
IMPERIAL COLLEGE LONDON

Department Of Computing

User Mobility in IEEE 802.11

Network Environments

by

Heng Sok
Supervisor: Prof. Kin Leung

Second Marker: Dr. Paolo Costa

A thesis submitted in partial fulfillment

of the requirements for the degree of

Bachelor of Engineering in Computing

June 2013

mailto:sokheng@idatahub.com

“Choose a job that you like, and you will never have to work a day in your life.”

- Confucius

Acknowledgements

First of all, I would like to thank Prof. Kin Leung and Dr. Paolo Costa for their

continual support and advice throughout this project.

Kin has always been there to provide invaluable suggestions and the necessary sup-

port that I need to complete this project successfully. I thank him for sparing his time

for our discussion, especially in one occasion, which took up most of his lunchtime.

He has continuously inspired and motivated me throughout this project. Not only Kin

serves as my supervisor, he also advised me on how to cope with the busy schedule of

university life.

I thank Paolo for sparing his time for our discussions and advising me on how to

improve on the evaluation of my project. He suggested a micro-benchmark experiment,

which serves to test the sensitivity of the detection mechanism used in this project. He

has also advised me on the key points that I need to focus in my report as well as

explaining how a good thesis structure should be.

I also would like to thank Dr. Abdelmalik Bachir for sharing some of his insights and

explain the idea behind the overlapping of WiFi channels. I thank Mr. Duncan White

for supportively helping me to seek permission from ICT Networks and ICT Security to

conduct the experiment in the Department Of Computing Laboratory.

I thank all my friends, especially Arthur, Bolun, Howon, Myung, Yuxiang and

Zhaoyang for helping me out by taking part in the Micro-benchmark Experiment, in

which each of them had to perform various movements in public places. I thank also my

friends who were there to help me look after my equipments during the experiment that

was going on in the laboratory as I had to go out to get lunch on each of the 5 days.

Finally, without my parents and family, I would not be able to achieve what I have

today and complete my education at Imperial. They are my pillars of support throughout

the course of my education, giving me the strength to fight one of the toughest battle

of my life.

ii

Abstract

Understanding the mobility of people within an environment without the aid of

technology is almost impossible due to the fact that it is beyond our ability to remember

all faces of people that appear within that environment and keeping our eyes on their

movement. Even if we ask these people to report about their locations to a central

coordinator every now and then, that would require the use of technology to convey

these messages as well.

We develop a novel system to track the collective mobility of WiFi users within

an environment and instead of a person reporting about his or her location, the WiFi

gadget such as a smartphone that a person carries would inform us about his or her

location and also enabling us to determine how long he or she is staying at a particular

place without his or her knowledge. In this project, we would focus on collective results

to understand a general mobility behaviour of people within one environment rather

than focusing on an individual person. In addition, we demonstrate that our system

could track the collective mobility of WiFi users by putting it to a real test, tracking

the mobility behaviour of the Department Of Computing’s students for 5 days.

iii

Contents

Acknowledgements ii

Abstract iii

List of Figures vii

List of Tables ix

Abbreviations x

1 Introduction 1

1.1 Objectives . 3

1.2 Contributions . 3

1.3 Structure of Thesis . 4

2 Background 8

2.1 Understanding IEEE 802.11 standards . 8

2.1.1 WiFi Channels . 9

2.1.2 RSSI & SNR . 10

2.1.3 Management Frames . 11

2.1.4 Active versus Passive Scanning . 12

2.1.5 Joining and Leaving a WLAN . 13

2.2 Wireless Chipset and Network Interface Card (NIC) 14

2.2.1 Types of Chipsets . 14

2.2.2 List of Broadcom Chipset Commands 15

2.2.3 NIC modes . 16

2.3 Custom OS for AP . 16

2.3.1 DD-WRT . 16

2.3.2 OpenWrt . 17

2.4 Related Wireless LAN Software tools . 18

2.4.1 Kismet . 18

2.4.2 NetStumbler . 18

2.4.3 Wireshark . 19

2.4.4 Wiviz . 19

2.4.5 Tcpdump and libpcap . 19

2.4.6 Summary . 20

2.5 Data Transmission . 20

2.5.1 Serialisation of Data . 20

2.5.2 File Transfer Library for Embedded Devices 21

2.6 Storing and Aggregating Big Data . 22

2.6.1 Relational SQL versus NoSQL database 22

iv

Contents

2.6.2 NoSQL Databases . 23

2.6.3 MapReduce Framework . 25

2.7 Summary . 27

3 Related Work 29

3.1 Mechanisms for Tracking WiFi Terminals 29

3.2 Factors Affecting Accuracy of Detecting WiFi Terminals 31

3.3 Localisation Techniques . 32

3.4 Summary . 32

4 Design 33

4.1 Overview of Design Architecture . 33

4.2 Detection Mechanisms . 36

4.3 Types of Aggregation . 39

4.4 Web GUI . 39

5 Implementation 40

5.1 Chipset and Custom AP Firmware . 40

5.1.1 Choosing a Suitable Firmware . 41

5.1.2 Preparing Firmware . 42

5.1.3 Flashing AP Filesystem . 43

5.2 Detecting, Transferring and Compiling . 44

5.2.1 Detection Program . 44

5.2.2 Data Serialisation . 48

5.2.3 Securing Transmission . 50

5.2.4 File Transmission . 50

5.2.5 Cross Compiling Program . 53

5.3 Building a Processing Agent . 56

5.3.1 Initialising Web Servlet . 56

5.3.2 Receiving and Deserialising Data 56

5.3.3 Adding Timestamp . 57

5.3.4 Pushing Data to Database . 59

5.4 Storing and Managing Data . 59

5.4.1 Comparison between HBase and CouchDB 60

5.4.2 Setting up of HBase, HDFS, MapReduce and Zookeeper 62

5.4.3 Data Schema Design . 63

5.5 Aggregating Data . 66

5.5.1 Overview of Aggregation Process 67

5.5.2 Localising Terminals . 68

5.5.3 Count Statistics . 71

5.5.4 Residence Time . 74

5.5.5 New Versus Returning . 77

5.5.6 Summary . 79

v

Contents

5.6 GUI Design and Implementation . 80

5.6.1 Retrieving Data from HBase . 81

5.6.2 Making Asychronous Ajax Request 84

5.6.3 CountLive and CountStatistics . 85

5.6.4 ResidenceTime and ResidenceTime Overall 87

5.6.5 New and Returning Visitors . 87

6 Evaluation 89

6.1 Setting up of Experiment in Laboratory 89

6.1.1 Deployment Overview . 90

6.1.2 Monitoring APs’ Heartbeat . 91

6.2 Measuring Performance of Terminals Detection 92

6.2.1 Procedure to Prepare Evaluation Graphs 92

6.2.2 Factors Affecting Accuracy of Detection 94

6.2.3 Discussion of Results . 95

6.2.4 Analysing Trends from Web GUI 99

6.3 Frequency of Probe Request Frames . 99

6.3.1 Compiling Process . 100

6.3.2 Discussion of Results . 101

6.4 Microbenchmark . 102

6.5 Unit Tests . 105

6.6 Summary . 106

7 Conclusion and Future Extensions 107

7.1 Conclusion . 107

7.2 Future Extensions . 108

7.2.1 A More Reliable Way of Localising Terminal 108

7.2.2 Enclosing the Environment Under Monitored 109

7.2.3 Ignoring Static Terminals . 109

7.2.4 Protecting Privacy of Individuals 109

A Evaluation Tables 110

Bibliography 113

vi

List of Figures

1.1 Illustrating the whole journey we are going to embark on 7

2.1 Representation of WiFi channels overlapping 10

2.2 Illustration of how MapReduce works . 26

4.1 Overview of our deployment strategy . 33

4.2 Detecting presence of terminals using probe request 37

5.1 Top level filesystem of firmware image . 42

5.2 Root filesystem of firmware image . 43

5.3 General IEEE 802.11 frame with Frame Control field highlighted 46

5.4 List of all toolchains provided by DD-WRT for cross compiling 53

5.5 The Cross Compiling process . 55

5.6 Detail of the generated executable binary program file 55

5.7 Illustration of Documents in CouchDB . 60

5.8 Storage size for 12817 Documents in CouchDB 61

5.9 Storage size for 5181 rows in HBase . 61

5.10 Balance between sequential read and write performance 64

5.11 MapReduce work flow . 68

5.12 Structure of Counts of Terminals table . 73

5.13 Part of the traces of a terminal’s presence across the day 75

5.14 Structure of Residence Time table . 77

5.15 Structure of History Lookup table . 78

5.16 Dashboard of our Web GUI . 80

5.17 Two proposed ways of retrieving data from HBase to Web GUI 81

5.18 Illustration of returned query from HBase REST API 84

5.19 Illustration of CountLive page in Web GUI 85

5.20 Illustration of histogram on CountStatistics page in Web GUI 86

5.21 Illustration of Daily View with controller on CountStatistics page in Web
GUI . 87

5.22 Illustration of ResidenceTime page in Web GUI 88

5.23 Illustration of New and Returning Visitors page in Web GUI 88

6.1 Overview of deployment . 91

6.2 Monitoring progress of experiment . 92

6.3 Evaluation Table showing details of number of terminals detected and
students observed . 93

6.4 Comparing number of terminals being detected and observed near AP3
and AP5 on 29/05/2013 filtering out RSSI less than -80 96

6.5 Comparing number of terminals being detected and observed near AP3
and AP5 on 30/05/2013 filtering out RSSI less than -80 97

6.6 Comparing number of terminals being detected and observed near AP3
and AP5 on 31/05/2013 filtering out RSSI less than -70 97

vii

List of Figures

6.7 Comparing number of terminals being detected and observed near AP3
and AP5 on 01/06/2013 filtering out RSSI less than -65 98

6.8 Comparing number of terminals being detected and observed near AP3
and AP5 on 03/06/2013 filtering out RSSI less than -60 98

6.9 Trend of number of students in laboratory 99

6.10 Calculations of probe request frequency 100

6.11 Probe request frequency of major brands 101

6.12 Illustration of how students move in Mobility experiment 102

6.13 Number of terminals out of 10 detected in Lab (Static) 103

6.14 Number of terminals out of 10 detected in Open Space (Static) 104

6.15 Number of terminals out of 10 detected in Lab (Mobility) 104

6.16 Number of terminals out of 10 detected in Open Space (Mobility) 105

6.17 Unit Test showing a test with error . 105

6.18 Unit Test showing a successful test . 106

A.1 Evaluation tables for experiments on 29/05/2013 and 30/05/2013 110

A.2 Evaluation tables for experiments on 31/05/2013 and 01/06/2013 111

A.3 Evaluation tables for experiments on 03/06/2013 112

viii

List of Tables

2.1 Maximum Power Levels Per Antenna Gain for IEEE 802.11b 9

2.2 IEEE 802.11 Channels . 10

2.3 Type of Management Frames . 12

2.4 Specification of an AP . 15

2.5 List of Broadcom chipset Commands . 15

2.6 An Example HBase Table Structure . 23

5.1 A Record . 59

5.2 HBase Table Structure for Detection Records 63

5.3 A Row Representing a Detection Record in Raw Records table and Lo-
calised Terminal Records table . 69

5.4 Count Statistics Map Function Output Key and Value 72

5.5 Residence Time Map Function Output Key and Value 74

ix

Abbreviations

AP Access Point

API Application Programming Interface

GPS Global Positioning System

GUI Graphic User Interface

HDFS Hadoop Distributed File System

IEEE Institute of Electrical and Electronics Engineers

IDL Interface Definition Language

JFFS Journalling Flash File System

MAC Medium Access Control

NIC Network Interface Card

REST REpresentational State Transfer

RSSI Received Signal Strength Indicator

SSID Service Set IDentifier

WLAN Wireless Local Area Network

x

Chapter 1

Introduction

The internet today has evolved rapidly and it looks so different in various aspects

when comparing to how it is like a decade ago. The speed of communication has signifi-

cantly increased, advancing from 56 kbit/s Dial-up connection to the current high-speed

broadband that can reach even more than 100 mbits/s. Another notable aspect of dif-

ference is the rapid improvement in wireless technology such as that defined by the

Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard. Slowly, every

single piece of device around us starts to support this standard and the name WiFi is

given to any products that conform to the IEEE 802.11 standards.

The initial IEEE 802.11 standard was released in 1997 and over the years, there

are new protocols introduced as part of the standard. These include 802.11a, 802.11b,

802.11g, 802.11n and 802.11ac. As newer protocols are being introduced, so does the

improvement in the data rate per stream that this wireless technology support. There

are two main entities that are part of the IEEE 802.11 standard, namely the client and

the base station. The latter can also be referred to as Access Point (AP).

Due to the higher data transfer throughput and robustness of WiFi technology,

popularity of the use of WiFi has increased exponentially over the years as more and

more technological gadgets are produced such as smartphones, tablets, portable gaming

consoles and MP3 players.

• “In Q2 2011, 70% of public Wi-Fi network traffic stemmed from laptops, while

only 21% came from smartphones and 9% from tablets, JiWire finds. But one

year changed everything. In Q2 2012, laptop traffic sunk to less than half, 48%,

while smartphone traffic jumped to 35% and tablets to 17%.”

