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"The brain is encased in the head, the part of the body which in most walking, flying or
swimming animals is the leading end of the moving body."

(V. Braitenberg)





Abstract

Processing neurological data streams is often infeasible when using current state-of-the-
art Bayesian methods that make inference computationally complex. Here, we first de-
velop a novel Big Data approach to segmenting and recognising complex time-series for
neurological purposes. We subsequently apply our method to real hand movement data
that was recorded during both everyday tasks and reconstruction of Lower Paleolithic
stone tools. Our data sets contain over one million samples in high dimensional space
which allows us to show that the method scales linearly in the number of data points
and is near constant in dimensionality. We demonstrate that our method is very robust
to noise and achieves an accuracy of over 86% on an artificial data set.
Exploiting the segments obtained and correlation structures between individual fingers,

we conceptualise an improved neuroprosthetic controller. Our design overcomes the
limitations due to signal extraction currently affecting the potential usage of prosthetics
in everyday activities. We propose a two-step process using mixture models and linear
regression to predict movement behaviour of injured or lost body limbs, while observing
limbs that are still intact. Our results show that we can achieve statistically significantly
higher accuracy by taking into account a segmented data set instead of considering
unsegmented data, supporting a modular approach to movement generation.
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Contributions

This project contributes two major pieces of work which were developed in the Brain
& Behaviour Lab, Department of Computing, Imperial College London between Octo-
ber 2012 and June 2013. Firstly, we devised a novel computational method that allows
for processing and segmenting of large neurological data sets. Secondly, we developed a
concept for an improved neuroprosthetic controller that exploits the segments generated
in the first method and correlation between finger joints to predict missing movement
behaviour in real-time.

The similarity metrics Goodness of Fit and Maximum Cross-Correlation presented in
this report were previously developed by Andreas Thomik, Department of Bioengineer-
ing, Imperial College London. In all other cases it is clearly indicated where previously
existent work was used.

The contents of chapter 3 have been submitted for publication under the title "Simple
Unsupervised Time Series Segmentation for Processing High-Dimensional Neurological
Data Streams in Linear Time" (Haber, Thomik, and Faisal 2013) for the Neural Infor-
mation Processing Systems (NIPS) conference (5-8 December 2013, Lake Tahoe, Nevada,
United States). The work presented in chapter 4 has been submitted for publication un-
der the title "Real-Time Movement Prediction for Improved Control of Neuroprosthetic
Devices" (Thomik, Haber, and Faisal 2013) for the 6th International IEEE EMBS Confer-
ence on Neural Engineering (6-8 November 2013, San Diego, California, United States).
As of submission date of this report, both are currently in review.
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1 Introduction

"We have a brain for one reason and one reason only; that is to produce adaptable and
complex movements. There is no other reason to have a brain." 1 While this poten-
tially defines its main responsibility, it is still not understood how the brain generates
such adaptable and complex movement in the context of our highly redundant muscu-
loskeletal system (Kutch and Valero-Cuevas 2011). After more than 100 years of research
(Sherrington 1908), existing theories suggest that we can decompose movement into a
finite set of sub-sequences which are concatenated in an order to form complex movement
behaviour. This idea becomes particularly interesting if we assume that the order of con-
catenation is not purely random but follows a particular rule. Such decomposition rules
seem to exist in many natural and artificial phenomena (grammar for connecting words
of speech, tabs for playing music) and have given rise to similar theories that attempt to
explain the seemingly effortless way the brain controls our motor system.
One way to investigate whether the brain uses similar rules of decomposition for the

generation of complex movement would be to analyse large sets of movement data col-
lected from humans during everyday activities. While motion capture devices allow us
to accurately record movement behaviour, computational techniques for processing and
analysing large-scale movement data do not currently exist. A Big Data approach to
analysing large neurological data streams would potentially enable us to draw new con-
clusions about the brain’s process to generate versatile movement.
Furthermore, a deeper understanding of this process would allow us to utilise our

knowledge to develop improved control mechanisms for neuroprosthetic devices. These
would offer the chance for people that suffer from partial loss of physical capabilities
to regain naturalistic mobility and dexterity by controlling a prosthetic replacement
such as an artificial hand. Current technologies present both invasive (Taylor, Tillery,
and Schwartz 2002; Velliste, Perel, and Spalding 2008; Hochberg et al. 2006; Hochberg,
Bacher, and Jarosiewicz 2012) and non-invasive (Wolpaw and McFarland 1994; Wolpaw
and McFarland 2004; Müller-Putz and Scherer 2005) methods and EMG (Bitzer and
Smagt 2006; Kuiken et al. 2007; Kuiken et al. 2009) as means to extract control signals
from the brain and nervous system. However, under these methods it is still problematic
to extract enough information such that accurate control is guaranteed. Replacing lost
limbs with prosthetic devices which provide the same functionality as natural limbs is
therefore an open challenge until today. Even the most advanced prostheses are often
limited to the most basic grasps.
In this report we present two novel statistical machine learning approaches to move-

ment segmentation and prediction. Our first method (chapter 3) enables a Big Data

1Daniel Wolpert, "The Real Reason For Brains", TED Talk 2011
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driven approach to movement segmentation and recognition by applying a combina-
tion of computationally inexpensive statistical methods to large neurological data sets.
Where existing methods become computationally intractable, the linear run-time prop-
erties of our method allow for efficient and accurate segmentation of very long and high-
dimensional time-series. We evaluate our implementation on three different data sets:
an artificially generated data set, hand movement data collected during everyday tasks
and on hand data that was recorded during the reconstruction of Lower Paleolithic stone
tools. We finally demonstrate that our algorithm is very robust to noise with a consistent
segmentation accuracy of 86.5% on the artificial data set.
In the second part of this report (chapter 4), we exploit our segmentation results and

typical correlation structures between our individual finger joints and develop a concept
for an improved neuroprosthetic controller which complements partially observed body
parts with real-time predictions about the behaviour of the missing limbs. For this
we developed a computational method which relies on Gaussian mixture models and
linear regression to estimate which type of movement is currently observed and predict
unobserved behaviour in a two-step process. We will present our test results on a large
data set containing hand movements and show that instead of considering the entire,
unsegmented data set our method yields statistically significantly higher accuracy by
taking a modular approach to predicting unobserved behaviour.
With this project we hope to contribute computational techniques that will in the fu-

ture allow us to (1) obtain a better understanding of the brain using Big Data approaches
and (2) develop an alternative and cost-effective neuroprosthetic device exhibiting more
naturalistic and versatile movement behaviour.

3



2 Background

Daniel Wolpert further argued in his talk that "our - the human - brain, having gone
through several phases of evolutionary transformation, is not built to think or to feel
but rather to coordinate movement". It should not be without any reason that thinking
and feeling are interpreted as being subordinate to movement coordination. Everything
requires movement in one form or the other; we eat, we breathe, we speak and we
move. In contract to this is the extraordinary complexity of the human body and its
musculoskeletal system. With the human hand having 21 degrees of freedom on its own
and the muscular-skeletal system ranging above 600 degrees of freedom many people
have asked how our brain generates such versatile movement behaviour. Even young
children can perform very accurate and goal directed tasks which are impossible to be
similarly executed by current technology. Given the remarkably diverse set of movement
behaviour common to all healthy humans, it generally appears that the brain manages
to control a highly-complex system in a seemingly effortless way where even the most
advanced technology fails.
This becomes particularly interesting when we consider that the design of our mus-

coloskeletal system is assumed to be strikingly redundant and as a result of this the
central nervous system has several options when generating movement for a specific task
(Kutch and Valero-Cuevas 2011). Experiments performed by Kutch and Valero-Cuevas
(2011) have shown that only a small subset of possible forces that can be executed to
perform a task is robust to loss of any one muscle. This indicates that the muscular
redundancy is necessary, however the idea of redundancy still greatly increases the com-
plexity incurred when generating movement. Current research has put a lot of focus
on exploring possible explanations behind the seemingly effortless motor control in the
context of a highly complex system. We will present some of the important findings in
the following sections.

2.1 Computational Theories of Motor Control

When examining how the brain controls the presented level of complexity, we could imag-
ine two extreme cases: (1) Our nervous system stores a hard-coded command sequence
for any possible movement scenario (pairs of starting and target position). Upon ex-
ecution of a desired movement, a simple look-up would be performed. (2) Our brain
computes the motor commands from scratch and on demand for every possible starting
and target configuration.
With our current understanding, both approaches seem to become infeasible given the

almost infinite number of movement possibilities. (1) would require an equally large
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2.1 Computational Theories of Motor Control 2 Background

storage component that is capable of providing all motor commands on demand. (2)
is impractical for highly complex, non-linear systems, including the human body, as it
becomes computationally infeasible.
In the following, we will look at various theories that lie between these two extremes and

suggest primitive movement blocks as the foundation for motor control. These theories
include reflexes, spinal force fields and muscle synergies.

2.1.1 Reflexes

Reflexes were long seen as building blocks for complex movement. In Sherrington (1908),
reflexes are defined as the unit mechanism of the nervous system and act as the trans-
port mechanism for movement commands. A reflex arc consists of three components: a
receptor, wich is an organ that initiates movement, a conductor, responsible for trans-
mitting stimuli, and an effector, executing the movement, e.g. muscle cells. Reflexes are
classified as either simple or compound. While simple reflexes are interpreted as unit
reactions in nervous integration, compound reflexes are made up of simple reflexes and
are responsible for co-ordination.
Sherrington’s theory is plausible in the context of rapid adaptation when a reaction is

provoked. However, due to the nature of reflexes they are unlikely to be responsible for
the generation of complex voluntary movement. Nonetheless, during our research this
theory was the oldest found, dating back to 1908. Its importance is additionally drawn
from the many citations and uses in research until today.

2.1.2 Spinal Force Fields

In Bizzi et al. (1995), experiments were conducted during which researchers micros-
timulated different sides of the frog’s spinal cord (Figure 2.1/E). The motor responses
were characterised by force fields. A force field is described as a mapping that asso-
ciates each position of the frog’s hind limb with a corresponding force generated by the
neuro-muscular system. The group found that the majority of fields generated were char-
acterised by a single equilibrium point describing a position without an end-point force.
Furthermore, they were able to group these force fields into a smaller number of classes
where each class was preferentially evoked from a distinct region in the frog’s spinal cord
(Bizzi et al. 2002).
The discreteness of force orientations found during these experiments together with

their organised mapping in the spinal cord gives rise to a hypothesis that supports a
form of modular organisation of the spinal cord motor circuitry.
This is underlined by further experiments in which the group concluded that the de-

scribed convergent force fields follow a principle of vector summation (Figure 2.1/A-D),
They simultaneously stimulated two sides of the spinal court and found that the resulting
force field is equivalent to the sum of the two individual stimulations of the respective
sides.
In both Bizzi et al. (1995) and Bizzi et al. (2002), it is concluded that the vector sum-

mation of force fields eliminates much of the complexity between neurons and muscles
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Figure 2.1: Experiments conducted by Bizzi. (A)-(D) show visualisation of multiple
electrical stimuli. (A) and (B) are individual fields resulting from separate
stimulation of two areas. (C) is the predicted field by vectorial summation of
(A) and (B). (D) is the actual field obtained from simultaneous stimulation
of the two areas. Note the clear resemblance between (A)-(B) and (C)-(D).
(E) shows apparatus used for experiments. Figure from Bizzi et al. (1995).

and further supports the assumption that the vertebrate’s brain exploits modular gen-
eration of motor responses. Their results found acknowledgement in a study by Kargo
and Giszter (2000).
However, one should note that spinal force fields assume an end-point encoding of

movement control. In the context of movement involving differently sized objects, for
example grasping a small object followed by grasping a larger object, spinal force fields
would imply that different force patterns have to be learned for the respective individual
movement. Due to the infinite number of differently shaped objects that humans interact
with, this can be considered as impossible in practice.

2.1.3 Muscle Synergies

In further work, the force vectors that characterise the spinal force fields are interpreted
as an expression of specific groups of synergistically active muscles (Bizzi et al. 2002).
Such muscle synergies are investigated in D’Avella et al. (2006); d’Avella, Saltiel, and
Bizzi (2003) and it is proposed that they are fundamental building blocks of muscle
patterns.
In a first set of experiments (d’Avella, Saltiel, and Bizzi (2003)) kicking, jumping and

walking muscle patterns were collected from freely moving frogs. The generation of these
muscle patterns was modelled as a linear combination of time-varying synergies and it
was argued that given one set of synergies, a variety of different patterns can be generated
by only choosing different parameters. It was also found that the synergies were highly

6
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consistent across different frogs and shared across different behaviour. As a result of
these experiments, it was interpreted that the synergies are shared among a variety of
different tasks.
Similar results were found for fast-reaching movements in different directions (D’Avella

et al. 2006). Point-to-point movements were recorded from various human subjects. The
group was able to extract movement synergies for each individual subject (Figure 2.2)
which explained between 73% and 82% of variation in the data.

Figure 2.2: Excerpt of time-varying synergies (W1-W3) extracted from human subject.
The abbreviations on the left-hand side represent a subset of the muscles
observed. Figure from D’Avella et al. (2006).

In the work published and experiments conducted, muscle synergies are all assumed
not to be time-invariant and it should be pointed out that the concept of muscle synergies
is a rather young theory which still requires better validation in future.

2.2 Exploiting Movement Patterns for Neurotechnology

With regards to hand movements, we can distinguish between simple and complex be-
haviour (Faisal et al. 2010). Curling and uncurling a hand, during which the individual
joints move in a highly correlated manner, can be classified as simple behaviour. In
contrast, expert typing on a keyboard is considered as a complex behaviour where each
finger moves independently from the others.
It has been shown that in many everyday situations we move our individual joints in

a highly correlated manner (Thomik and Faisal 2012). We term these as synergistical
interaction between our finger joints. It has been suggested that even the anatomy of
our finger muscles has evolved in a way to simplify the control problem of the hand by
biomechanically limiting the control of the individual joints (Mason, Gomez, and Ebner
2001). Santello, Flanders, and Soechting (1998) presented that 90% of the variance in
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hand configurations could be explained by only 3 principal components 1 when reaching
for and grasping a large variety of imagined objects. Similar results were obtained by
Mason, Gomez, and Ebner (2001); Gentner and Classen (2006), however it should be
noted that all mentioned studies only investigated hand configurations during reaching
and grasping movements.
The results found suggest that the brain may use knowledge about such synergistical

interaction between individual joints, or more general different parts of the body, to
further simplify movement control.

