
Imperial College London

MEng Individual Project

Sentiment Analysis For Debates

Author:
Christina Michael

Supervisor:
Dr. Francesca Toni

Second Marker:
Dr. Krysia Broda

June 17, 2013

Abstract

The underlying trend of people using microblogging to express their
thoughts on various topics, has increased the need for developing com-
puterised techniques for automatic sentiment analysis on texts that do
not exceed 200 characters. An important, but not yet much explored
area, is dealing with debates extracted from social networking sites like
Twitter, Facebook, LinkedIn, MySpace, etc. which incorporate the use
of microblogging.
For the purposes of this project, we have investigated some of the sen-
timent analysis techniques that were successfully used in the past, for
longer texts, and performed adjustments for making them suitable for
microblogging text. We have built two classifiers that can be used for
this kind of debates: a support/opposition classifier that deals with
dual-sided debates, and an agreement-disagreement classifier for dealing
with replies to arguments posted by users in debates. For training these
classifiers, we developed two corpora based on the ones used in other
studies combined with data extracted from debating websites.
The two classifiers were the outcome of a series of experiments that
includes exploring the performances of different supervised learning al-
gorithms such as Support Vector Machines, Linear Regression, Naive
Bayes, etc. when triggered with different parameters on various corpora,
as well as dealing with different feature sets. The proposed techniques
and methodologies are written in Python using NLTK and SciKit-Learn.
Additionally, since people are sometimes too busy and in need of a quick
and easy way to understand debates, without having to look through the
entire history of arguments and comments, we implemented three visu-
alisations. The visualisations make use of Chernoff Faces, streamgraphs
and line charts.
Finally, we evaluated the classifiers and visualisations using an existing
debating system for social networking. The debating system can be
found at http://www.quaestio-it.com.

Acknowledgements

I would like to offer my special thanks to my supervisor and per-
sonal turor, Dr Francesca Toni, for accepting to supervise my project.
Her guidance and continuous feedback was very helpful and valuable
throughout the course of this project.

Many thanks to Dr. Krysia Broda, my second marker, for her advice
and constructive feedback on the interim report.

I would like to acknowledge the assistance provided by Valentinos Evripi-
dou for integrating the classifiers and visualisations to quaestio-it.com;
and Lucas Carstens for his insight on various sentiment analysis tech-
niques.

Contents

1 Introduction 2
1.1 Objectives . 2
1.2 Contribution . 5
1.3 Report Structure . 6

2 Background 8
2.1 Deducing Emotion From Written Text . 8
2.2 Sentiment Classification Techniques . 10

2.2.1 Symbolic Techniques . 10
2.2.2 Machine Learning Techniques . 10

2.3 Methods To Evaluate A Machine Learning Classifier 14
2.4 Classification Results When Using Different Methodolgies 16
2.5 Related Studies For Sentiment Analysis . 17

2.5.1 Recognising Textual Entailment . 17
2.5.2 Classifying A Text According To Its Polarity 18
2.5.3 Determining Support Or Opposition . 20
2.5.4 Detemining Agreement Or Disagreement 21
2.5.5 Summary Of The Approaches Taken In Previous Studies 22

2.6 Programming Language And Toolkits Used . 23
2.7 Visualisations . 24

2.7.1 Chernoff Faces . 24
2.7.2 Streamgraphs . 24
2.7.3 Technologies Used . 25

2.8 Open Questions And Challenges . 27
2.8.1 Challenges Associated With Implementing A Classifier For A Debate . . 27
2.8.2 Challenges Associated With Implementing Visualisations For A Debate 28

3 Analysis Of Techniques For Sentiment Analysis In Debates 30
3.1 Building Corpora For Training And Testing The Classifiers 30

3.1.1 Building A Corpus For Training And Testing The Support/Opposition
Classifier . 31

3.1.2 Building A Corpus For Training And Testing The Agreement/ Disagree-
ment Classifier . 35

3.1.3 Summary Of Proposed Corpora For Training And Testing The Classifiers 36
3.2 Analysing Techniques For Support/ Opposition Classification 37

1

3.2.1 Feature Selection . 38
3.2.2 NB, Maxent, SVM Using Default Parameters 41
3.2.3 Experimenting With Different Parameters Using Sklearn Tool 41
3.2.4 Experimenting With Different Classifiers On One Topic At A Time . . . 45
3.2.5 Experimenting With Part Of Speech Tagging 46
3.2.6 Summary Of Proposed Techniques For Building A Suppport/ Opposi-

tion Classifier . 49
3.3 Analysing Techniques For Agreement/Disagreement Classification 50

3.3.1 Using Different Feature Sets For Experimentation 50
3.3.2 Extracting Words From Text Based On Their POS Tag 51
3.3.3 Calculating Sentiment Polarity Of Words 52
3.3.4 Resulting Feature Set . 54
3.3.5 Summary Of The Proposed Techniques For Building An Agreement/

Disagreement Classifier . 54
3.4 Difficulties Encountered . 55
3.5 Summary Of Analysis . 56

4 Visualisations To Assist A Debate 57
4.1 Streamgraph . 57
4.2 Line Chart . 60
4.3 Chernoff Faces . 61
4.4 Difficulties Encountered . 64

5 Evaluation On An Existing System 65
5.1 Overview Of quaestio-it.com . 65
5.2 Testing Support/Opposition Classifier On A New Corpus 67

5.2.1 Dealing With Non Dual-Sided Debates 68
5.2.2 Dealing With Missing Topic Of Corpus 68

5.3 Testing Agreement/Disagreement Classifier On Corpus From quaestio-it.com . 72
5.3.1 Misclassifications Made By The Classifier 73

5.4 Integrating Agreement/Disagreement Classifier 75
5.5 Integrating Visualisations . 76
5.6 Difficulties Encountered . 78
5.7 Summary Of Evaluation On An Existing System 78

6 Conclusions And Future Work 79
6.1 Achievements Summary . 79
6.2 Future Work . 80

Appendix A Experiment Results 85
A.1 Feature Selection Experiments For Support/Opposition Classifier 85
A.2 Extracting Best Parameters When Trained On All the Corpus Data 86
A.3 Extracting Best Parameters When Trained On One Topic At A Time 95
A.4 Experiment Results When Using Part Of Speech Tagging 127
A.5 Extracting Feature Set For Agreement-Disagreement Classification 136
A.6 Experiments For Finding Out The Most General Classifier 138

2

Chapter 1

Introduction

“The growing stream of content placed on the Web provides a huge collection of
textual resources. People share their experiences on-line, ventilate their opinions
(and frustrations), or simply talk just about anything. The large amount of available
data creates opportunities for automatic mining and analysis.”[1]

1.1 Objectives

This project aims to expand on existing solutions used for automatic sentiment analysis on text
in order to capture support/opposition and agreement/disagreement in debates. Adding to
this, it also aims at visualising the classification results for enhancing the ease of understanding
the debates and for showing underlying trends. Finally, the project aims at evaluating the
proposed techniques on an existing debate system for social networking.

As the number of people making their opinion available on social media has dramatically
increased in the last decade, the opportunity to use these data for understanding what people
think prevails. Being able to use information technologies to do so, has therefore many
applications. For example, companies can use it to their advantage for quickly gathering
feedback about their products and targeting any customer complaints. Furthermore, people
tend to rely on reviews they read online for deciding whether to buy a particular product,
or settle on an alternative one, or which movie to rent, or even where to go for a night out.
Having to go through all the comments debating for a particular product can be frustrating
and very time consuming.

It was not until recently that the area of Automatic Sentiment Analysis has seen interest from
the academic community. Even though there was a booming of publications which are mainly
oriented to indicate whether a document (or part of it) is positive, negative or neutral, or
finding out the topic of discussion, there has not yet much been done for analysing debates.
This gives the opportunity to expand on the current studies and elaborate on the techniques
used in other areas, for creating a robust tool for sentiment analysis on debates.

3

Objective 1 - Classifications

The traditional way of extracting information is by poll taking and surveys. This methodology
however, is not only time consuming and costly, but also limited to the number of people
participating (usually no more than a few hundreds). Everyday, millions of people use the
internet to broadcast their personal opinions on flaming issues like politics, health, love etc.
So, why not take advantage of this vast amount of data and try to automatically extract this
information about your topic of interest?

The main focus of this project is to explore various approaches for achieving “supervised”
classification on two aspects. The first aspect is Support/Oppositon Classification , for
indicating whether the stance a person is taking in the debate supports or opposes the initial
statement; and the second aspect is Agreement/Disagreement Classification for indi-
cating whether a reply to an argument posted on a debate, is in agreement or disagreement
with it. For example, consider the statements in Figure 1.1 showing a debate on abortion.
The debate’s purpose is to provide the underlying opinion to the following question: “Should
abortion be allowed?”.

Should abortion be allowed?

Figure 1.1: Debate Example wth a supporting argument (Argument1), an opposing argument
(Argument2), a reply (Reply1) in disagreement with an argument (Argument1) and a reply
(Reply2) in agreement with an argument (Argument2).

4

The task of the Support/Opposition Classifier, is to classify ‘Argument1’ as in support, and
‘Argument2’ as in opposition to the debate question. The Agreement/Disagreement Classi-
fier’s task is to classify ‘Reply1’ as being in disagreement with ‘Argument1’, and ‘Reply2’ as
being in agreement with ‘Argument2’.

Objective 2 - Visualisations

The second important aspect of this project is, having implemented the classifiers, to create
interesting and interactive visualisations which are capable of engaging with the user, in order
to provide important information that is based on the classification results. This enables the
user to get an overall picture of the debate and to pick up underlying trends without having
to go through the history of posts of other users on the debates.

Objective 3 - Evaluation on an existing debating system

Finally, an important aspect of this project is to evaluate the classifiers and the visualisations
on a real system. Sometimes what seems to work well in theory, turns out to be rubbish
when tested on actual situations. That is why, the classifiers and the visualisations have to be
tested on an existing debating system, for a more thorough investigation on the applicability
and usefulness of the proposed techniques for a microblogging debating system.

Compared to other studies that have already tried to target support/opposition or agree-
ment/disagreement, this project emphasises on training data that do not exceed 200 charac-
ters each. This is very useful as the new trend of writing opinions is using extremely short
messages, also known as microblogging. One example of such microblog service is Twitter1,
which poses a limit of 140 characters. Other social networking sites that tend to use mi-
croblogging as a means of “status update” are LinkedIn, Facebook and MySpace. Training
a classifier for short messages requires different methodologies than when dealing with large
pieces of text, allowing us to investigate on the appropriateness of various techniques for
training and testing data extracted from microblogging.

Automatic sentiment analysis for data extracted from networking sites can be very challenging.
Communication language varies and changes depending on the age, education, and ethnic
background of the speaker. Consequently, the use of explicit rules (like you would do with
any programming language), that deal with all the arising groups of speakers is extremely
difficult or even impossible. To make things even more complicated, is trying to figure out the
emotional status of the speaker as it is expressed through the text when it is not explicitly
stated but rather implied or given in an indirect manner. This is a situation that arises
quite often when trying to classify a text as support/opposition or agreement/disagreement.
Furthermore, as the text is extracted from microblogging websites, there is little chance to be
properly structured, in contrast to previous studies that dealt with congressional debates.

An automatic sentiment analysis tool for debates is therefore extremely helpful for topics like
politics, new product release, etc., since these tend to be hot topics of discussion and you

1https://twitter.com/

5

https://twitter.com/

can find many debates on Twitter, Facebook, personal blogs, forums, etc. which constitute a
representative public opinion measurement review.

Additionally, giving the opportunity to see a visualisation of the debate conversation, provides
an overall picture of the debate and, as a result, useful observations can be made about the
prevailing thoughts on the matter, without having to go through the history of comments
of other users. The visualisations have to be clear (no ambiguities) and easy to understand
without any particular previous knowledge on visualisations.

1.2 Contribution

Contribution 1

In order to meet the first objective, we have developed two classifiers. One for showing
support/opposition and one for showing agreement/disagreement. For the purposes of these
classifiers, we have used several corpora and adjusted them to meet the specifications required
for training and testing the classifiers. The corpora used for the Support/Opposition Classi-
fier included political and ideological debates2 and amazon reviews3. For the Agreement-
Disagreement Classifier, the corpus used was extracted from the debating websites con-
vinceme.net and 4forums.com.

The development of the classifiers was based on some of the most successful techniques used
in the past for targeting sentiment analysis. Using these techniques, we tried to find the most
informative combination of features that, combined with a machine learning algorithm, will
give high classification results. The resulting classifiers were therefore the outcome of a series
of experiments using various machine learning techniques and machine learning algorithms
when triggered using different parameters.

The proposed techniques and methodologies are written in ‘Python’ using the natural language
processing toolkit (NLTK) [2] combined with Scikit-learn (sklearn) [3] tool.

Contribution 2

For meeting objective 2, we created three visualisations based on ‘Streamgraph’, ‘Chernoff
Faces’ and ‘Line Charts’. The Streamgraph visualisation is used to show topic popularity
throughout the entire period of the debating system. Chernoff Faces can visualise the attitude
of a user towards other users, as well as how other users interact with him/her. For example,
the extend to which his/her arguments are in support or opposition, and the extent that this
particular user agrees or disagrees with the arguments of other users. An example is shown
in Figure 1.2.

2http://www.cs.pitt.edu/mpqa
3http://archive.ics.uci.edu/ml/

6

http://www.cs.pitt.edu/mpqa
http://archive.ics.uci.edu/ml/

(a) Male Chernoff Face (b) Female Chernoff Face

Figure 1.2: (a) Visualisation showing the attidar of male user, (b) Visualisation showing the
attidar of female user

Finally, the Line Chart is used as a means to provide a history of the most popular arguments
made for a particular debate, allowing the user to find out the prevailing opinions on a matter
quickly.

The underlying technologies for implementing the visualisations are ‘D3.js’, ‘HTML5’ and
‘CSS3’.

Contribution 3

For evaluating the methodologies mentioned in Contribution 1 and Contribution 2, we used
the debating website ‘http://www.quaestio-it.com/’. The outcomes of this evaluation were
extremely useful for providing a first hand experience on the effectiveness of the techniques
used and their impact on debates for social networking websites.

1.3 Report Structure

In this report we will start by going through the background of automatic sentiment analysis
and the visualisations that are to be implemented (Chapter 2), which will cover basic termi-
nology that will be used throughout the report as well as the most frequently techniques used
in this field. Furthermore, we will go through some of the related work that stands out and
can be possibly adopted for the purposes of this project. Additionally there is a small section
on the technologies used for implementing the classifiers and the visualisations. Finally, there
will be a small discussion on the challenges that are associated with this project.

In Chapter 3, we will first cover the main points when constructing the corpora used for
the classifiers. Then we will go through the implementation details for the two classifiers,
the investigation process for selecting the most suitable combination of features and machine
learning algorithms, and how they changed based on the accuracy on the training corpora.

7

In Chapter 4, we will go through the implementation process for creating the various visuali-
sations and explain how they can be used in a debating system.

In Chapter 5, we will see how the classifiers and visualisations were evaluated on a new corpus
and what conventions were used for each one of them. Additionally, there is a short discussion
on their integration into the system.

Finally, in Chapter 6, we will go through what has been learnt through this project and what
can be done in the future for improvement.

8

Chapter 2

Background

“Sentiment analysis or opinion mining refers to the application of natural language processing,
computational linguistics, and text analytics to identify and extract subjective information in
source materials”[5].

“Natural Language (also known as ordinal language) refers to any human language such
as English, Greek or Italian which is casually used by humans for their everyday communica-
tion and arises in an unpremeditated fashion. They are differentiated from constructed and
formal languages, such as programming languages and mathematical notations, since they
have evolved throughout the centuries and as a result they cannot be formalised into specific
rules.” [6]

“Computational Linguistics deal with the statistical or rule-based modelling of natural
language from a computational perspective. Some of the linguistic areas are computational
semantics, pragmatics and sociolinguistics which use models for parsing and learning gram-
matical structure, models of communication, conversation, and dialogue and computational
psycholinguistic models of human language comprehension and production.” [7]

“Text Analytics uses a set of linguistics, statistical, and machine learning techniques that
model and structure the information content of textual sources for business intelligence, ex-
ploratory data analysis, research, or investigation.”[8]

Before going into detail about some of the techniques mentioned above, it is important to
realise what the concept of emotion in written text is.

2.1 Deducing Emotion From Written Text

When studying emotions in a text we must ask ourselves two questions:

(a) How does the writer choose certain words and other linguistic elements to express their
emotions?

(b) How does the reader interpret the emotion from a given text, and which are the linguistic
methods used by the writer to transfer an emotion to the reader?

9

Therefore we are interested in mimicking, using computer technologies, they way humans de-
duce emotion in a text. Particularly, we need to investigate how particular linguistic method-
ologies are used to describe appraisal and action-readiness, as these two give the most clues
for inferring emotion from text.

Appraisal denotes whether something is positive or negative, the significance of an event, the
involvement of the own ego etc. According to Osgood and al, it has three dimensions.

1. Positive or Negative evaluation:
The opinion of the writer for the topic of discussion is usually expressed through adjec-
tives. It can also be expressed using specific words, and as part of a speech, as well as
using discourse strategies, conversational techniques and word organisation patterns.
e.g. “It was the most rewarding experience of my life”.

2. Power, Control or Potency dimension:
Identifying whether the writer associates or dissociates himself from the content of the
sentence. This is sub categorised into the following:

(a) Proximity :
Linguistic elements showing whether the writer identifies himself or distances him-
self from the topic.
“Mrs Varnava/Mary is the owner of this lovely cafe”;

(b) Specificity, Differentiate between an item being referred to a direct or indirect way.
“I used my/a blue pan to write the note”;

(c) Certainty :
Showing the certainty of the writer for the expressed opinion
“It is seemingly/absolutely a nice picture”.

3. Activity, Arousal or Itensity dimension, consists of emotional words for modifying the
strength of the expressed emotion.
“This is undoubtedly the best chocolate cake I have had in my life”.

Action-Readiness refers to any mental or physical action which results to an emotion. This
can be fairly obvious such as crying and laughing or more subtle like yawning during a lecture
which is a sign of boredom.
“I could not stop crying as I watched her lying helpless on the hospital bed”.

Sometimes the emotion is expressed in a more direct way, that is without using appraisal
or action-readiness. Verbs and adjectives are typically used.
“I was very happy to see him again”.

However, we quite often encounter emotions expressed in ways not described above like using
irony or figurative language. That is why the techniques that tend to be frequently used
emphasise on terms that denote judgement, appreciation or evaluation. This is particularly
helpful for understanding emotion in reviews.

Following this, we will go through the fundamental techniques in natural language processing
which are frequently used for classifying text.

10

2.2 Sentiment Classification Techniques

Sentiment classification techniques can be either based on a symbolic technique (also known
as using manually crafted rules and lexicons), or a machine learning technique that constructs
a classifier based on a training corpus.

2.2.1 Symbolic Techniques

2.2.1.1 Lexicon Based Techniques

This technique treats the text as a “bag-of-words” and does not take into account any relations
between the words in the text.

Web Search

Turney’s [9] approach was to use the Altavista search engine for classifying a text as positive
or negative. First, he created tuples that consisted of combinations of adjectives and nouns,
and combinations of adverbs and verbs, extracted from the text. Then, he issued two queries
for each combination; one for returning the number of documents containing the tuple which
is closest (less then ten words away) to the word ‘excellent’ and the other to the word ‘poor’.
If the first query has more results, then it is classified as positive and as negative otherwise.

WordNet

WordNet [10] database consists of nodes (words) connected by edges (synonym relations).
This database is used by Kamps and Marx [11] in order to find out which is the emotional
content of the word using the Osgood et al.’s dimensions (see section 2.1 Emotions in Written
Context). In order to find the shortest path (least amount of edges traversed) between the
word that needs classification and the positive and negative end of that dimension, they use
a distance metric to compare the words found in WordNet. Depending on the evaluative
dimension these words are “good/bad”, “strong/weak”, “active/passive”, etc.

2.2.1.2 Sentiment of Sentences

When trying to classify a sentence, the relations between the words are very important and
have to be taken into serious consideration. Mulder et al. [12] used an affective grammar
which not only classifies a sentence as positive or negative, but also the topic this sentiment
is directed at. To do so, a lexical and grammatical approach was taken.

2.2.2 Machine Learning Techniques

“Machine Learning is the study of computer algorithms that improve automatically
through experience” [13]

11

Before looking into some of the machine learning techniques that are currently used, it is
important to understand the following features which are used for representing a document
for classification.

2.2.2.1 Features

Feature is an “individual measurable heuristic property of a phenomenon being observed.
Choosing discriminating and independent features is key to any pattern recognition algorithm
being successful in classification. [..] This set of features and their values are stored in a feature
vector”. [14]

A common error with choosing a good feature set is trying to provide too many features based
on the training set provided, which makes the resulting classifier prone to the idiosyncrasies
of the training set and therefore fails to generalise well to examples that were not encountered
before (i.e new to the classifier). The term used for describing this situation is overfitting.

Unigrams

This is known as representing documents as a feature vector with the elements indicating
whether a word appears in the document. Each word has also a frequency of appearing in
the text.

N-grams

A sequence of n-words from a given sequence of text or speech [15]. This allows the features
to be a pair of words (bigrams), triples (trigrams) and more. This allows capturing of more
context like the sequence of words “not ideal”. The size of the feature vector size is usually
limited by a frequency threshold number, and/or using a set of rules.

Lemmas

The lemma (basic dictionary form) of a word is used as a feature instead of the actual word
from the text. For example best becomes good, dogs becomes dog and so on. The reason
behind this idea is to make the features more general for easier classification of the document.
However, sometimes overgeneralisation may occur and lose the details of the sentence. For
example saying “this is a good movie” is not the same as saying “this is the best movie”.

Negation

This is an alternative way to n-grams for capturing negation in a sentence, proposed by [16].
When a negation appears in a sentence, e.g. “not”, then a not is added to each of the following
words. For example “I don’t want to go to the movies” becomes “I don’t NOT want NOT to
NOT go NOT to NOT the NOT movies”.

12

Opinion Words

Opinion words are expressed through adverbs, adjectives, verbs or nouns that indicate pos-
itive/ negative opinion. By incorporating them into the feature vector, we can tell whether
such words appear in the text or not. One technique to do so is by using a predefined lexicon.
This was adopted by Wiebe and Riloff [17], who created an opinion word-list for combin-
ing this method with machine learning methods. The second technique is to identify words
describing a feature of an item in a text [18].

Adjectives

Wiebe [19] observed that adjectives can express subjectivity in a document. Therefore he
used only the adjectives of the document for its classification. Salvetti [20], added on this
observation by using WordNet for enriching these feature vectors that include only adjectives,
and found the synsets of adjectives and then used hypernym generalisation. This however
had a decrease in accuracy due to the generalisation.

2.2.2.2 Machine Learning Algorithms

Learning algorithms can be either “supervised” or “unsupervised” depending on the avail-
ability of training examples. When training data are available and therefore the classes are
known and finite then the algorithm is supervised. When no training data are available and
the classifier relies only on test data then it is unsupervised.

In this project we will be working with supervised classifiers. The following Figure shows the
framework used by supervised classification:

Figure 2.1: Supervised Classification (a) Training, feature extractor converts each input value
to a feature set. Pairs of feature sets and labels are fed into the machine learning algorithm to
generate a model. (b) Prediction, the same feature extractor is used to convert unseen inputs
to feature sets which are then fed into the model which generates predicted labels. [2]

Since for this project we will be dealing with supervised algorithms let’s see some of the most
frequently used supervised methods.

13

Supervised Methods

(a) Support Vector Machines (SVM)
SVM use maximal Euclidean distance to construct a hyperplane of the distances to the
closest training examples. More explicitly, this is the distance between a separating
hyperplane and the parallel hyperplanes that represent the boundaries of the training
examples used for each class. Having a maximal distance is believed to provide the best
generalisation for the classifier. In the case where the data is not separable, the chosen
hyperplane splits the data with as little error as possible. [1]

Figure 2.2: Support Vector Machines [21]

(b) Naive Bayes Multinomial (NBM)
A Naive Bayes classifier uses Bayes rule (for updating and revising believes when new evi-
dence comes in) as its main equation, based on the naive assumption that each individual
feature is independent and is an indication of the assigned class. This assumption is
called conditional independence. A multinomial naive Bayes classifier constructs a model
by fitting a distribution of the number of occurrences of each feature for all the documents
[1].

