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Abstract

Navigation entails the continuous tracking of the user’s position and his
surroundings for the purpose of dynamically planning and following a route
to the user’s intended destination. The Global Positioning System (GPS)
made the task of navigating outdoors relatively straightforward, but due to
the lack of signal reception inside buildings, navigating indoors has become
a very challenging task. However, increasing smartphone capabilities have
now given rise to a variety of new techniques that can be harnessed to solve
this problem of indoor navigation.

In this report, we propose a navigation system for smartphones capable
of guiding users accurately to their destinations in an unfamiliar indoor en-
vironment, without requiring any expensive alterations to the infrastructure
or any prior knowledge of the site’s layout.

We begin by introducing a novel optical method to represent data in
the form of markers that we designed and developed with the sole purpose
of obtaining the user’s position and orientation. Our application incorpo-
rates the scanning of these custom-made markers using various computer
vision techniques such as the Hough transform and the Canny edge detec-
tion. In between the scanning of these position markers, our application uses
dead reckoning to continuously calculate and track the user’s movements.
We achieved this by developing a robust step detection algorithm, which
processes the inertial measurements obtained from the smartphone’s motion
and rotation sensors. Then we programmed a real-time obstacle detector us-
ing the smartphone camera in an attempt to identify all the boundary edges
ahead and to the side of the user. Finally, we combined these three com-
ponents together in order to compute and display easy-to-follow navigation
hints so that our application can effectively direct the user to their desired
destination.

Extensive testing of our prototype in the Imperial College library revealed
that, on most attempts, users were successfully navigated to their destina-
tions within an average error margin of 2.1m.
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Chapter 1

Introduction

Navigation is the process of accurately establishing the user’s position and
then displaying directions to guide them through feasible paths to their de-
sired destination. The Global Positioning System (GPS) is the most common
and the most utilised satellite navigation system. Almost every aircraft and
ship in the world employs some form of GPS technology. In the past few
years, smartphones have evolved to contain a GPS unit, and this has given
rise to location-based mobile applications such as geofencing and automo-
tive navigation for the common user. However, GPS has its limitations. In
particular we are concerned with the lack of GPS signal reception in indoor
environments. GPS satellites fail to deliver a signal to a device if there is
a direct obstruction on its path. Therefore we have to consider alternate
methods of achieving indoor navigation on a smartphone.

1.1 Motivation

Our motivation for this project stems from the fact that people are increas-
ingly relying upon their smartphones to solve some of their common daily
problems. One such problem that smartphones have not yet completely
solved is indoor navigation. At the time of writing, there is not a single low-
cost scalable mobile phone solution available in the market that successfully
navigated a user from one position to another indoors.

An indoor navigation app would certainly benefit users who are unfamil-
iar with a place. Tourists, for instance, would have a better experience if
they could navigate confidently inside a tourist attraction without any as-
sistance. In places such as museums and art galleries, the application could
be extended to plan for the most optimal or ‘popular’ routes. Such a system
could also be integrated at airports to navigate passengers to their boarding
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gates. Similarly an indoor navigation system could also benefit local users
who have previously visited the location but are still unaware of the where-
abouts of some of the desired items. These include supermarkets, libraries
and shopping malls. The application could also benefit clients who install the
system by learning user behaviours and targeting advertisements at specific
locations.

1.2 Objectives

The objective of this project was to build a robust and flexible smartphone
based indoor navigation system that met the following four criteria:

• High accuracy: The application should consistently guide users to their
destinations within a reasonable distance.

• Low-cost: The application should not require any expensive infrastruc-
tural changes to obtain accurate positioning data. Clients will not be
interested in large investments unless they financially benefit from it.
Future maintenance costs on these equipment may further deter the
choice of this solution.

• No pre-loaded indoor maps: The application should be able to navigate
the user without requiring a pre-loaded map of the environment. Plot-
ting the layout of a site is cumbersome and can diminish the flexibility
of a solution. Only the position of the items/point of interests may be
stored with respect to a site’s frame of reference.

• Intuitive user interface (UI): The application should have an easy-to-use
UI that displays navigation hints correctly based on the user’s current
state. The application should also take into account the obstacles sur-
rounding the user to avoid displaying any incorrect hints. For instance,
it should not tell users to go straight if there is an obstacle immediately
ahead of them.

From our research we realised that various smartphone based solutions
exist that accurately determine a user’s current position. Some of them
require no additional infrastructural changes while some even display navi-
gation hints to the user. However none of these solutions integrate all the
desired aspects of an indoor navigation system to meet the four criteria men-
tioned above.
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1.3 Contributions

In this report we present an indoor navigation system for smartphones, which
uses a combination of computer vision based techniques and inertial sensors
to accurately guide users to their desired destinations. Our solution entails
the scanning of custom-made markers in order to calibrate the user’s position
during navigation. Then it employs a dead reckoning algorithm to approx-
imate user movements from the last known point. Finally our application
uses this information along with an integrated vision based obstacle detector
to display correct directions in real-time leading to the user’s destination.

Our indoor navigation solution required the study and development of
three individual components prior to their integration:

1. Position markers: These are custom markers that our application is ca-
pable of scanning from any angle using the smartphone camera. Colour
is used to encode position data along with a direction indicator to ob-
tain the angle of scanning. These markers were used to calibrate the
user’s position and orientation. OpenCV functions were used to detect
circles and other features from the camera preview frames to decode
these markers.

2. Obstacle detection: Our application detects obstacles in the environ-
ment in real-time using the smartphone camera. The purpose of this
task was to avoid giving users directions towards a non-feasible path.
The Hough line transform was primarily used for detecting all the
boundary edges from the incoming preview frames.

3. Dead reckoning: Our application uses inertial dead reckoning to esti-
mate the position and orientation of the user from the last scanned
position marker. This enabled the application to always keep track of
the user’s position and also notify them if they reach their destination.
To achieve this, the accelerometer signal was first pre-processed to re-
duce noise and then analysed for step detection. This was combined
with the device’s orientation to develop our algorithm.

The final application features the integration of these three components,
as shown in figure 1.1, in order to calculate and correctly navigate the user
to the next best position that would eventually lead them to their desired
destination. Results from our evaluation demonstrated that our end product
achieved just over 2m accuracy with the help of only eight position markers
over a testing area of 25mx15m. In addition, we did not have to provide our
application with an indoor map of the site.
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Figure 1.1: The image shows how all the main components integrate to
make the final indoor navigation system

1.4 Report outline

Our entire report is structured on the basis of the three individual compo-
nents mentioned in section 1.3 and their integration. Chapter 2 describes
some of the related work in this domain and provides a technical background
analysis of the various concepts required to achieve our solution. Chap-
ters 3, 4 and 5 provide an in-depth explanation of our implementation for
the position markers, our vision based obstacle detection mechanism and our
dead reckoning algorithm respectively. Chapter 6 describes our approach to
integrating these three components together as well as gives an overview of
the entire system. Chapter 7 evaluates each of the individual components
separately and then follows it up with a quantitative and qualitative analysis
of the final product.
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Chapter 2

Background

In this chapter, we begin by giving a brief overview on our choice of smart-
phone platform. Then we discuss some of the existing state-of-the-art re-
search carried out in the domain of indoor navigation. We also assess why
none of the current proposals meet our objective criteria. After that, we study
various computer vision concepts that will be relevant across this entire re-
port. Finally, we assess individually some of the related work conducted for
the three components mentioned in section 1.3.

2.1 Smartphone development overview

We chose to develop the application on the Android platform due to the
increasing number of Android users across the globe, the strong online com-
munity and fewer developer restrictions. In addition we also had previous
programming experience on Android, and therefore we were familiar with
most of their APIs. The prototype for our proposed solution would be devel-
oped and tested on the Samsung Galaxy S4. The smartphone’s 13-megapixel
camera and its two quad-core central processing units (CPU) further en-
hanced the performance of our application.

Sensors would also be crucial for our application. Most Android-powered
devices have built-in sensors that measure the motion and the orientation
of the device. In particular, we analysed the raw data retrieved from the
accelerometer and the rotation vector. The accelerometer gives us a measure
of the acceleration force in m/s2 applied to the device on all the three physical
axes (x, y, z). The rotation vector fuses the accelerometer, magnetic field and
gyroscope sensors to calculate the degree of rotation on all the three physical
axes (x, y, z)[10].
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2.2 Related work

In the past few years, a great amount of interest has been shown to develop
indoor navigation systems for the common user. Researchers have explored
possibilities of indoor positioning systems that use Wi-Fi signal intensities
to determine the subjects position[14][4]. Other wireless technologies, such
as bluetooth[14], ultra-wideband (UWB)[9] and radio-frequency identifica-
tion (RFID)[31], have also been proposed. Another innovative approach uses
geo-magnetism to create magnetic fingerprints to track position from distur-
bances of the Earths magnetic field caused by structural steel elements in the
building[7]. Although some of these techniques have achieved fairly accurate
results, they are either highly dependent on fixed-position beacons or have
been unsuccessful in porting the implementation to a ubiquitous hand-held
device.

Many have approached the problem of indoor localisation by means of
inertial sensors. A foot-mounted unit has recently been developed to track
the movement of a pedestrian[35]. Some have also exploited the smart-
phone accelerometer and gyroscope to build a reliable indoor positioning
system. Last year, researchers at Microsoft claim they have achieved metre-
level positioning accuracy on a smartphone device without any infrastructure
assistance[17]. However, this system relies upon a pre-loaded indoor floor
map and does not yet support any navigation.

An altogether different approach applies vision. In robotics, simultaneous
localisation and mapping (SLAM) is used by robots to navigate in unknown
environments[8]. In 2011, a thesis considered the SLAM problem using in-
ertial sensors and a monocular camera[32]. It also looked at calibrating an
optical see-through head mounted display with augmented reality to overlay
visual information. Recently, a smartphone-based navigation system was de-
veloped for wheelchair users and pedestrians using a vision concept known
as ego-motion[19]. Ego-motion estimates a cameras motion by calculating
the displacement in pixels between two image frames. Besides providing the
application with an indoor map of the location, the method works well under
the assumption that the environment has plenty of distinct features.

Localisation using markers have also been proposed. One such technique
uses QR codes1 to determine the current location of the user[13]. There is
also a smartphone solution, which scans square fiducial markers in real time
to establish the user’s position and orientation for indoor positioning[24].
Some have even looked at efficient methods to assign markers to locations
for effective navigation[6]. Although, scanning markers provide high precision

1www.qrcode.com
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positioning information, none of the existing techniques have exploited the
idea for navigation.

Finally, we also looked at existing commercial indoor navigation systems
available on the smartphone. Aisle411 (aisle411.com) provided a scalable
indoor location and commerce platform for retailers, but only displayed in-
door store maps of where items were located to the users without any sort
of navigation hints. The American Museum of Natural History also released
a mobile app (amnh.org/apps/explorer) for visitors to act as their personal
tour guide. Although, the application provides the user with turn-by-turn
directions, it uses expensive Cisco mobility services engines to triangulate
the device’s position.

2.3 Computer vision

Computer vision is the study of concepts behind computer-based recognition
as well as acquiring images and extracting key features from them. Our
application heavily relies on some of these concepts. In particular, we are
concerned with shape identification, edge detection, noise reduction, motion
analysis and colour.