2.3 Artificial and Prothetic Hands

Unlike lizards, that drop off their tails, or other animals that can regrow missing body
parts, prosthetic devices are often the only chance for humans to regain mobility and
dexterity in everyday life after injury. This project contributes to a larger research
area that attempts to find novel ways of generating natural and accurate movement
on prosthetic devices. In the following two sections, we will take a look at existing
technologies before presenting some of the challenges that have been encountered when
developing prosthetics.

2.3.1 Current Technologies

Today, many forms of prosthetics exist. The hook is usually seen as the simplest form of a
prosthetic device. It is usually affordable, lightweight and robust but has a very different
appearance from a natural hand and does not exhibit any movement behaviour. Espe-
cially in recent years, more advanced prostheses have been developed, including devices
that use electromyography (EMG) signals from muscle contractions to control movement.
Some of the most advances prosthetic hands, such as i-limb (Touch Bionics, figure 2.3/A)
and bebionic3 (bebionic, figure 2.3/B), provide spectactular features allowing amputees
to regain partial versatility. Their design includes small motors to control the individual
fingers and their weight of less than 600 grams allows use in everyday situations 2. While
prostheses have improved greatly, we still face major challenges that have to be overcome
before amputees can regain their full dexterity. In addition, highly advanced prostheses
are still very costly and not often affordable for the general public. We will summarise
some of current challenges in the following section.

2.3.2 Challenges

Despite the great advances that we have seen with recently developed prosthetics, there
are two major challenges involved in generating movement on such modern prosthetic
hands: (1) A precise signal which encodes the desired movement behaviour has to be

1linearly uncorrelated variables, which are often a subset of the total number of variables describing a
system, more details can be found in section 3.2.1

2Technical specifications from bebionic.com
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Figure 2.3: (A): i-limb ultra hand prosthesis (Touch Bionics). (B): bebionic3 prosthesis
(RSLSteeper).

generated and transmitted to the device. (2) After the control signal has been processed,
the prosthetic device has to generate versatile movements allowing for both firm and soft
grasps.
The former focusses on extracting movement commands from the human’s brain or

nervous system. While we have seen significant improvements by using direct corti-
cal control from both invasive (Taylor, Tillery, and Schwartz 2002; Velliste, Perel, and
Spalding 2008; Hochberg et al. 2006; Hochberg, Bacher, and Jarosiewicz 2012) and non-
invasive (Wolpaw and McFarland 1994; Wolpaw and McFarland 2004; Müller-Putz and
Scherer 2005) electrodes and using sources such as EMG (Bitzer and Smagt 2006; Kuiken
et al. 2007; Kuiken et al. 2009), it is still very difficult to extract a meaningful amount of
information that can be used for generating artificial movement. This makes prosthetic
devices often unsuitable for real-time control. The latter aims at translating the signals
into a mechanical force that represents natural and versatile movements. This has been
one of the major challenges as, at the same time, prosthetics should be lightweight and
wearable.
These problems have yet to be overcome and currently restrict the potential use of

neuroprosthetics in everyday activities considerably. As a result they lead to frustration
and rejection by individuals using such devices (Roeschlein and Domholdt 1989; Davidson
2002; Cipriani and Zaccone 2008).

2.4 Motion Capture Systems

Capturing real motion data is essential for any further analysis that we want to perform.
Without such data we would have to rely on artificially generated movement data which
would be (1) hard to generate and (2) not very accurate. We should therefore first take
a look at existing systems that enable us to capture motion. Such systems are usually
divided into optical and non-optical systems. We require motion capture systems to
capture motion accurately, which means they have to feature precise sensors and should

9
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not distort the natural movement to be captured.

Optical Systems

Optical system are often used in combination with optical markers that are attached to
a subject. The markers can either be passive or active. Passive markers usually reflect
light, active markers have an illuminated LED source. Markerless optical capture has
been developed recently and become more prominent. An example for such a system is
given by www.organicmotion.com which allows real-time translation from an actor’s per-
formance to a character animation. Interesting work that uses optical motion capturing
for movement extraction can be found in Leonardis, Bischof, and Pinz (2006); Rittscher
and Blake (1999).

Non-optical Systems

Non-optical systems and in particular so called inertial systems usually consist of a range
of sensors (gyroscopes, rotational sensors, etc.) which are attached to the subject in the
form of a suit, glove or special piece of clothing. Inertial systems allow for real-time
movement capturing without the need for a larger capture area. In contrast to optical
systems, they are however usually not suited for determining the absolute position of the
subject within an environment.
In the context of this project a CyberGlove I hand glove 3 has been used to collect the

required datasets for evaluation (Figure 2.4).

Figure 2.4: CyberGlove I - hand glove used to collect 18-dimensional hand movement
data sets. Position of sensors are shown. Image taken from Belić (2010).

The data obtained from the CyberGlove consists of 18-dimensional time-series repre-
senting the bending of all joints of the fingers with exception of the distal interphalangeal
joint (DIP), as well as flexion/extension and adduction/abduction of the wrist. Every

3CyberGlove Systems LLC, San Jose, CA, USA
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sensor emits voltage that varies as the sensor is bent. A sampling rate of 80 Hz and a
resolution of 8 bit per sensor are used. More information on how the data for this project
was obtained can be found in Belić (2010) and in section 3.2.3 of this report.
While the CyberGlove only records hand movements, body suits with inertial sensors

such as offered by Animazoo 4 provide the opportunity to record movement from many
parts of the body.

Recent Technology

The Canadian startup company "Thalmic Labs" 5 has recently announced their wear-
able gesture control device "MYO" which recognises movement from lower arm muscle
activity. It has gained significant attention through its convenient design and affordable
price.
Another company "Leap Motion" 6 has built a device that senses hand movement from

a distance. It is not attached to a person’s body but rather placed on a table.
With the improvement of "home-use" technology it has recently also become more

popular to use normal cameras to recognise movement. Flutter 7, a startup based in
Palo Alto, has released an application that recognises hand gestures through a laptop
webcam and allows Windows and Mac users to control their music player. While one
could argue that such systems are rather inaccurate they allow a wider audience to make
use of recently developed algorithms that are able to detect movements.

4www.animazoo.com
5www.thalmic.com, device not sold as of submission date of this report
6www.leapmotion.com
7www.flutterapp.com
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3 Movement Segmentation from a Big
Data Perspective

In section 2.1 we described various computational theories that attempt to explain man-
ages the complexity of motor control. One way of further exploring whether the brain
uses primitive building blocks for movement generation would be to analyse large neuro-
logical data sets that have been collected from movements of various subjects in everyday
situations. If we were able to efficiently and accurately process large scale movement data,
we could investigate whether such building blocks exist in the data collected.
In this chapter we will look at existing techniques that attempt to process and segment

complex movement data and discuss their limitations. We will then propose our approach
to movement segmentation; a simple unsupervised method for accurately segmenting
large-scale neurological data sets. (Haber, Thomik, and Faisal 2013). We apply our
method, which scales linearly in space and time, and is near constant in dimensionality
of the data, to millions of samples in high dimensional space. These run-time properties
make our method highly scalable and suitable for Big Data problems which are often
encountered when processing neurological data streams.

3.1 Current Methods

During our research we have found several methods that attempt to process and segment
movement data. In this context, algorithms are often classified as either dictionary-based
or dictionary-free.
Dictionary-based methods usually assume that pre-trained motion models exist and

that useful movement segments have already been taught in isolation. The individual seg-
ments are parametrised and a library of segments is created by estimating the parameters
using, for example, linear weighted regression (Meier et al. 2011). These methods then
usually start by identifying potential segmentation points from an input data stream
which can be done based on the movement’s velocity and acceleration profile (Meier,
Theodorou, and Schaal 2012). Secondly, they perform time-warping on the segments to
obtain a consistent segment duration and finally match the potential segmentation points
against available segments in the dictionary in an offline (Meier, Theodorou, and Schaal
2012) or online (Meier et al. 2011) fashion. The latter method performs simultaneous
segmentation and recognition of movement segments which implies sequentially scanning
the observed series and matching the current observation with all segments in the dictio-
nary. In essence, while observing motion, it is hypothesised which segment in the library
is most likely responsible for the so-far observed trajectory and at which time step it is

12
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going to finish. In Meier et al. (2011) this is done using an Expectation Maximization
algorithm.
Estimating the trajectory’s goal position online is often difficult due to co-articulation

which describes that human movement is usually smoothed together and possibly tempo-
rally interleaved (Meier, Theodorou, and Schaal 2012). This complicates the process of
deciding whether a determined segmentation point corresponds to the actual end-point
of the current segment.
In contrast to dictionary-based methods, techniques that do not rely on a dictionary

try to infer data segments and their shape directly from the data. This can be done
using either a Kalman Filter (Coates, Abbeel, and Ng 2008) or factorial Hidden Markov
Models (HMM) (Williams, Toussaint, and Storkey 2006). The former method attempts
to train a helicopter to fly a complete aerobatic air show autonomously 1. The data is
captured from multiple sub-optimal expert demonstrations and the learning algorithm
presented in Coates, Abbeel, and Ng (2008) finds the most likely hidden trajectory which
maximises the joint likelihood of the observed demonstrations. The group reported their
results with a standard deviation of 2.3 metres from the optimal trajectory during an
autonomous aerobatic show. In Williams, Toussaint, and Storkey (2006), a factorial Hid-
den Markov Model (HMM) is used to extract primitives from handwriting data without
the requirement for any pre-partitioning. In their model, each latent factor is modelled
to account for an unobserved movement segment. They further extend their model with
a timing module to account for temporal relations when segmenting data. A variational
approximation as part of an Expectation Maximisation algorithm is used for learning the
model parameters.
We found that dictionary-free models often require more complex probabilistic models

for learning and inference. We will present one such approach in the following section
and discuss its limitations.

Review of a Probabilistic Approach

As part of this work, we investigated a method proposed by Chiappa and Peters (2010)
which attempts to build a probabilistic model allowing inference and learning of segmen-
tation points and shape of segments. Here, a series of observation is represented by a set
of random variables

v1:T ≡ v1, . . . , vT (3.1)

where vt ∈ RV and T defines the length of the V -dimensional time-series. The observation
is assumed to arise through a noisy transformation and time-warping2 from a set of hidden
trajectories

h1:S1:M ≡ h11:M , . . . , hS1:M (3.2)

where him ∈ RH , M is defined as the length of a hidden trajectory, H the dimensionality
and S the number of hidden trajectories. Figure 3.1/Top shows three basic movement

1http://heli.stanford.edu
2We use the terms "time-warping" and "resampling" interchangeably in this work.
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trajectories (hidden trajectories) of different length that are assumed to form het con-
catenated observation series in 3.1/Bottom. The continuous random variables defined
in 3.1 and 3.1 are represented in the Belief network shown in figure 3.2. The two addi-
tional sets of discrete random variables shown there, σ1:T and z1:T , model segment length
(minimum and maximum duration of an action), time-warping and which of the hidden
trajectories is responsible for an observed segment.

Figure 3.1: Top: Hidden trajectories that represent different movement types. Bottom:
Observed time-series is assumed to be generated from hidden trajectories
through a noisy transformation. Figure from Chiappa and Peters (2010).

Different forms of an Expectation Maximisation (EM) algorithm are used to learn the
model parameters. Upon convergence of the EM algorithm, the method samples the
most likely segmentation points from the probabilistic distributions obtained.
The group investigates three different approaches to ensure computational tractability

when computing the posterior distributions required for learning and sampling. These
include a variational method, maximum a posteriori (MAP) method and Gibbs sampling.
They further show that the MAP method outperforms the other two methods and test
their method by segmenting table tennis movements that were recorded using a robot
arm as input device.

We began by testing the algorithm with 3-dimensional time-series and two hidden
trajectories with 16 data points each. We used 15 iterations for the estimation algorithm
and the minimum and duration for each segment was set to 7 and 16 respectively. As
shown in figure 3.3, it was found that the method performs well on such simple and short
data, giving precise estimations for the shape of predefined hidden trajectories.
Following these initial results we wanted to analyse how the algorithm scales with

data of slightly higher dimensionality and with more data points. In a second test, we
therefore increased the length of the two hidden trajectories to 61 and set the minimum
and maximum duration for each segment to 25 and 55 respectively. We found that the
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Figure 3.2: Belief network representing the probabilistic model for inference of segmen-
tation and trajectory shape. Model intractability is caused by the interaction
between the continuous and discrete latent variables. Figure from Chiappa
and Peters (2010).

accuracy of the estimated hidden trajectories decreased significantly (see figure 3.4) while
the computational run-time of the algorithm increased notably.
When we increased the dimensionality to 5 while the number of data points and pa-

rameters were kept as before, the quality of the estimated segments deteriorated further
(see figure 3.5). We eventually observed that the run-time of the algorithm increased
exponentially.

We tried to optimise the implementation which was kindly provided by Silvia Chiappa
by removing unnecessary parts of the code, pre-allocating data structures and using
memory-efficient constructs such as sparse matrices. The performance was however not
found to improve significantly. In the context of more complex data, we identified the
algorithm’s problem in its general approach to performing inference on the probabilistic
model. The method presented employs several passes over the data samples and considers
every single possible segmentation that can be found within a defined time window which
is defined by the model’s parameters specifying minimum and maximum duration of a
segment. The total number of possible segmentation points leads to a combinatorial
complexity which makes inference and learning generally intractable for movement data
of slightly higher complexity and longer duration. The algorithm did therefore not suit
our goal of analysing and segmenting complex and long movement time-series as, for
example, collected from a motion glove device.