(c) Maximum Entropy (Maxent)
This technique preserves maximum uncertainty. In order to do so, various models are con-
structed with each feature corresponding to different constraints. Among these modes,
the one which has the maximum entropy satisfying the constraints is selected for classi-
fication. Therefore, all the assumptions are justified using available empirical evidence.
[1].

(d) Decision Trees
Decision Tree Learning is a method for approximating discrete classification functions
by means of a tree-based representation. It employs a top-down greedy search through
the space of possible solutions. For constructing the tree it selects an attribute that
has the highest Information Gain (i.e how informative an attribute is for classifying the
training examples). This information gain is based on a measure called Entropy, which
characterises the impurity of a collection of examples [13].

(e) Stochastic Gradient Descent (SGD)
Stochastic Gradient Descent is an under convex loss functions. When dealing with error
functions we want to move in the direction opposite the gradient. Stochastic gradient
descent chooses randomly a training example each time for avoiding local minima in
order to minimise the squared error. [3]

14

(f) K-Nearest Neighbour (KNN)
K-Nearest Neighbour is an instance-based method which assumes all instances corre-
sponding to point in the n-dimensional space. The nearest neighbours of an instance are
defined in terms of the standard Euclidean distance.

(g) Nearest Centroid
In Nearest Centroid, each class is represented by its centroid, with test samples classified
to the class with the nearest centroid.

(h) Logistic Regression
Logistic Regression is an approach to predicting a dichotomous outcome i.e. only two
values. The goal is to determine whether each set of independent variables has a unique
predictive relationship to the outcome, by converting the dependent variable to probability
scores. The logistic function takes only values between 0 and 1.

2.3 Methods To Evaluate A Machine Learning Classifier

An important aspect of constructing a classifier using different techniques is finding ways to
evaluate each one of them. We usually evaluate the performance of a classifier relative to the
classifications that would have been made by a human expert. Since experts and impartial
human judges are not usually available, we use test data of gold standard. This is a corpus
which has been manually classified and it is used as a standard against which the classifications
of the automatic classifier are assessed. The automatic classification is considered to be correct
if it matches the stored value of the gold standard classifications. It is worth noting that the
gold standard classifications were made by humans so it is possible that errors were made.
Nevertheless, the gold standard corpus is by definition “correct”.

A classifier is trained with training examples and tested on a new set of data, test examples.
The reason for testing on new data set is that the model can memorise its inputs and would
incorrectly give high classification rate. Training examples are usually further divided into
training data and validation data. The validation data set is used for optimising the param-
eters of classifiers by performing error analysis which will indicate how to adjust the feature
set.

In this section we will go through some of the basic evaluation concepts that will be used for
evaluating the classifiers.

(a) K-fold Cross Validation
This is used when the amount of data for training and testing is limited and therefore
we reserve, usually, 10% of the data for testing. To guarantee that the part retained for
testing is representative, one may employ K-fold cross-validation. The data is split into
K folds (parts) and only one is used for testing while the remaining k-1 folds are used
for training. This process is repeated K times, using a different testing fold in each case.
The total error estimate is the arithmetic mean of Error(D) obtained for each of K times
of testing.

15

Figure 2.3: K-fold cross-validation process [24]

(b) Confusion Matrix
A confusion matrix is typically used as a visualisation tool to present the results attained
by a learner. The columns of the matrix represent instances in a predicted class, and
the rows represent instances in an actual class. For example, in the following confusion
matrix, of the 12 actual samples of anger, the system falsely predicted 1 fear and 1 sadness
emotion.

anger disgust fear happiness sadness surprise

anger 10 0 1 0 1 0

disgust 1 21 0 0 0 0

fear 1 0 5 0 1 0

happiness 1 0 0 23 0 0

sadness 1 0 0 0 10 1

surprise 0 0 0 0 0 23

Table 2.1: Confusion Matrix

(c) Recall and Precision Rates
For comparing two classifiers we calculate the Recall and Precision rates which measure
the quality of an information retrieval process, e.g. a classification process.
Recall Rate describes the completeness of the retrieval. It is defined as the portion of
true positives (TPs), i.e. the examples that were classified correctly by the process versus
the total number of existing positive examples including the false negatives (FNs) not
retrieved by the process i.e the examples that were classified incorrectly as members of
the negative classes.
Precision Rate describes the actual accuracy of the retrieval, and is defined as the portion
of the true positives (TPs) that exist versus the total of true positives (TPs) and false
positives (FPs) i.e the examples classified incorrectly as members of the positive class.
Based on the recall and precision rates, we can justify if a classifier is better than another,
i.e. if its recall and precision rates are significantly better.

Recall Rate =
TP

TP + FN
× 100%

16

Precision Rate =
TP

TP + FP
× 100%

(d) Fa Measure
Fa Measure combines the recall and precision rates in a single equation:

Fa = (1 + α)× precision ∗ recall

α ∗ precision + recall

where α defines how precision and recall will be weighted. If recall and precision are
evenly distributed then α = 1.

2.4 Classification Results When Using Different Methodolgies

An analysis was made by Boiy, Hens, Deschacht and Moens [1] for the techniques mentioned
in the previous section.

Here are some of the classification results when using symbolic techniques:
Turney’s method of using Altavista web search engine achieved an accuracy of 65.83% with
a movie review corpus and 84.0% with an automobile review corpus. Kamps and Marx by
manually constructing a list of the General Inquirer along the Osgood et al.’s dimensions,
achieved an accuracy of 76.72% using WordNet. Pang et al. method of trying to manually
construct an emotion lexicon had an accuracy of 64% (with 39% ties) compared to the 69%
accuracy (with 16% ties) achieved using an automatically created lexicon.

Their research focused on performing experiments with machine learning techniques using a
movie review corpus of 1000 positive and 1000 negative reviews and a corpus gathered from
discussion boards, blogs and various websites containing 759 positive, 205 negative, 3527
neutral/junk examples.

For evaluating Support Vector Machine (SVM) and Naive Bayes Multinomial (NBM) methods,
they used the WEKA [25] software, and for Maxent the OpenNLP [26] package was used. Also,
different techniques for creating the feature set were used. Their results on the movie corpus
are shown in the following table:

Figure 2.4: Classification results for different learning methods and feature sets using a movie
review corpus [1]

17

When training the classifier on a corpus extracted from blog, they used the most successful
method derived from the first corpus. Their results were the following:

Figure 2.5: Classification results on the blog coprus [1]

Another study performed by Pang, Lee and Vaithyanathan [16], for evaluating these machine
learning techniques on the same movie review corpus had the following results:

Figure 2.6: Average three-fold cross-validation accuracies [16]

The results from the studies show that machine learning techniques perform significantly
better than symbolic techniques. Furthermore, when using a corpus that is extracted from
blogs, which is also the case for the corpus used in this project, we observe a decline in the
classification accuracy. This means that dealing with this kind of corpus is more challenging
and therefore makes the classification process more difficult.

2.5 Related Studies For Sentiment Analysis

The following studies are directly or indirectly related to analysing text in debates:

2.5.1 Recognising Textual Entailment

Recognising Textual Entailment (RTE) deals with determining whether a given hypothesis H
is entailed by a given text T. The following examples were taken from [2] and show a positive
and a negative textual entailment:

18

Text: “Eating lots of foods that are a good source of fiber may keep your blood glucose from
rising too fast after you eat.”
Hypothesis: “Fiber improves blood sugar control.”
(TRUE)

Text: “All genetically modified food, including soya or maize oil produced from GM soya
and maize, and food ingredients, must be labelled.”
Hypothesis: “Companies selling genetically modified foods don’t need labels.”
(FALSE)

One approach for recognising textual entailment described in the article “Natural Language
Processing with Python” [2], which compares the text and the hypothesis treating them as
two bags-of-words. Ideally, they expect that textual entailment exists when all the words
contained in the bag-of-words for the hypothesis, can be found in the bag-of-words for text.
Their feature set measures the word overlap as well as the amount of difference in the two
bag-of-words. First, they filter out high frequency words such as the, to, etc and then they
calculate the overlap and difference for regular words and named entities. Named entities are
names of people, organisations and places and tend to be more important and therefore are
weighted more than regular words. This approach has a classification rate of 58%.

2.5.2 Classifying A Text According To Its Polarity

Classifying a text according to its polarity is determining whether it expresses a positive,
negative or neutral opinion on the topic discussed.

In the article “From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series”
[27], a twitter corpus of 1 billion messages was used. A transparent, deterministic approach
based on prior linguistic knowledge was adopted, counting instances of positive-sentiment
and negative words in the context of a topic keyword using OpinionFinder. This however,
had many falsely classified messages. One of the reasons was that a part-of-speech tagger
was not used, resulting to words like will to be considered as positive using their noun form
even when it was used as a verb. A better approach was to use a web-derived lexicon based
on an informal social media dialect of English. The research showed that their technique of
measuring sentiment was reasonably correlated to the measurement made by Gallup Daily
and Michigan ICS and was able to peak up any downward or upward trends in emotions.
This is shown in Figure 2.7:

19

Figure 2.7: Sentiment ratio and consumer confidence surveys. Sentiment information captures
broad trends in the survey data [27]

Another approach to predicting polls with lexicons was the one by Lindsay [28] on a propri-
etary corpus of Facebook posts. First a corpus of 5000 tagged posts labeled positive, negative
or neutral was manually created. Then synonyms for sentiment words were gathered depend-
ing on their neighbouring words e.g I “hate/love” you. and then these sentiment words were
again manually labelled. Having created a lexicon and a corpus, several techniques were used
like counting the number of sentiment words, simple tokenization schemes, negation heuristics
and feature selection giving them more than 80% precision (and a very low recall). This ap-
proach was tested at how it predicts election polls by correlating with the results of the polls
conducted during part of the 2008 presidential election. The correlation was pretty good a
few days before the poll came out and totally unpredictive a few days later (only 30% - 40%).

Another study by Gilbert and Karahalios [29] showed how estimating emotions from weblogs
can provide information about future stock markets, by measuring anxiety, worry and fear
from a dataset of over 20 million posts. Their first classifier, a boosted decision tree, was
made from a corpus of already labelled posts (anxious, happy, angry, confused, relaxed, etc),
and uses a feature set of the first 100 most informative words used as anxious or not anxious
indicators. The second classifier was built on a bagged Complement Naive Bayes algorithm
and it uses 46,438 word from the mood corpus as feature set. Their classification results were
rather low, only 28% and 32% respectively.

20

An interesting approach was shown by Pimenta et al. [30] for calculating polarity of blog
posts. The idea was to take into account an aggregation of a set of documents instead of
each individual document. Using POS-tagging for counting the polarity of different POS
tags using SentiWordNet [31] together with considering the contextual valence shifters on
each word, gave higher classification rates than using the association approach (measuring
association with the Pointwise Mutual Information using search engine queries).

A well known study by Pang & Lee [32] for determining sentiment polarity for movie reviews
is by using text-categorisation techniques on the subjective parts of the documents which are
extracted using the minimum cuts in graphs approach. Their procedure was to first trim
out the objective content and then using a support vector machine classifier, trained on a
objective-subjective dataset of sentences, to determine their polarity. The trimming of the
text was done by first placing each sentence of the text as a node on a graph along with a
positive and a negative node. Then, they measured the weight of the edges between sentence
nodes and the positive and negative nodes. Next, they assigned scores to edges between
sentences by their proximity within the review and finally, using the minimum cut on the
graph they removed the objective content from their reviews. This approach had a high
classification rate of 90%.

2.5.3 Determining Support Or Opposition

Being able to identify support or opposition is very much related to the purposes of this
project.

An approach by Thomas, Pang and Lee [33], focuses on very general types of cross-document
classification preferences, and only used as constraints the identity of the speaker and any
direct textual references between statements. This indicated that the integration of inter-
document relationships increases accuracy. Their corpus was extracted from GovTrack and
had many conventions that enabled them to identify speaker, post in reply to, label etc. Their
method combines the use of support vector machines for considering each text in isolation, and
exploitation of various relationships between speech segments belonging in the same debate
using a weighting function that associates speech segments.

A different approach to recognise opposition, has been adopted by new studies, e.g. Yu
et al [34], which rather than classifying isolated positions, the classifier tries to find out
what is the underlying ideology of the speaker. This was particularly helpful in professional
political speeches when the speakers tend not to use expressive language which will indicate
an emotion. The belief is that ideology influences the individuals and therefore their views
on different issues will tend to be based on the underlying ideology. This is an innovative
approach but unfortunately not very helpful for this project since we will be dealing with text
from blogs and therefore extracting the ideology of the speaker is not at all applicable.

Martinau and Finin [35] used Support Vector Machines for showing how using the Delta
TFIDF (term difference-inverse document frequency) for weighing words gives better clas-
sification results. Feature values for the document are created by calculating the difference
of a word’s TFIDF score for positive and negative training corpora. They tested their ap-
proach against the movie review used by Pang & Lee (minimum-cut approach) for sentiment

21

classification giving a statistical significance of 95% on a two tailed t-test. When tested on
determining support or opposition it performed relatively higher than using complex tech-
niques such as party affiliation information, or joining texts from same speaker, or manual
co-refference on the named entities.

Somasundaran and Wiebe [36] tried to combine utilising sentiment and arguing opinions in
order to classify a text either as supporting or opposing a statement. They created an arguing
lexicon from a manually annotated corpus and used features that encode what the opinion is
about. Their experiments were made on four different ideological debates. Their classification
results had reached up to 63.93% when trained on multiple topics and 70.59%, 63.71%, 60.55%,
63.96% when trained on one topic at a time.

2.5.4 Detemining Agreement Or Disagreement

Being able to automatically detect whether a response to a specific quote agrees or disagrees
with it, is a feature that we are looking into incorporating into the classifier.

An approach to do so, followed by Lee et al [37] is treating classification as seeking minimum
cuts in the appropriate graphs. This is appealing to the agreement-disagreement classification
since we can incorporate preferences among pairs of instances in a provably tractable way
which ensures efficiency.

An approach by Galley et al. [38], describes a statistical model for identifying adjacency
pairs and deciding if an utterance expresses agreement of disagreement with its pair. Using
maximum entropy ranking based on a set of lexical, durational, and structural features that
look both forward and backward in the discourse, they classified utterances as agreement
or disagreement using these adjacency pairs and features that represent various pragmatic
influences of previous agreement or disagreement on the current utterance. Their approach
gives an accuracy of 86.9%.

Clint Burfoot [39], shows how using multiple sources of agreement information can be used to
classify sentiment. This is done by combining per-document classifications with information
about agreement between documents, taking advantage of a minimum-cost cut graph. The
idea of same-speaker agreements is that speeches by a given speaker are linked and receive the
same final classification. Also, taking into account how a speaker refers to another speaker
in the discussion indicates whether he/she agrees with him/her. This is done using an SVM
classifier on the tokens immediately surrounding the reference. Additionally, as seen by Yu
et al, they rely on the ideology of the person for strengthening or weakening the agreement.
Furthermore, they measure the extend to which a pair of speakers use similar words to describe
their positions. They tried different combination of the above techniques with a maximum
classification rate of 85% on the development set and 80.5% on the test set.

22

2.5.5 Summary Of The Approaches Taken In Previous Studies

The following table summarises the approaches described above that yielded high classification
results.

Detecting Technique Classification Corpus
(up to) rate used

Support Vector Machines using bag of
words

83%

+ human supplied annotation/
Support/ rationals, appraisal groups/ 90% Congressional

Opposition minimum cuts floor-debate

+ relationship between speech 88% transcripts

segments

+ ideology 85%

+ Delta TFIDF (on one topic only) 95%

+ Utilising sentiment and arguing 64%

opinions (overall) Political and

(Guns Rights) 71% Ideological

(Gay Rights) 64% Debates

(Abortion) 61%

(Creationism) 64%

Agreement/
Disagreement

Adjacency pairs using maximum entropy
ranking based on lexical, durational and
structural features

87%

Congressional
floor-debate
transcripts

Table 2.2: Summary of classification results

Based on the above results and the nature of the corpora that we will be working with, the
techniques that are applicable and can be used, are SVM with Delta tf-idf, Utilising sentiment
and arguing opinions, and using local lexical features. There is no information on the speaker’s
ideology, or any other relationships between speech segments and therefore cannot be used in
this context.

However, as the corpus is different we cannot rely only on using the above techniques. The
exploration will incorporate different supervised methods (see Section 2.2.2.2), as well as
symbolic techniques (see Section 2.2.1) and Machine Learning Techniques (n-grams, lemmas,
negation, adjectives) for extracting feature sets.

Furthermore, we decided not to use the approach followed by Somasundaran et al, of Utilising
sentiment and arguing opinions, as their corpus is a subset of the corpus we will be using and
there is no point in repeating their research. Also, the results were not very good, since the
simple use of unigrams provides almost the same classification results with their approach.

23

2.6 Programming Language And Toolkits Used

The programming language used for experimenting with the various techniques for Support/
Opposition and Agreement/Disagreement classification, is ‘Python’. Additionally, Natural
Language Toolkit (NLTK) was used for manipulating strings for feature extraction, as well
as providing useful implementations to assist Part of Speech Tagging. Extremely helpful was
Scikit-learn for machine learning in Python.

Python

After exploring different alternative choices, we decided to use Python1, since it has a powerful
functionality in processing linguistic data, particularly for handling strings. It also has support
for graphical programming, numerical processing and web connectivity.

Someone familiar with other programming languages can easily adapt to the syntactic rules
of Python as it is considered to be a language with a shallow learning curve.

There are many available machine learning tools for Python, including NLTK and Scikit-
learn. As they are very important for implementing this project, it would be much easier to
use these machine learning components when writing the program in Python. Installing and
accessing their source code is relatively easy and they have good documentation, guiding you
through examples and helping you getting started.

NLTK

The Natural Language Toolkit (NLTK)2 is an open source Python library for Natural Lan-
guage Processing. There is a very good guide for using the toolkit 3 and familiarising the
user to the techniques used; making it ideal for people who are new to machine learning
area. It also includes many corpora allowing the user to experiment with the techniques and
approaches mentioned in the book.

Scikit-learn: Machine Learning In Python

Scikit-learn 4 is useful for integrating machine learning algorithms in the “tightly-knit scientific
Python world” (numpy5, scipy6, matplotlib7). It provides tools for data mining and analysis
in a simple and efficient way making it easily accessible and reusable.

1http://www.python.org/
2http://nltk.org
3http://nltk.org/book
4http://scikit-learn.org/stable/index.html
5http://www.numpy.org/
6http://scipy.org/
7http://matplotlib.org/

24

http://www.python.org/
http://nltk.org
http://nltk.org/book
http://scikit-learn.org/stable/index.html
http://www.numpy.org/
http://scipy.org/
http://matplotlib.org/

2.7 Visualisations

As we have mentioned already, one of the objectives of this project is to create visualisations
that will show quickly an overall picture of the debate so that users will be able to make
observations easily. In order to do so, we plan to make use of Chernoff Faces, Streamgraphs
and Line Charts. Line Charts are widely used and therefore no particular explanation is
needed; but what exactly is a Chernoff Face and a Streamgraph?

2.7.1 Chernoff Faces

Chernoff Faces were invented by Herman Chernoff for “displaying data in the shape of a
human face. The individual parts, such as eyes, ears, mouth and nose represent values of the
variables by their shape, size, placement and orientation. The idea behind using faces is that
humans easily recognise faces and notice small changes without difficulty”. [4]

An example of how they can be used is shown in Figure 2.8, which indicates, by varying the
characteristics of the faces, the measurements of skull and teeth, on human races, apes and
fossils:

Figure 2.8: Skull and teeth measurements on human races, apes and fossils

We decided to use Chernoff Faces to visualise the user’s attitude and how the user’s emotional
status changes depending on how the other users respond to his/her comment.

2.7.2 Streamgraphs

Streamgraphs [40] are used to visualise underlying trends. They are preferred over traditional
stacked bar charts as they can emphasise on the legibility of each layer, by arranging the
layers in a distinctively organic form.

They were first applied to last.fm data for showing the listening histories of users. The response
on the users was very positive and therefore drew the attention of New York Times. NYT,
implemented an interactive version of the streamgraph for showing the box office revenue for

25

7500 movies over the past 21 years. The two visualisations are shown in Figures 2.9 (a) and
2.9 (b) respectively.

(a) Listening History streamgraph

(b) Box Office Revenue Streamgraph

Figure 2.9: (a) Visualisation showing the Listening History streamgraph, (b) Visualisation
showing the Box Office Revenue Streamgraph

In order to understand the streamgraphs one must realise that each layer represents a different
artist/movie and that x-axis shows time. Additionally using the colour of the layers, different
parameters can be shown, based on two dimensions, saturation and hue. For example in
Figure 2.9 (a), saturation shows the number of times an artist was listened and hue shows
the earliest time that a particular song from that artist was listened. Figure 2.9 (b) shows
a simplified version of colouring the graph, where the colour becomes darker when the total
domestic gross increases.

As these two graphs, can easily show the underlying trends for listening and movie preferences
of users, we decided to use them for showing trends in debating preferences of users.

2.7.3 Technologies Used

When choosing the technologies for implementing the visualisations, we had in mind the
following two aspects:

26

• The debates are to be accessed through websites.
• The visualisations will need to be interactive and in capable of dynamically changing

when there is an update on the debate (i.e new argument, new reply, votes etc).

Therefore the main technology used is d3.js with HTML5, Javascript, jQuery and CSS3.

2.7.3.1 D3.js

“D3.js8 is a small, free JavaScript library for manipulating documents based on data. It
allows you to bind arbitrary data to a Document Object Model (DOM), and then apply
data-driven transformations to the document.”

It is used for efficient manipulation of data in a flexible way using technologies such as CSS3,
HTML5 and SVG. It is very fat and can handle big datasets including transitions and inter-
actions.

2.7.3.2 HTML5

HTML5 is used for implementing web pages by creating text files that can be read by web
browsers. It is used for structuring and presenting the required content on the Internet.

2.7.3.3 Javascript

A scripting language developed by Netscape to for adding interaction to websites by incorpo-
rating user interface controls and user friendly features.

2.7.3.4 jQuery

As defined in ‘Webopedia’ [41], jQuery is a free and open source JavaScript library that is
used by Web developers to navigate HTML documents, handle events, perform animations
and add Ajax interactions to Web pages.

2.7.3.5 CSS

Cascading Style Sheet or CSS allows web designers to form the document presentation by
changing the layout, colours and fonts [42].

8http://d3js.org/

27

http://d3js.org/

2.8 Open Questions And Challenges

2.8.1 Challenges Associated With Implementing A Classifier For A Debate

Natural Language Processing, is considered to be a complicated task. Having to deal with
a relatively new area like support/opposition and agreement/disagreement, makes it even
more complicated and therefore there are certain challenges that are particularly difficult to
overcome.

2.8.1.1 Training Corpora

The classifiers to be implemented will try to pick up patterns that distinguish a supporting
and an opposing statement (or agreement/disagreement). These patterns will be constructed
based on the training corpora. Therefore, the training corpora have to consist of a good
indication of what might come up in a debate. Additionally, they has to be annotated correctly
since, otherwise, the patterns extracted will be completely rubbish. Finding such corpora,
that have already been annotated, is not an easy task as there are not any corpora available
that use microblogging data from debates. In order to create a good enough corpus certain
conventions were taken and are explained in Section 3.1.

2.8.1.2 Dealing With Different Corpora

Different corpora will have different patterns that show support/opposition or agreement/
disagreement. For example, in an abortion debate, using the word ‘fetus’ instead of ‘baby’ is
an indication that probably this statement is pro abortion. However, these words make no
sense when talking about gay rights, quality of a product etc. Having a corpus that includes
all possible topics of discussion is nearly impossible. Consequently, the classifier needs to
be able to provide a good estimate based on the corpus provided, or a subset of the corpus
provided.

