
A Semi-Automated Segmentation of Electron

Microscopy Images for 3D Reconstruction of

the Nuclear Envelope

Stephen Wood

Supervised by: Prof. Daniel Rueckert, Department of Computing, Imperial College London
Dr. Luis Pizarro, Department of Computing, Imperial College London
Dr. Lucy Collinson, Cancer Research UK, London Research Institute

MEng Computing Individual Project
Department of Computing, Imperial College London

Abstract

The nuclear envelope is an important structure in cells as they undergo mitosis, breaking down to allow the
cell to duplicate and split before reforming around each daughter nucleus. This importance is also underlined in
cancerous cells where certain components of the nuclear envelope take central roles in cell functions that affect
tumour development and progression. Recently there has been a marked interest in studying the nuclear envelope
and the role it takes in mitosis, but the scientific community is yet to agree upon an exact model for the structures
and interactions that govern its reformation.

Visualising and investigating the nuclear envelope requires its accurate segmentation from a set of serial images
of the cell obtained through electron microscopy. As a manual process this requires a great amount of expert
knowledge and training, whilst also being very tedious and time consuming, taking on average a couple of months
to segment all the structures in a full data set. Once the segmentation is achieved a 3D reconstruction of the
nuclear envelope can be created and interpreted to study its characteristics and relationships to other structures
in the cell.

Attempts to use state of the art segmentation software have failed due to its generality, and no other research
into nuclear envelope segmentation is known to have been carried out. This report presents a semi-automated
algorithm for segmenting the nuclear envelope of nuclei at a late stage of mitosis when it is almost completely
reformed around the daughter nuclei. A pipeline of image processing techniques finds the nuclear envelope starting
from the identification of salient points inside the nucleus, and a number of manual corrections are necessary to
allow for the complexities of nucleus shape and the presence of noise in the microscopy process.

The total time for the segmentation of the nuclear envelope is reduced from around three weeks to a single
day, taking into account other required manual processes that are difficult to automate. Consequently, this has a
large impact on the throughput of data from the electron microscope to the biologists requiring the data to lead
their research. The work represents a huge step towards an algorithm capable of segmenting the nuclear envelope
at all stages of mitosis, where no reliance on the shape of the nuclear envelope can be made, and builds a strong
base for this further research.

Acknowledgements

Many thanks to Dr. Luis Pizarro, whose office became a place for lengthy discussions and puzzled thoughts;
I am extremely grateful for the amount of time you spared and the support you offered throughout the project.
My thanks also to Prof. Daniel Rueckert for his experience, ideas and guidance overall.

I am privileged to have been able to cross over from Computer Science and gain a taste of research in another
field, particularly one that has such an impact on so many people. To Dr. Lucy Collinson, Prof. Banafshe Larijani
and Dr. Christopher Peddie, I’d like to thank you for your ideas, enthusiasm and the time you have spent explaining
concepts that are second nature to you such that I could understand them. Having a firm grasp on the background
was essential to the success of this project, and I hope this outcome has a significant impact upon your research
in the future.

My final thanks go to anyone who has helped me during my time at Imperial, the lecturers I have seen out of
normal hours and the friends and family who have put up with me during exam periods; it has been well worth it!

Contents

1 Introduction 4
1.1 Contributions . 6
1.2 Collaboration . 6

2 Background: Cell Biology 8
2.1 Sub-cellular Structures of Interest Observable with EM . 8
2.2 Mitosis . 9
2.3 Electron Microscopy . 10

3 Background: Computer Vision 12
3.1 Image-processing Techniques . 12
3.2 Segmentation Algorithms . 22
3.3 Segmentation Quality Metrics . 27
3.4 Feature Extraction . 29
3.5 Machine Learning Techniques . 31
3.6 Summary . 35

4 Background: State of The Art 36
4.1 Ilastik: A State of the Art Segmentation Tool . 36
4.2 Sub-cellular Segmentation . 37
4.3 Neuronal Segmentation . 37

5 Background: Dataset 39
5.1 Sample Slices and Manual Segmentations . 39
5.2 3D Reconstruction . 41
5.3 3D Structures in 2D Slices . 41
5.4 Noise Affected and Corrupted Images . 41
5.5 Blurring of the Nuclear Envelope . 44

6 Algorithm 45
6.1 Identifying Nucleus Seed Points . 47
6.2 3D Consistency of Nucleus Seed Points . 47
6.3 Obtaining an Approximation to the Nucleus . 48
6.4 3D Consistency of the Nucleus Approximation . 51
6.5 Finding Seed Points on the Nuclear Envelope . 52
6.6 Obtaining an Approximation to the Nuclear Envelope . 52
6.7 Pruning Connecting Structures . 53
6.8 Manual Corrections . 54
6.9 3D Interpolation of Corrupted Slices . 54
6.10 3D Reconstruction . 55

1

7 Background: Implementation 57
7.1 ImageJ and FIJI . 57
7.2 Algorithm Framework . 62
7.3 Multi-threaded code in Java . 64

8 Algorithm Implementation 66
8.1 As an Instance of the Algorithm Framework . 66
8.2 Identifying Nucleus Seed Points . 68
8.3 3D Consistency of Nucleus Seed Points . 69
8.4 Filtering Nucleus Seed Points . 74
8.5 Finding the Nucleus . 74
8.6 3D Consistency of the Nucleus Approximation . 79
8.7 Obtaining an Approximation to the Nuclear Envelope . 79
8.8 Pruning Connected Structures . 82
8.9 3D Interpolation of Corrupted Slices . 85

9 Algorithm Discussion 89
9.1 Machine-learning Based Algorithm . 89
9.2 Expanding the Nucleus into the Nuclear Envelope . 90
9.3 Edge-based vs. Region-based segmentation . 90
9.4 Algorithm Framework . 90

10 Problems 92
10.1 Disconnected Nucleus Sections . 92
10.2 Nuclear Pores . 93
10.3 Perinuclear Space . 94
10.4 Small Gaps in the Nuclear Envelope . 95
10.5 Pruning Sections of Nuclear Envelope . 95
10.6 Failure to Prune Connected Structures . 96

11 Evaluation 99
11.1 Comparison to Sample Trained with Ilastik . 99
11.2 Segmentation Quality Metrics . 102
11.3 End-user Scoring . 103
11.4 End-user Feedback . 107
11.5 3D Reconstruction Similarity . 109
11.6 Segmentation at an Earlier Stage of Mitosis . 109

12 Conclusion 112

13 Further Research 114
13.1 Segmentation of other Sub-cellular Structures . 114
13.2 GUI and Manual Corrections . 114
13.3 Manual Seed Point Input . 115
13.4 Investigation of Nuclear Envelope Characteristics during Mitosis 115
13.5 Quantifying Nuclear Envelope Characteristics . 115
13.6 GPU Computation . 116
13.7 An Uncertainty Measure from 3D Consistency . 116

Appendix A Implementation 120
A.1 AlgorithmInstance Class Definition . 120
A.2 Algorithm Class Definition . 121

2

Appendix B Algorithm 123
B.1 Seed Points for Neighbours of 0049 . 123
B.2 Nucleus Approximations for Neighbours of 0064 . 124

Appendix C Evaluation 125
C.1 Error Metrics and Scoring Results . 125
C.2 Ilastik Segmentations . 126

Appendix D Results 127

3

1Introduction

The nuclear envelope is a sub-cellular structure that surrounds the chromosomes of cells, separating them from
the cytoplasm and other structures. During mitosis, the dividing of a cell into two daughter cells, the nuclear
envelope is broken down to allow the genetic information to duplicate and separate, and is reformed around the
daughter chromosomes to form the nuclei of the daughter cells.

Correct reformation of the nuclear envelope is critical to all cells that go through mitosis [29]. Defects in its
formation have been linked to cancers as well as other human diseases; for example, increased malleability of the
nuclear envelope is observed in small-cell lung carcinomas. Its function is clear, but agreement of the research
community upon exactly how its formation is regulated has not yet been achieved; knowing this may give clues
as to why it differs in cancerous and diseased cells.

(a) Sample EM image

Cytoplasm

Nucleus

(b) Manual segmentation

Figure 1.1: Example segmenta-
tion of EM image. The nuclear
envelope is the red structure in
(b).

Electron microscopy allows imaging of the cell and the structures relevant
to the nuclear envelope, and segmentation can be performed to identify these
structures throughout the different stages of mitosis. Any manual segmentation
is a lengthy process that involves a high level of expertise and corroboration,
and will intrinsically be susceptible to human error. By automating parts of the
segmentation we can save significant time and effort spent by the expert user.
An example segmentation of part of an image obtained by electron microscopy
is shown in Figure 1.1.

Computational biological image segmentation is a hot topic at the moment,
for only recently have the techniques and power required to prove its worth
been demonstrated. The imaging tool FIJI [39] ships with many segmentation
plugins, whilst Ilastik [44] has also proven popular within the community. All
these techniques have a machine learning element and provide segmentation
based on a semi-automatic approach, allowing the user to interactively identify
samples of a number of classes within an image by painting over regions. A
classifier is trained from this labelling, which can then be applied to further
images with user interaction only to refine the classifier.

Whilst there are tried and tested methods available for generic segmentation
with FIJI plugins and Ilastik, none have had success at providing a correct or
usable segmentation of the nuclear envelope. An example comparison between
the ground truth and results obtained with FIJI’s Advanced Weka Segmentation
plugin and Ilastik are shown in Figure 1.2. Because of the nature of these
programs as generally available pieces of software, the techniques used are too
general and no consideration can be given to the semantics of the object being
segmented. There has been research into segmenting specific parts of the
sub-cellular structure, but none has focused on the nuclear envelope.

The aim of the project is therefore to provide the ability to segment the
nuclear envelope from EM images of cells using a semi-automated approach
from which a 3D reconstruction of the nucleus can be built. On average the current manual segmentation process
takes 2 to 3 weeks to segment the nuclear envelope from a data set of images of a single cell. By reducing the
time spent obtaining the segmentation the throughput of valuable research data can be increased.

4

(a) Ground truth (b) FIJI (c) Ilastik

Figure 1.2: A comparison of segmentations obtained using FIJI and Ilastik with the manual segmentation
giving a ground truth. We can see that in general the nuclear envelope is picked up well, but there is confusion
between it and the endoplasmic reticulum which have very similar features. The areas of cytoplasm and nucleus
are also fairly well segmented, correctly forming the majority of pixels in those areas, however in general the
classification produces quite considerable uncertainty.

This aim is complicated by a number of characteristics of the nuclear envelope:

• At different stages of mitosis the nuclear envelope can contain gaps that make overall shape description
difficult.

• The nuclear envelope breaks down and reforms during mitosis; its shape changes over time.

• Different diseases and cancers affect the shape and completeness of the nuclear envelope.

• No two nuclei have easily identified relationships in their shapes.

These complexities eliminate the use of shape features which have recently been successful in automating
the segmentation of mitochondria in EM images. Images obtained through EM techniques are also greyscale,
therefore a successful algorithm cannot utilise colour and will have to rely solely on textural information. There is
however a key characteristic of the nuclear envelope: the texture of the chromosomes it contains when compared
with the cytoplasm on the outside of the nucleus. This distinctive feature is relied upon heavily in the algorithm
presented in this report.

We also only focus on a cell at a late stage of mitosis when the nuclear envelope is almost fully formed. This
is a simplification which enables a smaller problem to be solved, with the idea that this can be extended through
further research to apply to nuclei at all stages of mitosis. Some of the techniques we present do generalise well
to the nuclear envelope at other stages of mitosis, so it is certain that this algorithm contributes a solid base to
a further investigation.

There are steps in the manual process, such as registration and brightness equalisation, that are difficult to
automate and are outside the scope of this project. These take considerably less time than the segmentation and
are thus not the bottleneck in the process. Furthermore, the segmentation will always need at least one manual
step to deal with noise in some EM images, so only a semi-automated algorithm is achievable.

Whilst not specifically the subject of this project, the vision of the end-users at CRUK is to have a suite of
algorithms to perform segmentations of all the sub-cellular structures detailed in Figure 1.1. These structures go
through some interactions with the nuclear envelope as the cell goes through mitosis, and these interactions may
hold the clue to correctly modelling the reformation of the nuclear envelope.

5

1.1 Contributions

This report is intended to be read and understood by any person regardless of their understanding of the relevant
computing or biological subject material. As such, not all chapters are required to understand the contributions
of the project and the work that has been carried out; which chapters are required depends on your interests and
expertise. The contributions of this report are as follows:

• EM images are susceptible to noise and other intricacies which can significantly affect their resulting seg-
mentations. Understanding how these images are obtained and therefore how these problems can arise is
important for the discussions of how they affect the algorithm later in the process. Chapter 2 provides
the background to the electron microscopy process and the relevant biological knowledge, whilst Chapter 5
looks in detail at these problems within the sample dataset from which the algorithm was developed.

• A background to the computational techniques considered and used in this project is presented in Chapter
3 and this is built upon when looking at current research into segmentation of EM images in Chapter 4.

• The algorithm presented is a pipeline of well documented image-processing techniques. Chapter 6 gives a
suitable overview of this pipeline and details how points on the inside are first identified before being used
to locate the nucleus, a step that is key and underpins the rest of the algorithm. This chapter is the most
useful to gain insight into the algorithm without delving into implementation specifics; these are presented
in Chapter 8 for those who wish to understand the operation of the algorithm at the computational level.

• The end goal of being able to segment all the sub-cellular structures has been taken into account when
developing the project, and the software is designed as a framework for the development of further seg-
mentation algorithms that operate upon EM images similar to those examined here. Chapter 7 details this
framework and other general implementation features, including the use of FIJI and third-party plugins.

• Most of the initial work carried out looked at using machine learning techniques and augmenting state of
the art classification techniques. This ultimately led to the hand designed algorithm presented in this report,
which may seem a step back from the focus of current research. A discussion of the algorithm and the
processes that led to this change is presented in Chapter 9.

• Having to rely purely on texture and grey level information gives rise to a number of problems that can
occur in the pipeline as discussed in Chapter 10. These can result in parts of the nuclear envelope not being
segmented, or other structures being erroneously segmented as part of the nuclear envelope, and this shows
the necessity of manual corrections before the 3D reconstruction.

• Even with these problems, Chapter 11 shows that the reduction in time to perform the segmentation,
inclusive of manual corrections, gives an overall processing time reduction from almost one month to one
day at most. Furthermore a considerable improvement in segmentation quality over the closest state of the
art methods is shown.

• There are many possibilities to extend this project not only to identify the other structures in the cell, but
to investigate refining the algorithm to cater for cells at earlier stages of mitosis. A GPU implementation
of the algorithm may also significantly reduce execution time; these and other ideas for further work are
detailed in Chapter 13.

1.2 Collaboration

This research is pursued in conjunction with Cancer Research UK (CRUK) who have provided the EM datasets
and biological background and insight.

Dr. Lucy Collinson heads the Electron Microscopy Unit at the CRUK London Research Institute. This team is
comprised of four experienced electron microscopists, including Dr. Christopher Peddie, who provide a complete
range of electron microscopy services to research scientists using state of the art equipment and techniques.

6

Prof. Banafshe Larijani heads the Cell Biophysics group, also at the London Research Institute, whose research
interest lies in the proteo-lipid regulation of nuclear envelope assembly.

Supervision of the project within the Department of Computing was by Prof. Daniel Rueckert, head of the
Biomedical Image Analysis Group, and Dr. Luis Pizarro. Prof. Rueckert’s research focus is upon the development
of algorithms for image processing and analysis and their translation to applications in medical image computing.
Dr. Pizarro’s research interests are image processing, computer vision, machine learning and biological and medical
imaging.

7

2Background: Cell Biology

This chapter gives the necessary knowledge to understand the biological content of the project.

2.1 Sub-cellular Structures of Interest Observable with EM

A section of an example electron microscopy image of the type this project seeks to segment is shown along with
its manual segmentation in Figure 2.1.

(a) Sample EM image (b) Manual segmentation of sample

Figure 2.1: Example segmentation

The key biological features are [1, 2, 3]:

Nucleus To the bottom and right of the sample image and easily identified by eye as having a fairly
regular texture and low variance of grey value. The nucleus contains the genetic material of the cell as
well as other structures that have important roles in mitosis.

Nuclear Envelope (red) Contains the nucleus and characterised by two dark edges at a regular distance
apart, a double lipid bi-layer structure, with the gap between the edges called the perinuclear space. A
lipid bi-layer is a thin membrane made of two layers of lipids, a general category of molecules which
function as signalling molecules, for passing information between cells, as well as modulators of membrane
morphology. The nuclear envelope is visually identified by marking the boundary between the different
textures inside and outside the nucleus. It is typically 40nm thick and encloses the nucleus separating it
from the cytoplasm. Gaps in the nuclear envelope structure are shown in green.

8

Nuclear Pores Identified by a single dark line that fills a gap between two close together sections of nuclear
envelope. They enable the transfer and exchange of materials between the nucleus and the cytoplasm and
are typically 100-125nm in diameter, being roughly circular.

Endoplasmic Reticulum (teal) Similar to the nuclear envelope, however it is not a container for the
nucleus and is therefore identified as being surrounded by cytoplasm. The endoplasmic reticulum is one
structure with the outer lipid bi-layer of the nuclear envelope and often expands to the membrane separating
the cell from its outer environment. It is also another important compartment that plays a large part in
the reformation of the nuclear envelope during mitosis.

Cytoplasm Identified by the more coarse grained and less regular pattern outside of the nucleus.

Vesicles (yellow) Small dark circles in the cytoplasm, with a very regular size and intensity profile.

2.2 Mitosis

Mitosis is the division of a nucleus into two daughter nuclei following the duplication of the genetic material in
the parent nucleus. It is described by a number of discrete observable stages, or phases [10]:

Interphase This is the state in which the cell is most stable and the nuclear envelope is completely formed,
during which the cell replicates all its genetic material and structures that are essential for the daughter
cells to subsequently undergo mitosis. An example of a cell at interphase is shown in Figure 2.2a.

Prophase Chromatin, genetic material combining DNA and proteins, begins to condense to form chro-
mosomes which can then be observed through a microscope.

Prometaphase The nuclear envelope breaks down, the chromosomes are fully formed in pairs and begin
moving towards the middle of the nucleus.

Metaphase The chromosomes align along the middle of the nucleus, ensuring that in the next phase each
daughter receives a single copy of each chromosome.

Anaphase Paired chromosomes separate and move to opposite sides of the cell. An example of a cell at
anaphase is shown in Figure 2.2b.

Telophase New membranes form around the daughter nuclei as their nuclear envelopes, the chromosomes
also disperse and are no longer visible under a microscope. An example of a cell at telophase is shown in
Figure 2.2c

9

(a) A high magnification image of a
cell at interphase; the nuclear enve-
lope is completely formed around the
nucleus to the top left of the image.

(b) An image of a cell at anaphase;
the nuclear envelope is distinguish-
able but does not form a continuous
boundary around the nucleus.

(c) An image of a cell at telophase;
the nuclear envelope almost forms a
complete boundary around the nu-
cleus and only a few gaps remain.

Figure 2.2

2.3 Electron Microscopy

Traditionally, cell biology has relied on light and fluorescence microscopy in order to analyse cells and tissues,
however ultimately these techniques are limited in resolution by the wavelength of light. Electron microscopes
offer a much increased resolution due to the much shorter wavelength of electrons. In electron microscopy, a
beam of electrons replaces the traditional beam of light, and the behaviour of the electron as it hits a sample is
captured. The interaction of the electron beam and the sample is what defines the image that is seen.

Electron microscopy allows biologists to analyse sub-cellular structures such as mitochondria and nuclei. The
resolution of these images has also recently made EM images a popular topic for advancing the state-of-the-art
in terms of image processing and segmentation techniques, as the sub-cellular structures are often complex and
consequently require complex segmentation techniques.

This section is meant as a brief introduction to electron microscopy in order to understand how the images
associated with the project are obtained. Here we take a look at the two main types of electron microscopy
actively used in current research.

2.3.1 Transmission Electron Microscopy (TEM)

In TEM, a beam of electrons is incident upon an ultra thin sections [34]. The behaviour of the electrons as
they hit the sections is dependent upon its properties; some electrons are absorbed, others are scattered or pass
through.

The design of the TEM consists of an electron gun, a series of lenses and a charge-coupled device (CCD)
camera. A condenser lens focuses the electron beam on the specimen. Three other lenses work to focus the
transmitted electrons onto the camera to record the image. The overall quality of the image is dependent upon
the lenses and their configurations. Magnifications of up to 1,000,000 times are possible with TEM.

The ultra thin sections must withstand a vacuum in the electron microscope [2]. To do so they are fixed to an
epoxy resin after staining with heavy metals and dehydrating with ethanol. Sections around 70nm are taken from
the specimen such that they are thin enough for the electron beam to pass through, however for large structures
this requires many serial sections to be taken and imaged. Therefore, to create a full 3D reconstruction images
for each section must be aligned and segmented.

2.3.2 Scanning Electron Microscopy (SEM)

The primary concept of SEM is that of a focused electron beam being scanned across a specimen in a raster
approach, that is from top left to bottom right in horizontal lines. As with TEM, when the beam is incident upon

10

the specimen there are many possible behaviours [34]. The most common imaging mode collects the low energy
secondary electrons that are ejected by the atoms of the specimen when interacting with the incident electrons.

An alternative mode measures backscattered electrons, those from the original beam that are repelled when
interacting with the atoms of the specimen. Heavier atoms (those with higher atomic number) will backscatter
more strongly that lighter atoms, and this provides the contrast in the image.

A couple of variants of SEM exist [50], namely focused ion beam SEM (FIB/SEM) and serial block face
SEM (SBF/SEM). The particular advantage to these methods is that the complete sample is in situ within the
chamber of the microscope, as opposed to slices of the specimen being placed individually into the microscope
to be imaged. From a 3D reconstruction perspective, this means that there are no problems with registration of
multiple 2D slices as the specimen is sliced within the microscope itself and is stationary at all times.

The two methods vary only upon how they incrementally remove slices of the specimen. In FIB/SEM, a
gallium ion beam is used to ’mill’ away material, whereas the SBF/SEM uses a diamond knife to slice away layers
of material. A backscattered electron detector is used to image the specimen with the same scanning beam as
standard SEM techniques.

In biological applications, TEM is more popular than SEM, however SEM is used particularly effectively for
discovering the surface topology of cells, bacteria and viruses.

11

3Background: Computer Vision

This section gives an overview of traditional computer vision techniques that aid understanding of the current
state of the art. Section 3.1 provides nearly all the knowledge required to understand the algorithm by introducing
some standard and well known image processing techniques. Algorithms specific to the segmentation problem
and methods for evaluating segmentation quality are detailed in Sections 3.2 and 3.3.

Many state of the art methods utilise aspects of machine learning and obtain good results, but this is often
heavily dependent on the choice and descriptive power of features that can be extracted from images. An
overview of feature extraction is presented in Section 3.4. Machine learning techniques and their relationship with
segmentation algorithms are detailed in Section 3.5.

3.1 Image-processing Techniques

3.1.1 Image Representation

An image is in most cases represented as a two-dimensional array of intensity values within a range defined by the
particular application or method for obtaining the image. The simplest possible image representation is a binary
image, where each pixel has a value of either 0 or 1. Binary images require very little storage space but are usually
only the result of some image-processing techniques that aim to identify salient features.

A greyscale image has values in the range 0 to 255. For a moderate amount of detail each value can be
stored in a byte and can take any integer value between 0 and 255; such an image is an 8-bit greyscale image.
More detail is obtained by increasing each value to be represented by 16-bits, with the drawback of increased
image storage space required; this is a 16-bit greyscale image. Greyscale images are more commonly found in
applications than binary images and often require more complex processing techniques to aid their understanding.

Full colour images in the RGB model have three components of colour; red, green and blue. Each colour
component is in the range 0 to 255, giving each pixel value a total of 3 bytes to store. Having colour images
available can often simplify the application of computer vision, however again more complex processing techniques
may be required.

An alternative representation of an image is a histogram of pixel intensities. For a greyscale image, the
histogram is a plot of intensity (in the range 0-255) against the frequency of that particular intensity value in the
image [45]. The intensity histogram can be useful as a simple representation of global information in the image,
from which particular values can be extracted, and a visualisation of the effects of image transformations.

3.1.2 Binary Image Processing

Binary Operators

Given a number of binary images we can define several simple binary operations upon these images.

Inversion (negation) For each image, replaces each pixel intensity with the opposite value.

And (intersection) A pixel has value 1 in the output image if both the input images have value 1 in the
same position as the pixel.

12

(a) Binary Image 1 (b) Binary Image 2 (c) Inversion of Image 1

(d) Image 1 or Image 2 (e) Image 1 and Image 2 (f) Image 1 subtract Image 2

Figure 3.1: Binary image operations.

Or (union) A pixel has value 1 in the output image if either of the input images has value 1 in the same
position as the pixel.

Subtract (difference) A pixel has value 1 in the output if the first input image had value 1 and the
second input had value 0 in the same pixel position, otherwise the output has pixel value 0.

These operations are simple, fast to compute and easily show relationships between two images. Examples of
these four operations are shown in Figure 3.1.

Distance Transform

The resulting image of a distance transform applied to a binary image is a greyscale image where pixel values
relate to the distance of that pixel from its nearest background pixel in the original image. It is also possible to
compute distance from object pixels by performing an inversion before the distance transform.

The individual distance values can be computed using any particular distance measure [23]. The city-block
distance measure counts the number of horizontal or vertical hops necessary to get to the nearest background
pixel. The Euclidean measure takes the straight line distance to the nearest background pixel. An example of the
distance transform applied to a sample binary image is shown in Figure 3.2.

13

0 0 0 0 0 0 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 0 0 0 0 0 0

(a) Image with object pixels denoted by 1

0 0 0 0 0 0 0
0 1 1 1 1 1 0
0 1 2 2 2 1 0
0 1 2 3 2 1 0
0 1 2 2 2 1 0
0 1 1 1 1 1 0
0 0 0 0 0 0 0

(b) City-block distance transform

Figure 3.2: Distance transform of a binary image. The city block distance transform in (b) gives the number
of horizontal or vertical hops from an object pixel in (a) to its nearest background pixel.

3.1.3 Convolution and Neighbourhood Operations

A convolution is a simple linear filtering operation whose mathematical definition is found in [45] and nearly all
image-processing texts, but is skipped here as it is not necessary for understanding the concept and its application
to image processing. An image intensity function is convolved with, or multiplied by, another typically smaller
intensity function termed a filter or convolution kernel.