Conclusion

To perform movement segmentation on large neurological data streams, we require a
method that is computationally tractable even when applied to very large and complex
data sets. We conclude that none of the techniques tested and found as part of our
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Figure 3.3: Test results from Chiappa and Peters (2010). (1)-(2): Predefined 3-
dimensional hidden trajectories (movement segments) of length 16 each. (3):
Concatenation of segments of type A and B through noisy transformation.
Vertical blue lines indicate original segmentation points. (4)-(5): Estimated
trajectories after 15 iterations from (3).

research scale with such large data sets. Many of the methods presented attempt to
model all structural aspects of the data with a single model. This makes inference
inherently complex and the approach often computationally intractable. We develop an
alternative method in the following section.

3.2 Proposed Method

We propose to combine four different, simple and specialised methods for segmenting
long and complex neurological data streams. We use (1) Principal Component Analysis
(PCA) for data compression, (2) changepoint analysis to determine potential segmen-
tation points in the data, (3) time-series compression to determine the most relevant
changepoints and (4) comparison of the extracted segments to determine the subset of
generating segments. In the following sections, we will show how the combination of
these methods can achieve robust and accurate time-series segmentation and outperform
high-concept state-of-the-art algorithms when applied to real world data streams. Fi-
nally, we apply our method to over millions of samples of high dimensional space and
discuss its run-time and scalability properties.
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Figure 3.4: Test results from Chiappa and Peters (2010). (1)-(2): Predefined 3-
dimensional hidden trajectories (movement segments) of length 41 each. (3):
Concatenation of segments of type A and B through noisy transformation.
Vertical blue lines indicate original segmentation points. (4)-(5): Extracted
trajectories after 15 iterations from (3).

3.2.1 Methodology

Principal Component Analysis

We can exploit the existence of patterns of correlation between joints of fingers during
every tasks (see section 2.2) to remove redundant information when processing neuro-
logical movement data. This has benefits both in terms of memory and computational
costs. Principal Component Analysis (PCA), a dimensionality reduction technique which
is often used in areas of machine learning and pattern recognition, achieves this by find-
ing a representation of the data with maximum variability in a lower dimensional data
space. PCA has as input a set of correlated variables, in this case the joint angles of the
hand, and outputs a set of uncorrelated variables of usually lower dimensionality called
principal components (see Fig. 3.6). More specifically, the D-dimensional input data
can be transformed to D′-dimensional space where D′ ≤ D by calculating the principal
components as the eigenvectors of the covariance matrix of the zero mean input. We
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Figure 3.5: Test results from Chiappa and Peters (2010). (1)-(2): Predefined 5-
dimensional hidden trajectories (movement segments) of length 41 each. (3):
Concatenation of segments of type A and B through noisy transformation.
Vertical blue lines indicate original segmentation points. (4)-(5): Extracted
trajectories after 15 iterations from (3).

solve
Σ = ΦΛΦT (3.3)

for the eigenvectors Φ and eigenvalues Λ and achieve dimensionality reduction by usu-
ally choosing the D’ eigenvectors ΦPCA = [φ1, φ2, . . . , φD′ ] with the largest eigenvalues
[λ1, λ2, . . . , λD′ ]. In cases of very high dimensionality, one way to efficiently perform PCA
is by using the Karhunen–Loève transform.
We can define the number of principal components we want to use to represent the

data in lower dimension as a set amount of variance observed, however this approach has
been shown to behave poorly on noisy data (Delis et al. 2013). Instead, we use enough
principal components to account for 90% of the variance observed in the data which was
found to produce satisfying results for our data. This means we find a D′ such that
D′ ≤ D and

∑D′

i=1 λj∑D
j=1 λj

≥ 0.9 (3.4)

The output produced by PCA is used for changepoint analysis in the next step.
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Figure 3.6: Left: 150 data points sampled from a multivariate Gaussian distribution.
Right: Representation of data points in principal component space. In this
case, the first principal component (X1) represents more than 95% of the
data variability. PCA ensures that all further principal components (X2) are
orthogonal to X1.

Changepoint Analysis

A changepoint defines abrupt variations in the time-series or alternatively in the genera-
tive parameters of sequential data. We developed a Bayesian algorithm for detecting such
changepoints that is suitable for very long and high dimensional time-series and forms
the core of our proposed method. Here, changepoint detection is applied to to movement
data, however it could be slightly adapted and used in a variety of pattern recognition
contexts, including the analysis of financial data, EEG data and DNA segmentation.
The algorithm is derived from an implementation suitable for analysis of univariate

time-series by Adams and MacKay (2007) which is based on the student’s t distribution
and scales quadratically in computing time and memory. In this section, we will present
several computational issues of the original algorithm when applied to complex move-
ment data and show how we adjusted the implementation for processing high-dimensional
neurological data.

When observing a data stream of points xt (t = 1, . . . , T ), it is assumed that the data in
each segment are i.i.d. variables sampled from a probability distribution P (xt|Θi) with
parameter set Θi. The algorithm computes the posterior probability over all possible
run-lengths, that is the time that has passed since the last changepoint at any time step
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t

P (rt|x1:t) =
P (rt, x1:t)

P (x1:t)
(3.5)

where rt describes the current run-length and x1:t – the data observed up to the time
point t – arises from a multivariate Gaussian distribution x1:t ∼ N (µ,Σ).
The joint distribution over run-length and observed data is given by (Adams and

MacKay 2007)

P (rt, x1:t) =
∑

rt−1

P (rt, rt−1, x1:t) (3.6)

=
∑

rt−1

P (rt, xt|rt−1, x1:t−1)P (rt−1, x1:t−1) (3.7)

=
∑

rt−1

P (rt|rt−1)P (xt|rt−1, x(r)t )P (rt−1, x1:t−1) (3.8)

and the unnormalised evidence for x1:t is defined as

P (x1:t) =
∑

rt

P (rt, x1:t) (3.9)

Essentially, at every time step we are interested in the most likely run-length rt of the
current segment which is given by

rt = argmaxk(P (xt|Θk) | k = 1 . . . t) (3.10)

where Θk is the maximum likelihood estimate of the parameters given the last k num-
ber of data points. At every time step, the run-length can either increase by 1 and
rt = rt−1 + 1 or a changepoint occurs and rt = 0.

Furthermore, a prior distribution over changepoint appearance is introduced which is
implemented using a hazard function, where H(τ) = 1/λ defines a exponential distri-
bution that is memoryless over time (Adams and MacKay 2007). Alternatives such as
using a linear, step function or a Gamma hazard function are possible here. Our method
assumes that a changepoint appears at time 0, that is P (r0 = 0) = 1. Alternatively a
prior distribution over initial run-length can be used instead.

We first had to convert the univariate implementation provided by Adams and MacKay
(2007) to a multivariate Gaussian version which can deal with D-dimensional input vec-
tors x such that

x ∼ N (µ,Σ) (3.11)

where µ is a D × 1 mean vector and Σ a D ×D dimensional covariance matrix.

20



3.2 Proposed Method 3 Movement Segmentation from a Big Data Perspective

The adaptation was slightly more complicated than initially anticipated and particular
attention had to be paid to the initialisation and updates of the parameters of the mul-
tivariate Gaussian distribution. We found that different initialisation and update rules
for mean vectors and covariance matrices had a significant impact on the final result
produced by our algorithm. In this section we discuss the rules that yielded the best
results on our data sets and briefly hint at possible alternatives.
Firstly, the parameters of the multivariate Gaussian distribution are initialised as fol-

lows:
µ0 = µprior (3.12)

Σ−10 = Σ−1prior (3.13)

κ0 = 1 (3.14)

where D is the dimensionality of the input data stream and Σ−1 a precision matrix
which is defined as the inverse of the covariance matrix. It has to be ensured that
the covariance matrix is non-singular and is initialised such that non-zero probabilities
are obtained when run-length distributions are computed. We defined Σ−1prior to be the
inverse identity matrix scaled by a constant factor. Alternatively, the initial covariance
parameters can be sampled from an Inverse Wishart distribution or estimated over part
of the data set in question.
At each iteration we update the parameters according to

µ
(0)
t+1 = µprior (3.15)

µ
(1:t+1)
t+1 =

κt × µ(0:t)t + xt
κt + 1

(3.16)

Σ
−1(0)
t+1 = Σ−1prior (3.17)

Σ
−1(1:t+1)
t+1 =

κt
κt + 1

(xt − µ0)T (xt − µ0) + Σ
−1(0:t)
t (3.18)

κt+1 = κt + 1 (3.19)

where µ(1:t+1)
t+1 denotes elements 1 to t+ 1 of the mean vector at time t+ 1. Note again,

the explicit use of the precision matrix in these equations.

When we tested the original design of the changepoint algorithm by Adams and
MacKay (2007), we observed that the algorithm becomes intractable for very long one-
dimensional time-series. We found that the algorithm computes the posterior run-length
distribution for all possible run-lengths at every time step, resulting in a quadratic run-
time complexity in the number of data points. All run-length probabilities were retained
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over the entire computation which led to quadratic memory requirements, as well. For
higher dimensional data and using multivariate Gaussian distributions the algorithm ex-
ploded both in time and space for time-series in excess of 10,000 data points. In the
following we will present how we overcame this problem and reduced the algorithm’s
complexity to be linear over all data points, both in time and space.

Firstly, we reduced the space requirements by only retaining the entire run-length
distribution for the current time step, instead of all previous time steps, and only storing
the most likely run-lengths, instead of all possible run-lengths, for every previous time-
step. This information was sufficient to determine changepoints and made the algorithm
scale linearly in space with the number of data points.
Secondly, as previously mentioned, the original implementation calculated a probability

distribution over all possible run-lengths r = 1 . . . t for every time step t. This implies
that at every time step we update t mean vectors and t covariance matrices and calculate
t run-length probabilities under the multivariate Gaussian model. We discovered that at
each time step t, we do not have to compute all possible run-lengths. Instead, it is feasible
to compute only the run-lengths over a limited and fixed time window tw � t which,
depending on the window size, can increase the performance of the algorithm significantly
up to an order of magnitude. One may be tempted to gradually decrease the window
size to further reduce run-time costs, however it should be noted that a careful choice of
tw is required. The window has to contain enough data points to provide an accurate
estimate of the current statistics. For the tests presented later in this report, we have
to ensure that tw is larger than the number of free parameters in the statistics used. In
the case of a multivariate Gaussian distribution, this means that we have to consider at
least 2 ×D data points for estimating the covariance matrix and D data points for the
mean, which in total adds up to tw > 3×D data points, where D is the dimensionality
of the data. In practice, we observed that tw has to be larger than 3×D in order to give
accurate results, however this is the theoretical minimum to avoid overfitting.

Extraction of Change Points

The ideal behaviour of the changepoint algorithm as shown in figure 3.7 is defined to
be a linearly increasing run-length followed by a drop to zero, at which time step a
changepoint occurs (Adams and MacKay 2007). This is however rarely observed in the
case of using a multivariate distribution and calculating run-length probabilities over
more complex data. This is assumed to be due to noise and non-stationarity in the data
which induces uncertainties in the run-length estimates produced by the algorithm. A
typical output produced by our algorithm as shown in figure 3.8/Middle highlights the
need for additional processing to extract the most relevant changepoints for segmentation.
We therefore extract the most significant changepoints by defining a changepoint as a
point where the maximum run-length probability drops significantly (not necessarily to
zero), where the drop significance is calculated with a distance function (Fink and Gandhi
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2011):

dist(rt−1, rt) =
|rt−1 − rt|
|rt−1|+ |rt|

(3.20)

which is bounded between 0 and 1. The extraction of changepoints becomes more coarse
as the threshold above which we considered a drop in run-length as significant is increased.
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Figure 3.7: Top: time-series with changepoints at time-steps 200, 300 and 400. Bottom:
Run-length distribution P (rt|x1:t) computed by the univariate algorithm pre-
sented in Adams and MacKay (2007). Gray shading represents probability
distribution over all possible run-lengths at every time-step. Red line indi-
cates most likely run-length at every time-step.

During this step, we further made use of our prior distribution over segment length
which provides a more accurate estimate of changepoint appearance within a time-series.

At this stage, we have computed a set of significant changepoints in our observed
time-series and have extracted the individual segments between the changepoints from
the original data. We are now ready to perform comparisons on pairs of segments and
generate clusters that group highly similar movement segments together.

Resampling and Comparison of Segments

Having obtained the estimated movement segments, we can now calculate similarities
between all possible pairs of segments. One of the difficulties when testing for similarity
between two natural movement segments is the difference in speed at which the respec-
tive movements are performed. It has to be taken into account that closing a hand can
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be done very quickly and rather slowly, yet representing the same type of movement. To
be able to account for different speeds at which we can execute movement, we resample
every segment to a default movement duration. This allows us to compute similarity val-
ues between two segments of the same length with respect to their actual type. Having
calculated the similarity between all possible pairs of segments, we generate movement
clusters of segments with the same type. We define two movement segments to be the
same if their similarity value is above a defined threshold. By varying this threshold we
can produce clusters of different breadth, i.e. the segments contained within a cluster are
less similar to each other. In an extreme case all segments will be contained by one cluster.

In the course of this project, we experimented with different types of statistical mea-
sures to compute the similarity between two segments. Their accuracy was validated
by visualising movement segments on a computer screen (Figure 3.9) and comparing an
expert’s visual assessment with the values return by the statistical measures. We discov-
ered that the use of different measures affected our results significantly and we therefore
discuss our findings with respect to different types of measures in section 3.2.2. Before
this, we will briefly explain our clustering procedure.

Figure 3.9: (A-D): Visualisation of two movement segments that were observed and
recorded. The subject closes the hand (A-B) and opens it again (C-D).
Our method finds a changepoint between (B) and (C) and we obtain two
segments.

Clustering

In our analysis we discard both the first and the last segment of each movement se-
quence as we found that these were often incomplete or erroneous due to calibration and
initial misalignments of the hand. As a result these would distort the overall distribu-
tion of the clusters without adding any valuable information. In addition to resampling
all segments to a default length, we normalise all segments to have amplitudes in the
range [−1, 1] by dividing each segment’s amplitude by its absolute maximum. We then
compute the similarity between every possible pair of segments using, e.g. using Pearson
correlation coefficient or maximum cross-correlation. When calculating cross-correlation,
we defined a time-shift window of 20% over which the values are calculated to correct
slight misalignments between two segments.