2.8.1.3 Stance Of Speaker Not Clearely Stated

Sometimes, the position a person is taking is not clearly stated. For example, consider the
following sentence:

“If a fetus had a right to life, abortionists would be subject to murder charges. While abor-
tionists claim that fetuses should have a right to life, they would never go so far as to charge
abortionists with murder. Yet, this is what would be required if we gave fetuses a right to life.
Therefore, there is a fundamental inconsistency in this position.”

This text was posted in a discussion about being favour of abortion or not. This statement
does not clearly specify his/her support of abortion (i.e. it does not specifically say abortion
should be allowed), yet it is implied from this text. Training a classifier to do so will be
therefore quite a challenge.

28

2.8.1.4 Neutral Text

Another challenge is dealing with neutral text. Some people who have not yet settled on a
particular side of the topic, tend to express their thoughts saying both positive and negative
points. Therefore, we cannot really tell whether that particular person supports or opposes
the discussion topic.

2.8.1.5 Inconsistencies

Furthermore, there are cases when the majority of the vocabulary used misleads the overall
opinion of the speaker:

“The main actress’ performance was unbearable and the special effects were horrible but I
enjoyed the movie nonetheless.”

This sentence consists of mainly negative points for the movie but it should be classified as
support.

2.8.1.6 Classifying Multiple Sentences

Related to the above example, is that the techniques developed are usually classifying a single
sentence. For detecting the topic-sentiment relation in text, coreference resolution needs to be
applied across sentences. Taboada and Grieve [43] found out that the opinion is most likely
to be expressed in the middle and the end of a text so they weigh the text differently.

2.8.1.7 Making People Conformant To The Rules Of The Debate

A particularly important challenge for this project is making people to confront to the rules
of the debate so that the text is of high quality and there is not too much noise. Problems
related to this will be further discussed when trying to build the corpus.

2.8.2 Challenges Associated With Implementing Visualisations For A De-
bate

When creating a visualisation, there are various pitfalls that have to taken into serious con-
sideration and have to be avoided as much as possible.

2.8.2.1 Misleading Information

Sometimes it is possible for the visualisations to show a more surreal/meretricious version of
what the data actual show. For example they may exaggerate and make a big deal out of
something, when actually there should not be an issue. For example showing a high negative
classification for a debate when in fact only one person has replied.

29

2.8.2.2 Ambiguities In Interpreting The Information Shown

When the visualisation is not carefully designed, it is possible to provide ambiguities to
the user. For example when not clearly explaining what each part of the visualisation is
representing, or when colours and sizes are not representative of the actual data.

2.8.2.3 Making Too Complicated Visualisations

It is not a rare situation when somebody overambitious tries to include as much information
and details as possible to the visualisation. This makes it very difficult and hard for the user
to understand and usually instead of speeding up the process of consuming information, ends
up wasting someones time.

2.8.2.4 Prerequicities For Understanding The Visualisation

When someone is very familiar with a certain topic, tends to forget that other people may not
be so familiar and what he/she thinks is trivial, actually is not. Therefore, when implementing
a visualisation, all the features have to be clearly explained so that users with no previous
experience with visualisations are able to understand it.

30

Chapter 3

Analysis Of Techniques For
Sentiment Analysis In Debates

In this section we will go through the different corpora used and explain how they were
adjusted to meet the requirements of this project. As the two classifies have different criteria
about how their corpora should be, we created two different corpora, one for each classifier.
First we will go through the corpora used for the Support/Opposition Classifier and then
through the ones used for the Agreement/Disagreement Classifier. Following that, a thorough
explanation of the various combinations of techniques used for developing the classifiers will
take place. This includes analysis on the choice of features sets for training the classifier, and
the choice of machine learning algorithms such as Support Vector Machines, Linear Regression,
Naive Bayes, etc when triggered with different parameters. The analysis will first be made
on the Support/Opposition Classifier and then on the Agreement/Disagreement Classifier.

3.1 Building Corpora For Training And Testing The Classi-
fiers

As we have already mentioned, two different corpora were created, one for each of the two
classifiers. Building the corpora was a rather challenging task since there are not yet any
corpora that are based on debates from microblogging websites. Even if text size was not
an issue, there are still not many available corpora that can be used to train classifiers for
debates. Therefore, for each of the two corpora, certain modifications had to take place before
being fed to the classifiers for training. Additionally, we used techniques for making the text
conformant to certain syntactic rules like using the lemma of each word and correcting spelling
mistakes. In order to make sure that these techniques were helpful, we tested it on an existing
classifier for Recognising Textual Entailment.

31

3.1.1 Building A Corpus For Training And Testing The Support/Opposition
Classifier

For the corpus to be used for the Support/Opposition Classifier, we needed texts extracted
from social networking sites that incorporate the use of microblogging data. Researching
through the corpora used in academic community was disappointing as we could not find
corpora that meet these criteria. Therefore, we tried to manually build one using data from
Twitter. As this was unsuccessful, we then turned to the corpora used by Somasundaran and
Wiebe [36] and an amazon review corpus. In the following sections we will go through the
failing attempt to use Twitter and the amendments that had to be made to the corpora to
meet the criteria of this project.

3.1.1.1 Using Twitter

Our initial attempt was to use Twitter posts for creating a corpus, since it provides millions
of posts everyday with many different topics, thus giving possibilities to create a big corpus
with variety in its data set. Additionally, we would be able to extract data for both classifiers
as it allows arguments, and replies to arguments to be posted for a particular debate.

To do so, we decided to first extract posts made by Obama as it gives seed to many debates.
For collecting the data we used twitter API and given the id str we were able to extract the
replies made for a particular post and to create a tree of comments and replies and store the
results in an xml file using Python. This would have been particularly helpful since having a
particular hierarchy of comments and replies is much similar to the style of the debate system
for which this tool is being developed for. Furthermore, we would be able to exploit various
relationships between posts as pointed out in section 2.6.

Unfortunately, after creating the xml file, we realised that not many people confronted to the
rules of debating and there was too much noise in the data set. To give you an example:

Barack Obama : “This law is just one step in the broader effort to strengthen our economy
and broaden opportunity for everybody.” —President Obama
IamRafaelBraga : Follow me! (:

Therefore, we had to abandon this corpus since it would have been too difficult to find a way
to delete all the noise and still have a big enough corpus.

3.1.1.2 Using Political And Ideological Debate Corpora

Our second attempt was to make use of the corpus1 used by Somasundaran and Wiebe [36],
which included debating posts about ‘Abortion’, ‘Creationism’, ‘Gay Rights’, ‘Existence of
God’, ‘Gun Rights’ and ‘Healthcare’. This would again give a variety in topics discussed,
making it more flexible in a new topic being presented to it in the future. Each post file
included the following:

1MPQA corpus available for download at http://www.cs.pitt.edu/mpqa

32

http://www.cs.pitt.edu/mpqa

#stance = stance1
#originalStanceText=Yes
#originalTopic=In favour of Abortion
“Legal abortion protects women with serious illnesses that are vulnerable. Tens of thousands
of women have heart disease, kidney disease, severe hypertension, sickle-cell anemia and severe
diabetes, and other illnesses that are made worse by childbearing. Legal abortion helps women
avert these unavoidable risks to their health and lives.”

This at a first glance seems perfect for the purposes of this project. So we created an xml
file using these corpora using as hypothesis the original topic and as text the remaining text.
The above hypothesis-text pair was converted to have the following format in the xml file:

<pair entailment=“YES” id=“4” task=“IE”>
<t>

“Legal abortion protects women with serious illnesses that are vulnerable. Tens
of thousands of women have heart disease, kidney disease, severe hypertension,
sickle cell anaemia and severe diabetes, and other illnesses that are made worse
by childbearing. Legal abortion helps women avert these unavoidable risks to
their health and lives.”

</t>
<h>

In favour of abortion.
</h>

</pair>

3.1.1.3 Amendments Made On The Corpora Characteristics

Before using the corpus to train the classifier, we had to make sure that it was good enough
to be used for the classification purposes of this project.

We tested it against the RTEClassifier provided by the python NLTK for recognising tex-
tual entailment. The classifier’s success rate was supposed to be 58% but this only gave
classification rate of almost 30%.

Therefore, we made some changes to the posts. For example if the hypothesis was “debate
abortion” we would change it to “In favour of abortion”. The corpora had many different
topics of discussion, so we used five topics of the dataset for training and testing the classifier
giving a classification rate of 58%. Then we tested it against a new corpus, (the remaining
sixth topic) which gave an improved result of 50% (507 out of 1000), compared to the 30%
that was achieved before.

Conforming To Syntactic Rules

Looking at the corpus data, we realised that there are still some improvements that could
be made that could possibly give a higher classification rate. For example, the text and the
hypothesis have to confront to the same syntactic rules.

33

Since this classification method compares the text and the hypothesis treating them as two
bags-of-words, we had to make sure that any syntactic mistakes were kept to a minimum.

Therefore we used the PyEnchant spellchecking library for python which is based on the
Enchant library. Enchant library provides spell checking (i.e whether a specific word appears
in the specified dictionary) for various languages, and additionally can suggest a list of words
in case the spell checker returns false. Figure 3.1, shows how PyEnchant was used to spellcheck
a word in the text:

Figure 3.1: PyEnchant Library in use

For correcting a word that is not in the dictionary, we always replace it with the first word
from the list of suggested words. If the list is empty, we keep the original word. When looking
at the resulting corpus, we realised that any punctuation was completely lost. A word at the
end of a sentence which is followed by ‘,’, ‘.’,‘?’,‘!’ etc does not pass the check method and
gets replaced without the punctuation. This however, does not cause any problems at this
point so it is was not considered to be a problem. An issue of the resulting corpus was when
words were separated with a ‘-’. For example, self-defence was replaced by slenderness. It
was therefore necessary to replace all non alphanumeric characters, that separate words, with
an empty space.

Using Lemmas

As suggested in the section 2.2.2.1.3, it is better to use the lemma of a word, i.e its basic
dictionary form and so we had to take into consideration the morphology of each word.

Morphology of a word is the small meaningful unit that makes up the word. Each word
consists of the following:

1. Stems: core meaning of the word

2. Affixes: bits and pieces that adhere to stems

For example the word stems itself has as stem the word stem and as affix the letter s.

For our corpus, we decided to perform the stemming procedure of cutting off the affixes of each
word, in order to have the same morphology for all the words in the text and the hypothesis.

For doing so, we used the stemming 1.0 algorithm provided for python, which implements the
Porter, Porter2, Paice-Husk and Lovins stemming algorithms for English.

34

Figure 3.2: Stemming 1.0 in use for the word ‘functionality’

Minimising Size Of The Text

Another problem with this corpus was that sometimes some of the texts were quite large
(more than 1000 characters). So, we had to check the length of each text and decide whether
to keep it in the corpus or not. The reason for doing that, is that when training with larger
texts, there is the possibility to give bad classification results when testing on smaller texts
since people tend to use different vocabulary when they have a limitation on how much they
can write.

The classification results, based on the amended corpora, were the following:

...

Figure 3.3: Recognising Text Entailement using python NLTK

As expected, the classification results were improved, getting 639 out of 1000 correct.

35

3.1.1.4 Extending Support/Opposition Corpus With Casual Topics

Having created this corpus, we realised that even though it has a variety in the topic of the
debates, they all constitute of serious matters for which people tend to be very passionate
about. Therefore, the vocabulary used will be very different compared to a discussion about
the quality of a car battery for instance. Consequently, we had to extend the current corpus
with topics that are casually discussed. After an exhaustive search to find corpora that meet
the criteria of our training corpus, we were able to find a big enough amazon corpus 2 with
reviews about the battery life of the kindle, ipod, the accuracy of a gps, the price of a hotel etc.
From this corpus, we only kept texts that were up to 200 characters and we had to manually
classify it, since unfortunately it was not annotated, creating an additional corpus of about
1000 comments. For creating the final xml version of the corpus, we applied spellchecking
and transformed the words to their lemma form.

3.1.2 Building A Corpus For Training And Testing The Agreement/ Dis-
agreement Classifier

The corpus we had at the moment, even though it was good for deciding whether the text
supports or opposes a stance, the ‘text’ and the ‘hypothesis’ cannot be used as a argument-
response pair for training a classifier to check for agreement or disagreement. Therefore, for
this kind of classification, a new corpus had to be created.

As with the previous corpus, it was difficult to find an annotated corpus that meets our
criteria (relatively short text, conversational structure, as little noise as possible). The closest
we could find was a corpus extracted from the Internet Argument Corpus (IAC) created by
Abbott et al [44]. The material included in this corpus was extracted from the online debate
site 4forums.com. By correlating the information from four different csv files, we extracted
a good enough labelled corpus with quote-response pairs that could be used for detecting
agreement or disagreement.

For creating the final xml file with the argument-reply pairs, we followed the same procedure
with the previous corpus (spell checking, removing non alphanumeric characters etc), except
from transforming each word to its lemma form. The reason for not using their lemma form
will be explained in the analysis Section 3.3. A typical argument-response pair in the xml file
has the following format:

<pair disagreement=“FALSE” id=“4” topic=“ abortion”>
<quote>

The anti-abortionists claim that would be killing a human life to save one.
</quote>
<response>

The anti-abortionists claim a load of **** on many issues. I don’t listen to them.
To put the “life” of an unfertilized egg above that of a person is grotesquely sick
IMO. I support any such stem cell research wholeheartedly.

</response>
</pair>

2http://archive.ics.uci.edu/ml/

36

http://archive.ics.uci.edu/ml/

3.1.3 Summary Of Proposed Corpora For Training And Testing The Clas-
sifiers

When trying to implement the corpora for the two classifiers, we were looking for existing
corpora that would be able to classify data from social networking sites that use microblogging
text. Therefore they had to meet the following characteristics:

(a) Extracted from debates

(b) Relatively short text (no longer than 200 characters)

(c) Not restricted to formal speech

(d) With as little noise as possible

For the Support/ Opposition Classifier, we needed a corpus that would cover a variety of topics
so that it would be more likely to classify correctly data from any given corpus. The resulting
corpus consisted of political and ideological debates from MPQA corpus that covers data on
‘Abortion’, ‘Creationism’, ‘Gay Rights’, ‘Existence of God’, ‘Guns Control’ and ‘Healthcare’
as well as reviews extracted from amazon on casual topics like Quality of hotels, cars, mobile
phones etc.

For the Agreement/Disagreement classifier, we needed a corpus that has an argument-reply
format. The corpus used was made from the Internet Argument Corpus, which uses data
from debates in 4forums.com. The resulting corpus was constructed by correlating data from
different files in order to form argument-reply pairs.

37

3.2 Analysing Techniques For Support/ Opposition Classifica-
tion

With a good enough corpora to train a classifier for detecting support or opposition, we
were now able to experiment with different feature selection techniques and classification
algorithms.
Before getting started, we have to understand how this is different to classifying the polarity
of an argument. One might think that when an argument is negative, it must therefore
oppose the initial statement or vice versa. Unfortunately, this is not the case, as we can see
in Figure 3.2 using a polarity classifier:

Figure 3.4: classifying arguments on abortion topic using sentiment polarity

As you can see, both statements are considered to be negative. This is because, in both cases,
the vocabulary used is considered to have negative polarity (abortion on its own is a strong
negative word). Therefore, words that are usually used to introduce negative orientation in a
text, can be used as supporting arguments; and words which are considered to have neutral
orientation, can be supportive or opposing for the topic in discussion. It is more of a matter
to find out what vocabulary is used to support a specific topic and what is used to oppose it.

The following section goes through the procedure we followed for targeting the problem of
finding representative features for each class. The first step includes experimenting with
feature selection methods (tf, idf, tf-idf, Delta tf-idf, n-grams). Then we experiment with
different parameters and machine learning algorithms when trained on the entire corpus.
Following this, the experiments will be made on a single topic at a time and finally various
patterns of POS tagging will be incorporated for investigation.

38

3.2.1 Feature Selection

In section 2.2.2.1, we have described several methods for choosing features from the training
corpus. The aim is to create discriminating and independent features that would give high
classification results. In order to find out what the best combination for our corpus is, we
experimented with different tokenization methods.

For the experiments we used three different n-grams: unigrams, bigrams and trigrams, and
four different feature weighting methods: TF, IDF, TF-IDF, Delta TF-IDF.

For example, given the following two sentences as corpus (ignoring stopwords and stemming
of words), the feature set that corresponds to each training sample is calculated below:

corpus: “The movie is the best”, “This movie is not the best”

(a) Using unigrams:

[‘The’, ‘movie’, ‘is’, ‘the’, ‘best’], [‘This’, ‘movie’, ‘is’, ‘not’, ‘the’, ‘best’].

(i) Term Frequency (TF): refers to the term frequency of each feature in the sentence
it belongs to.

“The movie is the best”
feature set: [(‘The’, 0.4), (‘movie’, 0.2), (‘is’, 0.2), (‘best’, 0.2)]
“This movie is not the best”
feature set: [(‘This’, 0.17), (‘movie’, ‘0.17’), (‘is’, 0.17), (‘not’, 0.17), (‘the’, 0.17),
(‘best’, 0.17)]

TF tends to scale up frequent terms and scale down infrequent terms. This is an
issue since the infrequent terms are usually more informative.

(ii) Inverse Document Frequency (IDF): For each term, it is calculated by the
logarithmic value of the number of documents in the corpus divided by the number
of documents containing the specific term.

“The movie is the best”
feature set: [(‘The’, -0.4), (‘movie’, -0.4), (‘is’, -0.4), (‘best’, -0.4)]
‘This movie is not the best’
feature set:[(‘This’, 0), (‘movie’, -0.4), (‘is’, -0.4), (‘not’, 0), (‘the’, -0.4), (‘best’,
-0.4)]

This way, terms that appear less frequently in the entire corpus will stand out.

(iii) Term Frequency - Inverse Document Frequency (TF-IDF) : For each term,
it is calculated as the TF multiplied by the IDF:

‘The movie is the best’
feature set: [(‘The’, -0.16), (‘movie’, -0.08), (‘is’, -0.08), (‘best’, -0.08)]
‘This movie is not the best’
feature set:[(‘This’, 0), (‘movie’, -0.07), (‘is’, -0.07), (‘not’, 0), (‘the’, -0.07), (‘best’,
-0.07)]

39

Using the tf-idf approach, terms that have high frequency in a given document and
a low frequency on the entire corpus stand out.

(iv) Delta Term Frequency - Inverse Document Frequency (Delta TF-IDF):
For each term, it is calculated by the difference of its TF-IDF in the positive and
negative training examples. Given that the first sentence is positive and the second
is negative we get the following results.

‘The movie is the best’
feature set: [(‘The’, -0.08), (‘movie’, -0.04), (‘is’, 0.04), (‘best’, -0.04)]
‘This movie is not the best’
feature set:[(‘This’, -0.03), (‘movie’, -0.03), (‘is’, 0.04), (‘not’, 0.09), (‘the’, -0.03),
(‘best’, -0.03)]

This technique allows to boost the importance of words that are unevenly distributed
between the positive and negative classes and eliminates the importance of evenly
distributed words. As a result, features that are significant in either of the two
classes stand out.

Sometimes it is better to use bigrams and trigrams for capturing more context and pat-
terns in a sentence. For example: not interesting, believe God etc. For the above corpus
the tokenization of the documents would be as follows:

(b) Using bigrams:

“The movie, movie is, is the, the best”, “This movie, movie is, is not, not the, the best”.

(c) Using trigrams:

“The movie is, movie is the, is the best”, “This movie is, movie is not, is not the, not the
best”.

Then, the above procedure for weighting the features can be applied.

Additionally, a technique called normalisation is usually used when dealing with tf-idf
for avoiding problems when a specific word is frequently used in a specific document. L1
normalisation is the Manhattan distance and L2 normalisation is the Euclidean distance.3.
Also, sometimes it is better not to use all the features of the document but only those with
high information gain. If the features do not add any value or worsen the model, it is better
to throw them away. A method to do that is using chi square feature selection.

Normalisation essentially performs Delta tf-idf by comparing how common a feature is in
the support class compared to the opposition class. Chi square feature selection allows you
to select the K best features (i.e the most informative features).

3.2.1.1 Problem Encountered With Feature Selection

As the feature sets to be used for classifying the corpus are formed using lexical patterns
that compose support and opposition phrases, this raises an issue with how the debate title

3http://pyevolve.sourceforge.net/wordpress/?p=1747

40

is phrased, i.e. if it is phrased in a positive or negative way.

For example, consider the following two discussions: “Should abortion be allowed?” vs “Should
abortion be banned?”

Any supporting comments on the first one will obviously be opposing the second one. There-
fore, any supporting patterns that are picked up in the second debate will mislead the classifier.
This means that the classifier should differentiate between a positive and negative debate and
invert the classification in the case of negative. Our initial thought was to use an existing
tool that identifies positive and negative statements so that any support phrases of a negative
debate will automatically considered to be opposing the topic of discussion.
One of the tools that we tried out was the uClassify4.

Figure 3.5: Use of uClassify to determine if phrase is positive or negative

Figure 3.6: Use of uClassify to determine if phrase is positive or negative

The results were disappointing. None of the tools that we used were able to correctly dis-
tinguish between the two phrases which one was the negative and which one the positive.
Creating such a tool, which distinguishes the two phrases, is out of the scope of this project.

4http://www.uclassify.com/

41

http://www.uclassify.com/

As a result an assumption of this project is that this information, i.e. whether the debate is
phrased in a positive or negative way, should be given manually to the classifier.

3.2.2 NB, Maxent, SVM Using Default Parameters

In order to find out which of the weighting algorithms is more appropriate for our corpus,
we created a feature extractor function in python for calculating the weights of the features
depending on what technique is chosen (tf, idf, tf-idf, Delta tf-idf). Additionally, the corpus
was tokenised into unigrams, bigrams, trigrams or a combination of n-grams, and tested
using the three well known classifiers: Naive Bayes, Maximum Entropy and Support Vector
Machines.

The results showed, as expected, higher classification rates when the tf-idf and Delta tf-idf
weighting were used. The different classification algorithms had relatively close classification
results, with Maximum Entropy giving the worst classification results. Vector Machines on
the other hand, gave slightly better results than the other two. The most interesting obser-
vation was the n-gram choices. SVM gave higher classification rates when using unigrams
together with bigrams and trigrams. The Maxent algorithm performed better using unigrams
whilst Naive Bayes results were much better when using only trigrams. The following table
summarises the best results achieved from the various combinations and experiments.
For full analysis on the results see Appendix Section A.1

Parameters Classification rate
(up to)

Maxent + 1-grams + ∆ tf-idf 57%

NB + 3-grams + ∆ tf-idf 61%

SVM + 1-2-3-grams + ∆ tf-idf 65%

Table 3.1: Summary of classification results

Based on the above results we were now more confident that the corpus should be classified
using Naive Bayes and Support Vector Machines with Delta tf-idf feature weighting. The
next step, is to try the algorithms using different parameters.

3.2.3 Experimenting With Different Parameters Using Sklearn Tool

The NLTK tool that was currently being used was not appropriate for experimenting with
different classification algorithms and parameters. A much more flexible and with a wide
range of algorithms is the scikit-learn tool [3]. Scikit-learn is a collection of Python modules
relevant to machine/statistical learning and data mining.

Scikit-learn has the TfidfVectorizer class for converting a collection of documents into a matrix
of TF-IDF features. This class allows the user to specify various parameters like:

• ngram range: (min n, max n) for specifying what n-grams to use

42

• max features: for specifying the maximum number of features to use
• norm: ’l1’, ’l2’ or None, gives the option to normalise the vectors
• max df: [0.0, 1,0], gives the option to ignore terms with term frequency higher than the

threshold set
• sublinear tf: replaces tf with 1 + log(tf)

Another positive thing of using this class is that before tf-idf is applied, the result of tokenising
and counting the tokens is returned as a sparse matrix which makes the process much faster.
A sparse matrix is used when dealing with large amounts of data in a matrix populated
primarily with zeros, for saving space and computation time.

