose,
nevertheless, at the moment, they only control a few parameters, and the
global tuner ones can be overwritten by loop parameters, as long they are
correct. A correct parameter must be non-zero or non-null. The same rule
applies to the global tuner. If the user overwrote the default values with
improper ones, the user default values would be discarded when we attempt
to use them, and they are substituted with default ones.

Further helper methods have been defined, such as op_get_global_tuner()
and op_get_tuner("tuner_name"), for retrieving global and loop tuners, re-
spectively. A full list of methods can be found in Appendix A.2: OP2 Tuner
Runtime Support.

After further consideration, we realized that the only feature the current
implementation of op_tuner provided was to overwrite runtime parameters.
The same result can be achieved through normal #define statements, which
can be passed values from a Makefile. As a result, we chose not to implement
the op_tuner support into the OP2 compiler. However, runtime and script
support remain. When future runtime optimizations are added, providing
compiler support for the op_tuner will be more justified.

5.3 OP2 Compiler support
Within the OP2 compiler, we added timing information which tells us how
long each kernel took to execute, thus giving us a more detailed picture
of our optimization’s impacts. As mentioned in Section 5.2 OP2 Runtime
support - OP Tuner, we chose not to add compiler support for op_tuner.
In exchange, we chose to add similar #define statements, which achieve
the same result. Without these, we would not have been able to control
any parameters at runtime, with the exception of OP_WARPSIZE, which is
overwritten at a different stage during runtime.

Inserting timing information, despite initially appearing to be a simple
task, proved to be much more challenging. This is due to errors of the
compiler’s back-end, which started throwing errors when adding any new
method calls. No workarounds managed to fix the issue, and we ended up
generating the desired code through addTextForUnparser, thus hard-coding
the method calls. This is not an issue, as these are the same across programs.
All other declarations and assignments are generated appropriately, without
any hard-coding of output.

Initially, the OP2 compiler had no loop-fusion support. As a result, we

47

added this optimization. The fusion is performed in a simplistic way, in which
it just appends the user kernels, and the parameters that are passed to the
loops. There are no checks whether the fusion is possible or not. This is
achieved by automation, as detailed in Section 5.4: Loop fusion evaluation.

5.4 Loop fusion evaluation
The fusion implementation in the OP2 compiler has no knowledge of whether
two loops can or cannot be fused. Therefore, in order to successfully use
this feature, we had to introduce loop fusion evaluation. The evaluation
is comprised of a small control-flow information analysis that is applied to
airfoil.cpp. It creates scoping information for for and op_par_loop loops.
If two op_par_loops are in the same scope and are next to each other, they
they can be fused. This algorithm does not consider whether we should or
should not fuse them, but only if the fusion is possible. We achieve this by
creating a tree, which has the following node structure 5.2:

Listing 5.2: This is the Root node of the Control-flow information analysis.
The analysis is small, so we store the name of the node, its children and depth.
This information is sufficient to analyse whether loops are fusable or not.
CFInfoRootNode = {

'name ' : 'ROOT ',
'children ' : [],
'depth ' : 0

}

The Root node is the only one with depth = 0, and all other statements
have a depth >= 1. We add each statement as a node, in the order we find
them, and in the list of children, from left to right. This means that we
preserve information of order of statements within the code. Furthermore,
only for loops can generate a new scope, thus a new level of nesting. With
respect to naming, the root node is called "ROOT", however, all other nodes
have more relevant names. for loops have a name with the following format:
"for" + nth for loop index, whilst op_par_loops keep the name of the loop to
which we add an mth op_par_loop index. We call this indexed op_par_loop
name a tag. As we can have multiple occurrences of an op_par_loop, we
add the extra index. This helps us properly identify each occurrence within
our control flow information tree, thus generating a correct analysis of which
loops are fusable, and which are not. In order to maintain knowledge of which
loop matched which tag, whilst generating the tree, we create a map of tags
and original loop names. An example of map can be seen in Listing 5.3. As a
result, we obtain a tree of the form shown in Listing 5.4:

48

Listing 5.3: This is an example of the tag to original name map that we
create. Its actual data structure is a dictionary.

[{ 'tag ': 'save_soln0 ', 'original ': 'save_soln '},
{'tag ': 'adt_calc1 ', 'original ': 'adt_calc '},
{'tag ': 'res_calc2 ', 'original ': 'res_calc '},
{'tag ': 'bres_calc3 ', 'original ': 'bres_calc '},
{'tag ': 'update4 ', 'original ': 'update '}]

Listing 5.4: This is a full Control-flow information tree, for the standard
Airfoil code. From here, we can see that the only fusable loops are adt_calc
and res_calc, res_calc and bres_calc, and bres_calc and update.

{'depth ': 0, 'name ': 'ROOT ', 'children ':
[{ 'depth ': 1, 'name ': 'for0 ', 'children ':

[{ 'depth ': 2, 'name ': 'save_soln0 ', 'children ': []},
{'depth ': 2, 'name ': 'for1 ', 'children ':

[{ 'depth ': 3, 'name ': 'adt_calc1 ', 'children ': []},
{'depth ': 3, 'name ': 'res_calc2 ', 'children ': []},
{'depth ': 3, 'name ': 'bres_calc3 ', 'children ': []},
{'depth ': 3, 'name ': 'update4 ', 'children ': []}

]}
]},
{'depth ': 1, 'name ': 'for2 ', 'children ': []}

]}

At this point, we can generate a list of fusable loops, by first creating a
list of available op_par_loops, as shown in Listing 5.5, and then traversing
the newly formed list, checking in the control-flow information tree that the
two loops we are considering are found within the same scope (i.e. have the
same depth), and that they are found next to each other (by being in the
parent’s children list next to each other. At the end, we use the map of tags
and original names to generate a list of fusable loops that have their original
names.

Listing 5.5: List of available loops, in order of appearance.

['save_soln0 ', 'adt_calc1 ', 'res_calc2 ',
'bres_calc3 ', 'update4 ', 'save_soln0 ']

In Listing 5.6 we can see a list of fusable pairs, where each pair contains
the names of each of the loops involved in the loop fusion.

Listing 5.6: List of possible loop fusions.

[{ 'loop2 ': 'res_calc ', 'loop1 ': 'adt_calc '},

49

{'loop2 ': 'bres_calc ', 'loop1 ': 'res_calc '},
{'loop2 ': 'update ', 'loop1 ': 'bres_calc '}]

This result is then passed on to the machine learning algorithm, which
then decides which of the fusions is worth performing.

5.5 Machine Learning
Our implementation’s final component is the machine learning algorithm,
which provides decisions of which loop fusions to perform and what values
we should choose for the runtime parameters. We implemented a case-based
reasoning system, which uses a structure outlined in Figure 2.6. As a result,
the system has the following main components:

1. CBRInit – a method used for initializing the system with the training
cases and their respective outcomes. It outputs a resulting CBRSystem.

2. retrieve – this method retrieves a case most similar to our unsolved one,
and returns it. This similar case comes from its case-base.

3. reuse – once we found a best matching case, we want to apply its
solution to our new case. This method does just that.

4. retain – the last step in this process is to retain the newly solved case
in the system’s case-base.

We represent the CBRSystem as a list of CBRSystemCases, which are
made out of a CBRCase, CBRSolution and a number of occurrences. Each
CBRCase contains a target architecture, a list of fusable pairs, as dictated by
the loop fusion evaluation algorithm, and a list of all op_par_loops available.
A CBRSolution is made out of a list of loops which we are going to fuse
and the op_warpsize, block_size and part_size values. In Listing 5.7, we
present this data structure’s implementation.

Listing 5.7: Here we show how we have implemented the base components of
the case-based reasoning system.
All these dictionaries are initialized with stock values ,
as they are only listed for reference .
CBRCase = {

'arch ' : Arch.ANY ,
'fusable_pairs ' : [],
'op_par_loops ' : []
}

CBRSolution = {

50

'loops_to_fuse ' : [],
'op_warpsize ' : [],
'block_size ' : [],
'part_size ' : []
}

CBRSystemCase = {
'case ' : CBRCase ,
'solution ' : CBRSolution ,
'occurrences ' : 1
}

The CBRSystem is initially empty , and values are assigned
in the CBRInit stage.
CBRSystem = []

CBRCase is what we initially create when we have an unsolved problem.
It is initialized as in Listing 5.8, where we show that the architecture takes
a default_arch value, which can be overwritten by the user through a
script parameter. Fusable_pairs and op_par_loops are initialized by the
variable called fusable_pairs, and op_par_loops respectively. The former
is given appropriate values at the loop fusion evaluation stage, whilst the
latter is initialized when we parse airfoil.cpp. Afterwards, we create a
CBRSystemCase, which is then passed on to all other CBR methods as an
unsolved case, by referencing the newly created CBRCase as its case, and
giving it an empty solution, and one occurrence.

Listing 5.8: Initialization of unsolved case, which is passed onto the CBR
system.
initial unsolved case for the CBR system
newCase = {

'case ' : {
'arch ' : default_arch ,
'fusable_pairs ' : fusable_pairs ,
'op_par_loops ' : op_par_loops
},

'solution ' : None ,
'occurrences ' : 1
}

Once we have an unsolved case, we pass it on to the retrieve method,
which gives us a best matching case, and then to reuse. During retrieve,
we choose to validate the results, by using a checkBestMatch method. It can
happen that our current case is something previously unseen, and therefore,
despite the fact that the CBR system might work appropriately, its lack
of knowledge with respect to this case might produce a sub-optimal result.
Furthermore, it can happen that our new case belongs to a different program

51

and the loops do not match. As a result, finding a connection between
the cases would prove far too difficult and error-prone, thus we chose to
generate a new solution based on the new case by performing code analysis.
Whilst coding the CBR system, we observed that determining which loop
fusions are optimal and what values runtime parameters should have can be a
fully deterministic process. Therefore, checkBestMatch verifies whether the
machine learning algorithm made any obvious mistakes and tries finding a
better option. If none is available, we return the one suggested by the CBR
system. Otherwise, we create a new option. This is our fail-safe. More about
fail-safes can be found in Section 5.5.3: Fail-safes.

The final solution contains values for block_size, part_size, op_warpsize
and a list of feasible fusions. Its full structure in shown in Listing 5.9.

Listing 5.9: A possible solution, returned by the CBR system as part of a
solved case.
a potential solution , returned as part of a solved case
CBRSolution = {

'loops_to_fuse ' : [],
'op_warpsize ' : 1,
'block_size ' : 32,
'part_size ' : 256
}

Due to the nature of the OP2 Compiler’s fusion, we can only provide it
with one fusion at a time. In order to maintain flexibility, we only return the
best fusion. In order to obtain all fusions, we would need to rerun each result
through the tuning algorithm until we get no more fusions. Furthermore, by
only returning one fusion and not choosing to suggest all possible fusions, we
keep in consideration situations when the freshly fused loops can be fused
with a 3rd loop, which would, in the initial step, be involved in a different
fusion.

5.5.1 Similarity measure
In order to determine which is the most similar case to our unsolved one,
we first check whether we have an identical one stored in the CBR system.
If not, we employ a particular implementation of the k-nearest neighbour
algorithm, which gives us the closest match. This is done through a method
called similarityEstimation. Here is the first occurrence where we consider
the unsolved case as a vector of properties. The first four entries in the vector
correspond each to a target architecture, whilst the fifth corresponds to the
fusable loops weighting, and the sixth to complexity of the given loops, with
respect to loop fusion. A visualisation of this is available in Figure 5.1. A

52

detailed description of used weighting and complexity algorithms can be found
in Section 5.5.2: Weighting and complexity calculations.

Arch.ANY Arch.CPU Arch.GPU Arch.ACC
Loop Fusions

Weights
Loop

complexity

Figure 5.1: Vector of properties for the CBR system, where the first 4
entries match the 4 types of supported architectures (ANY, GPU, CPU,
ACCELERATOR), whilst the fifth entry represents the weighting of fusable
loops, whilst the sixth has the complexity of the loops, calculated based on
possible loop fusions.

The method then calculates, for each case in the CBRSystem, a weighting
for its individual parameters. This weighting is directly proportional to the
number of occurrences for the respective case. Once this is achieved, we
normalize the results, to exclude errors that can be introduced by frequency
of cases.

