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Abstract

The marriage between programming and logic has been a fertile one. In particular,
since the definition of the simply typed λ-calculus, a number of type systems have been
devised with increasing expressive power.

Among this systems, Intuitionistic Type Theory (ITT) has been a popular framework
for theorem provers and programming languages. However, reasoning about equality
has always been a tricky business in ITT and related theories. In this thesis we shall
explain why this is the case, and present Observational Type Theory (OTT), a solution
to some of the problems with equality.

To bring OTT closer to the current practice of interactive theorem provers, we de-
scribe Bertus, a system featuring OTT in a setting more close to the one found in
widely used provers such as Agda and Coq. Most notably, we feature user defined
inductive and record types and a cumulative, implicit type hierarchy. Having imple-
mented part of Bertus as a Haskell program, we describe some of the implementation
issues faced.





Acknowledgements

I would like to thank Steffen van Bakel, my supervisor, who was brave enough to
believe in my project and who provided support and invaluable advice.

I would also like to thank the Haskell and Agda community on IRC, which guided
me through the strange world of types; and in particular Andrea Vezzosi and James
Deikun, with whom I entertained countless insightful discussions over the past year.
Andrea suggested Observational Type Theory as a topic of study: this thesis would not
exist without him. Before them, Tony Field introduced me to Haskell, unknowingly
filling most of my free time from that time on.

Finally, most of the work stems from the research of Conor McBride, who answered
many of my doubts through these months. I also owe him the colours.





Contents

1 Introduction 1
1.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Notation and syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Simple and not-so-simple types 4
2.1 The untyped λ-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The simply typed λ-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 The Curry-Howard correspondence . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Inductive data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Intuitionistic Type Theory 9
3.1 Extending the STLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 A Bit of History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 A simple type theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 Types are terms, some terms are types . . . . . . . . . . . . . . . . . . 10
3.3.2 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.3 Unit, Empty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.4 Bool, and dependent if . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.5 →, or dependent function . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.6 ×, or dependent product . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.7 W, or well-order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 The struggle for equality 16
4.1 Propositional equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Common extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 η-expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Uniqueness of identity proofs . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Equality reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 The observational approach 21
5.1 A simpler theory, a propositional fragment . . . . . . . . . . . . . . . . . . . . 21
5.2 Equality proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.1 Type equality, and coercions . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.2 coe, laziness, and coherence . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.3 Value-level equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Proof irrelevance and stuck coercions . . . . . . . . . . . . . . . . . . . . . . . 25

6 Bertus: the theory 26
6.1 Bidirectional type checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Base terms and types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Elaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3.1 Term vectors, telescopes, and assorted notation . . . . . . . . . . . . . 28
6.3.2 Declarations syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3.3 User defined types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3.4 Why user defined types? Why eliminators? . . . . . . . . . . . . . . . 35

6.4 Cumulative hierarchy and typical ambiguity . . . . . . . . . . . . . . . . . . . 35
6.5 Observational equality, Bertus style . . . . . . . . . . . . . . . . . . . . . . . . 37



6.5.1 The Bertus prelude, and Propositions . . . . . . . . . . . . . . . . . . . 37
6.5.2 Some OTT examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.5.3 Only one equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.5.4 Coercions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.5.5 Prop and the hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.5.6 Quotation and definitional equality . . . . . . . . . . . . . . . . . . . . 43
6.5.7 Why Prop? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Bertus: the practice 45
7.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 Term representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.2.1 Naming and substituting . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2.3 Parameterize everything! . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.3 Turning a hierarchy into some graphs . . . . . . . . . . . . . . . . . . . . . . . 53
7.4 (Web) REPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8 Evaluation 56
8.1 A type holes tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9 Future work 61

A Notation and syntax 64

B Code 66
B.1 ITT renditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.1.1 Agda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.1.2 Bertus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.2 Bertus examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.3 Bertus’ hierachy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.4 Term representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
B.5 Graph and constraints modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.5.1 Data.LGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
B.5.2 Data.Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C Addendum 75

Bibliography 77



1 | Introduction

Functional programming is in good shape. In particular the ‘well-typed’ line of work orig-
inating from Milner’s ML has been extremely fruitful, in various directions. Nowadays
functional, well-typed programming languages like Haskell or OCaml are slowly being
absorbed by the mainstream. An important related development—and in fact the origi-
nal motivator for ML’s existence—is the advancement of the practice of interactive theorem
provers.

An interactive theorem prover, or proof assistant, is a tool that lets the user develop
formal proofs with the confidence of the machine checking them for correctness. While
the effort towards a full formalisation of mathematics has been ongoing for more than
a century, theorem provers have been the first class of software whose implementation
depends directly on these theories.

In a fortunate turn of events, it was discovered that well-typed functional programming
and proving theorems in an intuitionistic logic are the same activity. Under this discipline,
the types in our programming language can be interpreted as proposition in our logic; and
the programs implementing the specification given by the types as their proofs. This fact
stimulated an active transfer of techniques and knowledge between logic and programming
language theory, in both directions.

Mathematics could provide programming with a wealth of abstractions and constructs
developed over centuries. Moreover, identifying our types with a logic lets us focus on
foundational questions regarding programming with a much more solid approach, given
the years of rigorous study of logic. Programmers, on the other hand, had already devel-
oped a number of approaches to effectively collaborate with computers, through the study
of programming languages.

In this space, we shall follow the discipline of Intuitionistic Type Theory, or Martin-Löf
Type Theory, after its inventor. First formulated in the 70s and then adjusted through a
series of revisions, it has endured as the core of many practical systems in wide use today,
and it is the most prominent instance of the proposition-as-types and proofs-as-programs
paradigm. One of the most debated subjects in this field has been regarding what notion
of equality should be exposed to the user.

The tension when studying equality in type theory springs from the fact that there is
a divide between what the user can prove equal inside the theory—what is propositionally
equal—and what the theorem prover identifies as equal in its meta-theory—what is defini-
tionally equal. If we want our system to be well behaved (mostly if we want to keep type
checking decidable) we must keep the two notions separate, with definitional equality in-
ducing propositional equality, but not the reverse. However in this scenario propositional
equality is weaker than we would like: we can only prove terms equal based on their
syntactical structure, and not based on their behaviour.

This thesis is concerned with exploring a new approach in this area, observational equal-
ity. Promising to provide a more adequate propositional equality while retaining well-
behavedness, it still is a relatively unexplored notion. We set ourselves to change that by
studying it in a setting more akin to the one found in currently available theorem provers.

1.1 Structure

Section 2 will give a brief overview of the λ-calculus, both typed and untyped. This will
give us the chance to introduce most of the concepts mentioned above rigorously, and gain
some intuition about them. An excellent introduction to types in general can be found in
Pierce (2002), although not from the perspective of theorem proving.

Section 3 will describe a set of basic construct that form a ‘baseline’ Intuitionistic Type
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Theory. The goal is to familiarise with the main concept of ITT before attacking the problem
of equality. Given the wealth of material covered the exposition is quite dense. Good
introductions can be found in Thompson (1991), Nordström et al. (1990), and Martin-Löf
(1984) himself.

Section 4 will introduce propositional equality. The properties of propositional equality
will be discussed along with its limitations. After reviewing some extensions, we will
explain why identifying definitional equality with propositional equality causes problems.

Section 5 will introduce observational equality, following closely the original exposition
by Altenkirch et al. (2007). The presentation is free-standing but glosses over the meta-
theoretic properties of OTT, focusing on the mechanisms that make it work.

Section 6 is the central part of the thesis and will describe Bertus, a system we have
developed incorporating OTT along constructs usually present in modern theorem provers.
Along the way, we discuss these additional features and their trade-offs. Section 7 will
describe an implementation implementing part of Bertus. A high level design of the
software is given, along with a few specific implementation issues.

Finally, Section 8 will asses the decisions made in designing and implementing Bertusand
the results achieved; and Section 9 will give a roadmap to bring Bertus on par and beyond
the competition.

1.2 Contributions

The contribution of this thesis is threefold:

• Provide a description of observational equality ‘in context’, to make the subject more
accessible. Considering the possibilities that OTT brings to the table, we think that
introducing it to a wider audience can only be beneficial.

• Fill in the gaps needed to make OTT work with user-defined inductive types and a
type hierarchy. We show how one notion of equality is enough, instead of separate
notions of value- and type-equality as presented in the original paper. We are able
to keep the type equalities ‘small’ while preserving subject reduction by exploiting
the fact that we work within a cumulative theory. Incidentally, we also describe a
generalised version of bidirectional type checking for user defined types.

• Provide an implementation to probe the possibilities of OTT in a more realistic set-
ting. We have implemented an ITT with user defined types but due to the limited
time constraints we were not able to complete the implementation of observational
equality. Nonetheless, we describe some interesting implementation issues faced by
the type theory implementor.

The system developed as part of this thesis, Bertus, incorporates OTT with features that
are familiar to users of existing theorem provers adopting the proofs-as-programs mantra.
The defining features of Bertus are:

Full dependent types In ITT, types are a very ‘first class’ notion and can be the result
of computation—they can depend on values, thus the name dependent types. Bertus

espouses this notion to its full consequences.

User defined data types and records Instead of forcing the user to choose from a restricted
toolbox, we let her define types for greater flexibility. We have two kinds of user
defined types: inductive data types, formed by various data constructors whose type
signatures can contain recursive occurrences of the type being defined; and records,
where we have just one data constructor, and projections to extract each each field in
said constructor.
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Consistency Our system is meant to be consistent with respect to the logic it embodies. For
this reason, we restrict recursion to structural recursion on the defined inductive types,
through the use of operators (destructors) computing on each type. Following the
types-as-propositions interpretation, each destructor expresses an induction principle
on the data type it operates on. To achieve the consistency of these operations we
make sure that our recursive data types are strictly positive.

Bidirectional type checking We take advantage of a bidirectional type inference system in
the style of Pierce & Turner (2000). This cuts down the type annotations by a consid-
erable amount in an elegant way and at a very low cost. Bidirectional type checking is
usually employed in core calculi, but in Bertus we extend the concept to user defined
types.

Type hierarchy In set theory we have to take powerset-like objects with care, if we want to
avoid paradoxes. However, the working mathematician is rarely concerned by this,
and the consistency in this regard is implicitly assumed. In the tradition of Whitehead
& Russell (1927), in Bertus we employ a type hierarchy to make sure that these size
issues are taken care of; and we employ system so that the user will be free from
thinking about the hierarchy, just like the mathematician is.

Observational equality The motivator of this thesis, Bertus incorporates a notion of ob-
servational equality, modifying the original presentation by Altenkirch et al. (2007) to
fit our more expressive system. As mentioned, we reconcile OTT with user defined
types and a type hierarchy.

Type holes When building up programs interactively, it is useful to leave parts unfinished
while exploring the current context. This is what type holes are for.

1.3 Notation and syntax

Appendix A describes the notation and syntax used in this thesis.
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2 | Simple and not-so-simple types

Well typed programs can’t go wrong.

Robin Milner

2.1 The untyped λ-calculus

Along with Turing’s machines, the earliest attempts to formalise computation lead to the
definition of the λ-calculus (Church, 1936). This early programming language encodes
computation with a minimal syntax and no ‘data’ in the traditional sense, but just functions.
Here we give a brief overview of the language, which will give the chance to introduce
concepts central to the analysis of all the following calculi. The exposition follows the one
found in Chapter 5 of Queinnec (2003).

Definition (λ-terms). Syntax of the λ-calculus: variables, abstractions, and applications.
syntax

term ::= x | λx 7→ term | (term term)
x ∈ Some enumerable set of symbols

Parenthesis will be omitted in the usual way, with application being left associative.
Abstractions roughly corresponds to functions, and their semantics is more formally

explained by the β-reduction rule.

Definition (β-reduction). β-reduction and substitution for the λ-calculus.

reduction: term term

(λx 7→ m) n m[n/x] where
y[n/x] | x = y =⇒ n
y[n/x] =⇒ y
(t m)[n/x] =⇒ (t[n/x] m[n/x])
(λx 7→ m)[n/x] =⇒ λx 7→ m
(λy 7→ m)[n/x] =⇒ λz 7→ m[z/y][n/x]

with x 6= y and z not free in m n

The care required during substituting variables for terms is to avoid name capturing.
We will use substitution in the future for other name-binding constructs assuming similar
precautions.

These few elements have a remarkable expressiveness, and are in fact Turing complete.
As a corollary, we must be able to devise a term that reduces forever (‘loops’ in imperative
terms):

(ω ω) (ω ω) · · · , where ω = λx 7→ x x

Definition (redex). A redex is a term that can be reduced.

In the untyped λ-calculus this will be the case for an application in which the first
term is an abstraction, but in general we call a term reducible if it appears to the left of a
reduction rule.

Definition (normal form). A term that contains no redexes is said to be in normal form.
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syntax

term ::= x | λx:type 7→ term | (term term)
type ::= φ | type→ type |

x ∈ Some enumerable set of symbols
φ ∈ Φ

typing: Γ ` term : type

Γ(x) = A
Γ ` x : A

Γ; x : A ` t : B
Γ ` λx:A 7→ t : B

Γ ` m : A→ B Γ ` n : A
Γ ` m n : B

Figure 1: Syntax and typing rules for the STLC. Reduction is unchanged from the untyped
λ-calculus.

Definition (normalising terms and systems). Terms that reduce in a finite number of reduction
steps to a normal form are normalising. A system in which all terms are normalising is said to
have the normalisation property, or to be normalising.

Given the reduction behaviour of (ω ω), it is clear that the untyped λ-calculus does not
have the normalisation property.

We have not presented reduction in an algorithmic way, but evaluation strategies can
be employed to reduce term systematically. Common evaluation strategies include call by
value (or strict), where arguments of abstractions are reduced before being applied to the
abstraction; and conversely call by name (or lazy), where we reduce only when we need to
do so to proceed—in other words when we have an application where the function is still
not a λ. In both these strategies we never reduce under an abstraction. For this reason a
weaker form of normalisation is used, where all abstractions are said to be in weak head
normal form even if their body is not.

2.2 The simply typed λ-calculus

A convenient way to ‘discipline’ and reason about λ-terms is to assign types to them, and
then check that the terms that we are forming make sense given our typing rules (Curry,
1934). The first most basic instance of this idea takes the name of simply typed λ-calculus
(STLC).

Definition (Simply typed λ-calculus). The syntax and typing rules for the STLC are given in
Figure 1.

Our types contain a set of type variables Φ, which might correspond to some ‘primitive’
types; and →, the type former for ‘arrow’ types, the types of functions. The language is
explicitly typed: when we bring a variable into scope with an abstraction, we declare its
type. Reduction is unchanged from the untyped λ-calculus.

In the typing rules, a context Γ is used to store the types of bound variables: ε is the
empty context, and Γ; x : A adds a variable to the context. Γ(x) extracts the type of the
rightmost occurrence of x.

This typing system takes the name of ‘simply typed lambda calculus’ (STLC), and en-
joys a number of properties. Two of them are expected in most type systems (Pierce, 2002):

Definition (Progress). A well-typed term is not stuck—it is either a variable, or it does not appear
on the left of the relation , or it can take a step according to the evaluation rules.
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Definition (Subject reduction). If a well-typed term takes a step of evaluation, then the resulting
term is also well-typed, and preserves the previous type.

However, STLC buys us much more: every well-typed term is normalising (Tait, 1967).
It is easy to see that we cannot fill the blanks if we want to give types to the non-normalising
term shown before:

(λx: ? 7→ x x) (λx: ? 7→ x x)

This makes the STLC Turing incomplete. We can recover the ability to loop by adding a
combinator that recurses:

Definition (Fixed-point combinator).

syntax

term ::= · · · b | fix x:type 7→ term

typing: Γ ` term : type

Γ; x : A ` t : A
Γ ` fix x:A 7→ t : A

reduction: Γ ` term : term

fix x:A 7→ t t[(fix x:A 7→ t)/x]

fix will deprive us of normalisation, which is a particularly bad thing if we want to use
the STLC as described in the next section.

Another important property of the STLC is the Church-Rosser property:

Definition (Church-Rosser property). A system is said to have the Church-Rosser property, or
to be confluent, if given any two reductions m and n of a given term t, there is exist a term to which
both m and n can be reduced.

Given that the STLC has the normalisation property and the Church-Rosser property,
each term has a unique normal form.

2.3 The Curry-Howard correspondence

As hinted in the introduction, it turns out that the STLC can be seen a natural deduction
system for intuitionistic propositional logic. Terms correspond to proofs, and their types
correspond to the propositions they prove. This remarkable fact is known as the Curry-
Howard correspondence, or isomorphism.

The arrow (→) type corresponds to implication. If we wish to prove that that (A →
B) → (B → C) → (A → C), all we need to do is to devise a λ-term that has the correct
type:

λ f :(A→ B) 7→ λg:(B→ C) 7→ λx:A 7→ g ( f x)

Which is known to functional programmers as function composition. Going beyond arrow
types, we can extend our bare lambda calculus with useful types to represent other logical
constructs.

Definition (The extended STLC). Figure 2 shows syntax, reduction, and typing rules for the
extended simply typed λ-calculus.

Tagged unions (or sums, or coproducts—+ here, Either in Haskell) correspond to dis-
junctions, and dually tuples (or pairs, or products—× here, tuples in Haskell) correspond
to conjunctions. This is apparent looking at the ways to construct and destruct the values
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syntax

term ::= · · ·
| 〈〉 | absurdtype term
| lefttype term | righttype term | [term, term] term
| 〈term, term〉 | fst term | snd term

type ::= · · · | Unit | Empty | term + term | type × type

reduction: term term

[m, n] (leftA t) m t
[m, n] (rightA t) n t

fst 〈m, n〉 m
snd 〈m, n〉 n

typing: Γ ` term : type

Γ ` 〈〉 : Unit
Γ ` t : Empty

Γ ` absurdA t : A

Γ ` t : A
Γ ` leftB t : A + B

Γ ` t : B
Γ ` rightA t : A + B

Γ ` m : A→ B Γ ` n : A→ C Γ ` t : A + B
Γ ` [m, n] t : C

Γ ` m : A Γ ` n : B
Γ ` 〈m, n〉 : A × B

Γ ` t : A × B
Γ ` fst t : A

Γ ` t : A × B
Γ ` snd t : B

Figure 2: Rules for the extended STLC. Only the new features are shown, all the rules and
syntax for the STLC apply here too.

inhabiting those types: for + left and right correspond to ∨ introduction, and [_, _] to ∨
elimination; for × 〈_, _〉 corresponds to ∧ introduction, fst and snd to ∧ elimination.

The trivial type Unit corresponds to the logical > (true), and dually Empty corresponds
to the logical ⊥ (false). Unit has one introduction rule (〈〉), and thus one inhabitant; and no
eliminators—we cannot gain any information from a witness of the single member of Unit.
Empty has no introduction rules, and thus no inhabitants; and one eliminator (absurd),
corresponding to the logical ex falso quodlibet.

With these rules, our STLC now looks remarkably similar in power and use to the
natural deduction we already know.

Definition (Negation). ¬A can be expressed as A→ Empty.

However, there is an important omission: there is no term of the type A+¬A (excluded
middle), or equivalently ¬¬A → A (double negation), or indeed any term with a type
equivalent to those.

This has a considerable effect on our logic and it is no coincidence, since there is no
obvious computational behaviour for laws like the excluded middle. Logics of this kind are
called intuitionistic, or constructive, and all the systems analysed will have this characteristic
since they build on the foundation of the STLC.1

As in logic, if we want to keep our system consistent, we must make sure that no closed
terms (in other words terms not under a λ) inhabit Empty. The variant of STLC presented

1There is research to give computational behaviour to classical logic, but I will not touch those subjects.
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here is indeed consistent, a result that follows from the fact that it is normalising. Going
back to our fix combinator, it is easy to see how it ruins our desire for consistency. The
following term works for every type A, including bottom:

(fix x:A 7→ x) : A

2.4 Inductive data

To make the STLC more useful as a programming language or reasoning tool it is common
to include (or let the user define) inductive data types. These comprise of a type former,
various constructors, and an eliminator (or destructor) that serves as primitive recursor.

Definition (Finite lists for the STLC). We add a List type constructor, along with an ‘empty
list’ ([]) and ‘cons cell’ (::) constructor. The eliminator for lists will be the usual folding operation
(foldr). Full rules in Figure 3.

syntax

term ::= · · · | []type | term :: term | foldr term term term
type ::= · · · | List type

reduction: term term

foldr f t []A  t
foldr f t (m :: n) f m (foldr f t n)

typing: Γ ` term : type

Γ ` []A : List A
Γ ` m : A Γ ` n : List A

Γ ` m :: n : List A

Γ ` f : A→ B→ B Γ ` m : B Γ ` n : List A
Γ ` foldr f m n : B

Figure 3: Rules for lists in the STLC.