Here is how the tokenizer is defined:

vectorizer = TfidfVectorizer(ngram_range=(1,3), max_features=200, norm=’l2’,

max_df=0.5, sublinear_tf=True)

Also, we now had a variety of classification algorithms to choose from. Based on the research
we have done on related studies, we extracted the algorithms that are most appropriate when
dealing with text classification.

This is the final5 list of algorithms that we will be dealing with in the following experiments:

• Linear SVC
• Stochastic Gradient Descent (SGD)
• Nearest Centroid
• K Nearest Neighbours
• Multinomial Naive Bayes
• Bernoulli Naive Bayes
• Non Linear SVC
• Logistic Regression

Having the possibility to initialise the algorithms with different parameters, a python program
was needed to try out the different combinations and extract the best possible parameters for a
given corpus and classifier. Again, scikit-learn gave the solution 6, providing a python program
which does exactly that using cross validation on the corpus. This is done by specifying the
corpus you want to train, the algorithm you want to examine and the possible parameters
with the values you want the algorithm to be triggered. For example, for extracting the
best parameters for LinearSVC classification on the entire corpus, we used the following
parameters:

pipeline = Pipeline([

(’vect’, CountVectorizer()),

(’tfidf’, TfidfTransformer()),

(’chi2’, SelectKBest(chi2)),

(’clf’, LinearSVC())

])

5The original list also had Perceptron and K nearest neighbours which were soon removed due to very low
classification results

6http://scikit-learn.org/0.13/auto_examples/grid_search_text_feature_extraction.html

43

http://scikit-learn.org/0.13/auto_examples/grid_search_text_feature_extraction.html

parameters = {

’vect__max_df’: (0.5, 0.75, 1.0),

’vect__max_features’: (None, 5000, 10000, 50000),

’vect__max_n’: (1, 2, 3),

’tfidf__use_idf’: (True, False),

’tfidf__norm’: (’l1’, ’l2’),

’chi2__k’: (50, 100, 200, 500,1000),

’clf__penalty’: (’l1’,’l2’),

’clf__C’: [1, 10],

’clf__tol’: [1e-6, 1e-1]

}

Giving the following results:

Figure 3.7: Extracting Best Parameters for LinearSVC Classification on all corpus data

Using the best parameters on the corpus we had the following results7:

Figure 3.8: Extracting Best Parameters for LinearSVC Classification on all corpus data

This procedure was performed on all the classification algorithms. Please see Appendix Sec-
tion A.2 for the parameters used for each algorithm and their results.

These are the classification results when using the parameters that resulted from the experi-
mentation in Appendix Section A.2, for each algorithm:

7small difference in the accuracy is due to the division of the data into train and test data sets

44

Learning Method
Normalisation

Technique
Choice of N-grams Accuracy

Linear SVC l2 unigrams 64%

Stochastic Gradient
Descent (SGD)

l2 unigrams 62%

Nearest Centroid l2 unigrams 62%

K Nearest Neighbours l2 unigrams, bigrams 62%

Multinomial Naive
Bayes

l2
unigrams, bigrams,

trigrams
63%

Bernoulli Naive Bayes l2
unigrams, bigrams,

trigrams
64%

Logistic Regression l2 unigrams, bigrams 65%

Table 3.2: Summary of classification results

The results from training the entire corpus using the best parameters for each classifier were
still not giving satisfactory results. This meant that something was wrong with the feature
selection. Using the classifier with the highest accuracy, we extracted the 20 most informative
features for support and opposition:

Figure 3.9: Most Informative Features for support and opposition trained on the entire corpus

This made us realise that the features were not particularly informative since the topics
discussed had very different vocabulary for expressing support or opposition. Therefore, the

45

next step was to examine how successful the classification would be when trained only on one
particular topic.

3.2.4 Experimenting With Different Classifiers On One Topic At A Time

In order to find out which classifier to use on each topic we used the classifiers that performed
better on the experiments in section 5.2.3. These were Linear SVC, Naive Bayes and Logistic
Regression. The topics to be classified are:

• Abortion
• Creationism
• Gay Rights
• Existence of God
• Gun Rights
• Healthcare
• Quality

Additionally, since now we would be dealing with a smaller corpus each time, we needed to
perform k fold cross validation. The number of folds created was set depending on the size
of the corpus that was being classified. Scikit-learn provides a number of different ways to
split the corpus into folds but the one used in my implementation is the StratifiedKFold8.
StratifiedKFold makes folds by preserving the percentage of samples for each class. The
reason for choosing this technique is that Delta tf-idf feature selection requires both positive
and negative examples to be in each set.

Here are the topic based classification results:

Topic
Learning
Method

Normalisation
Technique

Choice of
N-grams

Accuracy

Abortion Linear SVC l1 unigrams 75%

Creationism
Logistic

Regression
l2 bigrams 77%

Gay Rights
Bernoulli

Naive
Bayes

l2 unigrams 68%

Existence of God Linear SVC l1
unigrams,
bigrams,
trigrams

62%

Gun Rights
Logistic

Regression
l2 unigrams 79%

Healthcare
Logistic

Regression
l2 trigrams 60%

Quality Linear SVC l2
unigrams,
bigrams

79%

Table 3.3: Summary of classification results

8http://scikit-learn.org/dev/modules/generated/sklearn.cross_validation.StratifiedKFold.

html

46

http://scikit-learn.org/dev/modules/generated/sklearn.cross_validation.StratifiedKFold.html
http://scikit-learn.org/dev/modules/generated/sklearn.cross_validation.StratifiedKFold.html

As seen from Table 3.3, the classification results are much higher in most of the topics. The
reason for the increase in the accuracy, is that now the feature set is much more specific and
narrowed down to the vocabulary related to a specific topic. Extracting the most informative
features on abortion data, we got the following results:

Figure 3.10: Most Informative Features for support and opposition when trained on the
abortion corpus

For more details on the classification results and the parameters used for each algorithm please
see Appendix Section A.3.

3.2.5 Experimenting With Part Of Speech Tagging

As mentioned already in the criteria for selecting appropriate feature sets, it is sometimes
more helpful to use words or phrases that tend to more informative. These words or phrases
are usually adjectives or adverbs combined with nouns, since they tend to be more emotional.
In order to extract these words and phrases, we must first assign a part of speech (POS) tag
on each word of the text, and then using patterns to extract the ones we are interested in.

Here’s an example of how the nltk POS tagger attaches the POS tag to the words of a text

Figure 3.11: Using the Part-of-Speech tagger of nltk to attack POS tags to each word of a
text

The patterns used in my classification was a combination of unigrams, bigrams and trigrams
of the following patterns.

47

Rule No First Word Second Word Third Word

Rule 1 JJ NN|NNS anything

Rule 2 RB|RBR|RBS JJ anything but NN|NNS

Rule 3 JJ JJ anything but NN|NNS

Rule 4 NN|NNS JJ anything but NN|NNS

Rule 5 RB|RBR|RBS VB|VBD|VBN|VBG anything

Rule 6 JJ NN|NNS -

Rule 7 RB |RBR|RBS JJ -

Rule 8 JJ JJ -

Rule 9 NN|NNS JJ -

Rule 10 RB |RBR|RBS VB|VBD|VBN|VBG -

Rule 11 NN|NNS|JJ|RB|RBR|RBS - -

Table 3.4: POS Patterns used

where:

Tag POS

JJ, Adjective

RB, Adverb

RBR, Adverb, comparative

RBS, Adverb, superlative

NN, Noun, singular

NNS, Noun, plural

VB, Verb

VBD, Verb, past tense

VBN, Verb, past principle

Running the following commands allows you to extract the patterns with the appropriate
tags:

vocabulary1 = set()

vocabulary2 = set()

vocabulary3 = set()

def filter(tree):

return (tree.node == "RULE")

def myTokenizer(text):

text = nltk.word_tokenize(text)

48

tags = nltk.pos_tag(text)

grammar = []

Rule 1

grammar.append(r"""RULE: {<JJ>(<NN>|<NNS>)(<...>|<..>)}""")

Rule 2

grammar.append(r"""RULE: {(<RB>|<RBR>|<RBS>)<JJ>(?!<NN>|<NNS>)(<...>|<..>)}""")

Rule 3

grammar.append(r"""RULE: {<JJ><JJ>(?!<NN>|<NNS>)(<...>|<..>)}""")

Rule 4

grammar.append(r"""RULE: {(<NN>|<NNS>)<JJ>(?!<NN>|<NNS>)(<...>|<..>)}""")

Rule 5

grammar.append(r"""RULE: {(<RB>|<RBR>|<RBS>)(<VB>|<VBD>|<VBN><VBG>)(<...>|<..>)}""")

Rule 6

grammar.append(r"""RULE: {<JJ>(<NN>|<NNS>)}""")

Rule 7

grammar.append(r"""RULE: {(<RB>|<RBR>|<RBS>)<JJ>}""")

Rule 8

grammar.append(r"""RULE: {<JJ><JJ>}""")

Rule 9

grammar.append(r"""RULE: {(<NN>|<NNS>)<JJ>}""")

Rule 10

grammar.append(r"""RULE: {(<RB>|<RBR>|<RBS>)(<VB>|<VBD>|<VBN><VBG>)}""")

Rule 11

grammar.append(r"""RULE: {(<NN>|<NNS>|<JJ>|<RB>|<RBR>|<RBS>)}""")

for item in grammar:

chunker = nltk.RegexpParser(item)

chunked = chunker.parse(tags)

for s in chunked.subtrees(filter):

if len(s)>2:

vocabulary3.add(s[0][0]+’ ’+s[1][0]+’ ’+s[2][0])

elif len(s)>1:

vocabulary2.add(s[0][0]+’ ’+s[1][0])

else:

vocabulary1.add(s[0][0])

The above code, allows you to extract patterns of unigrams, bigrams, trigrams with the POS
tags you specified in the grammar.

Here are the topic based classification results:

49

Topic
Learning
Method

Normalisation
Technique

Choice of
N-grams

Accuracy

Abortion
Logistic

Regression
l1

unigrams,
bigrams,
trigrams

74%

Creationism
Logistic

Regression
l2 trigrams 76%

Gay Rights
Logistic

Regression
l2

unigrams,
bigrams,
trigrams

67%

Existence of God
Logistic

Regression
l1 unigrams 57%

Gun Rights
Multino-

mial Naive
Bayes

l2
unigrams,
bigrams,
trigrams

78%

Healthcare
Logistic

Regression
l2 bigrams 53%

Quality
Logistic

Regression
l2 unigrams 78%

Table 3.5: Summary of classification results

As you can see from the results, there was no improvement in classification accuracy when
using POS tagging and in some cases we even see a decline. One of the main reasons that
this happened is that POS tagging is not very effective when used on short documents. This
is because when you have limited amount of words that you can use, there is little noise in
the text and usually most of the words are quite informative.

For more details on the classification results and the combination of POS tag patterns use
please see Appendix Section A.4.

3.2.6 Summary Of Proposed Techniques For Building A Suppport/ Oppo-
sition Classifier

From the series of experiments that we performed, we verified that Delta tf-idf, as it was
suggested by Martinau and Finin[35], is indeed a good approach to develop the feature space
of the classifier (compared to tf, idf, tf-idf), even when dealing with microblogging data. The
feature space performs better when using the lemma of each word.

There is not a clear cut distinction for deciding which type of normalisation method to use (‘l1’
or ‘l2’) for achieving the effect of boosting the importance of words between the two classes, or
for the choice of maximum features to be used, or what choice of n-grams (unigrams, bigrams,
trigrams) to follow, or even the choice of learning method (SVM, Logistic Regression, Naive
Bayes, etc.). The results from the experiments indicated that these choices vary depending
on the corpus used for training and testing the classifier, since one combination of the above
can be ideal for one corpus but perform significantly worse than a different combination on
another corpus. It is therefore important to experiment with the above choices before settling

50

to the ones used for a particular corpus. That is why, for the different topics of our corpora,
we used different combinations.

Finally, incorporating POS tagging for developing the feature space, did not provide any
improvement in the classification results but instead lowered the accuracy, making it not an
ideal approach when dealing with microblogging data.

3.3 Analysing Techniques For Agreement/Disagreement Clas-
sification

The second part of this project is about creating a classifier for recognising whether a response
agrees or disagrees with the quote that is in reply to. As we have seen in Section 2.5, this is
a problem that a few have already tried to target giving relatively good classification results.

The previous studies tend to use information about the speaker like political views, identifica-
tion of adjacency pairs and hierarchy of previous related comments. This kind of information
is not available in this project so the we can only experiment with local lexical features for
training the classifier.

In this section, we will first experiment with the lexical features used by Galley et al [38].
Then as we move along, the features will be adjusted to deal with microblogging data.

3.3.1 Using Different Feature Sets For Experimentation

Depending on the corpus provided, each classifier has to create an appropriate feature set for
classifying correctly the corpus. In order to find out the best combination of lexical features,
we experimented with different approaches. The starting point of our work, is based on the
study by Galley et al [38]. As seen in their study, the following features can be used, as they
tend to be a good indication whether there is agreement or disagreement. Therefore, we used
it as a base for creating our own feature set.

• First word of response
• Last word of response
• Number of adjectives with positive polarity
• Number of adjectives with negative polarity
• Number of instances in the document of each cue phrase listed in Hirschber and Litman,

1994 [45]
• Number of instances in the document of each agreement/disagreement word listed in

Cohen, 2002 [46]

Cue phrases are linguistic expressions such as ‘now’ and ‘well’ that function as explicit in-
dicators of the structure of a discourse. For example, ‘now’ may signal the beginning of a
subtopic or a return to a previous topic, while ‘well’ may mark subsequent material as a
response to prior material, or as an explanatory comment [45]. The cue phrases used for the
Agreement/Disagreement Classifier were introduced by Hirschber and Litman[45]:

51

cue_phrases = [‘accordingly’, ‘again’, ‘alright’, ‘also’, ‘altogether’, ‘because’,

‘boy’, ‘but’, ‘consequently’, ‘conversely’, ‘equally’, ‘finally’, fine’, ‘first’,

‘further’, ‘furthermore’, ‘gee’, ‘hence’, ‘hey’, ‘hopefully’, ‘indeed’, ‘last’,

‘like’, ‘likewise’, ‘listen’, ‘look’, ‘moreover’, ‘namely’, ‘next’, ‘now’, ‘oh’,

‘ok’, ‘or’, ‘overall’, ‘say’, ‘second’, ‘see’, ‘similarly’, ‘so’, ‘then’, ‘therefore’,

‘thus’, ‘too’, ‘well’, ‘where’, ‘alternately’, ‘alternatively’, ‘although’, ‘however’,

‘incidentally’, ‘anyway’, ‘meanwhile’, ‘nevertheless’, ‘nonetheless’, ‘nor’, ‘not’,

‘only’, ‘otherwise’, ‘still’, ‘though’, ‘unless’, ‘whereas’, ‘why’, ‘yet’, ‘wrong’]

Agreement/Disagreement words and phrases, are strong indicators of whether the reply is in
agreement or disagreement with a statement. The ones used here were extracted from Cohen’s
paper [46] and are the following:

agreement_disagreement = [‘i’,’yeah’, ‘mmhm’, ‘ok’, ‘right’, ‘yes’, ‘fine’, ‘exactly’,

‘agree’, ‘of course’, ‘no’, ‘um’, ‘not’, ‘like’, ‘know’, ‘well’, ‘dont’, ‘really’,

‘just’, ‘was’, ‘to’, ‘im’, ‘that’, ‘you’, ‘actually’, ‘because’, ‘uh’, ‘in’, ‘but’,

‘think’,‘if’, ‘sort’, ‘mean’, ‘she’, ‘kind’, ‘hm’, ‘honestly’, ‘disagree’, ‘definitely’]

These features were used when dealing with large documents and therefore had to be adapted
for dealing with small texts of about 200 characters. Therefore, in order to find an appropriate
feature set we experimented with the following:

• Use adverbs, verbs, nouns instead of just adjectives.
• Instead of having two features, one for the positive and one for the negative number of

adjectives, use only one to state whether the number of positive words was greater than
the number of negative words.

• Instead of counting the positive/negative words in the document, calculate the overall
positive/negative score of the words in the text and use a feature to state if the overall
score of positive words is greater than the score of negative words.

• Instead of counting the number each cue phrase or agreement/disagreement word ap-
pears in the text, use a ”0” or ”1” value to state whether it appears in the text or
not.

• Take into account te punctuation used in the text.

3.3.2 Extracting Words From Text Based On Their POS Tag

In order to find the polarity of the adjectives in the text, we used the method explained in
section 3.2.5, of assigning a part of speech tag to each word and then based on the desired
pattern, extract the words with the part of speech we are interested in. In this case, the text
was tokenised into unigrams as the words were considered separately. In the beginning, only
adjectives were taken into consideration. However, since the tagger used is not perfect, there
were some key words which were not taken into consideration, and could change the overall
polarity of the text. Therefore, the experiments take into consideration adjectives, adverbs,
verbs and nouns.

52

3.3.3 Calculating Sentiment Polarity Of Words

3.3.3.1 Using SentiWordNet

In order to detect the polarity of the adjectives, we used a sentiment classifier 9 which is
based on SentiWordNet. SentiWordNet is a lexical resource that uses words extracted from
WordNet database and provides for each synset (set of synonyms) in WordNet a numerical
score for positive and negative orientation. In order to calculate the scores, SentiWordNet
computes the number of times each word appears to be negative/positive. Figure 3.12 , shows
how the sysnset scores for the adjective ‘bad’ are extracted and calculated. First the synsets of
the word ‘bad’ are extracted based on the part of speech tag (Adjective, Noun, Verb, Adverb)
and then the score for one of the synsets in the list, is calculated. The word ‘bad’ appears to
have 14 senses for adjective.

Figure 3.12: Using SentiWordNet for extracting the positive and negative sentiment score for
the adjective ‘bad’.

As you can see from Figure 3.12, different synsets have different positive/negative scores. So,
instead of calculating these values from a random synset for each word, a better approach
is to calculate the average score for all the provided synsets. The scores for word ‘bad’ are
shown in Table 3.6:

Word POS Tag Positive Average Score Negative Average Score
bad Adjective 0.02 0.73
bad Adverb 0.13 0.25
bad Noun 0.0 0.88
bad Verb - -

Table 3.6: Average Positive and Negative scores for word ‘bad’

3.3.3.2 Dealing With Negation In A Sentence

In the case where a sentence has a negation in it, i.e. the word ‘not’, we had to make sure
that the correct polarity scores were calculated. For example, consider the sentence ‘This

9https://pypi.python.org/pypi/sentiment_classifier

53

https://pypi.python.org/pypi/sentiment_classifier

product is not as good as we expected it to be’, which has the adjective ‘good’. Using the
sentiment score technique described in the previous section, would provide a higher positive
than negative value and therefore consider it to be a sentence with overall positive polarity.
However, ‘not’ negates this and makes the overall polarity negative.

For dealing with this situation, our approach looks whether a negation appears in the sentence
and inverts the positive/negative scores of the adjectives, adverbs etc. This requires the text
to be split into sentences so that a negation does not affect the overall sentiment of the text.
The sentences are considered to be separated with a full stop, question mark or exclamation
point.

3.3.3.3 Using uClassify

Even though SentiWordNet has good results for most of the words, there are some words for
which its results are not as good as we would want them to be. For example consider the
word ‘bored’. One would expect it to have a higher negative than positive score. However,
this is not the case when using SentiWordNet as seen in Figure 3.13.

Figure 3.13: Using SentiWordNet for extracting the positive and negative sentiment score for
the adjective ‘bored’

An alternative method for extracting the positive and negative scores of a word is using
uClassify. uClassify provides a link that you can use to classify a word or a set of words and
returns the results in json format. This is shown in Figure 3.14.

Figure 3.14: Using uClassify for extracting the positive and negative sentiment score for the
adjective ‘bored’.

54

As you can see, the results are better when extracted using ‘uClassify’.

We repeated the process for a about 100 different responses and compared the results with
SentiWordNet. It seemed that uClassify was more trustworthy than SentiWordNet and there
was usually a high difference in the positive and negative scores provided, making the distinc-
tion more clear. Unfortunately, uClassify only allows 5000 requests per day from a single ‘free’
account, making this not ideal for experimentation with training large data sets. Additionally,
it requires much more time to provide a classification result than SentiWordNet. Training with
SentiWordNet usually takes no more than 1 minute, while training with uClassify requires
about 30 minutes.

Consequently, the small increase in performance using uClassify was not enough reason to use
it over SentiWordNet. Additionally, SentiWordNet is much more flexible, as you can specify
the part of speech you are interested in classifying as well as using different meanings of each
word.

3.3.4 Resulting Feature Set

After experimentation with different feature sets and implementation choices, that can be
found in Appendix A.5, we settled on the following feature set:

• First word of response
• Last word of response
• Overall positive score of adjectives, adverbs, verbs and nouns compared to their negative

score
• Existence of each cue phrase listed in Hirschber and Litman, 1994 in the document
• Existence of each agreement/disagreement word listed in Cohen, 2002, in the document
• Existence of question marks

Using these features, with 10-fold cross validation the classifier has an accuracy of up to 88%

Classifiacation Accuracy: 0.8818
Positive Precision: 0.8448
Positive Recall: 0.9245
Positive F-measure: 0.8829
Negative Precision: 0.9231
Negative Recall: 0.8421
Negative F-measure: 0.8807

Table 3.7: Accuracy Results for Agreement Disagreement Using the Optimal Feature Set

For more details and reasoning behind these choices, as well as how the various feature sets
affect the classification results, please see Appendix A.5.

3.3.5 Summary Of The Proposed Techniques For Building An Agreement/
Disagreement Classifier

The technique proposed for building an agreement/disagreement classifier is based on some
of the features used by Galley[38]. The feature space includes only lexical features as there

55

are not any structural or durational features available using our corpus. The lexical features
treat the response text as a bag of words from which the following features are extracted:

• First and last word of response
• Indication whether the overall polarity of the text is positive or negative based on

adjectives, adverbs, verbs and nouns
• Existence of each cue phrase listed in Hirschber and Litman, 1994 [45]
• Existence of each agreement/disagreement word listed in Cohen, 2002 [46]
• Existence of question marks

For detecting polarity, we used POS Tagging for extracting adverbs, adjectives, nouns and
verbs. For determining the polarity of the text we used SentiWordNet. To avoid inconsisten-
cies we took into consideration the existence of negation in each sentence of the text.

The learning method used is Multinomial Naive Bayes.

3.4 Difficulties Encountered

When working on this project, we faced many difficulties since we were relatively new to
the machine learning area and had little or no knowledge for most of the aspects concerning
automatic sentiment analysis. Therefore, a lot of time was spent trying to understand how to
target this concept in terms of algorithms used for classifications, how features are extracted
and weighted and how to evaluate the different methodologies. This research was particularly
useful for understanding the relative studies on the automatic sentiment analysis since most
of the papers take as a given that the reader is familiar with the various definitions and
methodologies.

Additionally, a lot of time was spent on creating the corpora that were used since we could
not find any corpora in the academic community that met the criteria of the microblogging
debating world. Having to adjust existing ones or annotate corpora that were extracted from
debating websites was very time consuming.

When implementing the classifiers, a challenging task was the exploration journey of inves-
tigating the available techniques in order to reach the one that will be most suitable for the
classification task and corpora. As we were dealing with large amounts of data, we tried to
use techniques and tools that are not very time consuming, like storing the data in sparse
matrices, using machine learning algorithms provided by Scikit instead of NLTK and so on.
For doing so, we had to experiment with the different tools as well as with any conventions
provided in Python to speed up the process.

When dealing with Support/Opposition Classification, the most difficult part was creating a
classifier that when trained on the entire corpora (including all the different topics) to be able
to classify a random text based on any possible topic. To do so, we spent endless hours trying
to experiment with different combinations for feature sets, different parameters for all the
available machine learning algorithms and limits in the number of features sets used. This is
shown in the Appendix Sections A.1- A.4. As this did not achieve the required results, we had
to repeat the experiments using one Topic at a time and then again by adding POS tagging.

56

When dealing with Agreement/Disagreement Classification, the most difficult part was to
construct the correct feature set that would enable to differentiate the two classes, since this
classifier could only rely on local lexical features. A particular challenge was dealing with
negation in order to modify the feature set accordingly.