24



3.2 Proposed Method 3 Movement Segmentation from a Big Data Perspective

Following this, the clusters are computed using an iterative procedure as described in
algorithm 1. We start with an arbitrary segment s1 and find all other segments so for
which the similarity value between s1 and so is larger than a given threshold t. This step
is repeated until the cluster has converged to a stable state.

Algorithm 1: Pseudocode of iterative clustering algorithm
Input: m-by-n binary matrix dMat
Output: clusters
m← number of rows in dMat;
n← number of columns in dMat;
not_checked← n-by-1 array of 1s;
clusters = �;
for seg ← 1 to n do

if not_checked[seg] == 0 then
continue;

end
tmpSegs← seg;
oldSegs← 0;
while length(oldSegs) 6= length(tmpSegs) or ∃k(oldSegs[k] 6= tmpSegs[k]) do

oldSegs = tmpSegs;
∀j(dMat(tmpSegs, j) > 0→ dMat(tmpSegs, j) ∈ tmpSegsNew);

end
not_checked[seg]← 0;
clusters = clusters ∪ tmpSegsNew;

end

We verified each cluster with visual inspection of the movement segments on a computer
screen. It should be mentioned that one slight drawback of this method is the creation of
a number singleton clusters where the segment is too different from any other segment.
We consider these segments as truly unique.

3.2.2 Measuring Similarity between Movement Segments

Mathematically, a statistical measure describes the similarity between two different sets
of variables. In our case we are interested in comparing pairs of time-series describing
movement behaviour. More specifically, we would like to ascertain to which extent two
time-series represent the same behaviour. We therefore have to ask ourselves first what it
means for two movement segments to be equal since we can, for example, imagine a very
quick closing and in contrast a very slow closing of a hand, which makes this question
not trivial to answer. In addition, a subject can close his/her hand in slightly different
ways making it even more difficult to test for similarity.

As for this project, we want to account for different speeds at which movements are
performed and slight time shifts between movements occurring within a movement seg-
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ment. By varying the threshold above which two segments are considered to be equal,
we can deal with movement that is performed slightly differently, but still represents the
same type of behaviour. In the following, we will briefly mention the similarity measures
that we have tested in combination with the methods presented here.

Euclidean Distance

We can compute the similarity of two D-dimensional movement segments X and Y by
calculating

d(X,Y ) =

√√√√
T∑

i=1

(Xi − Yi)2 (3.21)

for each dimension in D and take the mean over all dimensions. We found that, when
comparing two segments using Euclidean distance, the indications whether or not two
segments were similar were not very accurate. The rather poor performance of Euclidean
distance as a similarity measure for movement sequences is assumed to be due to the
high dimensional nature of the data. In addition, it does not take slight time shifts
between the movement sequences into account and only considers the distance between
the respective dimensions.

Pearson Correlation Coefficient

As an alternative to the Euclidean distance measure we use Pearson correlation coefficient
to calculate similarity between two movement segments. It is defined as

ρX,Y =
cov(X,Y )

σXσY
(3.22)

where X and Y denote two movement segments again. We found that, when applied to
movement segments and verified by visualisation, Pearson correlation coefficient provides
a more accurate estimate of similarity between two movement segments than Euclidean
distance. It appears to deal more accurately with high-dimensional movement data but
does not account for scaling and time shifts between the two segments.

Goodness of Fit

Goodness of Fit (GoF) between two time-series X and Y can be defined as

gofX,Y = 1− var(X − Y )

var(X)
(3.23)

We additionally introduced a weighting over all dimensions in our GoF measure to dis-
criminate against variables with low variance. This becomes important when our data
contains a significant amount of noise. In contrast to Pearson correlation coefficient, the
GoF measure takes scaling of the time-series into account but does still not consider time
shifts.
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Maximum Cross-Correlation

We found that even slightest time shifts between two segments affected the accuracy of the
similarity measures presented so far significantly. They were therefore not always useful
for comparison of two movement segments and we often obtained more accurate com-
parison results when using cross-correlation as a similarity measure. Cross-correlation is
a measure of correlation between two time-series as a function of a time-lag applied to
one of them.

φX,Y (t) =

∫ ∞

−∞
X(τ − t)Y (τ) dτ (3.24)

where τ is a given time-lag parameter and two segments X and Y . We calculate it
over a minimum and maximum time-lag corresponding to 20% of the segment length to
correct for time-shifts within two segments. We then define the similarity between two
segments as the maximum value returned by cross-correlation. One should note that this
measure takes all possible shifts within the time-lag window into account and is therefore
computationally more expensive than the measures presented previously.

3.2.3 Evaluation

We tested our method on two different types of data; an artificial data set and hand-
movement data of multiple subjects performing various everyday tasks.

Artificial Data Set

For the purpose of this work, we generated an artificial data set by repeatedly sampling
from the family of functions defined as

f =

(
N∑

i=1

wiφ(t− ti)
)

+ ε (3.25)

where wi ∼ N (0, ID), ε ∼ N (0, σ2ε ), Φ were chosen to be Gaussian basis functions, N is
the number of basis functions, D the dimensionality of the data and ti can be arbitrarily
chosen to constrain the function to a given interval. The segments obtained were then
resample to a length which was sampled from U(100, 150) and randomly concatenated
to generate a data set.

Our method was validated on data of varying dimensionality, number of different
segment types, and noise levels. Additionally, we changed the parameters of our seg-
mentation method throughout the tests. We measured performance of our method by
calculating similarity between the original and extracted segment sequence. The results
presented here were produced using Pearson correlation coefficient.
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Figure 3.10: (A) - (D): Influence of parameters on extraction accuracy. (A) dimension-
ality, (B) number of different segments, (C) noise levels, (D) PCA accuracy.
(E) - (F): Influence of number of data points (E) and number of dimensions
(F) on run time. Markers indicate mean with standard deviation and grey
area represents levels of chance. If no errorbars are shown, they are smaller
than the marker. Note that the run-lengths have been normalised to the
shortest run-length. See text for details.
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Our testing results are shown in Fig. 3.10. It is revealed that our method is extremely
robust to most variations in the parameters of the algorithm and data, consistently
showing very high accuracy (on average 86.5% when using Pearson correlation coefficient
as similarity measure) and no significant decline in performance as the number of different
segment types (Fig. 3.10/B) or the level of noise (Fig. 3.10/C) is increased. The only
drop in performance was observed when analysing data of lower dimensionality. This was
found to be caused by the PCA step which is performed to reduce the dimensionality of
the data. In cases where the original data dimensionality was already low, PCA often
reduced the input to one-dimensional data which makes changepoint detection generally
hard as the statistics taken into account become very similar across all segments. This
decrease in performance can be easily overcome by introducing a lower bound on the
number of output dimensions of the PCA step.
We tested the segmentation accuracy of our method by analysing how many different

segment types our algorithm extracts from a given data set. This was done by generating
clusters of segments that were very similar to each other based on the segments extracted
from the input data. These clusters allowed us to identify unique movement types within
the extracted segments. We could then compare these unique movement types against
the unique segments in the original data and estimate the extraction accuracy of our
algorithm. Under Pearson correlation, we defined two segments to be the same if their
coefficient was larger than 0.7. This threshold was verified using cross validation and
visual inspection of movement segments on a computer screen.

K K Extracted Correlation Coefficient
3 4.60 (± 2.19) 0.81 (± 0.24)
5 6.40 (± 1.48) 0.86 (± 0.18)
7 8.53 (± 1.94) 0.87 (± 0.18)
9 10.60 (± 2.19) 0.85 (± 0.18)
10 11.71 (± 1.84) 0.87 (± 0.17)
11 12.77 (± 1.72) 0.87 (± 0.17)
13 13.83 (± 1.21) 0.88 (± 0.15)
15 14.77 (± 1.79) 0.89 (± 0.15)

Table 3.1: Performance measures for proposed method on artificial data set. K is the
number of different types of segments in the input data. Values indicated are
mean (± SD).

In table 3.1 we compare the number of unique segment types in the input data against
the number of different segment types found by our algorithm. We also present the
average correlation coefficient found between the original and extracted segments. It can
be seen that the number of estimated unique segments is always slightly higher than the
number of real segments in the input data. This can be explained by considering that
any segment that is "incorrectly" extracted will form a cluster by itself and therefore
increase this estimate. Considering that the average number of different segments types
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in our data set was 40, we found that our algorithm performs very well, as on average it
only finds 1.2 segments more than segments present in the input data.
We were also interested in testing how well our algorithm scales with increasing se-

quence lengths and number of dimensions. Figures 3.10/E and F show the relative
run-time normalised to the smallest input data set (5000 data points for E, 5 dimensions
for F). It can be seen that our method scales linearly with the number of data points
and is constant in the number of dimensions. The latter is mainly due to the PCA step
which ensured that the data dimensionality for changepoint detection was kept relatively
low.

Neurotechnology for Kinematics in Daily Tasks

The algorithm was also tested on hand movement data collected during experiments in
Belic and Faisal (2011). In these experiments, a left-handed CyberGlove I (see section
2.4 for details on CyberGlove) was worn by subjects who were asked to perform 10 rep-
etitions of 17 different tasks which occur frequently in daily life. The tasks included
opening doors, drinking, eating (with and without cutlery) and interaction with common
items such as computers and phones. The total length of the data was above six hours,
or approximately 1.7 million data points. Using a second-order Savitzky-Golay filter and
a running window of 5 data points the data was smoothed before any further analysis to
remove discontinuities induced by the glove’s A/D converter.

We applied our changepoint algorithm to the data collected by Belic and Faisal (2011)
and obtained 3710 segments with a mean run-length of 263 data points which is equivalent
to a mean movement duration of 3.28 seconds. It should be noted that when segmenting
a movement time-series we always discard the first and the last segment as we found that
these are often incomplete or erroneous due to calibration given the data set used here.
Similarly to the tests on the artificial data set, we calculate the similarity between all

possible remaining segments by resampling every segment to a default length (see figure
3.11 for a graphical representation of similarity between all pairs of segments within a
task) and group similar segments into clusters. We were then interested in investigating
whether (1) the segments within a cluster are indeed similar, (2) the singleton clusters
are indeed different from all other segments and (3) which movement clusters are large
and can therefore interpreted as containing segments that are performed very frequently
in the everyday tasks performed.
For (1)-(2), we used the maximum value indicated by cross-correlation over all di-

mensions (the results with respect to other similarity measures are discussed in section
3.2.2). We visualised the movement segments on a computer screen and discovered that
the segments within a cluster were indeed similar. We could control the "breadth" of
such a cluster by varying the threshold above which two segments are considered equal
and subsequently clustered together. Using a lower threshold, the clusters contained seg-
ments of larger variability, and vice versa for a larger threshold. We present the clusters
that we obtained with different thresholds in tables 3.2, 3.3 and 3.4. Note that even
under a 0.90 threshold, the seven largest clusters account for more than 1.26% of all data
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Cluster Id Cluster Size Type
161 94 Half opening

509 72 Full hand opening with straight
ring-finger

425 29 Half closing

2673 22 Half opening distal and
proximal interphalangeal joints

1 15 Full closing
1207 13 Inactive, straight hand

1249 13 Quarter opening with almost
straight fingers

... ... ...

Table 3.2: Largest clusters computed with a threshold of 0.85 when using maximum cross-
correlation. The segments in these clusters account for 6.95% of all segments
found (total number of segments is 3710) and for 5.22% of all data points in
the set (total number of data points is 975112).

points in the data set. This is a significant proportion given that the clustering algorithm
produced 2792 clusters when the threshold was set to 0.85, 3044 when set to 0.875 and
3281 clusters when the threshold was 0.9.
For (3), we observed that the largest clusters consistently represented the same actions.

A cluster containing segments that describe the opening of a hand was always found to
be the largest, with 94 segments under a 0.85 threshold, 50 under 0.875 and 15 when the
threshold was set to 0.90. By lowering the threshold we obtain larger clusters that contain
segments less similar to each other. In this case we can, for example, observe different
forms of opening an hand in the same cluster. In contrast, by raising the threshold, the
number of segments within each cluster becomes smaller and the movement segments
more similar. These results were again verified by visual inspection on a computer screen
(see figure 3.9 for an example).
We tested our methodology on a data set containing real movement data collected

during everyday tasks. Our algorithm was able to accurately and efficiently process
a data set containing roughly one million data points in 18 dimensions. Despite the
repetitive nature of the tasks, this data set was particularly useful for testing. The
results demonstrate that a large proportion of segments cluster around a small number
of different actions which all represented some form of hand opening and closing which
emphasises the importance of the grasp movement in many situations.

Lower Paleolithic Stone Toolmaking

We tested our method on a third data set which was recorded during the replication of
Lower Paleolithic stone tools (Faisal et al. 2010). Specifically, in these experiments, the
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Cluster Id Cluster Size Type
223 50 Three-quarter opening

549 29 Full hand opening with straight
ring-finger

460 16 Half closing
1 15 Full closing

1303 14 Half opening
1326 13 Inactive, straight hand

1128 12 Closing distal and proximal
interphalangeal joints

... ... ...

Table 3.3: Largest clusters computed with a threshold of 0.875 when using cross-
correlation. The segments in these clusters account for 4.02% of all segments
found (total number of segments is 3710) and for 3.15% of all data points in
the set.

production of the Oldowan flake and Late Acheulean handaxe (see figure 3.12), for which
historical evidence was found at the beginning and end of Lower Paleolithic period, was
studied. This period covers more than 2 million years of human history and is often of
great interest to archaeologists and evolutionary researchers.

Figure 3.12: (A): A core stone is used for reproduction and struck with a hammerstone
(B) to form the shape of a Acheulean handaxe (C). Individual figures taken
from Faisal et al. (2010).

Here, we considered the movement time-series which was obtained from the Cyber-
Glove I during one of the experiments where a Late Acheulean handaxe was reproduced
(see figure 3.13/Top). The motion glove was worn underneath a garden glove and ap-
proximately 112,000 data points which represent roughly 22 minutes worth of data were
recorded. The initial recording frequency was 80 Hz, however the data was later combined

32



3.2 Proposed Method 3 Movement Segmentation from a Big Data Perspective

Cluster Id Cluster Size Type

594 15 Full opening with straight
ring-finger

490 14 Half closing
1 12 Full closing

1217 12 Half opening

1410 11 Half opening with straight
index-finger

1952 11 Opening distal and proximal
interphalangeal joints

2485 9 Closing distal and proximal
interphalangeal joints

... ... ...