In practice a kernel is defined as a square matrix with odd dimensions such that there is a unique centre entry.
This kernel is placed with each pixel in the image located at this unique centre, and this pixel’s intensity is updated
to be the sum of the intensities in the original image multiplied by those in the kernel where the image and kernel
overlap. Convolution is therefore simply viewed as updating a pixel’s value with a weighted sum of those in its
immediate neighbourhood, where the size of the neighbourhood is defined by the size of the convolution kernel.
Kernels should have normalised weights to prevent intensity values occurring outside the range defined by the
image.







1

9

1

9

1

9

1

9

1

9

1

9

1

9

1

9

1

9







Figure 3.3: Mean convolution kernel

An example of a convolution kernel that calculates the mean
of a 3x3 neighbourhood around the centre pixel is shown in Figure
3.3. When this is centred at a particular pixel each of its immediate
neighbour’s pixel values are multiplied by 1

9
, the sum of these values

is therefore the mean over a 3x3 neighbourhood. The centre pixel’s
value is then updated with this calculated value.

We can extend this notion to general operations on local neigh-
bourhoods of pixels, each of which can again be defined over an
arbitrary odd neighbourhood size. The most commonly found neigh-
bourhood operations are the maximum, minimum, variance and median. The results of a maximum and variance
neighbourhood operation being passed over a sample image is shown in Figure 3.4.













2 5 10 5 4
5 2 4 12 8
5 2 12 8 8
2 6 9 10 1
2 1 1 9 8













(a) 5x5 array of pixel intensity val-
ues.













5 10 12 12 12
5 12 12 12 12
6 12 12 12 12
6 12 12 12 10
6 9 10 10 10













(b) Pixel values after a maximum op-
eration over a 3x3 neighbourhood.













3 8.7 14.7 11.4 12.9
2.7 12.7 15.8 9.6 7.9
3.5 12.6 15.4 12.8 13.8
4 15.3 17.3 14.5 10.3
4.9 10.7 16.8 17.5 16.7













(c) Pixel values after a variance op-
eration over a 3x3 neighbourhood.

Figure 3.4: Showing neighbourhood operations.

14

3.1.4 Noise

Any images that are obtained, transmitted or processed are susceptible to random errors that are most often
called noise [45]. The noise can also be dependent on the content of the image. When looking at individual
pixel intensities and their neighbourhoods, noise can be seen as intensity values that are quite different to those
within the pixel’s neighbourhood. Thus techniques for dealing with noise are commonly associated with smoothing
techniques.

Median and Mean Filters

The neighbourhood operations of median and mean are simple and quick ways to remove noise as previously
described. The mean convolution can be represented as an equally weighted convolution kernel, as shown in
Figure 3.3, whereas the median of a neighbourhood is a more general neighbourhood operation.

The median operation requires a sorting of the neighbourhood intensity values and as such is slightly less
efficient than the mean convolution. For both operations, the size of the neighbourhood considered affects the
amount of smoothing present in the resulting image.

(a) Sample image (b) Median filter over a 5 pixel
neighbourhood

(c) Mean filter over a 5 pixel
neighbourhood

Figure 3.5: Smoothing an image with mean and median filters

Gaussian Filter

Noise is often described by its probabilistic characteristics, and as such can be associated with the Gaussian
distribution as a very good approximation to noise that occurs in many practical cases [45]. The Gaussian
distribution is characterised in one dimension by a bell-shaped curve, in two by a bell shape and has one parameter,
σ, the standard deviation of the distribution.

For this distribution to be used as a smoothing operator we modify the parameter σ to give the approximate
neighbourhood size that we wish to consider. Larger values of σ correspond to wider bell shapes and thus larger
neighbourhoods over which smoothing takes place. Since the image is discrete but the Gaussian distribution is
continuous, the kernel we define is a discrete approximation to the continuous Gaussian for a particular value
of σ. Given the Gaussian distribution, pixels further from the centre of the resulting convolution kernel have
less influence on the centre value than those closer to it; the effect created by the bell-shape. The discrete
convolution kernel for an approximate Gaussian smoothing with σ = 1.0 is shown in Figure 3.6, with an example
of its application to an image in Figure 3.7.

15

1

273













1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1













Figure 3.6: Approximate Gaussian filter with σ

= 1.0 [8]
(a) Sample image (b) Image smoothed

with Gaussian, σ = 5

Figure 3.7: Gaussian convolution kernels

3.1.5 The Fourier Transform

One particularly well documented method of mathematical analysis is that of the Fourier transform. The aim of
such a transformation is to decompose a periodic function into a spectrum which gives the absolute magnitudes
of contributions to the original function of a set of sinusoidal curves. The original periodic function can then be
recreated by the superposition of each sinusoidal curve contributing the amount determined by its value in the
spectrum.

The Fourier transform has several useful features:

• The spectrum of a given function is independent from its phase.

• The spectrum can be normalised to remove dependence upon the individual magnitudes and make the
spectrum values relative.

• Comparison of two spectra for similarity is simpler than comparing their respective periodic functions.

This technique relates to image processing for analysis of shape as well as texture. For recognising similar
shapes we can consistently choose a reference point within an object that we loosely call the centre of mass. If
we then take a series of vectors with increasing angle relative to the x-axis and project them from this centre to
the object boundary, we obtain a periodic function of vector length plotted against angle. The Fourier transform
of this periodic function gives a descriptor of the object’s shape.

Given that the shapes are already defined by segmentations or masks we can use this technique to find similar
shapes within any image by using the same process and comparing spectra. Alternatively, if we know a particular
shape we are looking for we can identify locations of these shapes in an image using a predefined spectrum. The
advantages of spectra being independent from phase and normalised means that we can identify shapes regardless
of any rotation or scaling transformations.

The same transform can be used to classify texture. If we consider a window over an image, it can be seen as
periodic in two dimensions, x and y, where the greyscale intensities represent the function value. If we apply the
Fourier transform to the horizontal and vertical scan lines of this window we obtain a 2D spectrum which can be
used to describe the texture. Spectra can be compared as before to identify similarly textured regions.

Band-pass filtering

Noise in images can also be thought of as the presence of high frequency components in the periodic function
representing greyscale intensities. Using the Fourier transform for 2D windows we can remove any non-zero entries
in the spectrum for sinusoidal curves that have frequencies above a certain threshold. The Fourier transform is
an invertible operation so we can reconstruct the window given the spectrum; as we have removed the spectrum
entries for high frequency components the reconstructed image will appear smoother.

16

The same process can be used to filter out low frequency components of the spectrum, which has the effect
of removing larger structures from the image. We can now see that the definition of low and high frequency
thresholds determines a number of structure sizes that are preserved. Structures smaller than the low threshold
and higher than the high threshold are filtered out; this is a band-pass filtering.

3.1.6 Morphology

Morphological operations are slightly different from the convolution operations defined previously as they primarily
operate on point sets, connectivity and shape rather than pixel intensity values and distributions [45]. They are
typically used to simplify shapes, filter noise or modify the object structure in a meaningful and well defined
manner. These operations also require a relation that identifies which pixels in the image are considered as
objects and which as background. For the simpler binary image case that we look at here, we could consider
white pixels to be objects and black to be background or vice versa.

The morphological transformation of an image requires the definition of an additional smaller structuring
element expressed with respect to a local origin. This structuring element is moved systematically across the
entire image with each pixel placed at the local origin of the element, and the output of the operation is stored in
a separate output image. Typical structuring elements include squares, circles and lines, but can also be arbitrarily
shaped according to the application.

There are four primary morphological operations that can be defined based on this notion. A dilation places
the structuring element over each object pixel in the original image. Each pixel which is then defined as an object
pixel by the structuring element being placed there is defined as an object pixel in the output image. Hence this
can be seen as an increasing or growing transformation.

The dual operator of a dilation is erosion, where an object pixel is only carried over to the output image if all
object pixels in the structuring element are present as object pixels in the input image. An erosion can thus be
seen as shrinking or reducing the input image according to the structuring element. Example of the erosion and
dilation operations are shown in Figure 3.8.

(a) Sample binary image (b) Dilation (c) Erosion

Figure 3.8: The erosion and dilation operators using a 1-pixel radius circular structuring element with the
local origin at the centre of the circle.

Two further morphological operators are opening and closing; an opening is an erosion followed by a dilation
and a closing is a dilation followed by an erosion. These operations in general are used to eliminate image details
that are smaller than the structuring element without distorting the overall shape of objects in the input image
[45]. The closing operator is useful for filling small holes, connecting close objects and smoothing the outline of
objects, with the opening operator effectively performing the inverse by opening holes. Examples of the opening
and closing operators are shown in Figure 3.9.

17

(a) Sample binary image (b) Opening (c) Closing

Figure 3.9: The opening and closing operators using a 1-pixel radius circular structuring element with the
local origin at the centre of the circle.

Morphological operators are useful for refining regions that may have small holes due to noise, or for general
manipulation of object and region shapes. Their extension from binary to greyscale images is simple using
minimum and maximum operations. Erosion assigns the minimum intensity value found in the neighbourhood of
a pixel in the input image, and dilation the maximum value. The structuring element in this case simply defines
the neighbourhood over which intensity values are considered.

Skeletonisation

The skeleton of objects in binary images is a stick-figure like representation, rather like the skeleton of the human
body, where all points in the skeleton are at a locally maximum distance from the boundary of the object. For
example, the skeleton of a circle is the point at the centre of the circle, and the skeleton of a square is a cross
positioned at the centre of the square, extending to its vertices. The skeleton can either be found through
successive symmetrical erosion operations, performed until any more erosions would change the topology of the
structure, or through local maxima in a distance map. Figure 3.10 shows an example of the skeleton operation
upon a random binary shape.

(a) Sample binary shape (b) Skeletonisation of sample shape (c) Skeleton analysis

Figure 3.10: The skeleton representation of a binary shape

18

An alternative way to think about a skeleton in a continuous environment is consisting of a number of maximal
balls [45]. That is, an object can be described as an infinite number of points and radii of circles placed at these
points. However, in a discrete environment such as an image, the point-radius representation would only be an
approximation to the real object.

The skeleton can also be used as an efficient representation of an object’s topology by converting it to a graph
[14]. For the 2D skeleton case we can classify pixels in the skeleton into three different classes based on their
connectivity in the horizontal, vertical and diagonal directions:

• End-point pixels that have less than two neighbours.

• Junction pixels that have more than two neighbours.

• Edge pixels that have exactly two neighbours.

An example showing an analysis of the skeleton in Figure 3.10b is shown in Figure 3.10c. This analysis of the
skeleton can give one or a number of graphs, depending on the number of separate objects present in the image,
that can be further analysed to deduce properties of the skeleton and the original object.

3.1.7 Image Registration

Image registration is a critical technique for integrating and comparing images of the same objects that have been
transformed in some way [51]. This transformation could be due to a number of reasons:

• Images are captured with different imaging processes, cameras or sensors.

• Images are captured at different times when the object has moved.

• Images are captured from different viewpoints.

The problem becomes one of searching for the best transformation between images such that the objects are
registered in the same position in each image.

The first step in image registration is to decide upon a feature space between which different images can be
compared, and this choice of features is one of the main factors affecting the success of the registration algorithm.
Transformations are based upon this space and defined as a combination of many smaller image manipulations
including rotation, scaling, shearing and translation. If these are not sufficient to describe the changes in the
objects between images then higher level transformations can be used to give a more free form deformation.

Given the possible transformations to apply, the image registration algorithm becomes a search for the optimal
combination of these transformations between the two images, given some measure of similarity in terms of the
feature space. An example of the registration of two images from the dataset used in this project is shown in
Figure 3.11. Although the two objects are quite dissimilar in shape it is noticeable that they can be better aligned.

3.1.8 Volume Rendering

The aim of volume rendering is to visualise volumetric data in some way that is meaningful and allows a human
to interpret what the data represents. Many techniques exist, the most common being direct volume rendering
where colour and transparency values as chosen for each voxel, a three-dimensional pixel. Volumetric data can
arise from many applications, so we require application specific transfer functions to perform this mapping from
voxel values to colours and transparency values based upon the structures and information that is required to be
visualised. For the example of visualisation of a binary volumetric dataset one could choose to make black voxels
transparent and give white voxels an arbitrary colour in order to visualise objects represented by the white voxels.

Figure 3.12 shows an example volume rendering using white pixels of binary images as object pixels and making
black pixel transparent.

19

Figure 3.11: Image registration example. The top two images are original images from the dataset before
they are registered as in the second row.

20

Figure 3.12: An example of volume rendering. The first 5 images are stacked together and rendered in 3D.

21

3.2 Segmentation Algorithms

All, bar one, traditional segmentation algorithms come in two flavours [45]. There are those that attempt to find
a boundary map from the given input image through edge detection or similar methods. Other algorithms attempt
to segment through defining regions within the image using a similarity measure between pixels based upon both
local and global characteristics. These two representations are synonymous; a region can be represented by its
closed boundary, and a closed boundary by the region that it defines. It is important to consider that whilst there
is this synonymity, the different algorithms can be expected to produce different results and therefore different
information. This is potentially useful as a good segmentation could result from combining the best of both
strategies.

3.2.1 Thresholding

Objects can often be characterised by their colour or intensity as a way to distinguish them from the background
within a particular image. Thresholding is the process of maintaining pixels whose intensity falls within a particular
band or set of bands and removing pixels that fall them. The process produces a binary image where 1 indicates
an intensity value within the thresholds and 0 outside the thresholds.

Thresholding is an inexpensive and fast operation that can often be done in real time using specialised hardware
[45], however it is certainly not without its limitations. The application of this method needs to be simple; different
objects within the same intensity bands cannot be segmented, and the specific thresholds required for a particular
segmentation may not be readily found.

3.2.2 Edge Detection

A significant class of algorithms utilise the edges found from an image that are defined by changes in colour,
intensity or texture as a gradient within the image. Among the most popular methods are edge detecting operators,
such as the Laplacian, Prewitt and Sobel convolution filters. All these operators convolve a small square kernel,
often of dimension 3x3, with the image to compute the gradient or second derivative at each pixel in the image, as
shown in Figure 3.13. The resulting gradient map can then be thresholded to decide which edges are significant.





−1 0 1
−1 0 1
−1 0 1





(a) Prewitt operator
for gradient in the x-
direction





1 1 1
0 0 0
−1 −1 −1





(b) Prewitt operator
for gradient in the y-
direction













5 6 52 18 5
5 6 52 18 5
5 6 52 18 5
5 6 52 18 5
5 6 52 18 5













(c) Sample 5x5 image













3 141 36 −141 −39
3 141 36 −141 −39
3 141 36 −141 −39
3 141 36 −141 −39
3 141 36 −141 −39













(d) Derivative of sample image

Figure 3.13: Example showing the Prewitt edge detecting kernels passed over a sample image that has
evidence of a strong edge in the x-direction. Notice that its gradient in the y-direction is 0; there is no change
in intensity between adjacent pixels in that direction.

The results of such operators most often cannot be used directly for segmentation, instead additional processing
is required to form a continuous edge map from the convolved image. Noise in the original image is also a source
of errors in segmentation; edges can appear where there is no border in the original image, and vice versa. A
popular technique is to smooth the image before edge detection in an attempt to reduce noise; this is most
commonly achieved using a Gaussian filter.

Canny Edge Detection

Introduced by John Canny in 1986, a commonly used algorithm is that of Canny edge detection [45]. It is based
upon three criteria that Canny aimed to satisfy to find an optimal edge detector:

22

• Important edges should not be missed, and there should be no spurious responses.

• Distance between the actual and located position of the edge should be minimal.

• Any given edge should only be marked once and noise should not create false edges. If there are two
responses to any given edge, one should be marked false.

The first stage of his algorithm is to perform noise reduction by a convolution with a Gaussian filter. From
here, estimates of the edge normal directions are calculated for each pixel using an edge detection operator, which
are then rounded to one of the four directions that represent vertical, horizontal and diagonal gradients. This
is then used to perform non-maximum suppression of edges; a pixel is determined to be an edge if its gradient
magnitude is greater than those of both its immediate neighbours in the same direction as the gradient magnitude.

At this stage we have a binary image consisting of edge points. An important step is to now go back over
the image and compute the magnitude of each edge point such that thresholding can be applied; edge points
with higher gradient magnitude are more likely to be edges than those with a smaller magnitude. Thresholding
with hysteresis, requiring the definition of two thresholds, is then used to identify the edges. A high threshold
determines those pixels that are definitely an edge whereas a low threshold determines pixels that are also an edge
if they are connected to any pixels above the high threshold. This is useful as low gradients often correspond to
noise in images, however being connected to a high gradient pixel should increase the likelihood that it is part of
an edge.

An optional final step in Canny’s algorithm is to perform the previous steps at a number of different spatial
resolutions by changing the standard deviation of the Gaussian used to smooth the image, and to then compile
the information from each resolution into the result. Whilst this can produce an improved edge detection, it is
common for an implementation to choose just one value for the standard deviation based upon the objects in the
image and omit this final step.

Algorithms that rely on prior information

Many more algorithms for detecting edges exist [45], however they rely on prior information that is not necessarily
available in most modern applications.

• Border tracing takes a predefined set of regions in an image and traces around the region to define its
boundaries in terms of edges.

• If prior information such as the start and end point for borders, smoothness and curvature is known then
the detection of the complete border can be transformed into a graph search problem.

• A Hough transform can also be used to detect features within a image based upon the identification of
pre-described shapes within the image. While this process is not too sensitive to noise and can be used to
segment objects of arbitrary shape, it is the fact that it requires the definition of the shapes that limits its
use in natural segmentation applications.

3.2.3 Region-based Segmentation

Regions and edges have a synonymity as discussed earlier. In this section we look at algorithms that aim to
grow regions directly from the original image. For these algorithms an important property to consider is that
of homogeneity [45], and the goal of region-based segmentation is to divide an image into areas that maximise
this property. Homogeneity can be defined using any features of the image, such as colour, intensity, shape or
texture, and which features are used can greatly influence the complexity of shape and the accuracy of regions in
the output.

23

Region Merging

The simplest way to grow regions is to begin with the original pixel values and regard pixels as regions which are
then merged based upon some criteria that measures homogeneity. When regions of multiple pixels are defined,
the region descriptors are most commonly based upon a statistical representation of the region, for example an
intensity histogram, or the mean grey value of the region. Once regions are merged, the descriptor of the new
larger region is recalculated as part of an iterative process which terminates when no more adjacent regions can
be merged according to the specified criteria.

A particularly simple region merging algorithm is a flood fill algorithm. Given a set of regions and a starting
pixel, this algorithm finds all connected pixels in the horizontal, vertical and diagonal directions that have either
the same intensity value or are above or below a certain threshold. Alternatively some implementations can find
all such maximal regions in an image that satisfy the criteria.

Region Splitting

As opposed to merging, region splitting considers the original image as a whole region and seeks to split this
down into smaller regions, again using some similarity descriptor between sub-regions. While in theory a dual to
merging, just applied in a reverse order, this method will most likely produce a different segmentation.

The most simple way to define sub-regions is to examine the 4 quadrants of a region to see if any can be
split further. This is a quadtree approach [52], whereby a tree is formed with the root node denoting the original
complete image, and leaves representing homogeneous regions. Any dissimilarity between sub-regions requires a
node to be split and 4 child nodes created.

The quality of the segmentation produced by this method is very sensitive to the choice of split as well as the
homogeneity criterion, and would require tuning at an application specific level. Two cases where the quadtree
representation fails to segment regions properly or most efficiently is when the regions are not square, or a region
overlaps more than one quadrant.

Watershed Segmentation

Algorithms for watershed segmentation are based upon the well known topographical concept that when water
falls upon land, it will always fall to the lowest point it can reach by monotonically decreasing altitude. By
applying this concept to segmentation, we say that individual grey levels correspond to an elevation, hence local
low gradient regions correspond to geographical lowest points [48]. In general, algorithms attempt to group pixels
into regions based on the catchment basins a drop of water would reach if it were to fall on each individual pixel.
Regions are then homogeneous in the sense that pixels within an region all share the same local minimum.

The most basic approach to finding a segmentation as such is to find a downstream path from each pixel to its
local minimum based on the local gradients. This method is however computationally expensive and susceptible
to inaccuracies; an approach presented by Vincent and Soille [48] makes the idea attractive. Rather than starting
from each individual pixel to find minima, the first step is to sort all pixel values by ascending grey values. A
flooding step is then carried out using a fast breadth-first search of all the pixels in this order so as to attribute
them to their local minimum. Conceptually this fills the basins from the bottom up, causing new pixels to reach
more recently added pixels first instead of having to descend all the way to the local minimum.

Superpixels & SLIC

Superpixels are a computationally efficient representation of the pixels in an image which take into account and
have a better fit to the objects and structures within the image [9]. Pixels are grouped into larger regions based
on similarity of colour or texture, and savings come from calculating features for just superpixels and not all the
pixels it contains. Little global information and fine detail is lost by moving to this representation as boundaries
of structures of interest most often correspond to large changes in the colour or texture feature with which the
superpixels were formed. The superpixel representation can come close to an accurate segmentation, but is most
frequently used as a preprocessing step for a different segmentation algorithm.

24

One technique for finding a fast superpixel segmentation is simple linear iterative clustering [12], or SLIC.
Its performance has been shown to be better than many other techniques for generating superpixels, and has an
advantage of only requiring one parameter, the target number of superpixels in the output.

The approach taken by Achanta et al. takes into account the colour similarity of pixels as well as their proximity
in the original image. From this they define a 5D space and a novel distance measure within this space that also
takes into account superpixel size; this allows control over cluster sizes. This distance measure also works to limit
the maximum proximity of pixels that is considered by the algorithm. Rather than compare all pairs of pixels in
the image, SLIC only looks for pixels within an area relative to the current superpixel size. This is one reason that
it is amongst the fastest superpixel segmentation algorithms.

The iterations are initialised by placing regularly spaced seeds onto the original pixel map and moving them
to the lowest gradient position in a 3x3 neighbourhood. This avoids placing seeds at an image edge and reduces
the chances of the algorithm being affected by noise. The first step is to associate all pixels with their nearest
seed point, that is the seed that minimises the novel distance measure and resides within the search proximity of
the pixel. Iterations then recalculate the centre point of each superpixel based upon the average of their pixel’s
5-dimensional vectors, and all pixels are re-associated with their closest centre point.

The algorithm produces a regularly sized and equally spaced segmentation of the original image into superpixels
at a low computational cost. These are desirable qualities when using the algorithm as a preprocessing step before
the application of a more specific segmentation algorithm.

3.2.4 Template Matching

Template matching is the simple process of overlaying templates on an image to find all the occurrences of
specific objects or patterns represented by the template within the image. The best match for a given template
on the image is given by some measure of optimality, based on the properties and relationships between the object
template and the image. One simple example of a measure would be the proportion of pixels that match between
the template and the section of the image onto which the template is placed.

Whilst a simple and widely used method, the applicability of template matching to image segmentation is
limited due to requiring the shape of the objects to segment be known in advance. Its effectiveness is also highly
dependent on the measure of optimality; higher level image descriptors, such as correlation, can be applied to
increase this.

3.2.5 Active Contours (Snakes)

An active contour is a set of points which aims to enclose a target feature [36]. A good analogy also taken from
[36] is that of a balloon placed around a shape so as to enclose it fully. If enough air is taken out of the balloon it
will surround the object that it encloses; active contours aim to describe a shape by enclosing it in this manner.

A snake is defined as an energy-minimising spline, and its energy is defined by its shape, location in the image
and certain other image properties. The minimisation task is to find local minima of energy which then correspond
to desired image features. The snake is initialised at some position in the image and is subsequently deformed to
match the nearest contour.

The definition of energy depending on the shape of the snake limits its applicability to recognising shapes that
are intrinsically smooth in their shape. Shapes that have sharp changes of direction in their border may struggle
to be matched exactly by active contours. Further limitations upon general purpose use arise from requiring user
input to position the initial snakes; active contours are a deformable model of the shape, so some segmentation
is already done by a user in order for it to be refined using this method. The outcome of the model will therefore
also be sensitive to how it was initialised by the user.

3.2.6 Graph Partitioning Methods

One way to represent an image is that of a weighted undirected graph, where the nodes are pixels or voxels and
edge weights correspond to the similarity (or dissimilarity) between two nodes. The graph can then be partitioned
using standard methods, and resulting partitions are considered as segments of the original image. Graphs of

25

this nature in the image segmentation domain are sometimes termed affinity graphs, with the edge weights called
affinities [25].

One particular advantage to this representation is the ease with which relationships between distant pixels or
voxels can be expressed. The segmentation is no longer limited to examining just the neighbourhood of pixels
as is the case in a boundary labelling or edge detection method. Instead, affinities between any arbitrary pixel or
voxel in the original image can be expressed in a graph representation. The result is the ability to define multiple
segments of objects that are disconnected in the image.

Once a graph is defined over the whole image space, the idea is to partition it into sets of pixels, where the
similarity between pixels in partitions is high but the similarity between partitions is low [41]. What sets apart
different algorithms for partitioning graphs is their criteria for a good partition and the ability to find efficient
algorithms to evaluate these criteria.

Max-flow Min-cut

A cut is defined as a partition of a graph into two disjoint subsets of vertices. The measure of dissimilarity
between the two partitions is the sum of the weights of edges that had to be removed to create the partition. The
optimal partitioning, in terms of image segmentation, is therefore the cut which minimises the value of this sum.

Finding this optimal cut can however be mapped to the problem of finding the maximum flow in a graph [42].
Given source (s) and sink (t) nodes in the graph, we can define the capacities of each edge as equal to their
weights. The maximum flow from s to t will then give the minimum cut.

Minimum Spanning Tree

Another method to find a graph partitioning is based upon Kruskal’s greedy algorithm for finding a minimum
spanning tree of any given graph, as presented by Felzenszwalb [20]. The set of edges is sorted and evaluated in
increasing order of weight given by a predefined similarity measure. An edge is added to the final partitioning if it
does not create a cycle and is similar to those pixels that are connected to its edge points. The result is a series
of disjoint minimum spanning trees, each of which defines a segment of the original image.

Normalised Cuts

The normalised cut is another criterion for measuring the quality of an image segmentation as a graph partitioning.
Shi and Malik [41] explain that using the standard minimum cut as the partitioning criteria lends itself to frequently
segmenting small sets of nodes that become isolated in the resulting partitioning. This is not ideal for the
application of graph partitioning to image segmentation.

Their idea is to normalise the cut function using the total edge connections to all nodes in the graph. The
standard cut function is weighted according to the relative totals of the edge weights from within each of the two
partitions to the complete graph.

The resulting partitioning algorithm then no longer favours small isolated sets of nodes, and performs well for
image segmentation applications. Whilst the minimising of the normalised cut is an NP-complete problem, Shi
and Malik [41] also show that an approximate discrete solution can be found efficiently.