From an engineering perspective, we had to understand how to use each of the tools (e.g.
for spell checking, POS Tagging, sentiment polarity, etc.), and find the ones that are more
trustworthy and with as little overheads as possible. Additionally, we had to learn how to
incorporate them all together in Python and to make sure that they were working correctly.

3.5 Summary Of Analysis

In this chapter, we evaluated different methodologies for building two classifiers, a Sup-
port/Opposition Classifier and an Agreement/ Disagreement Classifier. First of all, as the
two classifiers have different text requirements, two corpora were constructed with a text size
limit of 200 characters.

The Support/ Opposition Classification used data from political and ideological debates com-
bined with data about quality of products, hotels etc. For better use of lexical features, the
corpus performs syntax corrections and transformation of words to their lemma form. The
classifier was then tested against different feature sets and machine learning algorithms. The
features set experimentation included tf, idf, tf-idf, Delta tf-idf, unigrams, bigrams, trigrams
combined with normalisation and chi-square feature selection when trained using SVM, Max-
imum Entropy and Naive Bayes. From these experimentation, the Delta-tf-idf performed
better so it was chosen for the experiments that followed. Since the corpora has data from
various topics, at first we experimented with different machine learning algorithms when
triggered using different parameters on the entire corpora and then only on one topic at a
time. The results showed that training on a single topic at a time gives much better clas-
sification results, since the classifier tries to pick up phrasal patterns to distinguish between
support/opposition. A supporting phrase of one corpus might be neutral (or even worse op-
posing) for another corpus making it complicated to find a set of features to be used on the
entire corpus. We also tried to use feature sets extracted using POS Tagging. This, however,
gave worse classification results since when dealing with a small text size it usually means
that most of the words are helpful and therefore not considering them will be a mistake. The
best classification results achieved were 65% when trained on the entire corpus and up to 79%
when trained on one topic at a time.

For the Agreement/Disagreement Classifier the corpora was extracted from the online debate
forum, 4forums.com. For dealing with agreement/disagreement classification, instead of using
all the words of the text for detecting patters, we looked for the existence of cue phrases and
words that indicate agreement/disagreement. Additionally, in the feature set we include the
first and last word of the text as they are usually very indicative of agreement/disagreement
with the argument they reply to. We also performed POS tagging to extract adverbs, adjec-
tives, nouns and verbs for determining the positive or negative orientation of the text. The
machine learning algorithm used was Naive Bayes; achieving classification results of up to
88%.

57

Chapter 4

Visualisations To Assist A Debate

As we have already mentioned, an important objective of this project is to provide useful
visualisations to the user, regarding the debates, that will enable him/her to see an overall
picture of the debate in order to make observations and reach conclusions without having to
go through the entire history of arguments posted. This will come in handy, especially to
people who do not have much time in their hands and want an easy and quick way to extract
information. As a result, the visualisations have to be easy to understand by people who do
not have any particular knowledge on visualisations, without providing any ambiguities or
misleading information.

In the following sections there is a detailed explanation for the purpose of using each visual-
isation and the information that the user can extract from them. The visualisations use the
javascript library D3.js1. D3.js binds arbitrary data to DOM and then you can apply data-
driven transformations to the document, making it ideal for dynamic visualisations involving
complex transitions.

4.1 Streamgraph

A Streamgraph2 is an alternative way to the traditional stacked bar chart, whose purpose
is to easily show underlying trends in the data, without giving too much emphasis on the
details. It is preferred than the traditional stacked bar graph because the aesthetics play a
key role in a visualisation for creating an engaging and informative graphic.

The reason why a streamgraph would be useful in a debate system, lies in the idea of showing
how popular the topics of the system are, throughout time. This is helpful for the adminis-
trators, who post the questions, as they can find out which are the topics that are of most
interest to the users and therefore add new debates. Additionally, by looking at the history
of a streamgraph, a sudden increase in a particular topic reminds the user that during that
period an important event has occurred. For example, if there is an increase in ‘politics’
then perhaps it was the election period, or an increase in ‘gadgets’, that a new product was
released.

1http://d3js.org/
2http://www.leebyron.com/else/streamgraph/

58

Figure 4.1: Streamgraph for the topics discussed on quaestio-it.com

In order to understand the visualisation, one must have in mind the following:

• There is no negative value.
• Each slope represents a different topic.
• The colour of each slope shows the overall popularity of the topic throughout time. The

darker the colour, the more responses on that topic.
• The height of the slope shows the popularity of the topic at each period in time
• Hovering over each slope indicates the topic and the date.

Figure 4.2: Hovering feature of streamgraph

4.1.1 Implementation Details

The streamgraph was implemented based on the visualisation created by Mike Bostock [47]
which is based on random values.

For the purposes of the streamgraph implemented here, the data are read using a ‘comma
separated value (CSV)3’ form. We first sort them according to the date they were created
and then create a HashMap containing dates as keys. Each key on the hashmap has as a
value a hashmap, with keys the topics that were discussed on that particular date. The value
corresponding to each topic indicates the number of posts made on a specific date for that
topic. The topics are calculated on runtime allowing new topics to be added on the graph
automatically. The structure is shown in Figure 4.1.

3http://en.wikipedia.org/wiki/Comma-separated_values

59

http://en.wikipedia.org/wiki/Comma-separated_values

Figure 4.3: Structure of HashMaps used for storing data in Streamgraph.

Having created the HashMaps for easily accessing the data, we created the data required to
represent each one of the layers, by accumulating the data to be used for the stacked layers
shown in the graph. These accumulated data were used for creating the areas and the paths
using d3.js.

The colours of the layers are proportional to the number of comments posted on the most
popular topic over the entire period shown, and they might change as new topics or com-
ments are added to the website. For example, let’s say that until now the maximum number
of comments were made by Travel, adding up to 100 comments, and ‘Health’ has only 10
comments in total. If after some time the amount of comments of the most popular topic
changes to 1000 but no change in the amount of comments related to ‘Health’ (remain 10),
then the colour for Health will become lighter. The scale is shown on Figure 4.4 based on the
current maximum of 69 comments.

Figure 4.4: Scale of colouring used for streamgraph visualisation based on the maximum of
69 comments

60

For implementing the ‘hovering’ effect we used the ‘mouseover’ and ‘mouseout’ events for
capturing movement over the layers. Then, using the coordinates of the mouse, we calculated
the date and topic corresponding to that position.

4.2 Line Chart

Another interesting visualisation that is applicable in a debating system, is one that shows the
history of the most popular responses for a specific discussion. For example, as new arguments
come along and more people add votes and replies to the discussion, the winning arguments
tend to fluctuate. In some cases, an argument is made that changes the state of the discussion
and after that, users tend to agree. This will be particularly helpful when somebody wants
to find out what is the underlying opinion on the debate. For example, somebody looking
for reviews in a specific product, instead of having to read all the arguments, comments etc.
that the users have made, it is enough to just look at the chart and see the most popular
responses throughout the history of the debate, and which is the current winning argument.
Also, the scoring value of that argument will be shown, to avoid misleading information being
introduced. An argument may be the most popular in the debate but can still have a low
score which means user’s opinion is not shared amongst the majority of users; or that not
enough people have casted their opinion. As the total number of arguments is shown, the
user can distinguish between the two cases.

This visualisation shows on a traditional x,y axis which is the argument that wins the dis-
cussion based on the users’ responses. Hovering over each response, allows you to see the
argument that at that time was winning the debate.

As the debate can be both dual-sided or multi-sided, two different visualisations had to be
implemented. In the case of dual-sided the arguments can either support or oppose the debate,
and therefore two lines are shown on the graph. The red one represents the most popular
opposing argument and the green one the most popular supporting argument. This is shown
in Figure 4.5.

Figure 4.5: Visualisation showing the winning supporting and opposing arguments of a Debate
throught time

61

When dealing with debates where the arguments are neither support or opposition, for exam-
ple asking ‘Which is the best US Series’, there is only one line on the chart, for showing the
most popular arguments throughout time. This is shown in Figure 4.6.

Figure 4.6: Visualisation showing the winning arguments of a Debate through time

4.2.1 Implementation Details

The implementation of the Line Chart is based on a visualisation by Mike Bostock[48], which
was amended to deal with two lines on the graph.

The data are again read from a CSV file. Based on the dates that are available, the x-axis is
scaled accordingly to fit the dimensions required. D3.js has a good API for creating this kind
of visualisations, so, once you understand how d3.js works and how the SVG are placed on
DOM, it is pretty straightforward to implement.

The graphs were implemented in such a way that would allow the scale on the axis to be
updated according to the data provided. For exampe, the x-axis only shows the dates for
which the particular debate had arguments or updates on arguments. This is because, the
users are only interested for the days for which there is activity.

The ‘hovering’ effect was again based on the coordinates of the mouse and the corresponding
element on the graph. d3.js allows you to bind data on the objects when created for allowing
this kind of interaction with them. Therefore, we store the text corresponding to the specific
coordinate for convenient retrieval when hovering over the object.

4.3 Chernoff Faces

Chernoff Faces are used to show the attitude of a user towards other users and how the attitude
of other users towards him/her make him/her feel. In order to show this, two Chernoff Faces
were implemented for representing the attidar of a user.

For creating the first Chernoff Face that shows the user’s attitude, we used the following
features to indicate various parameters.

62

• Face: Total activity of user in terms of questions posted, arguments posted, replies to
other users’ arguments, thumbs up/thumbs down. Face size grows as the total activity
increases.

• Mouth and Eyebrows: fluctuates from happy to angry, shows attitude of user’s posts
(agreement vs disagreement) and votes (positive/negative).

• Nose: Overall time spent on site. Nose size grows as time spent on site increases.

In order to create the second Chernoff Face, which shows how the attitude of other users
towards user, make him/her feel, we used the following feature parameters.

• Face: Total activity of other users in terms of arguments posted for discussions made
by user, replies to user’s arguments, thumbs up/thumbs down or user’s comments. Face
size grows as the total activity increases.

• Mouth and Eyebrows: fluctuates from happy to sad, shows how the attitude of other
users (agreement vs disagreement) and votes (positive/negative) towards user’s com-
ments make him/her feel.

• Nose: Overall time spent on site. Nose size grows as time spent on site increases.

Since it is easier for a user to cast votes, voting up or down has not the same value as posting
an argument or a reply, weighting only 0.2 instead of 1 point.

In order to make the Chernoff Faces more personal, if the user provides a gender when
registering, the hair style represents if he/she is male or female. Otherwise, the default option
is set to male.

(a) Male Attidar (b) Female Attidar

Figure 4.7: (a) Visualisation showing the attidar of male user, (b) Visualisation showing the
attidar of female user

An additional feature of this visualisation is to give an incentive to the users to be more active
in the debates. In the case where the values corresponding to the size of the faces exceed 40,
the user is rewarded with a crown or a tiara depending on his/her gender. This is shown in
Figure 4.8.

63

(a) Male Attidar with Crown (b) Female Attidar with Tiara

Figure 4.8: (a) Visualisation showing the attidar of male user with a crown, (b) Visualisation
showing the attidar of female user with a tiara

4.3.1 Implementation Details

This visualisation was based on a visualisation created by Lars Kotthoff[49].

The features used for the Chernoff Faces were implemented by Lars Koothoff so we had to
familiarise with the conventions he used and learn how to scale the data to meet his require-
ments. We also tried to improve the features of the face so that they are more closely related
to the human features, since the outcome of the face is to indicate emotion. Figure 4.9 shows
an example of a Chernoff Face before the alterations were made. We thought that this version
was not very appealing and that the user would not be comfortable having one as his/her
attidar. One of the most time consuming features to add on the original implementation was
the hair. As it was not used as a varying feature, we decided to use it to represent gender.
For implementing it we had to figure out the coordinates and add them together on a path
for creating the spikes on the boy and the curves on the girl.

Figure 4.9: Original Version of Chernoff Face provided by Lars Kottoff[49]

Finally, we added the crown/tiara features for users which are very active.

64

The data used were extracted from a JSON file and then, by performing various calculations to
meet the criteria set in Section 4.3, the values were scaled to appropriate values for creating the
different features. Setting the correct scale for each feature was very important and required
careful handling and experimentation. This is because we wanted the change of each feature
to be proportional to the change in the activity of the user.

4.4 Difficulties Encountered

When working on the visualisations, the most challenging task was trying to avoid introducing
ambiguities, or misleading information. Therefore, when using sizes we tried to adjust the
proportions accordingly to reflect the correct information, or when using colours to clearly
explain what each colour represents.

When working on the streamgraph and the Chernoff Faces visualisations, we added explana-
tory sections to assist the user, since, as they are not conventional visualisations, it is not very
easy for someone who has not seen one before to understand them automatically. Trying to
make the explanatory pictures as concise as possible so that not too much time is wasted on
trying to understand the graphs, was therefore quite a challenge.

From an implementation point of view the difficulty lies in the way the data is fed to the d3.js
API and then manipulated for creating the resulting shapes, lines, etc. of the visualisations
and making them interactive (i.e. to show the correct information when hovering over the
slope).

The most difficult task, though, was choosing the right visualisations for showing the classi-
fication results, since we wanted them to be engaging and helpful in a way that the user will
be happy to use them. A huge impact on this is making them easy to use, interesting and
appealing. One example of how this is achieved is finding the correct colours that stand out,
show the information required but at the same time are not tiring to they eye and are likeable
by most.

65

Chapter 5

Evaluation On An Existing System

Evaluating the classifiers is one of the most important stages of the project. The accuracy
results that were calculated in implementation stage, are only based on the trained corpora.
A good classifier has to be tested on a new corpus to make sure that overfitting was avoided
and that the classifier is not prone to the idiosyncrasies of the training data. This will ensure
that the classifiers are trustworthy enough and can be embedded in a debate system.

Additionally, it would be useful to view the visualisations on actual data that constitute
complete debates and not just random texts from numerous debates.

The debating website used for carrying out the evaluation is “quaestio-it.com”1 debate system.

5.1 Overview Of quaestio-it.com

quaestio-it.com[50] is a general purpose debating platform that offers users to express their
opinion. One of the reasons for choosing it instead of other available ones, was that it was
implemented within Imperial College and therefore we had easy access to the data. Addition-
ally, the people working on the debating system were located at Imperial College making it
convenient for arranging meeting and discussing the classifiers and the visualisations.

queastio-it.com allows a user to post new debates, answer with new arguments on an existing
debate, reply to arguments made by other users and vote up/down an argument or reply of
another user. Figure 5.1 shows a typical visualisation tree of a discussion on the website.
The first layer of responses represents the arguments posted by users to support or oppose an
argument. Any following layers are replies that show agreement or disagreement to the user’s
argument.

1http://www.quaestio-it.com

66

Figure 5.1: Visualisation of a debate in quaestio-it.com

When replying to arguments, this debating system asks the user to mark his/her reply as for
or against the argument.

Figure 5.2: Manual classification of comment as for or against the user’s argument

The user’s choice is shown on the tree using a ‘+’ or a ‘-’ indicating a comment as being ‘for’
or ‘against’ the argument respectively.

For the first layer of responses the classifier that can be used to detect whether an argument
supports or opposes the question, is the Support/Opposition Classifier that was implemented
in Section 3.2. Unfortunately there is not enough corpus on the website for testing the
performance of the Support/Opposition Classifier. The latest csv export of arguments posted

67

on the website included 29 comments (only first layer comments considered which belong to
dual-sided debates). Additionally, since the website does not provide annotation for those,
we have to annotate them manually before evaluating the classifier.

For the following layers the Agreement/Disagreement Classifier can be used and avoid the
burden imposed to the user of having to manually annotate his/her comment as being in
agreement or disagreement. These comments have already been annotated so they form a
good enough new corpus for evaluating the Agreement/Disagreement Classifier. An accuracy
higher than 75% is enough to make it trustworthy in order to replace the manual annotation.

5.2 Testing Support/Opposition Classifier On A New Corpus

The Support/Opposition Classifier as it was implemented in Section 3.2, it is trained on a
specific corpus each time. Therefore, in order to classify a text, the topic of the discussion
has to be specified. The classifier has three options; corpus, question and argument. This is
shown in Figure 5.3:

Figure 5.3: Options provided by the Support/Opposition Classifier

Question and Argument options are mandatory. The user can call the classifier using the
following command:

python SupportOppositionClassifier.py --corpus=abortion --question=‘‘Should abortion

be allowed?’’ --argument=‘‘Life starts at conception. Having an abortion is therefore

removing a human’s life’’

If ‘question’ and ‘argument’ options are not set then an error message appears and the program
exits.

Figure 5.4: Question Error provided by Support/Opposition Classifier

68

Figure 5.5: Argument Error provided by Support Opposition Classifier

5.2.1 Dealing With Non Dual-Sided Debates

Additionally, the debate type has a significant role for the classifier. The classifier can classify
arguments for dual-sided debates. These include debates that do not have multiple answers
but instead have two sides that either support or oppose the debate.

For example, asking users to provide arguments on the debate: “Does owing a gun makes you
safer?” is an example of dual-sided debate. A debate like “Which is the best city in Europe?”
is not a dual-sided debate, since the answers can be for more than two choices.

As a result, before calling the classifier, we have to make sure that we are dealing with a
dual-sided debate. A good enough way to detect whether a debate is dual-sided or not, is by
checking the verb used to begin the question of the debate [51]. This verb can be one of the
three following types:

(a) Be verbs: [‘am’, ‘is’, ‘are’, ‘been’, ‘being’, ‘was’, ‘were’]

(b) Modal verbs: [‘can’, ‘could’, ‘shall’, ‘should’, ‘will’, ‘would’, ‘may’, ‘might’]

(c) Auxiliary verbs: [‘do’, ‘did’, ‘does’, ‘have’, ‘had’, ‘has’]

There are exceptions where this approach does not work, but in general it provides an accuracy
of up to 90%.

In the case where the question is not dual-sided, the classifier outputs the following message:

Figure 5.6: Output message when the question is not dual-sided

5.2.2 Dealing With Missing Topic Of Corpus

Instead of showing an error message when the user does not provide the corpus related to the
argument to be classified, we decided that it would be better to provide a result, even if it

69

is not as likely to be correct as when if the topic was given. For finding out the best way to
approach it, we experimented with four different approaches.

5.2.2.1 Use Default Classifier

This option uses the entire corpus, including all the different topics (abortion, gay rights,
healthcare etc) and use the classifier and parameters that were obtained from the experimen-
tation in Appendix Section A.2.

The default option uses logistic regression algorithm with the following parameters:

parameters = {

’vect__max_df’: 0.5,

’vect__max_features’: None,

’vect__max_n’: 1,

’tfidf__use_idf’: False,

’tfidf__norm’: ’l2’,

’chi2__k’: 1000,

’clf__penalty’: ’l2’,

’clf__C’: 1,

’clf__tol’: 0.1,

}

These are the classification results when using a default classifier, tested on data from quaestio-
it.com.

Classification Accuracy: 0.3929
Positive Precision: 0.5385
Positive Recall: 0.3889
Positive F-measure: 0.4516
Negative Precision: 0.4444
Negative Recall: 0.4444
Negative F-measure: 0.4444

Table 5.1: Accuracy Results for Support Opposition Classifier Using default classifier when
no topic is provided

The results were disappointing. This emphasises that different corpora have different feature
patterns that show support or opposition. Therefore, using a default classifier is not a good
enough implementation decision.

5.2.2.2 Use Classifer Based On Top Features

The alternative choice, is to use the top features as they were extracted for each topic in
Appendix Section A.3. These features are the ones that are more informative for each one of
the topics. Therefore, we thought that a good approach is to compare the set of words in the
argument provided and each one of the set of words. The set of features that has the most in

70

common with the argument, is set as the topic of the corpus. Depending on that choice, the
respective corpus is chosen along with the appropriate classifier.

These are the classification results when using a classifier based on the most informative
features, tested on data from quaestio-it.com.

Classification Accuracy: 0.50
Positive Precision: 0.25
Positive Recall: 0.375
Positive F-measure: 0.3
Negative Precision: 0.6875
Negative Recall: 0.6111
Negative F-measure: 0.6471

Table 5.2: Accuracy Results for Support Opposition Classifier when no topic is provided,
using classifier with most in common top features

The results were better than using a default classifier. However, this implementation choice
is still not good enough as it is no better than a random choice.

5.2.2.3 Finding Out The Most General Corpus

An alternative approach is to find which classifier, when trained on a different topic, is the
most general one. This means that it performs better than others when presented to a new
corpus, with a different topic of discussion. In order to find out which one it is, we used one
corpus at a time and used the rest to find out it’s accuracy.

Summary of accuracy results:

Corpus Topic Accuracy
Abortion 57%
Creationism: 39%
Gay Rights: 52%
Existence of God: 51%
Gun Rights: 55%
Healthcare: 41%
Quality: 52%

Table 5.3: Training using abortion corpus and testing with the remaing corpora

Please see Appendix Section A.6, to see the detailed results for each training and testing
corpora.

71

Results from testing the most general corpus, using data from quaestio-it.com:

Classification Accuracy: 0.4642
Positive Precision: 1
Positive Recall: 0.4444
Positive F-measure: 0.6153
Negative Precision: 0.0065
Negative Recall: 1
Negative F-measure: 0.1176

Table 5.4: Accuracy Results for Support Opposition Classifier when no topic is provided,
using most general classifier

The results, were not satisfactory, indicating once more, that training on a single corpus is
not good enough to be used to classify various topics.

5.2.2.4 Use Classifer Based On Majority Of Votes From Classifiers Trained On
Different Corpora

This time, instead of choosing only one classifier trained on a choice of corpora, we decided
to run all the different classifiers as they were resulted in Section 3.2.4. Therefore, eight
classifiers run in total, one for each different corpus. Then, the majority of replies is used
to classify the text. If more classifiers respond with support, then the final response will be
support and oppose otherwise.

These are the classification results when using the majority of votes from the different classi-
fiers, tested on data from quaestio-it.com.

Classification Accuracy: 0.6429
Positive Precision: 0.75
Positive Recall: 0.5625
Positive F-measure: 0.6428
Negative Precision: 0.6154
Negative Recall: 0.7273
Negative F-measure: 0.6667

Table 5.5: Accuracy Results for Support Opposition Classifier when no topic is provided,
using classifier with most in common top features

The results were improved to 65% making this a safer choice, in the case when no topic is
provided.

72

5.3 Testing Agreement/Disagreement Classifier On Corpus From
quaestio-it.com

The data for testing the classifier, were extracted from the website in a csv file which included
the classifications as they were entered by the users. Each data was modified to meet the
standards of the trained data (i.e. removing urls, replacing don’t with do not etc) and then
the result of classifying each text with the Agreement/Disagreement classifier was compared
to the value given by the user.

The results obtained were the following:

Classifiacation Accuracy: 0.8462
Positive Precision: 0.8333
Positive Recall: 0.8333
Positive F-measure: 0.8333
Negative Precision: 0.8571
Negative Recall: 0.8571
Negative F-measure: 0.8571

Table 5.6: Classification results of Agreement/Disagreement Classifier on quaestio-it.com cor-
pus

The most informative features of the classifier are the following:

Figure 5.7: Most Informative Features of Agreement Disagreement Classifier

The results were very satisfactory since any results above 75% are good enough to make
the classifier trustworthy enough to be embedded in a debating system. However, we were
interested to see the arguments which the classifier failed to classify.

73

5.3.1 Misclassifications Made By The Classifier

The following cases show the situations where the Agreement/Disagreement Classifier makes
mistakes.

(a) Human Error

It turned out that in some cases the comments were in fact correctly classified by the
Agreement/Disagreement Classifier but were not annotated correctly by the users. For
example, the next two cases were mistakenly annotated as negative and positive respec-
tively.

