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Microarray databases constitute a large source of biological data, which upon
the proper analysis of the data, can enhance our understanding of biology and
medicine. The main objective of this project is to provide means to researchers to
visualise better the available information of a patient’s genome in order to provide
them with more suitable medical advice on the treatment of a particular form of
cancer.

Although the analysis of microarray data has become popular in the research
world the past 10 years, new approaches will be tested which may lead to a better
visualisation of the available information.

To accomplish this we are investigating the use of manifold learning techniques
on the microarrays to aid to the visualisation of the information but also create
machine learning models that allow uncovering more of the information hidden in
the noisy data of microarrays.
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1
I N T R O D U C T I O N

1.1 motivation

Cancer related diseases are unquestionably one of the most feared diseases of our
time. In 2007, cancer caused about 13% of all human deaths worldwide (7.9 million).
Although the term cancer refers to a broad group of diseases, (taken as a whole)
about half of the people receiving treatment for invasive cancer, either die from it,
or from the treatment itself. (Jemal et al., 2011).

In the context of using chemotherapy as the treatment of cancer, it is important
to choose the correct dosage of cytotoxic drugs. Based on published data (Gurney,
2002), there is almost 20% relative reduction in survival for women receiving adju-
vant chemotherapy for breast cancer, as a result of unrecognised under dosing. If
we could better predict how rapidly the cancer will progress on a patient, we may
also be able to provide a better treatment using a more appropriate drug dosage for
the patient.

Using microarrays (2.1.1) we can look at the expression level of thousands of genes
in a single experiment (Schena et al., 1995). Using this information we can compare
the expression profile of tumour cells to their normal counterpart during different
phases of the cancer process (initiation, progression and metastasis; see 2.1.2) which
would give us an enhanced understanding of the process of tumour formation and
its development (Kumaravel Somasundaram, 2002).

This is obfuscated by the fact that most cancers are highly heterogeneous, mi-
croarray results are noisy and there is large variation in the ‘normal’ levels of most
genes.

The motivation behind this thesis is to build on top of the existing state-of-the-art
methodologies using machine learning to provide a model of the microarray data
obtained from patients. By doing so we aim to:

• Help the experts in the genetics to better visualise the information they have
in hand.

• Uncover more information hidden in the noisy data, so machine learning al-
gorithms can make better use of the data to make predictions.

1.1.1 Ovarian Cancer

Ovarian is one of the lesser known forms of cancer but still is a major issue nowa-
days.

An estimated 22, 240 of new cases of ovarian cancer are expected just in US in
2013 and about 14, 030 deaths. Ovarian cancer is responsible for about 3% of all

1 Source: http://www.ncbi.nlm.nih.gov/pubmed/
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Figure 1: Trend of microarray related paper publications for the past 12 years. 1

cancers amongst women accounting with about 5% of cancer caused deaths among
women, producing more deaths than any other cancer of the female reproductive
system.

Currently there is no sufficient accurate screening test of ovarian cancer. Exami-
nation of the pelvis only occasionally detects ovarian cancer and usually when the
cancer is at an advanced state.

Unfortunately ∼ 70% of the deaths are cause of patients presenting with advanced
stage; high-grade serous ovarian cancer (HGS-OvCa).

The standard treatment is aggressive surgery followed by platinum-taxane chemother-
apy. Surgery usually involves removal of one or even both ovaries and fallopian
tubes (salpingo-oophorectomy), the uterus (hysterectomy), and the omentum. This
kind of surgery has many risks and adverse effects such as small bowel obstruction
(SBO) (Barmparas et al., 2010), premature death (Parker et al., 2009), cardiovascular
disease, cognitive impairment or dementia (Rocca WA, 2007) and others.

For women with a very early stage of ovarian cancer who wish to have children
only the involved ovary and fallopian tube may be removed in order to allow them
to carry birth. After therapy, platinum resistant cancer recurs in approximately 25%
of patients within six months, and the overall five-year survival probability is 31%
(Jemal et al., 2009). Approximately 13% of HGS-OvCa is attributable to germline
mutations in BRCA1/2 (Pal et al., 2005)), and a smaller percentage can be accounted
for by other germline mutations. However, most ovarian cancer can be attributed to
a growing number of somatic aberrations.

Unfortunately little can one tell using the microarray expression data available
from patients that have ovarian cancer, so one of aims of this project is to help
uncover more information from the ovary gene expression data that are available to
us, just as for other types of cancer.
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1.1.2 Why not use RNA sequencing?

In the last few years there has been much speculation whether using DNA microar-
rays should be the experiment of choice for transcriptome analysis (gene expression
profiling).

RNA-seq “Whole Transcriptome Shotgun Sequencing” (Morin et al., 2008) is rapidly
adopted in studies and it seems that this should be preferable to DNA microarrays
as it allows for an accurate high-throughput sequencing of cDNA in order to get
the RNA content of a sample. In contrast to microarrays, it allows for base-level
resolution, overcoming many of the shortages of DNA microarrays.

Microarrays however are currently a fraction of the cost of RNA-seq (10 − 100
times cheaper) as the cost of RNA-seq only lies between $8, 000 - $20, 000 and also
RNA-seq protocols still suffer from unknown biases such as those implied by the
required ligation steps (Birzele et al., 2011).

There has been much speculation whether “Is this the beginning of the end for
microarrays?” (Shendure, 2008) where the author concludes saying that although
these new technologies may improve the quality of transcriptome profiling, we will
continue to face what has probably been the largest challenge of microarrays - how
best to generate biologically meaningful interpretations of complex data sets that
are sufficiently interesting to drive follow-up experimentation.

Thus one can argue if being able to meaningfully interpret microarrays can give
the much anticipated insight into these complex biological data sets.

1.2 report structure

Here follows a brief overview of the information available in the next chapters of
the report.

background : gives an overview of the research done so far in the area of microar-
ray analysis, the main methodologies of clustering the microarray data and the
mathematical formulations of the various algorithms we will be using.

visualising using manifold learning : we use traditional manifold learn-
ing techniques such as ISOMAP, Locally Linear Embedding and Spectral Em-
bedding on microarray data focusing on the ISOMAP algorithm.

a priori manifold learning : we propose a novel way to enhance the perfor-
mance of traditional manifold learning techniques by making use of a priori
knowledge about our data sets, such as biological pathway information incor-
poration in the manifold analysis.

evaluation : evaluates, compares and contrasts the various manifold learning
techniques with the aforementioned a priori manifold learning.

conclusions & future work : summarises the most important results, but also
the main difficulties found in the process of this project. We suggest future de-
velopments of this work and how it can potentially be extended to a Doctoral
level.





2
B A C K G R O U N D

2.1 microarrays

2.1.1 What is a microarray?

Micro + Array

Micro: quantifyer prefix, multiplication by 10−6

Array: order, arrangement

Etymology

Wikipedia: “a
collection of
microscopic DNA
spots attached to a
solid surface”

Microarray technology has been used a lot and has become an indispensable tool
that many biologists use to monitor genome-wide expression level of genes in a
given organism.

Microarrays typically, are stranded DNA/RNA molecules that are anchored by
one end on a solid surface, which is usually a glass.

Figure 2: Example of a commercial type microarray assay: the Affymetrix GeneChip R©

Genome-wide Human SNP Array 5.0

A microarray typically ranges from 1.3× 1.3cm to 2.5× 7.5cm and has thousands
of spots, many of which are replicates, and control spots with a spot size of approx-
imately 5µm. These spots (also called probes) are printed on to the solid surface by

9
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a robot or are synthesised by the processes of photolithography. Photolithography
is using light to create pattern, relying on UV masking and light-directed combina-
torial chemical synthesis on a solid support to selectively synthesise the probes on
the surface of the array.

Condition A Condition B

mRNA Extraction

cDNA labelling with dyes

(Test condition) (Normal condition)

Hybridisation

Excitation with laser

Final image

Figure 3: Schematic of the experimental protocol to study differential expression of genes.
The organism is grown in two different conditions (a reference condition and a
test condition). RNA is extracted from the two cells, and is labelled with different
dyes (red and green) during the synthesis of cDNA by reverse transcriptase. Fol-
lowing this step, cDNA is hybridised onto the microarray slide, where each cDNA
molecule representing a gene will bind to the spot containing its complementary
DNA sequence. The microarray slide is then excited with a laser at suitable wave-
lengths to detect the red and green dyes. The final image is stored as a file for
further analysis.
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2.1.2 Obtaining the gene expression data

One of the most popular ways to measure gene expression is to compare the ex-
pression of a set of genes from a cell maintained in a particular condition A (test
condition) to the same set of genes from a reference cell with condition B (normal
condition).

These molecules will seek to hybridise with complementary stands floating in the
solution.

Probes (probe is a fragment of DNA or RNA of variable length) are organised in
clusters of spots and each probe usually corresponds to one gene/protein. Probe hy-
bridisation is usually detected and quantified with the use of fluorophore, silver, or
chemiluminescence labelled targets which detect the relative abundance of nucleic
acid sequences in the cDNA sample.

By doing the comparison of the gene expression levels of the two samples (A,B), Sources of Error

one can often find that the average expression ratio of some genes - that should not
change in the two experimental conditions - can deviate from an average expression
ratio of 1. This can be due to numerous reasons such as differential labelling effi-
ciency of the two fluorescent dyes or different amounts of starting RNA material in
the two samples.

There are several factors which can lead to errors in microarray hybridisation
data, such as the usual manufacturing defects in the microarrays themselves, but
most importantly the experimental errors caused by humans.

In order to be able to take advantage of the microarray results and be able to anal-
yse them, each gene sample is logarithmically normalised (i.e. using the correlation
coefficient).

Robust Multi-array Average (RMA) is a popular normalisation approach for
Affymetrix and other data where the raw intensity values are background corrected,
log2 transformed and then quantile normalised (Irizarry et al., 2003).

2.2 clustering microarray data

Eisen et al. (1998) first demonstrated the ability of clustering microarray data results
to reveal biologically meaningful patterns with the method of hierarchical clustering
to identify groups of genes with similar behaviour. Prior to that

Weinstein et al.
(1997) presented one
of the first and most
elegant applications
of hierarchical
clustering and other
data-mining and
visualisation
techniques to the
analysis of
large-scale data in
molecular biology.

Hierarchical clustering is an algorithm which finds pairs of genes that are most
similar, links them together continuing on to the next most similar pair of such
genes, by using a given similarity metric. This is then repeated until all groups are
linked to one cluster.

The problem with hierarchical clustering is that is a greedy algorithm and once a
decision to link two clusters is made, it cannot be reversed in order to follow a better
clustering outcome. It is additionally overfitting the data with no way to generalise
the results. Finally, as microarrays are very error prone and hierarchical clustering
is prone to noise and outliers, hierarchical clustering can give quite unexpected
results.