3.2.7 Summary

We see here that there is a lot of choice when it comes to algorithms to apply to segmentation problems. Many
require user input or careful choice of input parameters, and these factors greatly influence the accuracy of the
resulting segmentation. These traditional algorithms are well suited to simple segmentation problems.

With increasingly complex images being subjected to segmentation, particularly with medical applications,
more advanced techniques are required. A recent drive in algorithm design involves machine learning techniques
to effectively learn parameters of some of the previous algorithms. This can also be extended to completely
learning an algorithm based on a hand crafted set of features, or even to have a complete end-to-end learning
scheme, where both the features and algorithm are learnt.

26

This results in a spectrum across which the degree of applied machine learning techniques can be varied. After
some further background, they are introduced in Section 3.5.

3.3 Segmentation Quality Metrics

Metrics are an important and useful tool for evaluating the quality of segmentations. As well as being used for
comparing the performance of different segmentation algorithms, they are also particularly useful as the objective
function for machine-learning classifiers as they act as the function or value to minimise during the learning
process, as explained in Section 3.5.

Most commonly quality metrics are used to compare a pair of segmentations, one coming from a human and
one from a computer as a result of applying a segmentation algorithm. If the human segmentation, or ground
truth, is regarded as correct then the metric measures the error in the computed segmentation.

3.3.1 Pixel Error

The most simple errors to consider are those at an individual pixel level. Given a human and computer segmen-
tation, the pixel error is simply the proportion of pixel positions that disagree on their labelling.

(a) Ground truth labelling,
a 4x4 square in a 10x10 im-
age

(b) Pixel error = 0.002 (c) Pixel error = 0.008 (d) Pixel error = 0.48

Figure 3.14: Evaluation of the pixel error quality metric on some sample segmentations. The error in (d) is
high, showing that all object and background pixels are taken into account.

The problem with such a naive metric [25, 24] is that it does not consider the topological result of the
segmentation, the defined segments and how they are connected to each other. Two different segmentations can
achieve the same pixel error, but may have very different topological results which also may or may not match
the topography of the human segmentation.

Ideally, more appropriate metrics should be less sensitive to small changes in boundary positions and penalise
heavily differences in topography. This being said, even the use of the naive pixel error achieved better segmen-
tation results as an objective function in a classification technique than standard techniques such as Canny edge
detection.

3.3.2 Rand Error

The Rand error is one such metric with the desired properties of penalising topological disagreements more than
slight differences in boundary location [38]. It was originally designed as a method for evaluating similarity between
two data clusterings but has recently been used to evaluate segmentations, as a segmentation can be viewed as
a data clustering.

27

The metric is defined as the count of the number of distinct pairs of pixels that are in the same segment in
one segmentation and not in another, divided by the number of such pairs. It is therefore the frequency with
which the two segmentations disagree between pairs of pixels. When both completely agree the Rand error is 0,
and when both completely disagree the Rand error is 1.

3.3.3 Jaccard Index

The Jaccard index is a fairly new metric that has only recently been used for evaluating segmentation quality. It
is defined as the ratio of the areas of the intersection of the ground truth and the segmentation and their union,
considering only object pixels. It is written as [31]:

JaccardIndex =
TruePos

TruePos + FalsePos + FalseNeg

Where True Pos is the area of intersection of the ground truth and the segmentation, the area within which the
segmentation was correct. False Pos is the area that the segmentation identified as belonging to an object that it
did not belong to in the ground truth, and False Neg is area belonging to an object that the segmentation failed
to identify. Therefore, True Pos + False Pos + False Neg is union of the ground truth and the segmentation.

(a) Intersection (b) Union

Figure 3.15: Taking Figure 3.14d as the ground truth and evaluating the segmentation quality of Figure 3.14c
using the Jaccard Index. The number of object pixels in the intersection is 4 and in the union is 52, giving a
segmentation quality of 4

52
= 0.08 with the Jaccard Index.

3.3.4 Warping Error

The warping error [24] is based upon a warping of the ground truth segmentation to attempt to match it to the
computed segmentation. This is done by flipping pixel labels incrementally, subject to a couple of constraints,
to bring it closer to the computed segmentation. First, the flipping of a pixel must not alter the topology of the
ground truth labelling. Second, boundaries that are shifted due to the flipping of pixels cannot shift more than a
certain distance overall.

Due to these constraints, there will be a time when no more pixels are eligible to be flipped. The pixel error is
then calculated between the best warped image achieved in the previous steps and the computed segmentation,
and this is the warping error.

28

3.4 Feature Extraction

Many of the algorithms that employ machine learning techniques are highly dependent on the feature set (feature
vector) that is used to describe the image. Most commonly, features are extracted for each individual pixel based
upon characteristics of the pixel itself and those of its nearest neighbours. The size of the neighbourhood from
which features are extracted can also impact the values for different features, hence some approaches tend to vary
the neighbourhood size to gain complete feature coverage.

The set of features chosen to describe an image is another way of introducing domain knowledge; as explained
previously, designing complete algorithms by hand requires a certain amount of intuition from the designer.
Applying machine learning to find the optimal algorithm for segmentation can reduce this reliance upon domain
knowledge and human intuition. Allowing features to be designed can make the search for an optimal algorithm
simpler and quicker, and the result may generalise to more novel input. That being said however, hand designed
features have the potential to throw away important information, or even to bias the outcome.

Features can generally be categorised in three groups: colour, texture and shape.

3.4.1 Colour

The colour of an individual pixel can be broken down into a particular hue and intensity, both of which can be
used as features. For a greyscale image, the only feature is the intensity of the individual pixel. In standard
thresholding, colour is the only feature used to create a segmentation.

When considering a pixel’s neighbourhood it is possible to provide a more statistical representation of the
colour values. For example the standard deviation, minimum, maximum, median and the first and third quartiles
[13] of the intensity value over an arbitrarily sized neighbourhood could be calculated for use in a feature vector.

3.4.2 Texture

Texture is important in segmentation applications as different objects in an image may well have different textures,
for example a wooden table with a cloth on top, and they may help greatly in computing the segmentation. At
the image processing level, texture can be described by the spatial arrangement of different colours or grey values.
Texture features aim to characterise and provide quantifiable information about the arrangement of values found
in an image to be segmented.

A simple feature for a particular region is its histogram, a count of the frequency of greyscale values within the
region. We can normalise the histogram for varying sizes of region, and thus we can compare the histograms of
different regions by their greyscale distributions. Using a measure of distance between histograms, this technique
will identify regions that potentially have the same texture, but we cannot be sure that they do not have different
spatial arrangements of grey values. Therefore, when describing texture it is important to capture both spatial
arrangement and relative brightness values.

Co-occurrence Matrices

Co-occurrence matrices measure the likelihood that two grey values appear in a certain relative position by
identifying repeated spatial patterns [36, 37]. The size of the matrices is the number of grey values in the
image, and as such the original image values are often quantised into larger groups in order to keep the size and
computation time low. Each co-occurrence matrix counts the number of times a pair of grey values occur in the
image at a particular pixel distance and orientation. Each entry in the matrix corresponds to the count of the grey
values given by its row and column indices, for example the entry at row 2 and column 5 represents the number
of times that a pixel of intensity 2 has a neighbour at the chosen pixel distance and orientation with an intensity
of 5.

It is common to use several different co-occurrence matrices, utilising all 4 pixel neighbour directions and
varying the pixel distances through a sensible range. The end result is a good description of textures within a
window or the whole image, however the resulting matrices are rather large. The accepted approach is therefore

29

to compute a set of characteristics of the co-occurrence matrices. Essentially, a co-occurrence matrix represents
a joint probability distribution, and we can partly characterise these with less coarse statistics.

To gather these statistics, the first step is to normalise each matrix such that it truly defines a joint probability
distribution, p(m, n). The following statistics can then be computed [37, 53, 45]:

Maximum max
m,n

p(m, n)

Energy
∑

m,n
p(m, n)2

Entropy
∑

m,n
p(m, n)log(p(m, n))

Homogeneity
∑

m,n

p(m, n)

1 + |m − n|

Correlation

∑

m,n
mnp(m, n)− µxµy

σxσy

where µx ,µy are the marginalised means of m and n respectively,

σx ,σy are the marginalised standard deviations of m and n respectively.

The co-occurrence matrix itself is a very powerful descriptor of texture, however it is limited in its applicability
because of the amount of information it creates. Finding statistics based upon the matrices is a good compromise,
however some useful information can be thrown away to create them.

Structure Tensor

A commonly used feature for describing local texture is the structure tensor. This typically represents gradient
information in the neighbourhood of a pixel, providing information about edges and oriented texture within that
neighbourhood. Features such as the eigenvalues can be used to describe the structure tensor.

Hessian

The Hessian is the matrix of second-order derivatives of the image, which can be computed with a convolution
filter such as the Laplacian operator. For use in feature vectors the eigenvalues of the matrix are often computed,
however a variant to use is the determinant of the Hessian.

Laplacian of Gaussian (LoG)

The Laplacian operator, or convolution filter, gives the second derivative of an image. If the image is not smoothed
before the convolution, then the resulting matrix is the Hessian that can be used directly to generate features.
Another method (the Laplacian of Gaussian) [45] first applies a Gaussian smoothing to the image in an attempt
to remove noise before convolution with the Laplacian. Features such as the eigenvalues can be used to describe
the resulting matrix.

Difference of Gaussians (DoG)

The difference of Gaussians feature [45] takes the difference of two convolutions of the original image, each a
Gaussian with a small variation in the standard deviation. Features such as the eigenvalues can be used to describe
the resulting matrix.

3.4.3 Shape

Histograms of Oriented Gradients (HOG)

This feature, designed by Dalal and Triggs [18], uses the intuition that the distribution of edge directions in an
image, or smaller parts of it, can be used to describe the shape of objects within the regions. The first step in its
generation is to calculate edge gradients across the image with a convolution mask such as the Sobel or Prewitt

30

operator. The orientations of the gradients are then binned into either 180 or 360 bins, depending on whether
the sign of the gradient is taken into account. Additionally, each pixel’s contribution to the descriptor is weighted
by the magnitude of the gradient.

In similar ways to previous features, either the entire histogram vector can become part of the feature vector,
or some statistics can be calculated from it in order to reduce its dimensionality.

Ray

Ray descriptors are a set of shape features introduced by Smith et al. [43] aimed at detecting highly deformable
objects, in contrast to HOG which relies on regular shape cues at precise locations. They exploit the relative
locations of objects, rather than characteristic features of the objects themselves.

The descriptor set contains four different features, all of which depend on a function which returns the location
of the closest contour point to a location at a given angle. The idea is simply to measure properties of this closest
contour point at a given number of evenly spaced angles in order to characterise a complete environment of any
given pixel.

The first descriptor, distance, simply takes the distance from the pixel in the image to its nearest contour
point. The orientation feature takes the direction of the gradient at the nearest contour point, relative to the
given angle. The norm feature is the gradient strength at the nearest contour point. Finally, the most dominant
feature is the distance difference that compares relative distances from a pixel location to its nearest contour
points in two different directions.

3.5 Machine Learning Techniques

The aforementioned segmentation algorithms are all hand designed by a community of image processing experts
over many years, with gradual improvements and many variants appropriate for different applications. Utilising
the right algorithm for a particular purpose requires a good understanding of the nature of the problem. Designing
an algorithm in the case that an existing one does not quite fit the bill also requires a deep understanding of why
existing algorithms do not work and an intuition into a new algorithm fit for purpose.

Recently, machine learning techniques have been applied to search for new, better algorithms, and have
achieved superior performance in general benchmarks. Jain et al. [25] explain that there has been some resistance
in the past from researchers that prefer to design algorithms based on their intuitive understanding of image
segmentation. The reason that machine learning techniques have achieved superior performance is potentially
that our intuitions about image segmentation are incorrect or incomplete. Attempting to understand how our
brains segment images is a complex task; we are conscious of the results of the segmentation, but unable to
understand exactly the processes that lead our brains to that conclusion. Essentially, hand designed algorithms
are susceptible to human intuition error and an incomplete understanding of natural segmentation by our brains.

Machine learning techniques define a space of algorithms that transform images into segmentations and
learn the algorithm that optimises a particular measure of the quality of a segmentation, the objective function. A
prerequisite of machine learning techniques is the availability of training data; examples of likely images sometimes
with their labelled segmentations. For complex applications such as those in medicine, segmentation is carried
out by more than one human expert in order to verify segmentations. This example data is the training set,
and is used to train a classifier which will apply a label to each pixel in an image to achieve a segmentation. If
a labelled segmentation is also available for every training image then the classifier can utilise this ground truth
during training. This is termed a supervised learning approach; training a classifier without labels is therefore an
unsupervised approach.

An example dataset for general segmentation applications is the Berkley Segmentation Dataset [33], which
has been widely used in the development of modern segmentation algorithms.

31

3.5.1 Classifiers

One of the most popular uses of machine learning techniques is that of classification [27]. Given objects that have
a feature vector describing their characteristics, classifiers attempt to associate each object with a particular class
of objects. To determine the class, the classifier must learn a function that maps from features and attributes
to classes; this can be designed by hand but is most often learnt using training data. The classifier can use this
data to subsequently generalise to further new data, but care must be taken not to overfit the algorithm to the
training data.

Boosting

Boosting is a popular algorithm for this type of learning. It makes full use of the concept that a number of weak
learners used in an ensemble can create a strong learner. A weak learner is defined as “an algorithm that outputs
a hypothesis that has some advantage over random guessing” [27]. Boosting is most often associated with a weak
learner called a stump, a decision tree consisting of just one level which makes a decision based purely upon one
feature.

A strong learner is an algorithm that generates classifications that are in general closer to the ground truth.
The boosting algorithm uses many weak learners to form a classifier. The characteristic of the boosting algorithm
is that incorrectly classified training examples are given higher weight than correct classifications in subsequent
iterations of the algorithm. The weights of the different weak learners are also adjusted according to their individual
classification accuracy. The iteration continues until the mis-classification rate is below some error threshold.

Support Vector Machines

Support vector machines (SVMs) are very popular and successful classification algorithms used extensively in
current research [27]. They are especially good at dealing with large feature spaces and many training examples,
common properties of segmentation problems.

The algorithm attempts to find the optimal class separating hyperplane in either the original attribute space,
or in the space of transformed attributes. For a simple two-dimensional attribute space a separating hyperplane
is a line or curve; in 3D it is a plane or surface. Transformed attributes are often linear combinations of other
attributes, and extending the attribute space can be required if the original feature space does not discriminate
between the classes such that a good separation can be found. Examples from the learning set that are closest
to the separating hyperplane are called the support vectors, and the distance from the hyperplane to the support
vectors is called the margin. The hyperplane that maximises the margin is the optimal hyperplane.

Finding the optimal hyperplane for separation is a quadratic optimisation problem that can be solved efficiently
using existing algorithms. Once it is found and confirmed to correctly classify all training examples, it can be used
for classification. Traditional SVMs as discussed here are only applicable to separating two classes. If there are
more classes to be used then the problem is divided into sub-problems where one class is compared to all other
classes.

Random/Decision Forests

Decision forests are ensembles of decision trees that create a strong learner as a classification technique [17]. A
decision tree has a number of internal split nodes which test values based on features of the training data. At the
leaves of the decision tree, after any number of split nodes, is a probability distribution across the possible labels.

Decision forests use many decision trees, typically more than 100, and the probability distributions from all
trees are averaged out to give a probability map for each label from the overall forest. The averaging of all
posterior probabilities has an advantage in that it is heavily influenced by the more confident and informative trees
[17]. Noisy tree contributions are also suppressed.

Randomness can be introduced into the forest to good effect by reducing correlation between individual trees,
thus improving generalisation. For each split node in a tree, a random subset of all parameters is made available
according to some globally defined parameter, ρ. When ρ = 1 there is maximum randomness as only one feature

32

is available at each node. For ρ = numberoffeatures then the full feature set is available at each node, and there
is no randomness in the forest.

3.5.2 Learnt Algorithm Design

Boosted Edge Learning (BEL)

Work from Dollár et al. [19] introduces a supervised learning algorithm for edge detection called boosted edge
learning, BEL. This is one of the first techniques to be adopted by the segmentation community that used a
machine learning element to develop an algorithm. It is based on the understanding that designing edge detectors
to be general is often a hard task as the applications can be varied. It is often simple to obtain training images
that define the application and correct output, so a general classification approach can be created instead.

The major focus is to learn probability distributions over image patches centred at specific pixels. If this patch
is large enough then both low level and contextual information will be gathered as features. BEL again varies
from other previous approaches by computing many varied simple features over a large region in order to shift
the bulk of the work onto the classification algorithm. General features also allow the algorithm to be applied in
many different domains.

BEL primarily uses an adaptation of the common boosting algorithm, the probabilistic boosting tree, which is
similar to a decision tree except a boosted classifier (with a limited number of weak learners) splits the data at
each node. The training step is recursive; at each node in the tree a boosted classifier is trained, the data is split
into two sets and the left and right children are trained recursively with one of the two sets each. The algorithm
is applied to a number of different datasets and shown to produce good results.

Boundary Learning by Optimisation with Topological Constraints (BLOTC)

Jain et al. [24] show that using the warping error not only as a way of evaluating segmentation quality, but also
as the objective function in a supervised learning scenario, produces far greater results than basing the learning
task on the pixel error metric. This research also introduced the warping error as an error metric for the first time.
Using the warping error yields a couple of advantages over the pixel error:

• Minor differences in boundary location are tolerated.

• Topological disagreements give larger errors.

Both pixel error and warping error can be used directly as the objective function in a machine learning scenario,
and this work highlights that the choice of objective function can greatly affect the success of the segmentation.
The output of their algorithm is also shown to improve upon the state of the art by comparing current methods
with BLOTC and measuring segmentation quality with both the warping and Rand errors.

Maximin Affinity Learning of Image Segmentation (MALIS)

The approach presented by Turaga et al. [47] trains a classifier to produce good affinity graphs by using the Rand
index as the objective function. This graph is then simply thresholded by removing all edges with affinity less than
some value; high affinity values suggest that two pixels are similar. Connected components of the thresholded
graph are found to produce the resulting segmentation. As an extension to using just the Rand index, their
objective function also relates to a connectivity indicator between pixels that takes into account maximin affinity.

The maximin path and edge are analogous to the minimax concepts that are well known in graph theory.
Therefore, the maximin path from a set of paths is the path that maximises the minimum weight (affinity) of
any of the edges along that path; this edge is also called the maximin edge and its weight is the path’s maximin
affinity. These maximin properties can be computed efficiently using minimum spanning tree algorithms.

The algorithm aims to improve classifier output at maximin edges because incorrectly classifying these edges
leads to segmentation errors such as splits and mergers. Edges that are not maximin are often internal to a segment,
rather than at a boundary between segments, and so incorrect affinity classifications are not so important at these
places.

33

Their results show that integrating the maximin affinity into the objective function in this way leads to a
good improvement in segmentation performance, even over a standard classifier that uses the Rand index as its
objective function but does not take into account maximin affinities.

Learning to Agglomerate Superpixel Hierarchies (LASH)

Jain et al. present a supervised agglomerative clustering algorithm called LASH [26]. Their approach is to take
an over-segmentation of supervoxels produced by some other algorithm, for example SLIC, and instead of hand
crafting a function to agglomerate those supervoxels that represent the same object, the similarity function is
learnt through a reinforcement learning technique.

They model their reinforcement learning approach as a Markov decision process, for which a set of states and
actions for each state is required along with a policy that maps states to actions. In this case, states are clusterings
of objects (supervoxels) and actions are defined as merging a pair of clusters. The goal of this technique is to
find a policy that maximises the possible total reward. In this application, the reward is defined as the increase in
Rand index (defined as 1−Rand error) calculated between the current and potential next states, as compared to
the ground truth clustering.

The optimal policy for any state is given as the action that maximises the optimal action-value function, the
sum of the rewards of taking an action in a state and subsequently following an optimal policy. In the case
of LASH [26], the optimal action-value function is the reward function, the increase in Rand index. This is
known exactly for training data, however the idea behind LASH is to train a function approximator to the reward
function and hope that it generalises well to the test data. If the action-value is exactly the reward function,
then agglomerative clustering is equivalent to greedy maximisation of the Rand index, and therefore the resultant
clustering would be a global maximum.

LASH performs particularly well compared to techniques such as BLOTC and MALIS, mainly due to the
increased window within which its features are extracted. Whilst this may seem unfair to use a larger window that
other techniques, the training time of LASH compared to BLOTC and MALIS is significantly smaller, so there is
a trade off. LASH is more accurate because its efficiency allows more image context in its calculations.

3.5.3 End-to-end Learning

Another option to fully exploit machine learning techniques is that of end-to-end learning; the transformation of
the input image into the output segmentation is learnt in its entirety. This is a convenient technique to use if
individual knowledge of a particular domain is limited, as it does not require any hand designing of features or
algorithms. End-to-end learning has the drawbacks of lengthy training time and requiring more training examples
than other techniques, however the classification speed once trained is often better than traditional or trained
algorithms. Computing power has reached a sufficient stage to also make this approach plausible, especially by
exploiting fast GPU implementations.

Convolutional Networks

The most popular end-to-end learning technique is a convolutional network [25]. It is closely related to a neural
network as it consists of an input, several outputs and a number of hidden layers. Each of the layers performs a
series of convolutions and pixel-wise transformations, which typically results in tens of thousands of free param-
eters for the machine learning algorithm to learn. These free parameters effectively define the convolutions and
transformations in the layers, and the result is a specific set of convolutions and transformations for any particular
training that maps an input image to a segmentation.

Convolutional networks have been shown to emulate some hand designed algorithms through a particular
combination of convolutional filters. Studies have also shown that this large number of free parameters means
algorithms designed by CNs have outperformed those designed by hand.

34

3.6 Summary

This chapter gives an overall flavour of how the field of segmentation has grown in recent times. Current research
often involves combining several of the explained techniques to produce a better segmentation than an individual
algorithm. Many more different individual techniques exist for segmentation, but the particular ones I have
highlighted here are those that have been used in related research or within this project.

35

4Background: State of The Art

This chapter takes a look at the current state of the art as a small literature review. Most of the techniques
examined pull from more than one of the areas discussed in the previous background chapters.

4.1 Ilastik: A State of the Art Segmentation Tool

Ilastik [44] is an easy to use semi-automatic general purpose segmentation tool driven by user labelling of sample
images to train a random forest classifier. A generic set of features is derived from each pixel’s neighbourhood,
including colour, edge, texture and orientation information. During the training phase, the user is allowed to refine
the classifier by providing new labels on the training data in real time. The trained classifier can subsequently be
saved and used as a batch process at a later stage.

For an example of the input and output of Ilastik, a small section of an example EM image has been labelled
and classified by Ilastik. The sample, its labelling and the resulting segmentation are shown in Figure 4.1.

(a) Original sample (b) Resulting segmentation (c) Segmentation of a small sam-
ple image using Ilastik

Figure 4.1: The training process in Ilastik requires painting over samples of the different classes to be
segmented.

A particularly positive outcome from this example is that the nuclear envelope, labelled in red, seems to be
the most consistently segmented feature, however other objects outside the NE are incorrectly classified as such.
I suspected that Ilastik would have problems distinguishing the endoplasmic reticulum from the nuclear envelope
as is the case in this example; the characteristics of these structures are very similar. Another fairly good result
is the general difference in segmentations of the nucleus, labelled in blue, and the cytoplasm, labelled in brown.
However, there is still a large amount of uncertainty in these regions.

Ilastik in general achieves good results on standard EM segmentation problems [44].

36

4.2 Sub-cellular Segmentation

This section is an introduction to recent work on segmenting sub-cellular structures in EM images. Whilst this
work may seem to be similar to the task on this project, there are critical differences that will be subsequently
highlighted. The work makes some important points that really underpin why there is a focus upon specific
applications of segmentation to EM images.

4.2.1 Supervoxel-Based Segmentation of Mitochondria in EM Image Stacks with
Learned Shape Features

Lucchi et al. [32] begin by raising some good general points in their introduction:

• This application has a good rationale for automated segmentation; it would take months for an image stack
to be analysed by hand, and potential would creep in for some of the useful data to go to waste.

• The modern imaging techniques of SEM allow for nearly isotropic 3D datasets that contain vast quantities
of useful data. Many of the generic algorithms, including those introduced previously, would perform poorly
on this EM data purely because of the sheer quantity of it.

• Generic algorithms also fail to take into account strong shape cues, and rely only on local statistics that
can be poor discriminants with the amount of noise and texture inherent in a high detailed EM image.

Their approach to segmentation is split into three main parts. First, the original image pixels are grouped into
supervoxels using the SLIC algorithm. Features are then extracted from the supervoxels, including ray descriptors
as described in Section 3.4.3. Finally, the graph of supervoxels is cut using a graph-partitioning algorithm controlled
by classifiers that learn the boundary appearance of the segmentation.

Superpixels/supervoxels are fast becoming standard as their popularity increases, primarily due to the decreases
in computation time that they yield. The aim of the first step here is to produce an over-segmentation which
still respects the boundaries within the image. Computation on the resulting graph that represents the supervoxel
structure will be much more efficient than using the original image’s voxels directly.

The ray descriptors then capture information about the shape of the mitochondria; the presented results
compare the segmentations achieved with and without these shape cues and show they are important for this
application. Given that these shape cues are learnt from a general model, this could have high applicability to
segmenting other sub-cellular structures if they have a well prescribed shape, although it could only be applied to
a single structure at a time.

In addition to the shape cues, instead of defining graph cuts at edges with high colour or intensity changes,
the characteristics that indicate a true object boundary are learnt from training data. The graph partitioning
algorithm that defines the final segmentation takes into account both the shape cues and the learnt object
boundary characteristics.

Lucchi et al. show that the use of supervoxels over voxels results in a computationally efficient algorithm,
whilst the combination of ray descriptors and learning object boundaries increases the segmentation quality, and
brings it close to the quality of human segmentations. Their approach has a lot of applicability to segmenting
other cellular structures, however mitochondria typically have a less complex shape than the nuclear envelope and
so the applicability of this work to my project is limited.

4.3 Neuronal Segmentation

This section takes a look at the application of segmentation to EM images of the brain, with the aim of auto-
matically segmenting neurons and their connections (synapses). This work is part of a bigger picture to find a
human connectome, a map of all the neurons and connections in the brain. Such a task was previously infeasible
but with modern computing power and the right techniques, recent work has made significant progress towards
providing a method for fully automatic segmentation of neural structures.

37

Whilst targeting slightly different segmentation interests from this project, there are still many concepts that
are applicable to other complex segmentation problems. This work is of particular interest, as there is a great focus
on being able to accurately segment neurons and synapses. When one considers that the brain has somewhere in
the region of 100 billion neurons and about 1000 times more synapses, finding all the connections accurately is
of utmost importance.