Table 3.4: Largest clusters computed with a threshold of 0.90 when using cross-
correlation. The segments in these clusters account for 2.26% of all segments
found (total number of segments is 3710) and for 1.26% of all data points in
the set.

with other recordings and during this process resampled to 150 Hz.

As with the data collected by Belić (2010), we first smoothed the data during a pre-
processing step using a second-order Savitzky-Golay filter and a running window of 5
data points. The subsequent analyses were then carried out on the first derivative, i.e.
velocity values, of the smoothed input data.

Having computed the run-length distributions over all 112,000 time steps and having
performed segmentation based on the calculated changepoints, we obtained 142 segments
with a mean length of 663.23 (± 266.53) data points. This is equal to a mean duration
of 4.42 (± 1.78) seconds. A video was taken during the reproduction of the tool and
we could verify agreement between the segments computed by our method and the hand
movements seen in the video.

Four extracted segments are shown in figure 3.13/(A-D). From the video we were able
to identify the changepoints (A-B) as changing the position of the stone, changepoint
(C) as a flip over, and changepoint (D) as a grasp followed by picking up the stone. We
further visualised the segments on a screen and present screenshots in figure 3.14/(A-D)
accordingly.
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Figure 3.13: Top: Movement data collected while motion glove was worn during flint
knapping. Bottom: Four segments are extracted between seconds 44 and
59. Changepoint detection is p on the joint velocity values.

We were also interested in seeing to which extent the movement segments computed
in the previous step are similar to each other. Similarly to our previous tests, we resam-
pled all movement segments to a default length and computed the similarity between all
pairs of segments using maximum cross-correlation and Pearson correlation coefficient
after having removed all segments with very low variability. Clustering was subsequently
performed on the remaining 82 segments from which we generated 60 clusters with a
threshold of 0.85 for maximum cross-correlation and 70 clusters with threshold 0.5 under
Pearson correlation. It should be noted that, as previously, we obtained many single-
ton clusters, however in both cases we found two clusters which accounted for 11.30%
(maximum cross-correlation) and 9.87% (Pearson correlation) of all data points. We
finally visualised the segments within the respective clusters and found that the hand
configuration as shown in figure 3.14/(A) and 3.14/(D) were present in the two largest
clusters.
This data set was particularly interesting to us as it did not contain any predefined task

repetitions and contained more irregularities than the data sets we had tested previously
which made segmentation an even more challenging task. This test revealed that our
method manages to produce accurate results even in situations where the patterns in
the time-series are less repetitive and the hand movement behaviour varies significantly
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between segments.

Figure 3.14: Extracted segments visualised on a computer screen. In (A-B) the position
of the stone is changed, during (C) the stone is flipped over and in (D) a
firm grasp is applied to the stone while being picked up.

3.2.4 Conclusion

We have shown how, by exploiting the covariance structure of the input time-series,
Bayesian changepoint detection and temporal correlation, we can perform accurate and
highly robust time-series segmentation over millions of high-dimensional samples in linear
time and space with an increasing number of data samples. Our method is suitable for
high-dimensional data streams as, mostly due to PCA, performance scales constantly in
dimensionality. Here, we have successfully tested our proposed method on artificially
generated data, a data set containing hand movements collected during everyday tasks
and on movement data recorded during the reproduction of Paleolithic stone tools. We
conclude that the run-time properties of our algorithm enable a Big Data approach
to neuroprosthetics and brain-machine interfaces to become computationally tractable.
We have presented our work in the context of movement data, however, with slight
modifications, our implementation could be applied to a variety of types of data.

3.2.5 Future Work

We have successfully developed a method that allows us to accurately segment large
movement time-series. Yet, we see a lot of possibilities for improvement for which we
will briefly present our ideas in this section
Firstly, our method currently requires an additional pass over the computed run-lengths

to extract all significant changepoints from the result produced by the changepoint de-
tection algorithm. This is mostly due to the inaccuracies that are sometimes observed in
the results of our changepoint detection algorithm. The current implementation uses this
extra step to enforce a prior distribution over movement duration which is not considered
properly by the changepoint detection algorithm in the first run. We suggest that this
prior should be integrated into the changepoint detection step which upon successful
integration would allow us to remove the currently required extraction step. We expect
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that this would not only simplify the structure of the algorithm but also slightly increase
the computational performance of our method.
Secondly, we would like to test further similarity measures and investigate whether we

can incorporate an even more accurate measure into our method. One interesting model-
based approach which was found but not tested during this project uses semi-continuous
Hidden Markov Models (SC-HMMs) and mixture of Gaussians to infer similarity between
vector sequences (Rodriguez-Serrano and Perronnin 2012). While this approach seems to
be of higher complexity than the similarity measures tested during this project, it may
achieve better results.
In some occasions we observed that our algorithm misses a changepoint in cases where

the generative process between two segments does not change significantly. As a result
it incorrectly combines two movement segments which, in figure 3.15 happens roughly
between point 800 and 1000. This becomes particularly evident if the statistics changes
from high to low variability in the data. In the case of the Paleolithic stone toolmaking
described in section 3.2.3, abrupt changes in hand position (high variability) were often
followed by longer resting period (low variability). Our method frequently missed a
changepoint in these cases. We found that the structure of the covariance matrix used
during changepoint detection influences this heavily, however further investigation is
required here.
In this work, we only tested our methodology on an artificial data set and hand move-

ment data. We would like to extend our method to be able to segment and recognise
movement patterns in data obtained from a body suit (e.g. ANIMAZOO IGS-1503) or
other potential non-optical motion capture devices. This would enable us to perform
analyses and tests on even more complex data.
Finally, we would like to test our method on a wider variety of data sets that were

collected during natural situations.

3www.animazoo.com/products/igs-150-range
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Figure 3.8: Top: Artificially generated 15-dimensional time-series which forms input to
our algorithm. Computed changepoints are indicated as dotted lines. Mid-
dle: Computed run-length distribution. The plot shows the most likely
run-length at every time step. Bottom: Segment classes of original data
indicated by dotted line, of extracted data in straight line. Note the con-
stant offset in time between original and extracted recognised classes which
we correct by subtracting a constant offset. Here, all segments are correctly
extracted and recognised.
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Figure 3.11: Comparison between all pairs of segments for repeated execution of the
task "picking up the plastic bottle, simulating the drinking, and returning
the bottle to the starting position". Left: Similarity based on maximum
cross correlation between all possible pairs of the 39 segments found. The
brighter the case, the more similar are the two segments. Right: All move-
ment segments that we consider as equal using a maximum cross-correlation
threshold of 0.85.
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Figure 3.15: The computed segmentation is shown as a straight line. The dotted line
indicates original segmentation. We can see a misclassification for the first
segment and a missed changepoint between points 800 and 100.
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4 Exploiting Movement Patterns for
Improved Neuroprosthetic Control

Neuroprosthetics offer the chance for amputees to regain naturalistic mobility and dex-
terity by controlling a prosthetic device. Yet, even with the most advanced technology
available today, the amount of useful control signals that we can extract from the brain
or nervous system is still very low and not suitable for real-time prosthetic control (see
section 2.3.2). Furthermore, with present methods we have not yet achieved the same
versatility and dexterity as we can observe with natural limbs (Abbott and Faisal 2012).
As presented before, these current limitations restrict the use of neuroprosthetic devices
in everyday activities significantly.
In this chapter, we will propose the design of a novel neuroprosthetic control paradigm

(Thomik, Haber, and Faisal 2013) which by observing the behaviour of intact limbs can
accurately predict the behaviour of missing limbs (see figure 4.1). To achieve this we will
exploit two aspects of natural movement: (1) modularity (see section 2.1), and (2) the
stereotypical patterns between joints of fingers during everyday tasks (see section 2.2).
We will develop a probabilistic and inference-based method that will use a two-stage
approach and demonstrate that this method yields very high statistical accuracy under
a large test data set.

π1 = p(S1|xobs1:t )

π2 = p(S2|xobs1:t )
...

πN = p(SN |xobs1:t )

xhid1:t = f(xobs1:t , φi)

Figure 4.1: Conceptual design of the prosthesis controller. Left hand side: A limited
amount of information is observed (here, thumb and index finger) and infer-
ence is performed to evaluate which movement cluster most likely generated
the observed data. Right hand side: The parameters of the most likely
movement cluster are used to estimate the missing dimensions and the pros-
thetic replacement is actuated accordingly. Figure from Thomik, Haber, and
Faisal (2013)
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4.1 Overview

The method presented here is based on a large data set that was also used for the
evaluation of our segmentation method presented in section 3.2.3. The data set includes
more than 6 hours worth of data from different subjects performing a variety of everyday
tasks and was collected using a CyberGlove I motion capture device. We will show how
we use this data and the efficient changepoint detection method presented in chapter 3
to generate clusters of similar movement segments. The clusters will subsequently allow
us to accurately complement partial observations (e.g. movement of two fingers) and to
predict movement behaviour of the unobserved joints (e.g. remaining three fingers) in
real-time by taking into account the probabilistic structures of the most representative
clusters.
Following this, we will demonstrate that we can significantly improve the prediction

accuracy for the movement of unobserved joints with significantly less training data
and in less time. This is achieved by applying our segmentation method first, instead
of considering the entire unsegmented time-series, supporting a modular approach to
prediction of unobserved movement behaviour.

4.2 Methodology

In the following sections we will explain our methodology that achieves accurate move-
ment prediction of unobserved joints. We will briefly explain the steps involved and look
at optimisations to further improve the performance of our method.

Segmentation & Clustering

We analyse and segment the data set using the method described in section 3.2.3 and
Haber, Thomik, and Faisal (2013). We perform all analyses on the velocity values of the
movement data. This was found to be more accurate as it explains movement behaviour
more accurately than the spatial positions of the joints obtained from the CyberGlove.
Using the first derivative of the data also ensures that all our movement segments have
a mean close to zero which simplifies analysis.

Before generating a probabilistic representation of the data, we group all movement
segments into clusters using the method we described in 3.2.1. Here, we compute the
similarity between two movement segments using maximum cross correlation (see section
3.2.2 for definition) and two movement segments are considered to be equal if their
maximum cross-correlation value is larger than 0.8. The time-lag used during calculation
of cross-correlation was 20% of the segment length which allowed us to correct for slight
misalignments of movement within the segments. Again, further details can be found in
section and 3.2.1.
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Inference

We next fit all generated clusters with a mixture of Gaussians to infer the probability
that a given data point belongs to a cluster. A mixture of Gaussian model can be written
as a linear sum of Gaussian components in the form (Bishop 2007)

p(x) =
K∑

k=1

πkN (x|µk,Σk) (4.1)

where K denotes the number of components in the mixture model, πk are the mixture
weights, x a D-dimensional input vector, µk is a D-dimensional mean vector and Σk a
D-by-D covariance matrix for each component k (k = 1 . . .K) respectively.
In addition, the mixture model introduces the concept of hidden or latent variables,

e.g. a K-dimensional binary vector z, which are unobserved quantities. We will see later
that in our context, the latent variables will indicate cluster responsibilities for the data
points that we have observed. We can write (Bishop 2007)

p(zk = 1) = πk (4.2)

and have to ensure that all πk are valid probabilities by defining the following constraints

∀k(0 ≤ πk ≤ 1) (4.3)

and
K∑

k=1

πk = 1 (4.4)

Using a mixture of Gaussian model we can then ask which cluster (indicated by latent
variable zk) is most likely responsible for having generated the observed data points x.
For this, we first have to fit a distribution over the segments of each cluster generated.
An often powerful and computationally efficient method for finding maximum likelihood
solutions for the parameters of the models with latent variables is the Expectation Max-
imization (EM) algorithm (further details in Bishop 2007). This method iteratively
estimates the values of the latent variables and subsequently maximises the likelihood of
the parameters of the probabilistic model until convergence.
It should be noted that other probabilistic models can be used here, however a mixture

of Gaussians appears to be suitable as we later want to make statistical inferences about
the properties of the individual segments by only taking into account the overall pooled
properties of each cluster
We choose the optimal number of components for our mixture models by computing

the Bayesian Information Criterion (BIC) which is often used to select the best model
among a finite set of possible models. BIC also avoids overfitting by introducing a penalty
term for the overall number of parameters in the model.
The likelihood of the data at time t being generated by a particular cluster Si is finally

given by

πi = p(Sit |xobs1:t ) =
p(xobs1:t |Sit)× p(Sit)

p(xobs1:t )
(4.5)
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where p(Sit) can be estimated directly from the training data and x1:t is the data which
we have observed so far.
Furthermore, we use a discount factor df(t) = 1/tτ where τ is a constant and t a given

time-step to discriminate exponentially against past data points. This ensures that more
recently observed data points have a larger influence on choosing cluster Sit .

At this stage, using πi we can now infer which cluster should be used for predicting
the unobserved dimensions in the next step.

Prediction

To perform prediction of the unobserved dimensions, we fit a regression under a linear
combination of Gaussian basis functions between the O observed dimensions xobs and H
unobserved dimensions xhid for each cluster offline. The model can be defined as

xhid(xobs, w) = w0 + w1φ1(x
obs) + w2φ2(x

obs) + · · ·+ wM−1φM−1(x
obs) (4.6)

= w0 +
M−1∑

j=1

wjφj(x
obs) (4.7)

where M is the number of basis functions, here chosen to be at most 50, and our Gaussian
basis functions for each component i are defined to be

φk(x
obs) = exp

(
−0.5× (xobs − µk)(xobs − µk)T

100σ

)
(4.8)

where µi is a O dimensional mean vector and σ a O ×O dimensional covariance matrix
which is shared amongst all basis functions. Note the constant factor in the denominator
is used to widen the Gaussian functions which allows for more robust inference.
The number of such basis functions has to be chosen carefully to avoid overfitting of the

parameters due to a large number of degrees-of-freedom. In addition and as previously
done, all components share the same covariance matrix which we found gives numerically
more stable results during prediction. A pooled covariance matrix is often also used in
situations where it is not guaranteed that we observe enough data points to obtain an
non-singular estimate for M − 1 covariance matrices, but rather only for one covariance
matrix.