Once this is done, we calculate the weighting of intersection between our
unsolved case and each existing compatible case, taking in consideration
the weight of each property, which we calculated at the previous step. A
compatible case is one that has the exact same op_par_loops as the unsolved
one. We take the maximum of all these weights and then we add all cases that
have a maximum weight to a new list called maxList. This is subsequently
sorted based on the occurrences of each case. If maxList is empty, then we
return None. The maxList can be empty when our new case’s op_par_loops
differ those of every other known case.

5.5.2 Weighting and complexity calculations
Within the similarityEstimation, we need to associate weighting to each
vector parameter. We calculate those as follows:

• The matching architecture takes a weighting of +5.

• The fusable loops is the total number of fusable loop pairs that are
roughly worth fusing. A pair of loops is roughly worth fusing if they
traverse the same set. If the set differs, then the fusion is certainly not
feasible.

• The weighting of loop arguments is calculated based on the total com-
plexity given by possible loop fusions. In turn, this is a function of the

53

number of operations of the user supplied kernel, per loop, and the num-
ber of equal, similar, different and total arguments. We calculate the
number of operations per loop as follows: each mathematical function
call, operation and assignments are each worth 1 point, if statements
are worth 2 points, whilst for loops are worth 3. We chose these weights,
as we abstract away the complexity of mathematical calls, operations
and assignments and we consider them as one operation. However,
if statements contain a comparison and a jump, which involves two
operations. Similarly, for loops contain one comparison, one increment
and a jump, totalling to 3 operations. Two arguments are considered
equal is they share the same data array, data array access and map.
Two arguments are similar if they have the same data array and map,
but different access. They are different in all other cases. Furthermore,
we do not care about the type of access of the data, as we are confirmed
to do all operations in appropriate order. The complexity of a loop
fusion is given by the sum of:

– overall amount of operations, multiplied by the weighting associ-
ated with the number of operations

– proportions of equal arguments, multiplied by the weighting of
equal arguments and the number of equal arguments

– proportions of similar arguments, multiplied by the weighting and
then number of similar arguments

– the total proportion of different arguments, multiplied by the
weighting and total number of different arguments, respectively

– total number of arguments, multiplied by its respective weighting

Each of the weightings is multiplied by the respective case’s number of
occurrences. Furthermore, all hard-coded values we use have been decided
based on experimental observations, and they depend on the architecture.
We currently have a set for CPUs and one for the rest.

Whilst developing the formulas for these weightings, we observed that
there is a deterministic way to calculate the desired loop fusions and the
values for the runtime arguments. The loop fusion complexity calculation is
one representation of such a deterministic method. The method is further
described in Section 5.5.3: Fail-safes.

5.5.3 Fail-safes
Fail-safes are fully deterministic methods that can give us optimal or close to
optimal results, with respect to a set of parameters and optimizations, for

54

a given program. At the moment, we have only one fail-safe implemented,
which gives us a better solution in case we do not have any matches of the
current case in the case base, or if the current best case has clear errors. A
clear error is, for example, a OP_WARPSIZE different than 1 for a CPU solution.

The fail-safe calculates the maximum complexity, from all the loop fusion
complexities within the fusable pairs of the new case. The fusion with the
maximum complexity is the desired one. If the best match contains the
wanted fusion and is comparable, then it is a good case. Otherwise, assuming
the best match has extra knowledge that we do not have, and perhaps the
wanted fusion is not as desirable, we check whether the OP_WARPSIZE is 1
if the architecture is CPU. If this is the case, we return the best match,
otherwise we calculate our own solution.

We first set the OP_WARPSIZE to 1 if the architecture is anything but
GPU, which gets a value of 32. We then use the complexity calculation of
each loop’s arguments, and evaluate the maximum one. We calculate this
by first determining the total number of similar arguments within the same
loop, and we make an array of distinct such accesses. We multiply their
total number by a predetermined weight, which depends on the architecture.
Then, we add to the complexity the total number of arguments the loop
has, multiplied by its respective weighting. We return the result. Just as
in the case of all other weights discussed, the hard-coded values have been
determined experimentally.

Afterwards, we calculate appropriate values for block and partition sizes.
We start from the standard value of 128 and, depending on the architecture,
we compute the block size as a function of the overall maximum complexity, a
reference value of 4 and a custom adjustment factor, architecture dependent.
It is calculated as follows:

math.log(overallMaxComplexity * referenceValue) *
adjustmentFactorArch

This gives us a temporary size, which we then compare with the possible
values for block size, which are powers of 2 starting from 4 and ending with
512. We choose the value that is closest to ours. The partition size depends
on the value of the block size. As a result, we use a custom defined threshold
value which dictates the ratio between partition size and block size. As we
observed experimentally, the ideal case is when the partition size is 8 times
the block size, therefore, we aim to keep that ratio. If it is not possible due
to a too high block size, we decrease the ratio in powers of two until we are
able to fit an appropriate value up to 512 for the partition size.

Once we have all this data, we can put together a new solution for our
problem.

55

A potential second fail-safe would be to run the compiler at the end of
the machine learning algorithm, in order to determine whether our result is
good or not. Partial support exists for this, however, due to manual tweaking
needed to run the loop fusion option within the compiler, we have decided that
it is better to tweak the hard-coded values manually, based on experimental
results.

5.5.4 Overtraining
Due to our very small case-base, we are very likely over-fitting the algorithm
for Airfoil. The fail-safe we use also enforces over-fitting, as we are introducing
cases that are custom tailored to a specific problem. Nevertheless, once more
cases are added to the system, we will safely be able to disable the fail-safes
or, even if we choose to leave them in place, we can at least not add their
results to the CBR system. At the moment, we use this last option of not
storing the results. Despite having support for adding them to the CBR
system, we do not actually save them outside of the script, and the script runs
for only one case. As a result, we limit the amount of data overfitting that
occurs and encourage a more thorough testing of the deterministic algorithms
through unseen cases. If we were to add and store permanently all cases, we
would severely overfit the machine learning system and we would also cover
all possible cases quickly enough, thus turning our machine learning problem
into a simple lookup.

5.5.5 Training data quality
In order to thoroughly test the full algorithm, we only added test cases that
refer to the stock Airfoil code. For any fused versions, our system uses the
deterministic approach to deliver a good result. We chose this method, as it
encourages us to fine-tune the system appropriately, and it provides a more
extensive testing.

Furthermore, the data itself is optimal or close to optimal, and the results
were experimentally determined, after running Airfoil under a number of
configurations.

5.5.6 Validation of results
As our second fail-safe is not currently activated, we determine whether a
result is optimal or close to optimal by running experiments which involve
tweaking of parameters. Furthermore, we know that by moving further away
from the ideal parameter values, in either direction (i.e. making them too

56

small or too large) will continuously decrease performance, it is safe for us to
try a small number of configurations. Furthermore, we compare the result
against the stock Airfoil code, which we use as a benchmark for all our
optimizations.

A more detailed discussion, including execution time values and com-
parisons of experiments, Airfoil variations and architectures is offered in
Chapter 6: Evaluation.

5.6 Script
For ease of use and simplicity, we incorporated the text parsing, control
flow information, machine learning and deterministic algorithms, and even
functionality to call the compiler into one Python script, called tuner.py.
The purpose of this script is to be run with parameters for target architecture,
a file to be parsed and the number of operations of associated user kernels,
and all the operations are performed seamlessly. A comprehensive version of
the script can be found in Appendix A.4: Tuner script.

5.7 Summary
In this chapter we provided a discussion of our choice of optimizations, and
detailed how the scope of the project adapted during time. We then went on
and presented the work we performed on existing tools, including improving
the OpenCL runtime and fixing the OpenCL compiler. After that, we talked
about the newly added OP2 tuning runtime and compiler support. Finally, we
detailed on the machine learning techniques we used, and how they fused with
deterministic algorithms which help us provide more reliable better results.

57

Chapter 6

Evaluation

The main purpose of this project is to investigate whether machine learning
and deterministic algorithms applied to OP2 code can give a performance
improvement, in the shape of better execution times for unstructured mesh
applications.

In this chapter we provide experimental results that show how the sugges-
tions of the machine learning and deterministic algorithm perform against
the stock version of Airfoil. We also include results from other variations
of Airfoil, which contain non-optimal fusions, that were used to tweak the
algorithm’s weightings, as detailed in Section 5.5.2: Weighting and complexity
calculations. All experiments were run on two different configurations, both
having CPUs as main compute devices.

6.1 Testing platforms
To ensure our results are consistent across machines and architectures, we
used two different compute configurations for all tests. They are as follows:

• Imperial HPC center machine: Intel Xeon X5650 2.67 GHz with 24 GB
RAM, having 6 cores and Hyper Threading, totalling 12 threads

• Personal machine: Intel Core i7 2620M 2.7 GHz with 4 GB RAM,
having 2 cores and Hyper Threading, totalling 4 threads

The OpenCL runtimes we used were Intel OpenCL 2.0 on the Xeon and
1.5 on the Core i7. For these tests we used no GPUs, as we encountered
various OpenCL runtime issues when trying to test the software. These issues
are likely caused by NVIDIA compiler bugs, which we cannot fix. We did
not use AMD’s platform, as it offers OpenCL GPU support only for its own

59

graphics cards, and the cards we had available were NVIDIA Tesla M2050.
Furthermore, we also rejected AMD’s OpenCL as, from past experience, it
was significantly slower than Intel’s (approximately 2.5–3 times), and with the
latest version of the generated code, it showed inconsistent behaviour across
configurations, despite being the same version (AMD OpenCL 2.6). Whilst
on the i7 it failed to build, on the Xeon it failed to run due to semaphore
wait issues.

Despite using only two CPU-based configurations with their respective
Intel platforms, we successfully show performance results of fused Airfoil
versions against the stock one.

6.2 Results for Airfoil variations
As we wanted to create algorithms that render performance improvements,
we first needed to properly understand Airfoil, the architectures and the
available optimizations. We started from the assumption that all fusions will
render better execution times. As a result, the first set of experiments we ran
involved versions of Airfoil which performed all possible feasible fusions. We
consider a feasible fusion to be one which involves two loops which iterate
over the same set. If they iterate over different sets, we get no performance
benefits, as we do not have any shared data between the loops.

In Airfoil, three pairs of loops are fusable: save_soln and adt_calc,
adt_calc and update, and update and save_soln. We provide two variations
of Airfoil, in addition to the stock one. The first performs loop unrolling
and includes the first two possible fusions, whilst the second performs loop
unrolling and code block reordering, thus enabling the last two possible fusions.
A visualisation of this is provided in Listings 6.1 and 6.2.

Listing 6.1: Airfoil variation with loop unrolling and the following fusions:
save_soln and adt_calc, and adt_calc and update.

1

2 n = 1000;
3

4 for (int i = 0; i < n; ++i) {
5 op_par_loop (" fused_save_soln_adt_calc ");
6 op_par_loop (" res_calc ");
7 op_par_loop (" bres_calc ");
8 op_par_loop (" fused_update_adt_calc ");
9 op_par_loop (" res_calc ");

10 op_par_loop (" bres_calc ");
11 op_par_loop (" update ");
12 }

60

Listing 6.2: Airfoil variation with code-block reordering and loop unrolling,
and the following fusions: adt_calc and update, and update and save_soln.

1

2 n = 1000;
3

4 op_par_loop (" save_soln ");
5

6 for (int i = 0; i < n -1; ++i) {
7 op_par_loop (" adt_calc ");
8 op_par_loop (" res_calc ");
9 op_par_loop (" bres_calc ");

10 op_par_loop (" fused_update_adt_calc ");
11 op_par_loop (" res_calc ");
12 op_par_loop (" bres_calc ");
13 op_par_loop (" fused_update_save_soln ");
14 }
15

16 op_par_loop (" adt_calc ");
17 op_par_loop (" res_calc ");
18 op_par_loop (" bres_calc ");
19 op_par_loop (" fused_update_adt_calc ");
20 op_par_loop (" res_calc ");
21 op_par_loop (" bres_calc ");
22 op_par_loop (" update ");

For all these tests, we varied the block and partition sizes between 8 and
512, giving them powers of two values and making sure that partition size
is at least as high as the block size. We show how execution time varies
depending on these parameters for the original codebase and the two fusion
versions in Figures 6.1, 6.2 and 6.3, respectively, for the Xeon results, and
Figures 6.4, 6.5 and 6.6, respectively, for the Core i7 ones.