In Section 3.3.7 we will see how to give a general account of inductive data.
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3 | Intuitionistic Type Theory

Martin-Löf’s type theory is a well
established and convenient arena in which
computational Christians are regularly fed
to logical lions.

Conor McBride

3.1 Extending the STLC

Barendregt (1991) succinctly expressed geometrically how we can add expressively to the
STLC:

λω λC

λ2 λP2

λω λPω

λ→ λP

Here λ→, in the bottom left, is the STLC. From there can move along 3 dimensions:

Terms depending on types (towards λ2) We can quantify over types in our type signa-
tures. For example, we can define a polymorphic identity function, where Type de-
notes the ‘type of types’:

(λA:Type 7→ λx:A 7→ x) : (A:Type)→ A→ A

The first and most famous instance of this idea has been System F. This form of
polymorphism and has been wildly successful, also thanks to a well known inference
algorithm for a restricted version of System F known as Hindley-Milner (Milner,
1978). Languages like Haskell and SML are based on this discipline. In Haskell the
above example would be

id :: a -> a
id x = x

Where a implicitly quantifies over a type, and will be instantiated automatically when
id is used thanks to the type inference.

Types depending on types (towards λω) We have type operators. For example we could
define a function that given types R and A forms the type that represents a value of
type A in continuation passing style:

(λR A:Type 7→ (A→ R)→ R) : Type→ Type→ Type

In Haskell we can define type operator of sorts, although we must pair them with
data constructors, to keep inference manageable:

newtype Cont r a = Cont ((a -> r) -> r)

9



Where the ‘type’ (kind in Haskell parlance) of Cont will be * -> * -> *, with *
signifying the type of types.

Types depending on terms (towards λP) Also known as ‘dependent types’, give great ex-
pressive power. For example, we can have values of whose type depend on a boolean:

(λx:Bool 7→ if x then N else R) : Bool→ Type

We cannot give an Haskell example that expresses this concept since Haskell does not
support dependent types—it would be a very different language if it did.

All the systems placed on the cube preserve the properties that make the STLC well
behaved. The one we are going to focus on, Intuitionistic Type Theory, has all of the above
additions, and thus would sit where λC sits. It will serve as the logical ‘core’ of all the
other extensions that we will present and ultimately our implementation of a similar logic.

3.2 A Bit of History

Logic frameworks and programming languages based on type theory have a long history.
Per Martin-Löf described the first version of his theory in 1971, but then revised it since the
original version was inconsistent due to its impredicativity.2 For this reason he later gave a
revised and consistent definition (Martin-Löf, 1984).

A related development is the polymorphic λ-calculus, and specifically the previously
mentioned System F, which was developed independently by Girard and Reynolds. An
overview can be found in (Reynolds, 1994). The surprising fact is that while System F is
impredicative it is still consistent and strongly normalising. Coquand & Huet (1986) further
extended this line of work with the Calculus of Constructions (CoC).

Most widely used interactive theorem provers are based on ITT. Popular ones include
Agda (Norell, 2007), Coq (The Coq Team, 2013), Epigram (McBride & McKinna, 2004a;
McBride, 2004), Isabelle (Paulson, 1990), and many others.

3.3 A simple type theory

The calculus I present follows the exposition in Thompson (1991), and is quite close to the
original formulation of Martin-Löf (1984). Agda and Bertus renditions of the presented
theory and all the examples (even the ones presented only as type signatures) are repro-
duced in Appendix B.1.

Definition (Intuitionistic Type Theory (ITT)). The syntax and reduction rules are shown in
Figure 4. The typing rules are presented piece by piece in the following sections.

3.3.1 Types are terms, some terms are types

typing: Γ ` term : term

Γ ` t : A A ∼= B
Γ ` t : B Γ ` Typel : Typel+1

The first thing to notice is that the barrier between values and types that we had in the
STLC is gone: values can appear in types, and the two are treated uniformly in the syntax.

While the usefulness of doing this will become clear soon, a consequence is that since
types can be the result of computation, deciding type equality is not immediate as in the
STLC.

2In the early version there was only one universe Type and Type : Type; see Section 3.3.1 for an explanation
on why this causes problems.
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syntax

term ::= x | Typelevel | Unit | 〈〉 | Empty | absurdterm term
| Bool | true | false | if term/x.term then term else term
| (x:term)→ term | λx:term 7→ term | (term term)
| (x:term) × term | 〈term, term〉x.term
| fst term | snd term
| W (x:term) term | termCx.term term
| rec term/x.term with term

level ∈ N

reduction: term term

if true /x.P then m else n m
if false/x.P then m else n n (λx:A 7→ m) n m[n/x] fst 〈m, n〉 m

snd 〈m, n〉 n

rec (sCx.T f )/y.P with p p s f (λt:T[s/x] 7→ rec f t/y.P with t)

Figure 4: Syntax and reduction rules for our type theory.

Definition (Definitional equality). We define definitional equality, ∼=, as the congruence rela-
tion extending . Moreover, when comparing terms syntactically we do it up to renaming of bound
names (α-renaming).

For example under this discipline we will find that

λx:A 7→ x ∼= λy:A 7→ y
(λ f :A→ A 7→ f ) (λy:A 7→ y) ∼= λquux:A 7→ quux

Types that are definitionally equal can be used interchangeably. Here the ‘conversion’
rule is not syntax directed, but it is possible to employ  to decide term equality in a
systematic way, comparing terms by reducing them to their unique normal forms first; so
that a separate conversion rule is not needed. Another thing to notice is that, considering
the need to reduce terms to decide equality, for type checking to be decidable a dependently
typed must be terminating and confluent; since every type needs to have a unique normal
form for definitional equality to be decidable.

Moreover, we specify a type hierarchy to talk about ‘large’ types: Type0 will be the type
of types inhabited by data: Bool, N, List, etc. Type1 will be the type of Type0, and so on—for
example we have true : Bool : Type0 : Type1 : · · · . Each type ‘level’ is often called a universe
in the literature. While it is possible to simplify things by having only one universe Type
with Type : Type, this plan is inconsistent for much the same reason that impredicative
naïve set theory is (Hurkens, 1995). However various techniques can be employed to lift
the burden of explicitly handling universes, as we will see in Section 6.4.

3.3.2 Contexts

context validity: Γ ` valid

ε ` valid
Γ ` A : Typel

Γ; x : A ` valid

typing: Γ ` term : term

Γ(x) = A
Γ ` x : A

11



We need to refine the notion of context to make sure that every variable appearing is
typed correctly, or that in other words each type appearing in the context is indeed a type
and not a value. In every other rule, if no premises are present, we assume the context in
the conclusion to be valid.

Then we can re-introduce the old rule to get the type of a variable for a context.

3.3.3 Unit, Empty

typing: Γ ` term : term

Γ ` Unit : Type0

Γ ` Empty : Type0

Γ ` 〈〉 : Unit
Γ ` t : Empty Γ ` A : Typel

Γ ` absurdA t : A

Nothing surprising here: Unit and Empty are unchanged from the STLC, with the added
rules to type Unit and Empty themselves, and to make sure that we are invoking absurd
over a type.

3.3.4 Bool, and dependent if

typing: Γ ` term : term

Γ ` Bool : Type0 Γ ` true : Bool Γ ` false : Bool

Γ ` t : Bool Γ : Bool ` A : Typel

Γ ` m : A[true/x] Γ ` n : A[false/x]
Γ ` if t/x.A then m else n : A[t/x]

With booleans we get the first taste of the ‘dependent’ in ‘dependent types’. While
the two introduction rules for true and false are not surprising, the rule for if is. In most
strongly typed languages we expect the branches of an if statements to be of the same type,
to preserve subject reduction, since execution could take both paths. This is a pity, since
the type system does not reflect the fact that in each branch we gain knowledge on the
term we are branching on. Which means that programs along the lines of

if null xs then head xs else 0

are a necessary, well-typed, danger.
However, in a more expressive system, we can do better: the branches’ type can depend

on the value of the scrutinised boolean. This is what the typing rule expresses: the user
provides a type A ranging over an x representing the boolean we are operating the if switch
with, and each branch is type checked against A with the updated knowledge of the value
of x.
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3.3.5 →, or dependent function

typing: Γ ` term : term

Γ ` A : Typel1 Γ; x : A ` B : Typel2

Γ ` (x:A)→ B : Typel1tl2

Γ; x : A ` t : B
Γ ` λx:A 7→ t : (x:A)→ B

Γ ` m : (x:A)→ B Γ ` n : A
Γ ` m n : B[n/x]

Dependent functions are one of the two key features that characterise dependent types—
the other being dependent products. With dependent functions, the result type can depend
on the value of the argument. This feature, together with the fact that the result type might
be a type itself, brings a lot of interesting possibilities. In the introduction rule, the return
type is type checked in a context with an abstracted variable of domain’s type; and in the
elimination rule the actual argument is substituted in the return type. Keeping the corre-
spondence with logic alive, dependent functions are much like universal quantifiers (∀) in
logic.

For example, assuming that we have lists and natural numbers in our language, using
dependent functions we can write functions of types

length : (A:Type0)→ List A→N

_>_ : N→N→ Type0
head : (A:Type0)→ (l:List A)→ length A l > 0→ A

length is the usual polymorphic length function. _>_ is a function that takes two
naturals and returns a type: if the lhs is greater then the rhs, Unit is returned, Empty
otherwise. This way, we can express a ‘non-emptiness’ condition in head, by including a
proof that the length of the list argument is non-zero. This allows us to rule out the empty
list case by invoking absurd in length, so that we can safely return the first element.

Finally, we need to make sure that the type hierarchy is respected, which is the reason
why a type formed by → will live in the least upper bound of the levels of argument and
return type.

3.3.6 ×, or dependent product

typing: Γ ` term : term

Γ ` A : Typel1 Γ; x : A ` B : Typel2

Γ ` (x:A) × B : Typel1tl2

Γ ` m : A Γ ` n : B[m/x]
Γ ` 〈m, n〉x.B : (x:A) × B

Γ ` t : (x:A) × B
Γ ` fst t : A

Γ ` snd t : B[fst t/x]

If dependent functions are a generalisation of → in the STLC, dependent products are
a generalisation of × in the STLC. The improvement is that the second element’s type
can depend on the value of the first element. The correspondence with logic is through
the existential quantifier: ∃x ∈ N.even(x) can be expressed as (x:N) × even x. The first
element will be a number, and the second evidence that the number is even. This highlights
the fact that we are working in a constructive logic: if we have an existence proof, we
can always ask for a witness. This means, for instance, that ¬∀¬ is not equivalent to ∃.
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Additionally, we need to specify the type of the second element (ranging over the first
element) explicitly when using 〈_, _〉.

Another perhaps more ‘dependent’ application of products, paired with Bool, is to offer
choice between different types. For example we can easily recover disjunctions:

_∨_ : Type0 → Type0 → Type0
A ∨ B 7→ (x:Bool) × if x then A else B

case : (A B C:Type0)→ (A→ C)→ (B→ C)→ A ∨ B→ C
case A B C f g x 7→
(if fst x/b.(if b then A else B) then f else g) (snd x)

3.3.7 W, or well-order

typing: Γ ` term : term

Γ ` A : Typel1 Γ; x : A ` B : Typel2

Γ ` W (x:A) B : Typel1tl2

Γ ` t : A Γ ` f : B[t/x]→ W (x:A) B
Γ ` tCx.B f : W (x:A) B

Γ ` u : W (x:S) T Γ; w : W (x:S) T ` P : Typel

Γ ` p : (s:S)→ ( f :T[s/x]→ W (x:S) T)→ ((t:T[s/x])→ P[ f t/w])→ P[ f /w]

Γ ` rec u/w.P with p : P[u/w]

Finally, the well-order type, or in short W-type, which will let us represent inductive
data in a general way. We can form ‘nodes’ of the shape

tCx.B f : W (x:A) B

where t is of type A and is the data present in the node, and f specifies a ‘child’ of the
node for each member of B[t/x]. The rec with acts as an induction principle on W, given
a predicate and a function dealing with the inductive case—we will gain more intuition
about inductive data in Section 6.3.3.

For example, if we want to form natural numbers, we can take

Tr : Bool→ Type0
Tr b 7→ if b thenUnit elseEmpty

N : Type0
N 7→ W (b:Bool) (Tr b)

Each node will contain a boolean. If true, the number is non-zero, and we will have one
child representing its predecessor, given that Tr will return Unit. If false, the number is zero,
and we will have no predecessors (children), given the Empty:

zero : N

zero 7→ falseC (λx 7→ absurdN x)

suc : N→N

suc x 7→ trueC (λ_ 7→ x)
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And with a bit of effort, we can recover addition:

plus : N→N→N

plus x y 7→
rec x/b.N
with λb 7→

if b/b′.((Tr b′ →N)→ (Tr b′ →N)→N)
then (λ_ f 7→ suc ( f 〈〉)) else (λ_ _ 7→ y)

Note how we explicitly have to type the branches to make them match with the definition of
N. This gives a taste of the clumsiness of W-types but not the whole story. Well-orders are
inadequate not only because they are verbose, but also because they face deeper problems
due to the weakness of the notion of equality present in most type theories, which we
will present in the next section (Dybjer, 1997). The ‘better’ equality we will present in
Section 5 helps but does not fully resolve these issues.3 For this reasons W-types have
remained nothing more than a reasoning tool, and practical systems must implement more
manageable ways to represent data.

3See http://www.e-pig.org/epilogue/?p=324, which concludes with ‘W-types are a powerful conceptual
tool, but they’re no basis for an implementation of recursive data types in decidable type theories.’
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4 | The struggle for equality

Half of my time spent doing research
involves thinking up clever schemes to
avoid needing functional extensionality.

@larrytheliquid

In the previous section we learnt how a type checker for ITT needs a notion of definitional
equality. Beyond this meta-theoretic notion, in this section we will explore the ways of
expressing equality inside the theory, as a reasoning tool available to the user. This area is
the main concern of this thesis, and in general a very active research topic, since we do not
have a fully satisfactory solution, yet. As in the previous section, everything presented is
formalised in Agda in Appendix B.1.1.

4.1 Propositional equality

Definition (Propositional equality). The syntax, reduction, and typing rules for propositional
equality and related constructs are defined as:

syntax

term ::= · · ·
| = term term term | refl term
| =-elim term term term

reduction: term term

=-elim P (refl m) n n

typing: Γ ` term : term

Γ ` A : Typel Γ ` m : A Γ ` n : A
Γ ` = A m n : Typel

Γ ` m : A m ∼= n
Γ ` refl m : = A m n

Γ ` P : (x y:A)→ (q:= A x y)→ Typel
Γ ` q : = A m n Γ ` p : P m m (refl m)

Γ ` =-elim P q p : P m n q

To express equality between two terms inside ITT, the obvious way to do so is to have
equality to be a type. Here we present what has survived as the dominating form of
equality in systems based on ITT up since Martin-Löf (1984) up to the present day.

Our type former is =, which given a type relates equal terms of that type. = has one
introduction rule, refl, which introduces an equality between definitionally equal terms—a
proof by reflexivity.

Finally, we have one eliminator for = , =-elim (also known as ‘J axiom’ in the literature).
=-elim P q p takes

• P, a predicate working with two terms of a certain type (say A) and a proof of their
equality;

• q, a proof that two terms in A (say m and n) are equal;

• and p, an inhabitant of P applied to m twice, plus the trivial proof by reflexivity
showing that m is equal to itself.

Given these ingredients, =-elim returns a member of P applied to m, n, and q. In other
words =-elim takes a witness that P works with definitionally equal terms, and returns a
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witness of P working with propositionally equal terms. Given its reduction rules, invoca-
tions of =-elim will vanish when the equality proofs will reduce to invocations to reflex-
ivity, at which point the arguments must be definitionally equal, and thus the provided
P m m (refl m) can be returned. This means that =-elim will not compute with hypothetical
proofs, which makes sense given that they might be false.

While the =-elim rule is slightly convoluted, we can derive many more ‘friendly’ rules
from it, for example a more obvious ‘substitution’ rule, that replaces equal for equal in
predicates:

subst : (A:Type)→ (P:A→ Type)→ (x y:A)→ = A x y→ P x → P y
subst A P x y q p 7→ =-elim (λx y q 7→ P y) p q

Once we have subst, we can easily prove more familiar laws regarding equality, such as
symmetry, transitivity, congruence laws, etc.4

4.2 Common extensions

Our definitional and propositional equalities can be enhanced in various ways. Obviously if
we extend the definitional equality we are also automatically extend propositional equality,
given how refl works.

4.2.1 η-expansion

A simple extension to our definitional equality is achieved by η-expansion. Given an ab-
stract variable f : A → B the aim is to have that f ∼= λx:A 7→ f x. We can achieve this
by ‘expanding’ terms depending on their types, a process known as quotation—a term bor-
rowed from the practice of normalisation by evaluation, where we embed terms in some host
language with an existing notion of computation, and then reify them back into terms,
which will ‘smooth out’ differences like the one above (Abel et al. , 2007).

The same concept applies to ×, where we expand each inhabitant reconstructing it by
getting its projections, so that x ∼= 〈fst x, snd x〉. Similarly, all one inhabitants of Unit and
all zero inhabitants of Empty can be considered equal. Quotation can be performed in a
type-directed way, as we will witness in Section 6.5.6.

Definition (Congruence and η-laws). To justify quotation in our type system we add a congru-
ence law for abstractions and a similar law for products, plus the fact that all elements of Unit or
Empty are equal.

definitional equality: Γ ` m ∼= n : term

Γ; y : A ` f x ∼= g x : B[y/x]
Γ ` f ∼= g : (x:A)→ B

Γ ` 〈fst m, snd m〉 ∼= 〈fst n, snd n〉 : (x:A) × B
Γ ` m ∼= n : (x:A) × B

Γ ` m : Unit Γ ` n : Unit
Γ ` m ∼= n : Unit

Γ ` m : Empty Γ ` n : Empty
Γ ` m ∼= n : Empty

4.2.2 Uniqueness of identity proofs

Another common but controversial addition to propositional equality is the K axiom, which
essentially states that all equality proofs are by reflexivity.

Definition (K axiom).

4For definitions of these functions, refer to Appendix B.1.
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typing: Γ ` m ∼= n : term

Γ ` P : (x:A)→ = A x x→ Type
Γ ` t : A Γ ` p : P t (refl t) Γ ` q : t=At

Γ ` K P t p q : P t q

Hofmann & Streicher (1994) showed that K is not derivable from =-elim, and McBride
& McKinna (2004a) showed that it is needed to implement ‘dependent pattern matching’,
as first proposed by Coquand (1992).5 Thus, K is derivable in the systems that implement
dependent pattern matching, such as Epigram and Agda; but for example not in Coq.

K is controversial mainly because it is at odds with equalities that include computa-
tional content, most notably Voevodsky’s Univalent Foundations, which feature a univalence
axiom that identifies isomorphisms between types with propositional equality. For example
we would have two isomorphisms, and thus two equalities, between Bool and Bool, corre-
sponding to the two permutations—one is the identity, and one swaps the elements. Given
this, K and univalence are inconsistent, and thus a form of dependent pattern matching
that does not imply K is subject of research.6

4.3 Limitations

Propositional equality as described is quite restricted when reasoning about equality be-
yond the term structure, which is what definitional equality gives us (extensions notwith-
standing).

Definition (Extensional equality). Given two functions f and g of type A→ B, they are are said
to be extensionally equal if

(x:A)→ = B ( f x) (g x)

The problem is best exemplified by function extensionality. In mathematics, we would
expect to be able to treat functions that give equal output for equal input as equal. When
reasoning in a mechanised framework we ought to be able to do the same: in the end,
without considering the operational behaviour, all functions equal extensionally are going
to be replaceable with one another.

However in ITT this is not the case, or in other words with the tools we have there is no
closed term of type

ext : (A B:Type)→ ( f g:A→ B)→ ((x:A)→ = B ( f x) (g x))→ = (A→ B) f g

To see why this is the case, consider the functions

λx 7→ 0 + x and λx 7→ x + 0

where + is defined by recursion on the first argument, gradually destructing it to build up
successors of the second argument. The two functions are clearly extensionally equal, and
we can in fact prove that

(x:N)→ =N (0 + x) (x + 0)

By induction on N applied to x. However, the two functions are not definitionally equal,
and thus we will not be able to get rid of the quantification.