A common problem with partitioning methods is that they end up assigning each
data point to a group. This may not be desirable for gene clustering as genes may
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Table 1: Brief history of microarrays

Year Event

1953 Double helix, Watson & Crick

1961 DNA hybridisation and nature of the triplet code discovered

1970 Reverse transcriptase (Baltimore, 1970)

1975 Monoclonal antibodies (Kohler and Milstein, 1975)

1977 First DNA sequence of an organism (viral, Sanger)

1989 First microarray prototype using a microscope slide (Fodorand and
coll.)

1993 Microarray containing over 1 million DNA sequences

1995 First microarray publication (Schena et al., 1995): Arabidopsis thaliana

1996 Commercialisation of arrays (Affymetrix)

1997 Genome-wide expression analysis in S. cerevisiae (DeRisi et al., 1997)

1998 First multicellular eukaryotic genome sequenced: (Elegans, 1998)

1999 First publication on microarrays for cancer classification (Golub et al.,
1999): Leukaemia

2000 Portraits/signatures of cancer: First publications on molecular pheno-
typing in cancer (Perou et al., 2000)

2001 Human Genome published (Nature)

2004 Whole human genome on one microarray (Affymetrix)

2005 First FDA approved microarray based product

be involved in more than one active biological process or none at all. Clusters of
genes which are not involved in any active process can be ignored, as we can filter
out genes with near-constant expression profiles. During this process one might
end up not using a large portion of the data set which could be used to obtain a
better clustering of the data. Thus it is much more preferable to have a clustering
algorithm that would leave “uninteresting” patterns unclustered.

We will talk about three types of clustering techniques:

one-way clustering methods where clusters are limited to either the rows(genes)
or columns(samples) of the data set.

two-way clustering are used to find clusters combining both genes and samples.

bi-clustering methods to find two-dimensional clusters - a subset of genes which
exhibit similar behaviour across a subset of samples or vice versa.
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2.2.1 One-way clustering

Examples of one-way clustering can be accomplished using traditional machine
learning clustering algorithms such as K-means, DBSCAN, Gaussian mixtures and
others. Such methods can be problematic in clustering microarray data as usually a
subset of the feature space (genes) can be associated with a subset of observations. It
has been shown in the recent years that certain genes when over-expressed or down-
expressed identify with high precision the different sample groups (i.e. cancerous
patients and not). This means that by attempting to cluster the genes we will end up
having unrelated clusters of genes of which will provide us no useful information.

2.2.2 Two-way clustering

Using one-way clustering we can obtain either gene-related clusters or sample-
related clusters. Moreover one can argue though that there must be relationships
between gene and sample clusters. As an example samples from patients taken on
different stages of the cancer process can lead to different clustering of the genes.

An example of how this is useful was demonstrated by Tang et al. (2001), the
genes are clustered and each one of the clusters used to cluster the samples. The
concept was, as the dimensionality of the each sample vector is too large reduce to
a reasonable level and then work with a clustering algorithm on the reduced data
set. To achieve this Tang et al. (2001) did the following:

• to find a subset of genes (important genes) which are highly related to experi-
ment conditions.

• cluster the samples into different groups (usually just two i.e. diseased and
control samples)

These two tasks are related. By finding the most influential genes, then it is easier
to cluster the samples due to the lower sample dimension (tens instead of thousands
genes). Otherwise, if we cluster the samples, we can find the most important genes
by sorting the genes using similarity scores such as correlation coefficient.

The advantages of this approach is to use the relationships between genes and
samples to do an iterative clustering where by reducing the gene-dimension im-
proves the classification accuracy.

Tang et al. (2001) was among the first to propose and use unsupervised two-
way clustering techniques instead supervised techniques arguing that this is more
suitable for problem domains with limited domain knowledge. In his paper, he pre-
sented a new framework for unsupervised analysis of gene expression data, which
applies an interrelated two-way clustering approach on the gene expression matri-
ces comparing the performance of the proposed method with various gene expres-
sion data sets.

2.2.3 Bi-clustering

Bi-clustering was coined by Mirkin (1996), although the technique was known much
earlier on (Hartigan, 1972). A bicluster is defined to be a set of genes whose ex-
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Figure 4: Hierarchical clustering of gene expression data. Depicted are the, 1.8 million mea-
surements of gene expression from 128 microarray analyses of 96 samples of nor-
mal and malignant lymphocytes. The dendrogram at the left lists the samples
studied and provides a measure of the relatedness of gene expression in each sam-
ple. The dendrogram is colour coded according to the category of mRNA sample
studied (see upper right key). Each row represents a separate cDNA clone on the
microarray and each column a separate mRNA sample. The results presented rep-
resent the ratio of hybridisation of fluorescent cDNA probes prepared from each
experimental mRNA samples to a reference mRNA sample. These ratios are a mea-
sure of relative gene expression in each experimental sample and were depicted
according to the colour scale shown at the bottom. As indicated, the scale extends
from fluorescence ratios of 0.25 to 4 (-2 to +2 in log base 2 units). Grey indicates
missing or excluded data. (Alizadeh et al., 2000)
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pression profiles are mutually similar within a subset of experimental conditions
(samples).

The intuition behind why one should prefer bi-clustering is that, due to the diver-
sity of sample sources, functionally related genes may not exhibit a similar pattern
in all samples but only in a subset of them. Bi-clustering addresses this by trying
to find patterns between subset of columns and subset of rows of the microarray
matrix. Since such subsets are initially unknown, bi-clustering can be seen as a si-
multaneous clustering of rows and columns.

Cheng and Church (2000) have done some significant ground work on bi-clustering
and numerous bi-clustering algorithms have been suggested since then. Generally,
there are two kinds of bi-clustering patterns; those that are defined on a single
bicluster and deal with local patterns or those which are defined on all the global
bicluster patterns.

A bicluster B = (I, J) is composed of a subset of rows I ⊂ R and a subset of
columns J ⊂ C, where all aij, for i ∈ I and j ∈ J are expected to fit to a predeter-
mined target pattern for a given gene expression data matrix A = (R,C). Of course
it is usually the case that the bicluster will not fit exactly the predetermined target
pattern so:

bij = b̂ij + εij (2.2.1)

where b̂ij is the expected value of bij that would match best to the target pattern
and εij the deviation from the expected value also known as residue. The residue is
commonly used as a metric of how good a bicluster is. A popular bicluster quality
metric is the Mean Squared Residue (MSR) which is defined to be:

MSR =
1

|I||J|

∑
j∈J,i∈I

ε2ij

If the bicluster would match exactly its target pattern then it would have a residue
of 0, which also matches its MSR score.

Using 2.2.1 we can represent different types of algorithms, that perform searching
for most bi-clustering methods using the appropriate expression for b̂ij.

The bicluster B is said to follow a perfect shifting pattern as its values can be ob-
tained by adding a constant condition number βi to a base value πj. The shifting
pattern can be fulfilled by using the following equation, where βi is the shifting
coefficient of condition i.

b̂ij = βi + πj

Similarly, instead of shifting the base value, we can use multiplication to scale
the pattern. In this case, we say that the bicluster follows a perfect scaling pattern. In
the following equation the term αi is called the scaling coefficient, and represents a
constant value for each sample (condition).

b̂ij = αi × πj
We can also form a combined pattern which is simply the shifting and scaling

patterns put together.
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bij = πj ×αi +βi
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Cheng and Church’s Algorithm

One of the first bi-clustering algorithms was presented by Cheng and Church (2000).
The model for a bicluster is represented by a submatrix A of the whole gene expres-
sion matrix.

Each aij in the bicluster is the summation of the background level, the gene effect
(rows) and the sample effect (columns). The residue score of an element is given by

R(aij) = aij − aiJ − aJi + aIJ
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Table 2: Various bi-clustering algorithms summarised from Kevin Yip, 2003

Method Publish Cluster Model Goal

Cheng & Church ISMB 2000 Background + row ef-
fect + column effect

Minimise mean
squared residue of
bi clusters

Getz et al. PNAS 2000 Depending on plugin
clustering algorithm

Depending on plugin
clustering algorithm

(CTWC)

Lazzeroni & Owen Bioinformatics
2000

Background + row ef-
fect + column effect

Minimise modelling er-
ror

(Plaid Models)

Ben-Dor et al. RECOMB 2002 All genes have the
same order of expres-
sion values

Minimise the p-values
of biclusters

(OPSM)

Tanay et al. Bioinformatics
2002

Maximum bounded bi-
partite subgraph

Minimise the p-values
of biclusters

(SAMBA)

Yang et al. BIBE 2003 Background + row ef-
fect + column effect

Minimise mean
squared residue of
biclusters

(FLOC)

Kluger et al. Genome Res.
2003

Background ‘row effect’
column effect

Finding checkerboard
structures

(Spectral)
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where:

āiJ =

∑
j∈J aij

|J|
mean of row i

āIj =

∑
I∈I aij

|I|
mean of column j

āIJ =

∑
j∈J,I∈I aij

|I||J|
mean of column j

2.2.4 Data mining approaches

One can distinguish two main data mining approaches:

supervised learning which defines a model which related one set of observa-
tions, called inputs, to another set of observations, called outputs.

unsupervised learning which does not have any prior information about in-
puts associated with any outputs, but rather tries to uncover the structure of
the data set from the input data provided.

Although often in microarray experiments we are given the labels of each ob-
servation (e.g. patient cancer regression status), we can opt to not use them while
conducting a model of the data due to the small number of observations we have
compared to the feature space (Klein et al., 2002; Tang et al., 2001). This means that
we are less likely to overfit a model onto the data of the microrrays, but rather create
a more general one.

Moreover a problem with supervised learning is that labelled samples are usually
very difficult to obtain, as labelling is usually an expensive and time consuming
job. There are numerous microarray databases with information that could go to
waste simply because the samples were not labelled. A way to combat this is to
use pairwise constrains information (side-information), which leads to a learning
approach called semi-supervised learning.

In the next few chapters we will introduce and use unsupervised dimension re-
duction techniques of manifold learning on gene expression data but also introduce
the concept of semi-supervised learning on the manifold learning techniques. Many
machine-learning researchers have found that unlabelled data, when used in con-
junction with a small amount of labelled data, can produce considerable improve-
ment in learning accuracy. Instead of completely ignoring prior information we may
have for our samples semi-supervised learning uses in some degree prior informa-
tion, but not for all the data or it may not rely completely in the sample labels
to build up the machine learning model. Such techniques we will use later on, in
Chapter 4, where we introduce a novel method of semi-supervised learning called
a priori manifold learning.
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2.2.5 Distance measures

Inherent in all machine learning techniques, is the notion of similarity or of a dis-
tance function for a data set that needs to be classified or clustered. The choice of a
distance metric is probably equally important to the choice of the machine learning
algorithm, as it can greatly affect the outcome of the algorithm.

Although it may be common to use metaphors to describe the distance between
two objects in high-dimensional data in various disciplines, such as the distance
between two genes as a quantity measured in base pairs along a chromosome, this
may not be always practical as genes may be present in different chromosomes.