Upon observing partial movement we then (1) select the most likely cluster from πi
in a winner takes all fashion and (2) estimate the unobserved dimensions on the basis of
the regression parameters fitted to that particular cluster using xhid(xobs, w). It should
be noted that during this step, the computational run-time is only dependent on the
number of clusters that were generated from the extracted segments.
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4.3 Evaluation

In this section we present the results of the segmentation, clustering and prediction steps
of our proposed method. We then show that by exploiting the unique characteristics
of each movement cluster we are capable of predicting the unobserved data much more
precisely than by solely taking the entire, unsegmented movement data into consideration.

Obtaining Movement Segments

When segmenting a block of data we removed the first and last segments from the
sequence as we often found that these were incomplete or erroneous due to calibration.
We obtained 3710 segments with an average movement duration of 3.28 seconds. We
subsequently performed clustering of all movement segments as described in section 3.2.1.
Using maximum cross-correlation and a threshold of t = 0.8, 2279 clusters were generated.
It should be noted that a vast majority (88.85%) of these clusters were singleton clusters.
Singleton clusters only contain a single segment for which the similarity with any other
segment was less than t. We consider such segments as truly unique within our data set.
To limit the influence of the large number of singleton clusters and to simplify the

procedure of estimation the regression parameters we generate a prior distribution over
cluster size and only consider clusters which account for at least 0.2% of the total number
of data points collected. From the 2279 clusters that were produced by our clustering
algorithm, only 34 clusters were eventually used to predict the unobserved data dimen-
sions. One should note that with this we take 1.5% of the number of clusters into account
but consider 25.55% of all data points in the data set.

Prediction

We estimated the unobserved data during a two-step process in which we (1) select the
movement cluster which has most likely generated the data observed and (2) estimate
the unobserved dimensions using linear regression which we had fitted to that particular
cluster.
We first observe that the statistical nature of our inference approach does not guarantee

that we always choose the correct cluster for prediction for consecutive time steps. In
some occasions the currently most likely cluster changes between time-steps t and t+ 1
which leads to considerable changes in our estimate for xhidt and xhidt+1. We overcame such
abrupt mistakes by fitting an exponential distribution

f(d, λ) =
1

λ
e−

d
λ (4.9)

where we define d as the absolute distance between two time-steps d = |x̂t− x̂t+1| of the
unobserved data in our training set and λ the rate parameter which we obtained by fitting
the distribution over the entire training data. If the change between any two data points
had a likelihood less than 0.1%, we assumed that the inference had failed and repeated the
inference on the most likely movement cluster with the current estimate discarded. This
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successfully prevented the erroneous jumps in the estimate of the hidden dimensions and
additionally refined the inference step for the underlying movement primitive, yielding
more accurate predictions for the unobserved dimensions.
Using this method, we were first interested in testing two different scenarios (see figure

4.2): (1) only the thumb and index finger were observed and the movement of the middle,
ring and little finger was reconstructed (Figure 4.2/A) and (2) we observe thumb, index
and middle finger and the movement of ring and little finger is predicted (Figure 4.2/B).
Over all data sets available to us, we obtained an average R2 = 0.19(±0.031) for (1)
and R2 = 0.25(±0.013) for (2). These results are shown as white bars in figure 4.2.
We observed that the Pearson correlation coefficient ρ between the ground truth and
the reconstructed dimensions on the same data set was significantly higher than the R2

values (Figure 4.2/A: ρ = 0.47(±0.013) and 4.2/B: ρ = 0.49(±0.014)). The significant
different between the R2 and ρ values suggests that, while our method correctly identifies
the shape of the unobserved time-series, scaling is not perfect. This can be explained
by considering that we perform our analysis on the velocity values of the data sets.
Movements are generally performed at varying speeds, however the regression only takes
into account the average movement velocity of the respective cluster.
Interestingly, the accuracy of our method does not improve significantly when we

additionally observe the middle finger in scenario (2) and only predict the remaining two
fingers instead of observing only thumb and index finger. This could be explained by
assuming that our model is either very good at predicting the behaviour of the middle
finger from the thumb and index finger or that when observed, the middle finger adds
a substantial amount of noise to the overall observation and distorts our parameter
estimates.
In a second test, we wanted to find out how our method performs in comparison to the

simpler approach of estimating the movement of the unobserved joints by calculating the
regression parameters over unsegmented data from 5 of our 7 subjects for which we have
data available and estimating the missing dimensions on the remaining two subjects.
Figure 4.2 (gray columns) shows that although our novel method only takes into account
a fraction of the data available (25.55% of all data points), it performs significantly better
than the second, simpler approach which takes into entire data. We performed Student
t-tests (see figure 4.2) on the results we obtained for both R2 and ρ and were able to
conclude that our novel method is statistically significantly better with p < 0.05. The
improvement became particularly evident when we tried to predict the movement of two
fingers (see comparison in table 4.1).
Here, we reconstruct the unobserved movement behaviour using a linear regression.

Various alternatives including Gibbs sampling (Markov Chain Monte Carlo) and max-
imum likelihood estimation (MLE) exist, however both concepts did not seem to be
suitable for real-time prediction as their computational run-time complexity is relatively
high. The former, while being an improvement over direct sampling, still requires re-
peated sampling from a multivariate distribution. Similarly, we assumed that obtaining
a maximum likelihood estimate in high dimensional space would be computationally too
expensive where instant prediction is necessary.
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Figure 4.2: Performance of our method (white) against regression over all the observed
data (gray). (A) Estimate of the trajectory of fingers 3–5 from the observation
of fingers 1 and 2 (B) Estimate of the trajectory of fingers 4 and 5 from the
observation of fingers 1–3. Bars indicate standard error. *:p < 0.05. See text
for details. Figure from Thomik, Haber, and Faisal (2013).

4.4 Conclusion

We presented a method which is capable of accurately predicting the movement of miss-
ing finger joints from the remaining, in case of injury still intact, fingers. Instead of
relying on direct information such as EMG of the muscles, we decompose a large set of
movement training data into smaller segments (movement primitives) and exploit the
typical correlation patterns which are characteristic for the individual segments. We ob-
tain a probabilistic representation of large data sets during a pre-processing step which
subsequently allows us to perform movement prediction in real-time. Our method was
successfully tested by reconstructing the movement of missing fingers on a data set previ-
ously used in section 3.2.3 and we were able to show that it is significantly more accurate
than the unsegmented approach while at the same time using substantially less training
data.
Today, existent mechanisms fail to provide the necessary information throughput when

extracting brain signals to allow patients to accurately and naturalistically control a
prosthetic replacement that is as complex and versatile as the human hand. We propose
to integrate our method into the conceptual design of an improved neuroprosthetic device.
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Clusters Entire Data
Pearson Correlation 0.49 (± 0.014) 0.36 (± 0.091)
Goodness of Fit 0.25 (± 0.013) 0.14 (± 0.085)

Table 4.1: Comparison of prediction accuracy for prediction of fingers 4 and 5 when (1)
movement data is segmented and parameters are fitted over clusters and (2)
parameters are fitted over entire data set without segmentation and clustering.
Values indicate mean (± SD).

Such a device could - on top of decoding intentions from a variety of brain-machine
interfaces (BMIs) such as EMG, intra-cortical electrodes or eye-tracking (see section
2.3.2) - make use of prior information about human movement statistics to improve
control of a prosthetic device. This is particularly interesting if we further consider for
example that it may be possible to predict the movement of the fingers by only observing
the movement of shoulder and elbow or predict the behaviour of one hand by observing
the other hand.

4.5 Future Work

Despite the promising results that were captured during this project, we were hardly
able to scratch the surface and there are many possibilities for further improvements and
validation.
Here, we used a linear form of regression to predict unobserved movement behaviour.

As an alternative it would be interesting to try a non-linear approximation such as using
Gaussian processes for the prediction step.
We further suggest to extend the method presented here to other body parts. To

achieve this, relevant data sets would have to be collected in a similar way to the data
set obtained by Belić (2010). If we find other parts of the body to interact in a correlated
manner during everyday situations, we could then imagine a scenario where, for example,
the behaviour of one hand is observed while the movement of the other hand is predicted.
Similarly, we could monitor shoulder and elbow muscles and predict the behaviour of the
hand. Yet, such data sets do not seem to exist at the moment and it is an open question
whether these patterns of correlation can be observed.
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The initial aim of this project was to develop a computational method that is capable
of processing and segmenting complex and long movement time-series. We wanted to
use such a method to (1) investigate whether we can find recurring patterns (primitive
actions) in everyday movement behaviour collected from humans and (2) utilize our
findings and knowledge about human behaviour to design an improved computational
method for controlling a more naturalistic and versatile neuroprosthetic device.
During the development of our methodologies we were faced with several computational

issues. Initially, we found that none of the existing techniques for movement segmentation
and recognition were able to deal with long and high-dimensional time-series data. It
appeared that many of the methods use a single and complex probabilistic model for
computing segmentation points which complicates inference significantly. In this work,
we analysed one existing method (section 3.1) in greater detail and showed that even
after several optimisations the computations exploded both in run-time and memory
when applied to slightly more complex movement data. After thorough analyses we
therefore shifted our focus to a slightly different approach: instead of modelling all our
data with a single, complex probabilistic model, we wanted to test whether a smart
combination of simple and computationally efficient techniques can be used to perform
movement segmentation and recognition on a larger scale and more accurately than
previously done.
Resulting from our initial analyses, we developed the method presented in section 3.2;

a simple and unsupervised segmentation algorithm that relies on dimensionality reduc-
tion techniques, changepoint detection and temporal correlation. The linear run-time
properties of the method enabled us to process high-dimensional neurological data sets.
We tested our method (section 3.2.3) on artificial data and a large data set containing
over one million samples from everyday movement activities and demonstrated that it
outperforms the segmentation accuracy and computational efficiency of current state-of-
the-art techniques and is suitable for Big Data driven approaches to neuroprosthetics.
We further investigated the properties and accuracy of our method by analysing a data
set containing recordings from the reproduction of Lower Paleolithic stone tools (section
3.2.3) and demonstrated that we can accurately process complex time-series which are
recorded from naturally executed movement activities over a longer period of time.
These properties enabled us to successfully carry out the second part of this project,

during which we designed a computational concept for a novel neuroprosthetic controller.
Our research showed that until today even the most advanced prosthetics have not been
able to demonstrate the same dexterity as the human limb and are often limited to simple
grasps. We presented that one of the barriers for fitting amputees with an artificial limb
that exhibits truly naturalistic behaviour is often found in the transportation of muscle
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contraction signals from the brain to the prosthetic joint. Current techniques including
EMG, intra-cortical electrodes or even eye-tracking technologies have not yet managed
to overcome or bypass this hurdle.
Similarly to the first part, we attempted a different approach to conceptualising a

novel neuroprosthetic device which we described in section 4. Here, we exploited two
characteristics of human movement behaviour: (1) modularity, which means that complex
movement can be decomposed into simpler segments (i.e. the segments we generated
in the first part of this project) and (2) correlation structures between finger joints
in everyday movements which were discovered in previous work. We implemented an
offline pre-processing step, during which we fitted a probabilistic distribution over clusters
containing highly similar movement segments and estimated regression parameters for
reconstructing unobserved joint behaviour. We successfully demonstrated that such a
probabilistic and inference-based model allows us, by observing a subset of present and
still functional joints, to predict the movement behaviour of missing limbs accurately in
real-time. We validated our method using the data set from section 3.2.3 and showed
that by considering movement segments instead of the entire, unsegmented time-series,
our approach yields a significantly higher prediction accuracy while at the same time
requiring substantially less training data.
In this report we presented promising results that we hope open new opportunities

for further research in the areas of understanding the brain and using our knowledge
to build more intelligent machines. We believe that, even though after more than 100
years of research it may seem that we are still at the very beginning of this journey,
the combination of computing power and Big Data approaches such as presented in this
report will allow us to make much more rapid progress in the near future. We hope to
continue contributing to this fascinating research area in the future and perhaps one day
can give a truly definite answer to Daniel Wolpert’s initial question: "Why do we have a
brain?"
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6 Appendix

As part of this project, we part of this work for publication and have attached both
writings to this report. The first publication covers our work on segmentation of a large
neurological data set which we presented in chapter 3 and has been submitted to the Neu-
ral Information Processing Systems (NIPS) conference (5-8 December 2013, Lake Tahoe,
United States). The second publication presents our concept for an improved neuropros-
thetic device which we devised in chapter 4 and has been submitted for consideration
at the 6th International IEEE EMBS Neural Engineering Conference (6-8 November
2013, San Diego, California, United States). As of submission date of this report, both
publications are currently in review.
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Abstract

Many important challenges in Big Data require the analysis and segmentation
of very long, high dimensional time series - which become often computation-
ally intractable for state-of-the-art Bayesian approaches based on variational, non-
parametric or MCMC derived methods. Here we present how the simple combi-
nation of PCA, approximate Bayesian segmentation and temporal correlation pro-
cessing can achieve reliable time series segmentation outperforming high-concept
state-of-the-art algorithms when applied to real world data streams. We applied
our method, which relies on simple iterative covariance, correlation and maximum
likelihood operations to perform complex neurological time series segmentation
over millions of samples in 20 dimensions in linear time and space. Our method is
suitable for even higher dimensional data streams as performance scales near con-
stantly with the dimensionality of the time series samples. Our method enables
Big Data driven approaches to neuroprosthetics and brain-machine-interfaces to
become computationally tractable.