2.3.1 Hough Transform

The Hough transform is used to detect curves such as lines, circles, ellipses,
etc. in an image. The idea behind Hough line transform is that every point
in a binary image is treated as a point on a line that we are trying to detect.
Therefore, it models all the different line equations that pass through that
point and finds the line equation that has the most number of binary points.

Hough line transform

An equation of a line expressed in the Cartesian system looks as follows.

y = mx+ c

In the polar coordinate system, we use the parameters r and θ to write
the line equation as follows.

r = xcos(θ) + ysin(θ)

Then for every non-zero pixel in the binary image, we model all the possible
line equations that pass through that point between r > 0 and 0 ≤ θ ≤ 2

A simple mathematical calculation of how a Hough line transform finds
the equation of a detected line is given in Appendix A.
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Hough circle transform

The Hough circle transform is similar to the Hough transform for detect-
ing straight lines. An equation of a circle is characterised by the following
equation.

(x− xc)2 + (y − yc)2 = r2

In order to detect circles in a given image, the centre coordinate (xc, yc) of
the circle and its radius r have to be identified. As three different parameters,
xc, yc and r, are modelled, the graph would have 3-dimensions. Each non-
zero pixel in the binary image will produce a conical surface as shown in
figure 2.12.

Figure 2.1: The image shows a cone formed by modelling all the possible
radius of a circle with the centre point at a 2D coordinate

Once again, this process will be repeated for every non-zero pixel point
and will result in several such cones plotted on the graph. This can con-
veniently be represented in a three-dimensional matrix. When the number
of intersections exceeds a certain threshold, we consider the detected three-
dimensional coordinate as our centre and radius.

2.3.2 Gaussian smoothing

Smoothing is an image processing operation primarily used to reduce noise.
Filters are generally used to smooth (blur) an image. A filter uses a matrix
of coefficients, called the kernel, and neighbouring pixel values to calculate
the new intensity for every pixel in a given image. Amongst many different

2The image is taken from http://www.cis.rit.edu/class/simg782.old/

talkHough/HoughLecCircles.html
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filters, Gaussian filters are perhaps the most useful in our application. They
are typically used to reduce image noise prior to edge detection.

The theory behind Gaussian filters stem from the following two-dimensional
Gaussian function, studied in statistics, where µ is the mean and σ is the
variance for variables x and y.

f(x, y) = Ae
−

(x− µx)2

2µ2
x

+
(y − σy)2

2σ2
y


This formula produces a convolution matrix, called the Gaussian kernel,

with values that decrease as the spatial distance increases from the centre
point. Figure 2.2 can help to visualise the spread of the weights for a given
pixel and its neighbours.

Figure 2.2: The image shows a plot of a two dimensional Gaussian function

When a Gaussian filter is applied to an image, each pixel intensity is
convoluted with the Gaussian kernel and then added together to output the
new filtered value for that pixel. This filter can be applied with different
kernel sizes resulting in different levels of blurring. The larger the kernel
size, the more influence the neighbouring pixels will have on the final image.

2.3.3 Canny edge detection

To detect edges, the intensity gradient of each pixel is examined to see if
an edge passes through it or close to it. The most “optimal” edge detection
technique was developed by John Canny in 1986[5]. The algorithm consists
of four key stages.

1. Noise reduction - The Canny edge detector is highly sensitive to
noisy environments. Therefore, a Gaussian filter is initially applied to
the raw image before further processing.
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2. Finding the intensity gradient - To determine the gradient strength
and direction, convolution masks used by edge detection operators such
as Sobel (shown below) are applied to every pixel in the image. This
yields the approximate gradient in the horizontal and vertical direc-
tions.

Gx =

−1 0 1
−2 0 2
−1 0 1

Gy =

 1 2 1
0 0 0
−1 −2 −1


The gradient strength/magnitude can then be calculated using the law
of Pythagoras.

G =
√
G2

x +G2
y

The direction of the edge can also be quickly determined.

θ = tan−1

(
Gy

Gx

)
This angle is then rounded to one of 0◦, 45◦, 90◦or 135◦corresponding
to horizontal, vertical and diagonal edges.

3. Non-maximum suppression - The local maxima from the calculated
gradient magnitudes and directions are preserved whereas the remain-
ing pixels are removed. This has the effect of sharpening blurred edges.

4. Edge tracking using hysteresis thresholding - Double threshold-
ing is used to distinguish between strong, weak and rejected edge pixels.
Pixels are considered to be strong if their gradient lies above the upper
threshold. Similarly, pixels are suppressed if their gradient is below the
lower threshold. The weak edge pixels have intensities between the two
thresholds. The result is a binary image with edges preserved if they
contain either strong pixels or weak pixels connected to strong pixels.

2.3.4 Colour

Colours have been previously used to encode data. Microsoft’s High Capacity
Color Barcode (HCCB) technology encodes data using clusters of coloured
triangles and is capable of decoding them in real-time from a video stream[36].
Although their implementation is very complex, we can use the basic concept
behind HCCB in our application.
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Each distinct colour can be used to represent a certain value. Colours can
be grouped together in a set format to encode a series of values. We have to
take into account that smartphone cameras cannot distinguish between small
variations of a certain colour in non-ideal situations, such as light green or
dark green. Therefore we would be limited on the number of discrete values
we can encode. Colour is typically defined using the “Hue Saturation Value”
(HSV) model or the “Red Green Blue” (RGB) model.

Figure 2.3: The left image shows the HSV model and the right image shows
the RGB model. They both describe the same thing but with different

parameters

The HSV model is more appropriate for the identification and comparison
of colours. The difference in the hue component makes it easier to determine
which range a colour belongs to. For example, the colour red has a hue
component of 0± 15 while green has a hue component of 120± 15.

2.3.5 OpenCV

Open Source Computer Vision (OpenCV) is a library of programming func-
tions for real time computer vision. It is released under a BSD license allowing
us to use many of their optimised algorithms for academic and commercial
purposes[27]. The library is cross-platform and ports to all the major mobile
operating systems. For Android, the OpenCV manager app needs to be in-
stalled on the testing device prior to development. It is an Android service
targeted to manage OpenCV library binaries on end users devices[26].

The library supports the calculation of Hough transforms, Canny edge
detection and optical flow. It also provides various smoothing operations
including Gaussian smoothing, as well as image conversion between RGB,
HSV and grayscale. These algorithms are highly optimised and efficient, but
they only produce real-time performance for low resolution images.
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2.4 Positioning

In order to develop a navigation system, the application needs to be aware
of the user’s position. There are numerous methods available that solve
the indoor positioning problem but we had to only consider those that were
accessible on a smartphone device, and would minimise the number of in-
frastructure changes.

2.4.1 Barcode scanning

Barcodes could be placed in various locations across the building, encoded
with their respective grid coordinates. The smartphone camera could then
be used to take a picture of the barcode and decode the encoded data.

The simplest type of linear barcode is Code 39. To encode a given piece of
data, a Code 39 encoding table is used. It contains the mapping between the
43 accepted symbols and their unique 12-bit binary code where ‘1’ stands for
a black bar and ‘0’ stands for a white space of equivalent width. The same
symbol can be described using another format based on width encoding. So
narrow (N) represents a thinner bar/space (1/0) while wide (W) represents
a broader bar/space (11/00). The barcode encoding for the ‘*’ symbol is
always used as the start and stop character to determine the direction of the
barcode. In addition, a white space is always encoded between the characters
in a barcode.

Users can regularly scan these position barcodes to keep the applica-
tion up to date with the user’s last position. Open-source barcode scan-
ning libraries are available for smartphones and support the scanning of
Code 39 barcodes. ZXing is very popular amongst the Android and iPhone
developers[33]. It has a lot of support online and it is well documented. The
other major advantage of using barcodes is that they are cheap to produce
and can store any type of static data. However, for a navigation application,
directions needed to be provided from the moment a user scans a barcode.
Therefore, we would need to determine the user’s orientation at the point
of scanning. We cannot encode such information in any type of barcode.
Another drawback with using barcode scanning libraries is their integration
with the rest of the application. If our application has to scan barcodes, de-
tect obstacles and provide users with correct directions all at the same time,
we would need to thoroughly understand and modify the barcode scanning
library to be able to extend and integrate it.
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2.4.2 Location fingerprinting

Location fingerprinting is a technique that compares the received signal
strength (RSS) from each wireless access point in the area with a set of
pre-recorded values taken from several locations. The location with the clos-
est match is used to calculate the position of the mobile unit. This technique
is usually broken down in to two phases[36]:

1. Offline sampling - Measuring and storing the signal strength from
different wireless routers at selected locations in the area

2. Online locationing - Collecting signal strength during run time and
using data from the offline samples to determine the location of the
mobile device

With a great deal of calibration, this solution can yield very accurate
results. However, this process is time-consuming and has to be repeated at
every new site.

2.4.3 Triangulation

Location triangulation involves calculating the relative distance of a mobile
device from a base station and using these estimates to triangulate the user’s
position[16]. Distance estimates are made based on the signal strength re-
ceived from each base station. In order to resolve ambiguity, a minimum of
three base stations are required.

In free space, the received signal strength (s) is inversely proportionate
to the square of the distance (d) from the station to the device.

s ∝ 1

d2

Signal strength is affected by numerous factors such as interference from
objects in the environment, walking, multipath propagation3, etc. There-
fore, in non-ideal conditions, different models of path attenuation need to be
considered.

2.4.4 Custom markers

Markers can be designed tailored to meet our application requirements. Be-
sides encoding the position coordinates, they could be extended to encode
fiducial objects that allow the calculation of the user’s orientation at the

3Multipath propagation causes signal to be received from two or more paths
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Figure 2.4: The image shows the trilateration of a device using the signal
strength from three nearby cell towers

point of scanning. We would need to define our own encoding technique as
well as develop a scanning application to decode the marker data. In order
to extract key features and interpret the scanned image, we would need to
apply some of the computer vision concepts mentioned in section 2.3

2.5 Obstacle detection

Our application needs to detect free space around the user in real-time in
order to make a decision on which path (left, right, straight or backwards)
to take in the short-term to reach the destination. For a smartphone imple-
mentation, the camera is the only self-contained technology available that
we can exploit for this purpose.

Depth sensors are commonly used in Robotics[23] to avoid obstructions
but very few have explored the problem using vision. A popular application
of this problem is in road detection to aid autonomous driving. The approach
taken by[30] computes the vanishing point to give a rough indication of the
road geometry. Offline machine learning techniques have also been developed
that use geometrical information to identify the drivable area[2]. However,
the idea behind outdoor free space detection does not work well indoors due
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to the absence of a general geometric pattern and the irregular positioning
of challenging structures.

An interesting approach taken by a group in the 2003 RoboCup involved
avoiding obstacles using colour[12]. Although this is a relatively straight-
forward solution and achieves a fast and accurate response, it restricts the
use of an application to a certain location and is prone to ambiguous er-
rors caused by other similar coloured objects in the environment. Another
impressive piece of work combines three visual cues from a mobile robot to
detect horizontal edges in a corridor to determine whether they belong to a
wall-floor boundary[18]. However, the algorithm fails when strong textures
and patterns are present on the floor.