• “Mobile devices dominated the airwaves in shopping malls and restaurants. 50%

of Wi-Fi traffic in shopping malls stemmed from smartphones, 37% from laptops

and 13% from tablets, JiWire finds. 72% of Wi-Fi traffic in restaurants came from

smartphones, 20% from laptops and 8% from tablets, the study says.”

The above statistics are based on 30,000 public Wi-Fi locations in North Amer-

ica and the findings was released by JiWire, a mobile audience media company.

[28]

1

Chapter 1. Introduction

By infering from the facts above, we could see that the rise in the number of users

utilising mobile devices to access WiFi network creates a new dimension of opportunities

to exploit this trend especially when APs continue to be widely deployed to accommodate

this rise in usage. The rise in the number of users carrying mobile WiFi devices around

shopping malls and restaurants indicates that it would be really useful for business

owners to learn about the behaviour of these users in their stores. With the large

number of WiFi users, this is the right time to look for ways to harness the potential

and functionalities of WiFi. Since it is also possible to identify devices that have network

connectivity by finding out the globally unique network interface identifier called MAC

address, this opens up a new prospect of localising WiFi-enabled devices. We could

look for a mechanism to localise these users by investigating into how the whole IEEE

802.11 framework works. We could then associate the identification of such devices to

the persons carrying them.

As we start to think about localisation, we may begin to relate the similarity to

the functionalities of GPS, an outdoor navigation system using multiple satellites for

localisation of a GPS-enabled device. Currently, outdoor localisation using GPS is quite

robust. In contrast, indoor localisation is still a problem that needs to be addressed

1. For this reason, coupled with the rise in the popularity of WiFi, it creates a huge

motivation behind this project, in which we aim to understand how devices and network

components under the umbrella of IEEE 802.11 standards interact and function so as to

come up with a solution to detect the presence of users carrying WiFi devices. It would

be more accurate to associate the presence of a user to the detection of a smaller mobile

WiFi devices such as smartphones, in which users tend to carry with them everywhere,

than a WiFi-enabled laptop.

Intuitively, we aim to detect the presence of users carrying WiFi terminals2 without

requiring them to perform any actions. Most of the readily available softwares that are

related to sniffing network traffic usually requires that a terminal already belong to a

network after authentication and association to the relevant AP in the network. What

we want to have is a way to “quietly” detect the presence of a terminal, i.e., passive

detection. This is because it would be extremely hard to persuade users in a public

area to connect to an AP so that useful information about them could be obtained. In

addition, we are interested in analysing the collective mobility behaviour of all users in

1It should be noted that WiFi network may also be deployed outdoor and not necessarily only indoor
although they tend to be widely deployed indoor. Hence, we do not constraint the localisation of users
using WiFi for indoor only.

2In this project, we consider 802.11 wireless network operating in the infrastructure mode, where a
surface area would have at least one defined AP. WiFi terminals surrounding the AP would communicate
with the AP and there is no direct terminal to terminal communications.

2

Chapter 1. Introduction

the environment we are monitoring rather than a specific user’s behaviour. This creates

a challenge to investigate into a way to achieve the aims we want above.

1.1 Objectives

In this project, we would focus on the mechanism to detect WiFi-enabled devices

and use information such as Received Signal Strength Indicator(RSSI) (Section 2.1.2)

to localise these devices, indirectly the users carrying them. We also aim to come up

with an infrastructure design and protocols to facilitate the tracking and analysing of

collective mobility of users in an environment that has WiFi APs deployed. This would

allow us to yield useful statistics such as the time duration that most users spend at

a particular area and the number of users staying at that area. This requires constant

tracking of WiFi users within the environment, in which we have deployed the APs

we have configured to carry out the job. In addition, we come up with the logic and

algorithms to aggregate the data collectively, determining which AP out of all nearby

APs a particular user is closer in proximity. We also aggregate the aggregated data3 to

derive other useful statistics. Lastly, we would provide an interactive web Graphic User

Interface (GUI) that displays the aggregated data, showing appropriate graphs to aid

the understanding of the collected data.

1.2 Contributions

Firstly, we make use of existing tools and libraries to implement a way to detect the

presence of WiFi terminals from an AP. Since this requires access to the AP’s Operating

System (OS), it is not possible to work on the original OS shipped with the AP. In

this project, we use readily available router in the market, which serves as an AP for

detecting the presence of terminals. Since a router is an embedded device that usually

runs on MIPS architecture, this means that we need to compile a program in a different

manner using appropriate toolchain.

Secondly, we design and set up a robust infrastructure for collecting and aggregating

data that scales easily even for large commercial deployment. This touches the topic of

big data since there is always a continuous stream of data from all APs and overtime,

the accumulated data could be very huge in size. All APs sends data about nearby WiFi

terminals in a regular time interval to a central processing agent, which serves to fetch

3Data can be aggregated in many different ways to generate a different representation of the user
behaviour in the network environment.

3

Chapter 1. Introduction

and interpret the data using a chosen serialisation scheme and insert it to the database

for aggregation after that.

Thirdly, We devise the best possible approach to aggregate the collected information

about WiFi terminals that are close to the APs that we deploy. A terminal could be

detected by several APs simultaneously, hence, we need to come up with a way to work

out which AP is closer to the terminal. Other statistical information could also be

drawn from the information collected from all APs to derive an overall view of what

is happening in the environment under monitored. In particular, we are interested in

knowing the number of WiFi users4 staying near each of the AP, the duration of time

they stay and the number of users who return to a location near the AP that they have

come across before.

Fourthly, we design a user-friendly GUI that could be used by business owners or

administrators for displaying the aggregated results so as to make sense out of the

numerical data. Histogram, piechart and a simple probability density distribution are

drawn up to aid the understanding of statistical data. In order to accomplish the goal

of querying data straight away in Javascript from HBase (Section 2.6.2), a database

we choose for this project, we write code for a REST API wrapper and a Javascript

Bytes Utility for HBase5, which are currently not available for HBase. We release these

utilities to the HBase community under Apache License Version 2.0. Majority of the

Web GUI is extensively written in Javascript since this creates an “app-like” effect such

that browser users do not need to refresh the page after selecting some options on the

browser screen. This requires making many asynchronous calls and proper handling of

the returned results.

Finally, we carry out a lab-wide experiment in the Department Of Computing Labo-

ratory and Common room to test the effectiveness and accuracy of detecting the number

of WiFi users in the vicinity and their behaviour in the tested environment.

1.3 Structure of Thesis

In this project, we propose various mechanisms to detect the presence of WiFi ter-

minals and one of the best methods is implemented. Since there is a possibility that

this project could be extended to study the mobility of users in a larger area or be used

in a commercial roll-out that consists of many APs in various locations, we keep this in

4We may sometimes refer to WiFi users being a user who carries a WiFi terminal such as a smartphone
or a tablet.

5The Byte Utility allows the conversion of data types from bytes array that are stored in HBase table
to Integer, Long, Short and String data types directly in Javascript.

4

Chapter 1. Introduction

mind while designing our whole ecosystem. Other than just detecting the presence of

terminals, we also define a message transfer protocols, in which data collected at each

AP could be sent to a central server for processing. An appropriate database technology

would be considered in conjunction with the way we need to aggregate the data collected

from each AP. We choose the current most efficient way of aggregating big data, for large

deployment of many APs, and also a database technology that can scale to petabytes in

size.

In Chapter 2, we dive into the technical details that are relevant for understanding

and implementing a working prototype for tracking user mobility. We examine and

decide on an appropriate open source OS for APs that we would use in our prototype.

We consider the functionalities, code libraries, stability and level of support for the OS

before making our decision. We also discuss the current major chipset manufacturer for

APs since we need to decide on one chipset for implementation. Different chipsets could

be built based on different computer architecture, such as ARM or MIPS, hence there are

different code libraries available. Thus, we can only focus on one chipset in this project.

We can tap into the available open source libraries to our advantage. Furthermore, we

also evaluate different database technology to select an appropriate one for our project.

We continue to discuss about related work in the field of our project in Chapter

3. A few different mechanisms are employed by different papers to track user mobility,

with emphasis on different localisation techniques that aims to locate a WiFi user as

accurately as possible. Although we do not focus on high accuracy of localising a user

in this project, it would still be useful to understand these localisation algorithms so

that we are aware of the different ways of solving the limitations that we observe in this

project. Since we use only RSSI information to determine whether a WiFi terminal is

closer to a particular AP or another, this leads to issue such as the “Ping Pong” effect6,

which is a phenomenon that we have observed after conducting the experiment in the

laboratory.

Chapter 4 presents a simplistic view of the overall architecture of how we go about

tracking WiFi terminals, managing the data and processing it, as well as storing the

aggregated results for displaying on a GUI. Different server components are discussed

to give an idea of how each component works together to achieve the aim of obtaining

a statistical view of user mobility in general.

In Chapter 5, we explain the details behind our implementation, presenting different

technical viewpoints and difficulties. We also give the rationale behind each of the

6“Ping Pong” effect usually happens when the received signal strength becomes unreliable at times
leading to a WiFi terminal being associated with one AP at one time and to another at subsequent time
although the terminal has not moved. This effect is most commonly observed when a terminal is located
directly in between two APs.

5

Chapter 1. Introduction

decisions that we have make for selecting a suitable solution to solve each of the sub-

problems, which are essential to build an overall working implementation for tracking

collective mobility of users. The implementation has been designed to have the ability

to scale easily and flexibly.

There are 3 main phases we need to focus on,

• Mechanism to detect the presence of terminals

• Aggregating data

• Generating graphs and displaying the results via a Web GUI

Chapter 6 details the evaluation process, in which we have conducted a variety of

experiments to evaluate the performance of our system. We have also written some unit

tests to verify the correctness of our algorithms. We give these details below:

1. We deployed 6 APs in the Department Of Computing (DOC) Laboratory and

Common room to track the mobility behaviour of DOC students and staffs. Ob-

servations of the actual environment were make to evaluate the efficiency and

accuracy of our system in tracking users in the environment where our APs were

deployed.

2. We conducted a micro-benchmark experiment. This experiment involves a group

of students, each carrying two WiFi terminals with them and they are supposed

to stay at different intervals of distance from an AP so that we could determine

how many of them we could still detect as they move together as a group away

from the AP.

3. We process the raw data collected from the experiment in the laboratory and we

take sample of the population of WiFi terminals to determine the frequency of

probe request being sent out by the different brand of terminals. (Section 2.1.4)

Examples of brand includes Samsung, Apple, LG, Research In Motion and others.

It is essential to know this information to verify the accuracy of the mechanism

that we have used in our implementation which we would elaborate in Chapter

(5).

4. Aggregating the collected data requires understanding what the data means so as

to verify that the logic in place for the aggregation is working as expected. This

involves printing out the information at each step of the algorithm to check its

correctness and some unit tests are written to verify that the aggregated results

are the same as ground truth values. We define these ground truth values by

means of using test suites that contain examples depicting different scenarios.

6

Chapter 1. Introduction

Finally, we conclude the thesis in Chapter 7 and discuss some of the possible future

extensions for this project.

In Figure 1.1, it captures the whole idea of what we are going to do in this project.

Figure 1.1: Illustrating the whole journey we are going to embark on. Images licensed
under Free for commercial use from iconfinder.com

7

Chapter 2

Background

2.1 Understanding IEEE 802.11 standards

“Standards” is defined as a level of quality or attainment, or something used as a

measure, norm, or model in comparative evaluations [29]. Base on this definition, we

know the purpose of introducing standards is to ensure that different entities who are

creating a product would adhere to the standards defined for that particular product.

When it comes to products using an open technology, the products manufactured by

different vendors would operate in a similar fashion and that everyone knows clearly what

are the main functions and features of this type of product since it follows a standard.

Similarly, the IEEE 802.11 standards are defined so that products that are conformed

to the standards are interoperable [6], even if they come from different vendors. This

means that as long as a product is WiFi-certified, they would be able to operate normally

in the IEEE 802.11 network environments without causing too much interference to other

WiFi devices. The standards would enable each of us to have a clear understanding of

how we can make use of WiFi in a new product or in the case of this project, we want to

know the types of communication and interaction between an AP and a terminal. This

would allow us to come up with a solution to identify terminals in a Wireless Local Area

Network (WLAN)1.

As part of the standards, there is a limit on the power output levels of radio frequency

devices. Table 2.1 shows us the maximum power level allowed by the different regulatory

domains. Such a limit is placed so that a wireless transmitter is not allowed to operate

using a higher transmission power in order to increase the range of transmission. Since

our project involves detecting the presence of WiFi terminals, too much interference in

the environment would prevent us from accurately track the terminals. Hence, there

is a need to consider the different types of environment the monitoring APs would be

deployed. For example, the transmission range in an open space would normally be

longer than that in an indoor environment, where there are many other wireless devices

operating, which causes interference.

1From here on, we would refer the network environment that conforms to IEEE 802.11 standards,
which provides network access via APs deployment in the environment, as WLAN.