1 Introduction

Almost every natural or artificial phenomenon can be described as times series, such as the two
dimensional coordinates a pen follows during writing. Crucially, many of these sequences can be
decomposed into a finite set of sub-sequences which are concatenated in an order to generate the
observed data, e.g. letters in writing. This is of particular interest if their arrangement is not purely
random but follows a particular rule (such as spelling and grammar in writing) as one might be able
to infer the rule from the alignment of sub-sequences, allowing for greater understanding of the
generating process. A major interest of decomposing data into repeating sub-sequences comes from
the field of motor control where it has been suggested that the brain may generate and control com-
plex movement by combining a set of movement primitives [1, 2]. However, it is still problematic
to (1) identify the correct number and shape of the sub-sequences and (2) locate them in a noisy
data stream. These challenges are particularly important in the field of neurotechnology where the
time-series studied are often of high-dimension (21 degrees of freedom (DoF) for the hand alone,
600 and more degrees of freedom for the muscular-skeletal system) and very long (often 1 million
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and more samples). It is therefore crucial to have algorithms capable of handling both these cases
efficiently and accurately with limited resources.

Current methods can be classified as either dictionary-based or dictionary-free. Library-based ap-
proaches typically build on a dictionary of known sequences and try to identify time-warped and/or
noisy version thereof in a stream of data by first estimating potential segmentation points and then
matching the corresponding data segments with those in the library either offline [3] or online [4].
Conversely, dictionary-free approaches try to infer both segment shape and starting point directly
from the data using either simple Kalman filters [5], factorial Hidden Markov Models (HMM) [6]
or inference on a probabilistic representation of both segmentation and segment shape [7]. The in-
ference which needs to be performed in these methods makes them computationally expensive and
unlikely to scale well with increasing number of data points and dimensionality of the data.

In this paper, we show how it is possible to outperform state-of-the-art techniques, in particular for
high-dimensional and long data sequences, by using conceptually very simple and computationally
inexpensive methods. We exploit the covariance structure of the data time series, Bayesian change-
point detection and temporal correlation. We evaluate the accuracy of our method by varying the
dimensionality, noisiness and number of sub-sequences involved of an artificial data set. Subse-
quently, we apply the method to hand-movement data of people performing a series of everyday
tasks and show how a wide range of movements can be described by a smaller subset of building
blocks.

2 Proposed Method

Instead of modelling all aspects of the data set with a single model - which would make inference on
it inherently complex - we combine four different, simple and specialised methods for pre-processing
and segmentation of the data and extraction of unique segments. We use (1) Principal Component
Analysis (PCA) for data compression, (2) changepoint analysis [8] to determine potential segmenta-
tion points in the data, (3) time-series compression [9] to determine the most relevant change points
and (4) comparison of extracted segments to determine the subset of generating segments. We will
give a brief overview of the methods as well as considerations on performance and eventual changes
we made to their classic form.

2.1 Principal Component Analysis

Using PCA, we find a lower-dimensional representation of the data. This has the advantage of
removing redundant information which is beneficial both in terms of memory and computational
costs. Typically, this is chosen to be the number of principal components which account for a
set amount of the variance observed, although this approach might behave poorly for very noisy
data [10]. We find that for our database, using enough principal components to account for 90% of
the variance observed produced satisfying results (but see Results for a more detailed analysis).

2.2 Change Point Analysis

We developed a Bayesian Change Point detection algorithm, suitable for very long, high-
dimensional time series which is highly scalable for Big Data problems, as it operates with linear
complexity in time and in memory (for the number of data points). Our method is derived from an el-
egant algorithm for one-dimensional time series by Adams & MacKay [8] which scales quadratically
in computing time and memory. Briefly, the method assumes that each data point xt (t = 1, . . . , T )
in each segment Si are i.i.d. variables sampled from a probability distribution P (xt|Θi) with pa-
rameter set Θi. At every time step, we say that the most likely run-length r of the current segment
is given by

r = argmaxk(P (xt|θk) | k = 1 . . . t) (1)

where Θk is the maximum likelihood estimate of the parameters given the last k data points. We
assume that the joint distribution over run-length and observed data is given by [8]
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P (rt, x1:t) =
∑

rt−1

P (rt, rt−1, x1:t) (2)

=
∑

rt−1

P (rt, xt|rt−1, x1:t−1)P (rt−1, x1:t−1) (3)

=
∑

rt−1

P (rt|rt−1)P (xt|rt−1, x
(r)
t )P (rt−1, x1:t−1) (4)

where rt describes the current run-length and x1:t the data observed up to the time point t arises
from a multivariate Gaussian distribution. We initialised the multivariate Gaussian parameters as
follows:

µ0 = µprior (5)

Σ−1
0 = Σ−1

prior (6)

κ0 = 1 (7)

where D is the dimensionality of the input data. At each iteration the parameters are updated given
the following equations:

µ
(0)
t+1 = µprior (8)

µ
(1:t+1)
t+1 =

κt × µ(0:t)
t + xt

κt + 1
(9)

Σ
−1(0)
t+1 = Σ−1

prior (10)

Σ
−1(1:t+1)
t+1 =

κt
κt + 1

(xt − µ0)T (xt − µ0) + Σ
−1(0:t)
t (11)

κt+1 = κt + 1 (12)

where µ(1:t+1)
t+1 denotes elements 1 to t + 1 of the mean vector at time t + 1. We found that the

elegant algorithm by Adams & MacKay [8] space becomes intractable for time series in excess
of about 10,000 sample points as it keeps track of all possible run-lengths for each possible time-
step, making memory cost quadratic in the number of time-steps. We found that this can be easily
overcome by only considering the most likely run-length and dropping all other information, thus
making the memory cost linear with the number of time steps. Another performance improvement
is achieved, as we found that at time-step tn, parameters do not have to be computed for all possible
run-length r = 1 . . . t. Instead, given the final correlation lengths of movements, we can compute
parameters r over a limited time window tw � t to obtain the same results (although it is important
to choose tw carefully to avoid over-fitting the parameters - in the case of a normal distribution
this means ensuring tw > 3 × D). This can be explained by considering that the number of data
points to avoid over-fitting the sufficient statistics of the underlying distribution is constant and only
dependent on the number of free parameters it has. Adding additional data, whilst reducing the
uncertainty of our estimates as a function of the square root of the number of added observations,
will only marginally change the estimate of the maximum likelihood.This has the advantage of
making the computational cost constant in time and altering the outcome of the computation only
marginally.
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2.3 Extraction of Change Points

We assume that a change point occurs when the time series switches between generative processes,
i.e. between two different segments. The ideal behaviour of the changepoint algorithm, a linearly
increasing run-length followed by a drop to zero, is, however, rarely observed on our behavioural
data because noise and non-stationarity in the data induce uncertainties in the run-length estimate.
A typical result produced by the algorithm as shown in Fig. 1 highlights the need for additional pro-
cessing to extract the most relevant change points. Therefore we define the change points as where
the maximum likelihood run-length drops significantly, where the height of the drop is computed
according to the distance function [9]:

dist(rt−1, rt) =
|rt−1 − rt|
|rt−1|+ |rt|

(13)

which is bounded between 0 and 1. We varied the threshold above which we considered a drop
in run-length as significant and found it to be very flexible as long as it was not too close to the
extremes (i.e. 0 or 1). Typically, values between 0.5 and 0.85 would produce almost identical results.
Furthermore, we introduced a prior distribution over the duration of our movement segments, thus
limiting the frequency of changepoint appearance. This distribution is may be estimated directly
from the data generating process or from the time-series itself. Thus, a significant changepoint is
defined both in terms of maximum run-length value and time since the last changepoint was detected.
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Figure 1: Top left: 15-dimensional data set, vertical lines indicate changepoints. Bottom left:
maximum likelihood runlength as computed by changepoint algorithm. Note the irregularity due
to noise in the data and non-stationarity. Right panel: Segmentation of the data, solid line: real
segmentation, dotted line: computed segmentation.

2.4 Resampling and Comparison of Segments

We are interested in recognising similar segments that have been extracted in sequences of natural
movement. It has to be taken into account that movements can be performed at different speeds,
yet representing the same type of action. We therefore resample every segment to a default move-
ment duration and use statistical measures to calculate the similarity between two segments with
respect to their type. The statistical measures which we used include Euclidean distance, Pearson
correlation coefficient and the comparison of principal components. To assess the accuracy of these
measures we visualised the real hand data on a computer screen and compared our results based on
the statistical measures with an expert’s visual assessment of similarity between two segments. We
found that Pearson correlation coefficient yields the best results on our data sets.
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Table 1: Performance measures for proposed method on artificial data set. K is the number of
different types of segments in the input data. Values indicated are mean (± SD).

K K Extracted Correlation Coefficient

3 4.60 (± 2.19) 0.81 (± 0.24)
5 6.40 (± 1.48) 0.86 (± 0.18)
7 8.53 (± 1.94) 0.87 (± 0.18)
9 10.60 (± 2.19) 0.85 (± 0.18)
10 11.71 (± 1.84) 0.87 (± 0.17)
11 12.77 (± 1.72) 0.87 (± 0.17)
13 13.83 (± 1.21) 0.88 (± 0.15)
15 14.77 (± 1.79) 0.89 (± 0.15)

2.5 Resampling and Comparison of Segments

We are interested in recognising similar segments that have been extracted in sequences of natural
movement. It has to be taken into account that movements can be performed at different speeds,
yet representing the same type of action. We therefore resample every segment to a default move-
ment duration and use statistical measures to calculate the similarity between two segments with
respect to their type. The statistical measures which we used include Euclidean distance, Pearson
correlation coefficient and the comparison of principal components. To assess the accuracy of these
measures we visualised the real hand data on a computer screen and compared our results based on
the statistical measures with an expert’s visual assessment of similarity between two segments. We
found that Pearson correlation coefficient yields the best results on our data sets.

3 Results

We will now present the results that we obtained from two different types of data: an artificial data
set and hand-movement data of various subjects performing everyday tasks.

3.1 Artificial Data Set

We generated an artificial data set by randomly generating a set of sequences from the family of
functions defined as

f =

(
N∑

i=1

wiφ(t− ti)
)

+ ε (14)

where wi ∼ N (0, ID), ε ∼ N (0, σ2
ε ), Φ were chosen to be Gaussian basis functions, N is the

number of basis functions, D the dimensionality of the data and ti can be arbitrarily chosen to
constrain the function to a given interval. The segments generated in this way were subsequently
resampled to have a length which was sampled from U(100, 150) and aligned at random to generate
a data set. We validated our method by generating data with varying its dimensionality, number of
segments, and noise levels as well as changing all parameters of the method. During each test, all
but the parameter varied where kept constant to D = 15, K = 10, N = 5000, noise = 0%, and PCA
accuracy = 90%. We measured performance of our method by calculating the similarity between
the original and extracted segment sequence (see figure 1, right panel). This is a very strict test as
even slight errors in segment start point will negatively impact the computed accuracy, even if the
segment identity was correctly identified.

Results are shown in Fig. 2 where the markers indicate mean values, whiskers standard deviation
(SD) and grey areas values below chance level (where applicable). It should be noted that our
method is extremely robust to most variations in the data and algorithm parameters, exhibiting very
high accuracy (86.5%) and no significant decline in performance with increasing segment number
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(Fig. 2/B) or noise (Fig. 2/C). The only significant drop in performance can be observed for low-
dimensional data (Fig.2/A). We found this to be caused by the PCA step of the algorithm which
would frequently collapse low-dimensional input data onto a single dimension which in turn makes
it difficult for the changepoint algorithm to find differences in the data as its statistics become very
similar across segments. A potential workaround would be to put a lower bound on the number of
output dimensions given by the PCA step.

We further analysed how many different segments our algorithm extracts from a data set by com-
paring all segments extracted and clustering them depending on their similarity as computed from
Pearson correlation coefficient (see also section 2.5). We defined two segments to be the same if
their correlation coefficent was larger than 0.7 which we had found to be an optimal value based on
cross validation. The results are shown in Table 1 where we show the number of unique segments
estimated by our method compared to the real number of different segments in the data, as well as
the average correlation coefficient. Clearly, the average number of estimated segments in the data is
slightly higher than the real number of segments in the data. This is not particularly surprising as
any ”wrong” segment will form a cluster by itself and therefore push the estimate up. Considering
this, the algorithm performs surprisingly well as, on average, it only finds 1.2 segments more than
were present in the real data set. This has to be contrasted with the total number of segments in each
data set which was, on average, forty segments.

3.1.1 Computational Performance

We tested how well our algorithm scales with increasing number of samples and dimensions of the
input data (see Fig. 2/E and F). The figures show run times normalised to the run time of the smallest
data set (i.e. 5000 data points or 5 dimensions). As predicted in section 2.2, our method scaled
linearly in time with the number of samples in the data. The dependence on data dimensionality was
found to be almost constant, mainly thanks to the PCA step which (although it was not specified)
ensured that the data dimensionality for the changepoint algorithm was kept relatively low.
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Figure 2: (A) - (D): Influence of parameters on extraction accuracy. (A) dimensionality, (B) number
of different segments, (C) noise levels, (D) PCA accuracy. (E) - (F): Influence of number of data
points (E) and number of dimensions (F) on run time. Markers indicate mean with standard devia-
tion and the grey area represents levels of chance. If no errorbars are shown, they are smaller than
the marker. Note that the run-lengths have been normalised to the shortest run-length. See text for
details.

3.2 Neurotechnology for Kinematics in Daily Tasks

We next ran our algorithm on hand movement data collected during everyday tasks such as opening
doors, using keys, eating, drinking, etc. (17 tasks in total, [citation withheld]). The data consists of
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an 18-dimenional data stream corresponding to all joints of the wrist and hand with exception of the
distal interphalangeal (DIP) joints and was collected using a CyberGlove I (CyberGlove Systems
LLC, CA, USA). The data was recorded from seven subjects and its total length was just over six
hours, or approximately 1.7M data points. Our interest was twofold: (1) are there any movement
segments which get repeated across different tasks and (2) are these segments unique to the subject
or a general pattern of human movement? We therefore separated the data by task and ran the data
of each task individually through our algorithm. The distribution of movement length was estimated
from a set of annotated data which had been collected previously (data not shown).

The segmentation of the data resulted in 6560 segments with a mean run-length of 256 data points,
equivalent to a movement duration of 3.2 seconds. Similarly to the calculations performed on the
artificial data set, we computed the similarity between extracted segments by warping them to the
same length and calculating the Pearson correlation coefficient between them. We found that a
large proportion the segments clustered around two different actions which by visual inspection
we could classify as opening and closing of the hand. Whilst this is obviously a highly recurrent
element of everyday tasks, we noted that by increasing the threshold above which two segments were
considered the same it is possible to further differentiate between different openings and closings.
However, the large amount of segments clustered as opening or closing suggest that maybe the
Pearson correlation coefficient may not be the ideal metric for comparing real movement segments
as much of the scale information is lost. Nevertheless, this is emphasises the importance of the
grasp action in everyday life and singles this movement out as the most important to rehabilitate
after injury or stroke.