Euclidean Distance

A classical measure of measuring distance is the Euclidean, also known as the
Pythagorean distance. Euclidean is given by the Pythagorean and is defined as:

d(p, q) =
√

(q1 − p1)2 + · · ·+ (qn − pn)2 =

√√√√ n∑
i=1

(qi − pi)2. (2.2.2)

Pearson correlation coefficient

One of the most commonly used metrics to measure similarity between expression
profiles is the Pearson correlation coefficient (PCC) (Eisen et al., 1998). PCC between
two samples X and Y can be computed as follows:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ)√∑n

i=1(Xi − X̄)
2
√∑n

i=1(Yi − Ȳ)
2

(2.2.3)

where X̄ (Ȳ) is the sample mean of the sample X (Y)

Curse of dimensionality

When comparing observation with observation though a distance metric is argued
not to play much of a role in comparing the distances. When a measure such as a
Euclidean distance is defined on a lot of dimensions, there is little difference in the
distances between different pairs of samples (Beyer et al., 1999).

2.3 microarray data format

Gene expression data on G genes for N samples are usually summarised by a G×N
matrix X, where xij denotes the expression measure of gene i of mRNA/DNA sam-
ple j. The expression value may be either absolute (e.g. Affymetrix oligonucleotide
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arrays) or relative to the expression levels. (R.). The data structure will be referred
to as X.

X(t) =


x1(1) · · · x1(N)

...
. . .

...

xG(1) · · · xG(N)

 (2.3.1)

Usually this set of data will be associated with groups’ labels vector y(t) which
maps each sample x(t) to a label y(t).

2.4 dimensionality reduction

In machine learning as the dimensionality of the data rises, the amount data we
would require to be able to support the outcome of the machine learning algorithm
often grows exponentially. Richard E. Bellman referred to this phenomenon as ‘curse
of dimensionality’ when considering problems in dynamic optimisation (Bellman,
1957).

Not only considering more genes (variables) adds to the computation cost as
mentioned but it also decreases the statistical significance of obtaining a good result
(Kung and Mak., 2009). In order to combat the ‘curse of dimensionality’ several
methods have been tested from researchers.

By being able to choose the most influencing genes amongst the set we can greatly
increase the effectiveness of our machine learning system. In machine learning this
process is also known as Feature Selection, but in the context of microarrays is know
as Gene Selection.

open-loop Filter methods which select features based on between-class separabil-
ity criterion, which is not involved in classification performance in the process
of feature selection.

closed-loop Wrapper methods select features using classification performance
as a criterion of feature subset selection.

We will use both Open-Look and Closed-Loop techniques to determine the crite-
rion of the feature set reduction.

2.5 nonlinear dimensionality reduction

Another approach to dimensionality reduction is to assume that the data (genes
of interest) lie on an embedded non-linear manifold. Algorithms based on manifold
learning are based on the idea that the high dimensionality of some data sets is only
artificially high; although each point consists of multiple features (e.g. thousands)
it can be described as a function of just a few parameters. In other words samples
are actually samples from a low-dimensional manifold that is embedded in a high-
dimensional space. (Cayton, 2005)
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ψ ψ−1

Figure 5: In manifold learning we usually assume that a low dimensional manifold is em-
bedded in a higher dimensional space, which is in this case a sphere. Our aim, in
this example, is to transform the manifold from the higher dimensional space back
to its original form, the 2-dimensional plane.

The rational behind using manifold learning it to discover the hidden structure of
the high-dimensional microarray data so by visualisation of the low-dimensionality
output of the machine learning process we can uncover previously unseen features
of the data.

Figure 6: Example output of various non linear dimensionality reduction algorithms of a
data-set of expression profiles of 18 prostate samples (7 with Gleason 6, 8 with
Gleason 7 and 3 with Gleason score equal or higher than 8) and 5 non-neoplastic
prostate samples, using the GeneChip R© Human Exon Array 1.0 ST of Affymetrix.
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ISOMAP

Figure 7: An example application on a 3D Swiss roll data-set withN = 1000 data points. The
original data-set is illustrated on the left in the original three-dimensional space.
The ISOMAP projection to the two-dimensional space on the right was done, by
taking a number of neighbours equal to 8. It can be seen that nearby points in the
2D embedding are also nearby points in the original 3D manifold, as desired.

2.5.1 ISOMAP

The complete isometric feature mapping (ISOMAP) Tenenbaum et al. (2000) is a
manifold learning algorithm works by getting a set of data points represented as
M-dimensional vectors x ∈ RM×n and yielding a d-dimensional representation of
the original data set such as the Euclidean distance between two points of the final
projection approximates their geodesic distance along the underlying manifold as
much as possible.

ISOMAP is based on the idea of the classical multidimensional scaling technique
also known as MDS. Classical MDS constructs first the pairwise similarity matrix
using a distance measure such as the Euclidean distance function. Afterwards it
computes the reduced dimensional mapping that preserves as much as possible the
similarity matrix in predefined reduced dimension. On the other hand ISOMAP
constructs the pairwise similarity matrix based on the geodesic distance estimatedGeodesic distance is

the number of edges
in the shortest path

between two vertices
of a graph

by the shortest path in the neighbourhood graph of the data set.
Unfortunately in practice there is often no guarantee of the existence of a well-

defined underlying manifold structure in the data, and thus, one may not be sure
if manifold learning techniques such as ISOMAP are suitable for the data at hand.
In any case one can still try to apply the algorithm to see if it fits our purpose
Tenenbaum et al. (2000).

ISOMAP can be summarised in three main steps as follows:

1. Construct neighbourhood graph Define the graph G over all data points by
connecting points i and j (as measured by distance metric dX(i, j)) (i, j)] they
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are closer than ε (ε-ISOMAP), or if i is one of the K-nearest neighbours of j
(K-ISOMAP). Set edge lengths equal to dX(i, j).

2. Compute shortest paths between each of the nodes of the graph (for example
using Floyd-Warshall or Dijkstra’s algorithm) and thus obtaining the geodesic
distance between all pairs of points on the manifold and let ∆ ∈ Rn×n be this
matrix of the pairwise geodesic distances.

3. Finally we can compute the d-dimensional embedding by computing the eigen-
values of the matrix Θ (Equation 2.5.1). Sorting the eigenvalues in decreasing
order we can form the d-dimensional embedding such that for each dimension
with 1 6 k 6 d:

Θ = −
1

2
H∆2H (2.5.1)

where H is the centring matrix

H = In −
1

N
eNe

T
N, with eN = [1, . . . , 1]T

Let λk be the kth eigenvalue and vk be the kth eigenvector. We construct the
kth component of the embedding Π by setting it to

√
λkvk.

Π =



√
λ1v1√
λ2v2√
λ3v3
...

√
λdvd


Complexity

As described before the ISOMAP algorithm has a three step process.

neighbour-search The naive approach using a linear search of the data space,
would have a running time of O[D×N2], but this can be dramatically reduced
using techniques that use space partitioning such as ball trees.

Ball trees (Omohundro, 1989) are geometric data structures designed to pro-
vide fast nearest neighbour searching in high-dimensional spaces. The struc-
ture is similar to other hierarchical representations such as k-d trees, but has
the advantage that performs better in higher dimensions by partitioning data
in a series of nesting hyper-spheres.

The cost is O[Dlog(k)×Nlog(N)] (Omohundro, 1989)

geodesic distance calculation There are two main algorithms for comput-
ing the inter-node path distance which are Dijkstra’s algorithm (Dijkstra, 1959)
and Floyd-Warshall’s Algorithm (Floyd, 1962). Each of the algorithms has a
computational cost of O[N2(k+ log(N))] and O[N3] respectively.
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eigenvalue decomposition After the construction of the geodesic distance ma-
trix, ISOMAP needs to find the d largest eigenvalues. Using an algorithm such
as Power Iteration this can be computed in O[dN2], but for our needs we can
use the ARPACK1 solver to improve this.

To conclude ISOMAP has a complexity of the order:

O[Dlog(k)×Nlog(N) +N2(k+ log(N)) + dN2]

where
D: Number of dimensions
N: Number of data points
k: Number of nearest neighbours to search for
d: The number of the final reduced dimensions.

2.5.2 Locally Linear Embedding

Locally Linear Embedding (LLE) attempts to solve the nonlinear dimensionality re-
duction problem by computing a low-dimensional neighbourhood preserving em-
beddings of the high-dimensional data. It discovers nonlinear structure in high di-
mensional data by exploiting the local symmetries of linear reconstructions (Roweis
and Saul, 2000).

For data which consist of N real-valued vectors ~Xi ∈ RD which is assumed to be
sampled from a lower dimensionality d (d � D) manifold. Provided enough data
we would expected that each data point along with its neighbours would lie on or
nearby a locally linear patch of the manifold.

The LLE procedure can be separated in three main steps: building a neighbour-
hood graph for each point in the data, by using the k-NN algorithm as in ISOMAP,
finding the weights for linearly approximating the data in the neighbourhood and
finding the low-dimensional coordinates that best reconstruct these weights and
then returning the low-dimensional embedding of the original space.

Lets assume that the manifold was linear around each data point ~Xi. Then that
means that, ~Xi along with its neighbours form a linear subspace of a certain dimen-
sion. But if the subspace is linear it means that there is a combination of weights for
each of the neighbours as such to reconstruct ~Xi exactly.

~Xi =
∑
j

wij~Xj

Using these weights those one can characterise how the manifold looks like in
both the high and low dimensional space given small neighbourhood sizes.

The idea then is to minimise the reconstruction error needed to explain the each
data point using the locally linear manifold of its neighbours.

E(W) =
∑
i

∣∣∣~Xi −∑
j6=i

Wij
~Xj

∣∣∣2 (2.5.2)

1 http://www.caam.rice.edu/software/ARPACK/

http://www.caam.rice.edu/software/ARPACK/
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Figure 8: A demonstration of the standard Locally Linear Embedding on a three dimen-
sional Swiss-roll data-set to two dimensions using n_neighbours=8

which adds up the squared distances between all the data points and their recon-
structions. The weights W explain the contribution of the jth data point to the ith
reconstruction. While minimising the reconstruction error one should also ensure
that the weights sum up to one:

∑
jWij = 1. The reason for this is that the weights

should have invariance to rotations, rescaling and translation of that data point and
its neighbours. Invariance to rotations and rescaling is deduced from 2.5.2, the in-
variance under translation is enforced by ensuring that the weights sum to one, as if
we add any vector ~c to ~xi and its neighbours, nothing happens to the optimisation
function

~xi +~c−
∑
j

wij(~Xj +~c) = ~xi +~c−
∑
j

wij~Xj −

�
�

�
��
1∑

j

wij~c = ~xi −
∑
j

wij~Xj (2.5.3)

To calculate the reconstruction weights W we follow the following procedure
(Roweis and Saul, 2000):

for i = 1 : N do
create matrix Z consisting of all neighbours of Xi
subtract Xi from every column of Z
compute the local covariance C = ZTZ

solve C~w = 1

set Wij = 0 if j is not a neighbour of i
set the remaining elements in the i-th row of W equal to w/

∑
w

end
Note that when computing the local covariance C, if K > D then the local covari-

ance will not be full rank and thus we should a regularisation method to approx-
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The procedure can be summarised in the following steps:

1. Find the neighbours of each data point ~Xi, either by choosing
the k-nearest neighbours or by choosing all samples within a
fixed distance ε.