8

Chapter 2. Background

Regulatory Domain Antenna
Gain (dBi)

Maximum
Power Level
(mW)

Americas (-A)
(4 watts EIRP maximum) 2.2 100
EMEA (-E)
(100 mW EIRP maximum) 2.2 50
Israel (-I)
(100 mW EIRP maximum) 2.2 50
Japan (-J)
(10 mW/MHz EIRP maximum) 2.2 30

Table 2.1: Maximum Power Levels Per Antenna Gain for IEEE 802.11b [7]

Another point to note is that since WiFi devices operate within the electromagnetic

spectrum, there is bound to be contention for resources within the channel in which the

devices operate (Section 2.1.1). The more the number of WiFi devices operating on a

particular channel, the lower the data transmission throughput each device experiences.

We will elaborate more on the topic of WiFi channels in the following section.

2.1.1 WiFi Channels

In this project, we would focus on the 14 channels that are operating within the

2.4 GHz Industrial, Scientific and Medical (ISM) band. We would not cover the WiFi

channels operating within the 5 GHz ISM band. Channels falling within the 5 GHz ISM

band are used by 802.11a and n.

WiFi channels are used for transmission of data and not all the 14 channels are

being used. Their usage depends on a country by country basis. Table 2.2 shows us the

different channels that are allowed in some countries. The crosses in the table means that

the channels are allowed to be used in the corresponding country. It is very important to

understand the regulation behind the usage of channels in our project. This is because if

our project is supposed to be based in North America, we know that the WiFi terminals

that are operating over there would use only channels between 1 and 11, hence we do

not need to worry about detecting WiFi terminals in the other channels.

The way WiFi channels are spread out in the 2.4 GHz ISM band is that there are

overlapping of channels [16]. Figure 2.1 shows Channel 1 with centre frequency of 2.412

GHz and continue all the way to Channel 14 with centre frequency of 2.484 GHz. Each

channel occupies 22 MHz of the ISM band and each of the first 13 channels are spaced

at 5 MHz apart. Channel 14 is only permitted in Japan. By looking at the figure, we

can see that Channel 1, 6 and 11 (bolded semi-circle line) are non-overlapping. This

9

Chapter 2. Background

Channel Center
Frequency
(GHz)

North
America

Europe Spain France Japan

1 2.412 X X X

2 2.417 X X X

3 2.422 X X X

4 2.427 X X X

5 2.432 X X X

6 2.437 X X X

7 2.442 X X X

8 2.447 X X X

9 2.452 X X X

10 2.457 X X X X X

11 2.462 X X X X X

12 2.467 X X X

13 2.472 X X X

14 2.484 X

Table 2.2: IEEE 802.11 Channels [6]

Figure 2.1: Representation of WiFi channels overlapping [16]

means that if there are 3 adjacent WLANs and each of them operate in only one of

the channels and no two WLANs operate in the same channel, interference between the

WLANs would be significantly reduced.

Useful Consideration Points for Our Project

After understanding the concept of channels overlapping, we could apply this to the

way we are going to detect WiFi terminals. In order to save scanning through all 13

channels, following Europe regulations, we should only scan through Channel 1, 3, 6, 8

and 11. By referring to Figure 2.1 again, we would notice that these channels provide a

continuous overlapping of all 13 channels. Hence, it means that we are most likely able

to detect different WiFi terminals operating in any of these 13 channels.

2.1.2 RSSI & SNR

IEEE 802.11 standards defines RSSI as an arbitrary measurement of received signal

strength [6]. The way this measurement is implemented varies from vendor to vendor.

10

Chapter 2. Background

This is because the standard does not make RSSI a compulsory element of it but leave it

as optional. This means that the rating that RSSI takes varies depending on which AP

vendor we are referring to. However, the vendor would have to provide the rating to the

device’s driver. The range that RSSI takes for Cisco devices, an AP manufacturer, is

between 0 and -120 [23]. The more negative the RSSI value is, the weaker is the signal.

The RSSI we are discussing here is measured in dBm.

SNR stands for signal-to-noise ratio. As you can probably understand simply from

this phrase, SNR gives the relative difference between the power level of the radio fre-

quency and the noise floor. Noise is the result of any devices or natural causes that

produce energy in the electromagnetic spectrum. 802.11 networks can cause interfer-

ence to each other, which is known as co-channel and adjacent channel interference [8].

However, networks that follows the IEEE 802.11 standards would generally work to-

gether harmoniously such as the sharing of the channel capacity if the networks are on

the same channel. The major cause of interference appears to be devices that operate

using the unlicensed band that does not belongs to 802.11 such as microwave oven and

Bluetooth devices.

SNR is an important parameter that we need to consider in WLAN. For example,

if the received signal strength is x in a low noise environment, x would decrease in an

environment with high noise, due to the interference affecting the transmitted signal. If

the noise level is close to the RSSI, this means that the signal would be corrupted.

Useful Consideration Points for Our Project

SNR is useful especially when we need to use RSSI to assist in localising a WiFi terminal.

An RSSI with a low value does not always mean that a terminal is far away from an

AP. We could make use of both RSSI and SNR to come up with a technique to localise

a device as accurately as possible.

2.1.3 Management Frames

There are 3 types of frames that is defined in IEEE 802.11, namely management

frame, control frame and data frame. In this project, we are more interested in the

management frames, which would shed some light on the possible ways we could de-

tect the presence of WiFi terminals. Management frames are used for the purpose of

establishing a connection between an AP and a terminal. A terminal in a WLAN, with

multiple APs deployed, may move around and as a result, the terminal may need to

switch association from one AP to the next using management frames. In addition, the

usage pattern and the type of Operating System(OS) of a terminal would also trigger

11

Chapter 2. Background

some of these management frames to be sent either occasionally or regularly. For in-

stance, a smartphone may be in sleep mode initially. When it wakes up, it would send

out a probe request frame to determine whether there are any APs nearby with sufficient

signal quality for it to associate. On the other hand, the OS of the smartphone may

choose to send out probe request frame every now and then to determine whether there

are any APs nearby that would provide better signal quality. Probe request and response

would be covered further in Section 2.1.4.

Apart from probe request frame, there is also the beacon frame, which is being

broadcasted by each of the APs in WLAN in a regular time interval. A beacon frame [17]

consists of frame header like any other frames, which includes the source and destination

MAC addresses. It also contain information such as beacon interval and Service Set

Identifier (SSID), which is the name of the WLAN. The SSID is important for a terminal

to know which network it is trying to establish a connection with. A beacon frame allows

a terminal to be aware of the APs nearby so that it could choose whether to associate to

it. The terminal is able to work out which AP has a better signal quality by determining

the RSSI of the beacon packet. Table 2.3 shows some of the management frames that

are crucial in our project. Some of these frames would be further elaborated in the

following sections 2.1.4 and 2.1.5.

Frame Subtype Subtype Field Value

Association request 0000

Association response 0001

Reassociation request 0010

Reassociation response 0011

Disassociation 1010

Probe request 0100

Probe response 0101

Beacon 1000

Authentication 1011

Deauthentication 1100

Table 2.3: Type of Management Frames [6]

2.1.4 Active versus Passive Scanning

In active scanning, a WiFi terminal could choose to send out two types of probe

request frames by choosing whether to specify a SSID in the frame or leave the SSID

field as null. If the SSID field is specified, the APs that belong to a WLAN being

configured with that SSID will need to respond to the request by replying back with

a probe response frame. The response frame has a frame header which contains the

AP’s MAC address, in which the terminals would be able to establish a connection if

12

Chapter 2. Background

it chooses to. If the SSID field of a probe request frame is left as null, any APs in

the surrounding that is configured to respond to such frame would reply with a probe

response. However, for security reasons, it is possible that APs would not respond to

such frame.

In passive scanning, the terminal would listen for any beacon frames that are being

broadcasted by nearby APs. The terminal might receive multiple beacon frames from

different APs. In this case, the terminal would make use of RSSI to determine which

AP it should associate to.

Useful Consideration Points for Our Project

As we might notice, since terminals are sending out probe request frames every now

and then, it is highly that we could make use of these probe request frames to detect

terminals. Furthermore, a probe request frame also contains the source MAC address in

the frame header, which means that we can identify a terminal easily since MAC address

is globally unique.

2.1.5 Joining and Leaving a WLAN

The Join Process [9] involves 3 stages before a terminal could start sending data over

WLAN. The first stage involves discovering an AP to begin establishing a connection.

The second stage requires the authentication of the terminal . There are two types

of authentication methods, namely open authentication and shared key authentication.

Open authentication does not involve any true authentication at all and the AP would

just reply to any authentication frames it receives. Shared key authentication, as the

name implies, makes use of a common key for the authentication process. The wired

equivalent privacy (WEP) key is used for authentication but is currently the most in-

secure way. However, in order to meet the IEEE 802.11 standards, WEP is still being

implemented by AP vendors. Other more secure authentication methods are available

such as EAP and WPA.

The third stage involves the association process before data transmission through

the network can take place. The main part of this process involves the terminal sending

an association request frame to the AP, in which the AP would reply back with an

association response frame if everything goes well.

There are also other processes such as reassociation, deassociation and deauthenti-

cation. Reassociation happens when a terminal moves beyond the range of an AP to

another AP that is still within the WLAN. Reassociation is similar to association but

the APs within the WLAN would transfer the information of the terminal between each

13

Chapter 2. Background

other. On the other hand, dissociation and deauthentication happens when a terminal

is disconnecting from a WLAN. A dissociation frame and deauthentication frame are

sent to the AP the terminal is previously connected to.

Useful Consideration Points for Our Project

The process of association and dissociation could form a good mechanism for detecting

the presence of a terminal within a specified WLAN. This is because the association of a

terminal to an AP is a good indication of the relative location of the terminal to the AP.

Using this association information with RSSI, we would be able to localise a terminal

easily. The dissociation process would mark the end of a terminal’s existent near an AP.

Furthermore, with the reassociation process, we could easily track the movement of WiFi

users from one AP to the next. However, there are a few shortfalls in this mechanism.

For instance, a terminal may not attempt to reassociate to a closer AP after moving

away from the previous AP it associated to due to the way its association algorithm is

implemented. This is further discussed in Section 3.2. We will also be evaluating the

different mechanisms that can be used in detecting the presence of WiFi terminals in

Chapter 4 on Design.

2.2 Wireless Chipset and Network Interface Card (NIC)

This section will discuss some of the major wireless chipset manufacturer for both

APs and other WiFi devices. In particular, we would focus on the chipset for APs since

we are going to implement a solution using off-the-shelf WiFi APs. We would like to

discuss about the chipset manufacturers so that we could decide on one that is widely

adopted by most of the AP manufacturers2.

2.2.1 Types of Chipsets

There are a few top semiconductor vendors that manufacture chipsets for APs. Al-

though there are many brands such as Cisco LinkSys, TP-Link, NETGEAR and D-Link,

which manufacture APs, the chipsets that these AP manufacturers use could come from

a few major semiconductor vendors. We have listed these vendors below:

• Broadcom - Based in USA and manufacture most of the 802.11 chipsets for

a variety of AP manufacturers. Most of Broadcom chipsets are used in Cisco

LinkSys, Buffalo and Belkin APs. Broadcom has a huge success with the high sale

of APs from Cisco LinkSys. It has a good device driver which is available for use.

2Note that chipset manufacturers are not the same as AP manufacturers. For example, Cisco LinkSys
uses both Broadcom and Atheros in different models of its APs.

14

Chapter 2. Background

The broadcom-wl driver allows us to perform many operations that are offered by

the chipset. [4]

• Qualcomm Atheros - Also based in USA and its chipsets are used mainly by

TP-Link and D-Link. Atheros has two main drivers which allows us to invoke

some operations on the chipset. They are ath5k and ath9k. [27]

• Ralink - Bought over by a Taiwanese company MediaTek and famous for manu-

facturing WLAN chipsets. Its chipsets are used only in some model of D-Link and

TRENDNet.

A typical AP that we have used in this project has a specification as listed in Table

2.4. As we can see from the table, there are really a limited amount of space that we

can use for executing our code on the AP for this project. Although we do have other

newer models of APs that has slightly higher specification, we want to aim to keep our

program as small as possible, making use of the limited CPU performance, RAM and

flash storage space.

Feature Information

CPU 125MHz

Architecture MIPS32TM

RAM 16MB

Flash storage 4MB

WLAN NIC Broadcom BCM4306

WLAN standard b/g

Table 2.4: Specification of an AP

2.2.2 List of Broadcom Chipset Commands

Command Description

wl -i eth1 status Gives information about the network interface specified,
eth1. This includes MAC address associated with this net-
work interface

wl radio Get status of radio

wl radio on Turn on radio

wl ap 0 Set AP in client mode

wl ap 1 Set AP in Access Point mode

wl assoclist Retrieve MAC addresses of associated devices

wl rssi 〈 MAC addr 〉 Get RSSI for the terminal with the specified MAC address

wl channel n Set the channel to n

Table 2.5: List of Broadcom chipset Commands [10]

The Broadcom device driver provides functions that we can call from within the

custom OS. Some of these functions are essential for instructing the chipset to carry out

15

Chapter 2. Background

certain operations we require in order to detect the presence of terminals. Some of these

commands are illustrated in Table 2.5.