4 Conclusion

The ease with which we are today capable of collecting data from a large range of sources in real
time offers the prospect of exciting findings in a wide field of research topics. To make the most of
this data, it is, however, important to have the right tools to analyse it. Typically, this means using
algorithms which are as economical as possible both in computational and memory costs. Here, we
showed how by smartly combining a few specialised and computationally efficient algorithms it is
possible to accurately segment large data sets with a computational cost which scales linearly with
the number of data points considered and is constant with the dimensionality of the input data.
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REAL-TIME MOVEMENT PREDICTION FOR IMPROVED
CONTROL OF NEUROPROSTHETIC DEVICES

Andreas A. C. Thomik1, David Haber2 and A. Aldo Faisal1,2,3, Member IEEE

Abstract— Replacing lost hands with prosthetic devices that
offer the same functionality as natural limbs is an open chal-
lenge, as current technology is often limited to the most basic
grasps. In this work we develop a probabilistic inference-based
method that allows for improved control of neuroprosthetic
devices by observing the behaviour of the undamaged limb
to predict the most likely actions of lost limbs. Our algorithm
first automatically segments the streaming joint movement data
of intact limbs into chunks of data that belong together (e.g.
the limb motions involving a grasp) based on a database
of daily living finger movements. It then estimates which
action is currently happening to predict the movements for
the missing joints. On test data, we can demonstrate that
this two-stage approach yields statistically significantly higher
prediction accuracy for missing limb movements than linear
regression approaches that reconstruct limb movements from
their straightforward correlation structure.

I. INTRODUCTION

Neuroprosthetics offer the chance for people with a lost
limb to regain naturalistic mobility and dexterity by con-
trolling a prosthetic replacement (such as an artificial hand)
in the same way they would control their own body. Whilst
spectacular advances have been made by using direct cortical
control from both invasive [1], [2], [3], [4] and non-invasive
electrodes [5], [6], [7] as well as using other information
sources such as EMG [8], [9], [10], the amount of informa-
tion we can extract with current technology is still very low
and not suited for real-time control of prosthetic devices with
the same versatility as the natural limb [11]. This restricts
the potential use of neuroprosthetics in everyday activities
considerably and often leads to frustration and rejection of
the prosthesis by the user [12], [13], [14].

Here, we suggest to enhance the control of neuroprosthetic
devices by exploiting two aspects of natural movement: (1)
modularity, by which complex movements are a combination
of a finite set of simpler movements [15], [16]; and (2)
stereotypical patterns of correlation between joints of the
fingers during everyday tasks [17].

We base our method on a large data set of complex hand
movements which represents more than 6 hours worth of data
from different subjects performing a variety of tasks [18]. On
this data we use an algorithm which we previously developed
[19] to extract movement primitives and to generate clusters.
These allow us to accurately complement partial observations

1Department of Bioengineering, Imperial College London, SW7 2AZ
London, UK andreas.thomik10 at imperial.ac.uk

2Brain & Behaviour Lab, Dept. of Computing, Imperial College London,
SW7 2AZ London, UK david.haber09 at imperial.ac.uk

3MRC Clinical Sciences Centre, Hammersmith Hospital Campus, W12
0NN London, UK a.faisal at imperial.ac.uk

(e.g. movement of three fingers) and predict the behaviour
of the unobserved joints (e.g. remaining two fingers) in real-
time by taking into account the probabilistic structures of the
most representative clusters. We show that by considering
movement primitives (or segments) instead of the entire,
un-segmented time-series, we can significantly improve the
prediction accuracy for the movement of non-observed joints
with significantly less training data.

II. METHODS

A. Data

We use hand movement data from subjects performing
everyday tasks such as opening doors, using the phone,
eating, etc. [18] The data consists of 18-dimensional time-
series representing bending of all joints of the fingers with
exception of the distal interphalangeal joint (DIP), as well
as flexion/extension and adduction/abduction of the wrist as
captured by a CyberGlove I (CyberGlove Systems LLC, CA,
USA). Data was collected from 7 subjects and sampled at
80 Hz with a resolution of 8 bit per sensor. Before further
analysis, the data is smoothed using a second-order Savitzky-
Golay filter with a running window of 5 data points to
remove discontinuities induced by the A/D converter. Finally,
sensor values relating to wrist position are discarded to obtain
a 16-dimensional data set of pure finger movements. The
subsequent analysis is performed on the velocity values of
the data.

B. Segmentation

We segment the data from all subjects and tasks using
the method described in [19]. The algorithm first performs
PCA to reduce the data dimensionality before segmenting
the data using an efficient Bayesian changepoint detection
algorithm and a prior over movement duration. Based on
the changepoints that were computed we extract movement
segments from the original data. The segmentation algorithm
scales linearly with the number of data points and is near
constant in dimensionality of the data which allows for the
processing of very large data sets as collected from motion
capture equipment over a prolonged period of time.

C. Clustering

A sequential process is used to measure similarity between
two segments. The segments are resampled to a default
movement duration to ensure consistency in the number of
data points per segment. We then normalise all segments
to have amplitudes in the interval [−1,1] by dividing each
segment’s amplitude by its absolute maximum. Finally, the
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π1 = p(S1|x(obs)
1:t )

πN = p(S2|x(obs)
1:t )

...

π2 = p(SN |x(obs)
1:t )

x(hid)
1:t = f (x(obs)

1:t ,φi)

Fig. 1. Conceptual design of the prosthesis controller. Left hand side: A limited amount of information is observed (here, two fingers) and inference is
performed to evaluate which movement primitive most likely generated the observed data. Right hand side: The parameters of the most likely movement
primitive are used to estimate the missing dimensions and the prosthetic replacement is actuated accordingly.

similarity between clusters is obtained by computing the
maximum cross-correlation (MXC) of all possible pairs of
segments over a limited time-lag corresponding to 20% of
the segment length. This corrects for slight misalignments
of movement within the segments. We found that alternative
methods such as the Pearson correlation coefficient were less
accurate indicators of similarity as they are highly affected by
even marginal shifts in time between segments that represent
the same type of movement.

Clustering of segments is performed using an iterative
method which, starting with an arbitrary segment, finds all
other segments which are more similar than a given threshold
t and repeats this with the found segments until the cluster
converges to a stable state. Visual inspection of clustered
elements showed clear resemblance in the movement exe-
cuted. A slight drawback of this method is that it generates a
number of clusters with a single segment as they are deemed
too different from any other segment and therefore seen as
truly unique by the algorithm. The number of these unique
clusters can be regulated by t. These unique segments can be
caused by either (1) unnatural manipulation of objects or (2)
erroneous segmentation of the time-series by the algorithm
in the pre-processing step.

D. Inference

To infer which cluster a given data point may belong to,
we fit all segment clusters with a mixture of Gaussians in
order to obtain a probabilistic representation of the data. We
choose the optimal number of components for each mixture
of Gaussians using the Bayesian Information Criterion. Con-
sequently, the likelihood of the data at time t being generated
by a particular cluster Si is given by

πi = p(Si
t |xobs

1:t ) =
p(xobs

1:t |Si
t)× p(Si

t)

p(xobs
1:t )

(1)

where p(Si
t) can be estimated directly from the training

data and x1:t is the data observed so far. We use a weighted
sum of probabilities for the data points observed in the
past such that the influence of past data points decays
exponentially over time.

E. Prediction

To predict the unobserved dimensions, we fit a regression
with a linear combination of 50 Gaussian basis functions
between the observed and unobserved dimensions for each
cluster in the data set offline. Upon observing partial move-
ment behaviour, we can compute the unobserved dimensions
online and in real-time. We select the most likely cluster from
the previously computed πi distribution in a winner-takes-all
fashion and estimate the hidden trajectory on the basis of
the regression parameters fitted to that particular cluster. The
time required to predict the unobserved movement behaviour
at a given time-step is therefore only dependent on the
number of clusters considered during the prediction step.

III. RESULTS

The following section presents the results of the segmen-
tation, clustering and prediction steps of our method. We
show that by exploiting the unique characteristics of each
movement primitive cluster we are capable of predicting the
unobserved data much more precisely than by taking into
consideration the entirety of the movement data.

1) Movement Primitives: The segmentation of the data
into movement primitives by the algorithm produced a total
of 3710 primitives with an average movement duration of
3.28 seconds. Note that when a block of data is segmented,
the first and last segments are discarded as they are poten-
tially incomplete. Clustering of the movement primitives as
described in the Methods section produced 2279 clusters
when the similarity threshold was set to t = 0.8. We note
that of these clusters, a vast majority (88.85%) were singleton
clusters, i.e. segments for which the similarity with any other
segment was less than t.

To simplify the procedure of estimating the regression pa-
rameters and to limit the influence of the singleton segments,
we only consider movement primitive clusters which account
for at least 0.2% of the total number of data points collected.
This means that out of the 2279 clusters that are initially
present, only 34 (1.5% of the clusters, 25.55% of the all
data points) were used to predict the unobserved data. In Fig.
2 we show the similarity of the cluster core segments with
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Fig. 2. (A) Raw data of a subject performing 10 repetition of the same action. Vertical lines indicate segmentation points as determined by the algorithm.
(B) Similarity between the segments from (A) and the general movement primitives extracted from a larger data set. The brighter the case, the more similar
the segments are. (C) Most likely movement primitive at each moment in time. See text for details.

the segments obtained from a longer recording in which the
subject picked up and put down a bag 10 times. The raw data
and segmentation are shown in Fig. 2A. Fig. 2B shows the
similarity of the cluster centroids with the extracted segments
as given by MXC. Note that the data shown here was not
used to form the clusters against which it is being compared.
Fig. 2(C) presents the segments with the highest similarity.
The repetitive nature of the task becomes evident from the
alternating order of underlying primitives.

2) Prediction: Estimation of the unobserved data was
a two step process in which (1) the movement primitive
cluster which has most likely generated the observed data is
selected and (2) unobserved dimensions are estimated using
a regression particularly fitted to the data of that movement
primitive cluster (see Methods for details). We note that
when the most likely generating movement primitive changed
between time-step t and t + 1, we sometimes observe a
considerable change in the estimate of xhid

t and xhid
t+1. This can

be explained by the statistical nature of primitive inference
which sometimes leads to the wrong primitive being used
for prediction. We safeguarded ourselves from such crude
mistakes by fitting an exponential distribution to the absolute
change in value between two time-steps of the unobserved
data in our training set. If a jump of magnitude |x̂t− x̂t+1| or
larger had a likelihood less than 0.1%, we assumed that the
inference had failed and re-iterated the movement primitive
inference the current estimate discarded. This successfully
prevented jumps in the estimate of unobserved dimensions
whilst additionally refining the inference step for the under-
lying movement primitive.

Using this method, we tested two different scenarios (see
Fig. 3): (1) only the thumb and index (fingers 1 and 2)
were observed and the movement of middle, ring and little
finger (fingers 3-5) estimated (Fig. 3A); and (2) thumb, index
and middle finger were observed and the movement of ring
and little finger reconstructed (Fig. 3B). Over all data sets
at our disposal, we thus obtained an average R2 = 0.19
(±0.031) for the first and R2 = 0.25 (±0.023) for the latter
case (see Fig. 3, white columns). Interestingly, the Pearson
correlation coefficient (ρ) between the ground truth and the
reconstructed data on the same data set was significantly
higher than the R2 values (Fig. 3A: ρ = 0.47 (±0.013);
3B: ρ = 0.49 (±0.014)) The discrepancy between R2 and
ρ suggests that although we correctly identify the shape of
the unobserved time-series, the scaling is not perfect. This
can be understood by considering that movements can be
performed at varying speeds and the regression only takes
into account the average movement velocity.

In a second test, we compared the results from our method
with the simpler approach of estimating the movement of the
missing fingers by calculating the regression parameters over
the unsegmented data from 5 of our 7 subjects and estimating
the missing dimensions on the remaining two subjects (Fig.
3, gray columns). We find that although our novel method
only takes into account a fraction of the data available, it
performs significantly better (Student t–test, p < 0.05) than
the second approach which takes into account all the data
– this becomes particularly evident when trying to estimate
the movement of three fingers.
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Fig. 3. Performance of our method (white) against regression over all the
observed data (gray). (A) Estimate of the trajectory of fingers 3–5 from
the observation of fingers 1 and 2 (B) Estimate of the trajectory of fingers
4 and 5 from the observation of fingers 1–3. Bars indicate standard error.
*:p < 0.05. See text for details.

IV. CONCLUSIONS

In this paper we presented a method which is capable
of accurately predicting the movement of missing finger
joints from the remaining fingers. Instead of relying on direct
information such as EMG of the muscles, we decompose
training data into movement primitives and exploit the typ-
ical correlation patterns which are characteristic for those
primitives. A probabilistic representation of a large data set
containing everyday movement segments is generated during
a pre-processing step and allows for movement prediction
in real-time. We successfully tested our method by recon-
structing the movement of missing fingers on a large data
set of everyday tasks [18] and showed significantly better
performance than the un-segmented approach.

We propose to integrate this method into the conceptual
design of an improved neuroprosthetic device which on
top of decoding intention from a variety of brain-machine
interfaces (BMIs) such as EMG, intra-cortical electrodes or
eye-tracking can make use of prior information about human
movement statistics to improve the control. This would be
of particular interest if we for example consider that it may
well be possible to predict the movement of the fingers
by only observing the movement of shoulder and elbow
or the other hand, such as would be the case in a person
suffering from hand amputation. Such a prior is especially of
interest as current brain read-out mechanisms fail to provide
the necessary information throughput to allow patients to
accurately and naturalistically control a prosthetic device as
complex as the human hand.

Based on the promising results laid out in this study, we
suggest to extend the approach to different body limbs while
testing different approaches to segmentation and regression
to allow for truly naturalistic control of a prosthetic limb.
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