61

Figure 6.1: Xeon results for the original Airfoil codebase. These show that as
long as we maintain a relatively small block size (such as 16 or 32) and we
increase the overall partition size, gradually, our execution time is going to
drop from 68 seconds to 52 seconds.

62

Figure 6.2: Xeon results for Airfoil with fused save_soln and adt_calc,
and adt_calc and update. Here we can see that the performance increases
(from 74 seconds down to 54 seconds) as long as we maintain a proportionally
inverse relationship between the block size and partition size, and we increase
the partition size.

63

Figure 6.3: Xeon results for Airfoil with fused adt_calc and update, and
save_soln and update. We observe that we can reduce execution time from
74 seconds down to 56 seconds, by keeping the block size between 16 and 32,
whilst increasing the partition size up to 256.

64

Figure 6.4: Core i7 results for the original Airfoil codebase. Just like in the
Xeon results, we observe that we can improve execution times by 100 seconds,
by keeping a small block size and increasing the partition size.

65

Figure 6.5: Core i7 results for Airfoil with fused save_soln and adt_calc,
and adt_calc and update. Here we see that we can obtain significant
performance improvements of up to 200 seconds by using block sizes of 16–64
and partition sizes of 256–512.

66

Figure 6.6: Core i7 results for Airfoil with fused save_soln and adt_calc,
and adt_calc and update. This shows us that by using a block size of 32 and
a partition size of 256, we can reduce the execution time from 400 seconds
(in the case of block size and partition size of 8) down to 240 seconds.

67

As we can observe in Figures 6.1–6.6, irrespective of which configuration
and Airfoil version we have, there is an optimal pair of block and partition size
(32, 256). At this point we can test this further by enabling one fusion at a
time and seeing whether it produces optimal execution times. To ensure that
these values are optimal, we ran experiments with the following neighbouring
pairs: (16, 128) and (32, 512). We show the results in Figures 6.7 and 6.8 for
the Xeon and Core i7, respectively.

Figure 6.7: Xeon results that show the execution time of Airfoil with each
fusion enabled separately, and the stock version when running with optimal
block size and partition size pairs.

Figure 6.7 clearly shows an improvement in execution time of two of the
fusions, compared to the stock version. However, here we observe that by
fusing update and adt_calc, we actually decrease performance. As our initial

68

Figure 6.8: Core i7 results which show the execution time of Airfoil with
fusions enabled individually, including the stock version when running with
optimal block size and partition size pairs.

69

Airfoil version cache-misses branch-misses
Stock Airfoil 4 890 201 717 1 611 791 137
Fused save_soln and adt_calc 4 729 142 614 1 537 029 469
Fused adt_calc and update 4 251 236 541 1 563 408 439
Fused save_soln and update 5 017 608 868 1 569 090 758

Table 6.1: The initial analysis returned by Perf, containing only the number
of cache and branch misses.

Airfoil version instr. per cycle L1-icache-load-misses iTLB-load-misses
Stock Airfoil 1.02 1 197 267 639 18 902 629
Fused save_soln
and adt_calc 1.03 1 251 404 877 18 481 245

Fused adt_calc
and update 1.00 1 347 505 750 19 967 966

Fused save_soln
and update 1.03 1 159 372 532 17 660 208

Table 6.2: The final analysis returned by Perf, which contains the number of
instructions per cycle, instruction cache load and TLB load misses.

assumption was that all fusions are beneficial, we needed to understand why
we observed different behaviour. We started by running the Airfoil versions
on the Xeon with Perf [35]. We did not test the Core i7 results, as these
were running in a virtual machine, which prevents us from successfully using
profiling tools. Furthermore, those results exhibited significant variations in
performance (within 36 runs of the same executable, with the same runtime
parameters, we observed differences of up to 40 seconds or 14.3% in execution
time), thus we only include those mainly for reference. They were not used
for fine tuning the machine learning and deterministic algorithms.

We initially looked for obvious factors that can decrease performance, such
as cache misses and branch misses. However, as shown in Table 6.1, those
did not provide us with much information, as the number of cache misses
was higher than the one of the slow fusion, despite having an overall better
execution time.

As a result, we looked further into the number of instructions executed,
number of cycles, instruction cache load misses and instruction TLB load
misses. The values in Table 6.2 gave us a clear indication that the issue was
the complexity of the user supplied kernel.

We initially believed that all kernels are small enough to not cause bot-

70

Loop name # of operations
save_soln 4
adt_calc 81
res_calc 96
bres_calc 88
update 13

Fused save_soln and adt_calc 85
Fused adt_calc and update 94
Fused save_soln and update 17

Table 6.3: The total number of operations in user-supplied kernel, for each
loop.

tlenecks on CPUs, even after their fusion. However, these results clearly
showed that we only have two beneficial fusions: adt_calc and save_soln,
and save_soln and update. To confirm the results we obtained from Perf, we
calculated the complexity of the user supplied kernel. We expressed it in terms
of the number of operations performed: 1 operation for any mathematics
function calls, operations and assignments, 2 for if statements and 3 for for
loops. we present details as to how we chose these weights in Section 5.5.2:
Weighting and complexity calculations. We got the following results 6.3.

Furthermore, as a final confirmation that not all user-supplied kernels
are of appropriate size for CPUs, we checked the variations in performance
and in instruction cache misses with respect to the stock Airfoil code. We
observed that there is an approximately 4% difference between the instruction
cache misses variation and the average execution time variation. Excluding
this difference, we saw that the 8.5% variation of execution time translates
accurately into the 12.5% variation in icache misses. We show results in
Table 6.4.

71

Airfoil version L1-icache-load-misses % variation avg. exec time / s % variation
stock Airfoil 1 197 267 639 0 52.7699 0
Fused save_soln
and adt_calc 1 251 404 877 4.52 51.5258 −2.35

Fused adt_calc
and update 1 347 505 750 12.54 57.3002 8.58

Fused save_soln
and update 1 159 372 532 −3.16 52.7655 −0.008

Table 6.4: The correlation between the number of L1-icache-misses and
execution time.

6.3 Tuning algorithm results
Once we confirmed the results and the correlation between user-supplied
kernel size and variations in performance, we included this change in the
weight calculations for both machine learning and deterministic algorithms.
Therefore, our algorithms now produce optimal or close-to-optimal results
for any given version of Airfoil. Due to our restricted data set, we can only
guarantee the results for Airfoil, however, we strongly believe that any OP2
program can be run successfully through the algorithms and obtain optimal
or close-to-optimal fusions and parameters. This is due to the nature of the
OP2 programs, and the observed correlations between user kernel size and
performance. We enforce this by confirming that the machine learning and,
more importantly, the deterministic algorithm produce optimal or close-to-
optimal results by generating appropriate fusions and runtime parameter
values. We enforce the importance of the deterministic method, as it adjusts
far better to previously unseen programs with different sets of loops. In
Listing 6.3, we provide the results returned by our tuning script for each of
the main versions of Airfoil. For completeness, we also show the associated
complexities for each loop fusion candidate pair. Furthermore, no loop fusion
with negative complexity is returned as feasible, even in the absence of any
other fusions.

Listing 6.3: Here we present results returned by the tuning algorithm. As it
can be seen, they are either optimal or close to optimal.

Stock Airfoil
no loops fusions , therefore no complexity
solution
{'loops_to_fuse ': [],

'block_size ': 32,

72

'part_size ': 256,
'op_warpsize ': 1}

Loop unrolled Airfoil
fusable loops: adt_calc and update , and save_soln and adt_calc
solution

{'loops_to_fuse ': {'loop2 ': 'adt_calc ',
'loop1 ': 'save_soln '},

'block_size ': 32,
'part_size ': 256,
'op_warpsize ': 1}

complexity
[{ 'fusion ': {'loop2 ': 'adt_calc ', 'loop1 ': 'save_soln '},

'complexity ': 0.07193277310924273} ,
{'fusion ': {'loop2 ': 'adt_calc ', 'loop1 ': 'update '},

'complexity ': -0.20612244897959275}]

Loop unrolled Airfoil with code -block reordering
fusable loops: adt_calc and save_soln , and adt_calc and update
solution
{'loops_to_fuse ': {'loop2 ': 'save_soln ',

'loop1 ': 'update '},
'block_size ': 32,
'part_size ': 256,
'op_warpsize ': 1}

complexity
[{ 'fusion ': {'loop2 ': 'adt_calc ', 'loop1 ': 'update '},

'complexity ': -0.20612244897959275} ,
{'fusion ': {'loop2 ': 'save_soln ', 'loop1 ': 'update '},

'complexity ': 9.609778270509977}]

We do not require to add the script’s results for the Airfoil versions which
enable one optimization at a time, as we simulated the same behaviour by pro-
viding the initial Airfoil variations, which cover all these cases. Furthermore,
we observe from the values of complexity that when having to choose be-
tween adt_calc and save_soln, and update and save_soln, the algorithm
is always going to choose the latter. Despite having, in practice, a slightly
worse performance, on paper the fusion appears to be better. This is due
to the fact that they have 2 parameters in common, and a very low number
of operations in the user supplied kernel. This can lead us to believe that
there may not be a linear dependency between the user kernel’s number of
operations and the feasibility of the fusion.

The overall performance results for all versions of Airfoil, including those
which have only one fusion enabled in the optimal case of block_size =

73

32 and partition_size = 256 are provided in Table 6.5. For completion
purposes, we also include results from the Core i7 in Table 6.6.

Airfoil version Execution time / s
stock Airfoil 52.7699
Fused save_soln and adt_calc, and adt_calc and
update 55.6763

Fused save_soln and update, and adt_calc and
update 57.9855

Fused save_soln and adt_calc 51.5258
Fused adt_calc and update 57.3002
Fused save_soln and update 52.7655

Table 6.5: The execution time for each variation of Airfoil we have tested
with. We can clearly see that two of the fusions are more efficient than the
stock version, thus giving us the desired overall performance improvement.

Airfoil version Execution time / s
stock Airfoil 251.4098
Fused save_soln and adt_calc, and adt_calc and
update 246.9143

Fused save_soln and update, and adt_calc and
update 246.9143

Fused save_soln and adt_calc 265.4318
Fused adt_calc and update 284.2954
Fused save_soln and update 253.0470

Table 6.6: The Core i7 results of the execution time for each variation of
Airfoil we have tested with. These results are included for reference only. We
can observe that, despite each fusion being slower, individually, combined
they give better execution times compared to the stock Airfoil. As this is
highly unlikely, we attribute these differences to the high variations in runtime
for each case, as observed earlier.

74

6.4 Complexity
We initially presented this approach as being more efficient than a brute-force
one. A brute-force approach has exponential complexity, as we would be
required to try every single possible value of every parameter with all others.
The final algorithms we use, however, present a linear complexity with respect
to the number of possible fusions or loops.

The machine learning algorithm initially parses all the known cases and
generates its case-base. This is linear with respect to the number of cases.
The similarity algorithm, has the same complexity, as it initially goes through
all the cases it has stored and generates the weightings graphs. Secondly, it
calculates the intersection of the known cases and the unsolved one. This
intersection is once again, linear with respect to the number of cases. It
also depends on the number of fusions, as we calculate the overall fusion
complexity.

At the next step, we check the results by, again, calculating the complexi-
ties of all loop fusions, which is linear with respect to the number of possible
fusions. The calculations for the runtime parameters are O(1).

The retain and reuse steps are both of O(1), therefore, our overall
complexity is linear with respect to the number of possible loop fusions.

6.5 Summary
In this chapter we thoroughly tested the performance of multiple variations
of Airfoil under a number of runtime parameters and highlighted the opti-
mal results, which are returned by the machine learning and deterministic
algorithms. We have therefore proved our hypothesis correct that, despite
not having a significant performance improvement, by using machine learn-
ing and code analysis, we return in linear time optimal or close-to-optimal
results which have better execution times than the stock Airfoil version. The
next chapter presents a number of possible extensions and a case-study of a
real-world application.