2.2.3 NIC modes

For a particular model of NIC, there are a few possible modes of operation. They are

AP Infrastructure, Client, Repeater, Ad-hoc or monitor mode. When we place the AP’s

NIC into monitor mode, the NIC would pass all packets it receives to the OS without

any filtering [24]. This means that we can pick up management frame such as probe

request frame, which we have mentioned earlier in Section 2.1.4 (Active versus Passive

Scanning) that we can use probe request frames as a mechanism to detect the presence

of terminals near an AP.

2.3 Custom OS for AP

In this section, we evaluate some of the open source OSs that allow us to make

customisation and install it to an AP. Custom OS is required because the originally

shipped OS from AP manufacturer usually do not provide SSH or telnet access to the

AP’s OS. Even if we can have access to the OS, it is extremely hard to write a program

to be executed on the AP shipped with the manufacturer’s OS. We will look at two

different freely available OSs that we could use to replace the originally shipped OS

below.

2.3.1 DD-WRT

DD-WRT is an open source Linux-based OS for wireless router and embedded sys-

tems [3]. This OS is very powerful and stable which was released back in 2005 and is still

in continuous development by the author and other open source developers. DD-WRT

has a few major releases which saw its code base being changed completely. The latest

version of the OS makes use of Open-WRT[14] kernels which in turn builds on top of

the original Linksys WRT54G V1 router OS which was released as open source software

under GNU General Public License. This means that the OS is very stable since it has a

solid foundation. This OS supports Broadcom, Qualcomm Atheros and Ralink chipset.

These chipsets are mainly based on MIPS architecture.

The main language that is supported natively on DD-WRT OS is C programming

language. C is a powerful language and the OS also supports dynamic memory allocation

feature of C. This is very useful because it allows developers to write memory efficient

16

Chapter 2. Background

code, i.e., allocate memory only when required. Although the chipset may only have

one processor, the OS supports concurrent execution of programs by interleaving the

execution of the processes. There is also feature such as forking, which creates a new

child process that is a duplicate of the original calling process. The main challenge to

writing a program to execute on DD-WRT OS remains to be the cross compiling stage.

Cross compiling involves using a toolchain on a build machine to compile an executable

binary program to be run on a different platform, which is different from the platform

of the build machine.

There are two types of storage space that can be used within the AP. One is the

Random-access memory (RAM) which operates just like the normal RAM on common

computers. Another is called the Flash memory which allows the storage of files per-

manently even when the AP is turned off. There is also Non-volatile random-access

memory (NVRAM) available which provides a good place to store configuration settings

or any other information for a program and this information can be accessed easily by

calling a command available in C. The information that has been saved on NVRAM will

stay on even after the AP is switched off and back on again.

Within the OS, there are two different types of file system. One is non-writable and

the other is re-writable. Journalling Flash File System (JFFS/JFFS2) is a re-writable

area on an AP’s OS. This filesystem is very useful for developers because it enables them

to use C Input/Output (IO) library like the following example:

fopen - Open an existing file or create a new one

fread - Read the content of the opened file into a buffer

fwrite - Write content from a buffer to a file

Not only the main IO operations can be carried out using the functions above, there

are many other useful things that can be accomplished on DD-WRT OS, thus enabling

us to develop a powerful program to be run on the AP.

2.3.2 OpenWrt

OpenWrt is another linux distribution for embedded devices. It supports Broadcom,

Qualcomm Atheros, Ralink and Intel chipset. OpenWrt provides a framework for de-

velopers to build applications around it [14]. OpenWrt is licensed as a free and open

source software under GNU GPL and is actively driven by the community.

OpenWrt provides a very easy tool to install new features to the AP by using a

package management tool. This tool makes installation of new program on the AP a

17

Chapter 2. Background

breeze just like how one would do on Ubuntu Linux Operating System, i.e., using apt-get

install PROGRAM-NAME.

Since the later version of DD-WRT builds on top of OpenWrt, most of the func-

tionality that OpenWrt has also appears on DD-WRT OS. However, DD-WRT has a

broader functionalities which OpenWrt seems to be lacking in some areas. Other than

that, OpenWrt supports program written in C and it also supports concurrent execution

of processes.

2.4 Related Wireless LAN Software tools

In this section, we would look into some of the available software tools and libraries

that are related to the capturing of data, management and control frames. Some of these

tools require a particular model of NIC in order to work. Later on, we would summarise

and evaluate which tools might be useful for us to explore and use if appropriate.

2.4.1 Kismet

Kismet is a free wireless network sniffer and detector program [34], which detects

wireless network even those that do not broadcast their SSIDs. It can determine the

range of IP addresses of a wireless network. Another good thing about Kismet is that

it could pick up 802.11 management frames for a wireless network. Kismet is mainly

used for locating APs within a WLAN, troubleshoot a WLAN and as a site survey tool

for learning about the received signal strength at different spots within a WLAN. This

allows network administrators to decide how to deploy APs within a defined area.

Apart from using it as a site survey tool, it could also be used to pick up probe request

frames which are sent out by WiFi terminals. Kismet sniff network packets passively.

It places the NIC into monitor mode so that it could pick up any management frames

that are broadcasted by either terminals or other APs. Kismet runs on Linux OS but

requires that the computer it runs on has a compatible NIC.

2.4.2 NetStumbler

NetStumbler is free but not available as open source. It is a tool for detecting and

finding APs around an area. It works slightly different from Kismet because it tries

to find APs actively by broadcasting a probe request frame with the SSID field filled

with the name “ANY” [35]. This creates a problem when the APs are configured not

18

Chapter 2. Background

to broadcast their SSID, hence they would not respond to a probe request frame with

SSID as “ANY”. For this reason, Kismet could detect more APs than NetStumbler.

2.4.3 Wireshark

Wireshark is a network packet analyser [38], which provides a very detailed GUI for

interpreting and analysing of network packets. The network packets could come from

any network interfaces of the computer which runs Wireshark. These includes both LAN

and WLAN. It also supports placing a NIC into monitor mode, which then allows the

capturing of management frames. Wireshark uses pcap, a software library for capturing

network packets.

Wireshark seems to be more suitable for network administrator to analyse network

traffic or find out problems that occur within the network. It provides a very nice GUI

with advanced sorting and filtering of each record representing a network packet.

2.4.4 Wiviz

Wiviz is a wireless network visualisation tool [32], which works pretty much like

Kismet. However, Wiviz is an old tool that has not been updated since 2005 and is no

longer working on many of the newer models of APs. Wiviz is able to place NIC into

monitor mode just like Kismet, in order to pick up probe request frames that are being

broadcasted by nearby terminals.

2.4.5 Tcpdump and libpcap

Tcpdump, as its name implies, is a powerful command-line tool for capturing and

dumping of network packets on a Linux machine. On the other hand, libpcap is a

C/C++ library for capturing network packets, which works by accessing the low-level

packet capture utility of the OS [22]. The library provides a high level interface for

accessing the packets that comes in through the NIC. There are many functions available

via this library which makes it one of the most powerful packet capture library ever.

Even Wireshark and Kismet also makes use of this library. When NIC is placed into

monitor mode, NIC would supply all the frames it receives, which also include the header

frame that contains MAC address information. pcap_can_set_rfmon() could be used

to check whether a NIC can be placed into monitor mode. If NIC cannot be placed into

monitor mode, the libpcap would only be able to capture normal network traffic but not

management frames such as probe request and beacon frames.

19

Chapter 2. Background

2.4.6 Summary

We could see that there are a variety of tools out there that are mostly open source

and relates to packet capturing. However, since these tools involve code base that spans

more than hundreds of source files, some tools would not be that easy to fork and

modified it to work according to the objectives that we have for this project. There is a

need to consider the feasibility of understanding and getting a piece of tool or library to

work. This usually only happens after we experiment with trying the tools. In Chapter

5 (Implementation), we would discuss about the experimentations that we have with

some of these tools, in which we have to try them on different models and brands of

APs. It would be slightly easier if we choose to implement our project using a PC or a

laptop, since we can see from above that most softwares are compiled to work on either

Linux or Windows OS of a computer.

2.5 Data Transmission

Since this project involves deploying APs in multiple locations so that they could

detect the presence of WiFi terminals, we need a way to transmit all the collected data

from each AP to a central server for processing. Since our project involves creating a

program to run on an AP, which is an embedded device running on a different computer

architecture with limited computing resources, we need a good serialisation method and

a data transmission library that has little memory footprint and utilises low flash storage

space.

2.5.1 Serialisation of Data

Before client and server could exchange messages using TCP or UDP, the data has to

be serialised into a stream of bytes so that they could be stored or sent later [25]. After

transmitting the messages over to the other party, these messages have to be deserialised

into appropriate data structures that is understandable. Over the years, there have been

many methods for serialising data and a few prove to be the most adopted either for

their convenient uses, example JSON, or for their great efficiency in terms of storage and

parsing speed, example Protocol Buffers. Below gives detail about some of the possible

serialisation methods that we could use in this project.

1. Tab-delimited: If the structure of the data that we are going to transmit is not

that complex, it is possible to simply use tab-delimited technique, which stores

values in rows and columns and for each row, the values are separated by a tab

20

Chapter 2. Background

space. Each row is considered a string and there is a newline character at the end

of the string to mark the end of the row. This format is simple but since it is

too simple, it is not good enough to represent complex data structures. It is also

not efficient for reading and writing data, which mostly involve carrying out string

operations such as concatenation and splitting.

2. JSON: It is a lightweight data exchange format that makes use of key-value pairs

extensively. JSON is supported by many programming languages, which provide

native serialising and deserialising of the data stored in JSON format. It is a

human-readable form that is easy to understand by simply looking at the data

stored in this format alone. This is also partly the reason why most web appli-

cations tend to use JSON for client-server data exchange. Most of the big web

applications such as Flickr, Tumblr, Instagram and Facebook provides a REST

API that returns data in JSON format.

3. Protocol Buffers (PBs): It is a method of encoding structured data in an

efficient, yet extensible format [5]. PBs are developed by Google and are used

extensively in Google for almost all its applications. The way PBs work is by

defining an Interface Definition Language (IDL) file stored in .proto format, which

serves to describe the structure of the data that is being stored. PBs are designed

to be fast, efficient and simple. The data that is serialised using PBs is much

smaller than XML3. Google reports that PBs are 3 to 10 times smaller than XML

and the time to parse data in PBs is 20 to 100 times faster than that for XML.

Storage space and parsing time are two crucial elements that we want to consider

when deciding which serialisation format to use for serialising data on each AP so

that it could be sent to a central server.

4. Nanopb: It works the same as PBs but Nanopb is a C-based implementation of

PBs with small code base [26]. It is built with the constraints of embedded devices

in mind with low memory and small flash storage space. In particular, Nanopb

targets 32-bit microcontroller. Nanopb encodes and decodes data in almost the

same way as PBs, using a slightly similar proto IDL file as its template for encoding

and decoding data. It is possible to encode data using Nanopb on embedded device

and decode the data on another machine using Google BPs with slight changes to

the proto file.

2.5.2 File Transfer Library for Embedded Devices

cURL stands for Client for URLs. It is a project started in 1997, which develops

the libcurl library, a client-side URL transfer library [11]. It supports many application

3XML is a format for data serialisation. It is too verbose and takes up a lot of space.

21

Chapter 2. Background

protocols such as FTP, FTPS, HTTP, HTTPS, IMAP, IMAPS, POP3, RTMP, RTSP,

SCP, SFTP, SMTP, TELNET and TFTP. Furthermore, it supports important HTTP

methods such as the GET, POST and PUT. This makes it a very powerful client-side

library and also an ideal library for data transmission over the internet using HTTP or

HTTPS protocols. Another good thing about libcurl is that most of the file transfer

errors or exceptions are properly managed and handled in a graceful way.

2.6 Storing and Aggregating Big Data

As we need to store the collected data from each AP for later processing and querying

from a GUI for displaying the statistical view of the aggregated data, we need to select

a suitable database that fits our use case, i.e., ever growing amount of data collected.

We also need to understand the available data analytic methods that would allow us to

aggregate our data efficiently.

2.6.1 Relational SQL versus NoSQL database

10 years ago, the terms Big data and NoSQL are probably not as often heard as

today. These words are appearing everywhere on the internet because of the exponential

growth in the amount of data that is being generated within the last few years alone.

More and more data is accumulated due to more user interactions on the web, example

via Twitter or Facebook, increasing amount of server logs, generation of more scientific

data such as gene sequencing and analysis, as well as more Wireless Sensor Networks

(WSNs) being deployed. This means that there is a need for a new way to handle this

data, which leads to the adoption of the widely used Hadoop Distributed File System,

which is a distributed file system modelled after the Google File System and has the

capability to scale across thousands of machines.

NoSQL is based on the idea that it can scale massively, provide very fast write

operations, quick key-value pair lookups and has very flexible data types and schema.

Most of the NoSQL implementations do not require the developer to specify the types of

the data to be stored in advance and this is one of the beautiful characteristics of NoSQL.

In addition, it does not provide any ACID-compliance transaction feature, which helps

to boost its read and write performance tremendously. Since tracking user mobility

involves collecting data from each AP, which could increase to hundreds of them in

commercial roll-out, a NoSQL database is an ideal choice. Furthermore, since we are

not dealing with data that involves transaction such as bank account details, we do not

need the strict consistency of relational SQL.