There has been very little emphasis on solving the problem on a smart-
phone mainly due to the high computational requirements. There is neverthe-
less one mobile application tailored for the visually impaired that combines
colour histograms, edge cues and pixel-depth relationship but works with the
assumption that the floor is defined as a clear region without any similarities
present in the surrounding environment[29].

There is currently a vast amount of research being conducted in this area.
However, our focus was driven towards building a navigation system and not
a well-defined free space detector. Therefore, for our application, we have
adopted some of the vision concepts mentioned in literature such as boundary
detection.

2.6 Dead reckoning

Given the initial position, our application needs to be aware of the user’s
displacement and direction to be able to navigate them to their destination.
This process is known as dead reckoning. On a smartphone, there are two
possible ways to accomplish this task without being dependent on additional
hardware components.

2.6.1 Inertial sensors

The accelerometer sensor provides a measure of the acceleration force on all
the three physical axes (x, y, z). Double integration of this acceleration data
yields displacement as follows

vf = vi + a · t

d = vf · t− 0.5 · a · t2
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However, due to the random fluctuations in the sensor readings, it is not
yet possible to get an accurate measure of displacement even with filtering4.
Nevertheless, the accelerometer data can be analysed to detect the number
of footsteps. In that case, a rough estimate of the distance travelled can be
made, provided the user’s stride length is known. Furthermore, the orienta-
tion sensor can be employed simultaneously to determine the direction the
user is facing. Using this information, the new position of the user can be
calculated on each step as follows:

xnew = xold + cos(orientation)× stridelength

ynew = yold + sin(orientation)× stridelength

Inertial positioning systems have been very popular in literature. A dead
reckoning approach using foot-mounted inertial sensors has been developed to
monitor pedestrians accurately using zero velocity corrections[35]. A slightly
different solution uses a combination of inertial sensors and seed nodes, ar-
ranged in a static network, to achieve real-time indoor localisation[15]. A
smartphone-based pedestrian tracking system has also been proposed in in-
door corridor environments with corner detection to correct error drifts[28].
Microsoft also recently developed a reliable step detection technique for in-
door localisation[17] using dynamic time warping (DTW). DTW is an effi-
cient way to measure the similarity between two waveforms. Over 10,000
real step data points were observed offline to define the characteristic of a
‘real’ step. A DTW validation algorithm was then applied to the incoming
accelerometer data to see whether it formed a similar waveform to a ‘real’
step.

There are also several pedometer applications available on Android such
as Accupedo[21] and Runtastic[22] but since we do not have access to their
algorithms, we cannot reproduce the same results. However, we did find an
open source pedometer project[3] which calculated distance from the user’s
step length but their implementation was neither efficient nor accurate.

Signal processing is the underlying principle behind any pedometer al-
gorithm. Data received from the accelerometer forms a signal which would
be needs in real-time to accurately detect user movements. This process
initially involves noise filtering in order to cancel out any random fluctua-
tions that may affect processing later on. Refer to section 2.7 for further
details on digital filters. The next step involves detecting peaks and valleys
from the acceleration waveform that correspond to footsteps. Then heuristic

4/urlhttp://stackoverflow.com/questions/7829097/android-accelerometer-accuracy-
inertial-navigation
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constrains and cross-correlation validations need to be applied to eliminate
erroneous detections.

To calculate the direction of movement, we need to also consider the
orientation of the device. This can be calculated using geo-magnetic field
sensors and gyroscopes. However, we need to also convert this orientation
from the world’s frame of reference to the site’s frame of reference.

2.6.2 Ego-motion

An alternate solution to dead reckoning uses a vision concept known as ego-
motion. It is used to estimate the three-dimensional motion relative to the
static environment from a given sequence of images. Our application can
use the smartphone camera to feed in the live images and process them in
real-time to derive an estimate of the distance travelled.

There has been some interesting work published, in recent times, relat-
ing to the application of ego-motion in the field of navigation. A robust
method for calculating the ego-motion of the vehicle relative to the road has
been developed for the purpose of autonomous driving and assistance[34]. It
also integrates other vision based algorithms for obstacle and lane detection.
Ego-motion has also been employed in robotics. A technique that combines
stereo ego-motion and a fixed orientation sensor has been proposed for long
distance robot navigation[25]. The orientation sensor attempts to reduce the
error growth to a linear complexity as the distance travelled by the robot
increases. However there has not been a great amount of work in this topic
using smartphone technology. The only published work that we came across
proposed a self-contained navigation system for wheelchair users with the
smartphone attached to the armrest[19]. For pedestrians it uses step detec-
tion instead of ego-motion to measure their movement.

Technically, to compute the ego-motion of the camera, we first estimate
the two-dimensional motion taken from two consecutive image frames. This
process is known as the optical flow. We can use this information to extract
motion in the real-world coordinates. There are several methods to estimate
optical flow amongst which the LucasKanade method[20] is widely used.

In our application, the smartphone camera will be used to take a series of
images for feature tracking. This typically involves detecting all the strong
corners in a given image. Then the optical flow will be applied to find these
corners in the next frame. Usually the corner points do not remain in the
same position and a new variable ε has to be introduce, which models all the
points within a certain distance of the corner. The point with the lowest ε is
then regarded as that corner in the second image. Template matching will
then be applied to compare and calculate the relative displacement between
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the set of corners in the two images. This information can be used to roughly
estimate the distance travelled by the user.

2.7 Digital signal filters

Raw sensor data received from smartphone devices contain random varia-
tions caused by interference (noise). In order to retrieve the meaningful
information, digital filters need to be applied to the signal.

A low-pass filter is usually applied to remove high frequencies from a
signal. Similarly, a high-pass filter is used to remove low frequency signals
by attenuating frequencies lower than a cut-off frequency. A band-pass filter
combines a low-pass filter and a high-pass filter to pass signal frequencies
within a given range.

Figure 2.5: The image shows the three types of digital signal filters

Signal data can be analysed in the temporal domain to see the variation in
signal amplitude with time. Alternatively, a signal can be represented in the
frequency-domain to analyse all the frequencies that make up the signal. This
can be useful for filtering certain frequencies of a signal. The transformation
from the time-domain to the frequency-domain is typically obtained using
the discrete Fourier transform (DFT). The fast Fourier transform (FFT) is
an algorithm to compute the DFT and the inverse DFT.
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Chapter 3

Position markers

We decided to develop our own custom markers with the purpose of obtaining
the position of the user. Several of these markers would be placed on the floor
and spread across the site. In particular, they would be situated at all the
entrances and other points of interest such that application can easily identify
them. Upon scanning, the application would start displaying directions from
that position to their destination.

In this chapter, we start by discussing some of the other alternatives we
considered before deciding to use custom markers and detail our reason as
to why we did not choose any of these options. Then we proceed to describe
the design of the marker specifying what data it encodes and how this data
is represented. Then we start explaining our implementation for the smart-
phone scanner. Firstly, we explain how we detect the marker boundary using
the Hough circle transform. Then we describe how the angular shift encoded
in the marker helps us to calculate the orientation of the user. Finally, we
explain the process of extracting the position data from the marker.

3.1 Alternate positioning systems

From our background research, we identified four smartphone-based solu-
tions (triangulation, fingerprinting, barcodes and custom markers) that our
application could have used to determine the position of the user, without
requiring any expensive equipment.

A Wi-Fi based triangulation solution would have enabled our applica-
tion to always keep track of the user’s position without any form of user
interaction, which follows for marker scanning techniques. However, Wi-Fi
signals are susceptible to signal loss due to indoor obstructions, resulting
in an imprecise reading. To overcome this problem, all the different types
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of interference need to be considered along with the position of each access
point. Since every site is structured differently, complex models for signal
attenuation would need to be developed independently. [1] describes some
further problems with triangulation.

The advantages of location fingerprinting are similar to triangulation.
However, to achieve accurate results, fingerprinting requires a great amount
of calibration work. This is a tedious process and would need to be replicated
on every new site. In addition, several people have already raised privacy
concerns for Wi-Fi access points[11].

At first, we strongly considered the option of placing barcodes around
the site encoded with their respective positions. We even tested a few open-
source barcode scanning libraries available on Android. However, we quickly
realised that using an external library would affect its future integration with
other features. Since Android only permits the use of the camera resource
to one single view, we would have been unable to execute the obstacle detec-
tion mechanism simultaneously, unless we developed our own scanner. We
could have also potentially extended the barcode scanning library by further
studying and modifying a considerable amount of their codebase. The other
major drawback with using barcodes was the inability to encode direction
data needed to calibrate our application with the site’s frame of reference.
See section 3.2 for further information on this requirement.

Developing custom markers would give us complete control over the de-
sign of the marker, the scanning and its integration with the rest of the
system. These custom markers would not only be designed to encode posi-
tion data but also the direction. The only drawback would be that it takes a
considerable amount of time to develop a bespoke scanner that gives highly
accurate results. Nevertheless, we decided to take this approach as the ben-
efits outweighed the disadvantages.

3.2 Marker design

For our design, we had to ensure that the marker encoded data relating to
its position. We had to also ensure that the scanner was able to calculate
the orientation of the user from the marker. Finally, the marker should be
designed such that it could be scanned from any angle.

We achieved these criteria by encoding two pieces of information in our
position markers:

1. A unique identifier (UID) - This UID will correspond to the coordinate
position of the marker with respect to the site’s Cartesian frame of
reference. A map of UIDs to coordinate positions would be stored
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locally or elsewhere. This gives us the additional flexibility of changing
the position of the marker offline without the need of physically moving
the marker. Upon scanning this feature, our application will be able to
determine the position of the user.

2. A direction indicator - Upon scanning this feature, our application
will be able to extract the angular variation of the marker from its
normal position. This would allow the user to scan the marker from
any direction. Furthermore, this angle will be also used to calibrate
our application with the Cartesian grid representation of the site.

Colours are used to encode the UID. Currently our marker only supports
three distinct colours - red, blue and green are used to represent the values 0,
1 and 2 respectively. We decided to choose these three colours because they
are the furthest apart from each other in the HSV model. This will reduce
erroneous detection as there will be lower chance of an overlap.

Each marker encodes six data digits with one extra digit for validation.
Therefore, using the ternary numeral system, a number between 0 and 728
(36− 1) can be encoded by our marker. This allows for a total of 729 unique
identifiers. The validation digit provides an extra level of correction and to a
certain extent reduces incorrect detections. The first six data values detected
are used to calculate the validation digit (v) as follows:

v =

(
6∑

i=1

DataValue i

)
mod 3

If v is not equal to the extra validation digit detected from the marker,
then the scanner discards that image frame and tries again.

The marker encodes the direction indicator using two parallel lines joined
by a perpendicular line to form a rectangle. Figure 3.1 shows the structure
of the marker with each colour section containing a number corresponding
to the digit it represents in the UID’s ternary representation.