2. Compute the weights that best summarise the contribution of
the j-th data point to the i-th reconstruction by minimising the
cost function:

E(W) =
∑
i

∣∣∣~Xi −∑
j6=i

Wij
~Xj

∣∣∣2
3. Each high-dimensional observation ~Xi is mapped to a low-

dimensional vector ~Yi representing global internal coordinates
on the manifold by minimising the cost function:

C(Y) =
∑
i

∣∣∣~Yi −∑
j6=i

Wij
~Yj

∣∣∣2

LLE Algorithm

imate the result. In the original paper the following regularisation is used (2.5.4),
although we will study additional LLE algorithms that solve this problem in a dif-
ferent way.

C = C + ε× I (2.5.4)

where:
ε is a small constant of the order 0.001× tr(C)

I is the identity matrix

Complexity

The first and third steps of the algorithm are similar to the ISOMAP algorithm
which was discussed in 2.5.1.

The second step of the LLE has to compute the weight matrix which requires
the solution of a k× k linear equation system for every one of the N local neigh-
bourhoods computed using the nearest neighbours algorithm. This has a cost of
O[DNk3].

Thus the complexity of the standard LLE algorithm is of the order of:

O[Dlog(k)×Nlog(N) +DNk3 + dN2]
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Figure 9: An example application on a 3D Swiss roll data-set withN = 1000 data points. The
original data set is illustrated on the left in the original three-dimensional space.
The Spectral Embedding projection to the two-dimensional space on the right was
done, by taking a number of neighbours equal to 10. It can be seen that nearby
points in the 2D embedding are also nearby points in the original 3D manifold, as
desired.

2.5.3 Spectral Embedding

Belkin and Niyogi (2003) proposed the method of Laplacian Eigenmaps (also known
as Spectral embedding) that resorts to the notion of the Laplacian operator on the
neighbourhood graph of the data to computer the low dimensional embedding of
the high-dimensional space. The justification of using the Laplacian is that it can
be viewed as an approximation of the Laplace-Beltrami operator defined on the
manifold.

The algorithm

constructing the graph As in ISOMAP and LLE we construct a nearest neigh-
bour graph by choosing the nearest neighbours of a node where we put an
edge between nodes i and j if they are close enough. As before we can choose
between connecting two nodes if they are within a threshold ε or using the n
nearest neighbours of each node.

choosing the weights The are two variations of weighting the edges of the
graph.

heat kernel with a parameter t ∈ R. If nodes i and j are connected then:

Wij = −
||xi − xj||

2

t
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which uses the Gaussian kernel function.

naive approach (simple minded) sets instead Wij = 1

eigenmaps Assume that the graph G computed in the first step is connected, oth-
erwise apply this step for each connected component.

The projections φi of the data points in the reduced space can be computed
by minimising the function

∑
ij

||φi −φj||
2Wij (2.5.5)

The solution of 2.5.5 is reduced to the following optimisation problem, using
the Laplacian matrix D.

min trace(ΦTLΦ) (2.5.6)

with respect to: ΦTDΦ = 1 (2.5.7)

ΦTD1 = 0 (2.5.8)

The constraint in Equation 2.5.7 removes an arbitrary scaling factor in the em-
bedding and (2.5.8) is needed to eliminate the possibility of taking the weight
of 1 at each vertex (1 is an eigenvector with eigenvalue of 0 and if the graph
is connected it creates a trivial solution of collapsing all vertices of G onto the
real number 1, thus we put an extra constrain of orthogonality.

To compute the solution of the optimisation problem we can compute the
eigenvalues and eigenvectors for the generalised eigenvalue problem (2.5.9)

L~y = λD~y (2.5.9)

where D is the diagonal weight matrix, its entries are column sums of W ie.

Dii =
∑
j

Wji

L = D−W is then called the Laplacian matrix.

Two main advantages of Spatial Embedding is the computational efficiency and
the capability of emphasising the natural clusters in the data.

Laplacian eigenmaps have successfully used in the past, especially in the fields of
face (He et al., 2005) and speech recognition (Jafari and Almasganj, 2010).
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Complexity

2.5.4 Hessian Eigenmaps

Hessian Eigenmaps (Donoho and Grimes, 2003) also known as Hessian locally lin-
ear embedding tries to solve the regularisation problem of the LLE [Section 2.5.2].
It assumes that the data lie on a manifold which is locally isometric to an open,
connected subset of the euclidean space.

It is similar to the method of the Laplacian Eigenmaps, in which the graph Lapla-
cian is replaced by an estimator of the Hessian matrix.

Algorithm

nearest neighbours Construct the nearest neighbours matrix using the meth-
ods described as before.

obtain tangent coordinates by performing a singular value decomposition
of Mi and thus obtaining the matrices U, D and V

hessian estimator For least squares estimation of the Hessian (Hi) form a ma-
trix Xi of the following columns for the case d = 2.

Xi =
[
1 U·,1 U2·,2 (U·,1 ×U·,2)

]
In the general case d > 2 we create a matrix with 1+ d+

d(d+ 1)

2
columns,

the first d+ 1 of which consist of a vector of ones, then the next d columns
of U and the last d(d+1)2 columns are the cross products and squares of those
d columns. The Gram-Schmidt process is then applied to Xi to obtain the
orthonormal matrix X ′i and the target Hessian Ti is then extracted from the

last
d(d+ 1)

2
columns of X ′i.

eigen-decomposition Using L =
∑
i Ti

TTi the d-dimensional representation is
then obtained by computing the d smallest eigenvalues of L and setting the
projection matrix to Φ = V

√
VTV.

Complexity

2.5.5 Modified Locally Linear Embedding

It is widely reported that LLE can fail as its local geometry exploited by the recon-
struction weights is not well-determined, since the constrained least squares prob-
lem involved for determining the local weights may be ill-posed. A solution to this
is to use Tikhonov regulisation (as known as ridge regression in statistics), but it
may be the case that a regularised solution may be not a good approximation to the
exact solution if the regularisation parameter is not suitably selected.

Zhang and Wang (2006) resolves the issue of regularisation of LLE by making
use of multiple local weight vectors. It can be shown these linearly independent
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The procedure can be summarised in the following steps:

1. For each data point i such that 1 6 i 6 N

a) Compute the neighbour set Ni using k-NN or ε-NN

b) Compute the regularised solution wi(γ) by using GTG+

γ||G||2FI)y = 1k,w = y/1Tky

c) Compute the eigenvalues λ
(i)
1 , . . . , λ(i)k and set ρi =∑k

j=d+1 λ
(i)
j /

∑(i)
j=1 λ

(i)
j .

2. Sort ρi, 1 6 i 6 N in increasing order and set η = ρπ[N/2]

3. For each data point i such that 1 6 i 6 N

a) Set si = max
l

l 6 ki − d,

∑
λ
(i)
j∑
λ
(i)
j

 < η and let Vi be the

eigen vectors

4. Compute the d+1 smallest eigenvectors ofΦ set the projection
Π to be

Π =


~u2
...

~ud+1



Modified LLE Algorithm

weights can be approximately optimal to the true embedding of the data in the
smaller dimensionality space.

Complexity

nearest neighbours search Same as before in ISOMAP and LLE. O[Dlog(k)Nlog(N)]

weight matrix construction

eigenvalue decomposition Same as ISOMAP and LLE. O[DNk3]

This the overall complexity of MLLE is characterised by:

O[Dlog(k)×Nlog(N) +DNk3 + dN2]

where
D: Number of dimensions
N: Number of data points
k: Number of nearest neighbours to search for
d: The number of the final reduced dimensions.



2.6 evaluation methods 31

Note that the computational cost of MLLE is approximately the same as that of
LLE.

2.6 evaluation methods

2.6.1 Adjusted Rand Index

Due to the small amount of samples, there is a difficulty obtaining balanced samples,
e.g. same amount of cancerous and non-cancerous samples, which makes compar-
ing clustering outcomes difficult. For example if 10 patients have cancer and 90 do
not, and our leave-one out prediction accuracy is 85% we perform worse than a
method which predicts an outcome based on chance.

To take into account this observation, that is, the necessity of correction for chance
for information theoretic based measures for clustering, (Vinh et al., 2009) proposed
the Adjusted Rand Index (ARI). This measure was derived by assuming a hyper-
geometric model of randomness, and has several advantages over other measures.

• It has a bounded range of [−1, 1] where values close to 1 indicate a good match
score (with 1.0 being the absolute perfect match score) and values closer to -1.0
a bad match score.

• Random assignment have a score close to 0.0

• No assumption was made on the cluster structure, which is preferred for gene
clustering.

Mathematical Formulation

The adjusted form of the Rand Index is defined as:

AdjustedIndex =
Index− ExpectedIndex

MaxIndex− ExpectedIndex

If O are the ground truth class members and Ψ the derived clustering the unad-
justed Rand Index is defined by:

RI =
a+ b

C
nsamples
2

where
a is the number of pairs of elements that are in the same set in O and in the same
set in Ψ.
b is the number of pairs of elements that are in different sets in O and in different
sets in Ψ. Cnsamples2 is the number of all possible pairs in the data-set.

To take into account the fact that random label assignments should have a value
close to zero, we discount the expected RI of random labels.

ARI =
RI− E[RI]

max(RI) − E[RI]
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ARI =
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2.6.2 Dunn Index

The Dunn index (DI) (Dunn, 1973) is a metric for evaluating clustering algorithms
which tries to identify compact (but yet ‘rich’ in features) clusters that are well
separated with the means of different clusters sufficiently far apart compared to the
within cluster variance.

∆i =

∑
x∈Ci

d(x,µ)

|Ci|
µ =

∑
x∈Ci

x

|Ci|
(2.6.1)

DIm = min
16i6m

 min
16j6m,j6=i

 δ(Ci,Cj)
max
16k6m

∆k




where δ(Ci,Cj) is the intercluster distance metric, between clusters Ci and Cj.

2.6.3 Davies-Bouldin Index

Davies-Bouldin Index (DBI) is another metric for evaluating how good a clustering
scheme is. Davies and Bouldin (1979) claims that it can be used to infer the appropri-
ateness of data partitions and therefore be used to compare relative appropriateness
of various divisions of data.

If the distance between clusters remains constant while the dispersions increase
then the similarity should increase as well. It is suggested that using Equation 2.6.2

Rij =
Si + Sj
Mij

(2.6.2)

where Mij is the distance between vectors of clusters i and j.

Mi,j =
∣∣∣∣Ai −Aj∣∣∣∣p = p

√√√√ n∑
k=1

∣∣ak,i − ak,j
∣∣p (2.6.3)

and Si is a measure of scatter within the cluster which characterised by the dis-
tance from the centroid of the cluster and the individual feature vectors. In Equa-
tion 2.6.4 when q = 2 we would have the euclidean distance function, but this can
generalise easily to any distance metric according to the application.