4.3.1 Automated Segmentation of Synapses in 3D EM Data

A technical report by Kreshuk et al. [28] details an extension of the popular program Ilastik aimed at semi-
automated segmentation of the synapses in FIB/SEM images. Their approach involves training a random forest
classifier based on a labelled training set, as produced by the user through Ilastik’s GUI. Users are able to select
the most descriptive features for the classifier to use, again through an interactive GUI.

The classifier output is a probability map across classes; the probability map for the synapse class is adaptively
thresholded with a user defined threshold and those pixels with a high enough probability of being a synapse
are joined together to form candidate synapses. An additional post-processing step encompasses further domain
knowledge by eliminating all candidate synapses that are too big or small when compared to the largest and
smallest labelled synapses in the training data.

Their results show a significant improvement in the quality of results compared to other more general tech-
niques. Almost all the human interaction is incorporated into the training phase, where the user defines the
thresholds for segmenting the probability map, choosing the most descriptive features and labels the training
set. The idea is that a small volume of the dataset is used for training, with the trained algorithm performing
automatic segmentation on the rest of the volume.

Of concern with this approach is its reliance upon user input, which I believe to be one of the major downsides
of Ilastik as a whole. Giving the user control over the features to be examined brings back the human error
element that machine learning can eliminate through determining the best features for the job itself.

This being said, it is obvious that their approach to training with user guidance does produce good results.
The incorporation of some domain specific knowledge by eliminating candidate synapses that are highly unlikely
to be synapses is a particularly novel yet intuitive step.

4.3.2 Segmentation of SBFSEM Volume Data of Neural Tissue by Hierarchical Clas-
sification

In the paper presented by Andres et al. [13], a hierarchical approach is used to segment EM images of neural
tissue to identify neurons. Their approach is hierarchical with two random forest classifiers used, the first with the
original voxels and the second with an intermediate supervoxel segmentation. The first classifier takes the original
voxels and outputs a probability map based upon features calculated from each voxel’s neighbourhood. The
probability map is then used as the input to a watershed algorithm to produce a segmentation into supervoxels.

The key idea behind using the watershed algorithm is to obtain an over-segmentation of the image that
requires only supervoxel merges to produce the final segmentation. The second random forest classifier is used
to learn which supervoxels should be merged as a result of the over-segmentation. This includes defining some
rudimentary features about the candidate supervoxels, such as the number of voxels and the difference in this
number between the two supervoxel candidates for merging. Further standard statistical features were derived
from the face defined by the two adjacent supervoxels, the area over which two supervoxels meet.

The application of hierarchical classification has once again proven to generate results that advance the state
of the art. This work was carried out before the SLIC [12] algorithm was published, and so it would be interesting
to see if using SLIC over the watershed segmentation would prove beneficial both in terms of computation speed
and accuracy of segmentation. There are also similarities to be drawn between this work and the segmentation
of mitochondria in [32].

38

5Background: Dataset

The dataset provided by Cancer Research UK and manually segmented by Dr. Christopher Peddie consists of 80
slices through a control cell obtained using transmission electron microscopy. The images are 8-bit greyscale and
have dimensions 3625x2660 pixels and real world pixel dimensions of 3.283nm by 3.283nm. The physical distance
between each slice is approximately 70nm. The cell is at late telophase (Section 2.2), which results in a nuclear
envelope that is almost completely formed.

The imaging process involves taking ultra-thin slices of a cell that has been placed on a regular resin grid.
Taking these serial slices of the cell sometimes causes folds and compression of the sample below the slice being
taken, requiring some manual manipulation to stretch the sample back to its original shape. The fact that each
slice is imaged separately, rather than the cell being imaged in situ as in SEM, and the slight compression and
stretching of the sample means that registration of the captured images is required.

Registration is another primarily manual process; the images are too complex for automatic registration
algorithms to work effectively. If the transformation between two slices is minimal then these algorithms work,
but their use is restricted primarily to SEM where there are commonly only small transformations. For a typical
dataset the registration step takes an hour or two.

A further manual processing step is equalisation of the overall brightness of the images. Images that have noise
present, as discussed later in Section 5.4, tend to have lower average intensity, low contrast and the image appears
dull compared to unaffected slices. This step is quite subjective and down to the individual that is performing the
segmentation; the goal is to have the same structures have more or less the same intensity values throughout the
whole dataset. It takes roughly half a day to perform this step manually.

Once the manual registration and brightness equalisation steps have been performed the segmentation can be
performed. This step is very simple but the most time consuming part of the manual process. For each image in
the stack, the best tool for the job is a pen to draw the outline of the subject region which is then filled to give a
part of the segmentation. Other area selection tools exist but their use is minimal in this application. To segment
just the nuclear envelope for an averaged size dataset takes 2 or 3 weeks of full time work. If all other sub-cellular
structures are segmented then this can add an extra 2 or 3 weeks. The large amount of work those that carry out
the segmentation have to do often means the effective throughput time for a single dataset is much larger than
this estimate or 6 or so weeks.

5.1 Sample Slices and Manual Segmentations

A stack of four adjacent sample slices is shown in Figure 5.1 along with their manual segmentations. The
important thing to notice here is the gradual but minimal change of shape in the nuclear envelope and nucleus
between neighbouring slices.

39

Figure 5.1: Four adjacent slices from the data set with their manual segmentations.

40

5.2 3D Reconstruction

Overall, the aim of the segmentation process is to produce a 3D reconstruction of the nuclear envelope which
can then be studied and interacted with in 3D. The characteristics of the nuclear envelope and its relationships
with other structures in the cell are critical to the mitotic process and potentially identifying cancerous cells, and
studying the individual 2D slices does not provide the required contextual information.

Two images of a 3D reconstruction of the sample dataset produced from the manual segmentation of all slices
are shown in Figure 5.2.

5.3 3D Structures in 2D Slices

A difficultly to consider in the algorithm is the proliferation of 2D artifacts, where the nuclear envelope is not one
continuous structure in a single 2D slice due to slicing through the 3D structure. These arise due to concavities
and complexities in the 3D shape as demonstrated in Figure 5.3.

In some slices these artifacts are clearly visible as small separate sections of nuclear envelope, as in Figure
5.4a, whereas in other cases they appear as small dark patches which can be difficult to classify, as in Figure 5.4b.

5.4 Noise Affected and Corrupted Images

Noise on the slices can be caused by either small particles of dust being present on the imaged sections or by the
samples folding as they are placed on the resin grid. In some cases a small amount of noise on a particular slice
does not affect the segmentation, but larger amounts it can make the slice unusable. For these cases the slice is
considered to be corrupted and the best that can be done is to interpolate results from other neighbouring slices.

Unfortunately the line between noisy and corrupted is somewhat qualitative and hard to quantify exactly. A
cautious approach would be for the user to select which slices have any noise present such that they can all be
considered corrupted and discounted from the automated segmentation steps. This does however increase the
workload for the end-user in terms of finding a manual segmentation for all these slices, but good results would
be guaranteed.

The difficulty in choosing which slices to discount from the algorithm can be shown by comparing Figures 5.5b
and 5.5d. In Figure 5.5b, the noise is significant but outside of the nucleus and nuclear envelope, key features
required for the segmentation algorithm, whereas for Figure 5.5d the noise affects both of these features.

A particularly useful feature of the noise is its constant intensity value at the minimum value found in the
image, which gives a quick and simple way to identify noise in images. For slices that are considered noisy this
knowledge can be used to refine and restrict the segmentation algorithm, but for corrupted slices the noise affects
the performance too much to obtain even average results. This knowledge could also be used to automatically
classify slices as noisy or corrupted by looking at the proportion of noisy pixels in the image. This would be
suitable for the cautious approach above, but for a less cautious approach the problem is that of automatically
finding noise and the particular structures the noise affects, a far from simple task.

Therefore, the best method for dealing with noise is to allow the end-user to classify slices into clean, noisy
or corrupted slices by examining each for noise and investigating which structures of the cell are affected. This is
a small pre-processing step that is a suitable compromise to make in terms of overall segmentation time.

41

Figure 5.2: 3D reconstruction of the manual segmentation.

(a) Side on view of the slicing process (b) Viewing the resulting slice from the top down
gives two separate structures

Figure 5.3: Viewing the nucleus from side on and in 3D shows that there is only one nuclear envelope structure
in the cell. However, the 2D image resulting from slicing through the nucleus causes two disconnected sections.

(a) A small section of nuclear envelope is visible out-
side the main structure

(b) A patch of nuclear envelope inside the main
structure

Figure 5.4: Examples of 3D sections of nuclear envelope creating 2D artifacts.

42

(a) Ideal image (b) Noisy slice due to dust

(c) Noisy slice due to folding of the sample (d) Corrupted slice

Figure 5.5: Examining characteristics of noise in corrupted slices.

43

5.5 Blurring of the Nuclear Envelope

A particular problem that can occur with the images obtained through transmission electron microscopy is the
definition of the nuclear envelope can be slightly blurred, in a visual sense, depending on the angle between the
blade and the sample during the electron microscopy process. An example of this blurring in the images is shown
in Figure 5.6.

(a) A well defined section of nuclear envelope
where the cutting blade is roughly perpendic-
ular

(b) A blurred section of nuclear envelope

Figure 5.6: Example showing the effect of cutting angle on the definition of the nuclear envelope

This blurring of the nuclear envelope in the images is because of the projection of a 3D structure onto a 2D
image, remembering that each slice in the dataset is approximately 70nm thick. When the cutting angle and
nuclear envelope are close to perpendicular then the projection of the small amount of membrane in a 70nm slice
onto a 2D image will be well defined. This can be imagined as the nuclear envelope only having variation in one
direction, and because that is parallel to the viewing direction we cannot see it. However, when the angle moves
away from perpendicular some movement in the 70nm slice occurs in the x and y directions local to the image,
therefore when this is projected we see a more blurred structure as if the section had been squashed flat.

44

6Algorithm

(a) Dataset slice 0000

(b) Dataset slice 0001

Figure 6.1: Example slices showing the minimal move-
ment assumption of the nuclear envelope.

This chapter gives an overview of the algorithm used to
achieve the segmentation of the nuclear envelope, with-
out considering any implementation details. It focuses
on the steps of the algorithm that work from the inside of
the nucleus out towards the nuclear envelope. Each 2D
slice of the data set is primarily segmented in 2D, but
the third dimension does provide consistency between
slices and can easily improve results. Corrupted slices
are discounted from the earlier steps of the algorithm as
the information they provide cannot be deemed reliable.
Instead they are estimated from neighbouring slices in
the stack at a later stage in the algorithm.

The idea behind the algorithm is to make as much
use of the different textures of the nucleus and cytoplasm
as possible. Figure 6.2 shows this difference, where the
texture inside is more regular, smooth and is said to have
low variance. In contrast the texture on the outside of
the nucleus is much less regular and contains the other
dark cellular structures such as vesicles which contribute
to it having a higher variance.

Some of the steps consider the data’s third dimen-
sion to ensure consistency of information across all the
slices in the dataset. Key to these steps is the assump-
tion that over the 70nm physical space between slices
the nuclear envelope has moved minimally, which is rea-
sonable given that it is only ever used to improve steps
that find approximations to structures. A more precise
model of movement of the nuclear envelope between
slices would be required to carry out absolute calcula-
tions or interpolate very accurately between two nuclear
envelope segmentations.

Figure 6.1 shows two dataset-adjacent slices. We can
see effectively zero change in the global shape, however
the green circles show a slight smoothing of the enve-
lope in Figure 6.1b, and the red circles show a region of
envelope in Figure 6.1b that has sharper curves than the
respective region in Figure 6.1a.

45

Figure 6.2: Sample image showing difference in texture between the inside and outside of the nucleus.

Figure 6.3: Identifying points within the nucleus using a large neighbourhood variance filter.

46

6.1 Identifying Nucleus Seed Points

The first step of the algorithm is to identify some pixel locations that we can be certain are inside the nuclear
envelope as a way of starting to locate the nucleus in the image. Successful identification of these suitable seed
points is a crucial step that underpins and affects the success of the whole algorithm.

To identify suitable seed points within the image a variance filter with a large neighbourhood size is passed
over the image. Any points with a variance that is still inside the range of 0-255 are then considered as candidates
for seed points and are passed on to the next step. Figure 6.3 shows the result of this operation on the sample
image in Figure 6.2. We can see that the cytoplasm has been set to the maximum value in the image of 255, but
some of the areas inside the nucleus have non-maximal values. At this stage we only need to find some points
within the nucleus and not an entire representation of the nucleus as that is found using these seed points as
input to a different algorithm step. The image in Figure 6.3 after finding areas of non-maximal variance is shown
in Figure 6.4a, and to reduce computation time at later stages these regions are thinned to a smaller number of
points as shown in Figure 6.4b. The latter representation of seed points will be used from now on.

(a) Seed regions found from large neighbourhood
variance filter.

(b) Seed regions reduced to a smaller number of
points to reduce computation time at later stages.

Figure 6.4: Seed points from non-maximal variance.

6.2 3D Consistency of Nucleus Seed Points

In some cases if the large neighbourhood variance filter technique is unlucky it can identify some points that are
outside the nucleus, or given noise or odd shaped nuclei it can fail to find enough suitable seed points. An example
of the variance filter applied to a different image in the stack where occurs is shown in Figure 6.5b. Fortunately
these poor results are few and far between, so we can use the seed points found in neighbouring slices and the
minimal movement assumption to refine the set of seed points for any image in the stack.

For the removal of erroneous seed points outside the nucleus we use the observation that the highly cluttered
cytoplasm means there are seldom any seed points found outside the nucleus in the same place in two neighbouring
slices. The strategy is therefore to consider for each seed point in a particular slice the evidence there is for that
seed point, given the seed points of its neighbouring slices. If there is not sufficient evidence from neighbouring
slices that a seed point is valid then it is filtered out of the set. The threshold for evidence is chosen such that
strong evidence for seed points must come from at least two neighbouring slices on both sides of any particular
slice. The seed points from Figure 6.5b after considering support from neighbours are shown in Figure 6.6, and
if we compare this to the original slice in Figure 6.5a we can see that all seed points now lie within the nucleus.

In the case where noise or odd shapes cause there to be few seed points found by the large neighbourhood
variance filter, we can use a similar strategy of considering support from neighbouring slices to identify new seed

47

(a) Original Image (b) Seed points without 3D consistency.

Figure 6.5: The large neighbourhood variance filter identifies some seed points that are outside of the nucleus.

points for any slice. The aim with this step is to find new points that weren’t identified previously but have very
high support from all neighbouring slices. Figure 6.7 shows the seed points in Figure 6.6 along with those added
points that have strong evidence from neighbour slices. We can see that we now have a much greater number of
seed points, and they themselves already make a good approximation to the nucleus area in this case.

6.3 Obtaining an Approximation to the Nucleus

The purpose of finding seed points inside the nucleus is to subsequently find an approximation to the area of the
nucleus. The seed points found from previous steps are used as starting points for a flood filling algorithm which
captures the nucleus area by moving from the seed points inside it out towards the nuclear envelope.

One of the main difficulties in this step is to stop the flood filling at locations where there are gaps in the
nuclear envelope. Individual pixel grey values do not change dramatically in a gap at the transition between the
nucleus and cytoplasm texture, but the variance over a neighbourhood does. This prohibits the use of a flood
fill defined simply by a grey level intensity threshold and instead a variance filter must be passed over the image
before performing the flood fill. This is effectively flooding the area defined by the lower variance texture inside
the nucleus, and an example demonstrates this in Figure 6.8. This goes to show the importance of the texture of
the nucleus in this algorithm, as it is used both for the identification of seed points and defining the region over
which to flood fill.

In some slices the nucleus has dark patches that create higher variance, preventing the flood filling algorithm
from capturing that area. The flood filling algorithm has to be quite restrictive to avoid leaking through a gap in
the nuclear envelope, and this requires a low threshold that consequently can cause holes to appear in the nucleus
approximation. Furthermore, the slice can show that there is a divide in 2D between parts of the nucleus, an
example of which is shown in Figure 6.9. This demonstrates the necessity to find as many correct seed points
as possible from the previous steps; the flood filling algorithm is carried out for every seed point and all found
regions are joined together to give the approximation to the nucleus. Areas of the nucleus which are not captured
by this flood fill can affect the accuracy of results later in the algorithm.

Finally, there are often small holes in the approximation due to small patches of slightly darker nucleus texture.
The last step is to perform a morphological closing operator as shown in Figure 6.10. Many of the smaller holes
in the approximation are closed and the outline of the approximation is also slightly smoother, which in practice
improves the outline of the nucleus approximation without causing it to cross the nuclear envelope at any point.
Any holes left in the approximation are retained as 3D features of the nuclear envelope (Section 5.3).

48

Figure 6.6: Identifying points within the nucleus using a large neighbourhood variance filter.

Figure 6.7: Interpolating seed points through support from neighbouring slices can greatly increase the number
and quality of a slice’s seed points.

49

(a) Section of a slice showing a
gap in the nuclear envelope

(b) Flood fill based on a grey value
threshold

(c) Flood fill based on the variance
filtered section

Figure 6.8: Showing the need for a flood fill algorithm based upon the variance inside the nucleus, rather
than on grey level values.

Figure 6.9: Showing disconnected regions of the nuclear envelope.

50

(a) Slice 0000 (b) Nucleus estimate after flood
fill algorithm

(c) Nucleus estimate after mor-
phological closing operator

Figure 6.10: Showing the effect of the closing operator on the nucleus approximation.

6.4 3D Consistency of the Nucleus Approximation

Unfortunately, for some slices the flood filling algorithm does not capture the entire nucleus. This often happens
when there are small loops of the nucleus with high variance values at their thin entry points that prevent its
capture by the flood fill algorithm. Figure 6.10a shows a good example of a loop to the left of the nucleus,
although in this case the flood fill was not blocked by a high variance entry to the loop. Missing areas in the
nucleus approximation can also happen if we are unlucky with the placement of some dark patches inside the
nucleus as in Figure 6.11.

Fortunately neighbouring slices are often successful in obtaining areas similar to those that weren’t captured
in a particular slice, albeit in a slightly different place and shape. Therefore, in a similar manner to the 3D
consistency of seed points in Section 6.2, we use the minimal movement assumption of nuclei to further refine the
approximation to the nucleus. This again considers evidence for regions based on the neighbour’s approximations,
and those regions with sufficient evidence are used to refine the original approximation.

(a) Original slice (b) Result of approximating the
nucleus

(c) Nucleus approximation after
3D consistency

Figure 6.11: Showing the effect of ensuring 3D consistency with neighbouring slices to obtain a better
approximation to the nucleus for slice 0064. We see that in (b) there is a small section missing to the left of
the nucleus. Ensuring the 3D consistency results in that section being added as shown in (c).

51

6.5 Finding Seed Points on the Nuclear Envelope

(a) Slice 0000

(b) Blurred edges of the nuclear envelope

Figure 6.12: Attempting to close the perinu-
clear space in order to merge the double lipid
bi-layer structure into one distinctive edge.

Once we have obtained a suitable approximation to the nucleus we
use this as a base to find the nuclear envelope. The approach here is
to find further seed points that lie on the nuclear envelope in order
to find its area with a second flood filling step. Finding these seed
points on the nuclear envelope cannot simply be done by expanding
the outline of the nucleus approximation for a number of reasons:

• The nuclear envelope does not have a constant thickness.

• The nucleus approximation is not always a fixed distance from
the nuclear envelope; this depends on the textures around the
nuclear envelope.

• The perinuclear space has a different texture to the dark lines
that characterise the double lipid bi-layer structures of the
nuclear envelope membranes.

• Gaps are not considered part of the nuclear envelope.

We can still use the outline of the nucleus approximation, but
we have to do so in a slightly more accurate manner as we have
these restrictions to consider.

Intuitively, if we travel outwards from this outline, up to a suit-
able maximum distance, we can expect in most cases to enter and
subsequently exit the nuclear envelope structure. This technique
requires some blurring of the nuclear envelope in the case that it
has the well defined double-lipid bi-layer structure; an example of
this is shown in Figure 6.12. This blurring works on closing the per-
inuclear space such that well defined dark structures of the nuclear
envelope merge into one distinctive edge and have just one entry
and exit point.

Figure 6.13: Expanding the boundary into
the nuclear envelope to find seed points

To find seed points inside the nuclear envelope we find the points
of entry and exit on the nuclear envelope when travelling outwards
and take the mid-point. An example of this is shown in Figure
6.13, where the red line shows the path travelled outwards from the
nuclear envelope approximation and the green lines show the entry
to and exit from the nuclear envelope. The white dot is the seed
point added to the overall set for this slice.

It is also possible that multiple structures might be encountered
when travelling outwards from the outline; the nuclear envelope is
the first structure on such a path and all subsequent similar features
encountered are ignored.

6.6 Obtaining an Approximation to the

Nuclear Envelope

In a similar way to Section 6.3 a flood fill is carried out from the
multiple seed points located within the nuclear envelope. The same
blurring of the nuclear envelope is required to find the double lipid
structures and the area between them in the case that they are well defined. Additionally, increasing the contrast

52

within the image can accentuate the nuclear envelope and obtain better results from the flood filling. This flood
fill, in contrast to finding the nucleus approximation, is based upon the grey-level intensity values and the results
are used as an approximation to the nuclear envelope.

(a) Original Image (b) Approximation to the nuclear envelope

Figure 6.14: Flood filling of the nuclear envelope to obtain its approximation.

6.7 Pruning Connecting Structures

Figure 6.15: The nucleus approximation is
too far from the nuclear envelope to locate
seed points.

In some cases it is not always possible to obtain a good approxima-
tion to the nucleus at all places in each slice; it may be too far from
the nuclear envelope and the maximum length travelled from the
nucleus approximation outline doesn’t reach the nuclear envelope.
An example is shown in Figure 6.15. This then means that when
seed points are obtained as in Section 6.5 we may not be able to
locate them in as many places on the nuclear envelope as we would
like. The flood filling algorithm in the previous step has to make
up for this by utilising the connectivity of the nuclear envelope to
locate regions where sparse numbers of seed points were found.

One problem with this is that there are often structures con-
nected both physically and visually to the nuclear envelope, and
these are also found by the flood filling algorithm. We can see an
example of this to the top left of Figure 6.14b where two mitochon-
dria have been segmented along with the nuclear envelope.

To prune off these extra connected structures we use the prox-
imity of the structures found in the nuclear envelope estimate to the
approximation of the nucleus found in Section 6.3. The intuition is
that if we start at a point inside the nucleus approximation and travel outwards, the first structure we encounter
is the nuclear envelope. Any further structures that we encounter after the nuclear envelope when travelling
outwards cannot be nuclear envelope, and thus they can be pruned from its approximation. The nuclear envelope
segmentation after the pruning of connected structures in Figure 6.14b is shown in Figure 6.16.

53

Figure 6.16: Nuclear envelope segmentation after pruning connected structures from its estimate.

6.8 Manual Corrections

In many cases the segmentation achieved is accurate, but a number of manual corrections will always be necessary
because of noise in the dataset. Furthermore, there are some complex problems with the algorithm that lead to
segmentation errors, and these are explored in more detail in Chapter 10.

6.9 3D Interpolation of Corrupted Slices

Once manual correction of the non-corrupted slices has been carried out our attention turns to those slices that
are considered corrupted. These slices require the most manual segmentation time, but given that we already have
correct segmentations for all other non-corrupted slices we can use 3D considerations to obtain an estimate of
the nuclear envelope for a corrupted slice. We have to use the nuclear envelope’s minimal movement assumption
again, but this is safe as we are only obtaining an approximation to the nuclear envelope.

To find this approximation the average position of the nuclear envelopes from the corrupted slice’s immediate
neighbours is found. The average position is defined by a single pixel width line, which is then expanded to create
an estimate that is 40nm thick, the average thickness of the nuclear envelope. The estimated segmentation for a
corrupted slice, number 0070, using its immediate neighbours in this manner is shown in Figure 6.17.

54

(a) Nuclear envelope of slice 0069 (b) Nuclear envelope of slice 0071

(c) Estimated nuclear envelope (d) Slice 0070 wit overlaid nuclear envelope estimate

Figure 6.17: Estimating the nuclear envelope segmentation of slice 0070.

6.10 3D Reconstruction

Once the corrupted slices have been manually corrected we can be certain that the segmentations we have are
those of the nuclear envelope. Given the segmentations for all 2D slices we stack them in order to create a 3D
volume, noting that each slice is made to be 70nm thick. Background pixels are made transparent and the volume
can be rendered and interacted with in a 3D environment. An example 3D reconstruction of the project dataset
is shown in Figure 6.18.

55

Figure 6.18: 3D reconstruction of the dataset

56

7Background
Implementation

This chapter is intended to provide the required background to the implementation of the algorithm presented in
the next chapter. The algorithm was developed in Java for three primary reasons:

• My familiarity with the language.

• The familiarity of the end-users with FIJI and ImageJ.

• Availability of third-party plugins for ImageJ.

7.1 ImageJ and FIJI

ImageJ [11] is an open source general purpose image processing and analysis tool written in Java. It can perform
many of the operations commonly desired from a image processing package, including geometric transformations,
edge detection, histogram manipulation and 3D reconstruction. Whilst it provides many of the basic and necessary
techniques itself, it is also designed such that it is easily extensible with plugins. At the time of writing the number
of plugins available for ImageJ is known to be at least 500.

FIJI (FIJI is just ImageJ) [39], as described by its name, is purely a repackaging of ImageJ along with a large
number of popular plugins organised into a convenient menu structure. It is aimed primarily towards researchers
in life sciences and many of the default plugins are provided by researchers in this area.

7.1.1 ImageJ API

The ImageJ API is a convenient collection of classes that can handle up to five-dimensional datasets. Many of the
available third-party plugins make heavy use of the core functionality provided by this API. It is also well written
such that there is minimal dependency on the ImageJ GUI for this functionality, and this increases its applicability
to be used in standalone applications as an image processing framework. Here we take a brief look at the core
classes for image management used in this project’s implementation.

IJ

The IJ class provides a number of helpful static methods for commonly required actions from and environment
tests upon the ImageJ application. Most of the methods interact with the ImageJ GUI and therefore require an
application that runs through an ImageJ plugin, but some others provide useful general functionality:

IJ.log(String message) If a plugin is run through the ImageJ GUI this prints a message to the logging
window, otherwise the message is printed to the standard output stream.

IJ.openImage(String path) Opens the given image path and returns the ImagePlus object that repre-
sents the image.

57

IJ.isLinux()/IJ.isMacOSX()/IJ.isWindows() Determines the operating system environment.

IJ.isJava16() Returns whether ImageJ is running on Java 1.6 or greater.