22

Chapter 2. Background

Relational SQL has a strict schema that we need to follow. The data types for each

attributes have to be defined in advance when creating the table. It provides feature such

as join operation and transactions, which observe the ACID properties4. Furthermore,

it provides easy-to-use SQL query language, which allows developers to query data from

the database simply by writing a SQL statement. MySQL is a relational database

management system (RDBMS), which is free and open sourced. MySQL is powerful up

to a certain point when the amount of data becomes too much for it to handle. In order

to scale its capacity up, it would involve the deployment of a master node, which handle

write operations, and slave nodes that take care of read operations. Data from master

node will be replicated to the slave nodes.

2.6.2 NoSQL Databases

In this section, we would discuss in further detail the different types of NoSQL

solutions available so that we can make a more informed choice of choosing one, which

is the most suitable for the nature of our project and not just for our initial prototype.

It should be noted that the explanation of how HBase works below would aid in the

understanding of Chapter 5 (Implementation), in which we use HBase for our data

storage.

packet details
ap mac terminal mac rssi timestamp

row key1 01:02:03:04:05:06 22:22:22:AS:BB:CC -65 1369908231

row key2

row key3

Table 2.6: HBase Table Structure

1. HBase: Hbase literally means The Hadoop Database. This is because it is part

of the Hadoop ecosystem and is built on top of the famous Hadoop Distributed

File System (HDFS). It is available under the Apache Software License, version

2.0. HBase is actually an open source implementation of Google’s Bigtable [18].

A prototype was created back in 2007, a year after Google published its paper on

Bigtable. HBase is highly scalable and is designed for terabytes to petabytes of

data [13]. HBase depends on the data redundancy and batch processing of some

of the key components of the Hadoop ecosystem.

In Table 2.6, we have attempted to draw up a simple structure of a way we can

store the data that we have collected from each AP. HBase stores data as key-value

pairs. It stores a value in a cell, which can be located by (rowKey, columnFamily,

4ACID stands for Atomicity, Consistency, Isolation and Durability.

23

Chapter 2. Background

columnQualifier) coordinates of the table. This is analogous to a 3-dimensional

array. These 3 terms are crucial terms that we would used extensively in Chapter 5

(Implementation) to explain how we retrieve values from the table for aggregation.

In Table 2.6, row key1 is a row key, packet details is a column family and ap mac,

terminal mac, rssi and timestamp are column qualifiers. Under a column family,

we could have as many column qualifiers as possible and when we mention many,

it refers to millions of them. As for the number of rows, we can have billions of

them in a table. This is why we have said earlier that HBase is highly scalable.

We could define as many column family as we need but this parameter should be

kept to a minimum. As an example, we can have another column family such as

extra information, which would hold column qualifiers such as ap GPS coordinates

and ap nearest building.

HBase is very flexible on the data types and schema of the table. Each cell

of the table could be data in any formats since HBase store them as bytes. This

means that we can store the content in a cell as Integer and later replace the

data type of the cell to String without any problems. HBase does not require

the developer to specify the column qualifier in advance, which is in contrast to

relational database that requires the specification of table attributes during table

creation. However, HBase does require the developer to specify the column family

in advance for a few reasons. One of them is that the content of a whole row might

not be stored on a single server. Each of the column families of a row would be

stored on a different RegionServer5.

Finally, since HBase uses HDFS as a filesystem for storing its data, it inherits

some of the features that are available in the Hadoop ecosystem. One of this is

the Hadoop MapReduce. HBase allows us to use the data stored in it as input to

the Map function and the output of the Reduce function could be inserted back

directly into HBase. We will elaborate more on MapReduce in the next section.

2. CouchDB: CouchDB is a new type of database management system that stores

data as “documents”, in which we can call this as “self contained” data [1].

CouchDB is very relaxed on the schema of the data model. Let’s us use the

example of receipts to explain the concept behind CouchDB. Let say we have 5

receipts from different shops and they are all of different formats, i.e., some may

contain the fax number of the shop, some may not and some may contain other

details. All these receipts would be analogous to the documents in CouchDB. Each

document may contain different informations and does not have to follow the same

structure. We can have a fax number field in one document and not having it in

another. We can add more data to a document at a later time or remove some

5RegionServers are just servers that host small chunks of the HBase tables for the purpose of high
availability and scalability.

24

Chapter 2. Background

data without affecting other documents since the structure of each document can

be different. This is one of the beautiful elements of CouchDB, which makes it a

very flexible data storage system.

If we use the example in Table 2.6, each row would be stored as a separate

document. We may add extra details such as GPS coordinates of an AP to a

document and not have this detail at all in another.

However, the downside of CouchDB is that it uses too much space to store each

document. In Chapter 5 (Implementation), we have attempted to experiment with

the use of CouchDB and HBase and we compare the size of disk space used for

storing the data we collected from APs for each type of database. Apart from

using a lot of space, the only way we can communicate with CouchDB is by

making HTTP/HTTPS request via its extensive REST API. Adding, retrieving

and deleting data on CouchDB has to be done by this way, which is also its shortfall

since HTTP/HTTPS protocol is not a quick way for transmitting data across the

internet.

Lastly, CouchDB has a built-in MapReduce feature, in which the Map and

Reduce functions could be written in Javascript. CouchDB would apply the Map

function to each documents and the outputs from the Map function is passed on

to the Reduce function. We will discuss more about how MapReduce works in the

following section.

2.6.3 MapReduce Framework

MapReduce is a framework that uses functional programming concepts to process

large datasets in a parallel and distributed manner [36]. MapReduce was designed with

the aim of processing massive amount of data in a scalable manner. This means that as

long as we can afford to add more machines to process the data, its performance should

increase linearly [18]. MapReduce uses the divide and conquer approach to process

smaller chunks of data in parallel and at the end, these chunks would be aggregated to

produce a consolidated results.

Processing data using MapReduce involves two phases: the map phase and the

reduce phase. The input and output of both phases take the form of a key-value pair.

For MapReduce to work, we need to specify both the map function and the reduce

function.

• Map phase: The map function is executed once for each input key-value pair.

Within the map function, we could do some computation on the key-value pair

and at the end, we need to choose a new key to emit out. After the map function

25

Chapter 2. Background

is executed, MapReduce would sorts the output of the map function and group

together key-value pairs that have the same key and pass these to the reduce phase.

• Reduce phase: The reduce function is run once for each group of key-value

pairs that share the same key. This means that we have a bunch of data that

share certain similarities since we choose to emit them with the same key from

the map function. Hence, we could do some aggregation on the group of key-value

pairs such as adding up all the values together to find out the total sum. We can

then output the result with another key that we choose or we may also choose to

output the key that is passed into the reduce function.

Figure 2.2: Illustration of how MapReduce works
Images licensed under Creative Commons and GPL from iconfinder.com

In order to illustrate how MapReduce works, we have come up with an original

unique example to explain the concept as illustrated in Figure 2.2. Imagine that we

have a whole bag of gem stones, which could be hundreds of them, that are mixed

together. Each gem stone has a price tag attached to it. In this case, we consider the

colour of gem stone as the key and the price tag as the value.

Each of the gem stone is passed into the map function one by one, which could

happens in parallel. In the map function, the input key is gem stone colour and the

input value is the price. Within this function, we have a logic to accept only gem stone

that is worth more than £10. For gem stone worth more than £10, we will emit out

an output key which is the gem stone colour and an output value which remains to be

the price. For those worth lower, we will not emit out a key-value pair, i.e., we would

not pass the gem stone to the next phase and just throw it away. Note that we could

choose any parameter to emit out as key. If we have other information that is available

26

Chapter 2. Background

to the map function such as the continent the gem stone is found, we can even emit this

as output key.

Sorting will takes place after the map phase and all gem stone that has the same

colour will be grouped together since they share the same key.

In the reduce phase, each group of gem stones is passed into the reduce function.

The input key is the gem stone colour and input value is a bag of all gem stones of the

same colour with their price tags. Within this function, we have a logic to sum up the

total cost of all gem stones of the same colour. After finishing our aggregation, we will

output the key as gem stone colour and output value as the total cost that we have

calculated.

2.7 Summary

In this section, we begin by looking into what IEEE 802.11 standards are and we

go through the key components of the standards, which allow us to understand how we

can benefit from the standards. For instance, we could make use of the probe request

frames that are sent out by WiFi terminals to detect the presence of the terminals. Since

this frame also consists of MAC address of the terminals and it is possible for AP to

determine the received signal strength, using this mechanism to detect terminals is a

feasible approach. The association, reassociation and dissociation process could also be

an alternative way for us to detect the terminals although it has its shortfalls. We will

look into these shortfalls in Section 3.2 under Related Work, which we get to learn from

what other researchers have achieved via this mechanism and also its advantages and

disadvantages.

We also discuss some of the OSs available for embedded devices such as APs and

attempt to explain some of the functions provided by the chipset manufacturers via their

device drivers. After that, we looked at the different serialisation methods and the types

of databases system available as well as a framework for aggregating large datasets.

MapReduce is a good framework, which abstracts the complicated underlying schedul-

ing and parallelising of MapReduce tasks from the developers, allowing developers to

focus just on writing the logic for the map and reduce functions. Since HBase is built

on top of HDFS, there are many benefits that it gets apart from the scalability and

availability of the filesystem. This includes using HBase table as both source and sink

of a MapReduce job, i.e., the input can come from the table and the output gets writ-

ten to the table directly. Finally, since HBase is used by big web companies such as

27

Chapter 2. Background

Facebook for its messaging and StumbleUpon for its realtime analytics, it has an active

development environment, in which it will become very popular in the future.

28

Chapter 3

Related Work

Over the years, there have been numerous papers published about localisation using

various mechanisms. Attempts have also been make to track the movement of users car-

rying WiFi terminals within a pre-defined compound under the area of experimentation.

In this chapter, we explore the various mechanisms that other researchers have come

up with in order to track WiFi users movement. It would be helpful to go through and

evaluate others’ work in this field so that we could understand the terminologies, con-

straints and limitations of various mechanisms. Hence, from there, we could decide on a

better mechanism that is envisioned to address some of the constraints and limitations.

3.1 Mechanisms for Tracking WiFi Terminals

Real traces of users’ location can be used to derive a mobility model that would be

useful for researchers working on applications, systems or devices in which the movement

of users is significant to their work, especially for location-aware applications and network

optimisation. This provides the motivation for some researchers to look into tapping the

potential of using WiFi to track user mobility and from this data, they could generate

a user mobility model, which would be available to other researchers interested in the

data model.

Amongst the papers we have reviewed, we notice that there two main different mech-

anisms that are being used to track terminals’ location and network activity, in which

network packets are being monitored. We explain the two main ideas below.

1. One is the use of syslog at APs to record information regarding association and

dissociation of WiFi devices. syslog traces do not provide information regarding

the signal strength between client and AP. In order to obtain extra information re-

garding the network activity that a user engaged in, SNMP and tcpdump are being

employed to get the MAC address of devices and other information by capturing

the header of network packets [21]. This allows analysis of which application layer

protocols are being used by the users such as Hypertext Transfer Protocol (HTTP),

File Transfer Protocol (FTP) and Gnutella (Peer-to-peer).

29

Chapter 3. Related Work

How it works:

The APs are configured to send Syslog message whenever a user authenticate,

associate, dissociate and deauthenticate. User Datagram Protocol (UDP) is chosen

as the transport layer protocol. This means that error checking and correction

would not be carried out at the transport layer, thus, lowering the overhead. Apart

from syslog, Simple Network Management Protocol (SNMP) is used to poll the APs

every 5 minutes. MAC addresses, together with inbound and outbound traffic of

the recently associated clients would be returned in each poll. In addition, tcpdump,

is also used to sniff the wireless network traffic of the users. This tool captures the

packet headers, enabling more in-depth analysis of the network traffic to be carried

out. A sniffer server is placed in each major location for this sniffing purpose.

2. Another approach is a client-side implementation in which most of the logic is

being put on the user’s device. For instance, a smartphone would detect user’s

motion using accelerometer, environment light using device’s camera and sound

using microphone. The phone also collects information such as the presence of APs

nearby as fingerprint and all the information can be sent from the user’s device

across to a server for processing [2].

Fingerprinting works when the smartphone scans the surrounding for WiFi

APs. A fingerprint is formed from the list of MAC addresses that is being captured

by the phone in a short period of time. Based on a formula, this test fingerprint

will be compared with the one stored in the database as candidate fingerprint.

With the extra information provided by the smartphone, the logical location of

a phone user can be determined very accurately as opposed to just relying on GSM

or WiFi for localisation. This is because different environment looks differently

with a variety of different decorations and lightings. For instance, a pub can be

distinguished easily from a book store from the difference in light ambience. If only

GSM or WiFi is used to determine the user’s location, it could lead to ambiguity.

For example, if there are two shops, A and B, next to each other, a user entering

Shop A may mistakenly be interpreted as entering Shop B and vice versa. This

ambiguity cannot be ignored if the shop owner wants to use the localisation data to

send the user coupons or there is a need to aggregate the number of users visiting

each shops.