Si =
q

√√√√ 1

Ti

Ti∑
j=1

|Xj −Ai|
q (2.6.4)
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According to Equation 2.6.2 if we have a large intercluster distance and small
intracluster index then we will have a low Ri,j value. Thus we can define the Davies-
Bouldin Index as:

DB =
1

N

N∑
i=1

max
j:i 6=j

Ri,j

which is the average (in this case) worst Ri,j for each cluster i.

2.6.4 Silhouette index

Rousseeuw (1987) proposed a metric which can be used to evaluate clustering va-
lidity, and to select an ‘appropriate’ number of clusters for algorithms such as the
k-means method.

Each cluster is represented by a silhouette based on the comparison of its tightness
and separation. This shows how many and which members of the cluster lie within
it, and which lie outside between other clusters.

The silhouette of a cluster is then defined as:

s(i) =


1− a(i)/b(i), if a(i) < b(i)

0, if a(i) = b(i)

b(i)/a(i) − 1, if a(i) > b(i)

which can be simplified into one equation:

s(i) =
b(i) − a(i)

max{a(i),b(i)}
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V I S U A L I S I N G U S I N G M A N I F O L D L E A R N I N G

3.1 acute lymphoblastic leukaemia

Acute lymphoblastic leukaemia (ALL) is a form of leukaemia characterised by ex-
cess lymphoblasts.

There are two main types of acute leukaemia are T-cell ALL and B-cell ALL. T-Cell
acute leukaemia is aggressive and progresses quickly but is more common in older
children and teenagers.

B-Cell ALL leukaemia is another type of ALL, originated in a single cell and char-
acterised by the accumulation of blast cells that are phenomenologically reminiscent
of normal stages of B-cell differentiation (Cobaleda and Sanchez-Garcia, 2009).

To show off the potential of manifold learning we will first apply the techniques
on a microarray data-set which was first used by Brunet et al. (2004). The paper uses
the popular dimensionality reduction technique Non-negative matrix factorisation
(NMF) which was found to have huge success in lowering the dimensionality of
microarrays.

3.1.1 ISOMAP

The data set includes 38 samples where each one has a dimensionality space of 5000

probes. Using the ISOMAP algorithm, we construct a Euclidean distance matrix of
the distances between the nearest neighbours of each sample. To decide which are
the nearest neighbours of each sample one can use either ε-nearest neighbours or
k-nearest neighbours. Using ε-nearest neighbours it can be thought of a more real-
istic approach as it chooses only points which are in close proximity to each node,
whereas k-NN may choose points which are not quite close to the node if the node is
isolated. The problem with ε-NN though, is that often is quite difficult to choose the
right threshold value ε and more over can lead to disconnected neighbour graphs
which cause problems with manifold learning techniques. If such a case arises, that
is if the neighbourhood graph consists of two or more connected components, then
we could treat each component as different and analyse each one separately. Doing
so though we lose information about the global structure of the manifold which is
undesired.

Taking k = 3 number of neighbours we can reduce the previous features of the
data down to dimensions, while keeping well defined clusters between the two
different types of ALL and normal behaviour samples as seen in Figure 10.

We can see that ISOMAP can reduce the dimensionality of the initial dataset very
well, while keeping the three given clusters (Normal, T-cell ALL, and B-cell ALL)
well separated. What does it mean to have well defined clusters though? What is the best
way to evaluate our lower-dimensional embedding?

35
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ALL Analysis

Normal
T-Cell
B-Cell

Figure 10: Example application of the ISOMAP algorithm on the ALL data-set using number
of neighbours k = 3

One of the advantages of using unsupervised learning techniques such as the
algorithms of manifold learning we use is that it is quite difficult to over-fit our al-
gorithms onto the dataset as we are not using the labels to reduce the dimensionality
of our dataset.

3.1.2 Evaluation

A way to reason how good the lower-dimensional embedding is, would be to use
the eigenvalues used in its calculation (Figure 11) as larger eigenvalues indicate the
importance of including the corresponding eigenvector into the embedding when
using the ISOMAP algorithm (as a larger eigenvalue means a smaller reconstruction
error). This way we can determine approximately a good cut-off for the number of
components to use, but also whether the information of the microarray can actually
be represented in a smaller number of dimensions.

Unfortunately, this method does not allow us to compare different algorithms to-
gether, nor does it give us a way to tell if the embedding gives us useful information.
Instead we will use the clinical information of each patient and see if we can deduce
any useful pattern in the lower-dimensionality embedding, hopefully by the form
of clusters that distinguish the different types of cancer in the ALL dataset.

The solution to this is to make use of the k-NN algorithm which can be fine tuned
quite easily as it has only one free parameter. Although SVM methods are generally
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Figure 11: Application of the ISOMAP algorithm on the ALL dataset showing the change of
eigenvalues according to the dimensionality of the embedding

less computationally expensive methods and simpler than k-NN, k-NN can deliver
better results in most applications although is more prone to over-fitting, which is
not important, as we would like the best possible classification in possible in each
case to be able to compare and contrast each of the algorithms. Additionally as the
resulting embedding lives in the Euclidean space gives us more reasons to choose
the k-NN classifier.

Therefore, in order to assess the results we make use of the k-nearest neighbours
classifier using the Adjusted Rand Index (ARI) measure as defined in Section 2.6.1.
ARI lets us easily compare different microarray datasets, which are often hugely
imbalanced as we can have many more non-cancerous, than cancerous tissue sam-
ples which can mislead someone into thinking that the algorithm performs better
than it actually is. For an example if a dataset contains 900 normal and 100 prostate
samples then a classifier that assigned random labels would yield an average of 90%
accuracy, whereas the corresponding ARI value would be 0.

Of course in the case several algorithms can perform similarly and produce almost
identical classification accuracies, what would be the best one to choose from then?
Traditional machine learning techniques such as cross-validation for validating the
model cannot be very reliable due to the small number of samples available. In
conjunction to these techniques one can use cluster validation measures.

It is extremely important to be able to evaluate the results of the classification
process correctly. This can be troublesome as there the number of samples available
is limited so it is difficult to ensure that assess the quality of the clustering in gene
expression data.

3.1.3 Evaluation process

In order to be able to evaluate properly the results of our system we are proposing
to use the following benchmark system as illustrated in Figure 12. In the first step
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of dimensionality reduction we have to fit the parameter of k nearest neighbours
to our algorithm of choice (ISOMAP, LLE, etc.) needed for computing the nearest
neighbours graph. This k (not to be confused with the parameter k of the classifier)
will be chosen according to the classification accuracy and cluster validation metrics
as follows:

In Classification Accuracy we will be using the k-NN classifier which we will fit
after a 10-fold validation onto the embedding produced from the manifold learning
process. In 10-fold cross validation the embedding produced gets partitioned in 10

subsets, one of them is used for testing and the other 9 are used as the training
data. The process is repeated 10 times so that every subset is used as validation
exactly once. The results are averaged along the 10 times the algorithm run and
a single estimation is produced. Using these results we can estimate the optimal
value for k and thus use it to measure the ARI index using Leave-One-Out (LOO)
cross-validation.

Additionally to the classification accuracy, it is also useful to use cluster validation
indexes. As the samples are usually of a small number, it will not be unusual to get
almost identical ARI values, so we would want to choose the embedding that most
separates the different classes of our data set.

Intuitively we would like the clusters generated by the clustering process to be
easily separable with each cluster ‘as far’ as possible from every other cluster so the
classification algorithm can provide as good results as possible. In the case of ALL
we want the three classes (Normal, T-cell ALL, and B-cell ALL) well separated.

As we know the labels of each sample in the resulting embedding we will use the
Dunn Index (2.6.2), the Davies-Bouldin Index (2.6.3) and the Silhouette Index (2.6.4)
as indication of how well separated the clusters are. Note these indices are not an
absolute measure of how good the embedding is, rather than a guide we will use
when the ARI measures are really close with each other. This happens as the values
reported from these indices are heavily influenced by the use of distance metric
(Euclidean, Manhattan, Mahalanobis etc.), and the type of intra and inter cluster
measure it uses for combining the information (average, centroid, complete, single
etc.). We will use the Euclidean distance metric along with the use of the centroid for
intra-cluster measures and the average distance for the intra-cluster measures.
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1. Microarray data

2. Parameter Estimation

3. Manifold Learning
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4. LOO Cross validation

9. k-NN Param-
eter Estimation

10. Measure ARI in-
dex using k-NN

Using ISOMAP, LLE, MLLE,
Spectral Embedding. . .

Figure 12: The evaluation process for dimensionality reduction, including two ways of eval-
uation; classification accuracy and cluster validation
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Figure 13: Visualisation of the performance of each of the algorithms compared to k-NN
for the ALL dataset. The ARI index was measured using leave-one-out cross-
validation using the optimal number of neighbours for each case
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Figure 14: Visualisation of the performance of each of the algorithms compared to k-NN
with a variable number of dimensions. The Silhouette index was measured using
leave-one-out cross-validation using the optimal number of neighbours for each
algorithm

3.2 ovarian cancer

As described in Section 1.1.1, Ovarian Cancer is one of the few types of cancer that
is difficult to diagnose, so our aim is to apply the manifold learning techniques to
help uncover more information from the microarray data. For this purpose we will
use two well-annotated large microarray datasets.

3.2.1 Tothill et. al microarray publication

Tothill et al. (2008) used a microarray gene expression profiling of 285 serous and
endometrioid tumours of the ovary. Their technique compromised of unsupervised
K-means clustering. To evaluate the clustering they concentrated on the patient sur-
vival analysis within the identified K-means groups using Cox proportional hazards
models (Breslow, 1975). Instead of using patient survival probability analysis using
the Cox method, we will attempt to identify other critical details such as Grade or
the survival status of the patient.
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First, using ISOMAP we reduce the dimensionality of our data set from 285×
54621 down to a lower dimension 285 × d. Again using the visualisation of the
eigenvalues Figure 15 we can tell that most of the information about our dataset
can be contained in a small number of dimensions, as we would want.
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Figure 15: Application of the ISOMAP algorithm on the microarray Tothill et. al paper using
number neighbours k = 50 showing the change of eigenvalues according to the
dimensionality of the embedding

Next we will attempt, using the clinical data of the patients to use the k-NN
classifier, using LOO validation, to see if using manifold learning to reduce the
dimensionality of the data helps the classification process. Using ISOMAP (k = 5),
we have managed to reduce the dimensionality of the data down to 5 dimensions
where we had the best classification rates as depicted in Table 3. Although using
manifold learning for dimensionality reduction clearly outperforms just using k-
NN classifier, we could not obtain a good enough representation of the dataset to
get good classification rates. The fact that using the ISOMAP improves this much
the learning abilities of our classifier suggests that approximates quite well the data,
and removes some of the noise present in the data.
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Field
ISOMAP (k = 5,d = 5) k-NN

ARI Accuracy ARI

Arrayed Site 0.114 0.94 4.33e-14

Grade 0.07 0.45 -0.003

Histologic Subtype 0.1 0.60 0.08

Patient survival status 0.064 0.71 0.02

Primary Site 0.067 0.64 0.038

Residual Disease 0.056 0.86 3.6e-14

Stage 0.041 0.72 -0.002

Type 0.159 0.32 0.03

Table 3: Shows the classification rates of clinical data of the Tothill et al. dataset with and
without the application of ISOMAP, using k-NN and Leave-One-Out classification

3.2.2 The Cancer Genome Atlas Research Network (TCGA)

TCGA presented an analysis of m-RNA expression, microRNA expression, pro-
moter methylation and DNA copy number in 489 high-grade serous ovarian ade-
nocarcinomas and the DNA sequences of exons from coding genes in 316 of these
tumours (TCGA, 2011).