Figure 5.8: Comment annotated as negative instead of positive by a user of quaestio-it

Figure 5.9: Comment annotated as positive instead of negative by a user of quaestio-it

In those cases, the classifier actually performed better than the manual annotation given
by the users, since the two comments were correctly classified as positive and negative
respectively by the Agreement/Disagreement Classifier. This points out that occasionally,
the decision whether a comment is in agreement with another or not, is subjective. For
the example in Figure 5.8, we asked the user why he annotated that comment as negative
and he told us that “since the bug had already been fixed, the argument made by the
other user was not really valid or helpful”. However just looking at his response, there is

74

no indication of disagreement in the vocabulary he uses and that is why the classifier, and
any other person we asked their opinion on that, considered that comment to be positive.

(b) Missing explanation

Looking at the results, we noticed one other case where the classifier fails to give a
correct classification. This happens when the user does not provide any reasoning for
his/her choice. This is shown in the following example:

Figure 5.10: Comment annotated as negative by a user of quaestio-it, without giving enough
reasoning

‘Liverpool’ reply was classified as positive using the Agreement/Disagreement classifier
when in fact it disagrees with the argument made. These situations cannot be easily
classified as they do not include any cue phrases or agreement/disagreement words or
even any connectives that would indicate the position it is taking. It does not even
include any adjectives or adverbs to indicate any positive or negative orientation. Even
manually, a human would be in a difficult situation and would be impossible to classify
it without looking at the argument that is in reply to. The agreement/disagreement
classifier does not take into account the comment that the text to be classified is in reply
to. This information is not available in the csv file provided from the site and even if
it were, it would be extremely difficult to find the topic that the comment supports and
then compare it to the topic the response is supporting. Based on the training data,
when a text does not include any indicative features, it is considered to be neutral, and
the classifier classifies it as positive.

(c) Missing agreement/disagreement indication

Sometimes, the users provide enough information to support their reply but fail to say
whether they agree or disagree with the comment they reply to. Consider the following
example:

75

Figure 5.11: Comment annotated as negative by a user of quaestio-it, without giving indication
of agreement/disagreement

Just by looking at the reply even a human would classify that as a comment that shows
agreement and, like the previous example, can only tell that it is in disagreement when
looking at the the comment that it is in reply to.

5.4 Integrating Agreement/Disagreement Classifier

The results for Agreement/Disagreement Classification, as they were evaluated on quaestio-
it.com, were good enough to make it reliable in order to be integrated into the system.

The integration of the classifier was easily made, since they use Python as well and therefore
we only had to explain to them how to train and call the classifier and which tools or programs
to import into their system.

When a user decides to reply to an argument in a debate, he/she sees the same pop-up window
as shown in Section 5.2 but now have this option of analysing their response automatically
instead of choosing it on their own. This is shown in Figure 5.12.

76

(a) Classification of a rsponse as in agreement with argu-
ment

(b) Classification of a rsponse as in disagreement with ar-
gument

Figure 5.12: Use of Agreement/Disagreement Classifier in quaestio-it.com The user can au-
tomatically classify whether his/her comment is for or against the argument he/she replies
to.

As seen in Figure 5.12, the classifier tells the user how the classifier classifies the response and
can decide to keep the classification or manually change it to the one he/she believes is the
correct one.

5.5 Integrating Visualisations

The owners of the debating website were satisfied with the visualisations and agreed to use
them on their website. However, their database could not provide enough information for
showing the history of popular arguments in a debate since is did not store the previous
values. Therefore, the line chart will be included in their next update, when the database has
changed.

5.5.1 Integration of Streamgraph

The user is also now able to view the popularity of the topics by clicking the available button
on the website. The current visualisation based on the overall activity of the users on the
website is shown in Figure 5.13.

77

Figure 5.13: Current Streamgprah Visualisation on quaestio-it.com

Figure 5.13 shows that the activity of the users when the website was first introduced, was
at its highest levels. It seems, however, that, from the middle of March until today, not so
many users have been using the website. Additionally, the most popular topic of discussion
is travel, as is it the one with the darker colour and the widest slope.

5.5.2 Integration Of Chernoff Faces

The user can oversee his overall activity and the activity towards him/her by other users by
visiting his/her profile. Then, by clicking on the ‘show attidar’ button, the corresponding
Chernoff Faces appear. The Chernoff Faces show the corresponding activities over the last
week. Figure 5.14 shows the attidar of a user.

Figure 5.14: Attidar of a user based on his/her avtivity over the last week.

78

The attidar in Figure 5.14, shows that the attitude of the user is relatively aggressive towards
other users. The attitude of other users towards him/her however, is relatively positive, since
the face has a hint of a smile. Looking at the size of the face of the Chernoff Faces, neither
the user nor the other users have been very active despite that the user has been spending a
lot of time on the website (deducing from the size of the nose).

5.6 Difficulties Encountered

One of the difficulties that we had to overcome in order to evaluate the Support/Opposition
Classifier was having to deal with situations were the topic is not provided. When developing
the classifier we made an assumption that the topic will be provided but this was not the case
with quaestio-it.com data. Therefore, we had to incorporate this situation. As a result, we
were not able to evaluate the classifier based on the initial considerations that the classifier
was built upon.

Additionally, as the website allows non dual-sided debates to be posted, there were not a lot
of arguments for evaluating the Support/Opposition Classifier. Also, they were not annotated
by the user so we had to manually annotate them, resulting to possible misclassifications from
our part. This is because the stance a person is taking is not always clear.

For the Agreement/ Disagreement Classification, as we have already mentioned in Section 5.3.1,
the difficulty lied in finding out the situations where the user had made a false annotation.
This lowered the accuracy results even though the classifier was in fact correct.

A common problem regarding the two classifiers, was dealing with situations where the user
did not provide any reasoning for his/her response. As the classifiers use features that depend
on patterns that they pick up from the trained corpora, it is not easy to classify the ones that
do not have any indication of support/opposition or agreement/disagreement.

5.7 Summary Of Evaluation On An Existing System

The Support/Opposition Classifier was evaluated on the arguments posted on dual-sided
debates of quaestio-it.com. For doing so, we had to find out whether the debate was dual-
sided, since there is no point in classifying arguments made for non dual-sided debates. Also,
we had to change the decision making process of calling the correct classifier based on the
topic of the debate, since it was not provided. For doing so, we used the majority of votes of
the classification results given by each of the classifiers when trained on different corpora. This
approach, combined with the classifiers described in Section 3.2, gave classification results of
65%.

For evaluating the Agreement/Disagreement Classifier, we did not face any difficulties with
conventions used by quaestio-it.com (like missing topic of debate). The classifier was tested
on the replies posted to arguments on all the debates, regardless whether they were dual-sided
or not. The classifier described in Section 3.3 gave classification results of 85%.

79

Chapter 6

Conclusions And Future Work

This project aimed at targeting sentiment analysis on debates extracted from social net-
working sites that make use of microblogging text. This included finding ways to classify
an argument as being in Support/Opposition with a debate question, and a reply as being
in Agreement/Disagreement with an argument; as well as finding different ways to visualise
important information extracted from the classification results.

6.1 Achievements Summary

The overall project was successful since we were able to complete in time all the objectives
that were set. For doing so, we managed to incorporate and adapt previous studies to make
them suitable for dealing with microblogging data, by experimenting with various combina-
tions of machine learning algorithms, feature sets and symbolic techniques. Additionally, we
incorporated an alternative way of visualising debates in an engaging and interesting way.
Finally we were able to evaluate the appropriateness of the classifiers and visualisations using
an existing debating website.

Particularly, this project has achieved the following:

• Achieved a classification accuracy of 65% when trained on multiple corpora and up to
79% when trained on one topic at a time for Support/Opposition Classification (com-
pared to 64% and 71% respectively of other studies using the same corpora).

• Achieved a relatively high accuracy score of 88% in Agreement/Disagreement Classifi-
cation, without having any durational or structural features that were available to other
studies.

• Managed to create three interactive visualisations for providing information to the user
in an appealing and interesting way; resulting in relieving him/her of the burden to
waste time and effort to extract this information.

• Evaluated the classifiers and visualisations on an existing debating website achieving
64%, and 84% accuracy scores for the two classifiers. The classifier scores and the
visualisations were deemed good enough to be integrated into the debating website.
Some of them have already been integrated and the rest will be integrated in the next
update.

80

6.2 Future Work

No matter how successful a project might be, there is always room for improvement. The
following features, are some of the possible extensions that in my opinion can be useful, which
given that we had more time, we would have included in this project.

• One of the most important additions to this project is to enhance the corpora . This
way the classifiers will be in position to pick up any additional patterns that can be
used to indicate Support/Opposition and Agreement/Disagreement. Having a robust
corpora allows the classifiers to be more adaptable to new topics of discussion. There
are many available microblogging websites from which the corpora can be extracted.
The process of annotating the corpora can be very tiring and time consuming, and if
you do not have the time, there are companies you can pay for this kind of service.

• Adjust the Support/Opposition Classifier to deal with non dual-sided debates. The
classifier as it is at the moment, can only deal with debates where the answer can be
one of two sides like ‘yes/no’, ‘for/against’.

• Incorporate structural features of the debates by taking into consideration previous
responses of users. For example, a user that always agrees/disagrees with another user,
is more likely to agree/disagree in the future as well, or if a user’s responses on debates
regarding a particular topic are usually supporting/opposing it is probably to be the
same in related debates.

• Extract possible patterns where the classifiers always make a mistake based on
the evaluated corpus and try to deal with them. However, this requires careful handling
to avoid overfitting and making the classifiers prone to idiosyncrasies of the evaluating
corpora.

• The Streamgraph visualisation, as it is at the moment, shows the overall topic popularity
for the entire period of the data that are provided. An extension would be to allow the
user to select the period for which he/she is interested in seeing the popularity for,
like a periodic graph.

• For the Chernoff Faces, instead of having a single crown/tiara as a reward for users,
multiple rewards can be provided in a gold, silver, bronze manner so that there is a
clearer distinction.

81

Bibliography

[1] Erik Boiy; Pieter Hens; Koen Deschacht; Marie-Francine Moens. Automatic Sentiment
Analysis in On-line Text. In Proceedings of ELPUB2007 Conference on Electronic Pub-
lishing, Vienna-Austria, June 2007.

[2] Bird, Steven, Edward Loper and Ewan Klein (2009). Natural Language with Python.
O’Reily Media Inc.

[3] Pedregosa et al. Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830, 2011.

[4] “Chernoff Face” Wikipedia, The Free Encyclopedia. Wikipedia Foundation, Inc. 22 July
2004. Web. 10 Aug. 2004

[5] “Sentiment Analysis.” Wikipedia, The Free Encyclopedia.

[6] “Natural Language” Wikipedia, The Free Encyclopedia.

[7] Stanford Linguistics. URL: https://linguistics.stanford.edu [2012]

[8] “Text mining” Wikipedia, The Free Encyclopedia.

[9] Turney, P., Thumbs up or thumbs down? Semantic orientation applied to unsupervised
classification of reviews, Proceedings of ACL-02, 40th Annual Meeting of the Association
for Computational Linguistics, Association for Computational Linguistics, 2002.

[10] Fellbaum, C. (ed.), Wordnet: An elecotrinic lexical database, Language, Speech, and
Communication Series, MIT Press, Cambridge, 1998.

[11] Kamps, J.; Marx, M.; Mokken, R. J.; De Rijke, M., Using WordNet to measure semantic
orientation of adjectives, LREC 2004, volume IV.

[12] Mulder, M.; Nijholt, A.; Den Uyl, M.; Terpstra, P., A lexical grammaticaimplemntation of
affec. Proceedings of TSD-04, the 7th International Conference Text, Speech and Dialogue,
Lecture Notes in Computer Science, vol. 3206, Springer-Verlag, Brno.

[13] Mitchell, Thomas M. Machine Learning McGraw-Hill, Inc. New York, NY, USA, 1997

[14] “Feature (machine learning)” Wikipedia, The Free Encyclopedia. Wikipedia Foundation,
Inc. 22 July 2004. Web. 10 Aug. 2004

[15] “n-gram” Wikipedia, The Free Encyclopedia. Wikipedia Foundation, Inc. 22 July 2004.
Web. 10 Aug. 2004

82

[16] Pang, B.; Lee, L.; Vaithyanathan, S. Thumbs up? Sentiment classification using machine
learning techniques. In Proceedings of EMNLP-02, the Conference on Empirical Methods
in Natural Language Processing, Association for Computational Linguistics, Philadelphia,
US, 2002

[17] Riloff, E.; Wiebe, J.; Wilson, T. Learning subjective nouns using extraction pattern boot-
strapping. In Walter Daelemans and Miles Osborne, editors, Proceedings of CONLL-03,
7th Conference on Natural Language Learning, Edmonton, CA, 2003.

[18] Hu, M.; Liu, B, Mining opinion features in customer reviews. In Proceedings of AAAI-04,
the 19th National Conference on Artificial Intelligience, San Jose, US, 2004.

[19] Learning subjective adjectives from corpora In Proceedings of AAAI-00, 17th Conference
of the American Association for Artificial Intelligence, AAAI Press / The MIT Press,
Austin, US, 2000

[20] Salvetti, F.; Lewis, S Reichenbach, C. Impact of lexical filtering on overall opinion polarity
identification. In Proceedings of the AAAI Spring Symposium on Exploring Attitude and
Affect in Text: Theories and Applications, Stanford, US, 2004

[21] Berwick, R. An idiot’s guide to Support vector machines (SVMs). URL:
http://www.cs.ucf.edu/courses/cap6412/fall2009/papers/Berwick2003.pdf

[22] Hatzivassiloglou, V.; McKeown, K. R. Predicting the semantic orientation of adjectives.
In Proceedings of ACL-97, 35th Annual Meeting of the Association for Computational
Linguistics, Association for Computational Linguistics, Madrid, ES, 1997.

[23] Popescu, A.; Etzioni, O. Extracting product features and opinions from reviews. In Pro-
ceedings of HLT-EMNLP-05, the Human Language Technology Conference/Conference
on Empirical Methods in Natural Language Processing, Vancouver, CA, 2005.

[24] Maja Pantic Computer Based Courseeork Manual Machine Learning (Course 395), Im-
perial College, 2012

[25] Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I. H. The
WEKA Data Mining Software: An Update, SIGKDD Explorations, Volume 11, Issue 1,
2009

[26] The Apache Software Foundation URL: http://opennlp.apache.org/

[27] O’Connor, B.; Balasubranamyan, R.; Routledge, B. R.; Smithi, N. A., From Tweets to
Polls: Linking Text Sentiment to Public Opinion Time Series In Proceedings of the Fourth
International AAAI Conference on Weblogs and Social Media

[28] Lindsay, R. Predicting polls with Lexicon. URL: http://languagewrong.tumblr.com/post/
55722687/predicting-polls-with-lexicon

[29] Gilbert, E.; Karahalios, K., Widespread worry and the stock market. In Proceedings of
the International Conference on Weblogs and Social Media, 2010.

[30] Pimenta F. S.; ObradovIc, D.; Schirru, R.; Baumann, S.; Dengel, A., Automatic Senti-
ment Monitoring of Specific Topics in the Blogosphere Proceedings of the 1st Workshop on

83

Dynamic Networks and Knowledge Discovery co-located with ECML PKDD, Barcelona,
Spain, 2010

[31] Esuli, A.; Sebastiani, F., SentiWordNet: A publicly available lexical resource for opinion
mining Proceedings of LREC-06, 5th Conference on Language Resources and Evaluation,
Genova, IT, 2006

[32] Pang, B.; Lee, L., A Sentimental Education: Sentiment Analysis Using Subjectivity Sum-
marization Based on Minimum Cuts Proceedings of the 42nd Annual Meeting on Associ-
ation for Computational Linguistics, 2004

[33] Thomas, M.; Pang, B.; Lee, L. Get out the vote: Determining support or opposition
from Congressional floor-debate transcripts Proceedings of the 2006 Conference on Em-
pirical Methods in Natural Language Processing, (EMNLP 2006), Sydney, July 2006 URL:
http://www.cs.cornell.edu/home/llee/data/convote.html

[34] Yu, B.; Kaufmann, S.; Deirmeier, D., Classifying Party Affiliation from Political Speech
Journal of Information Technology & Politics, Vol. 5, No. 1, 2008

[35] Martinau, J.; Finin, T., Delta TFIDF: An Improved Feature Space for Sentiment Analysis
Proceedings of the Third AAAI Internatonal Conference on Weblogs and Social Media

[36] Somasundaran, S.; Wiebe, J. Recognising Stances in Ideological On-Line Debates
Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to
Analysis and Generation of Emotion in Text, Los Angeles, CA, June, 2010 URL:
http://www.aclweb.org/anthology/W10-0214

[37] Bansa, M,; Cardie, C.; Lee, L., The power of negative thinking: Exploiting label dis-
agreement in the min-cut classification framework Proceedings of COLING: Companion
volume: Posters, pp. 15–18, 2008

[38] Galley, M.; McKeown, K.; Hirschberg, J.; Shriberg, E., Identifying Agreement and Dis-
agreement in Conversational Speech: Use of Bayesian Networks to Model Pragmatic De-
pendencies Proceedings of the 42nd Annual Meeting on Association for Computational
Linguistics, 2004

[39] Burfoot, C. Using multiple sources of agreement information for sentiment classification
of political transcripts Proceedings of the Australasian Language Technology Workshop,
Vol 6, 2008

[40] Byron, L.; Wattenberg, M., Stacked Graphs - Geometry & Aesthetics URL:
http://leebyron.com/else/streamgraph/

[41] jQuery, Webopedia, Everything you need to know it right here, URL: http://www.

webopedia.com/TERM/J/jQuery.html

[42] What is CSS?, World Wide Web Consortium, URL: http://www.w3.org/standards/
webdesign/htmlcss#whatcss

[43] Taboada, M; Grieve, J. Analysing appraisal automatically In Proceedings of the AAAI
Spring Symposium on Exploring Attitude and Affect in Text: Theories and Applications,
Stanford, US, 2004

84

http://www.webopedia.com/TERM/J/jQuery.html
http://www.webopedia.com/TERM/J/jQuery.html
http://www.w3.org/standards/webdesign/htmlcss#whatcss
http://www.w3.org/standards/webdesign/htmlcss#whatcss

[44] Walker, M. A.; Anand, P.; Fox Tree, J. E.; Abbott, R.; King. J. A Corpus for Re-
search on Deliberation and Debate Proceeding of Extra-propositional aspects of meaning
in computational linguistics (ExPromM 2012), ACL-HLT 2012

[45] Hirschber, J.; Litman, D. Empirical studies on the disambiguation of cue phrases Com-
putational Linguistics, 19(3):501–530, 1994

[46] Cohen, S. A computerized scale for monitoring levels of agreement during a conversation.
In Proc. of the 26th Penn Linguistics Colloquium, 2002

[47] Bostock, M. Streamgraph, URL: http://bl.ocks.org/mbostock/4060954

[48] Bostock, M. Line Chart, URL: http://bl.ocks.org/mbostock/3883245

[49] Lars Kotthoff Chernoff Faces for D3, URL: http://bl.ocks.org/larskotthoff/2011590

[50] Computational Logic and Argumentation, Department of Computing, Imperial College,
Quaestio-it, Find the right answers, URL: http://www.quaestio-it.com

[51] Jing, H.; Decheng, D. Summarization of Yes/No Questions Using a Feature Function
Model. JMLR: Workshop and Conference Proceedings 20 (2011)

[52] convince me start a debate. URL: http://www.convinceme.net [2007]

[53] InformationWeek, The Business Value of Technology. URL:
http://www.informationweek.com/ [2012]

[54] Hatzivassiloglou, V.; Wiebe, J., Effects of adjective orientation and gradability on sen-
tence subjectivity, Proceedings of the 18th International Conference on Computational
Linguistics, ACL, New Brunswick, NJ, 2000.

85

Appendix A

Experiment Results

A.1 Feature Selection Experiments For Support/Opposition
Classifier

These experiments were conducted for Section 3.2.2.

1.1.1 Support Vector Machines

TF IDF TF-IDF Delta TF-IDF

1-grams 61% 60% 62% 64%

2-rams 53% 54% 55% 57%

3-grams 57% 58% 60% 61%

1,2,3-grams 59% 61% 63% 65%

Table A.1: Support Vector Machines tested on all corpus

1.1.2 Naive Bayes

TF IDF TF-IDF Delta TF-IDF

1-grams 50% 49% 58% 58%

2-rams 55% 56% 56% 57%

3-grams 57% 57% 60% 61%

1,2,3-grams 57% 55% 57% 58%

Table A.2: Naive Bayes tested on all corpus

86

1.1.3 Maximum Entropy

TF IDF TF-IDF Delta TF-IDF

1-grams 50% 56% 55% 55%

2-rams 48% 47% 49% 49%

3-grams 53% 55% 56% 57%

1,2,3-grams 51% 53% 54% 55%

Table A.3: Maximum Entropy tested on all corpus

A.2 Extracting Best Parameters When Trained On All the
Corpus Data

These experiments were conducted for Section 3.2.3.