ImagePlus

An ImagePlus object is a wrapper for either a single two-dimensional image, or a higher dimensional image stack.
For a single image only one ImageProcessor is required to store all the raw pixel values. An image stack is
represented as a list of ImageProcessors within a single ImagePlus. The primary purpose for the wrapper is to
store information about the images that the object contains, including metadata about the file that was loaded,
a title and the real-world dimensions of pixels within the image. It also provides simple methods for showing and
interacting with a loaded image.

ImageProcessor

An ImageProcessor is an abstract class with four subclasses representing the four different types of data that
ImageJ can handle:

ByteProcessor Each pixel value is stored in one byte giving a range of possible values as all integers
between 0 and 255 inclusive, thus this image is used for 8-bit greyscale images.

ShortProcessor A 16-bit greyscale image allowing for more fine grained grey values in the range 0 to 255.

FloatProcessor Holds arbitrary floating point data, where each pixel value is a 32-bit floating point
number. These values are then mapped to display on the screen by setting maximum and minimum values
to allow adjustment of the real values into the range 0-255.

ColorProcessor A standard 32-bit RGB image.

Roi

An Roi is a region of interest within a particular image upon which operations and calculations can be defined
instead of operating upon all pixels in the image. Several different shape and characteristic Rois are provided by
ImageJ:

• Line

• ShapeRoi, which relates directly to the java.awt.Shape class

• PointRoi represents a collection of points

• EllipseRoi, where a circular Roi is a special case of the ellipse

• FreehandRoi, usually obtained through a freehand selection within the GUI

7.1.2 ImageJ Plugins

As part of its core ImageJ also provides a number of plugins that are considered separate to the image management
parts of the API. The documentation for all these plugins resides on the ImageJ wiki [7].

Wand Given a pixel within the image, the wand finds a continuous region of the same or similar intensity
to the sample pixel and returns its boundary outline in the form of a PointRoi, ignoring any internal holes
in the region.

ImageCalculator Performs simple arithmetic and logical operations including those in Section 3.1.2.

EDM Calculates the Euclidean distance map as described in Section 3.1.2.

58

RankFilters Implements the mean, minimum, maximum and variance filters that operate on neighbour-
hoods of a given size. Any variance values above the maximum value of 255 for representation in the
image are mapped back to 255.

GaussianBlur Performs a Gaussian smoothing of an image given a particular standard deviation as de-
scribed in Figure 3.7.

3D Viewer A 3D reconstruction plugin [40] for visualisation of volumetric data.

7.1.3 Writing Plugins

One of the easiest ways to develop a piece of software that requires all the basic image processing techniques to
underpin some more complex processing is to write a plugin for ImageJ/FIJI. Plugins can either primarily use the
GUI provided by ImageJ by using simple dialog boxes for configuring parameters, or can simply be an interface to
access a more complex GUI and program that is more or less separate from ImageJ and built using any Java GUI
library.

For a plugin that operates on just one image, FIJI provides the following sample code that implements the
PlugInFilter interface:

public class My_Plugin implements PlugInFilter

{

public int setup(String arg , ImagePlus image)

{

// Return a bit mask that tells FIJI what images this filter can

operate upon.

return DOES_ALL;

}

public void run(ImageProcessor ip)

{

// Here is the action

}

}

Listing 7.1: Example FIJI plugin implementing the PlugInFilter interface.

For more complex plugins, or applications that are standalone, FIJI gives sample code that implements the
PlugIn interface:

public class My_Plugin implements PlugIn

{

public void run(String arg)

{

// Here is the action

}

}

Listing 7.2: Example FIJI plugin implementing the PlugIn interface.

From the run method the application can be launched with its own GUI and functionality. All FIJI plugins
must also contain a plugins.config file that specifies what menu entries the plugin provides and the classes they
call. Finally, all source code and the configuration file are packaged into a .jar file that can be dropped inside the
plugins directory of the ImageJ installation.

59

7.1.4 Third-Party Plugins

One of the main advantages to using ImageJ and FIJI is the great availability of third-party code as plugins that
follow the interfaces defined in Section 7.1.3. All the code is open-sourced and has licenses allowing for free
modification and adaptation to suit any particular application.

In some cases the code that implements a plugin is too tightly coupled to code that implements a GUI and
there is no way to bypass this when running the plugin code through a standalone application. These plugins
require refactoring by removing dialog windows for configuration options and creating a constructor to allow these
options to be passed in by a standalone application.

Find Connected Regions

Find Connected Regions [30] is a flood filling algorithm, written by Mark Longair with contributions from
Johannes Schindelin, whose operation is illustrated in Figure 7.1. It has two primary modes of operation; one is
to find all connected regions within an image that are above a particular threshold (Figure 7.1b), or if a point in
the image is given the maximal connected region to this particular point is found, given the threshold. This mode
is shown in Figure 7.1c.

(a) Sample image for finding con-
nected regions

(b) Connected regions above a
threshold of 100

(c) One connected region above a
threshold of 100

Figure 7.1: Illustration of the Find Connected Regions plugin.

FFT FIlter

A bandpass filter plugin [49] written by Joachim Walter that filters out structures larger than a given size and
smaller than another using a Gaussian smoothing in the Fourier frequency domain. The filtering of large structures
is performed by subtracting from the original image a copy of it that has been smoothed by a very large Gaussian
filter, whereas the removal of small structures is carried out by a simple Gaussian smoothing. A sample section
of a typical image from the dataset is shown in Figure 7.2 before and after a bandpass filter removes structures
larger than 90 pixels and smaller than 7 pixels.

Skeletonize3D and AnalyzeSkeleton

The Skeletonize3D plugin [15] takes a binary image and creates its skeleton as described in Section 3.1.6. The
AnalyzeSkeleton plugin [14] gives an analysis of the skeleton as also described in this section, and provides a
number of methods of accessing the graphs and vertices that its defines. Both plugins are authored by Ignacio
Arganda-Carreras.

60

(a) Small window of an example
image before band-pass filtering

(b) Window after band-pass filter-
ing, structures above 90 pixels and
below 7 pixels are filtered

Figure 7.2: Illustration of the operation of a bandpass filter from the FFT Filter plugin.

FeatureJ

FeatureJ [35], written by Erik Meijering is a collection of ImageJ plugins used to compute standard features of
images and regions of interest. These features are typically individual elements of feature vectors for use in a
machine-learning classification based approach. The features provided by this package include:

• Derivatives

• Laplacian (second-derivatives)

• Edge detection using a Canny edge detector

• Eigenvalues of the Hessian matrix

• Structure tensor

• Statistics of values within a region of interest, including minimum, maximum, mean, median, variance and
higher-order moments

Examples of the plugin’s operation are shown in Figure 7.3.

GLCM Texture

The GLCM Texture plugin [16], written by Julio E. Cabrera, calculates the grey-level co-occurrence matrices and
their associated features for quantifying texture within a region (Section 3.4.2). Co-occurrence can be calculated
at any given pixel distance and in any of the four primary directions along the horizontal and vertical axes. A
small neighbourhood region of interest around a given pixel can be used to classify local texture characteristics;
if no Roi is specified then the co-occurrence matrices are calculated over the whole image.

FastMarching

The FastMarching algorithm is a flood fill algorithm with increased sensitivity to encountered boundaries, looking
not only at individual pixel intensities but also checking that the change in pixel intensities falls below some
threshold. Multiple seed points can be specified from which to propagate the region growth. The rate at which
the flood fill progresses depends upon the change in pixel intensities [6]; if the change is small then the region

61

(a) Sample image (b) Zero crossings of the Laplacian (second
derivative) after a Gaussian smoothing at stan-
dard deviation of 6

Min Max Mean Variance
15 219 119.45 1000.387

(c) Statistics calculated for the sample image

Figure 7.3: Illustration of the FeatureJ plugin.

is allowed to grow quickly, as the pixels are similar. Conversely, if the difference between intensities is large it is
likely that we are getting close to a boundary and the growth of the region is this area is slowed.

The FastMarching algorithm is part of a more general LevelSets plugin [21] written by Erwin Frise.

Differentials

Authored by Philippe Thévenaz, the Differentials plugin [46] can compute derivatives of the pixel intensity in
both the horizontal and vertical direction. Its operation is similar to that of the edge detection operators explained
in Section 3.2.2 without thresholding their output.

7.2 Algorithm Framework

The design of the software for creating this algorithm is intended to be general enough to apply to any segmentation
algorithm that could be applied to this type of image. The vision of the end-users at CRUK is to have as an end
result a piece of software that is capable of segmenting all interesting features within the cell, not just the nuclear
envelope. The software is intended to be loosely coupled to the specific nuclear envelope application, and provide
a general framework over which a user interface or command-line program could be placed.

AlgorithmInstance

The full class definition of AlgorithmInstance is shown in Appendix A.1.

62

All algorithms require an extension of the AlgorithmInstance class, a container for a single instance of the
algorithm i.e. one input image and images from intermediate processing steps.

One important consideration here is that with a large number of instances, and multiple processed images per
instance, the memory requirement for the algorithm can be very high. Therefore, each AlgorithmInstance is
provided with a directory into which it can save any intermediate images that are not required at particular stages
of the algorithm, releasing the memory they occupy. The abstract functions serialise() and unserialise()

are implemented by the specific algorithm instance, which also defines a set of bit-mask flags for determining
which images to (un)serialise.

AlgorithmInstances also implement the Comparable interface such that they can be ordered according their
position in the stack; a necessary step if doing any processing in parallel.

AlgorithmStep

An algorithm step is a part of an algorithm that can operate on individual images concurrently, and this concurrency
is handled at a higher level in the algorithm. An example of simple algorithm steps would be running a Gaussian
or variance filter over all images. The abstract class for an algorithm step is shown in Listing 7.3:

package segmentation.algorithms;

public abstract class AlgorithmStep <T extends AlgorithmInstance >

extends AlgorithmProcess

{

public abstract T step(T instance)

throws AlgorithmProcessException;

}

Listing 7.3: AlgorithmStep abstract class.

The generic T refers to the application specific AlgorithmInstance.

AlgorithmFilter

In contrast to an algorithm step, an algorithm filter operates upon all images at the same time, as happens in the
3D consistency parts of the segmentation algorithm. Any concurrency that can be exploited is handled within the
filter itself rather than at any higher level. The abstract class for an algorithm step is shown in Listing 7.4.

package segmentation.algorithms;

import java.util.List;

public abstract class AlgorithmFilter <T extends AlgorithmInstance >

extends AlgorithmProcess

{

public abstract List <T> filter(List <T> instances)

throws AlgorithmFilterException;

}

Listing 7.4: AlgorithmFilter abstract class.

63

AlgorithmProcess

A superclass to both AlgorithmStep and AlgorithmFilter, an AlgorithmProcess is quite simply a wrapper
for some debugging information and a superclass that gives the ability for steps and filters to be interleaved in
one data structure.

package segmentation.algorithms;

public abstract class AlgorithmProcess

{

protected boolean debug = false;

public void setDebug(boolean debug)

{

this.debug = debug;

}

public abstract int requiredImages ();

}

Listing 7.5: AlgorithmProcess abstract class.

One important method that must be implemented and set correctly for all steps and filters is requiredImages(),
as this returns the bit-mask for the application’s AlgorithmInstance that specifies all the intermediate images
and information the step or filter requires.

Algorithm

A stripped down definition of Algorithm is shown in Appendix A.2.

An algorithm can then be considered an ordered combination of a number of AlgorithmStep and AlgorithmFilter
processes. The Algorithm abstract class allows for easy construction of specific segmentation algorithms, requir-
ing only to be provided with the ordered list of processing steps and a number of instances to run the algorithm
on. This information is provided by the specific Algorithm subclass implementing the setup() method.

The marshalling of instances and invocation of the different processes only needs to be handled once within the
abstract class for it to be available to all segmentation algorithms. Before each AlgorithmProcess is invoked,
each instance is serialised such that only the images necessary for the next process are still in memory.

Also provided is reporting functionality through the observer pattern, allowing for messages, progress and
status updates to be listened to, decoupling the running of an algorithm from a GUI or error log, for example.

7.3 Multi-threaded code in Java

One particularly useful advantage of image processing is the parallelisation of the algorithm across the images;
with multi-core processors this can reduce the runtime of the algorithm considerably. Working with multi-threaded
code in Java is simple, and an example of this is given in Listing 7.6.

64

import java.util.ArrayList;

import java.util.concurrent.Callable;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

ExecutorService exec = Executors.newFixedThreadPool(

Runtime.getRuntime ().availableProcessors ()

);

ArrayList <Callable <Object >> tasks = new ArrayList <Callable <Object >>()

;

tasks.add(new Callable <Object >() {

public Object call() {

// Do some image processing here

...

// Return something of type Object

// If the call modifies external data structures it doesn’t need

to

// return anything

return null;

}

});

tasks.add (...);

// Blocks until all tasks return.

exec.invokeAll(tasks);

Listing 7.6: Sample for creating multi-threaded code in Java

65

8Algorithm Implementation

This section gives a more detailed account of the implementation of the algorithm as presented in Chapter 6,
assuming that the reader has read that chapter to gain an overview of the algorithm as a whole.

The implementation processes the images at 50% of their original size to dramatically reduce the computation
time without compromising the level of detail.

At the moment there is no integration of a 3D reconstruction into the segmentation pipeline. Instead, the end-
users are happy to take the results and render them in 3D in the same software used to perform the manual
segmentation.

8.1 As an Instance of the Algorithm Framework

The nuclear envelope algorithm detailed herein is defined as an instance of the algorithm framework presented in
Section 7.2. Algorithm steps and filtering processes are referenced to the section in this chapter where they are
explained in detail.

NEInstance The nuclear envelope AlgorithmInstance, with intermediate images of the seed points,
nucleus approximation and the output segmentation.

NEAlgorithm Extends the Algorithm base class, with a setup method that loads the 80 slices of the
dataset and adds the processing steps listed in the order below for the algorithm.

FindSeedPoints Extends AlgorithmStep, Section 8.2.

FindSeedPoints3DConsistency Extends AlgorithmFilter, Section 8.3.

FilterSeedPoints Extends AlgorithmStep, Section 8.4.

FindNucleus Extends AlgorithmStep, Section 8.5.

FindNucleus3DConsistency Extends AlgorithmFilter, Section 8.6.

FindNuclearEnvelope Extends AlgorithmStep, Section 8.7.

PruneConnectingStructures Extends AlgorithmStep, Section 8.8.

FindNuclearEnvelope3DConsistency Extends AlgorithmFilter, Section 8.9.

66

Figure 8.1: Scaled Image

Figure 8.2: Smoothed image after filtering with a large neighbourhood variance filter

67

8.2 Identifying Nucleus Seed Points

The first step here is to smooth the scaled image with a Gaussian filter with σ = 1 before running a variance filter
over the image with a 60 pixel neighbourhood region. We can see in the final image of this step in Figure 8.2
that some of the nucleus is defined by an area of medium variance. As the aim of this stage is simply to locate
some seed points within the nucleus, rather than identify the complete nucleus, as long as we can guarantee the
location of these points we can be quite restrictive with the large variance filter at this stage.

We also notice that there are areas towards the edges of the image that have very low variance. In the cases
of the black triangles at the corners of the image, these are introduced when the images are registered. They can
be removed from this step of the algorithm by noting that these areas in the image have an intensity value of 15,
the lowest within the image, and that this value rarely, if ever, occurs within the cell and the area of interest.

Figure 8.3: Scaled image filtered by a maxi-
mum filter of neighbourhood size 20. We can
see that the area to the top right has intensity
greater than 250 and will be discounted.

The more natural looking black areas towards the top right of
the image are caused by the area of the slice in the original image
that does not contain any of the cell. This area sometimes has a
small amount of noise and some other small blobs of matter, so to
remove them we pass a maximum filter with a neighbourhood size
of 20 over the original image. The result of this is shown in Figure
8.3, and pixels in this result that have an intensity value greater
than 250 are considered to have come from these areas and are
discounted as seed points. The low variance and medium grey-level
values of the area of interest again makes this a safe assumption.

To then transform the image in Figure 8.2 into a set of seed
points we loop over all the non-maximal pixels in the image,
those pixels whose variance is less than 255. A further refinement
step is performed, where a grey-level co-occurrence matrix is com-
puted over a neighbourhood of 10 pixels, with co-occurrences being
counted at a 3 pixel distance along the positive x-axis direction.
This is a fairly time-consuming operation and so is only computed
at pixels that are candidates for seed points that were not excluded
in previous steps. The contrast of the co-occurrence matrix is computed and thresholded as a further test that
candidate seed points must pass. Whilst this may discount valid seed points, in practice enough are retained such
that the algorithm performance is not impacted whilst the robustness of this step is increased with the addition
of a further test.

There is an argument to present here that only one direction of co-occurrence needs to be considered. The
texture within the nucleus has low variance and no particular preference to direction, and in practice the thresholds
for the contrast values for this test are chosen and passed by nearly all possible directions of co-occurrence inside
the nucleus. We can therefore save time by only evaluating one co-occurrence matrix.

If a pixel passes all these tests then it is considered to be a seed point for the next step of the algorithm. The
final image that represents the seed points is shown in Figure 8.4.

68

Figure 8.4: Seed points

8.3 3D Consistency of Nucleus Seed Points

The first of the 3D consistency steps is to consider the location of seed points between neighbouring slices, as
sometimes the identification step can return seed points that are outside the nucleus that should be discounted.
Oftentimes these are from similar patches of texture to the inside of the nucleus that occur in the cytoplasm,
and given the grey-scale nature of the image it is very difficult to tell these apart. However, the busyness of
the surrounding structures compared to the inside of the nucleus is what enables a 3D consistency algorithm to
perform well. These erroneous seed points rarely, if at all, appear in neighbouring slices.

To begin the 3D consistency a measure of support from other slices is calculated, such that each pixel in a
particular slice has a value between 0 and 1, showing how much evidence it has from these other slices for being a
seed point. For a particular slice we consider the 3 slices to either side in the whole stack to compute the measure
of likelihood. The stack does not wrap around, so in the edge cases in the stack we use as many slices as possible.

To account for the movement of the nucleus and the fact that we have a set of points rather than regions,
a variance filter of neighbourhood size 20 is passed over all the seed point images as a preprocessing step. The
result of this is shown in Figure 8.7, and we can see that this moves towards a region based representation that
allows for movement in the nuclear envelope between slices.

The likelihood of a pixel in a particular slice is then calculated as the sum of the proportions of white pixels in
a neighbourhood centred at the same pixel in the neighbouring slices. This use of the neighbourhood highlights
the need to move from a point to a region based representation of the seed points. To account for the movement
of the nucleus, the neighbourhood size that is considered is increased with distance (in terms of slices) from the
focus slice. Furthermore slices closer to the focus slice are also weighted more than slices further away, as it is
important to consider those nearer slices to be “better” representations of likelihood for the focus image, noting
as well that the movement between immediately neighbouring slices is minimal.

As a trivial example, suppose that we are calculating the likelihood of a seed point at (2,2), and we consider
only one neighbour. If this neighbour has no seed points in a 3x3 neighbourhood centred at (2,2), then it provides
little evidence that (2,2) is a valid seed point. However, if this neighbour has a complete 3x3 neighbourhood of
seed points centred at (2,2), then that is very strong evidence that (2,2) is a valid seed point. The same happens

69

Figure 8.5: Scaled original image of slice 0049

Figure 8.6: Set of seed points output from previous step

70

here, only with more neighbours and larger neighbourhoods.
Putting all this together gives a likelihood value for each seed point which can then be suitably thresholded to

eliminate those that have little evidence. The immediate neighbour slices to slice 0049 are shown in Appendix B.1.
The likelihood map of support from neighbouring slices for slice 0049 is shown in Figure 8.8, and a comparison
with the set of seed points in Figure 8.6 shows that there is little evidence for those seed points that lie outside
the nucleus, and the evidence that there is to the bottom left of the nucleus also falls below the threshold.

In some cases the method for finding seed points in individual slices can fail to produce many good seed
points, and we can effectively increase their quality and quantity by interpolating seed points of high likelihood
from neighbouring slices. For this application having a complete likelihood map would be particularly useful; it
could be thresholded to see where there is very high evidence for seed points from neighbours and add all those
places onto the current set of points. However this is an expensive and wasteful operation, and could be simplified
by only considering seed points that are present in either immediate neighbours of the focus slice. It is reasonable
that the definition of “very high evidence” necessary for this interpolation requires that both immediate neighbours
contribute highly to this evidence, and so we do not lose any information by considering points only in the union
of the two neighbours rather than the whole image.

The result of this step can be seen when comparing Figure 8.9 with Figure 8.10. The set of seed points is
much less sparse and covers more of the nucleus area than before, and the advantages of this will become apparent
in further algorithm steps.

71

Figure 8.7: Seed point image after variance filtering

Figure 8.8: Likelihood map for seed points in slice 0049.

72

Figure 8.9: Seed points for slice 0049 after ensuring consistency with neighbouring slices.

Figure 8.10: Seed points for slice 0049 after interpolating seed points of high likelihood from neighbouring
slices.

73

8.4 Filtering Nucleus Seed Points

It may seem a little strange that the previous seed point consistency step had an interpolation aspect to improve
the number and quality of seed points, and now there is a step that is defined as filtering seed points. The seed
points are used as starting points for a flood fill algorithm, and so the important aspect is to try and obtain seed
points in as many different regions of the nucleus as possible. How many seed points there are in these regions is
not terribly important; in effect we are trying to ensure as great a global coverage as possible, with local coverage
not being as important. The flood filling algorithm to find the nucleus deals with local coverage well, but can be
impeded by some structures or noise within the nucleus that prevent full global coverage.

Effectively, if the number of seed points can be reduced whilst still retaining a global coverage the computation
time of the flood filling algorithm can be reduced. However, this advantage is only attainable if the filtering step
can be performed in less time than is saved by having less seed points. Fortunately there is such an operation
that retains global coverage whilst reducing local coverage; the skeleton transform.

By performing a skeletonisation of the seed point image we obtain a much smaller representation of the seed
points. A further reduction in size can be achieved by taking just the junction and end pixels of the skeleton, and
ignoring the pixels that form branches between them in the skeleton. Again this is an acceptable step because we
retain the important global information that the skeleton provides and remove the local connectivity information.

For the particular case of slice 0049, 13142 seed points remain after the 3D consistency step, which are then
filtered down to 2510, an 80% reduction, and in practice the reduction across all images is between 70% and
90%. This process works very well as the skeletonisation is a fast operation, and the savings in later stages can
be considerable.

Exemplifying the output of this stage is omitted here, purely because the seed points cannot be seen on paper.

8.5 Finding the Nucleus

Another step of great importance to the success of the segmentation is that of obtaining an approximation to the
inside of the nucleus, primarily identified by its texture of low variance compared to other structures within the
cell. An identification of these regions utilises this low variance and the seed points from previous steps using a
flood fill algorithm to obtain an approximation to the nucleus.

A näıve flood fill criteria would be that of a grey-level threshold defined on the original image, however this is
susceptible to leaking outside the nucleus if there are gaps in the envelope.

The solution is to transform the original image into an alternative representation based upon local neighbour-
hood variance. A preprocessing Gaussian smoothing is performed at σ = 2.1, which has the effect of smoothing
the inside of the nucleus whilst retaining much of the variance outside of the nucleus due to the cluttered struc-
tures. After the Gaussian filter we perform a first iteration of a variance filter with a 6 pixel neighbourhood and
a minimum filter with a 5 pixel neighbourhood; the results of both stages are shown in Figures 8.11 and 8.12
respectively. The effect of the the variance filter followed by the minimum is to first find the areas of low variance
within the nucleus, but then use a minimum filter to propagate the low variance values back towards the nuclear
envelope. The minimum also removes small areas of high variance within the nucleus.

A second pair of variance and minimum filters are then used to amplify the low variance values within the
nucleus, making them more distinct from those variance values outside the nucleus. The second variance filter has
a neighbourhood of size 12 pixels, and the minimum a neighbourhood of size 6 pixels. The intuition behind this is
that the first minimum filter (Figure 8.12) reduces the amount of high variance locations inside the nucleus, but the
outer structures retain a higher variance in general. Taking the variance of this image over a larger neighbourhood
provides greater definition to the texture within the nucleus and accentuates the boundary between the nucleus
texture and the cytoplasm. The result of this step is shown in Figure 8.14, and we can see that there is a much
better definition to the area inside the nucleus.

The result is inverted as a final step to enable the use of the flood fill algorithm, FindConnectedRegions
(Section 7.1.4), that finds regions above a given lower threshold. A simple application of this algorithm would

74

Figure 8.11: Variance filter of 6 pixel neighbourhood passed over original of slice 0064 processed with a
Gaussian filter.

Figure 8.12: Minimum filter of 5 pixel neighbourhood passed over 6 pixel neighbourhood variance filtered
image.

75

Figure 8.13: Variance filter of 12 pixel neighbourhood passed over output of previous variance/minimum step

Figure 8.14: Minimum filter of 6 pixel neighbourhood passed over variance filtered image

76

find many regions above this threshold which are not part of the nucleus, so this is where the seed points found
earlier come into play.

Each seed point is considered in turn, with a flood fill from it above a threshold of 180 on the result of the
two variance/minimum filter steps, remembering that the image has been inverted so areas above 180 have lower
variance in the original image. The combination of all found regions gives an approximation to the nucleus, and it
is this step that shows the importance of obtaining the best global coverage of seed points possible. Additionally,
in order to speed up the computation, if a seed point is found to be contained within a region that is already
discovered then we skip the flood fill from this point; the region that would be found is the same as that for any
other point within the region, so it is wasted computation.

The output of the union of all regions found is shown in Figure 8.15, and whilst this captures the overall shape
there are a lot of holes, disconnected parts and it is overall not very smooth. A solution to this, shown in Figure
8.16, is to perform a morphological closing operator with a circular structuring element of radius 12 pixels, which
closes the holes and smooths the boundary. Any holes that still remain after this operation are considered to be
legitimate holes as a result of the 3D nature of the nucleus (Section 5.3).

77

Figure 8.15: Combination of all regions found by a flood fill from all seed points

Figure 8.16: Morphological closing operator closes holes within the approximation

78

8.6 3D Consistency of the Nucleus Approximation

Similarly to the 3D consistency of seed points, we can use the same idea of support from surrounding slices to
refine the nucleus approximations found in the previous step. This becomes useful in cases where some noise or
dark patches within the nucleus prevent the flood fill reaching all parts of the nucleus; again demonstrating the
importance of finding as many seed points as possible.

A näıve way to do such consistency is purely to take the intersection of the two immediate neighbours of a
particular slice and add it onto the nucleus approximation for that slice. This method does however break down
when locally the nuclear envelope “contracts” from one neighbour to the focus slice before moving back out
again to the next neighbour; in this case the intersection may have areas that would be on or outside the nuclear
envelope for the focus slice.