5See Section 9 for more on dependent pattern matching.
6More information about univalence can be found at http://www.math.ias.edu/~vladimir/Site3/

Univalent_Foundations.html.
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For the reasons given above, theories that offer a propositional equality similar to what
we presented are called intensional, as opposed to extensional. Most systems widely used
today (such as Agda, Coq, and Epigram) are of the former kind.

This is quite an annoyance that often makes reasoning awkward or impossible to exe-
cute. For example, we might want to represent terms of some language in Agda and give
their denotation by embedding them in Agda—if we had λ-terms, functions will be Agda
functions, application will be Agda’s function application, and so on. Then we would like
to perform optimisation passes on the terms, and verify that they are sound by proving
that the denotation of the optimised version is equal to the denotation of the starting term.

But if the embedding uses functions—and it probably will—we are stuck with an equal-
ity that identifies as equal only syntactically equal functions! Since the point of optimising
is about preserving the denotational but changing the operational behaviour of terms, our
equality falls short of our needs. Moreover, the problem extends to other fields beyond
functions, such as bisimulation between processes specified by coinduction, or in general
proving equivalences based on the behaviour of a term.

4.4 Equality reflection

One way to ‘solve’ this problem is by identifying propositional equality with definitional
equality.

Definition (Equality reflection).

typing: Γ ` term : term

Γ ` q : = A m n
Γ ` m ∼= n : A

The equality reflection rule is a very different rule from the ones we saw up to now: it
links a typing judgement internal to the type theory to a meta-theoretic judgement that the
type checker uses to work with terms. It is easy to see the dangerous consequences that
this causes:

• The rule is not syntax directed, and the type checker is presumably expected to come
up with equality proofs when needed.

• More worryingly, type checking becomes undecidable also because computing under
false assumptions becomes unsafe, since we derive any equality proof and then use
equality reflection and the conversion rule to have terms of any type.

Given these facts theories employing equality reflection, like NuPRL (Constable & the
PRL Group, 1986), carry the derivations that gave rise to each typing judgement to keep
the systems manageable.

For all its faults, equality reflection does allow us to prove extensionality, using the
extensions given in Section 4.2. Assuming that Γ contains

A, B : Type; f , g : A→ B; q : (x:A)→ f x=g x

We can then derive

Γ; x : A ` q : = A ( f x) (g x)
equality reflection

Γ; x : A ` f x ∼= g x : B
congruence for λs

Γ ` (λx 7→ f x) ∼= (λx 7→ g x) : A→ B
η-law for λ

Γ ` f ∼= g : A→ B
refl

Γ ` refl f : = (A→ B) f g
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For this reason, theories employing equality reflection are often grouped under the name of
Extensional Type Theory (ETT). Now, the question is: do we need to give up well-behavedness
of our theory to gain extensionality?
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5 | The observational approach

A recent development by Altenkirch et al. (2007), Observational Type Theory (OTT), promises
to keep the well behavedness of ITT while being able to gain many useful equality proofs,7

including function extensionality. The main idea is have equalities to express structural
properties of the equated terms, instead of blindly comparing the syntax structure. In
the case of functions, this will correspond to extensionality, in the case of products it will
correspond to having equal projections, and so on. Moreover, we are given a way to coerce
values from A to B, if we can prove A equal to B, following similar principles to the ones
described above. Here we give an exposition which follows closely the original paper.

5.1 A simpler theory, a propositional fragment

Definition (OTT’s simple theory, with propositions).

syntax

Typel is replaced by Type.

term ::= · · · | JpropK | If term Then term Else term
prop ::= ⊥ | > | prop ∧ prop | ∀x:term. prop

reduction: term term

If true Then A Else B A
If falseThen A Else B B

typing: Γ ` term : term

Γ ` P : Prop
Γ ` JPK : Type

Γ ` t : Bool Γ ` A : Type Γ ` B : Type
Γ ` If t Then A Else B : Type

propositions: Γ ` prop : Prop

Γ ` > : Prop
Γ ` ⊥ : Prop

Γ ` P : Prop Γ ` Q : Prop
Γ ` P ∧ Q : Prop

Γ ` A : Type Γ; x : A ` P : Prop
Γ ` ∀x:A. P : Prop

Our foundation will be a type theory like the one of Section 3, with only one level:
Type0. In this context we will drop the 0 and call Type0 Type. Moreover, since the old
if_then_else was able to return types thanks to the hierarchy (which is gone), we need to
reintroduce an ad-hoc conditional for types, where the reduction rule is the obvious one.

However, we have an addition: a universe of propositions, Prop.8 Prop isolates a fragment
of types at large, and indeed we can ‘inject’ any Prop back in Type with J_K.

Definition (Proposition decoding).

proposition decoding: JtermK term

J⊥K Empty
J>K Unit

J P ∧ Q K JPK × JQK
J∀x:A. PK (x:A)→ JPK

7It is suspected that OTT gains all the equality proofs of ETT, but no proof exists yet.
8Note that we do not need syntax for the type of props, Prop, since the user cannot abstract over them. In

fact, we do not not need syntax for Type either, for the same reason.
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Propositions are what we call the types of proofs, or types whose inhabitants contain no
‘data’, much like Unit. Types of these kind are called irrelevant. Irrelevance can be exploited
in various ways—we can identify all equivalent proportions as definitionally equal equal,
as we will see later; and erase all the top level propositions when compiling.

Why did we choose what we have in Prop? Given the above criteria, > obviously fits
the bill, since it has one element. A pair of propositions P ∧ Q still won’t get us data, since
if they both have one element the only possible pair is the one formed by said elements.
Finally, if P is a proposition and we have ∀x:A. P, the decoding will be a constant function
for propositional content. The only threat is ⊥, by which we can fabricate anything we
want: however if we are consistent there will be no closed term of type ⊥ at, which is
enough regarding proof erasure and term equality.

As an example of types that are not propositional, consider Booleans, which are the
quintessential ‘relevant’ data, since they are often used to decide the execution path of a
program through if_then_else_ constructs.

5.2 Equality proofs

Definition (Equality proofs and related operations).
syntax

term ::= · · · | coe term term term term | coh term term term term
prop ::= · · · | term = term | (term:term) = (term:term)

typing: Γ ` term : term

Γ ` P : JA = BK Γ ` t : A
Γ ` coe A B P t : B

Γ ` P : JA = BK Γ ` t : A
Γ ` coh A B P t : J(t:A) = (coe A B P t:B)K

propositions: Γ ` prop : Prop

Γ ` A : Type Γ ` B : Type
Γ ` A = B : Prop

Γ ` A : Type Γ ` m : A
Γ ` B : Type Γ ` n : B
Γ ` (m:A) = (n:B) : Prop

While isolating a propositional universe as presented can be a useful exercises on its
own, what we are really after is a useful notion of equality. In OTT we want to maintain that
things judged to be equal are still always replaceable for one another with no additional
changes. Note that this is not the same as saying that they are definitionally equal, since as
we saw extensionally equal functions, while satisfying the above requirement, are not.

Towards this goal we introduce two equality constructs in Prop—the fact that they are
in Prop indicates that they indeed have no computational content. The first construct, _ = _,
relates types, the second, (_:_) = (_:_), relates values. The value-level equality is different
from our old propositional equality: instead of ranging over only one type, we might form
equalities between values of different types—the usefulness of this construct will be clear
soon. In the literature this equality is known as ‘heterogeneous’ or ‘John Major’, since

John Major’s ‘classless society’ widened people’s aspirations to equality, but
also the gap between rich and poor. After all, aspiring to be equal to others
than oneself is the politics of envy. In much the same way, (_:_) = (_:_) forms
equations between members of any type, but they cannot be treated as equals
(ie substituted) unless they are of the same type. Just as before, each thing is
only equal to itself. (McBride, 1999).
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Correspondingly, at the term level, coe (‘coerce’) lets us transport values between equal
types; and coh (‘coherence’) guarantees that coe respects the value-level equality, or in
other words that it really has no computational component. If we transport m : A to n : B,
m and n will still be the same.

Before introducing the core machinery of OTT work, let us distinguish between canoni-
cal and neutral terms and types.

Definition (Canonical and neutral terms and types). In a type theory, neutral terms are those
formed by an abstracted variable or by an eliminator (including function application). Everything
else is canonical.

In the current system, data constructors (〈〉, true, false, λx:A 7→ t, ...) will be canonical, the
rest neutral. Correspondingly, canonical types are those arising from the ground types (Empty, Unit,
Bool) and the three type formers (→, ×, W). Neutral types are those formed by If_Then_Else_.

Definition (Canonicity). If in a system all canonical types are inhabited by canonical terms the
system is said to have the canonicity property.

The current system, and well-behaved systems in general, has the canonicity property.
Another consequence of normalisation is that all closed terms will reduce to a canonical
term.

5.2.1 Type equality, and coercions

The plan is to decompose type-level equalities between canonical types into decodable
propositions containing equalities regarding the subtypes. So if are equating two product
types, the equality will reduce to two subequalities regarding the first and second type.
Then, we can coerce to transport values between equal types. Following the subequalities,
coe will proceed recursively on the subterms.

This interplay between the canonicity of equated types, type equalities, and coe, ensures
that invocations of coe will vanish when we have evidence of the structural equality of
the types we are transporting terms across. If the type is neutral, the equality will not
reduce and thus coe will not reduce either. If we come across an equality between different
canonical types, then we reduce the equality to bottom, thus making sure that no such
proof can exist, and providing an ‘escape hatch’ in coe.

Definition (Type equalities reduction, and coercions). Figure 5 illustrates the rules to reduce
equalities and to coerce terms. We use a let syntax for legibility.

For ground types, the proof is the trivial element, and coe is the identity. For Unit, we
can do better: we return its only member without matching on the term. For the three type
binders the choices we make in the type equality are dictated by the desire of writing the
coe in a natural way.
× is the easiest case: we decompose the proof into proofs that the first element’s types

are equal (A1 = A2), and a proof that given equal values in the first element, the types of
the second elements are equal too (∀x1:A1. ∀x2:A2. (x1:A1) = (x2:A2) ⇒ B1[x1] = B2[x2]).9

This also explains the need for heterogeneous equality, since in the second proof we need
to equate terms of possibly different types. In the respective coe case, since the types are
canonical, we know at this point that the proof of equality is a pair of the shape described
above. Thus, we can immediately coerce the first element of the pair using the first element
of the proof, and then instantiate the second element of the proof with the two first elements
and a proof by coherence of their equality, since we know that the types are equal.

9We are using⇒ to indicate a ∀ where we discard the quantified value. We write B1[x1] to indicate that the
x1 in B1 is re-bound to the x1 quantified by the ∀, and similarly for x2 and B2.
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equality reduction: prop prop

Empty = Empty  >
Unit = Unit  >
Bool = Bool  >

(x1:A1) × B1 = (x2:A2) × A2  
A1 = A2 ∧ ∀x1:A1. ∀x2:A2. (x1:A1) = (x2:A2)⇒ B1[x1] = B2[x2]

(x1:A1)→ B1 = (x2:A2)→ B2  · · ·
W (x1:A1) B1 = W (x2:A2) B2  · · ·

A = B  ⊥ if A and B are canonical.

reduction term term

coe Empty Empty Q t  t
coe Unit Unit Q t  〈〉
coe Bool Bool Q true  true
coe Bool Bool Q false false
coe ((x1:A1) × B1) ((x2:A2) × B2) Q t1  

let m1 7→ fst t1 : A1
n1 7→ snd t1 : B1[m1/x1]
QA 7→ fst Q : A1 = A2
m2 7→ coe A1 A2 QA m1 : A2
QB 7→ (snd Q) m1 m2 (coh A1 A2 QA m1) : JB1[m1/x1] = B2[m2/x2]K
n2 7→ coe B1[m1/x1] B2[m2/x2] QB n1 : B2[m2/x2]

in 〈m2, n2〉
coe ((x1:A1)→ B1) ((x2:A2)→ B2) Q t  · · ·
coe (W (x1:A1) B1) (W (x2:A2) B2) Q t  · · ·
coe A B Q t  absurdB Q if A and B are canonical.

Figure 5: Reducing type equalities, and using them when coercing.

The cases for the other binders are omitted for brevity, but they follow the same princi-
ple with some twists to make coe work with the generated proofs; the reader can refer to
the paper for details.

5.2.2 coe, laziness, and coherence

It is important to notice that the reduction rules for coe are never obstructed by the structure
of the proofs. With the exception of comparisons between different canonical types we
never ‘pattern match’ on the proof pairs, but always look at the projections. This means
that, as long as we are consistent, and thus as long as we don’t have ⊥-inducing proofs, we
can add propositional axioms for equality and coe will still compute. Thus, we can take
coh as axiomatic, and we can add back familiar useful equality rules:

typing: Γ ` term : term

Γ ` t : A
Γ ` refl t : J(t:A) = (t:A)K

Γ ` A : Type Γ; x : A ` B : Type
Γ ` R (x:A) B : (y z:A)→ J(y:A) = (z:A)⇒ B[y/x] = B[z/x]K
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refl is the equivalent of the reflexivity rule in propositional equality, and R asserts that if
we have a we have a Type abstracting over a value we can substitute equal for equal—this
lets us recover subst. Note that while we need to provide ad-hoc rules in the restricted,
non-hierarchical theory that we have, if our theory supports abstraction over Types we can
easily add these axioms as top-level abstracted variables.

5.2.3 Value-level equality

Definition (Value-level equality).

equality reduction: prop prop

( t1 : Empty ) = ( t2 : Empty ) >
( t1 : Unit ) = ( t2 : Unit ) >
( true : Bool ) = ( true : Bool ) >
( false : Bool ) = ( false : Bool ) >
( true : Bool ) = ( false : Bool ) ⊥
( false : Bool ) = ( true : Bool ) ⊥
( t1 : (A1:x1) × B1 ) = ( t2 : (A2:x2) × B2 ) 

(fst t1:A1) = (fst t2:A2) ∧ (snd t1:B1[fst t1/x1]) = (snd t2:B2[fst t2/x2])
( f1 : (A1:x1)→ B1) = ( f2 : (A2:x2)→ B2) 
∀x1:A1. ∀x2:A2. (x1:A1) = (x2:A2)⇒ ( f1 x1:B1[x1]) = ( f2 x2:B2[x2])

(t1C f1 : W (A1:x1) B1 ) = (t1C f1 : W (A2:x2) B2 ) · · ·
( t1 : A1 ) = ( t2 : A2 ) ⊥ if A1 and A2 are canonical.

As with type-level equality, we want value-level equality to reduce based on the struc-
ture of the compared terms. When matching propositional data, such as Empty and Unit,
we automatically return the trivial type, since if a type has zero or one members, all mem-
bers will be equal. When matching on data-bearing types, such as Bool, we check that such
data matches, and return bottom otherwise. When matching on records and functions, we
rebuild the records to achieve η-expansion, and relate functions if they are extensionally
equal—exactly what we wanted. The case for W is omitted but unsurprising, checking that
equal data in the nodes will bring equal children.

5.3 Proof irrelevance and stuck coercions

The last effort is required to make sure that proofs (members of Prop) are irrelevant. Since
they are devoid of computational content, we would like to identify all equivalent propo-
sitions as the same, in a similar way as we identified all Empty and all Unit as the same in
section 4.2.1.

Thus we will have a quotation that will not only perform η-expansion, but will also
identify and mark proofs that could not be decoded (that is, equalities on neutral types).
Then, when comparing terms, marked proofs will be considered equal without analysing
their contents, thus gaining irrelevance.

Moreover we can safely advance ‘stuck’ coercions between non-canonical but defini-
tionally equal types. Consider for example

coe (If b Then N ElseBool) (If b Then N ElseBool) x

Where b and x are abstracted variables. This coe will not advance, since the types are not
canonical. However they are definitionally equal, and thus we can safely remove the coerce
and return x as it is.
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6 | Bertus: the theory

The construction itself is an art, its
application to the world an evil parasite.

Luitzen Egbertus Jan ‘Bertus’ Brouwer

Bertus is an interactive theorem prover developed as part of this thesis. The plan is to
present a core language which would be capable of serving as the basis for a more feature-
ful system, while still presenting interesting features and more importantly observational
equality.

We will first present the features of the system, along with motivations and trade-offs
for the design decisions made. Then we describe the implementation we have developed
in Section 7. For an overview of the features of Bertus, see Section 1.2, here we present
them one by one. The exception is type holes, which we do not describe holes rigorously,
but provide more information about them in Section 8.1.

Note that in this section we will present Bertus terms in a fancy LATEX dress to keep
up with the presentation, but every term, reduced to its concrete syntax (which we will
present in Section 7.1), is a valid Bertus term accepted by Bertus the software, and not
only Bertus the theory. Appendix B.2 displays most of the terms in this section in their
concrete syntax.

6.1 Bidirectional type checking

We start by describing bidirectional type checking since it calls for fairly different typing
rules that what we have seen up to now. The idea is to have two kinds of terms: terms for
which a type can always be inferred, and terms that need to be checked against a type. A
nice observation is that this duality is in correspondence with the notion of canonical and
neutral terms: neutral terms (abstracted or defined variables, function application, record
projections, primitive recursors, etc.) infer types, canonical terms (abstractions, record/data
types data constructors, etc.) need to be checked.

To introduce the concept and notation, we will revisit the STLC in a bidirectional style.
The presentation follows Löh et al. (2010). The syntax for our bidirectional STLC is the
same as the untyped λ-calculus, but with an extra construct to annotate terms explicitly—
this will be necessary when dealing with top-level canonical terms. The types are the same
as those found in the normal STLC.

Definition (Syntax for the annotated λ-calculus).

syntax

term ::= x | λx 7→ term | (term term) | (term : type)

We will have two kinds of typing judgements: inference and checking. Γ ` t ⇑ A indicates
that t infers the type A, while Γ ` t ⇓ A can be checked against type A. The arrows indicate
the direction of the type checking—inference pushes types up, checking propagates types
down.

The type of variables in context is inferred. The type of applications and annotated
terms is inferred too, propagating types down the applied and annotated term, respectively.
Abstractions are checked. Finally, we have a rule to check the type of an inferrable term.

Definition (Bidirectional type checking for the STLC).
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typing: Γ ` term m term

Γ(x) = A
Γ ` x ⇑ A

Γ; x : A ` t : B
Γ ` λx 7→ t ⇓ (x:A)→ B

Γ ` m ⇑ A→ B Γ ` n ⇓ A
Γ ` m n : B

Γ ` t ⇓ A
Γ ` t : A ⇑ A

Γ ` t ⇑ A
Γ ` t ⇓ A

For example, if we wanted to type function composition (in this case for naturals), we
would have to annotate the term:

comp : (N→N)→ (N→N)→N→N

comp f g x 7→ f (g x)

But we would not have to annotate functions passed to it, since the type would be propa-
gated to the arguments:

comp (λx 7→ x + 3) (λx 7→ x ∗ 4) 42

6.2 Base terms and types

Let us begin by describing the primitives available without the user defining any data types,
and without equality. The way we handle variables and substitution is left unspecified, and
explained in section 7.2, along with other implementation issues. We are also going to give
an account of the implicit type hierarchy separately in Section 6.4, so as not to clutter
derivation rules too much, and just treat types as impredicative for the time being.

Definition (Syntax for base types in Bertus).

syntax

term ::= name | Type
| (x:term)→ term | λx 7→ term | (term term) | (term : term)

name ::= x | f

The syntax for our calculus includes just two basic constructs: abstractions and Types.
Everything else will be user-defined. Since we let the user define values too, we will need
a context capable of carrying the body of variables along with their type.

Definition (Context validity). Bound names and defined names are treated separately in the syn-
tax, and while both can be associated to a type in the context, only defined names can be associated
with a body.

context validity: Γ ` valid

ε ` valid
Γ ` A ⇓ Type name 6∈ Γ

Γ; name : A ` valid
Γ ` t ⇓ A f 6∈ Γ

Γ; f 7→ t : A ` valid

Now we can present the reduction rules, which are unsurprising. We have the usual
function application (β-reduction), but also a rule to replace names with their bodies (δ-
reduction), and one to discard type annotations. For this reason reduction is done in-
context, as opposed to what we have seen in the past.

Definition (Reduction rules for base types in Bertus).
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reduction: Γ ` term term

Γ ` (λx 7→ m) n m[n/x]
f 7→ t : A ∈ Γ

Γ ` f t Γ ` m : A m

We can now give types to our terms. Although we include the usual conversion rule,
we defer a detailed account of definitional equality to Section 6.5.6.