75

Chapter 7

Real-world applications -
Hydra case-study

An important factor for any piece of work is its applicability onto real-world
applications. Therefore, here we present the applicability of our tuning
algorithm within the context of Hydra, based on work performed within
Imperial College London’s Software Performance Optimisation Group (SPO).

Hydra is an industrial application used by Rolls Royce, which is used to
simulate inner turbomachinery components of jet engines. The application is
highly complex and configurable, and therefore its computational complexity
varies accordingly. We will focus our analysis on a standard computational
fluid dynamics configuration scenario, as used by the SPO group.

Hydra contains 33 parallel loops in its main time-marching loop, which
have a similar structure with the op_par_loops of OP2, thus making this an
excellent discussion candidate for our application. Furthermore, the applica-
tion was run on both GPUs and CPUs, by using CUDA and MPI, respectively.
More specifically, this performance is benchmarked on two different high-end
multicore nodes: dual 6-core Intel Xeon X5650 (Westmere) processors and
an Intel Core i7 2600K (Sandy Bridge) processor. For evaluating the GPU
performance an NVIDIA Tesla C2070 card is used, connected to a dual Intel
Xeon X5650 host node. It has been observed that the baseline CUDA im-
plementation is approximately 1.5× slower than the MPI solution running
on 12 Westmere cores. After investigating the code, members of the SPO
focused on a subset of 4 loops, which gave an overall poor performance. They
soon realized that some of the main issues were related to complexity of user
kernels associated with the loops. As the user kernels were too complex,
the associated data would not fit in the shared memory, nor in the GPU’s
registers. As a result, register spillage occurred (once all 63 single precision/31
double precision registers have been used, data will be accessed directly from

77

global memory). A solution to this is to split each complex loop into multiple
simpler ones.

At this point, we have the first possibility of using our algorithms for
deciding which loops require splitting. Assuming our machine learning and
deterministic algorithms would have knowledge of loop fission, we would be
able to use the same weightings methods used by the loop fusion complexity
calculation to determine whether loops should be split. More specifically, any
loop with a negative complexity would have to be split. A correlation to
Airfoil would be to consider a fused adt_calc and update as a given loop.
We have determined that this fusion has a negative complexity, as outlined in
Listing 6.3. As a result, if it were one initial loop we would decide to perform
fission.

A second optimization that is related to our choice of optimizations is
tuning the thread block size. The typical kernel consists of the following
stages: staging in from device to shared memory, executing the user kernel
and then staging back out from shared to device memory. The members of
SPO group chose to increase the block size, as to provide a greater number
of threads available for stage-in and stage-out phases, despite the fact that
they might remain idle during user kernel execution. After setting the block
size they chose to vary the partition size from 64 to 512, and obtained a
performance speed-up of 1.93 over the baseline CUDA implementation.

This is the second point where our algorithms could produce good results.
Despite the fact that we do not consider details of the stage-in and stage-out
phases, nor, currently, the access descriptors of the loop’s data parameters, we
still obtain optimal performance on Airfoil. As a result, choosing to determine
the block and partition size based on user kernel, and loop complexity could
provide good results for comparison, and thus insight into the changes that
we would need to make, if any, to our algorithms.

By considering the work done by the SPO group on Hydra, we have seen
a greater scope for our project, and what changes we might need to introduce
into our algorithms. These include low-level details of the architecture we are
running our experiments on, and a more in-depth knowledge of the loop’s
parameters, such as the access descriptors.

78

Chapter 8

Conclusions

In this chapter we summarize the accomplishments of this project and present
possible extensions. Finally, we reflect on the project and how it can guide
future work in the area of optimizing compilers, especially with regards to
the OP2 framework.

8.1 Achievements
Work on machine learning and deterministic algorithms to be used with the
OP2 framework has been both rewarding and challenging. We started with a
hypothesis that such methods can provide optimal or close-to-optimal results
whilst only testing a small search space. The process of testing this has
presented many challenges.

After choosing the, initially believed, very portable OpenCL as a back-
end we encountered problems with the existing OP2 OpenCL runtime and
handmade implementation, which returned incorrect results on CPUs. Once
we fixed it, and updated the runtime to match OP2 standards, we started
work on the untested compiler. This was also challenging, as the original
generated code was not even compiling, let alone run. Nevertheless, we
overcame this issue as well and we obtained a fully working OP2 to OpenCL
compiler. These tools were necessary in order to allow us to automatically
generate Airfoil variations.

At that stage, we started implementing a case-based reasoning system
which would return us optimal runtime parameters and loop fusions. Halfway
through developing the similarity measure, we observed a deterministic connec-
tion between a loops’ parameters and user supplied kernel, and the feasibility
of a fusion. We therefore implemented a machine learning algorithm that
uses deterministic fail-safes in order to render optimal results. In order to aid

79

the machine learning algorithm, we created a small control-flow information
analysis that would let the CBR system know which loops were fusable. We
found little reason for attempting to integrate this in the machine learning
algorithm, as it would overcomplicate the result and be error prone. As a
result, we chose to initially decide which loops are fusable, and then the
machine learning and deterministic algorithms decide whether the fusions are
feasible.

Finally, we presented experimental results that back-up our initial hypoth-
esis and confirm that there is a deterministic and machine learning connection
between optimizations (both runtime and code transformations) and the code
structure. Furthermore, we show that the runtime parameters must take in
consideration any code transformation optimizations that are performed.

As an extension, we presented a case-study of the applicability of our
approach onto real-world applications, such as Hydra.

In summary, we make the following contributions:

• We adjusted the existing OP2 OpenCL runtime so that it successfully
runs on both CPUs and GPUs, and we structured it according to OP2
standards.

• We fixed the untested, broken OP2 OpenCL compiler.

• We showed that a machine learning and deterministic approach to code
analysis can successfully provide performance improvements.

• We explored the performance gains on variations of Airfoil.

• We discussed the applicability of our results on Hydra.

8.2 Further work
This project is only a proof of concept for the use of machine learning and
deterministic algorithms to get speed-ups. As a result, there are many possible
extensions for this project. The main ones are the following:

• As we have observed whilst designing the deterministic algorithm, we
needed to experimentally find values for the weightings. A good ex-
tension would be to use a machine learning algorithm at this stage to
derive the weightings. This might prove more reliable across various
programs, and it might derive better overall results, as it would not be
bound to experimental data.

80

• This project would greatly benefit by having more optimizations added
to it, such as loop fission, automatic loop unrolling and code-block
reordering. This would allow us to get overall better results, as we could
weight optimizations against each other and choose the very best from
a pool of choices. Furthermore, adding extra optimizations which are
enabled by loop fusion could increase the benefits obtained by fusion,
and could potentially make currently unfeasible fusions perform better
than stock versions of the loops.

• As we saw in the Evaluation section, the characteristics of the machine
we are running our experiments on matter. As a result, it would
be beneficial to add this extra low level information into the machine
learning and deterministic algorithms. More knowledge of the underlying
architecture should allow us to better derive the runtime parameters
and feasible optimizations. Furthermore, a further analysis of the loops’
parameters could give us important information with respect to the
complexity of the generated kernels.

• Another good extension would be to add support for multiple back-ends
and front-ends. At the moment, all the analysis we are performing is on
OP2 C++ code. If we performed experiments by using CUDA, OpenMP
and other available back-ends, we would be able to provide extra support.
Furthermore, adding OP2 Fortran support merely involves adapting
the initial parsing of the file. As a result, we would be able to generate
better results, which can take in consideration performance specifics of
each back-end.

8.3 Final remarks
We hope the proof of concept of using machine learning and deterministic
approaches to determine optimal and close-to-optimal optimizations in linear
time has provided a starting ground for future work into optimizing compilers.
As our evaluation shows, such methods can prove successful and significantly
decrease the optimization search space. This work can be directly and
successfully applied to the existing OP2 framework, thus providing a novel
extension to it. Furthermore, this methodology is easily extensible to other
architectures and front and back-ends, thus provides an excellent starting
point for extensions, which can be used to further improve OP2’s performance.

81

Chapter 9

Bibliography

[1] Geoff Koch. Transitioning to Multi-Core Chip Archi-
tecture. http://software.intel.com/en-us/articles/
transitioning-to-multi-core-chip-architecture/?wapkw=
(multi-core+architecture). accessed June 19, 2012.

[2] Nvidia Corporation. GPU Computing. http://www.nvidia.com/
object/GPU_Computing.html. accessed June 19, 2012.

[3] Apple Inc. and The Khronos Group Inc. OpenCL. http://www.khronos.
org/opencl/. accessed June 19, 2012.

[4] Mike Giles. OP2. http://people.maths.ox.ac.uk/gilesm/op2/. ac-
cessed June 19, 2012.

[5] M.B. Giles, D. Ghate, and M.C. Duta. Using automatic differentiation for
adjoint CFD code development. computational Fluid Dynamics Journal,
(16):434–443, 2008.

[6] Andrew Binstock. Multi-Core Processor Architecture Ex-
plained. http://software.intel.com/en-us/articles/
multi-core-processor-architecture-explained/?wapkw=
(multi-core+architecture). accessed June 19, 2012.

[7] Chris Lomont. Introduction to Intel Advanced Vector Ex-
tensions. http://software.intel.com/en-us/articles/
introduction-to-intel-advanced-vector-extensions/. accessed
June 19, 2012.

[8] Sam Siewert. Using Intel©Streaming SIMD Extensions
and Intel©Integrated Performance Primitives to Accel-
erate Algorithms. http://software.intel.com/en-us/

83

http://software.intel.com/en-us/articles/transitioning-to-multi-core-chip-architecture/?wapkw=(multi-core+architecture)
http://software.intel.com/en-us/articles/transitioning-to-multi-core-chip-architecture/?wapkw=(multi-core+architecture)
http://software.intel.com/en-us/articles/transitioning-to-multi-core-chip-architecture/?wapkw=(multi-core+architecture)
http://www.nvidia.com/object/GPU_Computing.html
http://www.nvidia.com/object/GPU_Computing.html
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://people.maths.ox.ac.uk/gilesm/op2/
http://software.intel.com/en-us/articles/multi-core-processor-architecture-explained/?wapkw=(multi-core+architecture)
http://software.intel.com/en-us/articles/multi-core-processor-architecture-explained/?wapkw=(multi-core+architecture)
http://software.intel.com/en-us/articles/multi-core-processor-architecture-explained/?wapkw=(multi-core+architecture)
http://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions/
http://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions/
http://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and\-intel-integrated-performance-primitives-to-accelerate-algorithms/
http://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and\-intel-integrated-performance-primitives-to-accelerate-algorithms/

articles/using-intel-streaming-simd-extensions-and\
-intel-integrated-performance-primitives-to-accelerate-algorithms/.
accessed June 19, 2012.

[9] Nvidia Corporation. CUDA Zone. http://developer.nvidia.com/
category/zone/cuda-zone. accessed June 19, 2012.

[10] Inc. Advanced Micro Devices. AMD Developer Zone. http://developer.
amd.com/zones/Pages/default.aspx. accessed June 19, 2012.

[11] Nvidia Corporation. CUDA. http://www.nvidia.com/object/cuda_
home_new.html. accessed June 19, 2012.

[12] Nvidia Corporation. CUDA Description. http://developer.nvidia.
com/what-cuda. accessed June 19, 2012.

[13] Microsoft Corporation. DirectCompute. http://developer.nvidia.
com/directcompute. accessed June 19, 2012.

[14] Advanced Micro Devices, Inc. OpenCL Introduction. http:
//www.amd.com/uk/products/technologies/stream-technology/
opencl/Pages/opencl-intro.aspx. accessed June 19, 2012.

[15] Carlo Bertolli, Adam Betts, Gihan Mudalige, Mike Giles, and Paul Kelly.
Design and Performance of the OP2 Library for Unstructured Mesh
Applications.

[16] M.B. Giles, G.R. Mudalige, Z. Sharif, G. Markall, and P.H.J Kelly.
Performance Analysis and Optimisation of the OP2 Framework on Many-
core Architectures. The Computer Journal, 2010.