We can however still utilise the intersection of the immediate neighbouring slices by using the points it defines
as those we examine for significant support from further neighbouring slices. The idea is the same as the 3D
consistency, where points with significant support in belonging to the nucleus move on to the next step. However,
instead of simply adding these points onto the nucleus approximation we can be a bit more accurate.

The idea here is therefore to take those points that have significant evidence for being part of the nucleus
approximation and use them as seed points for a second set of flood fills in exactly the same conditions as the last
algorithm step. This is essentially finding more seed points for the nucleus approximation, but this time from 3D
consistency of the nucleus approximation itself. Again, as used in the filtering of seed points, a skeleton transform
is used on the set of seeds to reduce the local clustering but retain the same global coverage before the flood fills
are run.

Figure 6.11c shows the nucleus approximation in Figure 8.16 after using the 3D consistency steps to improve
its accuracy. There is a noticeable addition to the approximation for this slice. Looking back to Figure 8.1 we
can see that the reason this area wasn’t captured to begin with was because of the dark patches in the original
slice causing too high a variance for the area to be flood filled in the nucleus approximation step. The nucleus
approximations for the immediate neighbours of slice 0064 are shown in Appendix B.2.

8.7 Obtaining an Approximation to the Nuclear Envelope

Now that we have a good approximation to the inside of the nucleus for all slices we can use it to locate the
nuclear envelope. However, it is not suitable to simply expand the boundary by a set amount and assume that can
be used as the nuclear envelope segmentation. It is not possible in all cases to obtain a nucleus approximation
that is accurate enough to do so.

Instead, we can look at the outline of the nucleus approximation and consider the local edge normal to it;
the directions that propagate out of the nucleus perpendicular to its outline. If we traverse a “ray” that is cast
along this direction and plot the grey values encountered we should find that they are roughly an inverted bell
curve, with salient points in the curve where the ray crosses into and out of the nuclear envelope. By thresholding
this plot we could find the approximate locations along the ray where it entered and exited the nuclear envelope,
and use these to define a mid-point which can be added to a second, different set of seed points that lie within
the nuclear envelope. There may be multiple threshold crossings within the ray depending on the structures in a
particular image, however given that the nucleus approximation is always contained within the nuclear envelope
the first set of crossings that we find when moving away from the nucleus is taken as the nuclear envelope.

A small but useful amount of preprocessing is done to improve the reliability and ease of detecting points that
lie within the nuclear envelope, the purpose of which is to close the space between well defined nuclear envelope
edge and create just one distinct edge. To do so a band-pass filter is used, where structures smaller than 7 pixels
and larger than 90 pixels are filtered. This has the effect of smoothing the dark areas that define the nuclear
envelope without drastically blurring its shape. The effect of this, coupled with a contrast filter, is shown in Figure
8.17.

79

Figure 8.17: Slice 64 preprocessed with a band-pass and contrast filter

The ImageJ Wand is then used to select a region connected to a particular point, and we can again use the
earlier seed points as this required input. Given a region, the wand object returns the set of points that lie on
the boundary of the found region, which is exactly what we need to perform the expansion of the outline into the
nuclear envelope.

In order to find an estimate to the gradient vector that we need to perform this expansion, the finite different
approximation is used over a point’s neighbour’s x and y co-ordinates. This gives a vector that is approximately
the local edge orientation at the particular point, and the perpendicular vector can easily be found from this.
This method gives a vector that defines a direction, but it does not guarantee whether the ray will travel into the
nucleus approximation or out into the nuclear envelope. A simple traversal of the ray in either direction confirms
whether the ray goes from the boundary point to the inside of the nucleus, and if so the direction vector is negated
to point out towards the nuclear envelope.

Now for each point we have a direction vector to travel out towards the nuclear envelope from, and we can
begin to traverse them to find the nuclear envelope. A gradient map of the image is created by passing the
original image through a Canny edge detector; peaks in the gradient values along a ray indicate crossing into or
out of structures.

Each ray is traversed until it reaches length 50 at which point it is terminated; this prevents too many additional
structures within the cell from being associated with seed points when they are actually too far from the original
nucleus approximation. This does however require the approximation of the nucleus to be sufficiently close to the
nuclear envelope, and in practice this proves to be the case. An examples of rays being traversed in this manner
is shown in Figure 8.18.

To locate a seed point inside the nuclear envelope we find the midpoint along the ray between the peaks in
the gradient value where it enters and exits the nuclear envelope. In the example in Figure 8.19 seed points are
identified by white dots, overlaid onto the nuclear envelope. The seed points found by this method are used as
the input to another flood fill algorithm that can operate upon multiple seed points, the Fast Marching algorithm.
A processed image similar to the one in Figure 8.17 with a slightly lower contrast is used as the source, and a

80

Figure 8.18: Rays traversed when searching for seed points within the nuclear envelope

Figure 8.19: Location of seed points within the nuclear envelope

81

threshold specifies that all grey-level values lower than 60 should be captured in the regions.

Figure 8.20: Result of flood filling from nuclear envelope seed points

A slight caveat to the use of the ImageJ Wand to find the outline of a region is that it ignores any holes within
the region, something which due to the 3D nature of the nucleus (Section 5.3) we need to account for. To do
this we use the wand’s selection and search it for black pixels; these black pixels become the source point for a
further Wand operation which gives us the outline of the hole. From there the same boundary expansion process
is applied to find any seed points in the hole inside the nucleus approximation. These holes are typically small,
so the length of the vector projected out from the boundary can be made shorter than those of the vectors for
the main nuclear envelope. We are also looking for points inside a hole, so typically there is some unnecessary
overlapping between vectors and therefore the shorter the vectors are made the less wasted computation there is.

8.8 Pruning Connected Structures

One problem that is apparent from the result shown in Figure 8.20 is that there are sometimes structures that
should not be segmented as nuclear envelope in the segmentation. This is due to the fact that, even if not
physically separated, the discrete nature of the visualisation means that they are not visually separable and little
can be done to restrict the flood fill from spilling over into these areas. Furthermore, a more restrictive flood fill
may solve this problem but could potentially prevent the segmentation of all the nuclear envelope in cases where
the nucleus approximation and nuclear envelope seed points were not quite good enough. It is better to achieve
an over-segmentation with the guarantee that all nuclear envelope has been found, and subsequently refine the
segmentation, than to run the risk of not locating all the nuclear envelope.

This final step in the pipeline does just that; it prunes off the structures that are visually connected to the
nuclear envelope but should not be part of the segmentation. It uses the intuition that the nuclear envelope is the
closest structure to the approximation of the nucleus found earlier, and therefore any structures that have other

82

structures in between themselves and the nucleus approximation should be removed.
To find any structures between a particular structure and the nucleus approximation, we need to find a vector

between a point on the structure and the nearest point to it on the nucleus. We can find a suitable approximation
to this vector using the differential of a distance map applied to the nucleus approximation. The distance map for
the nucleus approximation of slice 0064 is shown in Figure 8.21, where the inverse of the individual pixel intensity
gives the minimum distance of that pixel from the nucleus.

Figure 8.21: Distance map where pixel intensity shows inverse distance to the nucleus approximation.

By finding the gradients of the distance map we can obtain an approximation to the vector from any point
to its nearest point on the nucleus approximation. These gradients are calculated using the ImageJ Differentials
plugin, which provides methods to calculate differentials in the x and y directions separately.

Considering the projection of every pixel in the over-segmentation onto the nucleus approximation would be
an expensive and unnecessary operation. A much better approach is to again utilise the skeleton of the over-
segmentation and use the analysis of the skeleton to find its end and junction pixels. These are the important
points to consider, and we can subsequently discount complete branches of the skeleton based on the status of
the pixels at either end of the branch.

The basic idea is therefore, for each junction or end pixel (henceforth termed a vertex), traverse the vector
from its location to the nucleus approximation and:

• If a maximum distance along the vector has been reached and no structure has been encountered then
discount the vertex.

• If the vector crosses another part of the skeleton then it is a connected structure, not nuclear envelope, and
is discounted.

• If the first structure encountered is the nucleus approximation then this is a valid part of the nuclear envelope,
so preserve that vertex.

83

The example in Figure 8.22 makes this clear. The projection of the vertices to the top left of the image
intersect with another part of the skeleton of the over-segmentation, and as such these vertices are discounted.
Those vertices that project onto the nucleus without crossing another part of the skeleton are kept in the skeleton
structure.

Figure 8.22: Discounting of skeleton vertices based on crossing structures on path to nucleus

This algorithm can be improved in practice by making two further tweaks; the first of which is to remove some
of the structure in the local area around a vertex. The purpose of this is to avoid the case where the projection
of a vertex crosses a branch of the skeleton that is connected to itself. Branches connected to immediate vertex
neighbours of a particular vertex are also removed from the skeleton if the neighbour is at a similar depth to the
vertex currently being considered. The removal of these structures when considering each vertex works primarily
due to the intuition that the vertices that lie on the nuclear envelope are typically at a similar depth value, and
the connecting structures that we are trying to filter out typically join onto the nuclear envelope at an angle
perpendicular to it.

The second tweak to improve the quality of the results is to consider a number of different vectors from each
vertex to the nucleus by performing a number of rotations of the vector found by the method described above.
Each rotation is found by the standard matrix equation for rotation of a vector by an angle θ:

[

x ′

y ′

]

=

[

cos θ − sin θ
sin θ cos θ

] [

x
y

]

Using the rotation equation we can perform a projection of the vertex by rotating the initial vector through
angles in the range -40 to 40 degrees, in steps of 10 degrees. If any of the projections intersect with the nucleus
then we consider the vertex to be valid and retain it in the skeleton, otherwise if no projections reach the nucleus
then the vertex is deleted as before. The effect of this is shown in Figure 8.23.

84

Figure 8.23: Vertex projection algorithm operating on a number of rotations of the initial vector

8.9 3D Interpolation of Corrupted Slices

After manual corrections have been applied to the non-corrupted slices we can use these to estimate the nuclear
envelope of corrupted slices as an initialisation of a further set of manual corrections. Several techniques have
been considered for characterising the movement of the nuclear envelope between two slices:

• Optical flow techniques attempt to estimate a velocity vector at each point in one image based upon the
changes in pixel intensity between images, which gives the location that pixel moves to in the second image.

• Graph matching attempts to find the best match, or transformation, between two graphs. We could define
a set of graphs of one nuclear envelope segmentation as its skeleton and attempt to match vertices and
end-points to other skeletons of segmentations.

Both techniques have difficulties with the images for which we are trying to find the transformations between.
Optical flow is difficult to compute on binary images, and it is arguable whether the results from the original
greyscale images would be accurate enough due to the number of similar greyscale values and structures in the
images. It is also a reasonably expensive computation to perform.

The skeletonisation of the binary images that represent the segmentation of the nuclear envelope is a fast
operation and its analysis can give a graphical representation of its end, edge and junction points. The problem
with graph matching of these skeletons is that it will be sensitive to changes in topology, for example where a
gap is present in one segmentation but not in the adjacent slice. It will also be sensitive to where the vertices of
the graph are located; small changes in nuclear envelope thickness can cause a vertex to be found in one image
with none nearby in an adjacent image. For these reasons I believe the results obtained through such a method
may not be of sufficient quality.

A much simpler method has been devised that utilises the distance transformation from the object pixels of
the nuclear envelope; the results are good, and it is unlikely that the more advanced methods considered will
do much better. In any case some manual changes will be necessary so a sacrifice of accuracy for a faster and
simpler method is acceptable. This estimation again requires the assumption of minimum movement of the nuclear
envelope.

85

The first step is to calculate the distance transform of the two nearest neighbour slices of the corrupted slice,
which gives two images where pixel value shows the distance from the nuclear envelope segmentation. Figures
8.24 and 8.25 show these distance transformations for slices 0069 and 0071, 0070 being the corrupted slice.

(a) Original image (b) Nuclear envelope segmentation (c) Distance map from the nuclear
envelope

Figure 8.24: Slice 0069

(a) Original image (b) Nuclear envelope segmentation (c) Distance map from the nuclear
envelope

Figure 8.25: Slice 0071

After finding the distance transforms of the neighbouring images they are added together to give a further
distance map, which is effectively that of the nuclear envelope estimate of the corrupted slice. To allow for the
maximum movement between the slices either side of the corrupted slice this added distance map is thresholded
for a maximum cumulative distance of 45; this threshold lies roughly where the dark and light areas change most
steeply. The sum of distance maps and the resulting of applying the threshold are shown in Figure 8.26.

Once we have the thresholded depth map as a estimate of the nuclear envelope we need to refine it to have
similar width to a normal nuclear envelope. It is not possible to perform a morphological erosion step because the
movement, or lack of movement of the nuclear envelope between slices means that approximations of the kind
in Figure 8.26b will have a varying thickness, so we cannot apply a constant erosion to the image. Instead, a
skeletonisation followed by a morphological dilation with a circular structuring element of radius the same as the
average thickness of nuclear envelope (40nm) is applied. At the resolution the algorithm operates at, 40nm is
roughly 12 pixels. The skeletonisation and result of the morphological dilation are shown in Figure 8.27, and the
result overlaid on slice 0070 is shown in Figure 8.28.

We can see that the result has a close overall resemblance to the nuclear envelope of slice 0070 albeit with a
few small local differences; the global shape is captured well. After all this is an estimate as a starting point for
manual corrections, so we only require it to be quite close to the actual envelope.

86

(a) Distance map as addition of neighbouring slice’s dis-
tance maps

(b) Thresholded distance map

Figure 8.26: Finding an approximation to the location of the nuclear envelope estimation

Slice 0070 is one case where the noise does not greatly effect the ability for us to pick out the nuclear envelope
easily, but there are some cases where the noise completely covers large parts of the nuclear envelope. In these
cases the best that can be done by the manual segmentors is to guess where the envelope would be based upon
its neighbouring slices [1]. This is essentially the same strategy adopted here for estimating the nuclear envelope
for corrupted slices.

(a) Skeletonisation of thresholded distance map (b) A dilation operation gives a thickness of the average
nuclear envelope

Figure 8.27: Finding an approximation to the location of the nuclear envelope estimation

87

Figure 8.28: Result of approximation the nuclear envelope for a corrupted slice, number 0070

88

9Algorithm Discussion

The chapter presents a discussion of design choices and the process that lead to the algorithm detailed in the
previous chapters, kept separately to avoid cluttering its presentation.

9.1 Machine-learning Based Algorithm

The first stage in development of the algorithm was to investigate machine learning techniques that have proven
to be successful in recent literature, with a particular focus on Ilastik [44]. The applicability of the other machine
learning techniques presented in Chapter 4 is limited by the inability to use shape descriptors effectively for
segmentation of the nuclear envelope.

The general purpose machine learning algorithms provided by the Weka [22] collection were used, along with
features from the ImageJ plugin FeatureJ to give a set of features similar to those used in general purpose
segmentation applications [13, 44]. A random forest classifier was trained and the algorithm developed using one
sample slice and ground truth from the dataset to being with.

I knew from the outset that any machine learning algorithm would need application specific features in order to
perform well at segmenting the nuclear envelope; this was clear from the performance of existing tools presented
in the introduction. This lead to developing a feature based on the proximity of the nuclear envelope to the
texture of the inside of the nucleus. The idea behind such a feature is that it should be able to discriminate
between nuclear envelope and endoplasmic reticulum, which are visually the same, by their locality with respect to
the nucleus. To obtain the region that represents the nucleus a näıve flood fill algorithm based on pixel intensity
was used, which sufficed as the problem of gaps in the NE was not considered at this point.

After development of this feature, its testing showed that it was not quite enough to improve the quality of
the segmentation sufficiently; even a descriptive feature of locality to the nucleus breaks down because of variable
thickness of the nuclear envelope.

I think that the reason for the classifier based approach being ineffective overall is that the structures in the
data are too complex to be described by image features based purely on grey-level values. Shape plays a big part
in segmentation of EM images containing mitochrondria or neurons, but the complexity in shape of the nuclear
envelope means that shape descriptors cannot be leveraged to improve the classification results.

A further difficulty with the nuclear envelope is that it cannot generally be described by one edge or one
area; the double lipid bi-layer structure is described by two dark lines at an average distance apart, with a bright
region between them. Saying this however, sometimes the blurring of the nuclear envelope (Section 5.5) leads to
a single region of similar intensity. For machine learning techniques attempting to classify individual pixels this
feature description is too complex for good results to be obtained; the successes for machine learning techniques
in neuronal segmentation (Section 4.3) occur because the boundary between neurons is consistently described by
a near-constant intensity region.

There are more disadvantages to the machine learning approach that were slowly being realised as I developed
an algorithm:

• Each change to the feature set requires a new classifier to be trained; this is a lengthy process and really
hinders research and development on a restricted timescale.

89

• When the algorithm is extended and tested on EM images of cells with diseases or at different stages of
mitosis further training data will probably be required, and that data may not be available or will take time
to produce.

9.2 Expanding the Nucleus into the Nuclear Envelope

Preliminary work lead to requiring an approximation of the nucleus as a proximity feature for points on the nuclear
envelope, and it became clear that having such an approximation gave a good estimate of the position of the nuclear
envelope. Given this, I started to investigate techniques that could expand outwards from the approximation to
find the region containing the nuclear envelope. As we can see in the algorithm, similar techniques to those used
to find the nucleus could also be found to identify the nuclear envelope and immediately the results were very
positive.

It did not take much time after developing the nucleus feature to drop the classification approach completely
and move onto a hand-designed algorithm. This also enabled faster development as the overheads of training
classifiers and calculating features were no longer present. As soon as the classification approach was dropped,
the attention focus upon the pipeline of hand-designed algorithm steps led me to notice possibilities such as the
3D consistency between slices, which had not been considered before, but which have a massive impact upon the
success of the segmentation algorithm.

9.3 Edge-based vs. Region-based segmentation

Whilst containing elements of both types of segmentation algorithm, I would classify this algorithm as a region-
based segmentation because of its nature to identify the nucleus and nuclear envelope through flood fill algorithms.
This being said, a quick look at a sample image for this application could give the idea that an edge-based
segmentation algorithm would be a good method to investigate. The nuclear envelope could be defined by
detected edges, for example by Canny edge detection, but this approach is difficult for many reasons.

Firstly, there are a great number of small changes in gradient within the image; thresholds would have to be
specified to pick out those gradients we can associate with the nuclear envelope. Identifying such a threshold is
difficult as there are many edges that are similar in intensity to those at the nuclear envelope. Smoothing may
simplify both the tasks of identifying suitable thresholds and performing the edge detection but we may sacrifice
some important edge information in the process.

Secondly, even if it were possible to reliable detect those edges that belong to the nuclear envelope, it is likely
that we would also find edges that are associated with the endoplasmic reticulum. Therefore we again need a way
of distinguishing those edges that are part of the nuclear envelope from those that are endoplasmic reticulum,
and that is only achievable through the identification of the region of low variance as an approximation to the
nucleus.

Finally, suppose that the edges representing the double lipid bi-layer structure of the nuclear envelope were
obtainable. The target of the segmentation is to cover the region including the gaps between these structures, so
another region finding algorithm such as the flood fill would have to be used to achieve this. In effect, having to
find the nucleus approximation to localise which edges are those belonging to the nuclear envelope eliminates the
need to find those edges in the first place, as we already have an estimate to the contour of the nuclear envelope.
As a region is required and can be obtained through a flood fill we only require some points inside the region; the
region found by filling from the edge points would be the same.

9.4 Algorithm Framework

Whilst obviously not the main focus of this project, I felt that it was important to add some structure to the code
developed for this project. This was mainly inspired by the end-user’s vision of a software suite of segmentation
algorithms for all the different sub-cellular structures. The framework is not complex by any means and I expect it
will go through many more iterations before it is integrated into the end product. However, for ease of development

90

it is extremely useful to define the running of an algorithm, including handling of multi-threaded code, only once,
and simply plug together the different components of an algorithm. Individual parts also become much easier to
isolate and test with this framework.

91

10Problems

10.1 Disconnected Nucleus Sections

Sometimes due to the 3D nature of the nuclear envelope there are small sections in an individual 2D slice that
are separate from the main part of the nucleus in that slice. An example of this is shown in Figure 10.1.

Figure 10.1: Slice 0014, showing a small disconnected section of nuclear envelope.

We see that circled to the bottom right of the main nucleus there is another small section of nucleus. This
appears disconnected in an individual 2D slice due to a small offshoot of the nucleus being sliced through to
create the image (Section 5.3). Further on in the image stack the small section gets larger and eventually joins
on to the main nucleus structure.

These small sections do not get segmented by the automated part of the algorithm because they are too
small for the large neighbourhood variance filter to capture seed points inside them. The subsequent flood fill to
find the approximation to the nucleus therefore doesn’t fill any of the area within these small sections, and the
subsequent steps of the algorithm fail to find the small area of nuclear envelope.

92

10.1.1 3D Flood Fill

(a) 30x30 piece of nucleus,
mean = 99 and variance = 408

(b) 30x30 piece of cytoplasm,
mean = 94 and variance = 286

Figure 10.2: Showing similar re-
gions within the nucleus and cy-
toplasm.

One potential solution to this problem is to consider the flood fill algorithm in
3D, but the problem with such an algorithm is ensuring that it does not fill
outside the nucleus. For this not to happen there could never be a case where a
pixel inside the nucleus in one slice is a pixel in the cytoplasm in a neighbouring
slice. As soon as this happens in just one place the knowledge that the region
we have flood filled is contained inside the nucleus is no longer valid. This is
something that can never be guaranteed, and unless the 3D flood fill can be
better controlled it would not solve this problem.

10.1.2 Seed Points from a Smaller Neighbourhood

Being able to identify seed points inside the nucleus from a smaller neigh-
bourhood would allow these smaller disconnected sections to be identified.
Unfortunately, the smaller the neighbourhood used the more likely it is that
textures within the cytoplasm become similar to the texture inside the nucleus.
The reason that the large neighbourhood variance filter works well is because
in general the cytoplasm is cluttered with many different structures giving it
a high variance over a large neighbourhood. As soon as the neighbourhood
size is reduced we start to run the risk of identifying areas in between these
structures which are harder to distinguish from the texture inside the nucleus.

Take for example the 30 pixel neighbourhoods in Figure 10.2. This is just
one example where the variance of a 30 pixel window in the cytoplasm is less
than the variance of a 30 pixel window inside the nucleus; the means are also
quite similar so there is no real discriminatory potential there. Our human
processes for visually distinguishing textures also fail to see much difference in
these two samples, which doesn’t bode well for an automated process.

It may however be possible to find a threshold such that we can be sure all
points that pass through are inside the nucleus. The trouble is that the number
of such thresholds that we could choose from becomes smaller as it becomes
more difficult to separate the textures. Our choice of threshold would have to
be very restrictive which means that we may not find seed points in all regions
and we may still miss these small disconnected structures.

10.2 Nuclear Pores

Figure 10.3: A nuclear pore visu-
ally connects sections of the nu-
clear envelope

Nuclear pores are structures closely related to the nuclear envelope, but the
twp should be segmented separately. Their characteristics are shown in Figure
10.3, where we see two well defined sections of nuclear envelope being joined
by a single dark line, the nuclear pore. This is one of the clearest examples of
the nuclear pore to show, as due to blurring (Section 5.5) it can be difficult to
distinguish between nuclear pore and nuclear envelope.

Nuclear pores are roughly circular with diameter between 100 and 125 nm,
and as the slicing process takes 70nm slices sometimes the pore is quite wide
if it is cut through at its thickest point. If the slice cuts through near the top
or bottom of the circle the nuclear pores appear thinner in 2D and are thus
harder to distinguish.

The current segmentation algorithm includes nuclear pores in the segmen-
tation due to the flood fill capturing areas of similar intensity value to the
nuclear envelope. Whilst it may be possible to identify some of the well defined

93

nuclear pores by looking for single line structures within the nuclear envelope, including them in the segmentation
does not affect the overall characteristics of the nuclear envelope when viewing the 3D reconstruction.

10.3 Perinuclear Space

As previously explained in Section 5.5, the angle of the cutting blade to the nuclear envelope affects whether the
double lipid bi-layer structure is well defined. An example of a well defined nuclear envelope is shown in Figure
10.4; the perinuclear space is the area between the lipid bi-layers that define the nuclear envelope.

(a) A well defined section of nuclear envelope
from slice 0064

(b) Result of running the band-pass filter in
the sample in a

Figure 10.4: A large perinuclear space prevents the segmentation from covering the whole area inside the
nuclear envelope.

Figure 10.5: Morphological closing operator
applied to sample in Figure 10.4a

To a large extent these gaps are filled by the band-pass filter
used in the nuclear envelope flood fill stage, but in some cases,
as in Figure 10.4, the perinuclear space is larger than the average
thickness of the nuclear envelope and so the two edges remain dis-
tinct with a gap between them. When it comes to the flood fill of
the nuclear envelope this can cause:

• A large gap in the nuclear envelope that should be segmented.

• Only one or neither edge is captured as they are quite thin,
which increases the risk of the flood fill being stopped too
early. When the two edges can be blurred together it is more
likely that the flood fill will succeed and move through the
wider area.

• If both edges are found then there is a risk that the outer
edge is removed in the pruning of connected structures. A
suitable change to this step to account for just this case is
possible, where we look at distance to the nucleus, but we
run the risk of not pruning off some structures that are not
nuclear envelope.

94

I believe the best solution to this problem would be to find a better way of closing the perinuclear space
regardless of its size. One possible way to do so is to use a morphological closing operator of a suitable size,
the result of which is shown in Figure 10.5. This may seem to work, but the problem with this transformation
is that it cannot take into account that we only want to smooth the inside of the nuclear envelope and not any
structures around it. If, for example, there were vesicles or other structures close to the nuclear envelope they
could be smoothed and joined to the nuclear envelope. It is likely that they would not be removed when pruning
connected structures as they would just make the nuclear envelope estimate thicker, rather than appearing in the
skeleton of this estimate as a separate branch.

A solution therefore could take into account both proximity to the nucleus and the local edge orientation of
the nuclear envelope. As we can obtain some seed points inside the nuclear envelope at many places, but not all,
an algorithm step could start at these points and repeatedly move along the nuclear envelope performing local
closing operations. The target is for the perinuclear space can be closed without the morphological closing being
applied to any structure that is not nuclear envelope.

10.4 Small Gaps in the Nuclear Envelope

A further side effect of the strategy employed to close the perinuclear space (Section 10.3) by using a band-pass
filter is that very small gaps in the nuclear envelope may also be closed. These gaps are distinguishable from
the perinuclear space by the fact that the smoothing that causes them to be segmented occurs along the edge
direction of the nuclear envelope rather than perpendicular to it. An example of a gap that is closed in shown in
Figure 10.6.