A user may also move differently in different types of shops. For example, a

person visiting the supermarket may move up and down the rows frequently while

a person visiting a restaurant may move only for a short distance before sitting

down. The accelerometer helps to detect the user’s movement.

30

Chapter 3. Related Work

3.2 Factors Affecting Accuracy of Detecting WiFi Termi-

nals

Since we need to estimate the location of a user, we may also need to consider some

of the factors that would affect the accuracy of our estimation. The first two factors

discussed below is more relevant for using association and dissociation of a terminal from

an AP as a detection mechanism. The last three are general phenomenons that would

not be easy to solve.

1. A user’s terminal may be associated to an AP but it may not be close to the AP.

Furthermore, the terminal might not associate to an AP that is closest to it in

terms of real distances [19]. This is due to the fact that different terminals have

different algorithm regarding AP association, i.e., it might not choose to associate

with the closest AP.

2. Different terminals may have different level of reluctance to change association.

For example, Cisco VoIP phone tends to stay connected with an AP for a longer

time than other mobile devices. This highlights a factor which could potentially

affects the accuracy of tracking users since different users uses different models of

mobile devices.

3. The AP may be blocked by an object, thus the received signal strength by AP

from a terminal may be lower than it should be. This means that using just RSSI

in estimating a terminal’s location would not be accurate anymore.

4. Different environments have different levels of interference. The noise in one en-

vironment may be higher than in another due to the existent of many wireless

devices transmitting electromagnetic waves.

5. There could be refraction, reflection, diffraction, absorption and scattering of radio

signal, which causes the signal strength to be weaken [6].

Thus, all these factors may affect the location of a terminal being estimated, giving

us a false sense of the terminal’s location. For some of the problems above, they could

be resolved by using a different terminal detection mechanism such as the detection of

terminals by capturing the probe request frames that are being broadcasted rather than

using a terminal’s association and dissociation information.

31

Chapter 3. Related Work

3.3 Localisation Techniques

After reviewing some of the related work, a common concern that has been brought

up is the accuracy of determining a user’s position using 802.11 radio signal. Thus,

a number of different mechanisms and algorithms have been devised to estimate the

position of the user. Some of the methods and algorithms are summarised briefly below.

• Triangle Centroid - Using three APs as points of reference to determine a user’s

position. This involves using 3 points of association with APs to accurately deter-

mine the user’s position.

• Ambience Fingerprinting - Making use of different sensors available on smart-

phones to provide additional information necessary to determine a user’s position

accurately. This works because different environments look and feel differently.

This includes the sound and behaviour of the user in the environment.

• Signal strength - Using signal strength value between a WiFi terminal and an AP

could allow us to estimate a user’s position to a limited extent. This assumes that

no obstructions occur between them.

3.4 Summary

The use of authentication, association, dissociation and deauthentication information

as a mechanism for detecting WiFi terminals is a good method but it lacks robustness.

This is because only those users who are able to authenticate and associate with the APs

could be tracked. If a user choose not to associate or unable to associate with one of the

AP, inaccuracies would be introduced in the tracking results because the results does

not reflect the real environment. This could be a problem for this project because we

aim to collect information about WiFi users in an 802.11 network environment without

requiring users to do anything on their devices. Furthermore, we want to track as many

users as possible within this environment so that we can derive useful statistics about

the users.

For client-side implementation, the approach is not scalable. This is because it is

very hard to persuade or even reach out to users to install an application. However, it is

useful to learn how a client-based solution could be developed in contrast to relying on

data collected from APs. For our project, a client-side solution may not be that useful

since our objective is to track users anonymously without asking them to do anything,

which would be ideal and is the solution we are looking for.

32

Chapter 4

Design

In this chapter, we will give an overview of the design and architecture of our system.

We will explain the functionalities of each components and provide justifications for

having them. After that, we will go through all available options of WiFi terminal

detection mechanism and carry out an evaluation to decide which mechanism we would

use for implementation in our project. Last but not least, we will look at what kind of

analytical results we would like to aggregate out of the raw data that we have collected

from all APs.

4.1 Overview of Design Architecture

Figure 4.1: Overview of our deployment strategy

As we can see from Figure 4.1, we aim to come up with a deployment strategy that

has characteristics such as scalability, loose-coupling, composability and interoperability.

We aim to have an architecture, which permits us to change the implementation of each

component, if require in the future, without affecting the operation of the whole system.

We will attempt to explain each components in the order of data flowing in the system

as illustrated in Figure 4.1.

33

Chapter 4. Design

1. AP: We will write a program to detect WiFi terminals that are close to each AP

that we have deployed. The job of the AP is to simply scan through each WiFi

channel, listen for incoming probe request frames that are being broadcasted by

terminals and send this information to the Processing Agent. The whole duration

of scanning and listening will take 30 seconds and all the information collected

is sent together once every 30 seconds. We will explain why we choose detecting

probe request frames as our detection mechanism later in Section 4.2.

We choose to send all the records1 together every 30 seconds to save the over-

head of establishing too many connections to the Processing Agent. We choose

to scan for 30 seconds to allow sufficient time for iterating through each WiFi

channels. This is because after some experimentations, any duration lower than

30 seconds would cause the AP to miss detecting some terminals.

A custom OS would be installed on each AP to run our program. This is

because the originally shipped OS with the AP does not allow us to run our

program on the AP. Finally, a file transmission library would be used to transmit

all the records to the Processing Agent. Such a library is needed because we want

to have the transmission error handling and exceptions of the library.

2. Processing Agent: At the Processing Agent, we have a REST API, which can

be invoked from each AP to upload the data collected. After we have received the

data from an AP, we will check the secret key that we have packed together with

the records. The purpose of using a secret key is to prevent a rogue AP that does

not belong to our system from uploading data to our Processing Agent, which

could results in a disastrous effect on our aggregated statistics. We will explain

how we implement the secret key more in detail in Section 5.2.3.

We decide to insert the timestamp for the records at the Processing Agent

before we push them to the database. This is because synchronisation of time on

the AP is currently not that reliable using a custom OS. If the clock time on the AP

is wrong, we will end up aggregating incorrect data, leading to false analysis of the

behaviour of users that we are tracking Hence, we decide to follow a more reliable

approach of inserting the timestamp at the Processing Agent. We understand that

there are disadvantages of this solution. Firstly, the granularity of detecting each

terminal would be about 30 seconds since the data collected by the AP is sent to

the Processing Agent every 30s and timestamp will only be inserted at that time.

Secondly, there is a possibility of some transmission delay, which would add to the

final timestamp for each record.

1From here on, when we mention records, we mean the unique WiFi terminal MAC address and its
associated RSSI. Within the 30 seconds window, the AP may pick up multiple probe request frames from
the terminal but we only consider the first one that we have captured. The terminal’s MAC address and
RSSI forms a record.

34

Chapter 4. Design

Finally, we will push all these data to the database using the default protocol

for connecting to the database that we choose. Our choice of database would be

justified in the next chapter on Implementation. Note the arrow in Figure 4.1,

which shows that data only flow in one direction from the Processing Agent to the

database.

3. Records Database: This is the database that we will hold all the raw records

that we have collected from each AP and also the aggregated data that we are

going to generate by employing an analytic framework. The Records Database

should have the ability to scale easily because of the continuous stream of data

from all APs if we deploy them 24 hours a day and 365 days a year.

4. Analytic Servers: The Analytic Servers only has one main job to do, i.e.,

to aggregate the raw records that we have collected by fetching them from the

database and put the aggregated results back into the database. This explains

the two-ways arrows in Figure 4.1, which shows that data flows in both way. It

should be noted that we may also aggregate the data once, put them back into

the database and aggregate on the aggregated data again to derive a different

analytical model of the data. This is done this way because data from the first

aggregation may be used several times for generating different statistics.

5. REST Gateway: This component is subjective to the type of Records Database

and the front-end GUI that we are using. For our implementation in this project,

we require a REST2 Gateway. The database that we choose provides a client

library for retrieving data from code written in Java but not from any other lan-

guages. Although it also provides basic REST API for retrieving data via HTTP,

the REST API only allow simple querying of data and does not allow us to specify

the criteria such as what range of data we want to retrieve. Hence, we decide

to implement our own REST Gateway, which is written in Java so that we can

use the database Java client library to provide additional ways of querying data

from a GUI written in Javascript and HTML. For example, we allow the Web GUI

to specify the range of records, from which date to which date, that it wants to

retrieve. We aim to keep this description at minimal here in Design and will at-

tempt to explain them in detail later on in Section 5.6.1 under the Implementation

chapter.

6. Website Host: This will provide the hosting for our Web GUI, which has a back-

end written in PHP and front-end in Javascript and HTML. We need the back-end

to be in PHP because we want to provide login functionality for administrators

and business owners to login and check out the different statistics and graphs that

2REST is a software architecture that involves client-server, in which the server provides a standard-
ised application programming interface for accessing and modifying data.

35

Chapter 4. Design

we have for them. Javascript is used in the front-end for querying data directly

from the database as we have mentioned earlier. Some element of HTML5 is also

used in this project. Javascript enables a website to look and operate just like an

app on the phone without having to refresh page often for selecting certain options

on the page. That is what we aim to achieve in our Web GUI.

7. User Account Database: This is implemented using a relational database for

account keeping purposes. We store the accounts for administrators and business

owners in this database as well as the APs that each account is allowed to view

the statistics associated with them.

4.2 Detection Mechanisms

In this section, we will outline the different mechanisms for detecting the presence of

WiFi terminals using what we have learnt from background and related work. We will

evaluate each mechanisms, highlighting any advantages or disadvantages, and justify

our choice of the mechanism we use for our implementation.

• Mechanism 1

Based on the association and dissociation records of a user’s WiFi terminal,

the MAC address of the terminal, and the time the terminal is detected can be

determined. If the AP does not use an open system authentication, the terminal

would have to authenticate itself first before association with the AP can take

place.

By using this mechanism, everything can be done entirely without the user’s

knowledge and that also means that this approach is practical. However, the

downside is that, only users who can associate with the AP will be tracked by this

mechanism. In addition, a terminal could still be associated to an AP even after

it has moved quite far away and not reassociate to a closer AP. This could be due

to its AP reassociation algorithm. This means that the data collected for deriving

the collective mobility of users will not reflects the actual environment.

• Mechanism 2

A terminal may send out probe request frames to search for nearby APs to

associate. The frame includes the MAC address of the terminal involved and we

can determine the received signal strength of the probe request frame on the AP.

With this information, we can localise a terminal to a certain extent of accuracy.

To explain Mechanism 2 visually and in an interesting way, we have come up

with an analogy for this mechanism, which we have chosen for our implementation.

36

Chapter 4. Design

Figure 4.2: Detecting presence of terminals using probe request

From Figure 4.2, Tom, a smartphone, may choose to ask two types of questions in

a wireless network environment as illustrated in the conversation box.

Tom, Jerry and Tim’s story

Q1 Tom: My name is Tom, I am looking for any available APs nearby that

I might know for connection.

Q2 Tom: My name is Tom, I am looking for an AP by the name Jerry for

connection. Please respond if you are Jerry.

Tim thought: I am not Jerry but now I know you are Tom.

From the conversation above, it illustrates that a terminal may choose to send

probe request destined for any APs nearby or only for a particular AP it wants to

associate by specifying the SSID. As an AP nearby to the terminal, the AP would

be able to pick up this frame without the knowledge of the terminal since it is the

terminal’s choice to broadcast this frame.

This mechanism has a huge advantage over Mechanism 1 explained earlier.

However, the downside of it is that, we could not control how often the terminal

would send out a probe request frame, thus the presence of a terminal might not be

detected if the terminal does not send out probe request frames during the period

it is in the environment we are monitoring. This is because the frequency of probe

request frames being sent out varies according to the different implementations of

the OS of each WiFi device.

• Mechanism 3

The last mechanism that we can employ is based on client-side implementation.

This would involve the development of a mobile application that we can recommend

37

Chapter 4. Design

users to install. The application will download a list of MAC addresses of APs that

belong to us and if the mobile phone finds any one of these MAC addresses3, it

will send this information to our server. Hence, we are able to deduce the location

of the phone simply by associating its location to the the location of the AP or

APs.

This solution is the easiest to implement. However, it has many downsides.

Firstly, we would have to develop a range of applications for different mobile

platforms such as iOS, Android, Windows Phone and BlackBerry 10 in order to

track the users of these devices. Furthermore, there are many versions of computer

platforms to account for as well. Secondly, it would be extremely hard to persuade

a user to install the application so that we can track their whereabouts. They

would be highly unwilling to commit that, thus, this last solution is not very

practical.

This project aims to employ the best mechanisms to track collective mobility of users

in IEEE 802.11 environments, hence, Mechanism 2 explained above is being investigated

and implemented. This is because that mechanism does not require user interaction in

order for tracking to work. Furthermore, since most WiFi terminals would send out

probe request frames as part of their procedure to find nearby APs for association, we

would make use of this frame information to our advantage. This means that we would

be able to detect more terminals, which would give us a better representation of the

number of WiFi users in the environment under monitored.