As mentioned previously, the marker’s direction indicator is also required
to align the smartphone’s orientation with respect to the site’s frame of refer-
ence. From the built-in orientation sensors, our application can estimate the
direction the device is facing. This direction does not necessarily represent
the user’s direction with respect to the site. For example, suppose the user
is standing at the coordinate position (0,0) and the desired destination is at
position (0,1). We can say that the destination is ‘north’ of the user with
respect to the site’s Cartesian grid. Let us assume that the orientation sensor
tells the user that north is 180◦away from the local ‘north’. This would result
in the application navigating the user in the opposite direction. To solve this
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Figure 3.1: The left image shows the structure of the marker, and the right
image shows a marker encoded with UID 48

problem, we use the marker’s direction indicator to adjust our orientation
sensors to take into account the difference in the measured angle. However,
this is only useful if all the markers are placed such that their direction in-
dicators are pointing to the local ‘north’. Figure 3.2 shows how the markers
need to be placed with respect to the site’s Cartesian frame of reference.

Figure 3.2: The image shows four markers placed such that their direction
indicator is pointing to the local north

The markers could be of any reasonable size, but to be able to scan them
while in a standing position they should be printed such that they occupy a
complete A4 piece of paper.

24



3.3 Image gathering

The Android documentation recommended our client view to implement
the SurfaceHolder.Callback interface in order to receive information upon
changes to the surface. This allowed us to set up our camera configurations
on surface creation and subsequently display a live preview of the camera
data. The next step was to obtain the data corresponding to the image
frames for analysis. The Camera.PreviewCallback callback interface was de-
signed specifically for delivering copies of preview frames in bytes to the
client. On every callback, we performed analysis on the preview frame re-
turned and used a callback buffer to prevent overwriting incomplete image
processing operations. For development, we did not initially use the preview
callback interface. Instead, we took individual pictures of the markers to
test our algorithm, and only implemented the callback once our algorithm
achieved real-time performance.

The default camera resolution for modern smartphones is significantly
high for an application to achieve real-time image processing. Therefore, we
had to decrease the resolution of the preview frames prior to processing while
still maintaining a certain level of quality. We decided upon a resolution of
640 x 480 as it provided a good compromise between performance and image
quality. We also ensured that if a smartphone camera did not support this
resolution, our application would select the one closest to it.

3.4 Circle detection

The first step was to detect the marker boundaries from the given image. In
our background, we described Hough circles as a vision technique to identify
the centre of the circle. The OpenCV library provided us with a function
to find circles using the Hough transform. This function is capable of cal-
culating the centre coordinates and the radius of all the circles from a given
image, providing all the relevant parameters are set appropriately. However,
the documentation suggests that the function generally returns accurate mea-
surements for the centre of a circle but not the radius. This is one of the main
reasons our markers were designed to not be dependent on the detected ra-
dius with the data being encoded surrounding the centre of the circle. Thus,
our data extraction algorithm involves expanding out from the centre point.
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Parameter Description
image Grayscale input image
circles Output array containing the centre coordi-

nates and radii of all the detected circles
method Method used for detecting circles, i.e. using

Hough transforms
dp Inverse ratio of the accumulator resolution to

the image resolution
minDist The minimum distance between the centres

of two circles
param1 The upper Canny threshold
param2 The accumulator threshold
minRadius The minimum radius of a circle
maxRadius The maximum radius of a circle

Table 3.1: OpenCV specification for the Hough circle transform

void HoughCirc les ( InputArray image , OutputArray c i r c l e s
, i n t method , double dp , double minDist , double
param1 , double param2 , i n t minRadius , i n t maxRadius )

Prior to the Hough circle detection, the input image had to be converted
to grayscale to detect the gradient change and filtered to remove noise. The
image data from the smartphone camera is received in bytes. This is first
converted from bytes to the YUV format and then to grayscale. OpenCV
contains several image processing functions, allowing the conversion of an
image between different colour models. OpenCV also provides a function to
apply the Gaussian blur to an image with a specified window size. Figure 3.3
shows the process of marker detection from the original image to the detection
of the centre of the circle.

void GaussianBlur ( InputArray src , OutputArray dst , S i z e
ks i z e , double sigmaX , double sigmaY , i n t borderType

)
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Parameter Description
src Input image
dst Output image
ksize Gaussian kernel size
sigmaX Standard deviation in the horizontal direc-

tion for the Gaussian kernel
sigmaY Standard deviation in the vertical direction

for the Gaussian kernel
borderType Method for pixel extrapolation

Table 3.2: OpenCV specification for the Gaussian blur

Figure 3.3: The image shows the process of circle detection - original input
image, grayscaled, Gaussian blurred and centre detection

3.5 Angular shift

The angular shift is the difference in angle from the straight orientation of
the screen to the direction of the marker as shown in figure 3.4. This angle
is required to rotate the marker image to its natural orientation for data
extraction. Later, we discuss how this angle is also used align the user’s
orientation with the site’s frame of reference.

As stated previously, the direction indicator is encoded in the marker
using two parallel lines joined by a perpendicular line drawn around the
centre. We first obtain the equation of the two parallel lines and use the
perpendicular line to determine the direction of the marker. The Hough line
transform can be applied to detect all the lines in the marker. OpenCV
provides us with an efficient implementation of the Hough line transform
using probabilistic inference. The function returns a vector of all the detected
line segments in the given input image. We have given the specification of
this function in section 4.1.

Using the Java Line2D API, we calculated the shortest distance from the
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Figure 3.4: The image shows the angular shift θ

centre point of the marker to all the detected line segments. The closest line
from the centre is selected as the first direction indicator. Then, we search
for the second parallel line by checking the gradient of the line against all the
detected line segments that are a certain distance away from the first direction
indicator. If either of these indicators are not found, we abandon further
processing and wait for the next preview frame. Otherwise, we continue to
search for the perpendicular line allowing us to distinguish between the two
possible direction scenarios (positive or negative angular shift). We then
combine this information with the line equations of the direction indicators
to calculate the angular shift. To reduce erroneous detections, we applied
two further heuristics to our algorithm: (1) Minimum line length; and (2)
Maximum distance from the centre.

Prior to the Hough line transform, the input image has to be first con-
verted to a binary image with all the boundaries highlighted where a strong
gradient change occurs. To achieve this, Canny edge detection can be per-
formed on the filtered grayscale image obtained from the previous circle
detection step. OpenCV provides us with a Canny function taking in pa-
rameters that define the upper and lower thresholds. We have given the
specification of this function in section 4.1.

The next step involves rotating the image anticlockwise by the angular
shift to obtain the natural orientation of the marker for data extraction. We
first calculate the affine matrix for two-dimensional transformations using
OpenCV’s getRotationMatrix2D(). Then, we use this matrix to actually
perform the transformation on the image using warpAffine(). Figure 3.5
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illustrates the entire process of angular shift transformation.

Figure 3.5: The image shows the process of angular shift transformation -
original input image, Canny edge detection, line detection, direction

indicator detection and rotation

Mat getRotationMatrix2D ( Po int2 f center , double angle ,
double s c a l e )
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Parameter Description
center Center of rotation
angle Angle of rotation
scale Scale factor
return Output 2x3 affine matrix

Table 3.3: OpenCV specification for the rotation matrix

Parameter Description
src Input image
dst Output image
M Affine transformation matrix
dsize Size of output image
flags Method of interpolation

Table 3.4: OpenCV specification for affine transformation

void warpAff ine ( InputArray src , OutputArray dst ,
InputArray M, S i z e ds i ze , i n t f l a g s )

3.6 Data extraction

Once the marker image is aligned with the screen’s portrait orientation, we
can begin decoding the colours to extract the UID. This UID will be checked
against a map of UIDs to two-dimensional coordinates in order to retrieve
the marker’s position. For testing, we stored this map locally. In the future,
we plan to decouple this feature by storing this data on an online database.

The first step of the decoding process involves calculating the boundaries
of the colour regions. We had previously detected all the edges during the
angular shift transformation. We reuse this information to estimate the seven
required borders highlighted in figure 3.6.

The position of these boundaries can be used to accurately determine
the colours encoded in all the seven regions. Prior to this, we converted
the rotated image to HSV to enable the comparison of colour using the hue
component. Note that OpenCV defines the hue component scale from 0◦to
180◦.

Figure 3.7 illustrates the path taken to obtain the hue components from
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Figure 3.6: The image shows the seven border positions used to calculate
the colour regions

Figure 3.7: The image shows the path to calculate the value encoded by
each colour region

all the seven regions. Our algorithm accumulates the hue values for each pixel
in the specified path. Then the modal colour is calculated by counting the
number of pixels recorded in each colour range. This process is repeated for
all the seven regions. At present, we only consider the modal colour values if
they are either red, blue or green. We use the colour encodings from the six
data regions to calculate the UID and the seventh data region for validation.
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Chapter 4

Obstacle detection

The purpose of the obstacle detector was to avoid giving directions to the
user that led to an immediate obstacle. The only plausible solution to detect
obstacles from a smartphone was to use the camera to roughly detect the
object boundaries.

In this chapter, we discuss the process of boundary detection using the
Hough line transform and the Canny edge detector. We also explain how
we achieved real-time performance using OpenCV libraries. The last sec-
tion describes how this boundary information is used to identify obstacles
surrounding the user.

4.1 Boundary detection

Line detection was previously employed to detect the direction indicator on
the position marker. Here, we apply the same technique with a different
purpose. We looked at detecting object boundaries such as the one between
a floor and a wall/shelf from a given image. Once again, we used Hough
line transforms using the OpenCV HoughLineP function to retrieve all the
line segments in an image. However, in this case, we had to consider the
time performance of this function in order to achieve real-time boundary
detection. The Hough line transform is a process intensive operation and to
achieve faster results we had to sacrifice the precision with which lines were
detected. In particular, we increased the angle resolution of the accumulator
from 1◦to 3◦, which meant that lines with a very fine angle were not detected.
This was acceptable as losing some of the accuracy of the boundary edges
was not a major concern.
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Parameter Description
image Binary input image
lines Output array containing the two coordinate

points of the detected line segments
rho The distance resolution, usually 1 pixel for

preciseness
theta The angle resolution
threshold Minimum number of intersections required

for line detection
minLineLength The minimum length of a line
maxLineGap The maximum distance between two points

belonging to the same line

Table 4.1: OpenCV specification for the Hough line transform

void HoughLinesP ( InputArray image , OutputArray l i n e s ,
double rho , double theta , i n t thresho ld , double
minLineLength , double maxLineGap )

The process of retrieving the camera preview frames was exactly the same
as for scanning position markers (section 3.3). In fact, we used the same class
as before to also incorporate boundary detection. As a result, we were able to
simultaneously compute results for both these tasks. Once again, prior to the
Hough line transform, we applied Gaussian blur and Canny edge detection
to these preview frames. While the function call to GaussianBlur remained
unchanged, the thresholds for the Canny edge detector were modified such
that only the strong edges were detected. Figure 4.1 summarises the entire
process of boundary detection.

void Canny( InputArray image , OutputArray edges , double
thresho ld1 , double th re sho ld2 )

4.2 Obstacle detection

The boundary detection enabled us to approximately plot the obstruction
boundaries surrounding the user. The next step involved examining these
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Figure 4.1: The image shows the process of boundary detection - original
input image, grayscaled, Gaussian blurred, Canny edge detection and

Hough line transform

boundaries to see if there was an edge on the left, right and in front of the
user. To achieve this, we used the Java Line2D API to check for line segment
intersections.