(a) Sample of slice 0014 (b) Manual segmentation of the
sample

(c) Automated segmentation of
the sample

Figure 10.6: Showing the erroneous closing of a gap in the nuclear envelope.

10.5 Pruning Sections of Nuclear Envelope

In general the pruning of connected structures works well to reduce the nuclear envelope approximation to a better
segmentation, but it is susceptible to trimming off parts of the nuclear envelope that should remain. This step
depends greatly on the quality of the nucleus approximation, and it is a failure to obtain an approximation of the
complete nucleus that results in some erroneous pruning of the nuclear envelope.

Figure 10.7 shows an example of this problem. We can see in Figure 10.7c that the approximation to the
nucleus didn’t manage to capture the small loop in the centre of the original image. Looking at the entrance
of the loop there is a small light dot and a dark dot close together, and when the variance filters are run over

95

the image prior to the flood fill for the nucleus approximation these two dots increase the variance sufficiently to
block off the flood fill into this loop.

This error in the approximation to the nucleus has a knock on effect when the algorithm reaches the pruning
of connected structures, which uses the notion of a clear path between a structure and the nucleus approximation
as meaning that structure is nuclear envelope. Any structure that has to cross any other structure to reach the
nucleus cannot be nuclear envelope and is therefore pruned from the nuclear envelope segmentation. This is what
happens to the example in Figure 10.7 as shown in Figure 10.8.

The white vertices in the red circle in Figure 10.8 form part of the sections of nuclear envelope that are found
by the flood fill from seed points on the nuclear envelope. If the nucleus approximation was more accurate and
filled this loop then the nearest point in the nucleus to these vertices would be inside that loop, the paths to this
nucleus approximation would not be blocked by another structure and they would be retained as nuclear envelope.
Instead, the nearest point on the nucleus approximation for these vertices is on a completely different part of the
nucleus, as shown by the direction of the grey radial lines originating at the vertices. These lines have to cross
another structure to reach the nucleus and are therefore pruned from the segmentation.

This example shows how important it is to obtain a good approximation to the inside of the nucleus, and that
in turn requires finding as many good seed points as possible. If we could find seed points over a smaller area (as
discussed in Section 10.1.2) it is likely that some seed points would be located inside this loop that the flood fill
for the nucleus approximation failed to reach. The flood fill would find the area inside the loop from these seed
points and consequently the large section of nuclear envelope would not be pruned from the nuclear envelope
approximation.

10.6 Failure to Prune Connected Structures

Another problem with the pruning of connected structures is that of structures not being pruned when they are not
nuclear envelope. This happens when there are gaps in the nuclear envelope and we are unlucky that the shortest
path from a structure to the nucleus passes through this gap or the flood fill for the nucleus approximation leaked
out into the cytoplasm. Examples of these cases are shown in Figures 10.9 and 10.10.

These are both difficult problems to solve. For the leaked estimate of the nucleus in Figure 10.9, there really
is not much that can be done as the texture is too similar to that of the nucleus and is captured by the flood fill.
Placing harsher restrictions on the flood fill negatively impacts other slices in the stack by preventing important
regions of the nucleus from being found. These kinds of errors are however easy for a manual segmentor to spot
and fast to remove, and given that these cases happen fairly rarely, having the manual corrections solve this
problem is a suitable compromise for now.

The case in Figure 10.10 of structures being retained due to gaps is also particularly difficult to solve. I have
thought about closing gaps in the nuclear envelope by performing a local search guided by the outline of the
nucleus approximation, which would work well for the example case but doesn’t generalise well to all slices. For
example, consider attempting to close the gaps in the nuclear envelope in Figure 10.9. If we follow the outline of
the nucleus approximation we would end up joining gaps between the nuclear envelope and structures that aren’t
the nuclear envelope. We also cannot make the näıve assumption that a small distance between points on the
nuclear envelope means that there is a gap that can be closed, as we cannot ignore cases where there are thin
branches in the nuclear envelope as in Figure 10.7a.

Both problems could be solved if a better descriptor for the texture inside the nucleus is found, but this a
similar problem to attempting to find seed points over a smaller neighbourhood (Section 10.1.2) and one that is
certainly difficult and left to thought and further research.

96

(a) Original image (b) Pruned segmentation (c) Nucleus approximation

Figure 10.7: Errors in pruning connected structures from the nuclear envelope approximation

Figure 10.8: Showing the pruning of the connected structures

97

(a) Original image (b) Nucleus flood fill leaks into cy-
toplasm

(c) Nuclear envelope segmenta-
tion after pruning

Figure 10.9: Leaking of the nucleus approximation causes failure to prune some structures that are not nuclear
envelope

(a) Original image (b) Nucleus flood fill that doesn’t
leak through the gap

(c) Erroneous structures not
pruned from the nuclear envelope
segmentation

Figure 10.10: Holes in the nuclear envelope allow some erroneous structures to be retained in the nuclear
envelope segmentation

98

11Evaluation

The main objective of this project is to dramatically reduce the overall time it takes to segment a dataset of the
type we looked at in Chapter 5. There are several elements of the process that are difficult to automate, such
as registration and brightness equalisation, due to the complexities in the data being expressed only in greyscale
values. These processes are also not where the main time is spent to obtain the segmentation: outlining and
picking out the nuclear envelope is estimated to take 2-3 weeks on average [1] and so that was the focus of this
project.

The segmentation algorithm presented herein has a runtime of about one hour on a quad-core processor,
so a rough estimate puts it at two hours to complete on a typical computer used in the labs at CRUK. These
computers have plenty of memory to handle the large number of images, but they only sport a dual-core processor.
Dr. Christopher Peddie estimated [1] that it would take another couple of hours to half a day to perform the
manual corrections across all slices, including those that are corrupted. The total time for the complete process
including necessary manual steps and the automated algorithm is therefore approximately half a day to one day.
Cutting down 2-3 weeks to just one day is a significant reduction and one that is very much welcomed by the
collaborators at CRUK.

We now take a look at a more detailed evaluation of the algorithm performance from both quantitative and
qualitative perspectives.

• A qualitative analysis of the performance of Ilastik is given in Section 11.1.

• Segmentation metrics are calculated for the results and compared against those achieved with Ilastik in
Section 11.2.

• In Section 11.3, end-user scoring gives an idea of the good and bad slices in the results.

• The performance of the algorithm and its applicability to the wider biological audience is evaluated by the
end-users and included verbatim as feedback in Section 11.4.

• A comparison of the 3D reconstructions of the manual and automated dataset is presented in Section 11.5.

• Finally, in Section 11.6 the algorithm is run on a cell at an earlier stage of mitosis.

The end-user scoring a set of 36 images taken by choosing every other image from the original dataset and
removing corrupted images. This is mainly to reduce the workload for the evaluation by hand carried out by the
collaborators. Examples of the problems discussed in Chapter 10 are found in images throughout these samples,
as well as the rest of the results, and as such no loss of applicability to the complete dataset is assumed.

11.1 Comparison to Sample Trained with Ilastik

As no other work has focused solely on the nuclear envelope there is nothing to provide a direct comparison,
however a classifier trained with Ilastik should provide a suitable comparison with the state of the art. As
expected we see a marked reduction in the segmentation quality for those produced with Ilastik.

Ilastik does not yet provide the functionality to import labels along with images, so I did as best I could to
match the manual segmentation of the nuclear envelope by painting on class labels. A random forest classifier

99

was trained with colour, edge, and texture features over a large range of neighbourhood sizes according to the
labels shown in Figure 11.2, chosen so as to cover as many structures of the cell as possible. The use of only
one image and set of labels as the training data may seem too little, but I would argue that the sample image is
suitably representative of the rest of the dataset such that any general problems or difficulties experienced by the
classifier would not be solved by simply using more training data.

Figure 11.3 shows the outcomes from all segmentation methods on slice 0022, one of the best results from
the nuclear envelope algorithm. Figure 11.1 shows the outcomes for slice 0066, the slice that achieved the worst
result from the algorithm presented herein.

(a) Original slice (b) Manual segmentation

(c) Ilastik segmentation (d) Algorithm result segmentation

Figure 11.1: Segmentation comparison of slice 0066

Instantly we can see that there are many more erroneously segmented structures from the cytoplasm area
than in the results of this algorithm. I believe this is because of the use of general feature descriptors; these
are greyscale images with complex objects and these features cannot provide enough descriptive power for the
classifier to obtain an accurate segmentation. Another disadvantage to the Ilastik segmentations is they don’t
manage to obtain all of the nuclear envelope structure, and I believe this is for the same reason.

A further six segmentations obtained from the classifier trained with Ilastik are shown in Appendix C.2, and
having these we can move towards a quantitative analysis.

100

(a) Training image (b) Painted labels

Figure 11.2: Training data for Ilastik

(a) Original slice (b) Manual segmentation

(c) Ilastik segmentation (d) Algorithm result segmentation

Figure 11.3: Segmentation comparison of slice 0022

101

11.2 Segmentation Quality Metrics

The full table of metrics and user scores for the evaluation dataset is included in Appendix C.1.

11.2.1 Pixel Error

The average pixel error across the evaluation dataset is 0.0195, giving a segmentation quality of around 98%
according to this metric. We could just stop there and say this shows a good result, but I think this value shows
that while the pixel error can be a good measure it doesn’t always give meaningful output.

The reason that this figure is so high is that the area of the nuclear envelope compared to the overall image
area is quite low. The majority of pixels in the manual and automated segmentations are background, so there
is little contribution from these regions. Take for example an image that contains only background pixels and is
completely black; by the pixel error metric this will still achieve a reasonable result when compared to the manual
segmentation. Therefore, pixel errors in the nuclear envelope contribute little to the error simply because there
are many pixels in the image that do not contain the nuclear envelope.

11.2.2 Jaccard Index

The average Jaccard index for the evaluation dataset is 0.479, which gives a quality of 48%. This would indicate
that the automated segmentation has achieved an average result, but I believe it still falls below the expected
value.

The reason why this value is lower than expected is that we are in effect segmenting the edge of a region
by finding the nuclear envelope that surrounds the nucleus. The Jaccard index is based upon comparing the
overlapping regions of two segmentations against the total area of the two segmentations; if this total area is
small then individual pixel errors are going to become more significant than for larger areas. If we were to find
and compare estimates of the nucleus area from both the automated and manual segmentations of the nuclear
envelope it is likely that this metric would give much higher quality scores than it does when comparing the nuclear
envelope regions.

Given this, the problems discussed in Chapter 10 have a large negative impact upon this metric with the main
contributors being:

• Nuclear pores should not be included in the segmentation of the nuclear envelope but are done so by the
algorithm. This is however not as important as capturing the overall shape of the nuclear envelope.

• The perinuclear space is difficult to find with the automated segmentation but is always present in the
manual segmentation

11.2.3 Rand Index and Warping Error

The average Rand index for the evaluation dataset is 0.279, giving a segmentation accuracy of 28%.
The purpose of these two error metrics is to penalise segmentations that have differences in topology more

than individual pixel differences, and this is why the value for the Rand index is lower than the Jaccard index.
Chapter 10 highlights problem cases that the algorithm has difficultly segmenting which create large topological
differences between the manual and automated segmentations.

Given that the Rand Index and Warping Error both penalise topological errors and that we know about a
number of problems in the algorithm, I assume that the results from the Warping Error would give no more
information than those for the Rand Index and omit its calculation from this report.

11.2.4 Comparison to Ilastik

In addition to the comparison provided in Section 11.1 the segmentation error metrics can be run on the results
from the classifier trained with Ilastik. The same metrics as above were calculated between the classification

102

results of 14 images chosen from across the whole dataset and their manual segmentations. The average results
and their respective values for the nuclear envelope algorithm are shown in the table below.

Ilastik NE Algorithm
Pixel Error 97.4% 98%

Jaccard Index 26% 48%
Rand Index 11% 28%

All the values for Ilastik are lower than the quality values for the nuclear envelope algorithm, but this was to
be expected after the qualitative evaluation of Ilastik’s results. This goes some way to providing assurance that
the results are good, even though no meaningful error metric has achieved a particularly high quality value.

11.3 End-user Scoring

The full table of metrics and user scores for the evaluation dataset is included in Appendix C.1.

The metrics presented in the previous section don’t give much evidence to support the segmentations being
quite accurate in a global sense. This is primarily due to problems encountered by the algorithm, but there is also
some subjectivity to take into account when blurred patches of nuclear envelope are encountered by the manual
segmentor. Depending on the person carrying out the segmentation, the blurred patch can either be completely
covered or quite restrictively segmented to only the darkest and most certain patches to be nuclear envelope. This
and other areas where subjective decisions have to made when creating the manual segmentation account for a
further small amount of the lack of quality given by the error metrics.

After some discussion [4, 5] it was decided that a further evaluation method of having the end-users score
the evaluation dataset would be useful to have. Dr. Christopher Peddie chose to score the set of evaluation
segmentations on a scale of 1-10, where images scored with 1 require the most manual corrections and those with
a 10 need the least manual corrections. Dr. Lucy Collinson chose to score the evaluation segmentations based
upon the number of over or under segmented regions present. The total number of these errors then gives a score
in the same 1-10 region; 10 represents 1-4 errors, 9 represents 5-8 errors and so on until any number of errors
greater than 36 is given a score of 1.

1 2 3 4 5 6 7 8 9 10

22

4

2

6

7

2

33

2

Score

F
re
q
u
en
cy

(a) Dr. Christopher Peddie

1 2 3 4 5 6 7 8 9 10

1
00
1
2
1

4

12

7
8

Score

F
re
q
u
en
cy

(b) Dr. Lucy Collinson

Figure 11.4: Histogram of user scores

103

The histograms of scores are shown in Figure 11.4. The histogram for Dr. Christopher Peddie does not give
any information other than what we would expect from a relative scoring system, a bell shape curve. I am however
pleased by the profile of the scores from Dr. Lucy Collinson, seeing that the majority of slices have somewhere
between 0 and 12 corrections to be made. This still may seem like a large number, but the errors that arise from
the problems discussed in Chapter 10 tend to lead to large well recognisable errors, so the time for a manual
segmentor to fix these errors would be quite small.

11.3.1 High Scoring Slices

Two segmentations that achieved a combined score of one less than the maximum are shown in Figure 11.5.
These are very good generally because they don’t have any of the cases that cause problems for the algorithm;
there are no disconnected sections of nuclear envelope or loops accessible only through thin necks. The blue
circles highlight areas in the segmentation where pixels are incorrectly classified as nuclear envelope, typically due
to small gaps being missed, and red circles highlight areas where some nuclear envelope was not captured by the
algorithm.

11.3.2 Low Scoring Slices

Two segmentations that received low scores are shown in Figure 11.6. The errors highlighted are only a subset of
those found that show the most important differences between the manual and automated segmentation.

We can see in Figure 11.6a that there are a couple of large envelope sections missed, both due to the problem
of disconnected nucleus sections. Slice 0066 (Figure 11.6b) has a bit of difficulty identifying a well defined section
of nuclear envelope, which causes gaps in the nuclear envelope hence some additional structures are not pruned
from the segmentation.

11.3.3 General Trend

In general the problems noticed by the end-users performing a scoring of the evaluation dataset are those mentioned
in Chapter 10. Both Dr. Peddie and Dr. Collinson noticed a general trend that the scores drop off towards the
end of the dataset; indeed the average score for the first half of the dataset is above 7 compared to 5 for the
second half of the dataset. For a comparison we can use Figures 11.5 and 11.6.

I think that there are a couple of reasons which together go some way to explaining this trend:

• Towards the end of the dataset there tend to be more disconnected parts of the nuclear envelope or loops
which are discounted due to the failure to obtain a really accurate nucleus approximation. These parts that
are missed by the algorithm also tend to be larger, as we can see in Figure 11.6a.

• The nuclear envelope and the cutting blade tend to be close to perpendicular more often in the later slices,
giving a well defined nuclear envelope [1]. This is particularly apparent towards the bottom of Figure 11.6b
where we can see many quite bright gaps between the double-lipid bi-layer structure that are not captured
by the segmentation.

• Some of the later slices have small changes in the overall focus and brightness. This is quite difficult to see
in the examples; a higher resolution makes this more apparent.

104

(a) Nuclear envelope segmentation overlaid onto slice 0022

(b) Nuclear envelope segmentation overlaid onto slice 0034

Figure 11.5: High scoring slices from end-user scoring.

105

(a) Nuclear envelope segmentation overlaid onto slice 0056

(b) Nuclear envelope segmentation overlaid onto slice 0066

Figure 11.6: Low scoring slices from end-user scoring.

106

11.4 End-user Feedback

The dataset used in this study was chosen as it represents a “control” state and as such is a
good starting point for the development of a automatic segmentation algorithm. However, it also
contains a higher than usual number of artifacts, including dust and dirt on the sections, folds in
the sections, uneven section shrinkage/expansion, and counterstain deposits. Yet, these problems
illustrate perfectly the issues that must be overcome in order to successfully automatically segment
complex datasets.

Given that the “state-of-the-art” segmentation methods currently available are only really suitable
for use on very simplistic datasets and largely fail in an application such as that demonstrated here,
the overall result obtained from this automatic segmentation algorithm is remarkable, particularly
when comparing 3-dimensional models from manual vs. automatic output. That the algorithm over-
segments a number of smaller features such as nuclear pores and small membrane gaps is of relatively
little consequence when considering only the overall fit of the output. These small features are
most likely best left for the end user to add or subtract manually as their classification can be quite
subjective in any case. In evaluating the output, I mostly ignored small over-segmentation errors and
concentrated instead on large over-segmentation errors and on under-segmentation, both of which are
more likely to influence the 3-dimensional outcome. The images were scored within the series without
direct comparison to the manual segmentation. In this case, it is clear that although some images
scored poorly, their inclusion in the 3-dimensional reconstruction did not significantly alter the overall
appearance of the surface model.

Although fine tuning of the output would still be required by the end user, the most significant
impact of this algorithm of course is in the reduction of hours necessary to obtain a sufficiently high
quality segmentation of a given dataset. We have estimated that it might be possible to reduce the
amount of time spent segmenting a feature such as the nuclear envelope from as much as two to
three weeks, to as little as one or two days. It will be extremely interesting to see how much this
algorithm can be developed and further adapted to extend application to other datasets and image
features, whilst incorporating end user interaction.

Dr. Christopher Peddie

Electron microscopy is capable of imaging cellular structure at nanometre resolution, and with
recent advances in serial imaging, can do so in three dimensions to produce information on how
proteins, cells and tissues interact in health and disease. However, as 3D data collection becomes
simpler and faster, so the quantity of data produced is increasing exponentially, and the ability to
analyse the data is becoming the major bottleneck in the workflow. EM is especially challenging,
as many features of interest share the same grey values and so cannot be segmented using efficient
thresholding algorithms.

Almost every mammalian cell has a nucleus. In many diseased cell types, the nucleus is disrupted
or multiple nuclei are present. Therefore, the ability to segment the nucleus through serial EM images
will not only give valuable information on the process of nuclear envelope formation but also the
nature of mutations in disease-associated genes.

Currently, segmentation of the nuclear envelope from serial images through one cell takes several
weeks. This cannot be done by an untrained individual - many years of experience is required for an
electron microscopist to recognise and interpret cellular structures. The improvement in segmentation
speed given by Stephen’s workflow (from 2-3 weeks to one day) will significantly shorten the time spent
on image analysis and hence relieve the bottleneck in the process. The expert electron microscopist

107

will be released from segmentation and able to return to wet-lab and imaging work. The success
of this project is also demonstrated by the similarity of the 3D visualisation of the nuclear envelope
by automatic and manual segmentation. The algorithms, once tested against nuclei in different cell
types and different imaging modalities, will find wide application for cell biologists.

The ability to work across disciplines, as demonstrated by Stephen in this project, should not be
underestimated. Not only does the cell biologist have to learn basic image analysis principles, but the
computer vision scientist has to learn the language of cell biology.

Dr. Lucy Collinson

Figure 11.7: Viewing the 3D reconstructions of the manual and automated segmentations from the rear of
the cell

Figure 11.8: Viewing the 3D reconstructions of the manual and automated segmentations from the side of
the cell

108

11.5 3D Reconstruction Similarity

The end goal of the segmentation process is to create a 3D reconstruction of the nuclear envelope which can
then be viewed and studied. The overall shape and characteristics are important for the biological research into
the formation of the nuclear envelope. Figures 11.7 and 11.8 show comparisons from two different viewpoints of
the 3D reconstruction of the manual segmentation, shown in red, and the results of this algorithm, shown in teal,
which have not been manually corrected.

The similarity between the two reconstructions is immediately noticeable, and we can see that there are only
a few manual corrections that would have a visible effect on the overall shape of the reconstruction. This is
one of the particular strengths of the process presented here; whilst the problems in Chapter 10 can cause local
segmentation errors, in general the capturing of global shape is very good, as reflected in this comparison.

11.6 Segmentation at an Earlier Stage of Mitosis

Whilst the focus of this project is upon the dataset of images of the cell at a late stage of mitosis ,it is interesting
to see how well the algorithm generalises to the earlier stages. At these stages some of the assumptions for cells
at telophase, such as minimal movement of the nuclear envelope between slices, break down, so filtering steps
that involve 3D consistency may no longer be safe and would have to be adapted to incorporate the 3D slice
information. An example of a nucleus at anaphase is shown in Figure 2.2b and the same slice is used in this
evaluation starting with Figure 11.9.

One of the first key things that we notice in Figure 11.9a is that the texture difference between the nucleus
and cytoplasm is less easy to spot, most likely due to the lack of a complete nucleus structure. It is however still
present, as the texture towards the centre of the image is quite different to that towards the right edge. Other
visual differences between the cell at anaphase and telophase (Figure 2.2c for example) include:

• The nuclear envelope is much more fragmented with many large gaps between its sections, which will limit
the applicability of pruning connected structures.

• Outside of the nucleus area the cell structures are a lot more cluttered and thus provide more help for the
algorithm in terms of those areas having high variance.

• Considerably more endoplasmic reticulum is present and is closer to the nuclear envelope than it is at other
stages of mitosis.

• The nuclear envelope is much thinner than at telophase and the double lipid bi-layer structure is less
significant.

• More dark areas are present within the nuclear envelope boundary that are no classified as nuclear envelope.

The other images in Figure 11.9 show the manual segmentation, nucleus approximation and automated
segmentation after running the sample image through the algorithm. The performance is not as clear cut as it is
for the cells at the late stage of mitosis used throughout this report, however I am primarily looking for how well
the areas of nuclear envelope are captured; the many large gaps reduce the performance of pruning connected
structures considerably so non-nuclear envelope structures were expected in the segmentation.

We can see that some nuclear envelope sections are only partially captured because they are initially found
to be inside the nucleus approximation in Figure 11.9, and I make the assumption that any pixels in the nucleus
approximation cannot be part of the nuclear envelope and prevent them from being segmented as such. The reason
for these pixels being erroneously segmented as nucleus is because of the reduced thickness of the nuclear envelope.
One step in the algorithm uses a morphological closing on the nucleus approximation to remove insignificant holes
and to generally smooth the outline, but the radius of the circular structuring element is too large for the cell
at anaphase as it sometimes spans the nuclear envelope. Figure 11.10 shows the nucleus approximation and
resulting segmentation of the the same cell using a small radius closing operator, with a marked improvement in
proportion of nuclear envelope captured. However, once this change has been made it introduces another problem
of capturing many other dark structures in the cell that are not classified as nuclear envelope.

109

(a) Sample image of a cell at anaphase (b) Ground truth labelling, showing the nuclear envelope
in red and endoplasmic reticulum in blue

(c) Nucleus approximation (d) Segmentation

Figure 11.9: Evaluation of the algorithm on a cell at anaphase.

Further problems exist with defining the nucleus approximation, as the smaller difference in texture causes
the flood fill to capture area outside the nucleus. Overall the segmentation quality of the cell at anaphase is
considerably lower than of those at telophase, but that is to be expected given the differences in features and the
assumptions that can no longer be made. The type of image exemplified here pose a different set of challenges to
those tackled within this project, however I do believe that many of the concepts and ideas can be carried forward
to a next iteration of the algorithm.

110

(a) Nucleus approximation (b) Segmentation

Figure 11.10: Showing the effect of reducing the size of the morphological closing operator to prevent closing
holes that contain nuclear envelope.

111

12Conclusion

Results

With a minimal amount of manual corrections to the automated segmentation the overall time to segment the
sample dataset has been reduced from 2-3 weeks to on average a day. This a significant reduction in time and
one that should make an impact to the throughput of the datasets from the manual segmentation experts, and
particularly for those datasets of cells at the same stage in mitosis. This is the first investigative work into
segmentation of the nuclear envelope so these are excellent results. Furthermore, a comparison to the best state
of the art software also shows that the results achieved are a considerable improvement upon those currently
possible from other existing methods.

What makes this significant reduction possible is the use of many simple image processing techniques to create
a pipeline that works together from the inside of the nucleus out towards the nuclear envelope. The significant
difference in texture between the cytoplasm and the inside of the nucleus is the key factor to the success of this
work, and further improvements in the ability to identify it will only further the accuracy of the segmentation
process. As we have seen, more complex segmentation techniques based around machine-learning classification
have been successful in recent research, but these are so far unnecessary for this application. The use of these
simple image processing techniques provide many advantages, not least of which is a significant decrease in
algorithm development and execution time.

We have also seen in Chapter 10 that there are many complexities that cause difficulties in the segmentation
process. These problems have difficult solutions, if any at all, that require much more research and time to
find. Many of them stem from the difficulties in segmentation of electron microscopy images as a whole. Again,
however, it is fortunate that they do not significantly impact the overall quality of the 3D reconstruction as they
only affect small sections of nuclear envelope, where segmentation errors can be fixed manually. We can see this
from the 3D reconstruction similarity, without considering manual corrections, in Figures 11.7 and 11.8, which I
think is the best proof of the success of this project.

A general framework for further segmentation algorithms for structures in EM images was presented in Chapter
8. The advantages of such an implementation are to decouple the algorithm from a GUI, something that is in
the pipeline to develop soon, and to enable easy testing and isolation of particular parts of the segmentation
algorithm. It is always beneficial to employ good practises from the start of a project or piece of software.

Development

Having a good intuitive understanding of what different transformations provide really helped to see how they
can be applied in other ways. For instance, the use of a skeleton transformation for reducing the number of seed
points in local regions for finding the nucleus approximation. This gives a significant decrease in the number of
seed points found, with a knock-on effect in terms of computation time. A good intuitive understanding of the
underlying algorithms and techniques always helps to think of ways in which they can be applied outside their
normal uses and applications that you do not find in a textbook.