Definition (Bidirectional type checking for base types in Bertus).

typing: Γ ` term m term

name : A ∈ Γ
Γ ` name ⇑ A

f 7→ t : A ∈ Γ
Γ ` f ⇑ A

Γ ` t ⇓ A
Γ ` t : A ⇑ A

Γ ` t ⇑ A Γ ` A ∼= B
Γ ` t ⇓ B

Γ ` Type ⇑ Type
Γ ` A ⇓ Type Γ; x : A ` B ⇓ Type

Γ ` (x:A)→ B ⇑ Type

Γ ` m ⇑ (x:A)→ B Γ ` n ⇓ A
Γ ` m n ⇑ B[n/x]

Γ; x : A ` t ⇓ B
Γ ` λx 7→ t ⇓ (x:B)→ B

6.3 Elaboration

As we mentioned, Bertus allows the user to define not only values but also custom data
types and records. Elaboration consists of turning these declarations into workable syntax,
types, and reduction rules. The treatment of custom types in Bertus is heavily inspired by
McBride’s and McKinna’s early work on Epigram (McBride & McKinna, 2004a), although
with some differences.

6.3.1 Term vectors, telescopes, and assorted notation

Definition (Term vector). A term vector is a series of terms. The empty vector is represented by
ε, and a new element is added with _; _, similarly to contexts—~t; m.

We denote term vectors with the usual arrow notation, e.g. ~t, ~t; m, etc. We often use
term vectors to refer to a series of term applied to another. For example D ~A is a shorthand
for D A1 · · · An, for some n. n is consistently used to refer to the length of such vectors, and
i to refer to an index such that 1 ≤ i ≤ n.

Definition (Telescope). A telescope is a series of typed bindings. The empty telescope is repre-
sented by ε, and a binding is added via _; _.

To present the elaboration and operations on user defined data types, we frequently
make use what de Bruijn (1991) called telescopes, a construct that will prove useful when
dealing with the types of type and data constructors. We refer to telescopes with ∆, ∆′,
∆ i, etc. If ∆ refers to a telescope, δ refers to the term vector made up of all the variables
bound by ∆. ∆ → A refers to the type made by turning the telescope into a series of →.
For example we have that

(x:N); (p : even x)→N = (x:N)→ (p : even x)→N

We make use of various operations to manipulate telescopes:

• head(∆) refers to the first type appearing in ∆: head((x:N); (p : even x)) = N.
Similarly, ixi(∆) refers to the ith type in a telescope (1-indexed).
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• takei(∆) refers to the telescope created by taking the first i elements of ∆: take1((x:N); (p :
even x)) = (x:N).

• ∆~A refers to the telescope made by ‘applying’ the terms in ~A on ∆: ((x:N); (p :
even x))42 = (p : even 42).

Additionally, when presenting syntax elaboration, We use termn to indicate a term
vector composed of n elements. When clear from the context, we use term vectors to
signify their length, e.g. term∆, or 1 ≤ i ≤ ∆.

6.3.2 Declarations syntax

Definition (Syntax of declarations in Bertus).

syntax

decl ::= x : term 7→ term
| abstract x : term
| data D telescope where {c : telescope | · · ·}
| record D telescope where {f : term, · · ·}

telescope ::= ε | telescope; (x:term)
name ::= · · · | D | D.c | D.f

In Bertus we have four kind of declarations:

Defined value A variable, together with a type and a body.

Abstract variable An abstract variable, with a type but no body.

Inductive data A data type, with a type constructor (denoted in blue, capitalised, sans serif:
D) various data constructors (denoted in red, lowercase, sans serif: c), quite similar to
what we find in Haskell. A primitive eliminator (or destructor, or recursor; denoted by
green, lowercase, roman: elim) will be used to compute with each data type.

Record A record, which like data types consists of a type constructor but only one data
constructor. The user can also define various fields, with no recursive occurrences of
the type. The functions extracting the fields’ values from an instance of a record are
called projections (denoted in the same way as destructors).

Elaborating defined variables consists of type checking the body against the given type,
and updating the context to contain the new binding. Elaborating abstract variables and
abstract variables consists of type checking the type, and updating the context with a new
typed variable.

Definition (Elaboration of defined and abstract variables).

context elaboration: Γ ` declB Γ

Γ ` t ⇓ A f 6∈ Γ

Γ ` f : A 7→ t B Γ; f 7→ t : A
Γ ` A ⇓ Type f 6∈ Γ

Γ ` abstract f : A B Γ; f : A

6.3.3 User defined types

Elaborating user defined types is the real effort. First, we will explain what we can define,
with some examples.
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Natural numbers To define natural numbers, we create a data type with two constructors:
one with zero arguments (zero) and one with one recursive argument (suc):

data N where {zero | sucN}

This is very similar to what we would write in Haskell:

data Nat = Zero | Suc Nat

Once the data type is defined, Bertus will generate syntactic constructs for the type
and data constructors, so that we will have

Γ `N ⇑ Type Γ `N.zero ⇑N

Γ ` t ⇓N

Γ `N.suc t ⇑N

While in Haskell (or indeed in Agda or Coq) data constructors are treated the same
way as functions, in Bertus they are syntax, so for example using N.suc on its own
will give a syntax error. This is necessary so that we can easily infer the type of
polymorphic data constructors, as we will see later.

Moreover, each data constructor is prefixed by the type constructor name, since we
need to retrieve the type constructor of a data constructor when type checking. This
measure aids in the presentation of the theory but it is not needed in the implemen-
tation, where we can have a dictionary to look up the type constructor corresponding
to each data constructor. When using data constructors in examples I will omit the
type constructor prefix for brevity, in this case writing zero instead of N.zero and suc
instead of N.suc.

Along with user defined constructors, Bertus automatically generates an eliminator,
or destructor, to compute with natural numbers: If we have t : N, we can destruct t
using the generated eliminator ‘N.elim’:

Γ ` t ⇓N

Γ `N.elim t ⇑
(P:N→ Type)→
P zero→ ((x:N)→ P x → P (suc x))→
P t

N.elim corresponds to the induction principle for natural numbers: if we have a
predicate on numbers (P), and we know that predicate holds for the base case (P zero)
and for each inductive step ((x:N) → P x → P (suc x)), then P holds for any num-
ber. As with the data constructors, we require the eliminator to be applied to the
‘destructed’ element.

While the induction principle is usually seen as a mean to prove properties about
numbers, in the intuitionistic setting it is also a mean to compute. In this specific case
N.elim returns the base case if the provided number is zero, and recursively applies
the inductive step if the number is a successor:

N.elim zero P pz ps pz
N.elim (suc t) P pz ps ps t (N.elim t P pz ps)

The Haskell equivalent would be

elim :: Nat -> a -> (Nat -> a -> a) -> a
elim Zero pz ps = pz
elim (Suc n) pz ps = ps n (elim n pz ps)
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Which buys us the computational behaviour, but not the reasoning power, since we
cannot express the notion of a predicate depending on N—the type system is far too
weak.

Binary trees Now for a polymorphic data type: binary trees, since lists are too similar to
natural numbers to be interesting.

data Tree (A:Type) where {leaf | node (Tree A) A (Tree A)}

Now the purpose of ‘constructors as syntax’ can be explained: what would the type
of leaf be? If we were to treat it as a ‘normal’ term, we would have to specify the type
parameter of the tree each time the constructor is applied:

leaf : (A:Type)→ Tree A
node : (A:Type)→ Tree A→ A→ Tree A→ Tree A

The problem with this approach is that creating terms is incredibly verbose and dull,
since we would need to specify the type parameter of Tree each time. For example if
we wished to create a TreeN with two nodes and three leaves, we would write

nodeN (nodeN (leafN) (suc zero) (leafN)) zero (leafN)

The redundancy of Ns is quite irritating. Instead, if we treat constructors as syntactic
elements, we can ‘extract’ the type of the parameter from the type that the term gets
checked against, much like what we do to type abstractions:

Γ ` A ⇓ Type
Γ ` leaf ⇓ Tree A

Γ ` m ⇓ Tree A Γ ` t ⇓ A Γ ` m ⇓ Tree A
Γ ` node m t n ⇓ Tree A

Which enables us to write, much more concisely

node (node leaf (suc zero) leaf) zero leaf : TreeN

We gain an annotation, but we lose the myriad of types applied to the constructors.
Conversely, with the eliminator for Tree, we can infer the type of the arguments given
the type of the destructed:

Γ ` t ⇑ Tree A

Γ ` Tree.elim t ⇑

(P:Tree A→ Type)→
P leaf→
((l:Tree A)(x:A)(r:Tree A)→ P l → P r → P (node l x r))→
P t

As expected, the eliminator embodies structural induction on trees. We have a base
case for P leaf, and an inductive step that given two subtrees and the predicate applied
to them needs to return the predicate applied to the tree formed by a node with the
two subtrees as children.

Empty type We have presented types that have at least one constructors, but nothing pre-
vents us from defining types with no constructors:

data Empty where {}

What shall the ‘induction principle’ on Empty be? Does it even make sense to talk
about induction on Empty? Bertus does not care, and generates an eliminator with
no ‘cases’:
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Γ ` t ⇑ Empty
Γ ` Empty.elim t ⇑ (P:t→ Type)→ P t

which lets us write the absurd that we know and love:

absurd : (A:Type)→ Empty→ A
absurd A x 7→ Empty.elim x (λ_ 7→ A)

Ordered lists Up to this point, the examples shown are nothing new to the {Haskell, SML,
OCaml, functional} programmer. However dependent types let us express much
more than that. A useful example is the type of ordered lists. There are many ways
to define such a thing, but we will define ours to store the bounds of the list, making
sure that consing respects that.

First, using Unit and Empty, we define a type expressing the ordering on natural
numbers, le—‘less or equal’. le m n will be inhabited only if m ≤ n:

le : N→N→ Type
le n 7→

N.elim
n
(λ_ 7→N→ Type)
(λ_ 7→ Unit)
(λn f m 7→N.elim m (λ_ 7→ Type) Empty (λm′ _ 7→ f m′))

We return Unit if the scrutinised is zero (every number in less or equal than zero),
Empty if the first number is a successor and the second a zero, and we recurse if
they are both successors. Since we want the list to have possibly ‘open’ bounds, for
example for empty lists, we create a type for ‘lifted’ naturals with a bottom (≤ every-
thing but itself) and top (≥ everything but itself) elements, along with an associated
comparison function:

data Lift where {bot | liftN | top}
le’ : Lift→ Lift→ Type
le’ l1 7→

Lift.elim
l1
(λ_ 7→ Lift→ Type)
(λ_ 7→ Unit)
(λn1 l2 7→ Lift.elim l2 (λ_ 7→ Type) Empty (λn2 7→ le n1 n2)Unit)
(λl2 7→ Lift.elim l2 (λ_ 7→ Type) Empty (λ_ 7→ Empty)Unit)

Finally, we can define a type of ordered lists. The type is parametrised over two
values representing the lower and upper bounds of the elements, as opposed to the
type parameters that we are used to in Haskell or similar languages. An empty list
will have to have evidence that the bounds are ordered, and each time we add an
element we require the list to have a matching lower bound:

data OList (low upp:Lift) where
{nil (le’ low upp) | cons (n:N) (OList (lift n) upp) (le’ low (lift n)}

Note that in the cons constructor we quantify over the first argument, which will
determine the type of the following arguments—again something we cannot do in
systems like Haskell. If we want we can then employ this structure to write and
prove correct various sorting algorithms.10

10See this presentation by Conor McBride: https://personal.cis.strath.ac.uk/conor.mcbride/
Pivotal.pdf, and this blog post by the author: http://mazzo.li/posts/AgdaSort.html.
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Dependent products Apart from data, Bertus offers us another way to define types: record.
A record is a data type with one constructor and ‘projections’ to extract specific fields
of the said constructor.

For example, we can recover dependent products:

record Prod (A:Type) (B:A→ Type) where {fst : A, snd : B f st}

Here fst and snd are the projections, with their respective types. Note that each field
can refer to the preceding fields—in this case we have the type of snd depending on
the value of fst. A constructor will be automatically generated, under the name of
Prod.constr. Dually to data types, we will omit the type constructor prefix for record
projections.

Following the bidirectionality of the system, we have that projections (the destructors
of the record) infer the type, while the constructor gets checked:

Γ ` m ⇓ A Γ ` n ⇓ B m
Γ ` Prod.constr m n ⇓ Prod A B

Γ ` t ⇑ Prod A B
Γ ` fst t ⇑ A

Γ ` snd t ⇑ B (fst t)

What we have defined here is equivalent to ITT’s dependent products.

Definition (Elaboration for user defined types). Following the intuition given by the examples,
the full elaboration machinery is presented Figure 6.

Our elaboration is essentially a modification of Figure 9 of McBride & McKinna (2004a).
However, our data types are not inductive families,11 we do bidirectional type checking by
treating constructors/destructors as syntax, and we have records.

Definition (Strict positivity). A inductive type declaration is strictly positive if recursive oc-
currences of the type we are defining do not appear embedded anywhere in the domain part of any
function in the types for the data constructors.

In data type declarations we allow recursive occurrences as long as they are strictly pos-
itive, which ensures the consistency of the theory. To achieve that we employing a syntactic
check to make sure that this is the case—in fact the check is stricter than necessary for sim-
plicity, given that we allow recursive occurrences only at the top level of data constructor
arguments. For example a definition of the W type is accepted in Agda but rejected in
Bertus. This is to make the eliminator generation simpler, and in practice it is seldom an
impediment.

Without these precautions, we can easily derive any type with no recursion:

data Fix a = Fix (Fix a -> a) -- Negative occurrence of ‘Fix a’
-- Term inhabiting any type ‘a’
boom :: a
boom = (\f -> f (Fix f)) (\x -> (\(Fix f) -> f) x x)

See Dybjer (1991) for a more formal treatment of inductive definitions in ITT.
For what concerns records, recursive occurrences are disallowed. The reason for this

choice is answered by the reason for the choice of having records at all: we need records to
give the user types with η-laws for equality, as we saw in Section 4.2.1 and in the treatment
of OTT in Section 5. If we tried to η-expand recursive data types, we would expand forever.

11See Section 9 for a brief description of inductive families.
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syntax

name ::= · · · | D | D.c | D.f

syntax elaboration: declB term ::= · · ·
data D∆ where {· · · | cn : ∆n}

B term ::= · · · | D term∆ | · · · | D.cn term∆n | D.elim term

context elaboration: Γ ` declB Γ

Γ ` ∆→ Type ⇑ Type D 6∈ Γ
Γ; D : ∆→ Type ` ∆; ∆ i → D δ ⇑ Type (1 ≤ i ≤ n)
For each (x:A) in each ∆ i, if D ∈ A, then A = D~t.

Γ ` data D∆ where {· · · | cn : ∆n}

B Γ; D : ∆→ Type; · · · ; D.cn : ∆; ∆n → D δ;
D.elim : ∆→ (x:D δ)→ target

(P:D δ→ Type)→ motive
...

(∆n; hyps(P, ∆n)→ P (D.cn δn))→

}
methods

P x

where hyps(P, ε ) =⇒ ε

hyps(P, (r:D~t); ∆) =⇒ (r′:P r); hyps(P, ∆)
hyps(P, (x:A); ∆ ) =⇒ hyps(P, ∆)

reduction elaboration: declB Γ ` term term

data D∆ where {· · · | cn : ∆n} B
D : ∆→ Type ∈ Γ D.ci : ∆; ∆ i → D δ ∈ Γ

Γ ` D.elim (D.ci~t) P ~m mi~t recs(P, ~m, ∆ i)

where recs(P, ~m, ε ) =⇒ ε

recs(P, ~m, (r:D ~A); ∆) =⇒ (D.elim r P ~m); recs(P, ~m, ∆)
recs(P, ~m, (x:A); ∆ ) =⇒ recs(P, ~m, ∆)

syntax elaboration: Γ ` declB term ::= · · ·
Γ ` record D∆ where {· · · , fn : Fn}
B term ::= · · · | D term∆ | D.constr termn | · · · | D.fn term

context elaboration: Γ ` declB Γ

Γ ` ∆→ Type ⇑ Type D 6∈ Γ

Γ; ∆; ( f j : Fj)
i−1
j=1 ` Fi ⇑ Type (1 ≤ i ≤ n)

Γ ` record D∆ where {· · · , fn : Fn}

B Γ; D : ∆→ Type; · · · ; D.fn : ∆→ (x:D δ)→ Fn[fi x/ f i]
n−1
i=1 ;

D.constr : ∆→ F1 → · · · → Fn → D δ;

reduction elaboration: declB Γ ` term term

record D∆ where {· · · , fn : Fn} B
D ∈ Γ

Γ ` D.fi (D.constr~t) ti

Figure 6: Elaboration for data types and records.
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Definition (Bidirectional type checking for elaborated types). To implement bidirectional type
checking for constructors and destructors, we store their types in full in the context, and then
instantiate when due.

typing: Γ ` term m term

D : ∆→ Type ∈ Γ D.c : ∆; ∆′ → D δ ∈ Γ

∆′′ = (∆; ∆′)~A Γ; takei−1(∆
′′) ` ti ⇓ ixi(∆

′′) (1 ≤ i ≤ ∆′′)

Γ ` D.c~t ⇓ D ~A

D : ∆→ Type ∈ Γ D.f : ∆; (x:D δ)→ F Γ ` t : D ~A

Γ ` D.f t ⇑ (∆; (x:D δ)→ F)(~A; t)

Note that for 0-ary type constructors, like N, we do not need to check canonical terms: we
can automatically infer that zero and suc n are of type N. Bertus implements this measure,
even if it is not shown in the typing rule for simplicity.

6.3.4 Why user defined types? Why eliminators?

The hardest design choice in developing Bertus was to decide whether user defined types
should be included, and how to handle them. As we saw, while we can devise general
structures like W, they are unsuitable both for for direct usage and ‘mechanical’ usage.
Thus most theorem provers in the wild provide some means for the user to define structures
tailored to specific uses.

Even if we take user defined types for granted, while there is not much debate on how
to handle records, there are two broad schools of thought regarding the handling of data
types:

Fixed points and pattern matching The road chosen by Agda and Coq. Functions are
written like in Haskell—matching on the input and with explicit recursion. An exter-
nal check on the recursive arguments ensures that they are decreasing, and thus that
all functions terminate. This approach is the best in terms of user usability, but it is
tricky to implement correctly.

Elaboration into eliminators The road chose by Bertus, and pioneered by the Epigram
line of work. The advantage is that we can reduce every data type to simple defi-
nitions which guarantee termination and are simple to reduce and type. It is how-
ever more cumbersome to use than pattern matching, although McBride & McKinna
(2004a) has shown how to implement an expressive pattern matching interface on top
of a larger set of combinators of those provided by Bertus.

We can go ever further down this road and elaborate the declarations for data types
themselves to a small set of primitives, so that our ‘core’ language will be very small
and manageable (Dagand & McBride, 2012; Chapman et al. , 2010).

We chose the safer and easier to implement path, given the time constraints and the
higher confidence of correctness. See also Section 9 for a brief overview of ways to extend
or treat user defined types.

6.4 Cumulative hierarchy and typical ambiguity

Having a well founded type hierarchy is crucial if we want to retain consistency, otherwise
we can break our type systems by proving bottom, as shown in Appendix B.3.

However, hierarchy as presented in section 3 is a considerable burden on the user, on
various levels. Consider for example how we recovered disjunctions in Section 3.3.6: we
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have a function that takes two Type0 and forms a new Type0. What if we wanted to form
a disjunction containing something a Type1, or Type42? Our definition would fail us, since
Type1 : Type2.

One way to solve this issue is a cumulative hierarchy, where Typel1 : Typel2 iff l1 < l2.
This way we retain consistency, while allowing for ‘large’ definitions that work on small
types too.

Definition (Cumulativity for Bertus’ base types). Figure 7 gives a formal definition of cumu-
lativity for the base types. Similar measures can be taken for user defined types, withe the type
living in the least upper bound of the levels where the types contained data live.

For example we might define our disjunction to be

_∨_ : Type100 → Type100 → Type100

And hope that Type100 will be large enough to fit all the types that we want to use with
our disjunction. However, there are two problems with this. First, clumsiness of having to
manually specify the size of types is still there. More importantly, if we want to use ∨ itself
as an argument to other type-formers, we need to make sure that those allow for types at
least as large as Type100.

A better option is to employ a mechanised version of what Russell called typical ambi-
guity: we let the user live under the illusion that Type : Type, but check that the statements
about types are consistent under the hood. Bertus implements this following the plan
given by Huet (1988). See also Harper & Pollack (1991) for a published reference, although
describing a more complex system allowing for both explicit and explicit hierarchy at the
same time.