[17] OpenMP Architecture Review Board. OpenMP. http://openmp.org/
wp/. accessed June 19, 2012.

[18] Stanford University. Liszt: A DSL for solving mesh-based PDEs. http:
//liszt.stanford.edu/. accessed June 19, 2012.

[19] Martin Odersky and Programming Methods Laboratory of EPFL. Scala
Programming Language. http://www.scala-lang.org/. accessed June
19, 2012.

[20] Michelle Mills Strout, Larry Carter, Jeanne Ferrante, and Alan LaMielle.
Introducing the Sparse Polyhedral Framework (SPF). Front Range
Architecture Compilers Tools and Languages Fall 2009, December 5,
2009.

84

http://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and\-intel-integrated-performance-primitives-to-accelerate-algorithms/
http://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and\-intel-integrated-performance-primitives-to-accelerate-algorithms/
http://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and\-intel-integrated-performance-primitives-to-accelerate-algorithms/
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.amd.com/zones/Pages/default.aspx
http://developer.amd.com/zones/Pages/default.aspx
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://developer.nvidia.com/what-cuda
http://developer.nvidia.com/what-cuda
http://developer.nvidia.com/directcompute
http://developer.nvidia.com/directcompute
http://www.amd.com/uk/products/technologies/stream-technology/opencl/Pages/opencl-intro.aspx
http://www.amd.com/uk/products/technologies/stream-technology/opencl/Pages/opencl-intro.aspx
http://www.amd.com/uk/products/technologies/stream-technology/opencl/Pages/opencl-intro.aspx
http://openmp.org/wp/
http://openmp.org/wp/
http://liszt.stanford.edu/
http://liszt.stanford.edu/
http://www.scala-lang.org/

[21] Michelle Mills Strout. Automating Run-Time Reordering Transforma-
tions with the Sparse Polyhedral Framework (SPF) and Arbitrary Task
Graphs. Imperial College London, November 21, 2011.

[22] Ravi Mirchandaney, Joel H. Saltz, Roger M. Smith, David M. Nicol,
and Kay Crowley. Principles of Runtime Support for Parallel Processors.
1988.

[23] Sajal K. Das and Aisheng Mao. A Theoretical Network Model and the
Hamming Cube Networks. pages 18–22. Parallel Processing Symposium,
1994. Proceedings., Eighth International, April 26-29, 1994.

[24] Jonathan Roelofs. IEGenCC and IEGen. http://www.cs.colostate.
edu/~roelofs/iegencc_writeup.php. accessed June 19, 2012.

[25] Michelle Mills Strout, Larry Carter, and Jeanne Ferrante. Rescheduling
for Locality in Sparse Matrix Computations. The 2001 International
Conference on Computational Science, May 28-30, 2001.

[26] Michelle Mills Strout, Larry Carter, Jeanne Ferrante, and Barbara
Kreaseck. Sparse Tiling For Stationary Iterative Methods. The Interna-
tional Journal on High Performance Computing Applications, 18(1):95–
113, 2004.

[27] Cedric Bastoul. Cloog. Code Generation in the Polyhedral Model Is
Easier Than You Think, PACT ’04 Proceedings of the 13th International
Conference on Parallel Architectures and Compilation Techniques www.
CLooG.org, 2004. accessed June 19, 2012.

[28] Tom Mitchell. Machine Learning. McGraw-Hill Science/Engineering/-
Math, 1st edition, 1997.

[29] R.C. Schank. Dynamic memory: A theory of reminding and learning in
coputers and people. Cambridge University Press, 1982.

[30] R.C. Schank. Memory-based expert systems. Technical Report (AFOSR.
TR. 84-0814), Yale University, New Haven, USA, 1984.

[31] Maja Pantic. Machine Learning Course - Inductive Logic Pro-
gramming. http://ibug.doc.ic.ac.uk/media/uploads/documents/
courses/ml-lecture4.pdf. accessed June 19, 2012.

[32] Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, Grigori Fursin,
and Michael F.P. O’Boyle. Portable Compiler Optimisation Across

85

http://www.cs.colostate.edu/~roelofs/iegencc_writeup.php
http://www.cs.colostate.edu/~roelofs/iegencc_writeup.php
www.CLooG.org
www.CLooG.org
http://ibug.doc.ic.ac.uk/media/uploads/documents/courses/ml-lecture4.pdf
http://ibug.doc.ic.ac.uk/media/uploads/documents/courses/ml-lecture4.pdf

Embedded Programs and Microarchitectures using Machine Learning.
MICRO’09, 2009.

[33] Ben Spencer. Flamingo Auto-Tuning. http://mistymountain.co.uk/
flamingo/. accessed June 19, 2012.

[34] Dan Quinlan, Chunhua Liao, Justin Tao, Thomas Panas, Jeremiah
Willcock, Markus Schordan, Qing Yi, and Rich Vuduc. Rose. http:
//www.rosecompiler.org/. accessed June 19, 2012.

[35] Perf: Linux profiling with performance counters. https://perf.wiki.
kernel.org/index.php/Main_Page. accessed June 19, 2012.

86

http://mistymountain.co.uk/flamingo/
http://mistymountain.co.uk/flamingo/
http://www.rosecompiler.org/
http://www.rosecompiler.org/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

Appendix A

Code samples

A.1 OP2 Airfoil
Here we show the full OP2 Airfoil C++ code, with the computational kernels.

Listing A.1: OP2 Airfoil C++ code
1 # include <stdlib .h>
2 # include <stdio.h>
3 # include <string .h>
4 # include <math.h>
5

6 // global constants
7

8 float gam , gm1 , cfl , eps , mach , alpha , qinf [4];
9

10 //
11 // OP header file
12 //
13

14 # include " op_lib_cpp .h"
15 # include " op_seq .h"
16

17 //
18 // kernel routines for parallel loops
19 //
20

21 # include " save_soln .h"
22 # include " adt_calc .h"
23 # include " res_calc .h"
24 # include " bres_calc .h"
25 # include " update .h"
26

27 // main program
28

87

29 int main(int argc , char ** argv)
30 {
31 // OP initialisation
32 op_init (argc ,argv ,2);
33

34 int *becell , *ecell , *bound , *bedge , *edge , *cell;
35 float *x, *q, *qold , *adt , *res;
36

37 int nnode ,ncell ,nedge ,nbedge ,niter;
38 float rms;
39

40 // timer
41 double cpu_t1 , cpu_t2 , wall_t1 , wall_t2 ;
42

43 // read in grid
44 op_printf (" reading in grid \n");
45

46 FILE *fp;
47 if ((fp = fopen("./ new_grid .dat","r")) == NULL) {
48 op_printf ("can 't open file new_grid .dat\n"); exit (-1);
49 }
50

51 if (fscanf (fp ,"%d %d %d %d \n" ,&nnode , &ncell , &nedge , & nbedge) != 4) {
52 op_printf ("error reading from new_grid .dat\n"); exit (-1);
53 }
54

55 cell = (int *) malloc (4* ncell* sizeof (int));
56 edge = (int *) malloc (2* nedge* sizeof (int));
57 ecell = (int *) malloc (2* nedge* sizeof (int));
58 bedge = (int *) malloc (2* nbedge * sizeof (int));
59 becell = (int *) malloc (nbedge * sizeof (int));
60 bound = (int *) malloc (nbedge * sizeof (int));
61

62 x = (float *) malloc (2* nnode* sizeof (float));
63 q = (float *) malloc (4* ncell* sizeof (float));
64 qold = (float *) malloc (4* ncell* sizeof (float));
65 res = (float *) malloc (4* ncell* sizeof (float));
66 adt = (float *) malloc (ncell* sizeof (float));
67

68 for (int n=0; n<nnode; n++) {
69 if (fscanf (fp ,"%f %f \n" ,&x[2*n], &x[2*n+1]) != 2) {
70 op_printf ("error reading from new_grid .dat\n"); exit (-1);
71 }
72 }
73

74 for (int n=0; n<ncell; n++) {
75 if (fscanf (fp ,"%d %d %d %d \n" ,&cell [4*n], &cell [4*n+1],
76 &cell [4*n+2], &cell [4*n+3]) != 4) {
77 op_printf ("error reading from new_grid .dat\n"); exit (-1);

88

78 }
79 }
80

81 for (int n=0; n<nedge; n++) {
82 if (fscanf (fp ,"%d %d %d %d \n" ,&edge [2*n], &edge [2*n+1],
83 &ecell [2*n],& ecell [2*n+1]) != 4) {
84 op_printf ("error reading from new_grid .dat\n"); exit (-1);
85 }
86 }
87

88 for (int n=0; n< nbedge ; n++) {
89 if (fscanf (fp ,"%d %d %d %d \n" ,&bedge [2*n],& bedge [2*n+1],
90 & becell [n], &bound[n]) != 4) {
91 op_printf ("error reading from new_grid .dat\n"); exit (-1);
92 }
93 }
94

95 fclose (fp);
96

97 // set constants and initialise flow field and residual
98

99 op_printf (" initialising flow field \n");
100

101 gam = 1.4f;
102 gm1 = gam - 1.0f;
103 cfl = 0.9f;
104 eps = 0.05f;
105

106 float mach = 0.4f;
107 float alpha = 3.0f*atanf (1.0f)/45.0 f;
108 float p = 1.0f;
109 float r = 1.0f;
110 float u = sqrtf(gam*p/r)* mach;
111 float e = p/(r*gm1) + 0.5f*u*u;
112

113 qinf [0] = r;
114 qinf [1] = r*u;
115 qinf [2] = 0.0f;
116 qinf [3] = r*e;
117

118 for (int n=0; n<ncell; n++) {
119 for (int m=0; m <4; m++) {
120 q[4*n+m] = qinf[m];
121 res [4*n+m] = 0.0f;
122 }
123 }
124

125 // declare sets , pointers , datasets and global constants
126

89

127 op_set nodes = op_decl_set (nnode , "nodes");
128 op_set edges = op_decl_set (nedge , "edges");
129 op_set bedges = op_decl_set (nbedge , " bedges ");
130 op_set cells = op_decl_set (ncell , "cells");
131

132 op_map pedge = op_decl_map (edges , nodes ,2,edge , "pedge");
133 op_map pecell = op_decl_map (edges , cells ,2,ecell , " pecell ");
134 op_map pbedge = op_decl_map (bedges ,nodes ,2,bedge , " pbedge ");
135 op_map pbecell = op_decl_map (bedges ,cells ,1, becell ," pbecell ");
136 op_map pcell = op_decl_map (cells , nodes ,4,cell , "pcell");
137

138 op_dat p_bound = op_decl_dat (bedges ,1,"int" ,bound ," p_bound ");
139 op_dat p_x = op_decl_dat (nodes ,2,"float",x ,"p_x");
140 op_dat p_q = op_decl_dat (cells ,4,"float",q ,"p_q");
141 op_dat p_qold = op_decl_dat (cells ,4,"float",qold ," p_qold ");
142 op_dat p_adt = op_decl_dat (cells ,1,"float",adt ,"p_adt");
143 op_dat p_res = op_decl_dat (cells ,4,"float",res ,"p_res");
144

145 op_decl_const (1,"float" ,&gam);
146 op_decl_const (1,"float" ,&gm1);
147 op_decl_const (1,"float" ,&cfl);
148 op_decl_const (1,"float" ,&eps);
149 op_decl_const (1,"float" ,&mach);
150 op_decl_const (1,"float" ,&alpha);
151 op_decl_const (4,"float",qinf);
152

153 op_diagnostic_output ();
154

155 // initialise timers for total execution wall time
156 op_timers (& cpu_t1 , & wall_t1);
157

158 // main time - marching loop
159

160 niter = 1000;
161

162 for(int iter =1; iter <= niter; iter ++) {
163

164 // save old flow solution
165

166 op_par_loop (save_soln ," save_soln ", cells ,
167 op_arg_dat (p_q , -1,OP_ID , 4,"float",OP_READ),
168 op_arg_dat (p_qold ,-1,OP_ID , 4,"float",OP_WRITE));
169