The dataset upon which the project was based was perhaps underestimated in terms of its complexity. The
temptation when approaching this type of segmentation application is to study the images and segment them
as a human, rather than considering how a computational solution might approach the problem. There is no
doubt that the typical image of a cell obtained through electron microscopy contains a lot of complexities and

112

intricacies, but I think what makes this application particularly difficult is the contrast in complexities at different
levels of computational vision. The images tend to be most complex in the high-level vision range; structures
have complex shapes and interactions with each other, making analysis harder for both human and computer.
However for lower-level vision there is little information as the image is greyscale and furthermore the majority of
the pixels reside in a smaller subset of the 0 to 255 greyscale range for 8-bit images. It is possible that colour
images could immediately give much more descriptive features at a lower level, but that is a restriction of the
electron microscopy technique.

The evaluation of the algorithm’s segmentation of a cell at a different stage of mitosis shows that the nuclear
envelope algorithm developed for the cell at telophase provides a base for further development, but still has some
way to go before being generally applicable to cells at all stages of mitosis. These different stages provide many
more complexities that will definitely require extensive research before they can be solved.

113

13Further Research

13.1 Segmentation of other Sub-cellular Structures

The vision of the end-users at CRUK is to have a general purpose toolkit for the segmentation of all interesting
sub-cellular structures, most of which are introduced in this report. This is important considering their end goal
of defining how the formation of the nuclear envelope is regulated by these other structures, so it is important to
examine and perhaps quantify their interactions with the nuclear envelope.

It is also possible that obtaining segmentations for other structures could increase the accuracy of the seg-
mentation for the nuclear envelope. Take for example the vesicles, of which there are often many within the
cytoplasm and never any inside the nucleus. Given their close spatial clustering, we can imagine using them to
artificially increase the variance within the cytoplasm. A simple way to do this is to draw minimum or maximum
intensity lines joining all vesicles within a certain neighbourhood size. The variance of regions within the image
is the most important feature when carrying out the flood fill algorithm to find an approximation to the nucleus,
and if we could artificially increase the variance outside of the nucleus, whilst retaining the original low variance
inside, it should be possible to obtain a more accurate approximation.

The locating of holes in the nuclear envelope is something that requires a good segmentation of the nuclear
envelope, but also a way of closing the boundary. As previously discussed in Section 10.6 this is not something
that is easy due to complexities of the shape of the nucleus. Being able to reliably close the boundary contours
is also something that becomes a lot more difficult when the nuclear envelope is much less defined, as at earlier
stages in the mitotic process.

A suitable method for segmentation of the endoplasmic reticulum could be a classifier based approach. One
of the difficulties that limits the applicability of the classification approach to segmenting the nuclear envelope
is that of distinguishing the endoplasmic reticulum and the nuclear envelope, as the only information to do so is
their spatial proximity to the nucleus. The segmentation of the nuclear envelope as presented herein provides two
advantages.

• As the nuclear envelope and endoplasmic reticulum have similar features, it can be seen as an automated
process for generating training data for a classifier based approach.

• We already have the segmentation for the nuclear envelope so the classifier does not need to distinguish
between the two structures.

This should allow further research to get close to a fully automated approach to segmenting the endoplasmic
reticulum.

13.2 GUI and Manual Corrections

It was always one of the aims of this project to provide the end-users with a interface such that they can begin
to use the algorithm. Time constraints, and the view that a GUI is not the most important aspect of a research
project mean that this task has been left out of my work. This being said, I do not believe that creating a suitable
GUI would be too time consuming; the algorithm framework operates independently of any front-end application.

114

Using manual corrections of segmentations from the expert users is critical to the quality of the achieved
segmentations and this would become an essential part of the GUI. There are many ways of interacting with the
user for obtaining manual corrections; the most simple would be to use a black or white paint brush of varying
dimensions, painting onto the output of the automated segmentation as it is shown overlaid on the original image.
This could be put in place to modify non-corrupted slices where the segmentation may only need minor tweaks.

For the case where 3D interpolation gives an approximation to a corrupted slice a more intuitive method of
manipulating the segmentation would be to use a skeleton representation. Junctions could be introduced to the
skeleton and vertices moved around in order to make large movements of the segmentation easier, similar to
manipulating a curve in an interactive drawing package.

13.3 Manual Seed Point Input

Another method through which we can be assured to obtain good seed points for both the nucleus and nuclear
envelope flood fill is enabling the end-user to check, correct and add seed points to the sets used. Most of the
hard work of the flood filling to obtain regions would still be automated, and if the seed points found are good
then this step would be short anyway. The trade-off here is increasing the amount of work for the manual user
and hence the segmentation time, but an increase in the quality of the segmentation and the alleviation of some
of the problems encountered in Chapter 10 may offset this.

13.4 Investigation of Nuclear Envelope Characteristics during Mitosis

Throughout the process of mitosis the nuclear envelope breaks down in order for the nucleus to split and the
daughters to form. Given this process, at any given stage of mitosis the nuclear envelope could not be present,
partially reformed or be a complete boundary around the nucleus. Looking at the example of a cell at a different
stage of mitosis in Section 11.6, it is clear that the quality of the segmentation produced by this algorithm is
highly dependent on the completeness of the nuclear envelope.

For the different stages of mitosis some adaptations will need to be made to the algorithm. An increase in the
number of gaps in the nuclear envelope will increase the risk that the texture feature will not be quite descriptive
enough to prevent leakages of the flood fill algorithm into the cytoplasm. This is one of the problems we do see
in Figure 11.9.

It may be possible to offset the downsides of the algorithm when run on images of cells at a different stage
of mitosis by investigating whether cells at these stages have any other features that could aid a phase-specific
segmentation. Manual input from the user of approximately which stage of mitosis the cell is at may therefore
improve further segmentations and versions of this algorithm.

13.5 Quantifying Nuclear Envelope Characteristics

After the segmentations produced by the algorithm have been corrected by the end-user, statistics could be
developed to quantify certain characteristics of the nuclear envelope. Simple characteristics such as thickness
and area come to mind, but others such as curvature and elongatedness may be useful but slightly more difficult
to compute. Characteristics tailored towards the investigation of the Cell Biophysics group at CRUK are also
possible, perhaps including the number of gaps in the nuclear envelope, or their average size.

If a good segmentation of other structures within the cell is also developed then further characteristics of both
those structures and how all the structures interact could prove useful for their research. An example of such a
statistic could be the distribution of distance of vesicles from the nucleus. If the locations of the vesicles and the
nuclear envelope are known, then a distance map technique could be used to find the distance from vesicles to
their nearest point on the nuclear envelope. How these distances are distributed may provide further insight into
the regulation of the nuclear envelope formation.

115

13.6 GPU Computation

Nearly all the different steps in this algorithm can be parallelised to the point that the overheads of such paral-
lelisation and marshalling are negligible with respect to runtime; there are enough slices such that there would
always be work to be done. An extension of the normal multi-threaded Java code shown in Section 7.3 is to utilise
the massive capabilities of GPUs, where image filtering and processing methods are very natural and fast. The
computers available to the end-users have powerful graphics cards, so the speed up may be quite considerable
given that no use is currently made of the GPU processing abilities.

Interfacing with GPUs from Java is not something that is naturally within its capabilities, but it is possible
and some tutorials and guidelines exist online to aid development in this paradigm. I do think this would be a very
worthwhile investment of time purely for the potential runtime savings, regardless of any changes in the overall
algorithm.

13.7 An Uncertainty Measure from 3D Consistency

The manual correction process could be made more efficient by drawing the user’s eye to areas in the results
where we are not sure of the segmentation quality. A simple way of defining this would be to build upon the idea
of support from neighbouring slices as used in the 3D consistency steps in the algorithm.

Again taking the minimal movement assumption, we could build an evidence map for a particular slice based
upon the locations of the segmentations in its neighbouring slices. Comparing this to the particular slice’s
segmentation would highlight areas where:

• Sections of nuclear envelope are missing, possibly because they have been pruned erroneously (Section 10.5)
or chunks are missing due to well defined perinuclear gaps (Section 10.3).

• Structures that are not the nuclear envelope are segmented as such, for example when structures fail to be
pruned because of gaps in the nuclear envelope (Section 10.6).

If the aim of the manual corrections is to produce a globally correct shape, and small errors in the nuclear
envelope segmentation are negligible, then identifying these areas through uncertainty maps in a user interface
would be a useful feature. Furthermore, an uncertainty metric could be produced for each slice as a whole by
summing values in the uncertainty map. This could guide the user to particularly poorly segmented slices to focus
their attention.

116

Bibliography

[1] C. Peddie, in discussion.

[2] L. Collinson, in discussion.

[3] B. Larijani, in discussion.

[4] D. Rueckert, in discussion.

[5] L. Pizarro, in discussion.

[6] Fast Marching Methods: A boundary value formulation. http://math.berkeley.edu/~sethian/2006/

Explanations/fast_marching_explain.html.

[7] ImageJ Documentation Wiki. http://imagejdocu.tudor.lu/.

[8] Spatial Filters - Gaussian Smoothing. http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm.

[9] Superpixel: Empirical Studies and Applications. http://ttic.uchicago.edu/~xren/research/

superpixel/.

[10] The Cell Cycle & Mitosis Tutorial. http://www.biology.arizona.edu/cell_bio/tutorials/cell_

cycle/cells3.html.

[11] M. D. Abramoff, P. J. Magelhaes, and S. J. Ram. Image processing with ImageJ. Biophotonics Int, 11(7):36–
42, 2004.

[12] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. SLIC Superpixels. Technical Report
149300, EPFL, June 2010.

[13] B. Andres, U. Köthe, M. Helmstaedter, W. Denk, and F. A. Hamprecht. Segmentation of SBFSEM Volume
Data of Neural Tissue by Hierarchical Classification. In Proceedings of the 30th DAGM symposium on
Pattern Recognition, pages 142–152, Berlin, Heidelberg, 2008. Springer-Verlag.

[14] I. Arganda-Carreras. AnalyzeSkeleton [ImageJ Documentation Wiki]. http://imagejdocu.tudor.lu/

doku.php?id=plugin:analysis:analyzeskeleton:start.

[15] I. Arganda-Carreras. Skeletonize3D [ImageJ Documentation Wiki]. http://imagejdocu.tudor.lu/doku.
php?id=plugin:morphology:skeletonize3d:start.

[16] J. E. Cabrera. Gray Level Correlation Matrix Texture Analyzer. http://rsbweb.nih.gov/ij/plugins/

download/GLCM_Texture.java.

[17] A. Criminisi, J. Shotton, and E. Konukoglu. Decision Forests for Classifcation, Regression, Density Estima-
tion, Manifold Learning and Semi-Supervised Learning. Technical Report TR-2011-114, Microsoft Research,
October 2011.

117

http://math.berkeley.edu/~sethian/2006/Explanations/fast_marching_explain.html
http://math.berkeley.edu/~sethian/2006/Explanations/fast_marching_explain.html
http://imagejdocu.tudor.lu/
http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm
http://ttic.uchicago.edu/~xren/research/superpixel/
http://ttic.uchicago.edu/~xren/research/superpixel/
http://www.biology.arizona.edu/cell_bio/tutorials/cell_cycle/cells3.html
http://www.biology.arizona.edu/cell_bio/tutorials/cell_cycle/cells3.html
http://imagejdocu.tudor.lu/doku.php?id=plugin:analysis:analyzeskeleton:start
http://imagejdocu.tudor.lu/doku.php?id=plugin:analysis:analyzeskeleton:start
http://imagejdocu.tudor.lu/doku.php?id=plugin:morphology:skeletonize3d:start
http://imagejdocu.tudor.lu/doku.php?id=plugin:morphology:skeletonize3d:start
http://rsbweb.nih.gov/ij/plugins/download/GLCM_Texture.java
http://rsbweb.nih.gov/ij/plugins/download/GLCM_Texture.java

[18] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In CVPR, pages 886–893,
2005.

[19] P. Dollár, Z. Tu, and S. Belongie. Supervised Learning of Edges and Object Boundaries. In Proceedings
of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2,
CVPR ’06, pages 1964–1971, Washington, DC, USA, 2006. IEEE Computer Society.

[20] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient Graph-Based Image Segmentation. Int. J. Comput.
Vision, 59:167–181, September 2004.

[21] E. Frise. Level Sets - Fiji. http://fiji.sc/wiki/index.php/Level_Sets.

[22] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA data mining
software: an update. SIGKDD Explor. Newsl., 11(1):10–18, November 2009.

[23] R. Jain, R. Kasturi, and B. G. Schunck. Machine Vision. McGraw-Hill, 1995.

[24] V. Jain, B. Bollmann, M. Richardson, D. R. Berger, M. N. Helmstaedter, K. L. Briggman, W. Denk, J. B.
Bowden, J. M. Mendenhall, W. C. Abraham, K. M. Harris, N. Kasthuri, K. J. Hayworth, R. Schalek, J. C.
Tapia, J. W. Lichtman, and H. S. Seung. Boundary Learning by Optimization with Topological Constraints.

[25] V. Jain, S. Seung, and S. C. Turaga. Machines That Learn to Segment Images: a Crucial Technology for
Connectomics. Current Opinion In Neurobiology., 10:1–14, 2010.

[26] V. Jain, S. C. Turaga, K. Briggman, M. N. Helmstaedter, W. Denk, and H. S. Seung. Learning to Agglomerate
Superpixel Hierarchies. In J. Shawe-Taylor, R. S. Zemel, P. Bartlett, F. C. N. Pereira, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 24, pages 648–656. 2011.

[27] I. Kononenko and M. Kukar. Machine Learning and Data Mining: Introduction to Principles and Algorithms.
Horwood Publishing, 2007.

[28] A. Kreshuk, C. N. Straehle, C. Sommer, U. Köthe, G. Knott, and F. A. Hamprecht. Automated segmentation
of synapses in 3D EM data. In ISBI, pages 220–223. IEEE, 2011.

[29] B. Larijani and D. L. Poccia. Nuclear envelope formation: mind the gaps. Annu. Rev. Biophys., 38:107–24,
2009.

[30] M. Longair. ”Find Connected Regions” ImageJ Plugin. http://www.longair.net/edinburgh/imagej/

find-connected-regions/.

[31] A. Lucchi, Y. Li, X. Boix, K. Smith, and P. Fua. Are Spatial and Global Constraints Really Necessary for
Segmentation?

[32] A. Lucchi, K. Smith, R. Achanta, G. Knott, and P. Fua. Supervoxel-Based Segmentation of Mitochondria
in EM Image Stacks with Learned Shape Features. IEEE Transactions on Medical Imaging, 30(11), 2011.

[33] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A Database of Human Segmented Natural Images and its
Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In Proc. 8th Int’l
Conf. Computer Vision, volume 2, pages 416–423, July 2001.

[34] B. R. Masters. History of the Electron Microscope in Cell Biology. In Encyclopedia of Life Sciences (ELS).
John Wiley & Sons, Ltd: Chichester, March 2009.

[35] E. Meijering. FeatureJ: A Java Package for Image Feature Extraction. http://imagescience.org/

meijering/software/featurej/.

[36] M. Nixon and A. Aguado. Feature Extraction and Image Processing. Newnes, 2002.

118

http://fiji.sc/wiki/index.php/Level_Sets
http://www.longair.net/edinburgh/imagej/find-connected-regions/
http://www.longair.net/edinburgh/imagej/find-connected-regions/
http://imagescience.org/meijering/software/featurej/
http://imagescience.org/meijering/software/featurej/

[37] M. Petrou and P. G. Sevilla. Image Processing: Dealing with Texture. Wiley, 2006.

[38] W. M. Rand. Objective Criteria for the Evaluation of Clustering Methods. Journal of the American Statistical
Association, 66(336):846–850, 1971.

[39] J. Schindelin. Fiji is just imagej (batteries included). ImageJ User and Developer Conference, 2008.

[40] B. Schmid. ImageJ 3D Viewer. http://rsbweb.nih.gov/ij/plugins/3d-viewer/.

[41] J. Shi and J. Malik. Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22:888–905, 1997.

[42] J. Shi, D. Martin, C. Fowlkes, and E. Sharon. Tutorial: Graph Based Image Segmentation. http://www.

cis.upenn.edu/~jshi/GraphTutorial/Tutorial-ImageSegmentationGraph-cut1-Shi.pdf.

[43] K. Smith, A. Carleton, and V. Lepetit. Fast Ray Features for Learning Irregular Shapes. In 2009 IEEE 12th
International Conference on Computer Vision (ICCV), IEEE International Conference on Computer Vision,
pages 397–404, 2009.

[44] C. Sommer, C. Straehle, U. Koethe, and F. A. Hamprecht. ilastik: Interactive Learning and Segmentation
Toolkit. In 8th IEEE International Symposium on Biomedical Imaging (ISBI 2011), 2011.

[45] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis and Machine Vision. Thomson Learning,
3rd edition, 2008.

[46] P. Thvenaz. Image Differentials. http://bigwww.epfl.ch/thevenaz/differentials/.

[47] S. Turaga, K. Briggman, M. Helmstaedter, W. Denk, and S. Seung. Maximin affinity learning of image
segmentation. In Advances in Neural Information Processing Systems 22, pages 1865–1873. 2009.

[48] L. Vincent and P. Soille. Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simu-
lations. IEEE Trans. Pattern Anal. Mach. Intell., 13:583–598, June 1991.

[49] J. Walter. FFT Filter. http://rsbweb.nih.gov/ij/plugins/fft-filter.html.

[50] A. Weston, H. Armer, and L. Collinson. Towards native-state imaging in biological context in the electron
microscope. J Chem Biol, 2009.

[51] Guang-Zhong Yang. 13. Image Registration. Computer Vision Course Lecture Notes, Department of Com-
puting, Imperial College London.

[52] Guang-Zhong Yang. 4. Region Based Segmentation. Computer Vision Course Lecture Notes, Department
of Computing, Imperial College London.

[53] Guang-Zhong Yang. 5. Colour and Texture. Computer Vision Course Lecture Notes, Department of Com-
puting, Imperial College London.

119

http://rsbweb.nih.gov/ij/plugins/3d-viewer/
http://www.cis.upenn.edu/~jshi/GraphTutorial/Tutorial-ImageSegmentationGraph-cut1-Shi.pdf
http://www.cis.upenn.edu/~jshi/GraphTutorial/Tutorial-ImageSegmentationGraph-cut1-Shi.pdf
http://bigwww.epfl.ch/thevenaz/differentials/
http://rsbweb.nih.gov/ij/plugins/fft-filter.html

AImplementation

A.1 AlgorithmInstance Class Definition

package segmentation.algorithms;

import ...;

public abstract class AlgorithmInstance

implements Comparable <AlgorithmInstance >

{

public ImagePlus originalImage;

public ImagePlus scaledImage;

public double scaleFactor;

public int sliceNumber;

public String imageID;

public String srcLocation;

public String saveLocation;

public String tempDir;

protected String tempLocation;

public boolean noisy = false;

public AlgorithmInstance(int sliceNumber , String imageID , String

tempDir , double scaleFactor , String srcLocation)

{ ... }

public abstract void serialise ();

public abstract void unserialise(int flags);

public int compareTo(AlgorithmInstance instance)

{

if (this.sliceNumber == instance.sliceNumber)

{

return 0;

}

else if (this.sliceNumber < instance.sliceNumber)

{

return -1;

}

return 1;

}

}

Listing A.1: Class definition of AlgorithmInstance

120

A.2 Algorithm Class Definition

package segmentation.algorithms;

import ...;

public abstract class Algorithm <I extends AlgorithmInstance >

{

private ArrayList <AlgorithmProcess > processes;

private List <I> instances;

private ArrayList <ProgressListener > progressListeners;

private ArrayList <MessageListener > messageListeners;

private ArrayList <StatusListener > statusListeners;

public Algorithm () {...}

protected abstract void setup ();

protected void addInstance(I instance)

{

instances.add(instance);

}

protected void addProcessingStep(AlgorithmProcess process)

{

processes.add(process);

}

public void run() throws AlgorithmProcessException

{

// Setup

setup();

for (final AlgorithmProcess process: processes)

{

// Unserialise just the images we need at this stage

for (I instance: instances)

{

instance.unserialise(process.requiredImages ());

}

if (process instanceof AlgorithmStep <?>)

{

...

}

else if (process instanceof AlgorithmFilter <?>)

{

...

}

// And serialise all the instances

121

for (I instance: instances)

{

instance.serialise ();

}

}

}

public void registerProgressListener(ProgressListener listener){...

public void registerMessageListener(MessageListener listener){...

public void registerStatusListener(StatusListener listener){...

}

Listing A.2: Class definition of AlgorithmInstance

122

BAlgorithm

B.1 Seed Points for Neighbours of 0049

(a) Seed points for slice 0046 (b) Seed points for slice 0047

(c) Seed points for slice 0048 (d) Seed points for slice 0050

(e) Seed points for slice 0051 (f) Seed points for slice 0052

Figure B.1: Seed point support from slices surrounding number 0049.

123

B.2 Nucleus Approximations for Neighbours of 0064

(a) Nucleus approximation of slice 0062 (b) Nucleus approximation of slice 0063

(c) Nucleus approximation of slice 0065 (d) Nucleus approximation of slice 0066

Figure B.2: Support from neighbours of 0064 for 3D consistency of the nucleus approximation.

124

CEvaluation

C.1 Error Metrics and Scoring Results

Image Pixel Error Jaccard Index Rand Index Dr. Peddie Dr. Collinson
0000 0.0195 0.506 0.1519 7 9
0002 0.01705 0.5043 0.2607 8 9
0004 0.02168 0.5121 0.2145 9 9
0006 0.02408 0.4575 0.1563 6 9
0008 0.0441 0.2602 0.2373 2 2
0010 0.01762 0.5369 0.1255 10 8
0012 0.02131 0.4114 0.2297 7 7
0014 0.01994 0.4917 0.1247 8 9
0016 0.01772 0.5174 0.3319 6 8
0018 0.02108 0.5080 0.1741 7 8
0020 0.02041 0.5245 0.3904 6 7
0022 0.01352 0.5645 0.1725 10 9
0024 0.01879 0.5446 0.1628 5 7
0028 0.0231 0.4692 0.2176 5 8
0030 0.02623 0.4774 0.2667 6 7
0032 0.02698 0.4165 0.194 6 7
0034 0.02365 0.3976 0.2398 9 9
0036 0.02175 0.4423 0.2729 9 9
0040 0.02273 0.371 0.3043 6 7
0042 0.02289 0.3771 0.2834 8 6
0044 0.01812 0.4277 0.3617 8 8
0046 0.01965 0.4345 0.4683 6 7
0048 0.01593 0.481 0.367 5 6
0050 0.01647 0.5446 0.3453 6 7
0052 0.01667 0.508 0.4289 5 8
0054 0.01475 0.566 0.356 4 6
0056 0.02065 0.4536 0.2793 1 3
0058 0.02165 0.4371 0.2663 2 5
0060 0.01872 0.4466 0.3871 3 4
0062 0.01524 0.5095 0.229 3 7
0064 0.01332 0.4954 0.4016 3 6
0066 0.01181 0.4829 0.4065 1 0
0068 0.01539 0.5025 0.1699 5 8
0072 0.01443 0.5373 0.3308 4 7
0074 0.01229 0.5544 0.4806 2 4
0076 0.01654 0.5319 0.21 3 7
0078 0.01587 0.5258 0.3197 5 7

125

C.2 Ilastik Segmentations

(a) Slice 0010 (b) Slice 0018

(c) Slice 0028 (d) Slice 0046

(e) Slice 0062 (f) Slice 0074

Figure C.1: Ilastik segmentations

126

DResults

Figure D.1: Slice 0000

Figure D.2: Slice 0014

127

Figure D.3: Slice 0022

Figure D.4: Slice 0030

Figure D.5: Slice 0042

128

Figure D.6: Slice 0051

Figure D.7: Slice 0064

Figure D.8: Slice 0075

129

	Introduction
	Contributions
	Collaboration

	Background: Cell Biology
	Sub-cellular Structures of Interest Observable with EM
	Mitosis
	Electron Microscopy

	Background: Computer Vision
	Image-processing Techniques
	Segmentation Algorithms
	Segmentation Quality Metrics
	Feature Extraction
	Machine Learning Techniques
	Summary

	Background: State of The Art
	Ilastik: A State of the Art Segmentation Tool
	Sub-cellular Segmentation
	Neuronal Segmentation

	Background: Dataset
	Sample Slices and Manual Segmentations
	3D Reconstruction
	3D Structures in 2D Slices
	Noise Affected and Corrupted Images
	Blurring of the Nuclear Envelope

	Algorithm
	Identifying Nucleus Seed Points
	3D Consistency of Nucleus Seed Points
	Obtaining an Approximation to the Nucleus
	3D Consistency of the Nucleus Approximation
	Finding Seed Points on the Nuclear Envelope
	Obtaining an Approximation to the Nuclear Envelope
	Pruning Connecting Structures
	Manual Corrections
	3D Interpolation of Corrupted Slices
	3D Reconstruction

	Background: Implementation
	ImageJ and FIJI
	Algorithm Framework
	Multi-threaded code in Java

	Algorithm Implementation
	As an Instance of the Algorithm Framework
	Identifying Nucleus Seed Points
	3D Consistency of Nucleus Seed Points
	Filtering Nucleus Seed Points
	Finding the Nucleus
	3D Consistency of the Nucleus Approximation
	Obtaining an Approximation to the Nuclear Envelope
	Pruning Connected Structures
	3D Interpolation of Corrupted Slices

	Algorithm Discussion
	Machine-learning Based Algorithm
	Expanding the Nucleus into the Nuclear Envelope
	Edge-based vs. Region-based segmentation
	Algorithm Framework

	Problems
	Disconnected Nucleus Sections
	Nuclear Pores
	Perinuclear Space
	Small Gaps in the Nuclear Envelope
	Pruning Sections of Nuclear Envelope
	Failure to Prune Connected Structures

	Evaluation
	Comparison to Sample Trained with Ilastik
	Segmentation Quality Metrics
	End-user Scoring
	End-user Feedback
	3D Reconstruction Similarity
	Segmentation at an Earlier Stage of Mitosis

	Conclusion
	Further Research
	Segmentation of other Sub-cellular Structures
	GUI and Manual Corrections
	Manual Seed Point Input
	Investigation of Nuclear Envelope Characteristics during Mitosis
	Quantifying Nuclear Envelope Characteristics
	GPU Computation
	An Uncertainty Measure from 3D Consistency

	Appendix Implementation
	AlgorithmInstance Class Definition
	Algorithm Class Definition

	Appendix Algorithm
	Seed Points for Neighbours of 0049
	Nucleus Approximations for Neighbours of 0064

	Appendix Evaluation
	Error Metrics and Scoring Results
	Ilastik Segmentations

	Appendix Results