We define a partial ordering on the levels, with both weak (≤) and strong (<) con-
straints, the laws governing them being the same as the ones governing < and ≤ for the
natural numbers. Each occurrence of Type is decorated with a unique reference. We keep
a set of constraints regarding the ordering of each occurrence of Type, each represented by
its unique reference. We add new constraints as we type check, generating new references
when needed.

For example, when type checking the type Type r1, where r1 denotes the unique ref-
erence assigned to that term, we will generate a new fresh reference and return the type
Type r2, adding the constraint r1 < r2 to the set. When type checking Γ ` (x:A) → B, if
Γ ` A : Type r1 and Γ; x : B ` B : Type r2; we will generate new reference r and add r1 ≤ r
and r2 ≤ r to the set.

If at any point the constraint set becomes inconsistent, type checking fails. Moreover,
when comparing two Type terms—during the process of deciding definitional equality for
two terms—we equate their respective references with two ≤ constraints. Implementation
details are given in Section 7.3.

cumulativity: Γ ` term � term

Γ ` A ∼= B
Γ ` A � B Γ ` Typel � Typel+1

Γ ` A � B Γ ` B � C
Γ ` A � C

Γ ` t : A Γ ` A � B
Γ ` t : B

Γ ` A1
∼= A2 Γ; x : A1 ` B1 � B2

Γ(x:A1)→ B1 � (x:A2)→ B2

Figure 7: Cumulativity rules for base types in Bertus, plus a ‘conversion’ rule for cumula-
tive types.
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Another more flexible but also more verbose alternative is the one chosen by Agda,
where levels can be quantified so that the relationship between arguments and result in
type formers can be explicitly expressed:

_∨_ : (l1 l2 : Level)→ Typel1 → Typel2 → Typel1tl2

Inference algorithms to automatically derive this kind of relationship are currently subject
of research. We choose a less flexible but more concise way, since it is easier to implement
and better understood.

6.5 Observational equality, Bertus style

There are two correlated differences between Bertus and the theory used to present OTT.
The first is that in Bertus we have a type hierarchy, which lets us, for example, abstract
over types. The second is that we let the user define inductive types and records.

Reconciling propositions for OTT and a hierarchy had already been investigated by
Conor McBride,12 and we follow some of his suggestions, with some innovation. Most of
the dirty work, as an extension of elaboration, is to handle reduction rules and coercions
for data types—both type constructors and data constructors.

6.5.1 The Bertus prelude, and Propositions

Before defining Prop, we define some basic types inside Bertus, as the target for the Prop
decoder.

Definition (Bertus’ propositional prelude).

data Empty where {}
absurd : (A:Type)→ Empty→ A 7→

λA bot 7→ Empty.elim bot (λ_ 7→ A)

record Unit where {}

record Prod (A B:Type) where {fst : A, snd : B}

Definition (Propositions and decoding).

syntax

term ::= · · · | JpropK
prop ::= ⊥ | > | prop ∧ prop | ∀x:term. prop

proposition decoding: JtermK term

J⊥K Empty
J>K Unit

J P ∧ Q K Prod JPK JQK
J∀x:A. PK (x:A)→ JPK

12See http://www.e-pig.org/epilogue/index.html?p=1098.html.
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We will overload the ∧ symbol to define ‘nested’ products, and πn to project elements
from them, so that

A ∧ B = A ∧ (B ∧ >)
A ∧ B ∧ C = A ∧ (B ∧ (C ∧ >))

...
π1 : JA ∧ BK→ JAK
π2 : JA ∧ B ∧ CK→ JBK

...

And so on, so that πn will work with all products with at least than n elements. Logically
a 0-ary ∧ will correspond to >.

6.5.2 Some OTT examples

Before presenting the direction that Bertus takes, let us consider two examples of use-
defined data types, and the result we would expect given what we already know about
OTT, assuming the same propositional equalities.

Product types Let us consider first the already mentioned dependent product, using the
alternate name Σ13 to avoid confusion with the Prod in the prelude:

record Σ (A:Type) (B:A→ Type) where {fst : A, snd : B f st}

First type-level equality. The result we want is

Σ A1 B1 = Σ A2 B2  
A1 = A2 ∧ ∀x1:A1. ∀x2:A2. (x1:A1) = (x2:A2)⇒ B1 x1 = B2 x2

The difference here is that in the original presentation of OTT the type binders are
explicit, while here B1 and B2 are functions returning types. We can do this thanks
to the type hierarchy, and this hints at the fact that heterogeneous equality will have
to allow Type ‘to the right of the colon’. Indeed, heterogeneous equalities involving
abstractions over types will provide the solution to simplify the equality above.

If we take, just like we saw previously in OTT

( f1:(A1:x1)→ B1) = ( f2:(A2:x2)→ B2) 
∀x1:A1. ∀x2:A2. (x1:A1) = (x2:A2)⇒ ( f1 x1:B1[x1]) = ( f2 x2:B2[x2])

Then we can simply have

Σ A1 B1 = Σ A2 B2  
A1 = A2 ∧ (B1:A1 → Type) = (B2:A2 → Type)

Which will reduce to precisely what we desire, but with an heterogeneous equalities
relating types instead of values:

A1 = A2 ∧ (B1:A1 → Type) = (B2:A2 → Type) 
A1 = A2 ∧ ∀x1:A1. ∀x2:A2. (x1:A1) = (x2:A2)⇒ (B1 x1:Type) = (B2 x2:Type)

13For extra confusion, ‘dependent products’ are often called ‘dependent sums’ in the literature, referring to
the interpretation that identifies the first element as a ‘tag’ deciding the type of the second element, which lets
us recover sum types (disjuctions), as we saw in Section 3.3.5. Thus, Σ.
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If we pretend for the moment that those heterogeneous equalities were type equali-
ties, things run smoothly. For what concerns coercions and quotation, things stay the
same (apart from the fact that we apply to the second argument instead of substitut-
ing). We can recognise records such as Σ as such and employ projections in value
equality and coercions; as to not impede progress if not necessary.

Lists Now for finite lists, which will give us a taste for data constructors:

data List (A:Type) where {nil | cons A (List A)}

Type equality is simple—we only need to compare the parameter:

List A1 = List A2  A1 = A2

For coercions, we transport based on the constructor, recycling the proof for the in-
ductive occurrence:

coe (List A1) (List A2) Q nil  nil
coe (List A1) (List A2) Q (cons m n) 

cons (coe A1 A2 Q m) (coe (List A1) (List A2) Q n)

Value equality is unsurprising—we match the constructors, and return bottom for
mismatches.

( nil : List A1) = ( nil : List A2) >
(cons m1 n1 : List A1) = (cons m2 n2 : List A2) 

(m1:A1) = (m2:A2) ∧ (n1:List A1) = (n2:List A2)
( nil : List A1) = (cons m2 n2 : List A2) ⊥
(cons m1 n1 : List A1) = ( nil : List A2) ⊥

6.5.3 Only one equality

Given the examples above, a more ‘flexible’ heterogeneous equality must emerge, since of
the fact that in Bertus we re-gain the possibility of abstracting and in general handling
types in a way that was not possible in the original OTT presentation. Moreover, we found
that the rules for value equality work well if used with user defined type abstractions—for
example in the case of dependent products we recover the original definition with explicit
binders, in a natural manner.

Definition (Propositions, coercions, coherence, equalities and equality reduction for Bertus).
See Figure 8.14

Definition (Type equality in Bertus). We define A = B as an abbreviation for (A:Type) =
(B:Type).

In fact, we can drop a separate notion of type-equality, which will simply be served
by (A:Type) = (B:Type). We shall still distinguish equalities relating types for hierarchical
purposes. We exploit record to perform η-expansion. Moreover, given the nested ∧s, values
of data types with zero constructors (such as Empty) and records with zero destructors
(such as Unit) will be automatically always identified as equal. As in the original OTT, and
for the same reasons, we can take coh as axiomatic.

14We discovered a problem with the proposed model, see Appendix C for details.
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syntax

term ::= · · · | coe term term term term | coh term term term term
prop ::= · · · | (term:term) = (term:term)

typing: Γ ` term⇔ term

Γ ` P ⇓ JA = BK Γ ` t ⇓ A
Γ ` coe A B P t ⇑ B

Γ ` P ⇓ JA = BK Γ ` t ⇓ A
Γ ` coh A B P t ⇑ J(t:A) = (coe A B P t:B)K

propositions: Γ ` prop : Prop

Γ ` > : Prop
Γ ` ⊥ : Prop

Γ ` P : Prop Γ ` Q : Prop
Γ ` P ∧ Q : Prop

Γ ` A : Type Γ; x : A ` P : Prop
Γ ` ∀x:A. P : Prop

Γ ` A : Type Γ ` m : A
Γ ` B : Type Γ ` n : B

Γ ` (m:A) = (n:B) : Prop

equality reduction: Γ ` prop prop

Γ ` (Type:Type) = (Type:Type) >

Γ ` ((x1:A1)→ B1:Type) = ((x2:A2)→ B2:Type) 
A2 = A1 ∧ ∀x2:A2. ∀x1:A1. (x2:A2) = (x1:A1)⇒ B1[x1] = B2[x2]

Γ ` ( f1:(x1:A1)→ B1) = ( f2:(x2:A2)→ B2) 
∀x1:A1. ∀x2:A2. (x1:A1) = (x2:A2)⇒ ( f1 x1:B1[x1]) = ( f2 x2:B2[x2])

D : ∆→ Type ∈ Γ

Γ ` (D ~A:Type) = (D ~B:Type) ∧n
i=1 ((An:head(∆(A1 · · · Ai−1))) = (Bi :head(∆(B1 · · · Bi−1))))

datatype(D, Γ) D.c : ∆; ∆′ → D δ ∈ Γ ∆ A = (∆; ∆′)~A ∆B = (∆; ∆′)~B

Γ ` (D.c~l:D ~A) = (D.c~r:D ~B) ∧n
i=1 ((mi :head(∆A(Ai · · · Ai−1))) = (ni :head(∆B(Bi · · · Bi−1))))

datatype(D, Γ)

Γ ` (D.c~l:D ~A) = (D.c’~r:D ~B) ⊥

record(D, Γ) D.fi : ∆; (x:D δ)→ Fi ∈ Γ

Γ ` (l:D ~A) = (r:D ~B) ∧n
i=1 ((D.f1 l:(∆; (x:D δ)→ Fi)(~A; l)) = (D.fi r:(∆; (x:D δ)→ Fi)(~B; r)))

(m:A) = (n:B) ⊥ if A and B are canonical types.

Figure 8: Propositions and equality reduction in Bertus. We assume the presence of
datatype and record as operations on the context to recognise whether a user defined
type is a data type or a record.
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6.5.4 Coercions

For coercions the algorithm is messier and not reproduced here for lack of a decent notation—
the details are hairy but uninteresting. To give an idea of the possible complications, let us
conceive a type that showcases trouble not arising in the previous examples.

data Max (A:N→ Type) (B:(x:N)→ A x → Type) (k:N) where
{max (A k) (x:N) (a:A x) (B x a)}

For type equalities we will have

(Max A1 B1 k1:Type) = (Max A2 B2 k2:Type)  

(A1:N→ Type) = (A2:N→ Type) ∧
(B1:(x:N)→ A1 x → Type) = (B2:(x:N)→ A2 x → Type)
(k1:N) = (k2:N)

 

(N = N ∧ (∀x1 x2:N. (x1:N) = (x2:N)⇒ A1 x1 = A2 x2)) ∧

(N = N ∧
(
∀x1 x2:N. (x1:N) = (x2:N)⇒
(B1 x1:A1 x1 → Type) = (B2 x2:A2 x2 → Type)

)
) ∧

(k1:N) = (k2:N)

 

(> ∧ (∀x1 x2:N. (x1:N) = (x2:N)⇒ A1 x1 = A2 x2)) ∧

(> ∧

∀x1 x2:N. (x1:N) = (x2:N)⇒
∀y1:A1 x1. ∀y2:A2 x2. (y1:A1 x1) = (y2:A2 x2)⇒
B1 x1 y1 = B2 x2 y2

) ∧

(k1:N) = (k2:N)

The result, while looking complicated, is actually saying something simple—given equal
inputs, the parameters for Max will return equal types. Moreover, we have evidence that
the two k parameters are equal. When coercing, we need to mechanically generate one
proof of equality for each argument, and then coerce:

coe (Max A1 B1 k1) (Max A2 B2 k2) Q (max ak1 n1 a1 b1) 
let QAk 7→ ? : JA1 k1 = A2 k2K

ak2 7→ coe (A1 k1) (A2 k2) QAk ak1 : A1 k2

QN 7→ ? : JN = NK
n2 7→ coe N N QN n1 : N

QA 7→ ? : JA1 n1 = A2 n2K
a2 7→ coe (A1 n1) (A2 n2) QA : A2 n2

QB 7→ ? : JB1 n1 a1 = B1 n2 a2K
b2 7→ coe (B1 n1 a1) (B2 n2 a2) QB : B2 n2 a2

in max ak2 n2 a2 b2

For equalities regarding types that are external to the data type we can derive a proof by
reflexivity by invoking refl as defined in Section 5.2.2, and the instantiate arguments if we
need too. In this case, for N, we do not have any arguments. For equalities concerning
arguments of the type constructor or already coerced arguments of the type constructor we
have to refer to the right proof and use coherence when due, which is where the technical
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annoyance lies:

coe (Max A1 B1 k1) (Max A2 B2 k2) Q (max ak1 n1 a1 b1) 
let QAk 7→ (π2 (π1 Q)) k1 k2 (π3 Q) : JA1 k1 = A2 k2K

ak2 7→ coe (A1 k1) (A2 k2) QAk ak1 : A1 k2
QN 7→ reflN : JN = NK
n2 7→ coe N N QN n1 : N

QA 7→ (π2 (π1 Q)) n1 n2 (coh N N QN n1) : JA1 n1 = A2 n2K
a2 7→ coe (A1 n1) (A2 n2) QA : A2 n2
QB 7→ (π2 (π2 Q)) n1 n2 QN a1 a2 (coh (A1 n1) (A2 n2) QA a1) : JB1 n1 a1 = B1 n2 a2K
b2 7→ coe (B1 n1 a1) (B2 n2 a2) QB : B2 n2 a2

in max ak2 n2 a2 b2

6.5.5 Prop and the hierarchy

We shall have, at each universe level, not only a Typel but also a Propl . Where will propo-
sitions placed in the type hierarchy? The main indicator is the decoding operator, since it
converts into things that already live in the hierarchy. For example, if we have

JN→ Bool = N→ BoolK > ∧ ((x y : N)→ > → >)

we will better make sure that the ‘to be decoded’ is at level compatible (read: larger) with
its reduction. In the example above, we will have that proposition to be at least as large as
the type of N, since the reduced proof will abstract over it. Pretending that we had explicit,
non cumulative levels, it would be tempting to have

Γ ` Q : Propl

Γ ` JQK : Typel

Γ ` A : Typel Γ ` B : Typel

Γ ` (A:Typel) = (B:Typel) : Propl

⊥ and > living at any level, ∧ and ∀ following rules similar to the ones for × and → in
Section 3. However, we need to be careful with value equality since for example we have
that

J( f1:(x1:A1)→ B1) = ( f2:(x2:A2)→ B2)K (x1:A1)→ (x2:A2)→ · · ·

where the proposition decodes into something of at least type Typel , where Al : Typel and
Bl : Typel . We can resolve this tension by making all equalities larger:

Γ ` m : A Γ ` A : Typel Γ ` n : B Γ ` B : Typel

Γ ` (m:A) = (m:A) : Propl

This is disappointing, since type equalities will be needlessly large: J(A:Typel) = (B:Typel)K :
Typel+1.

However, considering that our theory is cumulative, we can do better. Assuming rules
for Prop cumulativity similar to the ones for Type, we will have (with the conversion rule
reproduced as a reminder):

Γ ` A � B Γ ` t : A
Γ ` t : B

Γ ` A : Typel Γ ` B : Typel

Γ ` (A:Typel) = (B:Typel) : Propl

Γ ` m : A Γ ` A : Typel Γ ` n : B Γ ` B : Typel A and B are not Typel′

Γ ` (m:A) = (m:A) : Propl
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That is, we are small when we can (type equalities) and large otherwise. This would
not work in a non-cumulative theory because subject reduction would not hold. Consider
for instance

(N:If trueThenType0 ElseType0) = (Bool:If trueThenType0 ElseType0) : Prop1

which reduces to

(N:Type0) = (Bool:Type0) : Prop0

We need members of Prop0 to be members of Prop1 too, which will be the case with cumu-
lativity. This buys us a cheap type level equality without having to replicate functionality
with a dedicated construct.

6.5.6 Quotation and definitional equality

Now we can give an account of definitional equality, by explaining how to perform quota-
tion (as defined in Section 4.2.1) towards the goal described in Section 5.3.

We want to:

• Perform η-expansion on functions and records.

• As a consequence of the previous point, identify all records with no projections as
equal, since they will have only one element.

• Identify all members of types with no constructors (and thus no elements) as equal.

• Identify all equivalent proofs as equal—with ‘equivalent proof’ we mean those prov-
ing the same propositions.

• Advance coercions working across definitionally equal types.

Towards these goals and following the intuition between bidirectional type checking we
define two mutually recursive functions, one quoting canonical terms against their types
(since we need the type to type check canonical terms), one quoting neutral terms while
recovering their types.

Definition (Quotation for Bertus). The full procedure for quotation is shown in Figure 9.

We box the neutral proofs and neutral members of empty types, following the notation
in Altenkirch et al. (2007), and we make use of ∼=� which compares terms syntactically up
to α-renaming, but also up to equivalent proofs: we consider all boxed content as equal.

Our quotation will work on normalised terms, so that all defined values will have been
replaced. Moreover, we match on data type eliminators and all their arguments, so that
N.elim m P~n will stand for N.elim applied to the scrutinised N, the predicate, and the two
cases. This measure can be easily implemented by checking the head of applications and
‘consuming’ the needed terms. Thus, we gain proof irrelevance, and not only for a more
useful definitional equality, but also for example to eliminate all propositional content
when compiling.

6.5.7 Why Prop?

It is worth to ask if Prop is needed at all. It is perfectly possible to have the type checker
identify propositional types automatically, and in fact in some sense we already do during
equality reduction and quotation. However, this has the considerable disadvantage that we

43



canonical quotation: quote⇓(Γ, term : term) =⇒ term

quote⇓(Γ, t : D ~A ) | empty(Γ,D) =⇒ t
quote⇓(Γ, t : D ~A ) | record(Γ,D) =⇒ D.constr · · · quote⇓(Γ,D.fn : (Γ(D.fn))(~A; t))
quote⇓(Γ, D.c~t : D ~A ) =⇒ · · ·
quote⇓(Γ, f : (x:A)→ B) =⇒ λx 7→ quote⇓(Γ; x : A, f x : B)
quote⇓(Γ, p : JPK ) =⇒ p
quote⇓(Γ, t : A ) =⇒ t′ where t′ : _ = quote⇑(Γ, t)

neutral quotation: quote⇑(Γ, term) =⇒ term : term

quote⇑(Γ, x ) =⇒ x : Γ(x)
quote⇑(Γ, Type ) =⇒ Type : Type
quote⇑(Γ, (x:A)→ B ) =⇒ (x:quote⇑(Γ, A))→ quote⇑(Γ; x : A, B) : Type
quote⇑(Γ, D ~A ) =⇒ D · · ·quote⇓(Γ, head((Γ(D))(A1 · · · An−1))) : Type
quote⇑(Γ, J(m:A) = (n:B)K) =⇒

J(quote⇓(Γ, m : A):A′) = (quote⇓(Γ, n : B):B′)K : Type
where A′ : _ = quote⇑(Γ, A)

B′ : _ = quote⇑(Γ, B)
quote⇑(Γ, D.f t ) | record(Γ,D) =⇒ D.f t′ : (Γ(D.f))(~A; t)

where t′ : D ~A = quote⇑(Γ, t)
quote⇑(Γ, D.elim t P ) | empty(Γ,D) =⇒ D.elim t quote⇑(Γ, P) : P t
quote⇑(Γ, D.elim m P~n ) =⇒ D.elim m′ quote⇑(Γ, P) · · · : P m

where m′ : D ~A = quote⇑(Γ, m)
quote⇑(Γ, f t ) =⇒ f ′ quote⇓(Γ, t : A) : B[t/x]

where f ′ : (x:A)→ B = quote⇑(Γ, f )
quote⇑(Γ, coe A B Q t ) | quote⇑(Γ, A) ∼=� quote⇑(Γ, B) =⇒ quote⇑(Γ, t)
quote⇑(Γ, coe A B Q t ) =⇒ coe quote⇑(Γ, A) quote⇑(Γ, B) Q quote⇑(Γ, t)

Figure 9: Quotation in Bertus. Along the already used record meta-operation on the
context we make use of empty, which checks if a certain type constructor has zero data
constructor. The ‘data constructor’ cases for non-record, non-empty, data types are omitted
for brevity.

can never identify abstracted variables15 of type Type as Prop, thus forbidding the user to
talk about Prop explicitly.