170 // predictor / corrector update loop
171

172 for(int k=0; k <2; k++) {
173

174 // calculate area/ timstep
175

90

176 op_par_loop (adt_calc ," adt_calc ",cells ,
177 op_arg_dat (p_x , 0,pcell , 2,"float",OP_READ),
178 op_arg_dat (p_x , 1,pcell , 2,"float",OP_READ),
179 op_arg_dat (p_x , 2,pcell , 2,"float",OP_READ),
180 op_arg_dat (p_x , 3,pcell , 2,"float",OP_READ),
181 op_arg_dat (p_q , -1,OP_ID , 4,"float",OP_READ),
182 op_arg_dat (p_adt ,-1,OP_ID , 1,"float",OP_WRITE));
183

184 // calculate flux residual
185

186 op_par_loop (res_calc ," res_calc ",edges ,
187 op_arg_dat (p_x , 0,pedge , 2,"float",OP_READ),
188 op_arg_dat (p_x , 1,pedge , 2,"float",OP_READ),
189 op_arg_dat (p_q , 0,pecell ,4,"float",OP_READ),
190 op_arg_dat (p_q , 1,pecell ,4,"float",OP_READ),
191 op_arg_dat (p_adt , 0,pecell ,1,"float",OP_READ),
192 op_arg_dat (p_adt , 1,pecell ,1,"float",OP_READ),
193 op_arg_dat (p_res , 0,pecell ,4,"float",OP_INC),
194 op_arg_dat (p_res , 1,pecell ,4,"float",OP_INC));
195

196 op_par_loop (bres_calc ," bres_calc ",bedges ,
197 op_arg_dat (p_x , 0,pbedge , 2,"float",OP_READ),
198 op_arg_dat (p_x , 1,pbedge , 2,"float",OP_READ),
199 op_arg_dat (p_q , 0,pbecell ,4,"float",OP_READ),
200 op_arg_dat (p_adt , 0,pbecell ,1,"float",OP_READ),
201 op_arg_dat (p_res , 0,pbecell ,4,"float",OP_INC),
202 op_arg_dat (p_bound ,-1, OP_ID ,1,"int", OP_READ));
203

204 // update flow field
205

206 rms = 0.0;
207

208 op_par_loop (update ," update ",cells ,
209 op_arg_dat (p_qold ,-1,OP_ID , 4,"float",OP_READ),
210 op_arg_dat (p_q , -1,OP_ID , 4,"float",OP_WRITE),
211 op_arg_dat (p_res , -1,OP_ID , 4,"float",OP_RW),
212 op_arg_dat (p_adt , -1,OP_ID , 1,"float",OP_READ),
213 op_arg_gbl (&rms ,1,"float",OP_INC));
214 }
215

216 // print iteration history
217 rms = sqrtf(rms /(float) op_get_size (cells));
218 if (iter %100 == 0)
219 op_printf (" %d %10.5e \n",iter ,rms);
220 }
221

222 op_timers (& cpu_t2 , & wall_t2);
223 op_timing_output ();
224 op_printf ("Max total runtime = \n%f\n",wall_t2 - wall_t1);

91

225

226 op_exit ();
227 }

Listing A.2: C++ save_soln kernel
1 inline void save_soln (float *q, float *qold){
2 for (int n=0; n <4; n++) qold[n] = q[n];
3 }

Listing A.3: C++ adt_calc kernel
1 inline void adt_calc (float *x1 ,float *x2 ,float *x3 ,float *x4 ,
2 float *q,float *adt){
3 float dx ,dy , ri ,u,v,c;
4

5 ri = 1.0f/q[0];
6 u = ri*q[1];
7 v = ri*q[2];
8 c = sqrtf(gam*gm1 *(ri*q[3] -0.5f*(u*u+v*v)));
9

10 dx = x2 [0] - x1 [0];
11 dy = x2 [1] - x1 [1];
12 *adt = fabsf(u*dy -v*dx) + c*sqrtf(dx*dx+dy*dy);
13

14 dx = x3 [0] - x2 [0];
15 dy = x3 [1] - x2 [1];
16 *adt += fabsf(u*dy -v*dx) + c*sqrtf(dx*dx+dy*dy);
17

18 dx = x4 [0] - x3 [0];
19 dy = x4 [1] - x3 [1];
20 *adt += fabsf(u*dy -v*dx) + c*sqrtf(dx*dx+dy*dy);
21

22 dx = x1 [0] - x4 [0];
23 dy = x1 [1] - x4 [1];
24 *adt += fabsf(u*dy -v*dx) + c*sqrtf(dx*dx+dy*dy);
25

26 *adt = (* adt) / cfl;
27 }

Listing A.4: C++ res_calc kernel
1 inline void res_calc (float *x1 , float *x2 , float *q1 , float *q2 ,
2 float *adt1 ,float *adt2 ,float *res1 ,float *res2) {
3 float dx ,dy ,mu , ri , p1 ,vol1 , p2 ,vol2 , f;
4

5 dx = x1 [0] - x2 [0];
6 dy = x1 [1] - x2 [1];
7

8 ri = 1.0f/q1 [0];

92

9 p1 = gm1 *(q1 [3] -0.5f*ri*(q1 [1]* q1 [1]+ q1 [2]* q1 [2]));
10 vol1 = ri*(q1 [1]* dy - q1 [2]* dx);
11

12 ri = 1.0f/q2 [0];
13 p2 = gm1 *(q2 [3] -0.5f*ri*(q2 [1]* q2 [1]+ q2 [2]* q2 [2]));
14 vol2 = ri*(q2 [1]* dy - q2 [2]* dx);
15

16 mu = 0.5f*((* adt1)+(* adt2))* eps;
17

18 f = 0.5f*(vol1* q1 [0] + vol2* q2 [0]) + mu*(q1[0]-q2 [0]);
19 res1 [0] += f;
20 res2 [0] -= f;
21 f = 0.5f*(vol1* q1 [1] + p1*dy + vol2* q2 [1] + p2*dy) + mu*(q1[1]-q2 [1]);
22 res1 [1] += f;
23 res2 [1] -= f;
24 f = 0.5f*(vol1* q1 [2] - p1*dx + vol2* q2 [2] - p2*dx) + mu*(q1[2]-q2 [2]);
25 res1 [2] += f;
26 res2 [2] -= f;
27 f = 0.5f*(vol1 *(q1 [3]+ p1) + vol2 *(q2 [3]+ p2)) + mu*(q1[3]-q2 [3]);
28 res1 [3] += f;
29 res2 [3] -= f;
30 }

Listing A.5: C++ bres_calc kernel
1 inline void bres_calc (float *x1 , float *x2 , float *q1 ,
2 float *adt1 ,float *res1 ,int *bound) {
3 float dx ,dy ,mu , ri , p1 ,vol1 , p2 ,vol2 , f;
4

5 dx = x1 [0] - x2 [0];
6 dy = x1 [1] - x2 [1];
7

8 ri = 1.0f/q1 [0];
9 p1 = gm1 *(q1 [3] -0.5f*ri*(q1 [1]* q1 [1]+ q1 [2]* q1 [2]));

10

11 if (* bound ==1) {
12 res1 [1] += + p1*dy;
13 res1 [2] += - p1*dx;
14 }
15 else {
16 vol1 = ri*(q1 [1]* dy - q1 [2]* dx);
17

18 ri = 1.0f/qinf [0];
19 p2 = gm1 *(qinf [3] -0.5f*ri*(qinf [1]* qinf [1]+ qinf [2]* qinf [2]));
20 vol2 = ri*(qinf [1]* dy - qinf [2]* dx);
21

22 mu = (* adt1)* eps;
23

24 f = 0.5f*(vol1* q1 [0] + vol2* qinf [0]) + mu*(q1[0]- qinf [0]);
25 res1 [0] += f;

93

26 f = 0.5f*(vol1* q1 [1] + p1*dy + vol2* qinf [1] + p2*dy)
27 + mu*(q1[1]- qinf [1]);
28 res1 [1] += f;
29 f = 0.5f*(vol1* q1 [2] - p1*dx + vol2* qinf [2] - p2*dx)
30 + mu*(q1[2]- qinf [2]);
31 res1 [2] += f;
32 f = 0.5f*(vol1 *(q1 [3]+ p1) + vol2 *(qinf [3]+ p2)) + mu*(q1[3]- qinf [3]);
33 res1 [3] += f;
34 }
35 }

Listing A.6: C++ update kernel
1 inline void update (float *qold , float *q, float *res ,
2 float *adt , float *rms){
3 float del , adti;
4

5 adti = 1.0f/(* adt);
6

7 for (int n=0; n <4; n++) {
8 del = adti*res[n];
9 q[n] = qold[n] - del;

10 res[n] = 0.0f;
11 *rms += del*del;
12 }
13 }

A.2 OP2 Tuner Runtime Support

Listing A.7: This is a header file we created for the OP2 Tuner runtime
support, op_lib_tuner.h.

1

2 /*
3 * The core of the runtime op_tuner
4 */
5

6 typedef enum {ANY , CPU , GPU , ACCELERATOR } arch;
7

8 typedef struct {
9 int block_size ;

10 int part_size ;
11 int cache_line_size ;
12 int op_warpsize ;
13 arch architecture ;
14 char const *name;
15 int loop_tuner ;

94

16 int active ;
17 } op_tuner ;
18

19 struct node {
20 op_tuner * OP_tuner ;
21 struct node * next;
22 };
23

24 /*
25 * method declarations necessary for the op_tuner .
26 * variables necessary for the tuners .
27 * Also , we are externalizing OP_cache_line_size as it can be
28 * manipulated by the runtime op_tuner .
29 */
30

31 extern int OP_cache_line_size ;
32 // extern node *head , * current ;
33 // extern op_tuner * OP_global_tuner ;
34

35

36 #ifdef __cplusplus
37 extern "C" {
38 #endif
39

40 op_tuner * op_tuner_core (char const *);
41

42 op_tuner * op_tuner_get (char const *);
43

44 op_tuner * op_create_tuner (char const *);
45

46 op_tuner * op_create_global_tuner ();
47

48 op_tuner * op_get_global_tuner ();
49 #ifdef __cplusplus
50 }
51 #endif
52

53 #endif

A.3 Split Files Script
This is the core of the Python script which splits the generated host and
kernel code file into two appropriate files.

Listing A.8: This is the core of a Python script which splits the compiler
generated host and kernel code file into two appropriate files.

1

2 #!/ usr/bin/env python

95

3

4 from os import sep
5 from sys import path , argv
6 import sys
7 import string
8

9 gen_file = open(" rose_opencl_code_opencl .cpp", 'r');
10 gen_lines = gen_file . readlines ();
11

12 lines_host_file = [];
13 lines_kernel_file = [];
14

15
16

17 def addLinesToFileAndRemoveFromList (file_lines , gen_lines):
18 openCurlyBraces = 0;
19 closedCurlyBraces = 0;
20 line_index = gen_lines .index(line);
21 initial_line = line_index ;
22 while not isBeginningOfStatement (gen_lines [line_index]):
23 line_index += 1;
24 openCurlyBraces = 1;
25 if isEndOfStatement (gen_lines [line_index]):
26 closedCurlyBraces += 1;
27 line_index += 1;
28 while openCurlyBraces != closedCurlyBraces :
29 if isBeginningOfStatement (gen_lines [line_index]):
30 openCurlyBraces += 1;
31 if isEndOfStatement (gen_lines [line_index]):
32 closedCurlyBraces += 1;
33 line_index += 1;
34 final_line = line_index ;
35 while final_line - initial_line > 0:
36 if not isRogueLine (gen_lines [initial_line]):
37 file_lines . append (gen_lines [initial_line]);
38 gen_lines . remove (gen_lines [initial_line]);
39 final_line -= 1;
40 return [file_lines , gen_lines];
41

42 ...
43

44 openCurlyBraces = 0;
45 closedCurlyBraces = 0;
46

47 nestingLevel = 1;
48 index = 0;
49

50 for line in gen_lines :
51 if isIfDefStatement (line):

96

52 initial_line = gen_lines .index(line);
53 line_index = initial_line ;
54 while not isEndIfDefStatement (gen_lines [line_index]):
55 line_index += 1;
56 while line_index - initial_line > 0:
57 lines_host_file . append (gen_lines [initial_line]);
58 gen_lines . remove (gen_lines [initial_line]);
59 line_index -= 1;
60 lines_host_file . append (gen_lines [initial_line]);
61 if isHashDefStatement (line):
62 if string .find(line , 'ROUND_UP ') != -1 or
63 string .find(line , 'MIN ') != -1 or
64 string .find(line , 'ZERO_float ') != -1:
65 lines_kernel_file . append (line);
66 if isIncludeStatement (line):
67 lines_host_file . append (line);
68 if isExternStatement (line):
69 lines_host_file . append (line);
70 if isDeclarationStatement (line):
71 lines_host_file . append (line);
72 if isInlineVoidMethod (line):
73 [lines_kernel_file , gen_lines] =
74 addLinesToFileAndRemoveFromList (lines_kernel_file , gen_lines);
75 if isKernelMethod (line):
76 [lines_kernel_file , gen_lines] =
77 addLinesToFileAndRemoveFromList (lines_kernel_file , gen_lines);
78 if isHostMethod (line):
79 [lines_host_file , gen_lines] =
80 addLinesToFileAndRemoveFromList (lines_host_file , gen_lines);
81

82 hosts_file = open('rose_opencl_hosts .cpp ','w');
83 kernels_file = open('rose_opencl_code_opencl .cl','w');
84

85 hosts_file . writelines (lines_host_file);
86

87 kernels_file . writelines (lines_kernel_file);

A.4 Tuner script
Here you can find a comprehensive copy of the tuner script, that contains
all the weighting algorithms, machine learning and deterministic approaches,
control flow information generation and loop fusion evaluation. We only
included the core, relevant parts of the script.