Again in a similar manner as in 3.2.1 we can plot the eigenvalues of the embed-
ding using the ISOMAP algorithm. This time though, it seems that we need much
more dimensions to represent our data in (Figure 16). Using the same procedure
as for the Tothill microarray dataset we will use the k-NN classifier on the 20 di-
mensional embedding computed with ISOMAP (k = 5) and the original dataset
(Table 4). Again although we can see minor improvements we obtain better results
than without the use of manifold learning, which is quite promising.
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Figure 16: Eigenvalue distribution according to dimensionality on the TCGA Ovarian Can-
cer dataset.

Field
ISOMAP (k = 5,d = 20) k-NN

ARI Accuracy ARI

Platinum Status 0.046 0.443 0.009

Progression Free Status 0.104 0.691 0.000

Tumour Residual Decease 0.060 0.459 0.014

Event Relapse 0.104 0.691 0.000

Event Death 0.054 0.589 0.018

Tumour Grade 0.222 0.864 0.183

Person Neoplasm Cancer Status 0.092 0.626 0.000

Vital Status 0.054 0.589 0.018

Table 4: Classification rates on the TCGA Ovarian Cancer dataset with and without the use
of manifold learning. The k-NN classifier was used with Leave-One-Out classifica-
tion
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4.1 biological pathways

Biological pathways represent the biological reactions, which are identified with
enzymes (which are in turn encoded onto genes) and interaction network in a cell.

Researchers find most of the biological pathways through laboratory studies of
bacteria, fruit flies, mice and other organisms. Fortunately most of these model
systems have been found to have similar counterparts in the human organism as
well.

Still, it is not well understood how these pathways work together. This is quite
an open problem in the area of genetics and bioinformatics that will take a lot more
years to fully understand it (NHGRI, 2012).

Biological pathways, technically, are usually directed graphs with labelled nodes
and edges representing associations of genes participating in a biological process.
Using this information we can determine which genes are most significant for the
development of a certain type of cancer by identifying genes that are participating
in such a process. This information can be used as background knowledge to either
reduce the initial data set or either pay more attention (by attributing weights) to
those genes during the clustering process.

kegg Kyoto Encyclopedia of Genes and Genomes (KEGG) provides data primar-
ily centred on biological pathways. Each pathway is associated with a name (i.e.
Prostate cancer metabolism Figure 17) and an identifier and also genes are associ-
ated with a pathway for each species.

4.2 biological pathway based weighting

Of course due to the technically difficult and time consuming task to find these
pathways there are not always available to us, so instead we propose a more general
scheme for how to use them as background knowledge.

Our intuition is that some genes tend to co-express when are participating in
the same biological process and these pairs of genes are more likely to display co-
expression in other biological processes. That is, the more information we have that
a gene displayed c Thus we can use the information to create weights in order to
favour genes that participated in the same biological pathway.

Using the annotation data of a genome array we can associate each probe par-
ticipating with a KEGG pathway. The mappings for each probe are based on the

1 http://www.genome.jp/kegg-bin/show_pathway?map=hsa05215

2 http://pinguin.biologie.uni-jena.de/bioinformatik/
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Figure 17: The biological pathway of prostate cancer of Homo Sapiens as illustrated on
KEGG1.

Figure 18: Demonstration of a metabolic pathway2

data provided by KEGG3 and then associated with the annotations provided by the
manufacturer of each microarray.

The simple explanation is that we have each probe of the microarray to be associ-
ated with a number of pathways (4.2.1).

ξ : G→ P (Π) (4.2.1)

3 ftp://ftp.genome.jp/pub/kegg/genomes/genome

ftp://ftp.genome.jp/pub/kegg/genomes/genome
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Jaccard Index

Given a pair of probes we would like to evaluate the similarity of pathways they
share together. A suitable measure for this will be to use the Jaccard coefficient. This
index coined by Paul Jaccard is a statistic commonly used for comparing similarity
and diversity of sample sets.

J(A,B) =
|A∩B|
|A∪B| (4.2.2)

Therefore using the Jaccard Index we can define the pathway similarity of two
probes i and j as:

R(i, j) =
|ξ(i)∩ ξ(j)|
|ξ(i)∪ ξ(j)| (4.2.3)

Of course we do not know how much influence should the weighting have on
the prediction of the nearest neighbours (NN) needed for the construction of the
manifold. Therefore (4.2.4) uses a learning parameter η which is used to maximise
(minimise) the influence of the biological pathways prior knowledge to the NN
learning process. When η changes in the dataset are exponentially reflected on the
weights.

wij = exp(−η× R(i, j)) (4.2.4)

Exploiting the use of these weights we can modify the classical k-NN algorithm
using the weighted Euclidean (4.2.5) as a distance metric for determining which
points of the original data space are close to one another.

D(a,b) =

√√√√wij × n∑
i=1

(ai − bi)2 (4.2.5)
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Data: gene expressions geneData, biological pathways map ξ
Result: k-nearest neighbours of each probe
initialisation;
for each probe i in probes do

for each probe j in probes do
R(i, j) = |ξ(i)∩ξ(j)|

|ξ(i)∪ξ(j)|
end

end
R = R/

∑
i,j R(i, j)

for each probe i in probes do
for each probe j in probes do

wij = exp(−η× R(i, j))
distances(i, j) =

√
wij ×

∑n
i=1(ai − bi)

2

end
nearestNeighbours(i) = sorted(distances (i))

end
Algorithm 1: Calculation of the k-Nearest neighbours of the manifold

After having the k-nearest neighbours of each probe we can calculate the eu-
clidean distances between each probe of the data set.

Using the pairwise distances between the genes we can calculate the geodesic
distances (i.e. the shortest paths) and then the eigen values, eigenvectors and thus
obtain the embedding in the gene-to-gene space using the steps of the standard
ISOMAP algorithm. We would like to project the resulting embedding to sample-
to-sample space, in order to be able to evaluate our algorithm and visualise the
results by viewing how the patients (samples) are distributed on the plane. To do
so we can use the equation (4.2.6) to project the gene-to-gene space back to the
sample-to-sample space.

ΠS×S = expressionData ·ΠG×G (4.2.6)

4.2.1 Choosing the optimal weights

In order to find the optimal weight parameter η we will be using the benchmarking
system as proposed before for various values of η. In Figure 19 we can see runs of
the benchmarking suite for 0 6 η 6 80000.
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Figure 19: Choosing a suitable η value using the ALL microarray dataset. Note that in con-
trast with the other measures a low Davies-Bouldrin Index is preferred to a high
one.
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Figure 20: Visualisation of the ALL microarray dataset using a priori learning in three di-
mensions (η = 2.6e4,k = 5)
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In the previous chapters we have proposed two areas of techniques that can be
used on the analysis and visualisation of microarray data. To confirm the results we
will be using the ALL microarray dataset to compare and contrast ISOMAP with
a priori ISOMAP and then use additional larger microarray datasets to replicate
the procedure and confirm the results, while comparing it to current state of art
techniques.
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Figure 21: Comparison of the ISOMAP algorithm on the ALL dataset.
Blue: a priori manifold learning (η = 2.6e4,k = 5)
Green: classical ISOMAP algorithm (k = 5)
Red: ISOMAP using sample-to-sample distance matrix (k = 3)

Firstly we will compare the performance of the microarray dataset of ALL. From
Figure 21 we can see that a priori manifold learning clearly outperforms applications
of the ISOMAP algorithm on the dataset on all measures and additionally it reaches
an ARI of 1.0 thus giving a perfect LOO score.

When we apply the ISOMAP algorithm using as observations the patient sam-
ples (sample-space), it clearly delivers much better results than regarding each gene
as a different observation (gene-space). The reason for this could be attributed to
the fact that the patients are more likely to be sampled from a low-dimensional
manifold, than genes are, or the assumption of a Euclidean space is completely off.
Fortunately we gain much better classification accuracy to the true labels using the
a priori knowledge, which is encouraging.

51
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Using the optimal settings obtained from the ARI values we can plot the corre-
sponding cluster validation measures, in Figure 22. Although the measures of clus-
ter validation seem to indicate that a sample-space application should be preferred,
the actual classification accuracy disagrees, confirming the drawback of clustering
indices where a ‘good’ value may not necessarily imply the best information re-
trieval.
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Figure 22: Comparison of the ISOMAP algorithm.
Blue: a priori manifold learning (η = 2.6e4,k = 5)
Green: classical ISOMAP algorithm (k = 5)
Red: ISOMAP using sample-to-sample distance matrix (k = 3)
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5.0.2 GEMLeR – Gene Expression Machine Learning Repository

Having established some initial intuition about the applicability of manifold tech-
niques on the ALL microarray dataset we will expand our knowledge to microrray
data found from Gene Expression Machine Learning Repository (GEMLeR). GEM-
LeR provides a collection of gene expression datasets that can be used for bench-
marking gene expression oriented machine learning algorithms. Each of the gene
expression samples in GEMLeR came from a large publicly available repository
named Expression Project For Ontology (expO)1. expO was mainly preferred as:

• The processing procedure of tissue samples is consistent

• The same Affymetrix microarray assay platform is used (Affymetrix GeneChip
U133 Plus 2.0)

• There is large number of samples for different tumour types

• Availability of additional information for combined genotype-phenotype stud-
ies

Other
Prostate

Figure 23: Application of manifold learning (ISOMAP; k = 3) on a dataset of 69 prostate
patients compared to 8 other cancer types, each containing 10935 gene expression
measurements reducing the dimensionality of the data space to three dimensions.
We can clearly distinguish two clusters; those of prostate tissue samples and the
rest of the tissue samples.

In order to lower memory requirements and allow faster computation times we
made use of a shorter version of each gene expression dataset containing only 10935

1 http://www.intgen.org/expo/

http://www.intgen.org/expo/
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probes, instead of 54681. To achieve this, a method of unsupervised highest variance
filter was applied to avoid the so called “selection bias” and thus be able to remove
genes that have a practically constant signal.

We applied the manifold learning ISOMAP algorithm on the 9 datasets and com-
pared it to the results provided by GEMLeR which used a Support Vector Machine
(SVM) classifier and another state of the art feature reduction algorithm (Support
Vector Machines - Recursive Feature Elimination (SVM-RME)).