1.2.1 Linear SVC

pipeline = Pipeline([

(’vect’, CountVectorizer()),

(’tfidf’, TfidfTransformer()),

(’chi2’, SelectKBest(chi2)),

(’clf’, LinearSVC())

])

parameters = {

’vect__max_df’: (0.5, 0.75, 1.0),

’vect__max_features’: (None, 5000, 10000, 50000),

’vect__max_n’: (1, 2, 3),

’tfidf__use_idf’: (True, False),

’tfidf__norm’: (’l1’, ’l2’),

’chi2__k’: (50, 100, 200, 500,1000),

’clf__penalty’: (’l1’,’l2’),

’clf__C’: [1, 10],

’clf__tol’: [1e-6, 1e-1]

}

Giving the following results (elapsed time 1h42m):

87

Figure A.1: Extracting Best Parameters for LinearSVC Classification on all corpus data

Validating these parameters on my corpus we had the following results1:

Figure A.2: Extracting Best Parameters for LinearSVC Classification on all corpus data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 61% 61% 61% 64% 64%

2-rams 58% 58% 58% 59% 58%

3-grams 58% 58% 58% 58% 58%

1,2-grams 60% 60% 62% 62% 62%

2,3-grams 58% 58% 58% 58% 58%

1,2,3-grams 60% 60% 61% 63% 63%

Table A.4: Additional Experiments with LinearSVC

1.2.2 Stochastic Gradient Descent (SGD)

pipeline = Pipeline([

(’vect’, CountVectorizer()),

1small difference in the accuracy is due to the division of the data into train and test data sets

88

(’tfidf’, TfidfTransformer()),

(’chi2’, SelectKBest(chi2)),

(’clf’, SGDClassifier())

])

parameters = {

’chi2__k’: (50, 100, 200, 500, 1000),

’clf__alpha’: [1e-06, 0.1],

’clf__loss’: (’hinge’, ’log’),

’clf__n_iter’: (5, 10, 50, 80),

’clf__penalty’: (’l1’, ’l2’, ’elasticnet’),

’tfidf__norm’: (’l1’, ’l2’),

’tfidf__use_idf’: (True, False),

’vect__max_df’: (0.5, 0.75, 1.0),

’vect__max_features’: (None, 5000, 10000, 50000),

’vect__max_n’: (1, 2, 3)

}

Giving the following results (elapsed time 14h31m):

Figure A.3: Extracting Best Parameters for Stochastic Gradient Descent on all corpus data

Validating these parameters on my corpus we had the following results:

Figure A.4: Extracting Best Parameters for Stochastic Gradient Descent on all corpus data

89

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 62% 61% 59% 60% 61%

2-rams 58% 58% 59% 59% 58%

3-grams 58% 58% 58% 58% 58%

1,2-grams 61% 61% 60% 60% 60%

2,3-grams 58% 58% 59% 60% 59%

1,2,3-grams 61% 61% 61% 60% 61%

Table A.5: Additional Experiments with Stochastic Gradient Descent

1.2.3 Nearest Centroid

pipeline = Pipeline([

(’vect’, CountVectorizer()),

(’tfidf’, TfidfTransformer()),

(’chi2’, SelectKBest(chi2)),

(’clf’, NearestCentroid())

])

parameters = {

’vect__max_df’: (0.5, 0.75, 1.0),

’vect__max_features’: (None, 5000, 10000, 50000),

’vect__max_n’: (1, 2, 3),

’tfidf__use_idf’: (True, False),

’tfidf__norm’: (’l1’, ’l2’),

’chi2__k’: (50, 100, 200, 500,1000),

’clf__n_iter’: (5, 10, 50, 80),

}

Giving the following results (elapsed time 0h47m):

Figure A.5: Extracting Best Parameters for Nearest Centroid Classification on all corpus data

Validating these parameters on my corpus we had the following results:

90

Figure A.6: Extracting Best Parameters for Nearest Centroid Classification on all corpus data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 57% 59% 60% 62% 62%

2-rams 46% 45% 58% 60% 58%

3-grams 58% 58% 58% 58% 58%

1,2-grams 56% 58% 58% 61% 61%

2,3-grams 45% 45% 59% 60% 58%

1,2,3-grams 56% 58% 60% 60% 60%

Table A.6: Additional Experiments with Nearest Centroid

1.2.4 K Nearest Neighbour

pipeline = Pipeline([

(’vect’, CountVectorizer()),

(’tfidf’, TfidfTransformer()),

(’chi2’, SelectKBest(chi2)),

(’clf’, KNeighborsClassifier())

])

parameters = {

’vect__max_df’: (0.5, 0.75, 1.0),

’vect__max_features’: (None, 5000, 10000, 50000),

’vect__max_n’: (1, 2, 3),

’tfidf__use_idf’: (True, False),

’tfidf__norm’: (’l1’, ’l2’),

’chi2__k’: (50, 100, 200, 500,1000),

’clf__n_neighbors’: (5, 10, 15, 20)

}

Giving the following results (elapsed time 2h58m):

91

Figure A.7: Extracting Best Parameters for K Nearest Neighbour Classification on all corpus
data

Validating these parameters on my corpus we had the following results:

Figure A.8: Extracting Best Parameters for K Nearest Neighbour Classification on all corpus
data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 61% 63% 60% 58% 59%

2-rams 57% 58% 58% 58% 59%

3-grams 43% 58% 58% 43% 43%

1,2-grams 54% 59% 62% 61% 57%

2,3-grams 57% 58% 57% 58% 59%

1,2,3-grams 55% 56% 61% 60% 57%

Table A.7: Additional Experiments with K Nearest Neighbour

1.2.5 Multinomial Naive Bayes

pipeline = Pipeline([

(’vect’, CountVectorizer()),

(’tfidf’, TfidfTransformer()),

(’chi2’, SelectKBest(chi2)),

(’clf’, MultinomialNB())

92

])

parameters = {

’chi2__k’: (50, 100, 200, 500, 1000),

’clf__alpha’: (1, 0.1, 0, 1, 0.001),

’clf__fit_prior’: (True, False),

’tfidf__norm’: (’l1’, ’l2’),

’tfidf__use_idf’: (True, False),

’vect__max_df’: (0.5, 0.75, 1.0),

’vect__max_features’: (None, 5000, 10000, 50000),

’vect__max_n’: (1, 2, 3)

}

Giving the following results (elapsed time 2h21m):

Figure A.9: Extracting Best Parameters for Multinomial Naive Bayes Classification on all
corpus data

Validating these parameters on my corpus we had the following results:

Figure A.10: Extracting Best Parameters for Multinomial Naive Bayes Classification on all
corpus data

Additional Experiments using different n-grams and maximum feature selection:

93

50 100 200 500 1000

1-grams 60% 60% 60% 61% 61%

2-rams 58% 59% 59% 59% 58%

3-grams 58% 58% 58% 58% 58%

1,2-grams 60% 60% 61% 60% 63%

2,3-grams 58% 60% 59% 60% 59%

1,2,3-grams 60% 60% 62% 61% 62%

Table A.8: Additional Experiments with Multinomial Naive Bayes

1.2.6 Bernoulli Naive Bayes

pipeline = Pipeline([

(’vect’, CountVectorizer()),

(’tfidf’, TfidfTransformer()),

(’chi2’, SelectKBest(chi2)),

(’clf’, BernoulliNB())

])

parameters = {

’chi2__k’: (50, 100, 200, 500, 1000),

’clf__alpha’: (1, 0.1, 0, 1, 0.001),

’clf__fit_prior’: (True, False),

’tfidf__norm’: (’l1’, ’l2’),

’tfidf__use_idf’: (True, False),

’vect__max_df’: (0.5, 0.75, 1.0),

’vect__max_features’: (None, 5000, 10000, 50000),

’vect__max_n’: (1, 2, 3)

}

Giving the following results (elapsed time 1h42m):

Figure A.11: Extracting Best Parameters for Bernoulli Naive Bayes Classification on all corpus
data

Validating these parameters on my corpus we had the following results:

94

Figure A.12: Extracting Best Parameters for Bernoulli Naive Bayes Classification on all corpus
data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 61% 60% 62% 61% 62%

2-rams 58% 59% 59% 59% 58%

3-grams 58% 58% 58% 58% 58%

1,2-grams 61% 60% 62% 60% 64%

2,3-grams 58% 59% 59% 60% 57%

1,2,3-grams 62% 59% 62% 60% 64%

Table A.9: Additional Experiments with Bernoulli Naive Bayes

1.2.7 Logistic Regression

pipeline = Pipeline([

(’vect’, CountVectorizer()),

(’tfidf’, TfidfTransformer()),

(’chi2’, SelectKBest(chi2)),

(’clf’, LogisticRegression())

])

parameters = {

’vect__max_df’: (0.5, 0.75, 1.0),

’vect__max_features’: (None, 5000, 10000, 50000),

’vect__max_n’: (1, 2, 3),

’tfidf__use_idf’: (True, False),

’tfidf__norm’: (’l1’, ’l2’),

’chi2__k’: (50, 100, 200, 500,1000),

’clf__penalty’: (’l1’,’l2’),

’clf__C’: [1, 10],

’clf__tol’: (1e-6, 1e-1),

}

Giving the following results (elapsed time 1h53m):

95

Figure A.13: Extracting Best Parameters for Logistic Regression on all corpus data

Validating these parameters on my corpus we had the following results:

Figure A.14: Extracting Best Parameters for Logistic Regression Classification on all corpus
data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 61% 60% 62% 64% 65%

2-rams 58% 59% 59% 58% 58%

3-grams 58% 58% 58% 58% 58%

1,2-grams 61% 60% 60% 62% 64%

2,3-grams 58% 59% 59% 58% 59%

1,2,3-grams 61% 60% 60% 62% 64%

Table A.10: Additional Experiments with Logistic Regression

A.3 Extracting Best Parameters When Trained On One Topic
At A Time

These experiments were conducted for Section 3.2.4.

96

1.3.1 Abortion

A.3.1.1 Linear SVC

Giving the following results (elapsed time 1h20m):

Figure A.15: Extracting Best Parameters for Linear SVC Classification on abortion data

Validating these parameters on my corpus we had the following results:

Figure A.16: Results for Linear SVC Classification on abortion data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 66% 67% 72% 74% 75%

2-rams 59% 63% 61% 58% 58%

3-grams 58% 57% 58% 60% 59%

1,2-grams 64% 65% 67% 70% 74%

2,3-grams 59% 60% 60% 57% 61%

1,2,3-grams 68% 64% 69% 65% 70%

Table A.11: Additional Experiments with Linear SVC on abortion corpus

97

A.3.1.2 Multinomial Naive Bayes

Giving the following results (elapsed time 1h25m):

Figure A.17: Extracting Best Parameters for Multinomial Naive Bayes Classification on abor-
tion data

Validating these parameters on my corpus we had the following results:

Figure A.18: Results for Multinomial Naive Bayes Classification on abortion data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 66% 66% 71% 74% 60%

2-rams 61% 60% 64% 61% 60%

3-grams 58% 58% 60% 59% 59%

1,2-grams 65% 66% 69% 70% 70%

2,3-grams 59% 60% 62% 62% 62%

1,2,3-grams 64% 64% 66% 68% 69%

Table A.12: Additional Experiments with Multinomial Naive Bayes on abortion corpus

A.3.1.3 Bernoulli Naive Bayes

Giving the following results (elapsed time 1h35m):

98

Figure A.19: Extracting Best Parameters for Bernoulli Naive Bayes Classification on abortion
data

Validating these parameters on my corpus we had the following results:

Figure A.20: Results for Bernoulli Naive Bayes Classification on abortion data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 65% 67% 68% 67% 66%

2-rams 62% 61% 63% 61% 61%

3-grams 58% 58% 59% 58% 58%

1,2-grams 61% 63% 64% 67% 69%

2,3-grams 60% 63% 63% 62% 58%

1,2,3-grams 61% 62% 64% 64% 63%

Table A.13: Additional Experiments with Bernoulli Naive Bayes on abortion corpus

A.3.1.4 Logistic Regression

Giving the following results (elapsed time 1h15m):

99

Figure A.21: Extracting Best Parameters for Logistic Regression Classification on abortion
data

Validating these parameters on my corpus we had the following results:

Figure A.22: Results for Logistic Regression Classification on abortion data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 66% 70% 71% 73% 72%

2-rams 61% 61% 64% 62% 62%

3-grams 58% 58% 60% 60% 59%

1,2-grams 65% 69% 70% 72% 72%

2,3-grams 60% 60% 61% 60% 63%

1,2,3-grams 63% 69% 69% 74% 72%

Table A.14: Additional Experiments with Logistic Regression on abortion corpus

Most informative features:

100

Figure A.23: Most Informative Features for support and opposition when trained on the
abortion corpus

1.3.2 Creationism

A.3.2.1 Linear SVC

Giving the following results (elapsed time 1h20m):

Figure A.24: Extracting Best Parameters for Linear SVC Classification on creationism data

Validating these parameters on my corpus we had the following results:

101

Figure A.25: Results for Linear SVC Classification on creationism data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 74% 75% 70% 71% 70%

2-rams 73% 70% 68% 67% 73%

3-grams 76% 76% 76% 75% 75%

1,2-grams 76% 76% 74% 76% 74%

2,3-grams 72% 71% 69% 69% 72%

1,2,3-grams 76% 76% 76% 76% 75%

Table A.15: Additional Experiments with Linear SVC on creationism corpus

A.3.2.2 Multinomial Naive Bayes

Giving the following results (elapsed time 0h25m):

Figure A.26: Extracting Best Parameters for Multinomial Naive Bayes Classification on cre-
ationism data

Validating these parameters on my corpus we had the following results:

102

Figure A.27: Results for Multinomial Naive Bayes Classification on creationism data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 73% 72% 75% 70% 71%

2-rams 75% 75% 74% 71% 70%

3-grams 76% 76% 76% 75% 75%

1,2-grams 75% 75% 74% 76% 76%

2,3-grams 75% 76% 76% 74% 72%

1,2,3-grams 76% 75% 76% 76% 75%

Table A.16: Additional Experiments with Multinomial Naive Bayes on creationism corpus

A.3.2.3 Bernoulli Naive Bayes

Giving the following results (elapsed time 0h35m):

Figure A.28: Extracting Best Parameters for Bernoulli Naive Bayes Classification on creation
data

Validating these parameters on my corpus we had the following results:

103

Figure A.29: Results for Bernoulli Naive Bayes Classification on creationism data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 62% 60% 64% 70% 75%

2-rams 74% 74% 76% 74% 72%

3-grams 76% 76% 76% 75% 75%

1,2-grams 70% 67% 66% 67% 68%

2,3-grams 74% 72% 74% 75% 74%

1,2,3-grams 69% 66% 67% 66% 66%

Table A.17: Additional Experiments with Bernoulli Naive Bayes on creationism corpus

A.3.2.4 Logistic Regression

Giving the following results (elapsed time 0h55m):

Figure A.30: Extracting Best Parameters for Logistic Regression Classification on creationism
data

Validating these parameters on my corpus we had the following results:

104

Figure A.31: Results for Logistic Regression Classification on creationism data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 74% 74% 74% 72% 75%

2-rams 76% 77% 77% 77% 76%

3-grams 76% 76% 76% 76% 76%

1,2-grams 75% 76% 75% 74% 74%

2,3-grams 76% 76% 76% 76% 76%

1,2,3-grams 76% 76% 75% 76% 76%

Table A.18: Additional Experiments with Logistic Regression on creationism corpus

Most informative features:

Figure A.32: Most Informative Features for support and opposition when trained on the
creationism corpus

105

1.3.3 Gay Rights

A.3.3.1 Linear SVC

Giving the following results (elapsed time 0h54m):

Figure A.33: Extracting Best Parameters for Linear SVC Classification on gay rights data

Validating these parameters on my corpus we had the following results:

Figure A.34: Results for Linear SVC Classification on gay rights data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 64% 64% 62% 62% 66%

2-rams 61% 60% 62% 63% 63%

3-grams 62% 62% 63% 63% 63%

1,2-grams 62% 66% 65% 65% 65%

2,3-grams 60% 59% 62% 62% 64%

1,2,3-grams 61% 62% 64% 65% 65%

Table A.19: Additional Experiments with Linear SVC on gay rights corpus

106

A.3.3.2 Multinomial Naive Bayes

Giving the following results (elapsed time 0h25m):

Figure A.35: Extracting Best Parameters for Multinomial Naive Bayes Classification on gay
rights data

Validating these parameters on my corpus we had the following results:

Figure A.36: Results for Multinomial Naive Bayes Classification on gay rights data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 60% 63% 64% 61% 62%

2-rams 61% 61% 62% 62% 62%

3-grams 61% 61% 61% 61% 62%

1,2-grams 62% 62% 62% 62% 63%

2,3-grams 62% 61% 62% 64% 63%

1,2,3-grams 61% 62% 62% 63% 64%

Table A.20: Additional Experiments with Multinomial Naive Bayes on gay rights corpus

A.3.3.3 Bernoulli Naive Bayes

Giving the following results (elapsed time 0h35m):

107

Figure A.37: Extracting Best Parameters for Bernoulli Naive Bayes Classification on gay
rights data

Validating these parameters on my corpus we had the following results:

Figure A.38: Results for Bernoulli Naive Bayes Classification on gay rights data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 65% 64% 64% 64% 68%

2-rams 63% 64% 63% 61% 61%

3-grams 62% 62% 62% 61% 61%

1,2-grams 64% 64% 64% 63% 63%

2,3-grams 62% 63% 62% 63% 61%

1,2,3-grams 66% 61% 64% 63% 63%

Table A.21: Additional Experiments with Bernoulli Naive Bayes on gay rights corpus

A.3.3.4 Logistic Regression

Giving the following results (elapsed time 0h55m):

108

Figure A.39: Extracting Best Parameters for Logistic Regression Classification on gay rights
data

Validating these parameters on my corpus we had the following results:

Figure A.40: Results for Logistic Regression Classification on gayrights data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 65% 64% 66% 66% 64%

2-rams 61% 60% 63% 64% 61%

3-grams 62% 62% 62% 62% 63%

1,2-grams 65% 66% 67% 65% 66%

2,3-grams 61% 60% 61% 61% 64%

1,2,3-grams 65% 65% 65% 64% 64%

Table A.22: Additional Experiments with Logistic Regression on gay rights corpus

Most informative features:

109

Figure A.41: Most Informative Features for support and opposition when trained on the
gayRights corpus

1.3.4 Existence of God

A.3.4.1 Linear SVC

Giving the following results (elapsed time 0h54m):

Figure A.42: Extracting Best Parameters for Linear SVC Classification on Existence of God
data

Validating these parameters on my corpus we had the following results:

110

Figure A.43: Results for Linear SVC Classification on Existence of God data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 55% 52% 52% 54% 50%

2-rams 59% 57% 54% 51% 51%

3-grams 54% 52% 52% 52% 51%

1,2-grams 57% 59% 58% 56% 56%

2,3-grams 60% 59% 59% 55% 54%

1,2,3-grams 56% 62% 62% 59% 56%

Table A.23: Additional Experiments with Linear SVC on Existence of God corpus

A.3.4.2 Multinomial Naive Bayes

Giving the following results (elapsed time 0h25m):

Figure A.44: Extracting Best Parameters for Multinomial Naive Bayes Classification on Ex-
istence of God data

Validating these parameters on my corpus we had the following results:

111

Figure A.45: Results for Multinomial Naive Bayes Classification on Existence of God data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 52% 54% 49% 52% 50%

2-rams 57% 58% 52% 49% 50%

3-grams 53% 52% 52% 51% 51%

1,2-grams 52% 51% 52% 49% 50%

2,3-grams 59% 56% 56% 51% 50%

1,2,3-grams 53% 55% 53% 53% 51%

Table A.24: Additional Experiments with Multinomial Naive Bayes on Existence of God
corpus

A.3.4.3 Bernoulli Naive Bayes

Giving the following results (elapsed time 0h35m):

Figure A.46: Extracting Best Parameters for Bernoulli Naive Bayes Classification on Existence
of God data

Validating these parameters on my corpus we had the following results:

112

Figure A.47: Results for Bernoulli Naive Bayes Classification on Existence of God data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 49% 50% 47% 50% 52%

2-rams 57% 57% 48% 47% 57%

3-grams 53% 52% 39% 52% 52%

1,2-grams 52% 54% 54% 50% 50%

2,3-grams 58% 56% 60% 51% 49%

1,2,3-grams 58% 58% 56% 48% 47%

Table A.25: Additional Experiments with Bernoulli Naive Bayes on Existence of God corpus

A.3.4.4 Logistic Regression

Giving the following results (elapsed time 0h55m):

Figure A.48: Extracting Best Parameters for Logistic Regression Classification on Existence
of God data

Validating these parameters on my corpus we had the following results:

113

Figure A.49: Results for Logistic Regression Classification on Existence of God data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 48% 50% 53% 53% 54%

2-rams 58% 57% 58% 57% 58%

3-grams 54% 53% 53% 52% 52%

1,2-grams 58% 57% 58% 54% 55%

2,3-grams 60% 59% 58% 58% 57%

1,2,3-grams 59% 57% 56% 56% 54%

Table A.26: Additional Experiments with Logistic Regression on Existence of God corpus

Most informative features:

Figure A.50: Most Informative Features for support and opposition when trained on the
Existence of God corpus

114

1.3.5 Gun Rights

A.3.5.1 Linear SVC

Giving the following results (elapsed time 0h54m):

Figure A.51: Extracting Best Parameters for Linear SVC Classification on gun rights data

Validating these parameters on my corpus we had the following results:

Figure A.52: Results for Linear SVC Classification on gun rights data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 74% 75% 76% 74% 75%

2-rams 74% 74% 73% 75% 74%

3-grams 76% 74% 74% 74% 73%

1,2-grams 72% 71% 74% 76% 74%

2,3-grams 74% 75% 76% 75% 76%

1,2,3-grams 72% 72% 74% 73% 74%

Table A.27: Additional Experiments with Linear SVC on gun rights corpus

115

A.3.5.2 Multinomial Naive Bayes

Giving the following results (elapsed time 0h25m):

Figure A.53: Extracting Best Parameters for Multinomial Naive Bayes Classification on gun
rights data

Validating these parameters on my corpus we had the following results:

Figure A.54: Results for Multinomial Naive Bayes Classification on gun rights data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 76% 76% 77% 78% 77%

2-rams 76% 76% 76% 76% 74%

3-grams 76% 76% 76% 76% 75%

1,2-grams 76% 76% 76% 76% 75%

2,3-grams 76% 76% 76% 76% 75%

1,2,3-grams 76% 76% 76% 76% 76%

Table A.28: Additional Experiments with Multinomial Naive Bayes on gun rights corpus

A.3.5.3 Bernoulli Naive Bayes

Giving the following results (elapsed time 0h35m):

116

Figure A.55: Extracting Best Parameters for Bernoulli Naive Bayes Classification on gun
rights data

Validating these parameters on my corpus we had the following results:

Figure A.56: Results for Bernoulli Naive Bayes Classification on gun rights data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 73% 76% 77% 77% 77%

2-rams 74% 76% 76% 75% 57%

3-grams 76% 76% 75% 75% 76%

1,2-grams 73% 78% 78% 77% 76%

2,3-grams 74% 76% 76% 75% 76%

1,2,3-grams 72% 76% 78% 76% 76%

Table A.29: Additional Experiments with Bernoulli Naive Bayes on gun rights corpus

A.3.5.4 Logistic Regression

Giving the following results (elapsed time 0h55m):

117

Figure A.57: Extracting Best Parameters for Logistic Regression Classification on gun rights
data

Validating these parameters on my corpus we had the following results:

Figure A.58: Results for Logistic Regression Classification on gun rights data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 76% 79% 78% 74% 75%

2-rams 74% 74% 73% 74% 74%

3-grams 75% 74% 75% 75% 73%

1,2-grams 75% 75% 73% 76% 76%

2,3-grams 74% 76% 74% 72% 75%

1,2,3-grams 74% 75% 76% 73% 76%

Table A.30: Additional Experiments with Logistic Regression on gun rights corpus

Most informative features:

118

Figure A.59: Most Informative Features for support and opposition when trained on the gun
rights corpus

1.3.6 Healthcare

A.3.6.1 Linear SVC

Giving the following results (elapsed time 0h54m):

Figure A.60: Extracting Best Parameters for Linear SVC Classification on healthcare data

Validating these parameters on my corpus we had the following results:

119

Figure A.61: Results for Linear SVC Classification on healthcare data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 57% 53% 52% 44% 45%

2-rams 51% 49% 46% 50% 48%

3-grams 59% 52% 52% 45% 45%

1,2-grams 54% 53% 52% 49% 46%

2,3-grams 56% 50% 47% 50% 49%

1,2,3-grams 50% 52% 53% 54% 54%

Table A.31: Additional Experiments with Linear SVC on healthcare corpus

A.3.6.2 Multinomial Naive Bayes

Giving the following results (elapsed time 0h25m):

Figure A.62: Extracting Best Parameters for Multinomial Naive Bayes Classification on
healthcare data

Validating these parameters on my corpus we had the following results:

120

Figure A.63: Results for Multinomial Naive Bayes Classification on healthcare data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 53% 52% 47% 46% 48%

2-rams 52% 54% 52% 52% 52%

3-grams 52% 50% 50% 51% 49%

1,2-grams 57% 55% 53% 51% 50%

2,3-grams 51% 52% 54% 53% 54%

1,2,3-grams 52% 53% 55% 51% 48%

Table A.32: Additional Experiments with Multinomial Naive Bayes on healthcare corpus

A.3.6.3 Bernoulli Naive Bayes

Giving the following results (elapsed time 0h35m):

Figure A.64: Extracting Best Parameters for Bernoulli Naive Bayes Classification on health-
care data

Validating these parameters on my corpus we had the following results:

121

Figure A.65: Results for Bernoulli Naive Bayes Classification on healthcare data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 50% 50% 56% 54% 53%

2-rams 55% 50% 52% 45% 52%

3-grams 51% 45% 54% 50% 54%

1,2-grams 53% 44% 50% 55% 53%

2,3-grams 56% 51% 52% 48% 44%

1,2,3-grams 57% 51% 55% 55% 55%

Table A.33: Additional Experiments with Bernoulli Naive Bayes on healthcare corpus

A.3.6.4 Logistic Regression

Giving the following results (elapsed time 0h55m):

Figure A.66: Extracting Best Parameters for Logistic Regression Classification on healthcare
data

Validating these parameters on my corpus we had the following results:

122

Figure A.67: Results for Logistic Regression Classification on healthcare data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 48% 50% 51% 48% -%

2-rams 49% 47% 49% 48% 52%

3-grams 60% 58% 58% 58% 58%

1,2-grams 50% 51% 48% 48% 44%

2,3-grams 55% 53% 48% 46% 46%

1,2,3-grams 51% 51% 51% 48% 47%

Table A.34: Additional Experiments with Logistic Regression on healthcare corpus

Most informative features:

Figure A.68: Most Informative Features for support and opposition when trained on the
healthcare corpus

123

1.3.7 Quality

A.3.7.1 Linear SVC

Giving the following results (elapsed time 0h54m):

Figure A.69: Extracting Best Parameters for Linear SVC Classification on quality data

Validating these parameters on my corpus we had the following results:

Figure A.70: Results for Linear SVC Classification on quality data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 74% 75% 70% 79% -

2-rams 72% 71% 72% 69% 69%

3-grams 74% 75% 75% 75% 45%

1,2-grams 76% 74% 74% 76% 76%

2,3-grams 72% 73% 73% 72% 72%

1,2,3-grams 75% 75% 74% 75% 79%

Table A.35: Additional Experiments with Linear SVC on quality corpus

124

A.3.7.2 Multinomial Naive Bayes

Giving the following results (elapsed time 0h25m):

Figure A.71: Extracting Best Parameters for Multinomial Naive Bayes Classification on qual-
ity data

Validating these parameters on my corpus we had the following results:

Figure A.72: Results for Multinomial Naive Bayes Classification on quality data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 72% 72% 72% 72% -

2-rams 70% 70% 70% 71% 70%

3-grams 73% 73% 73% 73% 73%

1,2-grams 72% 72% 72% 72% 72%

2,3-grams 70% 71% 70% 70% 70%

1,2,3-grams 72% 72% 72% 72% 72%

Table A.36: Additional Experiments with Multinomial Naive Bayes on quality corpus

A.3.7.3 Bernoulli Naive Bayes

Giving the following results (elapsed time 0h35m):

125

Figure A.73: Extracting Best Parameters for Bernoulli Naive Bayes Classification on quality
data

Validating these parameters on my corpus we had the following results:

Figure A.74: Results for Bernoulli Naive Bayes Classification on quality data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 71% 69% 72% 79% -

2-rams 74% 74% 74% 74% 72%

3-grams 75% 74% 72% 72% 72%

1,2-grams 73% 76% 72% 71% -

2,3-grams 75% 74% 74% 73% 72%

1,2,3-grams 74% 76% 74% 73% 73%

Table A.37: Additional Experiments with Bernoulli Naive Bayes on quality corpus

A.3.7.4 Logistic Regression

Giving the following results (elapsed time 0h55m):

126

Figure A.75: Extracting Best Parameters for Logistic Regression Classification on quality
data

Validating these parameters on my corpus we had the following results:

Figure A.76: Results for Logistic Regression Classification on quality data

Additional Experiments using different n-grams and maximum feature selection:

50 100 200 500 1000

1-grams 72% 70% 75% 74% -

2-rams 73% 75% 73% 69% 75%

3-grams 75% 75% 75% 75% 75%

1,2-grams 72% 74% 71% 73% 76%

2,3-grams 74% 71% 73% 73% 69%

1,2,3-grams 72% 74% 72% 73% 74%

Table A.38: Additional Experiments with Logistic Regression on quality corpus

Most informative features:

127

Figure A.77: Most Informative Features for support and opposition when trained on the
quality corpus

A.4 Experiment Results When Using Part Of Speech Tagging

These experiments were conducted for Section 3.2.5.