Listing A.9: This is the core of the Python tuner script which contains all
the analysis we perform: from OP2 text parsing, control flow information

97

and loop fusion analysis, to machine learning and deterministic optimization
evaluations. We only show core methods of the control flow analysis, machine
learning and deterministic algorithms.

1 ...
2 class Arch:
3 ANY = 0
4 CPU = 1
5 GPU = 2
6 ACCELERATOR = 3
7

8 ...
9 # now we need to decide if we have any fusable loops

10 # we perform basic control flow
11

12 ...
13 def addToCFInfo (statementName , statementDepth , CFInfoRootNode):
14 currentDepth = 1;
15 currentNode = CFInfoRootNode ;
16 while (currentDepth < statementDepth and
17 len(currentNode ['children ']) > 0):
18 currentNode =
19 currentNode ['children '][len(currentNode ['children ']) -1];
20 currentDepth = currentDepth + 1;
21

22 CFInfoNode = {
23 'name ' : statementName ,
24 'children ' : [],
25 'depth ' : statementDepth
26 }
27 currentNode ['children ']. append (CFInfoNode);
28 return CFInfoRootNode ;
29

30 def getCFInfoNode (nodeName , CFInfoRootNode):
31 currentNode = CFInfoRootNode ;
32 if currentNode ['name '] == nodeName :
33 return currentNode ;
34 else:
35 desiredNode = None;
36 for node in currentNode ['children ']:
37 desiredNode = getCFInfoNode (nodeName , node);
38 if desiredNode != None and desiredNode ['name '] == nodeName :
39 return desiredNode ;
40

41 def getParentCFInfoNode (nodeName , CFInfoRootNode):
42 currentNode = CFInfoRootNode ;
43 for node in currentNode ['children ']:
44 if node['name '] == nodeName :
45 return currentNode ;

98

46 desiredNode = None;
47 for node in currentNode ['children ']:
48 desiredNode = getParentCFInfoNode (nodeName , node);
49 if desiredNode != None:
50 for node in desiredNode ['children ']:
51 if node['name '] == nodeName :
52 return desiredNode ;
53

54 ...
55

56 # CFInfo
57 CFInfoRootNode = { 'name ' : 'ROOT ',
58 'children ' : [],
59 'depth ' : 0
60 }
61 nestingLevel = 1;
62 orderOfAddition = [];
63 opParLoopNameMap = [];
64 index = 0;
65 indexOpParLoops = 0;
66 for line in core_lines :
67 if isForLoopStatement (line):
68 new_name = "for" + str(index);
69 index = index + 1;
70 CFInfoRootNode =
71 addToCFInfo (new_name , nestingLevel , CFInfoRootNode);
72 nestingLevel = nestingLevel + 1;
73 orderOfAddition . append (new_name);
74 else:
75 if isOpParLoopStatement (line):
76 line_comp = line.split('(');
77 line_comp = line_comp [1];
78 line_comp = line_comp .split(',');
79 new_name ='';
80 for comp in line_comp :
81 if '"' in comp:
82 comp = comp.strip('"');
83 new_name = comp;
84 opParLoopNameMap . append ({ 'original ' : new_name ,
85 'tag ' : new_name + str(indexOpParLoops)});
86 new_name += str(indexOpParLoops);
87 CFInfoRootNode =
88 addToCFInfo (new_name , nestingLevel , CFInfoRootNode);
89 orderOfAddition . append (new_name);
90 indexOpParLoops += 1;
91 else:
92 if isEndOfStatement (line) and
93 len(CFInfoRootNode ['children ']) > 0:
94 nestingLevel = nestingLevel - 1;

99

95

96 ...
97 # now we have the Control Flow Information so
98 # we can decide which loops we can fuse
99 ...

100 fusable_pairs = [];
101

102 for index in range(len(loops_in_order) -1):
103 loop1 = getCFInfoNode (loops_in_order [index], CFInfoRootNode);
104 depthLoop1 = loop1['depth '];
105 loop2 = getCFInfoNode (loops_in_order [index +1], CFInfoRootNode);
106 depthLoop2 = loop2['depth '];
107 if depthLoop1 == depthLoop2 :
108 # need to check if there are any other statements in between
109 parentNode =
110 getParentCFInfoNode (loops_in_order [index], CFInfoRootNode);
111 childrenNodes = parentNode ['children '];
112 child1Index = childrenNodes . index(loop1);
113 child2Index = childrenNodes . index(loop2);
114 if child1Index + 1 == child2Index :
115 #pair 's fusable - add to fusable_pairs list
116 fusable_pair = {
117 'loop1 ' : loop1['name '],
118 'loop2 ' : loop2['name ']
119 }
120 fusable_pairs . append (fusable_pair);
121

122 ...
123

124 # we now do parameter analysis to see if we can/ should really fuse them
125 # define CBR
126

127 CBRSystem = []
128

129 # case base:
130

131 trainingCases = [CBRCase1 , CBRCase2 , CBRCase1 , CBRCase3 , CBRCase4];
132 results = [CBRSolution1 , CBRSolution2 , CBRSolution1 ,
133 CBRSolution3 , CBRSolution4];
134

135 def retrieveTrainingData ():
136 return [trainingCases , results];
137

138 # init CBR
139

140 ...
141

142 def fusableLoopsWeighting (CBRCase):
143 weighting = 0;

100

144 for pair in CBRCase ['fusable_pairs ']:
145 loop1 = getLoopInfo (pair['loop1 '], CBRCase ['op_par_loops ']);
146 loop2 = getLoopInfo (pair['loop2 '], CBRCase ['op_par_loops ']);
147 if opParLoopArrayMatch (loop1 , loop2):
148 weighting += 1;
149 return weighting ;
150

151 ...
152

153 def calculateLoopFusionComplexity (loop1 , loop2 , arch):
154 complexity = 0;
155 noOfEqualArgs = 0;
156 hasEqual = [0 for i in range (len(loop2['op_arg_dat ']))];
157 for dataArg1 in loop1['op_arg_dat ']:
158 for dataArg2 in loop2['op_arg_dat ']:
159 if opArgDatMatch (dataArg1 , dataArg2):
160 noOfEqualArgs += 1;
161 hasEqual [loop2['op_arg_dat ']. index(dataArg2)] += 1;
162 totalNoOfArgs = len(loop1['op_arg_dat ']) +
163 len(loop2['op_arg_dat ']);
164 propEqualArgsLoop1 = noOfEqualArgs /len(loop1['op_arg_dat ']);
165 propEqualArgsLoop2 = noOfEqualArgs /len(loop2['op_arg_dat ']);
166 matched = [0 for i in range(len(loop2['op_arg_dat ']))];
167 noOfSameDatAndArrayCases = 0;
168 for dataArg1 in loop1['op_arg_dat ']:
169 for index in range (0, len(loop2['op_arg_dat '])):
170 if not matched [index] and not opArgDatMatch (dataArg1 , dataArg2)
171 and not hasEqual [index]:
172 if opArgDatSameDataArray (dataArg1 , loop2['op_arg_dat '][index]):
173 matched [index] += 1;
174 noOfSameDatAndArrayCases += 1;
175 propSimilarArgsLoop1 = noOfSameDatAndArrayCases /
176 len(loop1['op_arg_dat ']);
177 propSimilarArgsLoop2 = noOfSameDatAndArrayCases /
178 len(loop2['op_arg_dat ']);
179 propDiffArgsLoop1 = (len(loop1['op_arg_dat ']) -
180 (noOfEqualArgs + noOfSameDatAndArrayCases))/
181 len(loop1['op_arg_dat ']);
182 propDiffArgsLoop2 = (len(loop2['op_arg_dat ']) -
183 (noOfEqualArgs + noOfSameDatAndArrayCases))/
184 len(loop2['op_arg_dat ']);
185 if arch == Arch.CPU:
186 sameArgsWeighting = 10;
187 similarArgsWeighting = 5;
188 differentArgsWeighting = -0.2;
189 noOfArgsWeighting = -0.1;
190 else:
191 sameArgsWeighting = 10;
192 similarArgsWeighting = 5;

101

193 differentArgsWeighting = -0.2;
194 noOfArgsWeighting = -0.2;
195 complexity += (propEqualArgsLoop1 + propEqualArgsLoop2) *
196 sameArgsWeighting * noOfEqualArgs + (
197 (propSimilarArgsLoop1 + propSimilarArgsLoop2) *
198 similarArgsWeighting * noOfSameDatAndArrayCases) + (
199 (propDiffArgsLoop1 + propDiffArgsLoop2) *
200 differentArgsWeighting * (totalNoOfArgs -
201 (noOfEqualArgs + noOfSameDatAndArrayCases))) + (
202 totalNoOfArgs * noOfArgsWeighting);
203 return complexity ;
204

205 def opDatArgsWeighting (CBRCase):
206 weighting = 0;
207 availableLoops = [];
208 for loop in CBRCase ['op_par_loops ']:
209 availableLoops . append (loop['loop_name ']);
210 for pair in CBRCase ['fusable_pairs ']:
211 loop1 = getLoopInfo (pair['loop1 '], CBRCase ['op_par_loops ']);
212 loop2 = getLoopInfo (pair['loop2 '], CBRCase ['op_par_loops ']);
213 if opParLoopArrayMatch (loop1 , loop2):
214 complexity =
215 calculateLoopFusionComplexity (loop1 , loop2 , CBRCase ['arch ']);
216 weighting += complexity ;
217 return weighting ;
218

219 def fusablePairsIntersection (fusablePairs1 , fusablePairs2):
220 intersectingFusablePairs = [];
221 for pair1 in fusablePairs1 :
222 for pair2 in fusablePairs2 :
223 if pair1 == pair2:
224 intersectingFusablePairs . append (pair1);
225 return intersectingFusablePairs ;
226

227 def opParLoopsIntersection (op_par_loops1 , op_par_loops2):
228 intersectingOpParLoops = [];
229 for op_par_loop1 in op_par_loops1 :
230 for op_par_loop2 in op_par_loops2 :
231 if op_par_loop1 == op_par_loop2 :
232 intersectingOpParLoops . append (op_par_loop1);
233 return intersectingOpParLoops ;
234

235 def opArgDatComplexity (loop , arch):
236 complexity = 0;
237 dataSameArrayAccesses = [];
238 for dataArg in loop['op_arg_dat ']:
239 found = False;
240 for index in range (0, len(dataSameArrayAccesses)):
241 if dataArg ['name '] == dataSameArrayAccesses [index]['name '] and (