The only downside to this mechanism is that since some terminals do not send out

probe request frames that often, it would be hard to accurately determine whether a

user is still staying at a place due to the fact that his WiFi terminal might not send out

probe request frames during that time period. In Chapter 6, after we have conducted

our experiment in the Department of Computing laboratory, we would observe another

phenomenon, in which the number of terminals detected are higher than the surrounding

area under monitored due to two reasons. Firstly, a user may have more than one WiFi

terminals since they are university students, who might possess a laptop, tablet and a

smartphone. Secondly, unless we use a good filtering technique, we may detect terminals

that are located outside the area under monitored if these terminals are transmitting

packets at a stronger signal strength.

3It is not hard to obtain the MAC addresses of APs in the surrounding by conducting an active scan
and using the mobile phone provided library to obtain the APs’ MAC addresses.

38

Chapter 4. Design

4.3 Types of Aggregation

After we have collected the raw data about terminals’ presence, indirectly the users’

presence, we need a way to aggregate the data in order to derive useful meaning out of

it, or else, the raw data would be like a rough diamond, which does not have much of a

value and attraction. Analysing data is a difficult process, which is just like what the big

companies are doing right now to analyse Big data. We aim to use an analytic framework

that is easier to understand and easier to manage the logic of data aggregation. However,

for this, we will leave it to the next Implementation chapter. Below, we will list out an

overview of the types of aggregated results that we want to obtain out of the raw data

we have collected.

1. As the presence of a terminal could be detected by several APs in the same envi-

ronment, we need to put in place a logic to determine which AP the terminal is

closest to.

2. We want to obtain a near real-time aggregation of the number of counts of WiFi

terminals near each AP in the environment we are monitoring. A delay of 1-2

minutes would be accepted. This information would then be displayed on the Web

GUI for us to see a near real-time overview of the number of terminals we are

detecting near each AP.

3. As part of our aim to understand the collective mobility of users, we want to know

how long a collective of users stay near an AP, indirectly a particular place in our

monitored environment. We would call this the residence time of users staying at

a place.

4. We want to know the number of New versus Returning users to a particular place.

In particular, we want to answer the following question. “Do users usually return

back to the place they used to visit?”

4.4 Web GUI

Again, even after we have the aggregated results, if there is no GUI to display

the results, it is hard to visualise what those data means. The GUI’s job is to take the

aggregated data and plot pretty graphs and charts so that we, as human, can understand

and use the statistics to make useful judgement and decisions. The GUI is designed to

have good navigability, intuitiveness and modern style.

39

Chapter 5

Implementation

In this chapter, we will look into how we manage to implement and cross compile

a program to run on an embedded device such as an AP. The cross compiling process

is probably the most challenging part because the AP OS that we use, DD-WRT, does

not provide any documentations on cross compiling a program to run on it. Since an

embedded device has limited flash storage space and RAM, it is impossible to compile

program on the AP itself, which would be easier if this is permitted. After that, we look

into how we find a way to transfer the data out of the AP to a server for processing.

We also explain the aggregation logic that we have written in our code to turn the raw

data into useful statistics. Finally, we will discuss about how we manage to implement

an app-like website for displaying the aggregated results, drawing beautiful graphs and

charts that are simple to comprehend.

5.1 Chipset and Custom AP Firmware

Before we start this section, we would like to explain the difference between OS and

firmware. The terms OS and firmware refer to the same thing, when we are talking

about an embedded device such as the AP. However, it should be noted that a firmware

could be unique for each brand and each model of AP. Furthermore, a firmware may

have many different versions that are built at different point in time. Certain versions

of a firmware may cause certain functionalities of the AP to be unusable. When we

use the term OS in subsequent paragraphs, we use it to refer to the internal running of

a system on the AP, which has process scheduling, memory allocation and system call

management. When we use the term firmware, we use it to refer to the filesystem image

that can be flashed onto an AP.

After learning about the popularity and level of support each chipset’s device driver

could offer, it is clear that Broadcom would be the chipset we are looking for. However,

we would still want to evaluate other chipsets to see how they compare in terms of

usability. We have a total of 9 different models of APs, 6 from Cisco LinkSys using

Broadcom chipsets, 1 from D-Link using Ralink chipset and 2 from TP-Link using two

40

Chapter 5. Implementation

different models of Qualcomm Atheros chipsets. 1 of the Cisco LinkSys APs was bricked1

and another has certain unusable functionalities after flashing with our firmware.

One of the most important factors that allows us to determine which chipset to use

is whether the chipset supports monitor mode natively. Monitor mode is needed for us

to capture probe request frames, which are required for our chosen detection mechanism

that we have mentioned under Design chapter to work. The Ralink chipset that we have

does support monitor mode. However, once the AP’s NIC is placed into monitor mode,

it would not have network connectivity and could not function in AP infrastructure

mode anymore, i.e., the AP cannot serves as an access point in 802.11 infrastructure

mode. This would mean that even if we are able to capture probe request frames, there

is a difficulty of getting network connectivity to transmit the collected data from the

AP to a server for processing. As for Atheros chipsets, 1 model of the chipset allows us

to put the AP’s NIC into monitor mode but the other model does not. However, for

the one that can be placed into monitor mode, we need to install several modules and

drivers in order to do that.

Finally, Broadcom chipsets are the most usable out of the 3 different types of chipsets.

This is because for Broadcom chipset, we could place the AP’s NIC into monitor mode

and at the same time, it also able to function in AP infrastructure mode. This is what

we have found out to be unique about Broadcom chipset, which not many people have

discovered and also not documented by Broadcom. Hence, we have decided to focus our

implementation around Cisco LinkSys APs, which utilises Broadcom chipsets and NIC

in most of their models. It should also be noted that even with Broadcom chipset, the

types of WLAN NIC has a major impact in getting the monitor mode to work as well.

In this project, apart from having a suitable chipset, we need to use a custom AP

firmware in order to run our program on the AP. This is because most AP manufac-

turers do not provide terminal access, such as SSH or telnet, to the AP’s OS and it

is extremely hard to modify the existing manufacturers’ firmwares without their source

code. Furthermore, even if we manage to get terminal access to the manufacturer’s AP

OS, we would not be able to run our program on the AP easily as well.

5.1.1 Choosing a Suitable Firmware

There are two types of firmwares, DD-WRT and OpenWrt, that we have mentioned

in Section 2.3.1 under Background. Although we have explained and evaluated the

advantages and disadvantages of each firmware in the aforementioned section, we still

1Damaged due to corrupted filesystem during flashing of the firmware, which usually relates to
incompatible firmware version.

41

Chapter 5. Implementation

have to test them out on the actual AP to see what functionalities each firmware would

offer as well as whether there are any compatibilities issues, in terms of NIC and chipset.

We have flashed OpenWrt firmware onto TP-Link and Cisco LinkSys APs. OpenWrt

does not seem to be easy to use and configure. It is not easy to partition the flash storage

space to support Journalling Flash File System (JFFS), which provides a re-writable

space on the AP. Re-writable space is required for us to store our program so that even

after we turn off the AP and turn back on again, the program still remains there.

As a result, DD-WRT is chosen as a custom firmware that we are going to work with

since we can configure JFFS on it. Another reason why we choose DD-WRT instead

of OpenWrt is that there are more available libraries that we can use in DD-WRT for

our implementation. Furthermore, we discover that Broadcom has a proprietary “wl”

device driver that is available for our use, which comes with most of the APs that use

its chipset. After some experimentations, the “wl” device driver is found to work on

DD-WRT firmware and not on OpenWrt. “wl” device driver is essential for us to set

the AP into monitor mode and changing the AP’s WiFi channels. This is essential for

us to capture the probe request frames, which we have justified in Chaper 4 (Design) as

the terminal detection mechanism we are going to implement.

5.1.2 Preparing Firmware

Figure 5.1: Top level of firmware image filesystem

Due to the constraint of limited space on an embedded device like the AP and since

the original DD-WRT firmware already takes up much of the flash storage space that an

AP would provide even using its minimal build with fewer features, there is a need for us

to recompile the firmware. This is because DD-WRT does not expect other developers

to install a custom program onto its OS, hence, it leaves very little flash storage space

that is usable for storing other files. We use the Firmware Modification Kit [20], which

allows us to make modification to the firmware image.

After using the kit to extract the firmware image, we get the different components

that is shown in Figure 5.1 and 5.2. Figure 5.2 shows us that the internal filesystem of

DD-WRT firmware looks a bit like the Linux OS filesystem. There is a bin folder which

42

Chapter 5. Implementation

Figure 5.2: Root filesystem of firmware image

holds program such as cp, mv, rm, umount, ls, ping, etc. There is also a jffs folder

which is a re-writable space when the AP is in operation.

Since our AP has limited flash storage space and we need space for our program with

its libraries, we need to modify the firmware image. Our objective here is to reduce the

firmware image size so that there are more space available for JFFS re-writable area.

We need to extract irrelevant default programs from the original firmware to reduce

the firmware size. We remove pptpctrl, pptpd, xl2tpd (a layer 2 tunnelling protocol not

needed for this project), bpalogin (a bigpond login), nas (a Network Attached Storage

module, which provides file server feature and is not needed in this project). After

assembling back the DD-WRT firmware, we manage to reduce the overall firmware size

from 3,490KB to 3,067KB. Since most of the APs that we have provide about 4MB of

flash storage space, we could now have a little less than 1MB remaining for storing our

program that also makes use of other libraries.

5.1.3 Flashing AP Filesystem

The embedded system is very sensitive to changes in firmware version according to

what we have found out during our experimentation with a variety of different models

of APs. We have to be extra careful when flashing the firmware on the AP such as not

43

Chapter 5. Implementation

disconnecting the power cable when flashing is going on, waiting for appropriate amount

of time during each stage of flashing and resetting the AP after it is flashed. However,

even with such procedures taken, we still could not fully avoid bricking one of our APs.

When an AP is bricked, it just became dead and does not respond to any ping anymore

even we use an Ethernet cable to connect directly to the AP. The only way to un-brick

it is to get a serial cable and use Trivial File Transfer Protocol (TFTP) to transfer the

firmware image onto the AP and perform a re-flashing.

In this project, we spend a lot of time trying to find the right firmware version, as

well as trying to fix some of the “semi-brick” conditions that we also face. This involves

continuously pinging the AP with an ethernet cable connected from a computer and

once we could detect a response from the AP, we could quickly use TFTP to transfer

the firmware image across to perform re-flashing. This is an alternative to using serial

cable but it only fixes AP in semi-brick condition.

5.2 Detecting, Transferring and Compiling

In this section, we will explain how we create a program to capture probe request

frames, devise a data transfer protocol to transmit the collected data from AP to server

and going through the painstaking cross compiling process to compile a 32-bit MIPS

program on a 64-bit Intel computer.

5.2.1 Detection Program

Due to the time constraint of this project and the amount of emphasis we have in

other parts of the project such as aggregating the collected data and designing a GUI

for plotting graphs and drawing up charts, we have chosen to explore whether we could

build on top of an existing tool for the capturing of probe request frames. There are two

WLAN tools such as Kismet and Wiviz that we can look into. Both are open source

tools [32, 37], which has a feature that involves the capturing of probe request frames.

Wiviz’s code is easier to understand than Kismet although the code is outdated

and would not work on some of the newer models of Cisco LinkSys APs. Kismet code

base is very large, which spans to hundreds of files. It has some unnecessary modules

such as the drone and client module that allows us to deploy an AP as a drone, which

sends data to a client that reside on a computer. In the end, we decide to modify the

Wiviz code to work according to our specifications and needs. We name our program as

analyticScan, which can be run on the AP as a background process. We give details of

how our program works below.

44

Chapter 5. Implementation

Calling Broadcom library functions

1 #define WLC GET MONITOR 107 /∗ When used with wl ioctl, returned value of 1
2 means monitor mode is On, 0 otherwise. ∗/
3
4 #define WLC SET MONITOR 108 /∗ When used with wl ioctl, pass in 1 as buf
5 parameter would set monitor mode to On,
6 otherwise 0 is Off. ∗/
7
8 #define WLC GET AP 117 /∗ When used with wl ioctl, returned value of 1
9 means AP infrastructure mode is On, 0

10 otherwise. ∗/
11
12 #define WLC SET AP 118 /∗ When used with wl ioctl, pass in 1 as buf
13 parameter would set AP infrastructure
14 mode to On, else 0 is Off. ∗/
15
16 #define WLC GET CHANNEL 29 /∗ When used with wl ioctl, channel number
17 will be returned. ∗/
18
19 #define WLC SET CHANNEL 30 /∗ When used with wl ioctl, channel number
20 is copied to buf parameter to set channel. ∗/

Listing 5.1: Identifiers for changing the configuration of the AP.

In order to start receiving probe request packets from the network interface, we

need to set the NIC into monitor mode. This is done by calling wl_ioctl(char *

interface_name, int identifier, void *buf, int len), which is a function pro-

vided by Broadcom’s device driver to allow the setting of AP with various configurations.

From Listing 5.1, we can see that there are identifiers, which can be passed into wl_ioctl

as one of the arguments to instruct it to change the configuration of the AP.