1.4.1 Abortion

A.4.1.1 Linear SVC

50 100 200 500 1000

1-grams 65% 71% 72% 73% 73%

2-rams 61% 59% 61% 57% 56%

3-grams 58% 59% 59% 59% 58%

1,2-grams 65% 70% 68% 72% 73%

2,3-grams 61% 59% 61% 58% 58%

1,2,3-grams 65% 71% 72% 72% 73%

Table A.39: Experiments with LinearSVC using POS tagging on abortion corpus

128

A.4.1.2 Multinomial Naive Bayes

50 100 200 500 1000

1-grams 65% 70% 68% 72% 73%

2-rams 61% 59% 61% 58% 58%

3-grams 58% 59% 59% 59% 58%

1,2-grams 64% 64% 70% 72% 74%

2,3-grams 61% 59% 62% 60% 60%

1,2,3-grams 64% 67% 67% 71% 72%

Table A.40: Experiments with Multinomial Naive Bayes using POS tagging on abortion corpus

A.4.1.3 Bernoulli Naive Bayes

50 100 200 500 1000

1-grams 58% 58% 59% 59% 63%

2-rams 60% 60% 62% 62% 62%

3-grams 58% 59% 59% 59% 59%

1,2-grams 66% 67% 72% 68% 72%

2,3-grams 60% 63% 62% 62% 62%

1,2,3-grams 66% 68% 72% 68% 72%

Table A.41: Experiments with Bernoulli Naive Bayes using POS tagging on abortion corpus

A.4.1.4 Logistic Regression

50 100 200 500 1000

1-grams 66% 68% 69% 69% 74%

2-rams 61% 62% 62% 60% 59%

3-grams 58% 59% 59% 59% 59%

1,2-grams 66% 68% 69% 69% 74%

2,3-grams 61% 62% 62% 61% 60%

1,2,3-grams 66% 68% 69% 69% 74%

Table A.42: Experiments with LogisticRegression using POS tagging on abortion corpus

129

1.4.2 Creationism

A.4.2.1 Linear SVC

50 100 200 500 1000

1-grams 75% 74% 74% 74% 73%

2-rams 69% 67% 66% 64% 64%

3-grams 76% 74% 74% 73% -

1,2-grams 77% 76% 76% 75% 73%

2,3-grams 73% 69% 67% 66% 64%

1,2,3-grams 77% 76% 77% 76% 74%

Table A.43: Experiments with LinearSVC using POS tagging on creationism corpus

A.4.2.2 Multinomial Naive Bayes

50 100 200 500 1000

1-grams 76% 74% 72% 70% 70%

2-rams 70% 68% 68% 63% 44%

3-grams 76% 75% 74% 69% -

1,2-grams 76% 75% 72% 70% 70%

2,3-grams 76% 74% 73% 70% 70%

1,2,3-grams 74% 74% 77% 72% 70%

Table A.44: Experiments with Multinomial Naive Bayes using POS tagging on creationism
corpus

A.4.2.3 Bernoulli Naive Bayes

50 100 200 500 1000

1-grams 70% 66% 68% 71% 75%

2-rams 69% 64% 66% 67% 70%

3-grams 76% 74% 74% 73% -

1,2-grams 70% 66% 69% 71% 75%

2,3-grams 69% 64% 66% 67% 70%

1,2,3-grams 70% 66% 68% 71% 72%

Table A.45: Experiments with Bernoulli Naive Bayes using POS tagging on creationism corpus

130

A.4.2.4 Logistic Regression

50 100 200 500 1000

1-grams 76% 76% 74% 75% 74%

2-rams 75% 75% 74% 70% 70%

3-grams 76% 76% 76% 76% -

1,2-grams 76% 76% 76% 76% 76%

2,3-grams 76% 76% 76% 75% 74%

1,2,3-grams 76% 76% 77% 77% 77%

Table A.46: Experiments with Logistic Regression using POS tagging on creationism corpus

1.4.3 Gay Rights

A.4.3.1 Linear SVC

50 100 200 500 1000

1-grams 62% 62% 64% 63% 63%

2-rams 60% 60% 60% 60% 60%

3-grams 61% 61% 61% 60% 60%

1,2-grams 62% 62% 64% 63% 63%

2,3-grams 60% 60% 60% 60% 59%

1,2,3-grams 62% 62% 64% 63% 63%

Table A.47: Experiments with Linear SVC using POS tagging on gay rights corpus

A.4.3.2 Multinomial Naive Bayes

50 100 200 500 1000

1-grams 61% 64% 65% 61% 62%

2-rams 60% 60% 61% 62% 57%

3-grams 61% 61% 61% 60% 62%

1,2-grams 62% 64% 64% 66% 62%

2,3-grams 60% 60% 61% 62% 57%

1,2,3-grams 62% 64% 65% 61% 62%

Table A.48: Experiments with Multinomial Naive Bayes using POS tagging on gay rights
corpus

131

A.4.3.3 Bernoulli Naive Bayes

50 100 200 500 1000

1-grams 60% 61% 60% 61% 61%

2-rams 61% 61% 60% 60% 60%

3-grams 61% 61% 61% 61% 60%

1,2-grams 60% 61% 60% 61% 61%

2,3-grams 60% 61% 60% 61% 61%

1,2,3-grams 61% 61% 60% 60% 601

Table A.49: Experiments with Bernoulli Naive Bayes using POS tagging on gay rights corpus

A.4.3.4 Logistic Regression

50 100 200 500 1000

1-grams 64% 62% 62% 66% 64%

2-rams 60% 60% 60% 60% 58%

3-grams 61% 61% 61% 60% 60%

1,2-grams 66% 67% 63% 64% 65%

2,3-grams 60% 60% 60% 60% 60%

1,2,3-grams 65% 63% 64% 63% 64%

Table A.50: Experiments with Logistic Regression using POS tagging on gay rights corpus

1.4.4 Existence of God

A.4.4.1 Linear SVC

50 100 200 500 1000

1-grams 52% 53% 52% 52% 53%

2-rams 40% 42% 50% 52% -

3-grams 54% 53% 54% 54% -

1,2-grams 52% 50% 51% 50% 52%

2,3-grams 40% 48% 46% 50% -

1,2,3-grams 52% 50% 50% 52% 52%

Table A.51: Experiments with Linear SVC using POS tagging on Existence of God corpus

132

A.4.4.2 Multinomial Naive Bayes

50 100 200 500 1000

1-grams 52% 52% 48% 47% 53%

2-rams 45% 46% 50% 54% -%

3-grams 54% 53% 54% 55% -

1,2-grams 52% 52% 48% 47% 54%

2,3-grams 45% 46% 50% 55% -

1,2,3-grams 52% 52% 48% 47% 54%

Table A.52: Experiments with Multinomial Naive Bayes using POS tagging on Existence of
God corpus

A.4.4.3 Bernoulli Naive Bayes

50 100 200 500 1000

1-grams 52% 53% 53% 54% 52%

2-rams 50% 49% 52% 52% -

3-grams 54% 53% 54% 54% -

1,2-grams 53% 53% 53% 53% 52%

2,3-grams 50% 49% 52% 52% -

1,2,3-grams 53% 53% 53% 53% 52%

Table A.53: Experiments with Bernoulli Naive Bayes using POS tagging on Existence of God
corpus

A.4.4.4 LogisticRegression

50 100 200 500 1000

1-grams 48% 51% 57% 54% 55%

2-rams 51% 50% 49% 51% -

3-grams 54% 53% 52% 54% -

1,2-grams 56% 51% 48% 50% 52%

2,3-grams 51% 50% 49% 49% 51%

1,2,3-grams 56% 51% 48% 52% 54%

Table A.54: Experiments with Logistic Regression using POS tagging on Existence of God
corpus

133

1.4.5 Gun Rights

A.4.5.1 Linear SVC

50 100 200 500 1000

1-grams 74% 76% 76% 76% 75%

2-rams 75% 76% 73% 72% 72%

3-grams 75% 75% 75% 74% -

1,2-grams 74% 75% 76% 76% 75%

2,3-grams 74% 74% 74% 74% 73%

1,2,3-grams 73% 74% 76% 73% 73%

Table A.55: Experiments with Linear SVC using POS tagging on gun rights corpus

A.4.5.2 Multinomial Naive Bayes

50 100 200 500 1000

1-grams 76% 76% 76% 76% 76%

2-rams 75% 74% 74% 74% 64%

3-grams 76% 76% 73% 73% -

1,2-grams 76% 76% 76% 76% 76%

2,3-grams 75% 75% 74% 73% 72%

1,2,3-grams 76% 76% 76% 76% 78%

Table A.56: Experiments with Multinomial Naive Bayes using POS tagging on gun rights
corpus

A.4.5.3 Bernoulli Naive Bayes

50 100 200 500 1000

1-grams 74% 74% 76% 74% 74%

2-rams 75% 73% 74% 73% 74%

3-grams 75% 75% 75% 74% -

1,2-grams 74% 74% 76% 74% 74%

2,3-grams 74% 74% 74% 74% 73%

1,2,3-grams 75% 75% 75% 74% 75%

Table A.57: Experiments with Bernoulli Naive Bayes using POS tagging on gun rights corpus

134

A.4.5.4 LogisticRegression

50 100 200 500 1000

1-grams 74% 74% 76% 74% 74%

2-rams 75% 73% 74% 73% 74%

3-grams 75% 75% 75% 74% -

1,2-grams 74% 76% 75% 74% 74%

2,3-grams 74% 74% 74% 74% 73%

1,2,3-grams 75% 75% 75% 74% 75%

Table A.58: Experiments with Logistic Regression using POS tagging on gun rights corpus

1.4.6 Healthcare

A.4.6.1 Linear SVC

50 100 200 500 1000

1-grams 56% 52% 50% 47% 49%

2-rams 48% 50% 53% 52% -

3-grams 59% 52% 46% 54% -

1,2-grams 56% 52% 50% 47% 49%

2,3-grams 48% 50% 53% 53% 55%

1,2,3-grams 56% 52% 50% 47% 49%

Table A.59: Experiments with Linear SVC using POS tagging on healthcare corpus

A.4.6.2 Multinomial Naive Bayes

50 100 200 500 1000

1-grams 55% 52% 48% 45% 42%

2-rams 52% 53% 53% 53% -

3-grams 52% 52% 52% 48% -

1,2-grams 55% 52% 48% 45% 42%

2,3-grams 52% 53% 53% 53% 49%

1,2,3-grams 55% 52% 48% 45% 42%

Table A.60: Experiments with Multinomial Naive Bayes using POS tagging on healthcare
corpus

135

A.4.6.3 Bernoulli Naive Bayes

50 100 200 500 1000

1-grams 47% 50% 51% 50% 52%

2-rams 53% 52% 52% 52% -

3-grams 52% 52% 52% 52% -

1,2-grams 47% 50% 51% 50% 52%

2,3-grams 53% 52% 52% 52% 54%

1,2,3-grams 47% 50% 51% 50% 52%

Table A.61: Experiments with Bernoulli Naive Bayes using POS tagging on healthcare corpus

A.4.6.4 LogisticRegression

50 100 200 500 1000

1-grams 51% 51% 50% 45% 47%

2-rams 53% 53% 53% 53% -

3-grams 51% 51% 51% 51% -

1,2-grams 50% 50% 50% 48% 44%

2,3-grams 53% 53% 53% 53% 52%

1,2,3-grams 50% 50% 49% 46% 46%

Table A.62: Experiments with Logistic Regression using POS tagging on healthcare corpus

1.4.7 Quality

A.4.7.1 Linear SVC

50 100 200 500 1000

1-grams 73% 74% 75% 75% 77%

2-rams 72% 72% 73% 74% -

3-grams 72% 72% 72% 72% -

1,2-grams 74% 74% 74% 74% 76%

2,3-grams 73% 72% 72% 72% 74%

1,2,3-grams 73% 72% 74% 76% 75%

Table A.63: Experiments with Linear SVC using POS tagging on quality corpus

136

A.4.7.2 Multinomial Naive Bayes

50 100 200 500 1000

1-grams 72% 72% 72% 72% 72%

2-rams 73% 74% 72% 72% -

3-grams 72% 72% 72% 72% -

1,2-grams 72% 72% 72% 72% 72%

2,3-grams 73% 73% 72% 75% 76%

1,2,3-grams 72% 72% 72% 72% 76%

Table A.64: Experiments with Multinomial Naive Bayes using POS tagging on quality corpus

A.4.7.3 Bernoulli Naive Bayes

50 100 200 500 1000

1-grams 73% 72% 74% 77% 75%

2-rams 72% 72% 72% 74% -

3-grams 72% 72% 72% 72% -

1,2-grams 72% 73% 72% 75% 76%

2,3-grams 72% 72% 72% 73% 76%

1,2,3-grams 73% 73% 72% 73% 74%

Table A.65: Experiments with Bernoulli Naive Bayes using POS tagging on quality corpus

A.4.7.4 Logistic Regression

50 100 200 500 1000

1-grams 72% 72% 78% 72% 78%

2-rams 74% 73% 73% 75% -

3-grams 73% 73% 73% 73% -

1,2-grams 70% 74% 78% 74% 77%

2,3-grams 76% 73% 74% 75% 75%

1,2,3-grams 70% 74% 76% 75% 74%

Table A.66: Experiments with Logistic Regression using POS tagging on quality corpus

A.5 Extracting Feature Set For Agreement-Disagreement Clas-
sification

These experiments were conducted for Section 3.3.1.

137

1.5.1 Using feature sets suggested in papers

Using the following features:

• First word of response
• Last word of response
• Number of adjectives with positive polarity
• Number of adjectives with negative polarity
• Number of instances in the document of each cue phrase listed in Hirschber and Litman,

1994
• Number of instances in the document of each agreement/disagreement word listed in

Cohen, 2002

Giving the following results:

Classifiacation Accuracy: 0.8182
Positive Precision: 0.8448
Positive Recall: 0.8167
Positive F-measure: 0.8305
Negative Precision: 0.7885
Negative Recall: 0.8200
Negative F-measure: 0.8039

Table A.67: Accuracy Results for Agreement Disagreement Initial Feature Set

1.5.2 Adding Adverbs and Verbs

Instead of using only adjectives, we decided to also use adverbs and verbs because words like
horribly, interestingly, agree, disagreem love, hate, etc, which are usually very informative,
were omitted and were not taken into consideration for the positive or negative orientation of
the text.
Adding adverbs gave a classification rate of 83%.
Adding verbs gave a classification rate of 82%

1.5.3 Using postive and negative score of each sentiment word

In this experiment, instead of counting the positive and the negative words in the document,
we decided to calculate the overall positive and negative score that the sentiment words
(adjectives, adverbs, verbs) have in the text.

Using only adjectives gave a classification rate of 83%
Using adjectives and adverbs gave a classification rate of 82%

138

1.5.4 More positive/negative informative words

This time, instead of having two features, one for the positive and one for the negative number
of adjectives, we used only to state whether the number of positive adjectives was greater than
the number of negative adjectives.

Using only adjectives gave a classification rate of 84%
Using adjectives and adverbs gave a classification rate of 83%
Using only adjectives gave a classification rate of me score 83%
Using adjectives and adverbs gave a classification rate of me score 84%

1.5.5 Existence of cue phrases and agreement/disagreement word

This time, instead of counting the number each cue phrase or agreement/disagreement word
appears in the text, we used a ‘0’ or ‘1’ value to state whether it appears in the text or not.
The reason behind this idea is that the text is not large and therefore the importance of a
word does not lie in the number of times it occurs, but whether it occurs in the text. Using
the following features:
Using only adjectives gave a classification rate of 84%
Using adjectives and adverbs gave a classification rate of 85%
Using adjectives, adverbs and verbs gave a classification rate of 84%
Using adjectives, adverbs and nouns gave a classification rate of 85%
Using adjectives, adverbs verbs and nouns gave a classification rate of 87%

1.5.6 Adding punctuation in feature set

This time, in the feature set, we include existence of question mark and/or exclamation mark
in the feature set:

Include features for exclamation mark (!) and question mark (?) gave a classification rate of
82%
Include feature for exclamation mark (!) gave a classification rate of 80%
Include feature for question mark (?) gave a classification rate of 88%

A.6 Experiments For Finding Out The Most General Classi-
fier

These experiments were conducted for Section 5.2.2.3.

139

1.6.1 Train using abortion corpus

Using creationism data as the training corpus and then test with the rest of the corpora:

Corpus Topic Accuracy
Creationism: 38%
Gay Rights: 61%
Existence of God: 49%
Gun Rights: 69%
Healthcare: 53%
Quality: 60%

Table A.68: Training using abortion corpus and testing with the remaing corpora

1.6.2 Train using creationism corpus

Using creationism data as the training corpus and then test with the rest of the corpora:

Corpus Topic Accuracy
Abortion: 47%
Gay Rights: 35%
Existence of God: 50%
Gun Rights: 27%
Healthcare: 48%
Quality: 42%

Table A.69: Training using creationism corpus and testing with the remaing corpora

1.6.3 Train using gay rights corpus

Using gay rights data as the training corpus and then test with the rest of the corpora:

Corpus Topic Accuracy
Abortion: 55%
Creationism: 46%
Existence of God: 46%
Gun Rights: 56%
Healthcare: 49%
Quality: 59%

Table A.70: Training using gay rights corpus and testing with the remaing corpora

1.6.4 Train using god corpus

Using god data as the training corpus and then test with the rest of the corpora:

140

Corpus Topic Accuracy
Abortion: 46%
Creationism: 57%
Gay Rights: 45%
Gun Rights: 45%
Healthcare: 52%
Quality: 54%

Table A.71: Training using god corpus and testing with the remaing corpora

1.6.5 Train using gun rights corpus

Using gun rights data as the training corpus and then test with the rest of the corpora:

Corpus Topic Accuracy
Abortion: 54%
Creationism: 35%
Gay Rights: 64%
Existence of God: 48%
Healthcare: 53%
Quality: 59%

Table A.72: Training using gun rights corpus and testing with the remaing corpora

1.6.6 Train using healthcare corpus

Using healthcare data as the training corpus and then test with the rest of the corpora:

Corpus Topic Accuracy
Abortion: 46%
Creationism: 65%
Gay Rights: 35%
Existence of God: 50%
Gun Rights: 26%
Quality: 43%

Table A.73: Training using healthcare corpus and testing with the remaing corpora

1.6.7 Train using quality corpus

Using quality data as the training corpus and then test with the rest of the corpora:

141

Corpus Topic Accuracy
Abortion: 50%
Creationism: 45%
Gay Rights: 48%
Existence of God: 55%
Gun Rights: 56%
Healthcare: 54%

Table A.74: Training using quality corpus and testing with the remaing corpora

142

	Introduction
	Objectives
	Contribution
	Report Structure

	Background
	Deducing Emotion From Written Text
	Sentiment Classification Techniques
	Symbolic Techniques
	Machine Learning Techniques

	Methods To Evaluate A Machine Learning Classifier
	Classification Results When Using Different Methodolgies
	Related Studies For Sentiment Analysis
	Recognising Textual Entailment
	Classifying A Text According To Its Polarity
	Determining Support Or Opposition
	Detemining Agreement Or Disagreement
	Summary Of The Approaches Taken In Previous Studies

	Programming Language And Toolkits Used
	Visualisations
	Chernoff Faces
	Streamgraphs
	Technologies Used

	Open Questions And Challenges
	Challenges Associated With Implementing A Classifier For A Debate
	Challenges Associated With Implementing Visualisations For A Debate

	Analysis Of Techniques For Sentiment Analysis In Debates
	Building Corpora For Training And Testing The Classifiers
	Building A Corpus For Training And Testing The Support/Opposition Classifier
	Building A Corpus For Training And Testing The Agreement/ Disagreement Classifier
	Summary Of Proposed Corpora For Training And Testing The Classifiers

	Analysing Techniques For Support/ Opposition Classification
	Feature Selection
	NB, Maxent, SVM Using Default Parameters
	Experimenting With Different Parameters Using Sklearn Tool
	Experimenting With Different Classifiers On One Topic At A Time
	Experimenting With Part Of Speech Tagging
	Summary Of Proposed Techniques For Building A Suppport/ Opposition Classifier

	Analysing Techniques For Agreement/Disagreement Classification
	Using Different Feature Sets For Experimentation
	Extracting Words From Text Based On Their POS Tag
	Calculating Sentiment Polarity Of Words
	Resulting Feature Set
	Summary Of The Proposed Techniques For Building An Agreement/ Disagreement Classifier

	Difficulties Encountered
	Summary Of Analysis

	Visualisations To Assist A Debate
	Streamgraph
	Line Chart
	Chernoff Faces
	Difficulties Encountered

	Evaluation On An Existing System
	Overview Of quaestio-it.com
	Testing Support/Opposition Classifier On A New Corpus
	Dealing With Non Dual-Sided Debates
	Dealing With Missing Topic Of Corpus

	Testing Agreement/Disagreement Classifier On Corpus From quaestio-it.com
	Misclassifications Made By The Classifier

	Integrating Agreement/Disagreement Classifier
	Integrating Visualisations
	Difficulties Encountered
	Summary Of Evaluation On An Existing System

	Conclusions And Future Work
	Achievements Summary
	Future Work

	Appendix Experiment Results
	Feature Selection Experiments For Support/Opposition Classifier
	Extracting Best Parameters When Trained On All the Corpus Data
	Extracting Best Parameters When Trained On One Topic At A Time
	Experiment Results When Using Part Of Speech Tagging
	Extracting Feature Set For Agreement-Disagreement Classification
	Experiments For Finding Out The Most General Classifier