102

242 dataArg ['indir_array '] ==
243 dataSameArrayAccesses [index]['indir_array ']):
244 dataSameArrayAccesses [index]['occurrences '] += 1;
245 found = True;
246 if not found:
247 dataArrayAccess = {
248 'name ' : dataArg ['name '],
249 'indir_array ' : dataArg ['indir_array '],
250 'occurrences ' : 1
251 }
252 dataSameArrayAccesses . append (dataArrayAccess);
253

254 noOfDifferentDataArrayArgsComplexity = 1;
255 if arch == Arch.GPU:
256 noOfDifferentDataArrayArgsComplexity = 1.1;
257 complexity += noOfDifferentDataArrayArgsComplexity
258 * len(dataSameArrayAccesses);
259

260 totalNoOfArgsComplexity = 0.25;
261 if arch == Arch.GPU:
262 totalNoOfArgsComplexity = 0.5;
263 complexity += len(loop['op_arg_dat ']) * totalNoOfArgsComplexity ;
264 return complexity ;
265

266 def similarityEstimation (CBRSystem , unmatchedCase):
267 noOfProperties = 6;
268 archWeight = 5;
269 weightedProperties = [[0 for i in range(noOfProperties)]
270 for j in range(len(CBRSystem))];
271 for index in range(len(CBRSystem)):
272 weightedProperties [index][CBRSystem [index]['case ']['arch ']] +=
273 archWeight * CBRSystem [index]['occurrences '];
274 weightedProperties [index][4] +=
275 fusableLoopsWeighting (CBRSystem [index]['case ']) *
276 CBRSystem [index]['occurrences '];
277 weightedProperties [index][5] +=
278 opDatArgsWeighting (CBRSystem [index]['case ']) *
279 CBRSystem [index]['occurrences '];
280

281 # normalize results
282 for index in range(len(CBRSystem)):
283 for prop in range(noOfProperties):
284 weightedProperties [index][prop] /= sum(weightedProperties [index]);
285

286 # here calculate the weight of the intersection
287

288 noOfIntersectingProperties = 3;
289 weightedIntersection = [[0 for i in range(noOfIntersectingProperties)]
290 for j in range(len(CBRSystem))];

103

291 maxWeight = 0;
292 maxIndex = 0;
293 maxList = [];
294 for index in range(len(CBRSystem)):
295 if checkComparable (unmatchedCase ['case '], CBRSystem [index]['case ']):
296 intersectingArch = Arch.ANY;
297 if unmatchedCase ['case ']['arch '] == CBRSystem [index]['case ']['arch ']:
298 weightedIntersection [index][0] +=
299 weightedProperties [index][CBRSystem [index]['case ']['arch ']];
300 intersectingArch = unmatchedCase ['case ']['arch '];
301

302 intersectingCase = {
303 'arch ' : intersectingArch ,
304 'fusable_pairs ': fusablePairsIntersection (
305 CBRSystem [index]['case ']['fusable_pairs '],
306 unmatchedCase ['case ']['fusable_pairs ']),
307 'op_par_loops ': opParLoopsIntersection (
308 CBRSystem [index]['case ']['op_par_loops '],
309 unmatchedCase ['case ']['op_par_loops '])
310 }
311

312 weightedIntersection [index][1] +=
313 fusableLoopsWeighting (intersectingCase) *
314 weightedProperties [index][4];
315 weightedIntersection [index][2] +=
316 opDatArgsWeighting (intersectingCase) *
317 weightedProperties [index][5];
318 if sum(weightedIntersection [index]) > maxWeight :
319 maxWeight = sum(weightedIntersection [index]);
320 maxIndex = 0;
321 maxList = [];
322 if sum(weightedIntersection [index]) == maxWeight :
323 maxIndex += 1;
324 maxList . append (CBRSystem [index]);
325

326 if maxIndex > 0:
327 for index1 in range(maxIndex -1):
328 for index2 in range(index1 +1, maxIndex):
329 if maxList [index1]['occurrences '] <
330 maxList [index2]['occurrences ']:
331 aux = maxList [index1];
332 maxList [index1] = maxList [index2];
333 maxList [index2] = aux;
334

335 if len(maxList) > 0:
336 return maxList [0];
337

338 return None;
339

104

340 def bestCaseMatch (CBRSystem , unmatchedCase):
341 tempCase = caseLookup (CBRSystem , unmatchedCase);
342

343 if tempCase == None or not equals (tempCase , unmatchedCase):
344 tempCase = similarityEstimation (CBRSystem , unmatchedCase);
345

346 return tempCase ;
347

348 def checkBestMatch (CBRSystem , newCase , bestMatch):
349 maxComplexity = 0;
350 loopFusionComplexity = [];
351 wantedFusion = None;
352 for pair in newCase ['case ']['fusable_pairs ']:
353 loop1 =
354 getLoopInfo (pair['loop1 '], newCase ['case ']['op_par_loops ']);
355 loop2 =
356 getLoopInfo (pair['loop2 '], newCase ['case ']['op_par_loops ']);
357 if opParLoopArrayMatch (loop1 , loop2):
358 complexity =
359 calculateLoopFusionComplexity (loop1 , loop2 ,
360 newCase ['case ']['arch ']);
361 fusionComplexity = {
362 'fusion ' : pair ,
363 'complexity ' : complexity
364 }
365 loopFusionComplexity . append (fusionComplexity);
366 if complexity > maxComplexity :
367 maxComplexity = complexity ;
368

369 threshold = 0;
370 if maxComplexity > 0:
371 # we have a good loop fusion
372 # now we check if the bestMatch does it;
373 wantedFusion = None;
374 for fusion in loopFusionComplexity :
375 if fusion ['complexity '] == maxComplexity :
376 wantedFusion = fusion ['fusion '];
377 print wantedFusion ;
378 if bestMatch != None and
379 checkComparable (newCase ['case '], bestMatch ['case ']):
380 loopsToFuse = bestMatch ['solution ']['loops_to_fuse '];
381 if loopsToFuse .index(wantedFusion) != -1:
382 return [True , bestMatch];
383 else:
384 if newCase ['case ']['arch '] == Arch.CPU and
385 bestMatch ['solution ']['op_warpsize '] == 1:
386 return [True , bestMatch];
387 else:
388 # we have no loop fusions

105

389 if bestMatch != None and
390 checkComparable (newCase ['case '], bestMatch ['case ']):
391 if len(bestMatch ['solution ']['loops_to_fuse ']) == 0:
392 return [True , bestMatch];
393 else:
394 if newCase ['case ']['arch '] == Arch.CPU and
395 bestMatch ['solution ']['op_warpsize '] == 1:
396 return [True , bestMatch];
397

398 # else: we have a better case and we create it
399 op_warpsize = 1;
400 if newCase ['case ']['arch '] == Arch.GPU:
401 op_warpsize = 32;
402

403 overallMaxComplexity = 0;
404

405 for loop in newCase ['case ']['op_par_loops ']:
406 complexity = opArgDatComplexity (loop , newCase ['case ']['arch ']);
407 if complexity > overallMaxComplexity :
408 overallMaxComplexity = complexity ;
409

410 if maxComplexity > overallMaxComplexity :
411 overallMaxComplexity = maxComplexity ;
412

413 complexityThresholdForDiffValuePartBlkSize = 4;
414

415 temp_block_size = 128;
416 temp_part_size = 128;
417 referenceValue = 4;
418 adjustmentFactorCPU = 8;
419 adjustmentFactorOther = 32;
420 print overallMaxComplexity ;
421 if newCase ['case ']['arch '] == Arch.CPU:
422 temp_block_size = math.log(overallMaxComplexity * referenceValue)
423 * adjustmentFactorCPU ;
424 else:
425 temp_block_size = math.log(overallMaxComplexity * referenceValue)
426 * adjustmentFactorOther ;
427

428 diffArray = [];
429 for val in possible_values_blk_part_size :
430 diffArray . append (math.fabs(temp_block_size - val));
431 minDiff = min(diffArray);
432 for index in range(len(possible_values_blk_part_size)):
433 if (diffArray [index] == minDiff):
434 temp_block_size = possible_values_blk_part_size [index];
435 if overallMaxComplexity <
436 complexityThresholdForDiffValuePartBlkSize
437 and temp_block_size *4 <= 512:

106

438 temp_part_size = 4 * temp_block_size ;
439 elif temp_block_size * 8 <= 512:
440 temp_part_size = 8 * temp_block_size ;
441 elif temp_block_size < 512:
442 temp_part_size = 2 * temp_block_size ;
443 else:
444 temp_part_size = temp_block_size ;
445

446 newSolution = {
447 'loops_to_fuse ' : wantedFusion ,
448 'op_warpsize ' : op_warpsize ,
449 'block_size ' : temp_block_size ,
450 'part_size ' : temp_part_size
451 }
452

453 newBestMatch = {
454 'case ' : newCase ['case '],
455 'solution ' : newSolution ,
456 'occurrences ' : 1
457 }
458 return [False , newBestMatch];
459

460 def retrieve (CBRSystem , newCase):
461 bestMatch = bestCaseMatch (CBRSystem , newCase);
462

463 # failsafe no 1 - we need to see if this is really a good option .
464 # this situation might have not been encountered
465 [betterMatchFound , betterMatch] =
466 checkBestMatch (CBRSystem , newCase , bestMatch);
467 return betterMatch ;
468

469 def reuse(bestCase , newCase):
470 newCase ['solution '] = bestCase ['solution '];
471 return newCase ;
472

473 def retain (CBRSystem , solvedCase):
474 return checkExistsAndIncr (solvedCase , CBRSystem);
475

476 def CBRInit (CBRSystem , trainingCases , results):
477 for index in range (0, len(trainingCases)):
478 CBRSystemCase = {
479 'case ' : trainingCases [index],
480 'solution ' : results [index],
481 'occurrences ' : 1
482 };
483 CBRSystem = checkExistsAndIncr (CBRSystemCase , CBRSystem);
484 return CBRSystem ;
485

486 ...

107

487

488 [trainingCases , results] = retrieveTrainingData ();
489 CBRSystem = CBRInit (CBRSystem , trainingCases , results);
490

491 # create vector of properties - the case
492

493 newCase = {
494 'case ' : {
495 'arch ' : default_arch ,
496 'fusable_pairs ' : fusable_pairs ,
497 'op_par_loops ' : op_par_loops
498 },
499 'solution ' : None ,
500 'occurrences ' : 1
501 }
502

503 # call machine learning to retrieve best result for the current case
504

505 bestCase = retrieve (CBRSystem , newCase);
506

507 solvedCase = reuse(bestCase , newCase);
508

509 print solvedCase ['solution '];
510

511 CBRSystem = retain (CBRSystem , solvedCase);

108

	Introduction
	Motivation
	Objectives
	Contributions
	Report outline

	Background
	Architectures
	Multi-core
	AVX/SSE

	Many-core

	Languages
	CUDA
	OpenCL

	OP2
	Direct and Indirect loops

	Optimization Techniques
	Graph colouring
	Iteration reordering
	Polyhedral Models

	Loop fusion
	Loop unrolling
	Code-block reordering
	Spatial and Temporal Locality
	Memory organization – Array of Structures vs. Structure of Arrays

	Machine Learning Techniques
	Overview
	Case-based Reasoning Systems
	k-Nearest Neighbour Learning

	Summary

	Related work
	Research goals
	Summary

	Tools: OP2 OpenCL runtime and compiler
	OpenCL Airfoil and OP2
	OP2 OpenCL Airfoil structure
	Runtime
	OpenCL observations

	Compiler

	Summary

	Machine learning techniques
	Design choices discussion
	Choice of optimizations
	Scope of machine learning and deterministic automation

	OP2 Runtime support – OP Tuner
	OP2 Compiler support
	Loop fusion evaluation
	Machine Learning
	Similarity measure
	Weighting and complexity calculations
	Fail-safes
	Overtraining
	Training data quality
	Validation of results

	Script
	Summary

	Evaluation
	Testing platforms
	Results for Airfoil variations
	Tuning algorithm results
	Complexity
	Summary

	Real-world applications - Hydra case-study
	Conclusions
	Achievements
	Further work
	Final remarks

	Bibliography
	Code samples
	OP2 Airfoil
	OP2 Tuner Runtime Support
	Split Files Script
	Tuner script