We first considered detecting obstacles straight ahead of the user. We
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Parameter Description
image Grayscale input image
edges Binary output with the edges highlighted
threshold1 Lower threshold used for Canny edge detec-

tion
threshold2 Upper threshold used for Canny edge detec-

tion

Table 4.2: OpenCV specification for the Canny edge detection

noticed that the object boundaries formed by the obstacles in front of the
user were almost always horizontal. Therefore, we searched through all the
detected boundary lines and only retained those that had an angle of 180◦±
25◦or 0◦± 25◦. Figure 4.2 illustrates this process. We then used an accumu-
lator to count the number of intersections between these lines and vertical
lines. The vertical lines signify the user walking straight ahead. If this num-
ber of intersection is quite high, it would indicate that there is an obstacle
in front of the user, assuming that he is holding the phone in the direction
of movement.

For detecting obstacles on the left and the right side of the user, we
used a similar approach. We noticed that the object boundaries on the side
were slightly slanted and very close to forming a vertical line. Therefore, for
detecting obstacles on the left hand side, we decided to only retain boundary
lines that had an angle of 75◦± 25◦or 255◦± 25◦. For the right side, we
only looked at lines with an angle of 105◦± 25◦or 285◦± 25◦. Figure 4.3
illustrates this process. Then, we checked for the number of line intersections
horizontally, representing the user’s side movements. However, for detecting
obstacles on the left, we only checked the left half portion of the image and
similarly the right half for detecting obstacles on the right.

Our current implementation of obstacle detection has two key limitations.
One is that the user has to hold the smartphone with a slight tilt (35◦± 20◦)
such that the back camera is always facing the floor, as shown in figure 4.4.
The reason is that if the phone is held perpendicular to the ground it is not
possible to determine the depth of an obstacle just by looking at an image.
Therefore, we would not be able to conclude whether an obstacle lies right
in front of the user or further away. By forcing the user to hold the phone
in the desired position, we can almost guarantee that an obstacle detected is
immediately ahead or to the side of the user.

The second limitation is that the floor should not contain any patterns.
This is mainly due the fact that our algorithm falsely interprets the patterns
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Figure 4.2: The images show the preservation of horizontal lines for
detecting obstacles ahead of the user in two different scenarios

as obstacles. Some of the free space detectors in literature also introduce
this restriction[18]. The process of distinguishing complex floor texture from
actual obstacles would have been a time-consuming endeavour.
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Figure 4.3: The image shows the preservation of side lines for detecting
obstacles left and right of the user

Figure 4.4: The image shows the correct way to hold the phone for obstacle
detection
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Chapter 5

Dead reckoning

In the absence of a nearby position marker, our application still needs to
keep track of the user’s position and orientation. In this chapter, we begin
by describing our initial foray into calculating the ego-motion of the device
to solve this problem and explain our reasoning behind choosing the inertial
approach instead. We give a brief overview on the Android sensor API that
we use to receive the inertial measurements. Then we explain our approach to
filtering noise from the sensor data. The penultimate section describes how
we developed our step detection algorithm while the final section explains
the process of combining the detected footsteps along with the orientation
sensor to estimate the new position of the user.

5.1 Initial approach

Our initial approach was to calculate the ego-motion of the smartphone cam-
era, and subsequently use that to estimate the distance travelled by the user.
To calculate the ego-motion, we first had to measure the optical flow. This
required our application to track features from two consecutive images. Once
again, we had to convert the incoming preview frames into grayscale and ap-
ply Gaussian blur, using the respective OpenCV functions previously men-
tioned. We then used OpenCV’s highly optimised image processing library
to detect all the strong corners from a given image. The goodFeaturesTo-
Track() function uses the Shi-Tomasi corner detector algorithm to highlight
all the key features.
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Parameter Description
image Grayscale input image
corners An output array containing the coordinate

positions of all the corners
maxCorners Maximum limit to the number of strong cor-

ners detected
qualityLevel Defines the minimum quality level for each

potential corner
minDistance Minimum distance between two corners
mask Specifies a particular region from the image

to extract features from
blockSize The size used for calculating the covariance

matrix of derivatives over the neighbourhood
of each pixel

Table 5.1: OpenCV specification for feature tracking

goodFeaturesToTrack ( InputArray image , OutputArray
corners , i n t maxCorners , double qua l i tyLeve l , double

minDistance , InputArray mask , i n t b l o ckS i z e )

From the corners detected in the first image, we can use optical flow to
find the new positions of these corners in the second image. This would
give us an estimate of the feature displacement for that time frame. The
OpenCV implementation for the optical flow uses the iterative Lucas-Kanade
algorithm with pyramids. Figure 5.1 shows the results we obtained by moving
the camera slowly to the left.

void calcOpticalFlowPyrLK ( InputArray prevImg ,
InputArray nextImg , InputArray prevPts ,
InputOutputArray nextPts , OutputArray status ,
OutputArray e r r )

At this stage, we realised that the feature tracking and the optical flow
algorithms required a large amount of computation time to achieve the de-
sired results. This would prevent our application to perform real-time opera-
tions as well as quickly drain the smartphone’s battery. A potential solution
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Figure 5.1: The first two images show the movement of the camera from
left to right and the third image shows the feature displacement calculated

by the optical flow

Parameter Description
prevImg First input image
nextImg Second input image
prevPts An array containing the coordinate positions

of all the corners detected in the first image
nextPts An output array containing the new coordi-

nate positions of the corners detected from
the first image

status An output status array
err An output error array

Table 5.2: OpenCV specification for calculating the optical flow

considered reducing the resolution of the preview frame further. However,
this had a direct impact on the quality of the features detected. Further-
more, we realised that ego-motion would only be successful if the environ-
ment contained a large amount of distinct features. This contradicted our
earlier assumption for obstacle detection, which expected the user to hold
the smartphone camera facing towards a plain carpet.

We also observed that the optical flow algorithm did not function as
expected when there was a great displacement between two consecutive image
frames. This problem was made apparent while walking at an average pace.
To further complicate the problem, the preview frames were slightly blurred
due to the shaking camera movements. At this point, it was quite obvious
that a large amount of time would have to be spent to achieve accurate
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distance estimations using an ego-motion based approach. Therefore, we
decided to explore the inertial method of dead reckoning. Since a pedometer
algorithm had been previously achieved by many, we were more confident
with this approach.

5.2 Sensors

Nowadays, all smartphones are equipped with a wide variety of sensors. For
our application, we only considered the accelerometer, the geo-magnetic field
and the gyroscope sensors. The accelerometer enables us to monitor motion
relative to the world’s frame of reference. The remaining two sensors can be
combined with the accelerometer to give an accurate reading of the device’s
orientation also relative to the world’s frame of reference. Our aim is to make
use of these sensors to track the user’s position relative to the site’s frame of
reference.

The Android API for sensor events is well documented making it simple to
integrate with our application. Figure 5.2 from the Android documentation1

illustrates the coordinate system used by the sensors. To receive data from a
particular sensor, our client registers itself to listen to the changes from that
sensor type using a SensorListener interface. Our application registers with
two sensor types: linear acceleration and rotation vector.

Figure 5.2: The image shows the coordinate system used by the Android
sensor API

1http://developer.android.com/reference/android/hardware/SensorEvent.

html
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5.2.1 Linear acceleration

This sensor type is used to measure the acceleration on the device on all
the three axes excluding the force of gravity. As stated previously in the
background chapter, we cannot apply double integration on the linear accel-
eration data to obtain distance as the accuracy deteriorates significantly with
increasing distance. Instead, we can use this data to detect footsteps. The
accelerometer sensor returns the acceleration of the device (Ad) influenced
by the force of gravity.

Ad = −g −
∑

F/m

g is the force of gravity which is -9.81 m/s2 when on a flat surface
F is the force applied to the sensor

m is the mass of the device

Therefore, to calculate the linear acceleration we subtract the force of
gravity from the acceleration data Ad.

Linearacceleration = acceleration− gravity

This sensor type returns three values corresponding to the linear accel-
eration on each axes. However, we are only concerned with the value from
one of these axes. Our assumption for free-space detection expects the user
to always hold the phone in a specific position. Therefore, to measure the
movement of the user, we only need to consider the acceleration force in that
direction. As you can see from figure 5.2 and figure 4.4, we can approximate
the acceleration force from the user’s movement based on the orientation of
the device and the magnitude of the acceleration force on the y-axis.

5.2.2 Rotation vector

This sensor type uses sensor fusion to combine data from the accelerometer,
geo-magnetic field and gyroscope to provide an accurate representation of the
devices’ orientation. When a step is detected, this orientation data is used to
map the direction of the user’s movements, providing the user always walks
in the direction of the smartphone’s y-axis.

The data obtained from the rotation vector represents the orientation of
the device as a combination of an angle and an axis, shown in figure 5.3
taken from the Android documentation2. To calculate each of the device’s

2http://developer.android.com/reference/android/hardware/SensorManager.

html
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individual orientation angle for each axis, we need to first calculate the rota-
tion matrix from the rotation vector. The Android sensor API provides us
with the function getRotationMatrixFromVector(), and also getOrientation()
to calculate these angles.

Figure 5.3: The image shows the coordinate system used by the rotation
vector

The coordinate system used by getOrientation(), as shown in figure 5.4
taken from the Android documentation, is different from the coordinate sys-
tem defined for the rotation matrix.

Figure 5.4: The image shows the coordinate system used by the orientation
vector

This function returns an array of size three containing the angle of ro-
tation, in radians, around the z-axis (azimuth), the x-axis (pitch), and the
y-axis (roll). Here we are only concerned with the azimuth, which represents
the horizontal angle formed by the difference in the y-axis from the magnetic
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north. The azimuth lies between 0◦and 359◦, with 0 corresponding to the
north. Therefore, this value can be used to monitor the direction of the user’s
movement whenever a user takes a step. However, to be useful indoors, this
direction has to be first calibrated with the site’s frame of reference. This can
be done by scanning any marker on the site, providing the marker’s direction
indicator is parallel to the site’s y-axis. In other words, the marker points to
the north of the site.

5.3 Signal filtering

The sensor values received from both the sensor types contain a lot of noise.
Thus, it is not possible to perform any kind of analysis on this incoming
information. The signal is mainly affected by high-frequency signals and also
some low frequency signals.

Initially, we decided to use the discrete Fourier transform (DFT) to con-
vert the input time-domain data to the frequency-domain. Thereafter, we
would use the frequencies to process the signal to filter the data. We used
the fast Fourier transform to compute the DFT using the Cooley-Tukey al-
gorithm from the Columbia university3.

We passed in the amplitude at each time step and the FFT algorithm
returned half real and half imaginary values. Each real value represented
the power of every sampled frequency. For filtering, we decided to zero
out certain high-frequencies in order to remove the noise. This is known
as the brick-wall frequency-domain filter. We then reconstructed the signal
from the frequency-domain to the time-domain using the inverse fast Fourier
transform by calling FFT but with the real and imaginary values swapped
around. Although the theory was technically correct, we did not obtain
the expected result. We soon realised that this was not the correct way
to achieve noise filtering. Using this filtering technique, we were essentially
convolving the time-domain data with a sinc function, shown in figure 5.5
taken from MathWorks4. This effect is termed as ringing caused by the Gibbs
phenomena and is not desirable.