1. Breast cancer (344 samples) vs. other

2. Colon cancer (286 samples) vs. other

3. Kidney cancer (260 samples) vs. other

4. Ovary cancer (198 samples) vs. other

5. Lung cancer (126 samples) vs. other

6. Uterus cancer (124 samples) vs. other

7. Omentum cancer (77 samples) vs. other

8. Prostate cancer (69 samples) vs. other

9. Endometrium cancer (61 samples) vs. other

In figures 24 and 25 we can see that the manifold learning ISOMAP does as well
as the SVM-RME feature reduction. Although using a basic k-NN classifier, we can
see that our dimensionality reduction techniques perform as well as state of the art
techniques used already (Stiglic and Kokol, 2010). In order to compare more accu-
rately the two different approaches of dimensionality reduction it would be more
appropriate to use a paired t-test, or a Wilcoxon signed-ranks test, as recommended
by Demsar (2006), which is a non-parametric alternative to paired t-test.
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Figure 24: The accuracy on the GEMLeR dataset against the change in dimensionality of the
SVM-RFE (blue) against ISOMAP (green) with k = 5 dimensionality reduction
methods.
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Figure 25: The accuracy on the GEMLeR dataset against the change in dimensionality of
the SVM-RFE (blue) against ISOMAP (k = 5) (green) dimensionality reduction
methods.
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C O N C L U S I O N S & F U T U R E W O R K

6.1 conclusions

In this research we have presented an empirical comparison of several manifold
learning techniques on the analysis of microarray data. Classifying microarray data
can be a very challenging task due to the “curse of dimensionality” as we identified
in Section 2.4, but manifold learning techniques proved to aid in the process for a
lot types of cancer. Although the ISOMAP algorithm has been previously been used
by Dawson et al. (2005) on microarray data in the analysis of temporal, spatial and
functional processes we have investigated and presented new ways in which it can
be applied on cancer related data.

In Chapter 3 we managed to reduce the dimensionality of microarray datasets
down to only a few dimensions, which allowed us to better grasp the available in-
formation visually. By visualising the microarray data we not only can easily detect
the clusters of types of cancer tumours, but can also aid our approach to choose
good clustering/classification algorithms. Additionally it allowed existing super-
vised techniques like k-NN and SVM to perform better on the manifold embedding
for classification of tumour samples, than the original data sets.

To improve the results of the process, we also proposed a novel technique to incor-
porate a priori information into manifold learning, using the well-known ISOMAP
algorithm (Chapter 4). Our results indicate that the semi-supervised manifold learn-
ing technique leads to improved biological significance, although the choice of the
data to be used as prior knowledge is an open and difficult task across genetics
researchers.

One of the shortcomings of this research is that gene regulation is a very condi-
tion specific task and thus the expression values of each individual gene must be
an outcome of changes happening at that particular time when the microarray mea-
surement was made. However our gene expression measurements did not happen
at the same time, but rather could be spaced by a period of over a year and maybe
more. Moreover, in Chapter 4 we made the assumption that genes that participate
in the same biological pathways will possibly show co-expression in unrelated bio-
logical process as well.

6.2 future work

Of course the research described in this project is not in any way complete as it
can be extended in numerous ways. Ideally we would like to evaluate our mani-
fold learning algorithms on a vast amount of microarray data sets, to validate our
algorithms performance by gaining more realistic figures. We highlight several a
number of areas for further research such as:

59
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6.2.1 Complexity

The system’s performance is also is an extremely important factor that needs to need
improving upon. The complexity of the proposed a priori algorithm as illustrated in
Section 2.5.1, can approach O[N3] where N is the number of probes we want to
analyse; whereas for the standard application of ISOMAP, N would be the number
of samples. Additionally we run into space-complexity problems as well as we need
O[N2 · d] storage for the operation of the algorithm. For these reasons it will be
beneficial to investigate iterative forms of ISOMAP such the ones presented in Law
and Jain (2006), that require much less memory space but also allow the construction
of concurrent implementations of the algorithm.

6.2.2 Prior knowledge incorporation

An important aspect will be to also research more about the information that can
be used as prior knowledge into the manifold learning techniques, as our approach
can be regarded preliminary. There is a lot of ongoing research going in the area of
gene co-expression networks that would be interesting to apply in manifold learning
techniques. Zhang and Horvath (2005) first demonstrated that gene co-expression
can be expressed as a weighted connection network which can predict the biological
significance of a gene, which we could use as an extension of our approach of
incorporating prior knowledge to manifold learning.

6.2.3 Regression analysis

So far we have investigated the use of one-way classification methods to reveal
information in the data. It would be interesting to apply regression techniques (on
the lower-dimensional embedding of the manifold algorithms), such as survival
models, to be able to answer questions like: What is the expected lifetime of a patient?
If one survives the treatment, at what rate will he/she die? If one would measure the
length of time between diagnosis and death or record the vital status of the patient
when last observed for every patient in a group, one could potentially describe the
survival of the group as the proportion of those who are alive at the end of the
period under investigation. A popular method in analysis of gene expression data
for predicting cancer recurrence or death at time t, is the Cox proportional hazards
model (Cox, 1972).



B I B L I O G R A P H Y

Alizadeh, A., Eisen, M., Davis, R., Ma, C., Lossos, I., Rosenwald, A., Boldrick, J.,
Sabet, H., Tran, T., Yu, X., Powell, J., Yang, L., Marti, G., Moore, T., Hudson, J., Lu,
L., Lewis, D., Tibshirani, R., Sherlock, G., Chan, W., Greiner, T., Weisenburger, D.,
Armitage, J., Warnke, R., Levy, R., Wilson, W., Grever, M., Byrd, J., Botstein, D.,
Brown, P., and Staudt, L. (2000). Distinct types of diffuse large b-cell lymphoma
identified by gene expression profiling. Nature, 403(6769):503–511.

Baltimore, D. (1970). Rna-dependent dna polymerase in virions of rna tumour
viruses. Nature, 226(5252):1209–1211.

Barmparas, G., Branco, B., Schnüriger, B., Lam, L., Inaba, K., and Demetriades, D.
(2010). The incidence and risk factors of post-laparotomy adhesive small bowel
obstruction. Journal of Gastrointestinal Surgery, 14:1619–1628.

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction
and data representation. Neural Comput., 15(6):1373–1396.

Bellman, R. E. (1957). Dynamic programming. Number ISBN 978-0-691-07951-6.
Princeton University Press.

Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U. (1999). When is “near-
est neighbor” meaningful? In Beeri, C. and Buneman, P., editors, Database The-
ory — ICDT’99, volume 1540 of Lecture Notes in Computer Science, pages 217–235.
Springer Berlin Heidelberg.

Birzele, F., Fauti, T., Stahl, H., Lenter, M., Simon, E., Knebel, D., Weith, A., Hilde-
brandt, T., and Mennerich, D. (2011). Next-generation insights into regulatory t
cells: expression profiling and foxp3 occupancy in human. Nucleic Acids Research,
39(18):7946–7960.

Breslow, N. E. (1975). Analysis of survival data under the proportional hazards
model. International Statistical Review / Revue Internationale de Statistique, 43(1):pp.
45–57.

Brunet, J.-P., Tamayo, P., Golub, T., and Mesirov, J. (2004). Metagenes and molecular
pattern discovery using matrix factorization. Proceedings of the National Academy
of Sciences, 101(12):4164–4169.

Cayton, L. (2005). Algorithms for manifold learning. Technical Report CS2008-0923,
UCSD.

Cheng, Y. and Church, G. (2000). Biclustering of expression data. Proceedings / ...
International Conference on Intelligent Systems for Molecular Biology ; ISMB. Interna-
tional Conference on Intelligent Systems for Molecular Biology, 8:93–103.

61



62 Bibliography

Cobaleda, C. and Sanchez-Garcia, I. (2009). B-cell acute lymphoblastic leukaemia:
towards understanding its cellular origin. BioEssays, 31(6):600–609.

Cox, D. R. (1972). Regression models and life-tables. J. Roy. Statist. Soc. Ser. B,
34:187–220. With discussion by F. Downton, Richard Peto, D. J. Bartholomew, D.
V. Lindley, P. W. Glassborow, D. E. Barton, Susannah Howard, B. Benjamin, John
J. Gart, L. D. Meshalkin, A. R. Kagan, M. Zelen, R. E. Barlow, Jack Kalbfleisch, R.
L. Prentice and Norman Breslow, and a reply by D. R. Cox.

Davies, D. L. and Bouldin, D. W. (1979). A cluster separation measure. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, PAMI-1(2):224–227.

Dawson, K., Rodriguez, R. L., and Malyj, W. (2005). Sample phenotype clusters in
high-density oligonucleotide microarray data sets are revealed using isomap, a
nonlinear algorithm. Bmc Bioinformatics, 6(1):195.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets.

DeRisi, J., Iyer, V., and Brown, P. (1997). Exploring the metabolic and genetic control
of gene expression on a genomic scale. Science, 278(5338):680–686.

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271.

Dong, J. and Horvath, S. (2007). Understanding network concepts in modules. BMC
systems biology, 1(1).

Donoho, D. and Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding
techniques for high-dimensional data. Proceedings of the National Academy of Sci-
ences of the United States of America, 100(10):5591–5596.

Dunn, J. C. (1973). A fuzzy relative of the isodata process and its use in detecting
compact well-separated clusters. Journal of Cybernetics, 3(3):32–57.

Eisen, M., Spellman, P., Brown, P., and Botstein, D. (1998). Cluster analysis and
display of genome-wide expression patterns. Proceedings of the National Academy
of Sciences, 95(25):14863–14868.

Elegans (1998). Genome sequence of the nematode c. elegans: a platform for inves-
tigating biology. Science (New York, N.Y.), 282(5396):2012–2018.

Floyd, R. W. (1962). Algorithm 97: shortest path. Communications of the ACM,
5(6):345.

Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller,
H., Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., and Lander, E. (1999).
Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring. Science (New York, N.Y.), 286(5439):531–537.

Gurney, H. (2002). How to calculate the dose of chemotherapy. British Journal of
Cancer, 86(8):1297–1302.



Bibliography 63

Hartigan, J. (1972). Direct clustering of a data matrix. Journal of the American Statis-
tical Association, 67(337):123–129.

He, X., Yan, S., Hu, Y., Niyogi, P., and Zhang, H. (2005). Face recognition using lapla-
cianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3):328–
340.

Irizarry, R., Hobbs, B., Collin, F., Beazer-Barclay, Y., Antonellis, K., Scherf, U., and
Speed, T. (2003). Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics (Oxford, England), 4(2):249–264.

Jafari, A. and Almasganj, F. (2010). Using laplacian eigenmaps latent variable model
and manifold learning to improve speech recognition accuracy. Speech Communi-
cation.

Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., and Forman, D. (2011). Global
cancer statistics. CA: A Cancer Journal for Clinicians, 61(2):69–90.

Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., and Thun, M. (2009). Cancer statistics,
2009. CA: A Cancer Journal for Clinicians, 59(4):225–249.

Klein, D., Kamvar, S. D., and Manning, C. D. (2002). From instance-level constraints
to space-level constraints: Making the most of prior knowledge in data clustering.
In Proceedings of the Nineteenth International Conference on Machine Learning, ICML
’02, pages 307–314, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Knuth, D. (1974). Computer programming as an art. Commun. ACM, 17(12):667–673.

Kohler, G. and Milstein, C. (1975). Continuous cultures of fused cells secreting
antibody of predefined specificity. Nature, 256(5517):495–497.

Kumaravel Somasundaram, Sathish Kumar Mungamuri, N. W. (2002). Dna microar-
ray technology and its applications in cancer biology. Applied Genomics and Pro-
teomics.

Kung, S. and Mak., M. (2009). Machine Learning in Bioinformatics, volume Chapter
1: Feature Selection for Genomic and Proteomic Data Mining. New Jersey : John
Wiley & Sons.

Law, M. and Jain, A. (2006). Incremental nonlinear dimensionality reduction by
manifold learning. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
28(3):377–391.

Lenz, G., Wright, G., Emre, T., Kohlhammer, H., Dave, S., Davis, E., Carty, S., Lam,
L., Shaffer, A., Xiao, W., Powell, J., Rosenwald, A., Ott, G., Muller-Hermelink, H.,
Gascoyne, R., Connors, J., Campo, E., Jaffe, E., Delabie, J., Smeland, E., Rimsza, L.,
Fisher, R., Weisenburger, D., Chan, W., and Staudt, L. (2008). Molecular subtypes
of diffuse large b-cell lymphoma arise by distinct genetic pathways. Proceedings of
the National Academy of Sciences, 105(36):13520–13525.

Mirkin, B. (1996). Mathematical Classification and Clustering. Kluwer Academic Pub-
lishers.



64 Bibliography

Morin, R., Bainbridge, M., Fejes, A., Hirst, M., Krzywinski, M., Pugh, T., McDonald,
H., Varhol, R., Jones, S., and Marra, M. (2008). Profiling the hela s3 transcrip-
tome using randomly primed cdna and massively parallel short-read sequencing.
BioTechniques, 45(1):81–94.

NHGRI (2012). Biological pathways. http://www.genome.gov/.

Omohundro, S. M. (1989). Five Balltree Construction Algorithms.

Pal, T., Permuth-Wey, J., Betts, J., Krischer, J., Fiorica, J., Arango, H., LaPolla, J.,
Hoffman, M., Martino, M., Wakeley, K., Wilbanks, G., Nicosia, S., Cantor, A., and
Sutphen, R. (2005). Brca1 and brca2 mutations account for a large proportion of
ovarian carcinoma cases. Cancer, 104(12):2807–2816.

Parker, W., Broder, M., Chang, E., Feskanich, D., Farquhar, C., Liu, Z., Shoupe, D.,
Berek, J., Hankinson, S., and Manson, J. (2009). Ovarian conservation at the time
of hysterectomy and long-term health outcomes in the nurses’ health study. Ob-
stetrics and gynecology, 113(5):1027–1037.

Perou, C. M., Sørlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., Pollack,
J. R., Ross, D. T., Johnsen, H., Akslen, L. A., et al. (2000). Molecular portraits of
human breast tumours. Nature, 406(6797):747–752.

Rocca WA, Bower JH, M. D. A. J. G. B. d. A. M. M. L. r. (2007). Increased risk of cog-
nitive impairment or dementia in women who underwent oophorectomy before
menopause. increased risk of cognitive impairment or dementia in women who
underwent oophorectomy before menopause. increased risk of cognitive impair-
ment or dementia in women who underwent oophorectomy before menopause.
increased risk of cognitive impairment or dementia in women who underwent
oophorectomy before menopause. increased risk of cognitive impairment or de-
mentia in women who underwent oophorectomy before menopause. increased
risk of cognitive impairment or dementia in women who underwent oophorec-
tomy before menopause. increased risk of cognitive impairment or dementia in
women who underwent oophorectomy before menopause. increased risk of cog-
nitive impairment or dementia in women who underwent oophorectomy before
menopause. increased risk of cognitive impairment or dementia in women who
underwent oophorectomy before menopause. Neurology.

Rousseeuw, P. (1987). Silhouettes: A graphical aid to the interpretation and valida-
tion of cluster analysis. Journal of Computational and Applied Mathematics, 20(1):53–
65.

Roweis, S. and Saul, L. (2000). Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326.

Schena, M., Shalon, D., Davis, R., and Brown, P. (1995). Quantitative monitor-
ing of gene expression patterns with a complementary dna microarray. Science,
270(5235):467–470.

Shendure, J. (2008). The beginning of the end for microarrays? Nature Methods,
5(7):585–587.



Bibliography 65

Stiglic, G. and Kokol, P. (2010). Stability of ranked gene lists in large microarray
analysis studies. Journal of Biomedicine and Biotechnology, 2010.

Tang, C., Zhang, L., Zhang, A., and Ramanathan, M. (2001). Interrelated two-way
clustering: an unsupervised approach for gene expression data analysis. In Bioin-
formatics and Bioengineering Conference, 2001. Proceedings of the IEEE 2nd Interna-
tional Symposium on, pages 41 –48.

TCGA (2011). Integrated genomic analyses of ovarian carcinoma. Nature,
474(7353):609–615.

Tenenbaum, J., de Silva, V., and Langford, J. (2000). A global geometric framework
for nonlinear dimensionality reduction. Science, 290(5500):2319–2323.

Tothill, R., Tinker, A., George, J., Brown, R., Fox, S., Lade, S., Johnson, D., Trivett, M.,
Etemadmoghadam, D., Locandro, B., Traficante, N., Fereday, S., Hung, J., Chiew,
Y.-E., Haviv, I., Group, A. O. C. S., Gertig, D., deFazio, A., and Bowtell, D. (2008).
Novel molecular subtypes of serous and endometrioid ovarian cancer linked to
clinical outcome. Clinical Cancer Research, 14(16):5198–5208.

van der Laan, M. and Pollard, K. (2003). A new algorithm for hybrid hierarchical
clustering with visualization and the bootstrap. Journal of Statistical Planning and
Inference, 117(2):275–303.

Vinh, N., Epps, J., and Bailey, J. (2009). Information theoretic measures for cluster-
ings comparison: Variants, properties, normalization and correction for chance.
Journal of Machine Learning Research.

Weinstein, J., Myers, T., O’Connor, P., Friend, S., Fornace, A., Kohn, K., Fojo, T.,
Bates, S., Rubinstein, L., Anderson, N., Buolamwini, J., van Osdol, W., Monks, A.,
Scudiero, D., Sausville, E., Zaharevitz, D., Bunow, B., Viswanadhan, V., Johnson,
G., Wittes, R., and Paull, K. (1997). An information-intensive approach to the
molecular pharmacology of cancer. Science, 275(5298):343–349.

Whipkey, K. L. (1984). Identifying predictors of programming skill. SIGCSE Bull.,
16(4):36–42.

Yang, Y., Dudoit, S., Luu, P., Lin, D., Peng, V., Ngai, J., and Speed, T. (2002). Normal-
ization for cdna microarray data: a robust composite method addressing single
and multiple slide systematic variation. Nucleic Acids Research, 30(4):e15–e15.

Zhang, B. and Horvath, S. (2005). A general framework for weighted gene co-
expression network analysis. Statistical applications in genetics and molecular biology,
4(1).

Zhang, Z. and Wang, J. (2006). Mlle: Modified locally linear embedding using mul-
tiple weights. IEEE.





A
A P P E N D I X

a.1 microarray data repositories

Table 5: Repositories containing microarray data

# Database Description

1 Gene Expression Omnibus
ncbi.nlm.nih.gov/geo/

Public data deposition
and public queries

2 MSigDB/GSEA (Broad Institute)
broadinstitute.org/gsea/msigdb/

Local installation and
public queries

3 Oncomine (University Michigan)
oncomine.org/

Queries and data instal-
lation

4 National Cancer Institute (NCI)
madb.nci.nih.gov/

Local installation

5 Array Express
ebi.ac.uk/arrayexpress/

Local installation

6 Kent Ridge Bio-medical Data set Repository
datam.i2r.a-star.edu.sg/

Local installation

7 Gene Expression Machine Learning Repository
gemler.fzv.uni-mb.si/

Local installation

a.2 implementation details

This section will give a brief overview of the tools used and the reasons of which
were chosen to fulfil the needs of the microarray analysis research.

Python was the main programming tool of choice as, along with the provide li-
braries, provide an excellent scientific platform. Most importantly the libraries we
make use of are all open-source and thus we can easily adapt the algorithms we are
going to use to our needs. It is not unusual for us to want to trade-off running-time
for space complexity or vice-versa depending on the application.

Main tools used throughout this project:

• http://scikit-learn.org/

A general machine learning library which contains a variety of state-of-the-
art learning algorithms spanning supervised learning, unsupervised learning,
model selection and samples datasets.
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• http://matplotlib.org/

matplotlib is a python plotting library which produces publication quality
figures in a variety of formats.

• http://www.numpy.org/

numpy allows for efficient and powerful N-dimensional array manipulation,
essential for working with vast amount of data and vectors like microarrays.

• http://www.r-project.org/

R-lang is a powerful statistical programming language that that we used to
statistically evaluate our algorithms. We also made use of RPy2 which provides
a robust interface between Python and the R programming language.

• http://www.bioconductor.org/

In addition Bioconductor uses R-lang which we use to provide us annotations
for various manufacturer microarray products, in order to be able to link this
information with KEGG.

• http://vis.usal.es/bicoverlapper/

BicOverlapper is a visual framework that allows for the simultaneous visuali-
sation of one or more sets of biclusters, heatmaps of gene expression matrices
and gene annotations.

http://matplotlib.org/
http://www.numpy.org/
http://www.r-project.org/
http://www.bioconductor.org/
http://vis.usal.es/bicoverlapper/


A C R O N Y M S

adjuvant An adjuvant is a pharmacological or immunolog-
ical agent that modifies the effect of other agents.
9

ALL Acute lymphoblastic leukaemia. 37, 39, 49, 51

ARI Adjusted Rand Index. 39, 41, 51

DBI Davies-Bouldin Index. 40

DNA Deoxyribonucleic acid (DNA) is the material that
encodes the genetic instructions in all known liv-
ing organisms. 11

GEMLeR Gene Expression Machine Learning Repository. 51

KEGG Kyoto Encyclopedia of Genes and Genomes. 45, 58

LOO Leave-One-Out. 41

NMF Non-negative matrix factorisation. 37

PCC Pearson correlation coefficient. 23

RMA Robust Multi-array Average. 15

RNA Ribonucleic acid (RNA) is preliminarily responsi-
ble for coding, decoding, regulation and expres-
sion of genes. 11
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