This is a considerable impediment, for example when implementing quotient types. With
quotients, we let the user specify an equivalence class over a certain type, and then exploit
this in various way—crucially, we need to be sure that the equivalence given is propo-
sitional, a fact which prevented the use of quotients in dependent type theories (Jacobs,
1994).

15And in general neutral terms, although we currently do not have neutral propositions apart from equalities
on neutral terms.
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7 | Bertus: the practice

It’s alive!

Henry Frankenstein

The codebase consists of around 2500 lines of Haskell,16 as reported by the cloc utility.
We implement the type theory as described in Section 6. The author learnt the hard way

the implementation challenges for such a project, and ran out of time while implementing
observational equality. While the constructs and typing rules are present, the machinery to
make it happen (equality reduction, coercions, quotation, etc.) is not present yet.

This considered, everything else presented in Section 6 is implemented and working
well—and in fact all the examples presented in this thesis, apart from the ones that are
equality related, have been encoded in Bertus in the Appendix. Moreover, given the de-
tailed plan in the previous section, finishing off should not prove too much work.

The interaction with the user takes place in a loop living in and updating a context of
Bertus declarations, which presents itself as in Figure 10. Files with lists of declarations
can also be loaded. The REPL is a available both as a command-line application and in a
web interface, which is available at bertus.mazzo.li.

A REPL cycle starts with the user inputting a Bertus declaration or another REPL
command, which then goes through various stages that can end up in a context update, or
in failures of various kind. The process is described diagrammatically in figure 11.

Parse In this phase the text input gets converted to a sugared version of the core language.
For example, we accept multiple arguments in arrow types and abstractions, and we
represent variables with names, while as we will see in Section 7.2 the final term
types uses a nameless representation.

Desugar The sugared declaration is converted to a core term. Most notably we go from
names to nameless.

16The full source code is available under the GPL3 license at https://github.com/bitonic/kant. ‘Kant’
was a previous incarnation of the software, and the name remained.

B E R T U S
Version 0.0, made in London, year 2013.
>>> :h
<decl> Declare value/data type/record
:t <term> Typecheck
:e <term> Normalise
:p <term> Pretty print
:l <file> Load file
:r <file> Reload file (erases previous environment)
:i <name> Info about an identifier
:q Quit
>>> :l data/samples/good/common.ka
OK
>>> :e plus three two
suc (suc (suc (suc (suc zero))))
>>> :t plus three two
Type: Nat

Figure 10: A sample run of the Bertus prompt.
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Figure 11: High level overview of the life of a Bertus prompt cycle.

ConDestr Short for ‘Constructors/Destructors’, converts applications of data destructors
and constructors to a special form, to perform bidirectional type checking.

Reference Occurrences of Type get decorated by a unique reference, which is necessary to
implement the type hierarchy check.

Elaborate/Typecheck/Evaluate Elaboration converts the declaration to some context items,
which might be a value declaration (type and body) or a data type declaration (con-
structors and destructors). This phase works in tandem with Type checking, which
in turns needs to Evaluate terms.

Distill and report the result. ‘Distilling’ refers to the process of converting a core term
back to a sugared version that we can show to the user. This can be necessary both to
display errors including terms or to display result of evaluations or type checking that
the user has requested. Among the other things in this stage we go from nameless
back to names by recycling the names that the user used originally, as to fabricate a
term which is as close as possible to what it originated from.

Pretty print Format the terms in a nice way, and display them to the user.

Here we will review only a sampling of the more interesting implementation challenges
present when implementing an interactive theorem prover.

7.1 Syntax

The syntax of Bertus is presented in Figure 12. Examples showing the usage of most of
the constructs—excluding the OTT-related ones—are present in Appendices B.1.2, B.2, and
B.3; plus a tutorial in Section 8.1. The syntax has grown organically with the needs of the
language, and thus is not very sophisticated. The grammar is specified in and processed
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by the happy parser generator for Haskell.17 Tokenisation is performed by a simple hand
written lexer.

7.2 Term representation

7.2.1 Naming and substituting

Perhaps surprisingly, one of the most difficult challenges in implementing a theory of the
kind presented is choosing a good data type for terms, and specifically handling substitu-
tions in a sane way.

There are two broad schools of thought when it comes to naming variables, and thus
substituting:

Nameful Bound variables are represented by some enumerable data type, just as we have
described up to now, starting from Section 2.1. The problem is that avoiding name
capturing is a nightmare, both in the sense that it is not performant—given that we
need to rename rename substitute each time we ‘enter’ a binder—but most impor-
tantly given the fact that in even slightly more complicated systems it is very hard to
get right, even for experts.

One of the sore spots of explicit names is comparing terms up to α-renaming, which
again generates a huge amounts of substitutions and requires special care.

Nameless We can capture the relationship between variables and their binders, by getting
rid of names altogether, and representing bound variables with an index referring to
the ‘binding’ structure, a notion introduced by de Bruijn (1972). Usually 0 represents
the variable bound by the innermost binding structure, 1 the second-innermost, and
so on. For instance with simple abstractions we might have

λ (λ 0 (λ 0)) (λ 1 0) : ((A→ A)→ B)→ B, which corresponds to
λ f 7→ (λg 7→ g (λx 7→ x)) (λx 7→ f x) : ((A→ A)→ B)→ B

While this technique is obviously terrible in terms of human usability,18 it is much
more convenient as an internal representation to deal with terms mechanically—at
least in simple cases. α-renaming ceases to be an issue, and term comparison is
purely syntactical.

Nonetheless, more complex constructs such as pattern matching put some strain on
the indices and many systems end up using explicit names anyway.

In the past decade or so advancements in the Haskell’s type system and in general the
spread new programming practices have made the nameless option much more amenable.
Bertus thus takes the nameless path through the use of Edward Kmett’s excellent bound
library.19 We describe the advantages of bound’s approach, but also its pitfalls in the pre-
viously relatively unknown territory of dependent types—bound being created mostly to
handle more simply typed systems.

bound builds on the work of Bird & Paterson (1999), who suggested to parametrising
the term type over the type of the variables, and ‘nest’ the type each time we enter a scope.
If we wanted to define a term for the untyped λ-calculus, we might have

-- A type with no members.
data Empty

17Available at http://www.haskell.org/happy.
18With some people going as far as defining it akin to an inverse Turing test.
19Available at http://hackage.haskell.org/package/bound.
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A name, in regexp notation.
〈name〉 ::= [a-zA-Z] [a-zA-Z0-9’_-]*

A binder might or might not (_) bind a name.
〈binder〉 ::= _ | 〈name〉

A series of typed bindings.
〈telescope〉 ::= ([ 〈binder〉 : 〈term〉 ])∗

Terms, including propositions.
〈term〉 ::= 〈name〉 A variable.

| * Type.
| {| 〈term〉∗ |} Type holes.
| Prop Prop.
| Top | Bot > and ⊥.
| 〈term〉 /\ 〈term〉 Conjuctions.
| [| 〈term〉 |] Proposition decoding.
| coe 〈term〉 〈term〉 〈term〉 〈term〉 Coercion.
| coh 〈term〉 〈term〉 〈term〉 〈term〉 Coherence.
| ( 〈term〉 : 〈term〉 ) = ( 〈term〉 : 〈term〉 ) Heterogeneous equality.
| ( 〈compound〉 ) Parenthesised term.

〈compound〉 ::= \ 〈binder〉∗ => 〈term〉 Untyped abstraction.
| \ 〈telescope〉 : 〈term〉 => 〈term〉 Typed abstraction.
| forall 〈telescope〉 〈term〉 Universal quantification.
| 〈arr〉

〈arr〉 ::= 〈telescope〉 -> 〈arr〉 Dependent function.
| 〈term〉 -> 〈arr〉 Non-dependent function.
| 〈term〉+ Application.

Typed names.
〈typed〉 ::= 〈name〉 : 〈term〉

Declarations.
〈decl〉 ::= 〈value〉 | 〈abstract〉 | 〈data〉 | 〈record〉

Defined values. The telescope specifies named arguments.
〈value〉 ::= 〈name〉 〈telescope〉 : 〈term〉 => 〈term〉

Abstracted variables.
〈abstract〉 ::= postulate 〈typed〉

Data types, and their constructors.
〈data〉 ::= data 〈name〉 : 〈telescope〉 -> * => { 〈constrs〉 }
〈constrs〉 ::= 〈typed〉

| 〈typed〉 | 〈constrs〉
Records, and their projections. The 〈name〉 before the projections is the constructor name.
〈record〉 ::= record 〈name〉 : 〈telescope〉 -> * => 〈name〉 { 〈projs〉 }
〈projs〉 ::= 〈typed〉

| 〈typed〉 , 〈projs〉

Figure 12: Bertus’ syntax. The non-terminals are marked with 〈angle brackets〉 for greater
clarity. The syntax in the implementation is actually more liberal, for example giving the
possibility of using arrow types directly in constructor/projection declarations.
Additionally, we give the user the possibility of using Unicode characters instead of their
ASCII counterparts, e.g. → in place of ->, ń in place of \, etc.
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data Var v = Bound | Free v

data Tm v
= V v -- Bound variable
| App (Tm v) (Tm v) -- Term application
| Lam (Tm (Var v)) -- Abstraction

Closed terms would be of type Tm Empty, so that there would be no occurrences of V.
However, inside an abstraction, we can have V Bound, representing the bound variable, and
inside a second abstraction we can have V Bound or V (Free Bound). Thus the term

λx 7→ λy 7→ x

can be represented as

-- The top level term is of type ‘Tm Empty’.
-- The inner term ‘Lam (Free Bound)’ is of type ‘Tm (Var Empty)’.
-- The second inner term ‘V (Free Bound)’ is of type ‘Tm (Var (Var
-- Empty))’.
Lam (Lam (V (Free Bound)))

This allows us to reflect the ‘nestedness’ of a type at the type level, and since we usually
work with functions polymorphic on the parameter v it’s very hard to make mistakes by
putting terms of the wrong nestedness where they do not belong.

Even more interestingly, the substitution operation is perfectly captured by the >>=
(bind) operator of the Monad type class:

class Monad m where
return :: m a
(>>=) :: m a -> (a -> m b) -> m b

instance Monad Tm where
-- ‘return’ing turns a variable into a ‘Tm’
return = V

-- ‘t >>= f’ takes a term ‘t’ and a mapping from variables to terms
-- ‘f’ and applies ‘f’ to all the variables in ‘t’, replacing them
-- with the mapped terms.
V v >>= f = f v
App m n >>= f = App (m >>= f) (n >>= f)

-- ‘Lam’ is the tricky case: we modify the function to work with bound
-- variables, so that if it encounters ‘Bound’ it leaves it untouched
-- (since the mapping refers to the outer scope); if it encounters a
-- free variable it asks ‘f’ for the term and then updates all the
-- variables to make them refer to the outer scope they were meant to
-- be in.
Lam s >>= f = Lam (s >>= bump)

where bump Bound = return Bound
bump (Free v) = f v >>= V . Free

With this in mind, we can define functions which will not only work on Tm, but on any
Monad!
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-- Replaces free variable ‘v’ with ‘m’ in ‘n’.
subst :: (Eq v, Monad m) => v -> m v -> m v -> m v
subst v m n = n >>= \v’ -> if v == v’ then m else return v’

-- Replace the variable bound by ‘s’ with term ‘t’.
inst :: Monad m => m v -> m (Var v) -> m v
inst t s = s >>= \v -> case v of

Bound -> t
Free v’ -> return v’

The beauty of this technique is that with a few simple functions we have defined all the core
operations in a general and ‘obviously correct’ way, with the extra confidence of having the
type checker looking our back. For what concerns term equality, we can just ask the H
Haskell compiler to derive the instance for the Eq type class and since we are nameless that
will be enough (modulo fancy quotation).

Moreover, if we take the top level term type to be Tm String, we get a representation of
terms with top-level definitions; where closed terms contain only String references to said
definitions—see also McBride & McKinna (2004b).

What are then the pitfalls of this seemingly invincible technique? The most obvious im-
pediment is the need for polymorphic recursion. Functions traversing terms parameterized
by the variable type will have types such as

-- Infer the type of a term, or return an error.
infer :: Tm v -> Either Error (Tm v)

When traversing under a Scope the parameter changes from v to Var v, and thus if we
do not specify the type for our function explicitly inference will fail—type inference for
polymorphic recursion being undecidable (Henglein, 1993). This causes some annoyance,
especially in the presence of many local definitions that we would like to leave untyped.

But the real issue is the fact that giving a type parameterized over a variable—say m v—
a Monad instance means being able to only substitute variables for values of type m v. This
is a considerable inconvenience. Consider for instance the case of telescopes, which are
a central tool to deal with contexts and other constructs. In Haskell we can give them a
faithful representation with a data type along the lines of

data Tele m v = Empty (m v) | Bind (m v) (Tele m (Var v))
type TeleTm = Tele Tm

The problem here is that what we want to substitute for variables in Tele m v is m v (prob-
ably Tm v), not Tele m v itself! What we need is

bindTele :: Monad m => Tele m a -> (a -> m b) -> Tele m b
substTele :: (Eq v, Monad m) => v -> m v -> Tele m v -> Tele m v
instTele :: Monad m => m v -> Tele m (Var v) -> Tele m v

Not what Monad gives us. Solving this issue in an elegant way has been a major sink of
time and source of headaches for the author, who analysed some of the alternatives—most
notably the work by Weirich et al. (2011)—but found it impossible to give up the simplicity
of the model above.

That said, our term type is still reasonably brief, as shown in full in Appendix B.4.
The fact that propositions cannot be factored out in another data type is an instance of
the problem described above. However the real pain is during elaboration, where we are
forced to treat everything as a type while we would much rather have telescopes. Future
work would include writing a library that marries more flexibility with a nice interface
similar to the one of bound.
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We also make use of a ‘forgetful’ data type (as provided by bound) to store user-provided
variables names along with the ‘nameless’ representation, so that the names will not be
considered when compared terms, but will be available when distilling so that we can
recover variable names that are as close as possible to what the user originally used.

7.2.2 Evaluation

Another source of contention related to term representation is dealing with evaluation.
Here Bertus does not make bold moves, and simply employs substitution. When type
checking we match types by reducing them to their weak head normal form, as to avoid
unnecessary evaluation.

We treat data types eliminators and record projections in an uniform way, by elaborating
declarations in a series of rewriting rules:

type Rewr =
forall v.
Tm v -> -- Term to which the destructor is applied
[Tm v] -> -- List of other arguments
-- The result of the rewriting, if the eliminator reduces.
Maybe [Tm v]

A rewriting rule is polymorphic in the variable type, guaranteeing that it just pattern
matches on terms structure and rearranges them in some way, and making it possible
to apply it at any level in the term. When reducing a series of applications we match the
first term and check if it is a destructor, and if that’s the case we apply the reduction rule
and reduce further if it yields a new list of terms.

This has the advantage of simplicity, at the expense of being quite poor in terms of
performance and that we need to do quotation manually. An alternative that solves both
of these is the already mentioned normalisation by evaluation, where we would compute by
turning terms into Haskell values, and then reify back to terms to compare them—a useful
tutorial on this technique is given by Löh et al. (2010).

However, quotation has its disadvantages. The most obvious one is that it is less simple:
we need to set up some infrastructure to handle the quotation and reification, while with
substitution we have a uniform representation through the process of type checking. The
second is that performance advantages can be rendered less effective by the continuous
quoting and reifying, although this can probably be mitigated with some heuristics.

7.2.3 Parameterize everything!

Through the life of a REPL cycle we need to execute two broad ‘effectful’ actions:

• Retrieve, add, and modify elements to an environment. The environment will contain
not only types, but also the rewriting rules presented in the previous section, and a
counter to generate fresh references for the type hierarchy.

• Throw various kinds of errors when something goes wrong: parsing, type checking,
input/output error when reading files, and more.

Haskell taught us the value of monads in programming languages, and in Bertus we keep
this lesson in mind. All of the plumbing required to do the two actions above is provided
by a very general monad transformer that we use through the codebase, KMonadT:

newtype KMonad f v m a = KMonad (StateT (f v) (ErrorT KError m) a)

data KError
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= OutOfBounds Id
| DuplicateName Id
| IOError IOError
| ...

Without delving into the details of what a monad transformer is,20 this is what KMonadT
works with and provides:

• The v parameter represents the parameterized variable for the term type that we
spoke about at the beginning of this section. More on this later.

• The f parameter indicates what kind of environment we are holding. Sometimes we
want to traverse terms without carrying the entire environment, for various reasons—
KMonatT lets us do that. Note that f is itself parameterized over v. The inner StateT
monad transformer lets us retrieve and modify this environment at any time.

• The m is the ‘inner’ monad that we can ‘plug in’ to be able to perform more effectful
actions in KMonatT. For example if we plug the IO monad in, we will be able to do
input/output.

• The inner ErrorT lets us throw errors at any time. The error type is KError, which
describes all the possible errors that a Bertus process can throw.

• Finally, the a parameter represents the return type of the computation we are execut-
ing.

The clever trick in KMonadT is to have it to be parametrised over the same type as the
term type. This way, we can easily carry the environment while traversing under binders.
For example, if we only needed to carry types of bound variables in the environment, we
can quickly set up the following infrastructure:

data Tm v = ...

-- A context is a mapping from variables to types.
newtype Ctx v = Ctx (v -> Tm v)

-- A context monad holds a context.
type CtxMonad v m = KMonadT Ctx v m

-- Enter into a scope binding a type to the variable, execute a
-- computation there, and return exit the scope returning to the ‘current’
-- context.
nestM :: Monad m => Tm v -> CtxMonad (Var v) m a -> CtxMonad v m a
nestM = ...

Again, the types guard our back guaranteeing that we add a type when we enter a scope,
and we discharge it when we get out. The author originally started with a more traditional
representation and often forgot to add the right variable at the right moment. Using this
practices it is very difficult to do so—we achieve correctness through types.

In the actual Bertus codebase, we have also abstracted the concept of ‘context’ further,
so that we can easily embed contexts into other structures and write generic operations on
all context-like structures.21

20See https://en.wikibooks.org/wiki/Haskell/Monad_transformers.
21See the Kant.Cursor module for details.
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Figure 13: Strong constraints overrule weak constraints.

7.3 Turning a hierarchy into some graphs

In this section we will explain how to implement the typical ambiguity we have spoken
about in 6.4 efficiently, a subject which is often dismissed in the literature. As mentioned,
we have to verify a the consistency of a set of constraints each time we add a new one. The
constraints range over some set of variables whose members we will denote with x, y, z, . . . .
and are of two kinds:

x ≤ y x < y

Predictably, ≤ expresses a reflexive order, and < expresses an irreflexive order, both
working with the same notion of equality, where x < y implies x ≤ y—they behave like ≤
and < do for natural numbers (or in our case, levels in a type hierarchy). We also need an
equality constraint (x = y), which can be reduced to two constraints x ≤ y and y ≤ x.

Given this specification, we have implemented a standalone Haskell module—that we
plan to release as a library—to efficiently store and check the consistency of constraints. The
problem predictably reduces to a graph algorithm, and for this reason we also implement
a library for labelled graphs, since the existing Haskell graph libraries fell short in different
areas.22 The interfaces for these modules are shown in Appendix B.5. The graph library is
implemented as a modification of the code described by King & Launchbury (1995).

We represent the set by building a graph where vertices are variables, and edges are
constraints between them, labelled with the appropriate constraint: x < y gives rise to a
<-labelled edge from x to y, and x ≤ y to a ≤-labelled edge from x to y. As we add
constraints, ≤ constraints are replaced by < constraints, so that if we started with an
empty set and added

x < y, y ≤ z, z ≤ k, k < j, j ≤ y

it would generate the graph shown in Figure 13a, but adding z < k would strengthen the
edge from z to k, as shown in 13b.

Definition (Strongly connected component). A strongly connected component in a graph
with vertices V is a subset of V, say V ′, such that for each (v1, v2) ∈ V ′ ×V ′ there is a path from
v1 to v2.

The SCCs in the graph for the constraints above is shown in Figure 13c. If we have a
strongly connected component with a < edge—say x < y—in it, we have an inconsistency,
since there must also be a path from y to x, and by transitivity it must either be the case
that y ≤ x or y < x, which are both at odds with x < y.