We then decided to look at more practical ways of filtering noise. We
used a discrete-time low-pass filter to remove the high-frequency signals and
a high-pass filter to remove the low-frequency signals.

3http://www.ee.columbia.edu/~ronw/code/MEAPsoft/doc/html/FFT_

8java-source.html
4http://www.mathworks.co.uk
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Figure 5.5: The image shows the plot of a sinc function

for ( i n t i = 0 ; i < in . l ength ; i++){
out [ i ] = out [ i ] + ALPHA ∗ ( in [ i ] − out [ i ] ) ;

}

for ( i n t i = 0 ; i < in . l ength ; i++){
out [ i ] = BETA ∗ ( out [ i ] + in [ i ] − o ldIn [ i ] ) ;

}

The value of ALPHA was used for calibrating the low pass filter while
the value of BETA was used for the high pass filter, such that the relevant
properties of the signal were preserved. We applied these filters to data
received from both the sensor types. Figure 5.6 shows the attenuation of the
high frequency components from the original signal.

5.4 Footstep detection

Although technically the double integration of acceleration should yield dis-
tance, our background research suggested that the poor accuracy of the ac-
celerometer produces a great margin of error. As a result, we decided to
estimate displacement by developing a pedometer algorithm. Firstly, we
converted the raw sensor data into a signal in the time-domain using a graph
API in Android5. Then, we proceeded to analyse the properties of this sig-
nal by observing several footsteps from people with various different stride

5http://androidplot.com/
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Figure 5.6: The image shows the accelerometer data before and after
filtering

lengths. This helped us establish and model the change in acceleration of
the smartphone when a user is walking. Figure 5.7 shows the characteristics
of an acceleration waveform used for step detection.

Figure 5.7: The image shows the characteristics of an acceleration
waveform used for step detection

The basis of our pedometer algorithm relied upon detecting the peaks
and troughs from the time-domain waveform. Essentially, when a peak was
detected, we started searching for the next trough. Similarly, after a trough
was detected, we started searching for the next peak. This sinusoidal at-
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tribute of the signal along with other amplitude characteristics constituted
an average footstep. Taking the first derivative of the accelerometer data al-
lowed us to calculate and distinguish between a peak and a trough. At times,
when a second peak was detected while looking for a trough, we discarded
the first peak and used this new peak as the starting reference for identifying
a footstep.

We applied three further simple heuristics to reduce false positives.

1. Maximum time duration for one step - If a step took longer than 1.5
seconds, we would not consider it.

2. Time difference between a peak and a trough - We observed that a
trough occurred a certain time distance (0.25 - 0.8 seconds) between
the two peaks. Then, we simply checked whether the trough fell within
this range.

3. Minimum number of initial steps - The user has to take 2-3 initial steps
before the algorithm starts detecting individual footsteps.

5.5 Distance and direction mapping

The last step combined the pedometer algorithm, the user’s stride length
and the orientation of the phone to estimate the new position of the user as
follows:

xnew = xold + cos(orientation)× STRIDE LENGTH

ynew = yold + sin(orientation)× STRIDE LENGTH

In order for the new position to be calculated with respect to the site’s
frame of reference, the orientation, in particular the azimuth, needs to be sub-
tracted by the angular shift obtained from scanning a position marker. Refer
to section 6.2 for more details on how these two components are integrated.
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Chapter 6

Integration of navigation
system

The final stage of development involved combining the data obtained from
position markers, dead reckoning and the obstacle detector to calculate the
appropriate direction that would gradually lead the user to their destination.
This is the final step needed to complete our indoor navigation system.

In this chapter, we briefly explain how the location where our system
will be employed should be setup. Then, we discuss how we integrated the
three individual components together to display the appropriate directions.
Finally, we give a high level overview of our entire system through a class
diagram and a sequence diagram.

6.1 Location setup

The indoor site should be viewed as a two-dimensional Cartesian grid. We
recommend a grid spacing of 1 metre or less. This allows for a more accurate
representation of the positions of all the points of interest. The grid should
have a well-defined boundaries with a fixed origin representing (0,0). All
the position coordinates should be positive. Currently, our solution only
supports navigation on a single floor.

Markers should be placed on the floor at entrances and other key inter-
sections. Although to achieve more accurate results, they could be placed
more frequently around the site. It is also important to map their encoded
UIDs with their corresponding grid coordinates. Furthermore, all the mark-
ers should be placed such that their direction indicator points towards the
north of the site (y-axis) as previously illustrated in figure 3.2.

The exact position coordinates of all the items or points of interest need to
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be recorded offline. Essentially, these are all the possible indoor destinations
that our application navigates the user to. For our testing, we stored this data
locally as there were not many destination points. However, to decouple this
task and make it scalable, this data needs to be stored in a file or database.
An internet connection would be required to fetch this data when necessary.

6.2 Final integration

We created a central module solely responsible for listening to the changes
of all the individual components. Whenever one of these components ac-
quired a new piece of information, it would notify this central module. This
module contained the position coordinates for the user’s current estimated
location and the location of the destination. It would use this information
along with the knowledge of the obstacle detector to calculate the direction
to display. We proceeded with our implementation by integrating each com-
ponent one-by-one. Figure 6.1 illustrates a high level overview on how the
main components integrate to make the final indoor navigation system.

Figure 6.1: The image shows how all the main components integrate to
make the final indoor navigation system

Position markers

On every successful scan of a position marker, the encoded UID is retrieved
and checked for the corresponding position coordinate of the marker. When
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this is known, the scanner would notify the central module about this new
position. Then, the central module would immediately update its current
estimated position to the one just received and recalculate the directions to
display.

The markers also provide the central module with the angular shift to the
site’s local north. As previously mentioned, this offset is used to calibrate
the device’s orientation with respect to the site’s frame of reference. This is
important for correctly tracking a user’s movements through dead reckoning.

Dead reckoning

There were two aspects to integrating this component. One was the orienta-
tion (azimuth), which gave the direction the user was walking towards and
the other aspect was the pedometer algorithm. This orientation was not only
important for dead reckoning but also for adjusting the currently displayed
direction. For example, if the direction currently displayed told the user to
walk straight but instead he turned right, the direction would need to change
to tell the user to turn left. Also note that when the sensor detected a change
in the device’s orientation, we would straightaway subtract the measurement
with the angular shift offset retrieved from the position marker.

orientation = azimuth− angularshift

With regards to the pedometer, on every step detected, our central mod-
ule would update the current position estimate appropriately based on the
user’s stride length. In addition, it would reassess this position with respect
to the destination and display a new direction if necessary.

Obstacle detector

Integrating this component ensured that the direction displayed by our appli-
cation was feasible. Whenever there was a change in the navigation direction
displayed, we would check with the obstacle detector on whether there was
an obstacle in that direction. If there were no obstacles, then the direc-
tion displayed would remain the same. However, if it did detect an obstacle
in that direction, we would ensure that the application navigated the user
around the obstacle. We achieved this by updating the direction hint to point
90◦clockwise, i.e. to the right. While the user follows this direction, our ap-
plication checks whether the obstacle (now on the left side) still exists. If it
does not exist, the direction indicator is returned to its original angle. If it
does, then the user would continue till it eventually disappears. In case there
is another obstacle on the new direction path, then once again we repeat the
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same step by further updating the direction hint to point 90◦clockwise till
the obstacle disappears. In the future, this algorithm can be improved to
take into account the user’s past movements and learn to not take a path
with long obstacles.

Displaying navigation direction

On every position update or an orientation update, the navigation direction
to display is recalculated. To keep the UI simple and easy to follow, the only
possible direction hints our application displayed were to either go straight,
left, right or backwards, as shown in figure 6.2. Therefore, it was important
for the user to hold the device in the position shown. Otherwise, there was
scope for misinterpretation.

Figure 6.2: The image shows the four navigation hints

To calculate the direction to display out of the four, we computed the
inverse tangent angle based on the current position (c) and the destination
position (d) and then rounded the value to the nearest 90◦.

directionAngle = Round(
tan−1(

dy − cy
dx − cx

)

90◦ )× 90◦

If the direction angle is computed as 0◦, the navigation direction would
point straight ahead. Subsequently, the direction would move clockwise as
the angle increases.

To avoid constant fluctuations due to rounding when at a diagonal posi-
tion, we ensure that the direction remains the same till the user either reaches
the horizontal or the vertical axes formed by the destination assuming no ob-
stacles are encountered. Figure 6.3 illustrates this problem.
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Figure 6.3: The image on the left shows the diagonal fluctuations in the
navigation direction and the image on the right shows how we fix this

problem

6.3 System architecture

Figure 6.4 gives a high level class diagram of our implementation followed by
a sequence diagram in figure 6.5, illustrating the interaction between different
processes.

52



Figure 6.4: The image shows the class diagram of our proposed navigation
system with the packages highlighted in grey and the classes in white
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Figure 6.5: The image shows the sequence diagam of the entire system
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Chapter 7

Evaluation

Our application serves to navigate a user to their desired indoor destinations.
Therefore, we evaluated the performance of our application quantitatively
and qualitatively by measuring how well it achieves this goal. Prior to that,
we evaluated all the individual components used to build the overall appli-
cation. In particular, we tested the accuracy of our position marker scanner,
the precision of our dead reckoning algorithm and the time performance of
our visual obstacle detector. This enabled us to validate and assess the
strengths and weaknesses of each component separately before integrating
them together to produce and evaluate our final smartphone based indoor
navigation system.

We tested our application on the Samsung galaxy S4, which contains
all the required sensors and has a back camera supporting the 640 x 480
resolution. We printed all the necessary position markers on A4 pages of
paper.

7.1 Evaluating position markers

The accuracy of scanning applications is measured by the number of times it
correctly decodes the data encoded in a marker. We followed this standard
of measurement for our application by scanning our position markers in var-
ious different conditions. Specifically, we tested our scanner under different
lighting conditions, proximity of the device and the angle of scanning.

Results

Table 7.1 shows the results obtained from scanning 10 different UID encoded
position markers. The lighting conditions were used as the main criteria. We
altered the distance and the angle parameters on every test (figure 7.1). If
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Lighting conditions Total scans Correct Wrong Timeout
Bright 20 1 3 16
Normal 20 17 1 2
Low-light 20 0 0 20
Shadow 20 16 2 2

Table 7.1: Results for the position marker scanner

the application failed to scan a marker within 15 seconds, we marked it as a
timeout.

Figure 7.1: The image shows some of the tests we conducted by altering
parameters such as distance, angle and light

Analysis

Our application failed to detect any of the markers when the lighting con-
ditions were poor. This was partly due to the low resolution of the camera
as well as the conversion of the original image in to grayscale for the Hough
circle transform. This made it impossible for the algorithm to detect the
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centre of the circle. Our results also showed that the scanner failed to de-
tect markers when there was a lot of light falling on the paper. In fact,
the paper reflected so much light that the colours were slightly challenging
to recognise even for the naked eye. As a result, our algorithm timed out
most of the time as it could not decipher some of the colour regions. There
were also a few wrong results, mainly caused due to the incorrect detection
of the bright colour regions. Our application performed well under normal
and shadowy lighting conditions. Nevertheless, there were a few errors and
timeouts on both the occasions but these only occurred when the camera was
held at a slanted angle and far away from the marker. The reason some of
the results were incorrect were because the application failed to detect the
right marker boundaries. However, we noticed that the errors quickly auto
corrected themselves on the next preview frame due to the real-time nature
of the application.

From our findings, we quickly realised that printing colour encoded mark-
ers on paper was not a good idea as it was susceptible to abnormal lighting
conditions. Therefore, in a real case scenario, we recommend position mark-
ers to be printed on a more durable mat surface and the area next to the
marker should always receive adequate light.

We decided to compare our results with some of the state-of-the-art bar-
code scanners available for smartphones. Online research 1 shows that most
of these scanning applications achieve around 81%-96% accuracy. Under
normal lighting conditions, we achieved 85% accuracy. Although this is a
favourable result, we have to consider that our position markers cannot store
a large amount of data, and therefore we should be making fewer errors. How-
ever, we can also claim that our application is capable of decoding markers
from a larger distance and can enable the scanner to calculate the user’s
orientation.

Speed is also an important metric for scanning applications. However, we
decided not to analyse the speed of our scanner quantitatively as accuracy
was our highest priority. Nevertheless, under ideal lighting conditions and
within a certain distance, our application almost always decodes a position
marker within milliseconds. Besides, the only reason our application would
take a large amount of time would be because the user is either too far away
or at a really slanted angle making it too difficult to detect the centre of the
circle or the direction indicator. Since the scanning operates in real-time,
users are able to quickly alter the position of their device to get a better
view of the marker. Since this process is not time-consuming, the user can
scan some of these markers while they are being navigated in order to feed

1http://www.scandit.com/barcode-scanner-sdk/features/performance/
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Features presented Boundary detection Obstacle detection Total time
Few 20 1 3
Moderate 20 17 1
High 20 0 0

Table 7.2: Results for our obstacle detector

the application with a more accurate estimation of their current position.

7.2 Evaluating our obstacle detection algo-

rithm

We examined the time taken by our algorithm to detect obstacles from the
camera to ensure it was able to function in real-time. If the algorithm was
not able to process the incoming preview frames fast enough, it would have
been useless to include this feature in our final product. We ran several stress
tests to ensure that our algorithm functioned as expected within a certain
time when presented with a large number of obstacles.

Results

We measured the time taken from the point when our implementation re-
ceived a preview frame till the successful identification of obstacles on the
left, right and ahead of the user. We held the device in a static position
while it was processing the preview frames from the camera. This allowed us
to calculate the average time from a sample of 100 frames. Table 7.2 shows
the time performance of our algorithm in milliseconds when presented with
different levels of features in the environment.

Analysis

Our results showed that the average time taken to detect obstacles was ap-
proximately 173ms in the worst case. This allowed for our algorithm to
process up to 6 frames per second (FPS). Under normal stress levels, our ap-
plication was capable of processing 9-10 FPS on average. Although this was
slightly less than the number of frames processed per second by the human
eye (10-12 FPS), this lag was not noticeable from our application. However,
we have to also consider that our test device, the Samsung galaxy S4, has a
very high computational unit that not many smartphones currently possess.
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Nevertheless, it is predicted that many other smartphones in the future will
follow this specification.

We briefly considered applying this algorithm to a setting which had a
textured carpet. We found that our algorithm falsely detects obstacles caused
by patterns on the floor. This is a very serious drawback of our system as
many sites do not always have a plain carpet. Further image processing would
need to be developed in order to distinguish between the floor patterns and
actual obstacles.

The results that we obtained certainly convey that this mechanism can
be used for a real-time application. This was because our implementation
utilised some of the OpenCV functions, which are arguably the most ef-
ficient vision algorithms currently available on the Android platform. We
also reduced the resolution of the image significantly and also altered other
parameters like the angle resolution to achieve faster performance.

7.3 Evaluating our dead reckoning algorithm

We assessed the performance of our dead reckoning algorithm by first mea-
suring the accuracy of our pedometer algorithm and then its integration with
the orientation sensor in monitoring user’s movements.

7.3.1 Pedometer accuracy

To test the accuracy of our application’s pedometer, we compared the number
of steps detected from the actual number of steps taken. We asked five people
with different stride lengths to walk along a fixed path for a fixed number of
steps while our pedometer algorithm was running in the background. On each
attempt, we recorded the steps detected by our application and averaged the
results. Note that the fixed paths consisted of users walking along a straight
path as well as turning to avoid obstacles.

Results

We asked the users to count how many steps they were walking and stop
when they reached the target number of steps. We asked them to do this
twice and averaged the results for all the ten samples. Table 7.3 shows the
results we obtained from this investigation.

In addition to our findings, we repeated the same experiment with fewer
samples using the most popular pedometer app on the Android market -
Accupedo. Table 7.4 shows the results obtained from this app.
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Number of steps Steps detected (Average) Range
5 5.5 4-6
10 9.3 6-13
25 22.3 18-27
50 45.4 38-51

Table 7.3: Results for our pedometer

Number of steps Steps detected (Average) Range
5 0.0 0-0
10 12.8 0-17
25 26.3 25-30
50 52.6 49-54

Table 7.4: Results for the Accupedo pedometer

Analysis

Our pedometer algorithm did not correctly recognise the actual number of
steps on most of the attempts. The average results, however, were not too
discouraging. They were very close to the actual number of steps taken. We
also noticed that the average margin of error increased as the number of steps
walked increased. This was bound to occur as with increasing distance there
was a high chance that a step may not be detected. To find the cause of this
discrepancy, we analysed the accelerometer signal to check where the peaks
were not successfully detected. We discovered that our algorithm failed to
identify steps when users made a sharp turn around an obstacle. The wave
formed by this movement was different to when users walked normally. To
solve this issue, we would have needed to distinguish the two waveforms and
establish when to use the appropriate analysis.

The average number of steps detected using Accupedo were very close to
the actual steps taken. In comparison, Accupedo produced more accurate
results than our application. We also noticed that their algorithm generally
over-approximates while ours failed to detect some of the steps and thus
under-approximates. The other significant difference was that their appli-
cation did not function as expected when users walked a small number of
steps. In their description, they mention that they wait for the first 4-12
steps before displaying the pedometer count. In our case, it was vital that
our application also detect and display small movements. Otherwise, this
would have a great impact on the accuracy of our integrated application.
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7.3.2 Positioning accuracy

We assessed the overall accuracy of our dead reckoning algorithm by mea-
suring the position drift between the estimated position of the user and their
actual position on the site. To accomplish this, we designed three fixed paths,
as shown in figure 7.2, and observed five test users walk along these paths.
We designed these paths such that they returned the user to their original
starting location. We were also mapping user movements in real-time and
displaying them to the user. This allowed us to calculate the position drift
when the user returned back to the starting marker by finding the difference
in distance between the user’s estimated position according to our application
and their actual final position.

Figure 7.2: The image shows the fixed paths used for testing

Results (Single marker)

Users were asked to scan a position marker, follow the given path and then
scan the starting position marker again after returning back. We modified
our application slightly for this test in order to automatically calculate and
display the position drift on the second scan. Table 7.5 shows the results
obtained after averaging the recorded values. Note that users were asked to
walk along each path twice.
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Path Type Error margin (meters)
A 1.9
B 3.4
C 5.7

Table 7.5: Results for the positioning accuracy achieved using a single
marker

Analysis (Single marker)

From our results, we can see that the accuracy of our dead reckoning al-
gorithm is not sufficient enough to provide us with a good estimate of the
user’s position. We can also observe that the position drift increases as the
path gets longer and more complex. This is a direct result of our imprecise
pedometer algorithm.

As a result, we decided to extend our dead reckoning technique by allow-
ing users to scan additional position markers placed at various positions on
the original fixed route. This allowed the application to readjust the user’s
position estimate on every scan and also prevented large position drifts from
occurring with increasing distance. We repeated the same experiment from
before with the changes shown in figure 7.3.

Figure 7.3: The image shows the fixed paths setup with multiple markers
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Path Type Error margin (metre)
A 0.7
B 1.3
C 2.3

Table 7.6: Results for the positioning accuracy achieved using multiple
markers

Results (Multiple markers)

Table 7.6 shows the results obtained from having multiple markers on the
fixed paths.

Analysis (Multiple markers)

The results show a vast improvement in the accuracy of our algorithm. In-
troducing multiple markers would certainly benefit the overall navigation
system, but we have to be careful to not use them excessively. They should
be placed within a reasonable distance from each other but also easily ac-
cessible from any passage. Position markers were initially developed for the
purpose of identifying the user’s initial position. However, now we have seen
that they can be used to recalibrate position estimates. We shall consider
this when we evaluate the end product.

7.4 Evaluating the integration of navigation

system

Our final analysis comprised of assessing the overall application’s perfor-
mance in successfully navigating the user indoors. We performed both quan-
titative and qualitative analysis by testing our end product in a real case
scenario.

7.4.1 Test location setup

We used the third floor of the Imperial College central library to test our
application. A major portion of this site is made up of several rows of aisles
with the entire floor covered by a plain carpet. All the passages have at
least one exit meaning there are no dead ends. This created ideal conditions
for our obstacle detection mechanism. Essentially, we were trying to build
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a platform for a dummy application that allows users to navigate their way
through the library to find their desired books.

We placed eight position markers at various locations around the site and
also ensured that all the direction indicators pointed to the local north of the
library. Then, we introduced nine destinations to mimic the location of the
books. We stored the position coordinates for all these attributes locally in
our application. Figure 7.4 shows the layout of the site as well as highlights
the location of the position markers and the nine destinations.

Figure 7.4: The image shows the layout of the test site with position
markers (grey) and the destinations (red)

7.4.2 Quantitative analysis

The quantitative analysis involved measuring the accuracy of our application
in navigating the user to their desired destination. When our application be-
lieved that the user was within half a metre of their destination, it notified
them. We used this point as a reference to calculate the physical distance
between the actual destination and the location where the user was notified.
Seven test users were asked to follow the directions displayed by our appli-
cation as well as the position markers to reach all of the nine destinations.
Users did not have any previous knowledge about the location of these desti-
nations as that could have possibly influenced the final results. The starting
positions varied on every attempt but we ensured that every position marker
was used at least once as the source of navigation. Prior to this, we briefly
trained the users regarding the correct position to hold the smartphone de-
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Destination Error margin (metre)
A 1.7
B 2.6
C 1.1
D 2.6
E 1.2
F 3.0
G 1.8
H 1.5
I 3.3

Table 7.7: Accuracy achieved for our indoor navigation system

vice. We had to also input a rough estimate of the user’s stride length for
personalisation.

Results

Table 7.7 shows the distance offsets in metre for all the destinations. All
the values were rounded to the nearest ten centimetres as millimetre level
precision was not required.