Moreover, if we have a SCC with no < edges, it means that all members of said SCC are
equal, since for every x ≤ y we have a path from y to x, which again by transitivity means
that y ≤ x. Thus, we can condense the SCC to a single vertex, by choosing a variable among

22We tried the Data.Graph module in http://hackage.haskell.org/package/containers, and the much
more featureful fgl library http://hackage.haskell.org/package/fgl.
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the SCC as a representative for all the others. This can be done efficiently with disjoint set
data structure, and is crucial to keep the graph compact, given the very large number of
constraints generated when type checking.

7.4 (Web) REPL

Finally, we take a break from the types by giving a brief account of the design of our REPL,
being a good example of modular design using various constructs dear to the Haskell
programmer.

Keeping in mind the KMonadT monad described in Section 7.2.3, the REPL is represented
as a function in KMonadT consuming input and hopefully producing output. Then, front
ends can very easily written by marshalling data in and out of the REPL:

data Input
= ITyCheck String -- Type check a term
| IEval String -- Evaluate a term
| IDecl String -- Declare something
| ...

data Output
= OTyCheck TmRefId [HoleCtx] -- Type checked term, with holes
| OPretty TmRefId -- Term to pretty print, after evaluation

-- Just holes, classically after loading a file
| OHoles [HoleCtx]
| ...

-- KMonadT is parametrised over the type of the variables, which depends
-- on how deep in the term structure we are. For the REPL, we only deal
-- with top-level terms, and thus only ‘Id’ variables---top level names.
type REPL m = KMonadT Id m

repl :: ReadFile m => Input -> REPL m Output
repl = ...

The ReadFile monad embodies the only ‘extra’ action that we need to have access too when
running the REPL: reading files. We could simply use the IO monad, but this will not serve
us well when implementing front end facing untrusted parties accessing the application
running on our servers. In our case we expose the REPL as a web application, and we
want the user to be able to load only from a pre-defined directory, not from the entire file
system.

For this reason we specify ReadFile to have just one function:

class Monad m => ReadFile m where
readFile’ :: FilePath -> m (Either IOError String)

While in the command-line application we will use the IO monad and have readFile’ to
work in the ‘obvious’ way—by reading the file corresponding to the given file path—in
the web prompt we will have it to accept only a file name, not a path, and read it from a
pre-defined directory:

-- The monad that will run the web REPL. The ‘ReaderT’ holds the
-- filepath to the directory where the files loadable by the user live.
-- The underlying ‘IO’ monad will be used to actually read the files.
newtype DirRead a = DirRead (ReaderT FilePath IO a)
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Figure 14: A sample run of the web prompt.

instance ReadFile DirRead where
readFile’ fp =

do -- We get the base directory in the ‘ReaderT’ with ‘ask’
dir <- DirRead ask
-- Is the filepath provided an unqualified file name?
if snd (splitFileName fp) == fp

-- If yes, go ahead and read the file, by lifting
-- ‘readFile’’ into the IO monad
then DirRead (lift (readFile’ (dir </> fp)))
-- If not, return an error
else return (Left (strMsg ("Invalid file name ‘" ++ fp ++ "’")))

Once this light-weight infrastructure is in place, adding a web interface was an easy ex-
ercise. We use Jasper Van der Jeugt’s websockets library23 to create a proxy that receives
JSON24 messages with the user input, turns them into Input messages for the REPL, and
then sends back a JSON message with the response. Moreover, each client is handled in
a separate threads, so crashes of the REPL for a certain client will not bring the whole
application down.

On the front end side, we had to write some JavaScript to accept input from a form,
and to make the responses appear on the screen. The web prompt is publicly available at
http://bertus.mazzo.li, a sample session is shown Figure 14.

23Available at http://hackage.haskell.org/package/websockets.
24JSON is a popular data interchange format, see http://json.org for more info.
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8 | Evaluation

Going back to our goals in Section 1.2, we feel that this thesis fills a gap in the description of
observational type theory. In the design of Bertus we willingly patterned the core features
against the ones present in Agda, with the hope that future implementors will be able to
refer to this document without embarking on the same adventure themselves. We gave an
original account of heterogeneous equality by showing that in a cumulative hierarchy we
can keep equalities as small as we would be able too with a separate notion of type equality.
As a side effect of developing Bertus, we also gave an original account of bidirectional type
checking for user defined types, which get rid of many types while keeping the language
very simple.

Through the design of the theory of Bertus we have followed an approach where study
and implementation were continuously interleaved, as a ‘reality check’ for the ideas that we
wished to implement. Given the great effort necessary to build a theorem prover capable
of ‘real-world’ proofs we have not attempted to compare Bertus’s capabilities to those of
Agda and Coq, the theorem provers that the author is most familiar with and in general
two of the main players in the field. However we have ported a lot of simpler examples
to check that the key features are working, some of which have been used in the previous
sections and are reproduced in the appendices25. A full example of interaction with Bertus

is given in Section 8.1.
The main culprits for the delays in the implementation are two issues that revealed

themselves to be far less obvious than what the author predicted. The first, as we have
already remarked in Section 7.2, is to have an adequate term representation that lets us
express the right constructs in a safe way. There is still no widely accepted solution to
this problem, which is approached in many different ways both in the literature and in
the programming practice. The second aspect is the treatment of user defined data types.
Again, the best techniques to implement them in a dependently typed setting still have not
crystallised and implementors reinvent many wheels each time a new system is built. The
author is still conflicted on whether having user defined types at all it is the right decision:
while they are essential, the recent discovery of a paper by Dagand & McBride (2012)
describing a way to efficiently encode user-defined data types to a set of core primitives—
an option that seems very attractive.

In general, implementing dependently typed languages is still a poorly understood
practice, and almost every stage requires experimentation on behalf of the author. An-
other example is the treatment of the implicit hierarchy, where no resources are present
describing the problem from an implementation perspective (we described our approach
in Section 7.3). Hopefully this state of things will change in the near future, and recent
publications are promising in this direction, for example an unpublished paper by Brady
(2013) describing his implementation of the Idris programming language. Our ultimate
goal is to be a part of this collective effort.

8.1 A type holes tutorial

As a taster and showcase for the capabilities of Bertus, we present an interactive session
with the Bertus REPL. While doing so, we present a feature that we still have not covered:
type holes.

Type holes are, in the author’s opinion, one of the ‘killer’ features of interactive theorem
provers, and one that is begging to be exported to mainstream programming—although it
is much more effective in a well-typed, functional setting. The idea is that when we are

25The full list is available in the repository: https://github.com/bitonic/kant/tree/master/data/
samples/good.
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developing a proof or a program we can insert a hole to have the software tell us the type
expected at that point. Furthermore, we can ask for the type of variables in context, to
better understand our surroundings.

In Bertus we use type holes by putting them where a term should go. We need to
specify a name for the hole and then we can put as many terms as we like in it. Bertus

will tell us which type it is expecting for the term where the hole is, and the type for each
term that we have included. For example if we had:

plus [m n : Nat] : Nat ⇒ (
{| h1 m n |}

)

And we loaded the file in Bertus, we would get:

>>> :l plus.ka
Holes:

h1 : Nat
m : Nat
n : Nat

Suppose we wanted to define the ‘less or equal’ ordering on natural numbers as de-
scribed in Section 6.3.3. We will incrementally build our functions in a file called le.ka.
First we define the necessary types, all of which we know well by now:

data Nat : ? ⇒ { zero : Nat | suc : Nat → Nat }

data Empty : ? ⇒ { }
absurd [A : ?] [p : Empty] : A ⇒ (

Empty-Elim p (ń _ ⇒ A)
)

record Unit : ? ⇒ tt { }

Then fire up Bertus, and load the file:

% ./bertus
B E R T U S
Version 0.0, made in London, year 2013.
>>> :l le.ka
OK

So far so good. Our definition will be defined by recursion on a natural number n, which
will return a function that given another number m will return the trivial type Unit if n ≤ m,
and the Empty type otherwise. However we are still not sure on how to define it, so we
invoke Nat-Elim, the eliminator for natural numbers, and place holes instead of arguments.
In the file we will write:

le [n : Nat] : Nat → ? ⇒ (
Nat-Elim n (ń _ ⇒ Nat → ?)

{|h1|}
{|h2|}

)

And then we reload in Bertus:
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>>> :r le.ka
Holes:

h1 : Nat → ?
h2 : Nat → (Nat → ?) → Nat → ?

Which tells us what types we need to satisfy in each hole. However, it is not that clear what
does what in each hole, and thus it is useful to have a definition vacuous in its arguments
just to clear things up. We will use Le aid in reading the goal, with Le m n as a reminder
that we to return the type corresponding to m ≤ n:

Le [m n : Nat] : ? ⇒ ?

le [n : Nat] : [m : Nat] → Le n m ⇒ (
Nat-Elim n (ń n ⇒ [m : Nat] → Le n m)

{|h1|}
{|h2|}

)

>>> :r le.ka
Holes:

h1 : [m : Nat] → Le zero m
h2 : [x : Nat] → ([m : Nat] → Le x m) → [m : Nat] → Le (suc x) m

This is much better! Bertus, when printing terms, does not substitute top-level names for
their bodies, since usually the resulting term is much clearer. As a nice side-effect, we can
use tricks like this to find guidance.

In this case in the first case we need to return, given any number m, 0 ≤ m. The trivial
type will do, since every number is less or equal than zero:

le [n : Nat] : [m : Nat] → Le n m ⇒ (
Nat-Elim n (ń n ⇒ [m : Nat] → Le n m)

(ń _ ⇒ Unit)
{|h2|}

)

>>> :r le.ka
Holes:

h2 : [x : Nat] → ([m : Nat] → Le x m) → [m : Nat] → Le (suc x) m

Now for the important case. We are given our comparison function for a number, and we
need to produce the function for the successor. Thus, we need to re-apply the induction
principle on the other number, m:

le [n : Nat] : [m : Nat] → Le n m ⇒ (
Nat-Elim n (ń n ⇒ [m : Nat] → Le n m)

(ń _ ⇒ Unit)
(ń n’ f m ⇒ Nat-Elim m (ń m’ ⇒ Le (suc n’) m’) {|h2|} {|h3|})

)

>>> :r le.ka
Holes:

h2 : ?
h3 : [x : Nat] → Le (suc n’) x → Le (suc n’) (suc x)
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In the first hole we know that the second number is zero, and thus we can return empty.
In the second case, we can use the recursive argument f on the two numbers:

le [n : Nat] : [m : Nat] → Le n m ⇒ (
Nat-Elim n (ń n ⇒ [m : Nat] → Le n m)

(ń _ ⇒ Unit)
(ń n’ f m ⇒

Nat-Elim m (ń m’ ⇒ Le (suc n’) m’) Empty (ń f _ ⇒ f m’))
)

We can verify that our function works as expected:

>>> :e le zero zero
Unit
>>> :e le zero (suc zero)
Unit
>>> :e le (suc (suc zero)) (suc zero)
Empty

The other functionality of type holes is examining types of things in context. Going back
to the examples in Section 3.3.1, we can implement the safe head function with our newly
defined le:

data List : [A : ?] → ? ⇒
{ nil : List A | cons : A → List A → List A }

length [A : ?] [l : List A] : Nat ⇒ (
List-Elim l (ń _ ⇒ Nat) zero (ń _ _ n ⇒ suc n)

)

gt [n m : Nat] : ? ⇒ (le (suc m) n)

head [A : ?] [l : List A] : gt (length A l) zero → A ⇒ (
List-Elim l (ń l ⇒ gt (length A l) zero → A)

(ń p ⇒ {|h1 p|})
{|h2|}

)

We define Lists, a polymorphic length function, and express < (gt) in terms of ≤. Then,
we set up the type for our head function. Given a list and a proof that its length is greater
than zero, we return the first element. If we load this in Bertus, we get:

>>> :r le.ka
Holes:

h1 : A
p : Empty

h2 : [x : A] [x1 : List A] →
(gt (length A x1) zero → A) →
gt (length A (cons x x1)) zero → A

In the first case (the one for nil), we have a proof of Empty—surely we can use absurd to
get rid of that case. In the second case we simply return the element in the cons:

head [A : ?] [l : List A] : gt (length A l) zero → A ⇒ (
List-Elim l (ń l ⇒ gt (length A l) zero → A)
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(ń p ⇒ absurd A p)
(ń x _ _ _ ⇒ x)

)

Now, if we tried to get the head of an empty list, we face a problem:

>>> :t head Nat nil
Type: Empty → Nat

We would have to provide something of type Empty, which hopefully should be impossible.
For non-empty lists, on the other hand, things run smoothly:

>>> :t head Nat (cons zero nil)
Type: Unit → Nat
>>> :e head Nat (cons zero nil) tt
zero

This should give a vague idea of why type holes are so useful and in more in general about
the development process in Bertus. Most interactive theorem provers offer some kind of
facility to... interactively develop proofs, usually much more powerful than the fairly bare
tools present in Bertus. Agda in particular offers a celebrated interactive mode for the
Emacs text editor.
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9 | Future work

The first move that the author plans to make is to work towards a simple but powerful
term representation. A good plan seems to be to associate each type (terms, telescopes,
etc.) with what we can substitute variables with, so that the term type will be associated
with itself, while telescopes and propositions will be associated to terms. This can probably
be accomplished elegantly with Haskell’s type families (Chakravarty et al. , 2005). After
achieving a more solid machinery for terms, implementing observational equality fully
should prove relatively easy.

Beyond this steps, we can go in many directions to improve the system that we described—
here we review the main ones.

Pattern matching and recursion Eliminators are very clumsy, and using them can be espe-
cially frustrating if we are used to writing functions via explicit recursion. Giménez
(1995) showed how to reduce well-founded recursive definitions to primitive recur-
sors. Intuitively, defining a function through an eliminators corresponds to pattern
matching and recursively calling the function on the recursive occurrences of the type
we matched against.

Nested pattern matching can be justified by identifying a notion of ‘structurally
smaller’, and allowing recursive calls on all smaller arguments. Epigram goes all
the way and actually implements recursion exclusively by providing a convenient
interface to the two constructs above (McBride, 2004; McBride & McKinna, 2004a).

However as we extend the flexibility in our recursion elaborating definitions to elim-
inators becomes more and more laborious. For example we might want mutually
recursive definitions and definitions that terminate relying on the structure of two ar-
guments instead of just one. For this reason both Agda and Coq (Agda putting more
effort) let the user write recursive definitions freely, and then employ an external
syntactic one the recursive calls to ensure that the definitions are terminating.

Moreover, if we want to use dependently typed languages for programming pur-
poses, we will probably want to sidestep the termination checker and write a pos-
sibly non-terminating function; maybe because proving termination is particularly
difficult. With explicit recursion this amounts to turning off a check, if we have only
eliminators it is impossible.

More powerful data types A popular improvement on basic data types are inductive fam-
ilies (Dybjer, 1991), where the parameters for the type constructors can change based
on the data constructors, which lets us express naturally types such as Vec : N →
Type, which given a number returns the type of lists of that length, or Fin : N→ Type,
which given a number n gives the type of numbers less than n. This apparent omis-
sion was motivated by the fact that inductive families can be represented by adding
equalities concerning the parameters of the type constructors as arguments to the
data constructor, in much the same way that Generalised Abstract Data Types (The
GHC Team, 2012) are handled in Haskell. Interestingly the modified version of Sys-
tem F that lies at the core of recent versions of GHC features coercions reminiscent
of those found in OTT, motivated precisely by the need to implement GADTs in an
elegant way (Sulzmann et al. , 2007).

Another concept introduced by Dybjer (2000) is induction-recursion, where we define
a data type in tandem with a function on that type. This technique has proven ex-
tremely useful to define embeddings of other calculi in an host language, by defining
the representation of the embedded language as a data type and at the same time a
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function decoding from the representation to a type in the host language. The decod-
ing function is then used to define the data type for the embedding itself, for example
by reusing the host’s language functions to describe functions in the embedded lan-
guage, with decoded types as arguments.

It is also worth mentioning that in recent times there has been work (Dagand &
McBride, 2012; Chapman et al. , 2010) to show how to define a set of primitives that
data types can be elaborated into. The big advantage of the approach proposed is
enabling a very powerful notion of generic programming, by writing functions work-
ing on the ‘primitive’ types as to be workable by all the other ‘compatible’ elaborated
user defined types. This has been a considerable problem in the dependently type
world, where we often define types which are more ‘strongly typed’ version of sim-
ilar structures,26 and then find ourselves forced to redefine identical operations on
both types.

Pattern matching and inductive families The notion of inductive family also yields a more
interesting notion of pattern matching, since matching on an argument influences the
value of the parameters of the type of said argument. This means that pattern match-
ing influences the context, which can be exploited to constraint the possible data
constructors for other arguments (McBride & McKinna, 2004a).

Type inference While bidirectional type checking helps at a very low cost of implemen-
tation and complexity, a much more powerful weapon is found in pattern unification,
which allows Hindley-Milner style inference for dependently typed languages. Unifi-
cation for higher order terms is undecidable and unification problems do not always
have a most general unifier (Huet, 1973). However Miller (1992) identified a decid-
able fragment of higher order unification commonly known as pattern unification,
which is employed in most theorem provers to drastically reduce the number of type
annotations. Gundry & McBride (2013) provide a tutorial on this practice.

Coinductive data types When we specify inductive data types, we do it by specifying its
constructors—functions with the type we are defining as codomain. Then, we are
offered way of compute by recursively destructing or eliminating a member of the
defined data type.

Coinductive data types are the dual of this approach. We specify ways to destruct
data, and we are given a way to generate the defined type by repeatedly ‘unfolding’
starting from some seed. For example, we could defined infinite streams by specifying
a head and tail destructors—here using a syntax reminiscent of Bertus records:

codata Stream (A:Type) where
{head : A, tail : Stream A}

which will hopefully give us something like

head : (A:Type)→ Stream A→ A
tail : (A:Type)→ Stream A→ Stream A
Stream.unfold : (A B:Type)→ (A→ B × A)→ A→ Stream B

Where, in unfold, B × A represents the fields of Stream but with the recursive occur-
rence replaced by the ‘seed’ type A.

Beyond simple infinite types like Stream, coinduction is particularly useful to write
non-terminating programs like servers or software interacting with a user, while

26For example the OList presented in Section 6.3.3 being a ‘more typed’ version of an ordinary list.
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guaranteeing their liveliness. Moreover it lets us model possibly non-terminating
computations in an elegant way (Capretta, 2005), enabling for example the study of
operational semantics for non-terminating languages (Danielsson, 2012).

Cockett & Fukushima (1992) pioneered this approach in their programming language
Charity, and coinduction has since been adopted in systems such as Coq (Giménez,
1996) and Agda. However these implementations are unsatisfactory, since Coq’s
break subject reduction; and Agda, to avoid this problem, does not allow types to
depend on the unfolding of codata. McBride (2009) has shown how observational
equality can help to resolve these issues, since we can reason about the unfoldings in
a better way, like we reason about functions’ extensional behaviour.

The author looks forward to the study and possibly the implementation of these ideas
in the years to come.
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A | Notation and syntax

Syntax, derivation rules, and reduction rules, are enclosed in frames describing the type of
relation being established and the syntactic elements appearing, for example

typing: Γ ` term : type

Typing derivations here.

In the languages presented and Agda code samples we also highlight the syntax, fol-
lowing a uniform colour, capitalisation, and font style convention:

Sans Type constructors.
sans Data constructors.

roman Keywords of the language.
roman Defined values and destructors.
math Bound variables.

When presenting grammars, we use a word in math font (e.g. term or type) to indicate
indicate nonterminals. Additionally, we use quite flexibly a math font to indicate a syntactic
element in derivations or meta-operations. More specifically, terms are usually indicated
by lowercase letters (often t, m, or n); and types by an uppercase letter (often A, B, or C).

When presenting type derivations, we often abbreviate and present multiple conclu-
sions, each on a separate line:

Γ ` t : A × B
Γ ` fst t : A
Γ ` snd t : B

We often present ‘definitions’ in the described calculi and in Bertus itself, like so:

name : type
name arg1 arg2 · · · 7→ term

To define operators, we use a mixfix notation similar to Agda, where _s denote arguments:

_ ∧ _ : Bool→ Bool→ Bool
b1 ∧ b2 7→ · · ·

In explicitly typed systems, we omit type annotations when they are obvious, e.g. by not
annotating the type of parameters of abstractions or of dependent pairs.
We introduce multiple arguments in one go in arrow types:

(x y:A)→ · · · = (x:A)→ (y:A)→ · · ·

and in abstractions:

λx y 7→ · · · = λx 7→ λy 7→ · · ·

We also omit arrows to abbreviate types:

(x:A)(y:B)→ · · · = (x:A)→ (y:B)→ · · ·

Meta operations names are displayed in smallcaps and written in a pattern matching
style, also making use of boolean guards. For example, a meta operation operating on a
context and terms might look like this:

quux(Γ, x) | x ∈ Γ =⇒ Γ(x)
quux(Γ, x) =⇒ outofbounds

...
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From time to time we give examples in the Haskell programming language as defined
by Marlow (2010), which we typeset in teletype font. I assume that the reader is already
familiar with Haskell, plenty of good introductions are available (Lipovača, 2009; Hutton,
2007).

Examples of Bertus code will be typeset nicely with LATEXin Section 6, to adjust with
the rest of the presentation; and in teletype font in the rest of the document, including
Section 7 and in the appendices. All the Bertus code shown is meant to be working and
ready to be inputted in a Bertus prompt or loaded from a file. Snippets of sessions in the
Bertus prompt will be displayed with a left border, to distinguish them from snippets of
code:

>>> :t ?
Type: ?
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B | Code

B.1 ITT renditions

B.1.1 Agda

Note that in what follows rules for ‘base’ types are universe-polymorphic, to reflect the
exposition. Derived definitions, on the other hand, mostly work with Set, reflecting the
fact that in the theory presented we don’t have universe polymorphism.

module ITT where
open import Level

data Empty : Set where

absurd : ∀ {a} {A : Set a}→ Empty→ A
absurd ()

¬_ : ∀ {a}→ (A : Set a)→ Set a
¬ A = A→ Empty

record Unit : Set where
constructor tt

record _×_ {a b} (A : Set a) (B : A→ Set b) : Set (a t b) where
constructor _,_
field

fst : A
snd : B fst

open _×_ public

data Bool : Set where
true false : Bool

if_/_then_else_ : ∀ {a} (x : Bool) (P : Bool→ Set a)→ P true→ P false→ P x
if true / _ then x else _ = x
if false / _ then _ else x = x

if_then_else_ : ∀ {a} (x : Bool) {P : Bool→ Set a}→ P true→ P false→ P x
if_then_else_ x {P} = if_/_then_else_ x P

data W {s p} (S : Set s) (P : S→ Set p) : Set (s t p) where
_C_ : (s : S)→ (P s→ W S P)→ W S P

rec : ∀ {a b} {S : Set a} {P : S→ Set b}
(C : W S P→ Set)→ – some conclusion we hope holds
((s : S)→ – given a shape...

(f : P s→ W S P)→ – ...and a bunch of kids...
((p : P s)→ C (f p))→ – ...and C for each kid in the bunch...
C (s C f))→ – ...does C hold for the node?

(x : W S P)→ – If so, ...
C x – ...C always holds.
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rec C c (s C f) = c s f (ń p→ rec C c (f p))

module Examples-→ where
open ITT

data N : Set where
zero : N

suc : N→ N

– These pragmas are needed so we can use number literals.
{-# BUILTIN NATURAL N #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}

data List (A : Set) : Set where
[] : List A
_::_ : A→ List A→ List A

length : ∀ {A}→ List A→ N

length [] = zero
length (_ :: l) = suc (length l)

_>_ : N→ N→ Set
zero > _ = Empty
suc _ > zero = Unit
suc x > suc y = x > y

head : ∀ {A}→ (l : List A)→ length l > 0→ A
head [] p = absurd p
head (x :: _) _ = x

module Examples-× where
open ITT
open Examples-→

even : N→ Set
even zero = Unit
even (suc zero) = Empty
even (suc (suc n)) = even n

6-even : even 6
6-even = tt

5-not-even : ¬ (even 5)
5-not-even = absurd

there-is-an-even-number : N × even
there-is-an-even-number = 6 , 6-even

_∨_ : (A B : Set)→ Set
A ∨ B = Bool × (ń b→ if b then A else B)
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left : ∀ {A B}→ A→ A ∨ B
left x = true , x

right : ∀ {A B}→ B→ A ∨ B
right x = false , x

[_,_] : {A B C : Set}→ (A→ C)→ (B→ C)→ A ∨ B→ C
[ f , g ] x =

(if (fst x) / (ń b→ if b then _ else _→ _) then f else g) (snd x)

module Examples-W where
open ITT
open Examples-×

Tr : Bool→ Set
Tr b = if b then Unit else Empty

N : Set
N = W Bool Tr

zero : N

zero = false C absurd

suc : N→ N

suc n = true C (ń _→ n)

plus : N→ N→ N

plus x y = rec
(ń _→ N)
(ń b→

if b / (ń b→ (Tr b→ N)→ (Tr b→ N)→ N)
then (ń _ f→ (suc (f tt))) else (ń _ _→ y))

x

module Equality where
open ITT

data _≡_ {a} {A : Set a} : A→ A→ Set a where
refl : ∀ x→ x ≡ x

≡-elim : ∀ {a b} {A : Set a}
(P : (x y : A)→ x ≡ y→ Set b)→
∀ {x y}→ P x x (refl x)→ (x≡y : x ≡ y)→ P x y x≡y

≡-elim P p (refl x) = p

subst : ∀ {A : Set} (P : A→ Set)→ ∀ {x y}→ (x≡y : x ≡ y)→ P x→ P y
subst P x≡y p = ≡-elim (ń _ y _→ P y) p x≡y

sym : ∀ {A : Set} (x y : A)→ x ≡ y→ y ≡ x
sym x y p = subst (ń y′ → y′ ≡ x) p (refl x)
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trans : ∀ {A : Set} (x y z : A)→ x ≡ y→ y ≡ z→ x ≡ z
trans x y z p q = subst (ń z′ → x ≡ z′) q p

cong : ∀ {A B : Set} (x y : A)→ x ≡ y→ (f : A→ B)→ f x ≡ f y
cong x y p f = subst (ń z→ f x ≡ f z) p (refl (f x))

B.1.2 Bertus

The following things are missing: W-types, since our positivity check is overly strict, and
equality, since we haven’t implemented that yet.

------------------------------------------------------------
-- Core ITT (minus W)

data Empty : ? ⇒ { }

absurd [A : ?] [x : Empty] : A ⇒ (
Empty-Elim x (ń _ ⇒ A)

)

neg [A : ?] : ? ⇒ (A → Empty)

record Unit : ? ⇒ tt { }

record Prod : [A : ?] [B : A → ?] → ? ⇒
prod {fst : A, snd : B fst}

data Bool : ? ⇒ { true : Bool | false : Bool }

-- The if_then_else_ is provided by Bool-Elim

-- A large eliminator, for convenience
ITE [b : Bool] [A B : ?] : ? ⇒ (

Bool-Elim b (ń _ ⇒ ?) A B
)

------------------------------------------------------------
-- Examples →

data Nat : ? ⇒ { zero : Nat | suc : Nat → Nat }

gt [n : Nat] : Nat → ? ⇒ (
Nat-Elim
n
(ń _ ⇒ Nat → ?)
(ń _ ⇒ Empty)
(ń n f m ⇒ Nat-Elim m (ń _ ⇒ ?) Unit (ń m’ _ ⇒ f m’))

)

data List : [A : ?] → ? ⇒
{ nil : List A | cons : A → List A → List A }

length [A : ?] [xs : List A] : Nat ⇒ (
List-Elim xs (ń _ ⇒ Nat) zero (ń _ _ n ⇒ suc n)

)
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head [A : ?] [xs : List A] : gt (length A xs) zero → A ⇒ (
List-Elim
xs
(ń xs ⇒ gt (length A xs) zero → A)
(ń p ⇒ absurd A p)
(ń x _ _ _ ⇒ x)

)

------------------------------------------------------------
-- Examples ×

data Parity : ? ⇒ { even : Parity | odd : Parity }

flip [p : Parity] : Parity ⇒ (
Parity-Elim p (ń _ ⇒ Parity) odd even

)

parity [n : Nat] : Parity ⇒ (
Nat-Elim n (ń _ ⇒ Parity) even (ń _ ⇒ flip)

)

even [n : Nat] : ? ⇒ (Parity-Elim (parity n) (ń _ ⇒ ?) Unit Empty)

one : Nat ⇒ (suc zero)
two : Nat ⇒ (suc one)
three : Nat ⇒ (suc two)
four : Nat ⇒ (suc three)
five : Nat ⇒ (suc four)
six : Nat ⇒ (suc five)

even-6 : even six ⇒ tt

even-5-neg : neg (even five) ⇒ (ń z ⇒ z)

there-is-an-even-number : Prod Nat even ⇒ (prod six even-6)

Or [A B : ?] : ? ⇒ (Prod Bool (ń b ⇒ ITE b A B))

left [A B : ?] [x : A] : Or A B ⇒ (prod true x)
right [A B : ?] [x : B] : Or A B ⇒ (prod false x)

case [A B C : ?] [f : A → C] [g : B → C] [x : Or A B] : C ⇒ (
(Bool-Elim (fst x) (ń b ⇒ ITE b A B → C) f g) (snd x)

)

B.2 Bertus examples

------------------------------------------------------------
-- Naturals

data Nat : ? ⇒ { zero : Nat | suc : Nat → Nat }

one : Nat ⇒ (suc zero)
two : Nat ⇒ (suc one)
three : Nat ⇒ (suc two)

------------------------------------------------------------
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-- Binary trees

data Tree : [A : ?] → ? ⇒
{ leaf : Tree A | node : Tree A → A → Tree A → Tree A }

------------------------------------------------------------
-- Empty types

data Empty : ? ⇒ { }

------------------------------------------------------------
-- Ordered lists

record Unit : ? ⇒ tt { }

le [n : Nat] : Nat → ? ⇒ (
Nat-Elim
n
(ń _ ⇒ Nat → ?)
(ń _ ⇒ Unit)
(ń n f m ⇒ Nat-Elim m (ń _ ⇒ ?) Empty (ń m’ _ ⇒ f m’))

)

data Lift : ? ⇒
{ bot : Lift | lift : Nat → Lift | top : Lift }

le’ [l1 : Lift] : Lift → ? ⇒ (
Lift-Elim
l1
(ń _ ⇒ Lift → ?)
(ń _ ⇒ Unit)
(ń n1 l2 ⇒ Lift-Elim l2 (ń _ ⇒ ?) Empty (ń n2 ⇒ le n1 n2) Unit)
(ń l2 ⇒ Lift-Elim l2 (ń _ ⇒ ?) Empty (ń _ ⇒ Empty) Unit)

)

data OList : [low upp : Lift] → ? ⇒
{ onil : le’ low upp → OList low upp
| ocons : [n : Nat] → OList (lift n) upp → le’ low (lift n) → OList low upp
}

data List : [A : ?] → ? ⇒
{ nil : List A | cons : A → List A → List A }

------------------------------------------------------------
-- Dependent products

record Prod : [A : ?] [B : A → ?] → ? ⇒
prod {fst : A, snd : B fst}

B.3 Bertus’ hierachy

This rendition of the Hurken’s paradox does not type check with the hierachy enabled,
type checks and loops without it. Adapted from an Agda version, available at http:
//code.haskell.org/Agda/test/succeed/Hurkens.agda.

bot : ? ⇒ ([A : ?] → A)

not [A : ?] : ? ⇒ (A → bot)
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P [A : ?] : ? ⇒ (A → ?)

U : ? ⇒ ([X : ?] → (P (P X) → X) → P (P X))

tau [t : P (P U)] : U ⇒ (
ń X f p ⇒ t (ń x ⇒ p (f (x X f)))

)

sigma [s : U] : P (P U) ⇒ (s U tau)

Delta : P U ⇒ (
ń y ⇒ not ([p : P U] → sigma y p → p (tau (sigma y)))

)

Omega : U ⇒ (
tau (ń p ⇒ [x : U] → sigma x p → p x)

)

D : ? ⇒ (
[p : P U] → sigma Omega p → p (tau (sigma Omega))

)

lem1 [p : P U] [H1 : [x : U] → sigma x p → p x] : p Omega ⇒ (
H1 Omega (ń x ⇒ H1 (tau (sigma x)))

)

lem2 : not D ⇒ (
lem1 Delta (ń x H2 H3 ⇒ H3 Delta H2 (ń p ⇒ H3 (ń y ⇒ p (tau (sigma y)))))

)

lem3 : D ⇒ (
ń p ⇒ lem1 (ń y ⇒ p (tau (sigma y)))

)

loop : bot ⇒ (lem2 lem3)

B.4 Term representation

Data type for terms in Bertus.

-- A top-level name.
type Id = String
-- A data/type constructor name.
type ConId = String

-- A term, parametrised over the variable (‘v’) and over the reference
-- type used in the type hierarchy (‘r’).
data Tm r v

= V v -- Variable.
| Ty r -- Type, with a hierarchy reference.
| Lam (TmScope r v) -- Abstraction.
| Arr (Tm r v) (TmScope r v) -- Dependent function.
| App (Tm r v) (Tm r v) -- Application.
| Ann (Tm r v) (Tm r v) -- Annotated term.
-- Data constructor, the first ConId is the type constructor and
-- the second is the data constructor.

| Con ADTRec ConId ConId [Tm r v]
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-- Data destrutor, again first ConId being the type constructor
-- and the second the name of the eliminator.

| Destr ADTRec ConId Id (Tm r v)
-- A type hole.

| Hole HoleId [Tm r v]
-- Decoding of propositions.

| Dec (Tm r v)

-- Propositions.
| Prop r -- The type of proofs, with hierarchy reference.
| Top
| Bot
| And (Tm r v) (Tm r v)
| Forall (Tm r v) (TmScope r v)
-- Heterogeneous equality.

| Eq (Tm r v) (Tm r v) (Tm r v) (Tm r v)

-- Either a data type, or a record.
data ADTRec = ADT | Rc

-- Either a coercion, or coherence.
data Coeh = Coe | Coh

B.5 Graph and constraints modules

The modules are respectively named Data.LGraph (short for ‘labelled graph’), and Data.Constraint.
The type class constraints on the type parameters are not shown for clarity, unless they are
meaningful to the function. In practice we use the Hashable type class on the vertex to
implement the graph efficiently with hash maps.

B.5.1 Data.LGraph

module Data.LGraph where

-- | A ‘representative’ for a vertex. Each vertex in the graph is
-- initially its own representative, and when condensing cycles a new
-- representative for all the vertices is choosen.
data Rep v

-- | A graph with vertices of type ‘v’ and labels of type ‘l’.
data Graph v l

-- | An ‘Edge’ is two vertices and a label. Used by the user.
type Edge v l = (v, l, v)
-- | An edge between representatives. Internally, this is what we will
-- have.
type RepEdge v l = (Rep v, l, Rep v)

-- | Empty graph.
empty :: Graph v l

-- | Adds an ‘Edge’ and returns the new ‘Graph’. Inserts the vertices
-- if missing. If the edge exists already but the label is ‘greater’
-- than the existing one, the label is replaced by the new one. Thus
-- the ‘Ord’ constraint on ‘l’.
addEdge :: Ord l => Edge v l -> Graph v l -> Graph v l

-- | All the vertices in the graph.
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vertices :: Graph v l -> [Rep v]

-- | All the edges in the graph.
edges :: Graph v l -> [RepEdge v l]

-- | Gets all the edges between the provided vertices.
inEdges :: [Rep v] -> Graph v l -> [RepEdge v l]

-- | Gets the transpose of the graph.
transpose :: Graph v l -> Graph v l

-- | A ‘Tree’ has a root node and a ‘Forest’ of successors.
data Tree v l = Node (Rep v) (Forest v l)
type Forest v l = [Tree v l]

-- | A depth first search on the graph, starting from the given
-- vertices. If there are cycles, an infinite ‘Forest’ will be
-- generated---which is fine, since the result is produced lazily.
dfs :: Graph v l -> [Rep v] -> Forest v l

-- | ‘dff gr = dfs gr (vertices gr)’
dff :: Graph v l -> Forest v l

-- | The vertices of the graph in post order.
postOrd :: Graph v l -> [Rep v]

-- | A strongly connected component (SCC) is either a single acyclic
-- vertex, or a list of vertices V where for each v1, v2 in V there is a
-- path from v1 to v2.
data SCC v l = Acyclic (Rep v) | Cyclic [Rep v]

-- | All the SCCs of the graph.
scc :: Graph v l -> [SCC v l]

-- | Condense a given SCC, choosing one representative among the nodes
-- and updating the edges accordingly.
condense :: SCC v l -> Graph v l -> Graph v l

B.5.2 Data.Constraint

module Data.Constraint where

-- | Data type holding the set of constraints, parametrised over the
-- type of the variables.
data Constrs a

-- | A representation of the constraints that we can add.
data Constr a = a :<=: a | a :<: a | a :==: a

-- | An empty set of constraints.
empty :: Constrs a

-- | Adds one constraint to the set, returns the new set of constraints
-- if consistent.
addConstr :: Constr a -> Constrs a -> Maybe (Constrs a)
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C | Addendum

After the submission of this report the author discovered a problem in the treatement of
OTT for what concerns user defined types. For future reference we keep the report intact
as submitted, and in this section we illustrate the problem and sketch a solution.

In Section 6.5.3, we decompose equalities between user defined types be equating all
the parameters of the type constructors. This is certainly enough to coerce values of those
types. In fact, always equating all the type parameters is more than we need, and this gives
rise to problems with the hierarchy.

Pretending again that we had explicit levels, consider the type

record Foo (A:Type1) where {}

Now, the type of the type constructor Foo might very well be

Foo : (A:Type1)→ Type0

We can have Type0 since we do not use the type parameter in any data constructor, and as
remarked in Section 6.4 the overall level must be at least as large to contain the types of all
the data in the data constructors.

Now, the problem is that when we equate two types formed by Foo, the equality will
be smaller than necessary:

J(Foo A1:Type0) = (Foo A2:Type0)K : Type0  
J(A1:Type1) = (A2:Type1)K : Type1

This breaks subject reduction.
The easiest ‘solution’ is to make the type constructors return larger types, keeping in

consideration parameters even if they are not used. However, as already noted, keeping
things small when possible is convenient, and here we ought to be able to do so since when
coercing we will not need equalities such as the one generated above.

In fact, it is worth asking if it is the case that, for example, FooN = Foo Bool. If we were
to mock Foo in a core theory, we could have

Foo’ : Type1 → Type0
Foo’ A 7→ >

Foo’ is isomorphic to Foo, and it is certainly the case that Foo’N = Foo’ Bool. In general it
makes sense to identify defined types that ‘discard’ parameters as equal, so that we would
have

Foo A1 = Foo A2  >

In fact, the current Agda implementation has such a ceck, although with other aims.27

However this is not enough for our purposes. Consider the other example

some-type : Type1
some-type 7→ · · ·

data Bar (F:Type1 → Type0) where {bar : F some-type}

Here F is definitely relevant to Bar, but requiring the parameter itself to be equal is again
more than we need and infringes subject reduction, since to equate two Fs we will need to

27See the notes about polarity at http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.
Version-2-3-2.
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abstract over things of type Type1, which are larger than types formed by Bar itself. What
we really want here is

(Bar F1:Type0) = (Bar F2:Type0) (F1 some-type:Type0) = (F2 some-type:Type0)

A more convincing solution to treat cases like the one above is to look directly at the
data constructors to find out what equalities to require, seeing the equalities as a mean to
coerce, as the original OTT paper does (Altenkirch et al. , 2007). From this perspective we
can equate the type of each element in the data constructors, abstracting over variables of
the previous elements’ types.

The problematic part in the plan above is dealing with recursive occurrences of type in
the data constructors. Intuitively we never need additional equalities for recursive occur-
rences. When coercing, irrelevant parameters (parameters to the type constructors which
are not used in the data constructors) do not matter, since when constructing new data we
will be able to decide whatever parameter we want. With relevant parameters, we know
that we have the equalities we need somewhere, since we equate all the types of the data
in the data constructors.

For example, if incr is the function that increments a number by one, and ◦ is function
composition, we might have

data Bar (F:N→ Type) where {foo : (n:N) (F n) (Foo (F ◦ incr))}

Given

Bar F1 = Bar F2

We would demand evidence that

∀x1:N. ∀x2:N. (x1:N) = (x2:N)⇒ (F1 x1:Type) = (F2 x2:Type)

Which lets us prove, using refl and a congruence rule, that

(Bar (F1 ◦ incr):Type) = (Bar (F2 ◦ incr):Type)

The details of the algorithm to generate equalities and perform coercions remain to be
worked out, and raise interesting points regarding when two inductively defined types are
equal.
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