Analysis

The results from our investigation showed that our navigation system on av-
erage guided users within 2.1 metres of their intended destination. Although
this level of accuracy is generally sufficient for indoor navigation, we did
observe that at many times users ended up in the wrong aisle. Due to the
narrow passages in the library, our dead reckoning algorithm failed to distin-
guish between correct aisle. This was a direct impact from the inaccuracies
discovered in section 7.3. A more accurate step detection algorithm would
have definitely eliminated these false positives. However, in larger settings
like museums and fairs, this would not be necessary.

We also noticed that the time taken by users to reach their destination
varied. This was partly due to users walking fast and not following the direc-
tions correctly as well as the position drift resulting from our dead reckoning
algorithm. Therefore, users did not always follow the optimal path. Besides,
accuracy was always our priority and not the shortest distance to the desti-
nation. Having multiple markers greatly improved the accuracy as it enabled
the application to readjust position estimates when the user had a chance to
scan a nearby marker.
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Solution Error margin (metre)
Ego-motion 2.7
Triangulation 1.7
Inertial 1.5

Table 7.8: Accuracy achieved with other indoor navigation systems

We compared the accuracy of our application with other smartphone
based indoor navigation systems previously mentioned in our background
research. In particular, we looked at the accuracy achieved through ego-
motion[19], Wi-Fi triangulation[16] and a solution using inertial sensors for
dead reckoning[17]. Table 7.8 shows the mean distance error of these three
techniques in metre.

Both the Wi-Fi triangulation and the inertial solutions achieved less that
2 metre accuracy. The triangulation paper also claims that they obtain more
accurate results with a hybrid solution combining Wi-Fi and inertial mea-
surements. Furthermore, the latter claim that they tested their solution while
the device was inside the pocket. We went on to analyse the testing method
employed by both of these techniques. We found that the area of the test
locations were both slightly larger than the one we used. Nevertheless, the
paths they considered were very simple and did not contain many obstacles
as their focus was more on guiding the user from one room to another. On
the contrary, our application was tested thoroughly with several shelves and
narrow passages in our path. However, the major drawback of our appli-
cation was that it required more user interaction such as scanning position
markers as opposed to these solutions. Our accuracy, nonetheless, was not
too worse off in comparison. We even managed to obtain a more accurate
result compared to the ego-motion approach.

7.4.3 Qualitative analysis

The verbal feedback received from the test users were mainly positive. They
could see the potential benefits of the application in various different indus-
tries that we had previously not considered such as hospitals and conferences.
However, some of the users did raise a few concerns regarding the power
consumption of the application as well as the user interface. Our applica-
tion currently performs a large amount of computation in real-time taking
in data constantly from the camera and the sensors. This drains the smart-
phone battery rapidly. A potential solution would be to remove the real-time
obstacle detection and instead allow users to use their common sense to avoid
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obstacles while following the given directions. This would eliminate a bulk of
the vision processing and would certainly increase battery life compared to
before. With respect to the user interface, some suggested to display a map
of the site as it would help to visualise the surroundings and their position
with respect to the site. This contradicted with one of our key objectives,
which was to not pre-load an indoor map of the site. As a result, we decided
to extend our application interface to display a mini-map showing only the
orientation of the user and the direction of the destination. Although this
did not reveal the full picture, it certainly aided navigation without requiring
the application to store any indoor maps.

7.5 Summary

Our results suggest that our application provides a reasonably accurate and
a flexible medium to allow users to navigate indoors without requiring many
infrastructural changes. Nevertheless, we also realised that the average accu-
racy of our application was not satisfactory in certain indoor environments
such as libraries and small supermarkets, which typically have narrow aisles.
This was largely due our faulty dead reckoning implementation which failed
to detect a step when users made a sharp turn. In our evaluation, we man-
aged to suppress this problem to a certain extent by introducing more po-
sition markers around the site. Although this improved the accuracy signif-
icantly, it resulted in more user interaction. The lighting condition in the
site would also largely influence the accuracy and the time taken to decode
position markers. This was an important factor to consider when placing po-
sition markers. Printing these markers on a mat anti-reflective surface would
certainly allow for their successful detection even under bright conditions.
However, we had to avoid placing these position markers under low levels of
light.

The application of obstacle detection to indoor navigation was rather
innovative. It allowed the navigation system to assess the surrounding en-
vironment up to a certain extent and then verify whether users would be
able to walk in a given direction from the current position. Nevertheless,
to successfully integrate and test this mechanism, we had to impose an im-
portant restriction on the site, i.e. the floor should not have any patterns.
Furthermore, the user had to also keep the phone in a set position through-
out their entire indoor journey as our algorithm relied upon the constant
preview frames received from the smartphone camera. This also significantly
increased the battery consumption of the device. Here, we have to agree
that the limitations of using this component outweigh the benefits it brings
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to navigation. A potential solution for the future could be to remove this
component completely and instead let users use their intuition to avoid ob-
stacles and at the same time keep up with the given direction hint. To aid
navigation further, we could supply our application with an indoor map of
the site. Although this goes against one of our key objectives, our qualitative
analysis revealed that users actually prefer to know the layout of the site and
their current position with respect to their destination.
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Chapter 8

Conclusion

Throughout the report, we have demonstrated a scalable smartphone based
solution for indoor navigation that requires minimal changes to the site in-
frastructure. We have also assessed all the individual components required
to build this final application separately before integrating them together for
a thorough evaluation of our end product in a library setting. Our solution
combines various computer vision concepts with inertial measurements to
estimate a user’s position as well as detect obstacles around them.

In this chapter, we have summarised the key outcomes from the project
and also outlined all the possible extensions that can be made to the current
system in the future.

8.1 Summary

As part of building an indoor navigation system, we designed our own custom
markers which were used to encode integers as well as a direction indicator
for obtaining the user’s position and orientation. We had to study various
computer vision techniques, such as Hough transforms and Canny edge de-
tection, to develop a camera based scanner to decode these markers. Our
analysis showed that it was possible to almost always extract the encoded
data within milliseconds under normal lighting conditions. Furthermore, our
scanner was capable of decoding data from any angle even when the user
was standing at a distance. This gave the user the advantage of scanning
position markers without havi7ng to bend down. However, we also noted
that the markers did not function as expected when the lighting condition
were either too bright or too low.

We followed up on these vision techniques to also develop an obstacle de-
tector using the smartphone camera. After assessing the time performance
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of this component, we were able to validate its usability in a real-time appli-
cation. Therefore, we decided to include this mechanism in our final system
for checking the feasibility of the user moving to a new position.

From here, we focussed our attention on building a pedometer algorithm
using the inertial sensors on the smartphone. This involved filtering and
analysing the accelerometer signals to correctly detect a step and then keep-
ing track of these user movements as part of the dead reckoning process. Our
initial evaluation for this feature revealed that there was a significant margin
of error in the user’s position with increasing distance. This prompted us to
place more position markers around the site. Thus we had to request users
to scan additional markers while being navigated whenever there was one in
proximity. This significantly improved the accuracy of our dead reckoning
algorithm.

The final step comprised of combining these three components together
in order to display directions that would eventually lead the user to their
destination. A full functional testing of the application demonstrated that
our system was capable of guiding the user to their intended destination
within a small margin of error (2.1 metres). In general, this level of accuracy
was adequate enough to achieve indoor navigation.

8.2 Future work

There is a great amount of scope for future improvements to our current im-
plementation that can enhance both the performance and the user experience
of the application.

Improving pedometer accuracy

We identified the source of inaccuracy in our pedometer algorithm as the
inability of our implementation to correctly detect a step when users walk
around a steep corner. This was one of the main reasons our algorithm per-
formed worse in comparison to the pedometer apps available on the market.
In the future, we would need to model the characteristics of the accelerome-
ter data separately for when users make a sharp turn. Then, we would need
to distinguish this waveform from the one where users walk in a straight line
to be able to correctly detect all the steps.

Navigation across several floors

At the moment, our application can only navigate the user on a single floor.
For our application to support navigation across multiple floors, we would
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need to detect and distinguish between the steps taken to walk up and down
the staircase. This entails complex signal processing and even then our im-
plementation may not achieve the desired result. A much simpler alternative
entails the user scanning a position marker on reaching the destination floor.
For instance, the application would navigate the user to the nearest staircase
and then tell them to walk up or down a certain number of floors. A position
marker would be placed at the entrance and at the exit near the staircase of
every floor. When the user reaches the requested floor, they can scan this
position marker and continue as before. Similarly, this could also be applied
to lifts and escalators.

Marker design

The current position markers are susceptible to poor lighting conditions.
This is due to the markers encoding data using colours. If too much or too
little light falls upon the marker, then the camera preview would not be able
to correctly identify the colours. A more robust design could use shapes and
patterns to encode data like in QR codes. The ability to store more data in
these markers would be beneficial for larger site. Another problem with the
current marker design is that they only work really well when placed on the
floor. When they are stuck to the wall, they only allow scanning if the user
is right in front of it and not at a slanted angle. This is due to the incorrect
detection of the circle centre when the user is at an angle. The marker design
could be changed to incorporate its correct detection from every angle.

Obstacle detection

Our obstacle detection mechanism currently detects all the linear edges in
the environment. Due to time limitations, we were unable to expand this
further to be able to distinguish between floor patterns and actual obstacles.
A straightforward analysis on the line angles would help establish whether an
obstacle has three dimensional properties. This could be used to eliminate
some of the false positives. However, more work needs to be done with
complex floor patterns.

Path planning

Once our indoor navigation system is setup, we could extend it to employ
some form of optimal path planning that users can follow from the moment
they enter the site. For instance, users can create their shopping lists offline
and when they enter the supermarket, our application could use this data
to plan and display directions from the start till the end. Museums and art
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galleries could also offer special tours to visitors using this app navigating
them through all their preferred exhibits. Overall, indoor navigation opens
up a wide variety of extensions tailored to specific industries.

Hybrid dead reckoning approach

Our pedometer algorithm can be combined with ego-motion from the smart-
phone camera to yield a more accurate dead reckoning technique. The only
concern is that the preview frames would be slightly blurred when users start
walking. Image stabilisation algorithms exist that can fix this problem up to
a certain extent. However, this part of vision is highly theoretical and would
require a large amount of time to study and develop such a prototype.

Storing position information online

All the position information regarding the markers and the items were stored
locally for testing. For a real case scenario, an online platform should be
provided to store and fetch all these details. This data can be automatically
loaded when the user is close to the location. However, if there is a significant
amount of data stored relating to the site (for example, position of all the
books in a library), the client should provide Wi-Fi access to all the users to
retrieve this data.
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Appendix A

Hough line transform example

The following example and the corresponding images are taken from the
OpenCV documentation for Hough line transform1

Let us take an example where the binary image contains a point x = 8
and y = 6. If we plot all the possible values of θ and r for that point, we
obtain the following sinusoidal curve:

We repeat the process for every binary point in the image. So suppose
there are two other points in the image with coordinates (9, 4) and (12, 3),
we then obtain the following plot.

We can see that the three curves intersect when r = 0.925 and = 0.96.
So there is a high probability that there exists a line in the original image
with the following equation.

0.925 = xcos(0.96) + ysin(0.96)

1http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/hough_lines/

hough_lines.html
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There exist many such intersection points in the graph corresponding to
the different lines detected in the image. Furthermore, we can set a thresh-
old for the minimum number of intersections to eliminate any spurious line
detections.

77