Before we start explaining the other parameters of wl_ioctl, we would like to explain

about nvram. NVRAM is a non-volatile random access memory, usually for storing

configuration settings. We can access the NVRAM simply by including bcmnvram.h

and we can have access to two useful functions, namely nvram_safe_get(char * name)

and nvram_safe_set(char * name, char * value). The former is for getting the

configuration value specified by the name and the latter is for adding new key-value

pair to the NVRAM for storing.

Having explained about NVRAM, we know that we can get a configuration value

from it by calling the provided function. In order to obtain the network interface name

of AP, which could be different for different models of APs, we use the

nvram_safe_get(‘‘wl0 ifname’’). wl0 ifname is the key that we want to query for

its associated value from NVRAM. The returned value is the network interface name.

The buf parameter of the wl_ioctl() function allows any values to be returned to be

45

Chapter 5. Implementation

copied to the buffer that is being allocated before the pointer to the buffer is passed into

the function. len is the size of the buffer.

Opening a socket to the network interface and start receiving

After setting the NIC into monitor mode, we would need to open a socket to the network

interface device driver to start receiving any packets that may come in through the inter-

face. This is done by using the Linux socket interface, socket(int socket_family,

int socket_type, int protocol). We would pass in PF PACKET as socket family

and SOCK RAW as socket type. PF PACKET is needed because we want to receive

raw packets at the device driver level. As for SOCK RAW, it is specifying that we want

to receive the the packets from the device driver without any modifications. We also

pass in ETH P ALL as the protocol, which ensures that all incoming network packets

are passed to the socket.

Figure 5.3: General IEEE 802.11 frame with Frame Control field highlighted [6]

After opening a socket, we use the Linux recv function to start receiving message

from the socket. As we receive packets through the socket, we need to filter out the

type of management frames2 that we want. According to Table 2.3 that we have in

Background chapter, which specifies the Subtype value in the Frame Control (FC) field

of an IEEE 802.11 frame, we can use the Subtype value to distinguish between the types

of packets. In Figure 5.3, we can see that there is a Type and Subtype field, which serve

to determine the type of frame. What we want is a Type value of 00 for management

frame and Subtype value of 0100 for probe request frame.

By filtering only probe request frames from all the packets we receive, we assume

that only terminals would send out probe request frames and not any APs that are in

AP infrastructure mode. We could capture probe request frames from an AP if it is

operating in Client mode.

Checking for duplicates of terminals

Finally, we need to check whether the packets that we receive via the socket is coming

2Note that we are using the term frames and packets interchangeably to fit the condition that it
involves.

46

Chapter 5. Implementation

from the same terminal or a different terminal. In Listing 5.2, it shows a hash function,

which is being used to check whether we have already pick up probe request frame from

the same terminal before.

1
2 int hashedValue = (mac[5] + (mac[4] << 8)) % MAX HOSTS;

Listing 5.2: A hash function.

Scanning different WiFi channels

Since we have learnt from Background that there are 13 channels allowed to be used in

Europe, we need to set the NIC to the channel we want to monitor for packets. This is

also done by using the function we have discussed earlier, wl_ioctl, using appropriate

identifier. Since we know that Channel 1, 3, 6, 8 and 11 provide a continuous overlapping

of all 13 channels as mentioned in Section 2.1.1 (Background), we could simply just

monitor for packets in each of these channels for a short period of time. This period

of time would be calibrated by some experimentations, which we discusses more in the

next paragraph.

Duration to monitor for packets

We need to decide on how long we want to monitor for packets that the NIC is receiving

before we transmit the collected data to the central server. We want to make sure that

this duration would provide sufficient time for the AP to capture any probe request

frames and detect any terminals that are nearby to it. After some experimentations

to find the optimal duration, it was found to be 30 seconds. Hence, our AP will scan

for any terminals nearby for 30 seconds before it transmit this information to a central

server for processing.

Saving MAC addresses and RSSI information of detected terminals

After we have collected information about the presence of terminals near an AP, we

need to save this data to a file for transmission to a central server. How we are going to

serialise the data before transmission and how we are transferring it would be discussed

in Section 5.2.2 and 5.2.4 below.

Since we decide to use a file transmission library to handle the transferring of data

from AP to server, we would need to store the data to a file locally first. After exper-

imentation with DD-WRT, we discover that it is possible to store file in the directory

/tmp, which actually uses up the RAM of the AP for storing the file. Once the AP is

restarted, the file will be gone. This is quite an interesting discovery in that DD-WRT

seems to mount the /tmp directory using an area of the RAM. Since we also know that

re-writing too many times on JFFS filesystem3 would eventually damage the embedded

3To write to JFFS filesystem, we can save a file to the directory /jffs.

47

Chapter 5. Implementation

device’s flash storage space, it would be better to store our file using the space on the

RAM in /tmp directory. This actually fits our purpose directly since we are only keeping

the file temporarily. We will overwrite over the file after every 30 seconds of scanning

and completing transmission of the data file to the central server.

5.2.2 Data Serialisation

Since we need to transfer data, containing detected MAC addresses and its associated

RSSI, from the AP to a server, we need to find an efficient way of serialising the data

so that the serialised data is still small and secure for transfer.

Selecting a serialisation method

We have outlined the advantages and disadvantages of each available serialisation method

that we could use for our project. We would like to briefly justify our final choice. Using

tab-delimited to store our data is not very space efficient. Furthermore, this method of

using tab to separate values requires us to use string functions extensively to concatenate

values, which is computationally expensive and is not that fast as compared to some-

thing like Protocol Buffers. Protocol buffers provide a very fast parser for deserialising

the data from raw bytes. As for JSON format, it takes too much space to store the key

for each of its associated values. In contrast, Protocol Buffers do not need any key as-

sociated to a value in order to interpret the data. It simply uses an Interface Definition

Language (IDL) file, which serves as a template for deserialising the data. In addition,

there is a C-implementation of Protocol Buffers for embedded device, Nanopb, which we

can use to serialise data on the AP and use the Java implementation of Protocol Buffers

from Google on the processing server to deserialise the data.

The reason why we want to choose a serialisation method that results in a smaller

serialised data is because we want to save the bandwidth of transferring the data from

AP to server. This is even more relevant since our AP is sending data every 30 seconds,

which means that we should try to reduce the amount of data to be transmitted as much

as possible. As long as the AP could handle the serialisation process without requiring

too much computing resources, we could employ a more efficient serialisation method

like Protocol Buffers.

Defining Protocol Buffer IDL

An IDL file has an extension .proto. In Listing 5.3, we have shown how we choose

to define the structure of how we are going to send the collected data. ClientType is

a message type, which encapsulates the detail of each individual terminal, namely its

MAC address and RSSI value. Since MAC address is made up of 48 bits, we choose

to store it in hexadecimal, which takes only 6 bytes for each terminal we have. This

48

Chapter 5. Implementation

1 message ClientType
2 {
3 required bytes mac = 1 [(nanopb).max size = 6]; // 6 bytes for storing MAC address
4 required int32 rssi = 2; // 4 bytes for storing RSSI
5 }
6
7 message APIdentity
8 {
9 required string apMac = 1 [(nanopb).max size = 18]; // 18 bytes for storing 17 bytes of

10 // AP’s MAC with \0 ending character
11 required string secretKey = 2 [(nanopb).max size = 8]; // secret key used for securing transmission
12 }
13
14 message ScanResult
15 {
16 repeated ClientType client = 1 [(nanopb).max count = 300]; //Hold up to 300 of ClientType
17 required APIdentity identity = 2;
18 }

Listing 5.3: IDL proto file defining how we serialise data for transfering from AP to
server.

means that we are able to save 12 bytes of space since we need 18 bytes to store a MAC

address in string with the colons and an ending null character as required in C. If we

detect more than a 100 terminals, this means we would save a whopping 1200 bytes of

space. Although 1KB might not seem to be a lot but if we consider the AP is sending

information every 30 seconds, the saving would be quite great.

APIdentity is another message type, which encapsulates detail of the AP to allow

the processing server to know where the collected data comes from. Since the apMac

only has a single value, MAC address of the current AP, we simply just store it in full

18 bytes. The use of secretKey will be explained in the next section.

Finally, the message type ScanResult encapsulates up to 300 number of ClientType

and the APIdentity. It should be noted that the variable name mac, rssi, apMac,

secretKey, client and identity are used for our understanding only and Protocol Buffers

will not include them in the serialised data. The serialised data will be compactly packed

together, with each bytes side by side, and only a parser generated using the IDL file

would be able to understand how to deserialise the data. This enhances the security of

the data to a limited extent.

Using Nanopb to serialise data on AP and Protocol Buffers to deserialise

Nanopb as we have explained is a C-implementation of Protocol Buffers for embedded

devices. Since it is quite a small project, it lacks a detailed documentation that fully

explain how to use its various available functions to serialise the data. As we can see

from the IDL file in Listing 5.3, we have a repeated ClientType message type, which

49

Chapter 5. Implementation

requires a different way of putting the message into ScanResult multiple times. Hence,

we have to spend quite a great deal of time experimenting on how to write an encoding

function to serialise this type of message. However, it is worth the time to get it to work

because Nanopb is extremely fast in serialising data due to its optimisation with only

essential features for embedded devices.

After serialising, deserialising would have to take place. However, this time round, it

happens on the server side. We use the same IDL proto file to feed into Google Protocol

Buffer generator to generate a parser. The parser allows us to deserialise the data and

retrieve the pieces of information we want.

5.2.3 Securing Transmission

One of the major concerns that we, as software engineers, have is security. If a

system is designed without security in mind, one day, it will be susceptible to attacks

by rogue users. Hence, even though our project is only a prototype, we would like to

add one layer of security into the prototype at this stage.

In order to prevent rogue APs that does not belong to us from sending garbage data

to the central Processing Agent, we introduced something called secret key. Only APs

that belong to us would know about this secret key and as you can see in Listing 5.3,

the secret key will be serialised using the Protocol Buffers. Since it might be slightly

hard to deserialise the raw bytes without having the IDL proto file, the secret key would

appear just like any other kinds of data. Thus, it is not easy for someone to know that

it is a secret key. When we are receiving the serialised data at the Processing Agent, we

would deserialise it and compare the secret key with the one we have on the Processing

Agent. Hence, this forms the basic level of security.

If we want to make sure that hackers would not be able to obtain the secret key from

the serialised data at all, we could use a HTTPS connection for encrypting the data to

be transmitted between AP and server.

5.2.4 File Transmission

After we have serialised the data at the AP, we need to decide on a way to transfer

this data to the Processing Agent. We would have a pre-condition for this, i.e., the

AP need to have an internet connectivity or be connected to a private network with a

Processing Agent on the network. We will discuss more about Processing Agent later in

Section 5.3. As for now, we would like to focus on the various ways that we can employ

to transfer data from an AP to a server.

50

Chapter 5. Implementation

Approach 1 to file transmission

libcurl is a library for data transmission that supports a variety of application protocols

such as HTTP, HTTPS, FTP and SFTP. It is available as open source and is a very

robust library with proper error handling and exception. The only difficulty in using

this library is to compile the source code into a library so that we can use it.

We can use the libcurl’s HTTP POST feature to transfer a data file to the server.

Libcurl also allows us to transfer more than one file at the same time but this is not

required for us. By including the header file curl/curl.h, we would be able to invoke

some of the functions that libcurl provides. However, we also need to link the libcurl

library together with our program when we compile our program.

Throughout this project, we have to test each component separately to make sure

each works as expected before we combine them together. Likewise, it also happens for

file transmission. We write a simple code for file transfer and test it to work properly

before we start to combine the file transfer component with our analyticScan program.

Approach 2 to file transmission

Apart from using a file transfer library, we could also use simple Linux-based mechanism

to transfer our data from the AP to a server. This is done by instructing our analyticScan

program to save the serialised data file to be transferred, containing MAC addresses and

RSSI, in a temporary directory. Then we can write up a Shell script that uses Secure

File Transfer Protocol (SFTP) to transfer the file across to the server. We would then set

up a Cron job, a Linux built-in job scheduler that can schedule job at specific interval

of times, to run the Shell script every minute. Cron can only schedule a job up to

minute interval, hence, this would mean that we can only transfer the collected data

every minute instead of the 30 seconds we have discussed earlier.

An advantage of this mechanism is that since we are using SFTP, the file is trans-

mitted over a secure channel. However, we need to try to get SFTP functionality to

work on the DD-WRT AP, which is possible but might take some time.

Final decision

We come up with the Approach 2 above as a backup or as an alternative to Approach

1 just in case we could not compile the libcurl library to work. However, we wants our

analyticScan program to have control over the file transmission process so that we can

build in extra error handling and exception, which we would explain more later. Using

an external program to control the file transmission process is susceptible to failures that

happen silently and since the APs are deployed in different locations, it is not possible

or easy to fix program error easily on these devices. Hence, we decide to use a more

robust approach, which is Approach 1.

51

Chapter 5. Implementation

Reducing the size of libcurl library

Since we are not going to use the libcurl file transfer library on a normal computer with

plenty of disk space, we need to compile the library’s source code with minimal features.

We want to include only the features in libcurl that we need. For instance, we manage

to compile the libcurl to include only essential feature such as HTTP protocol. We

remove all other protocols such as pop3, ftp, tftp, telnet, ipv6 and ssl and turn on the C

optimisation flag, CFLAGS=’-Os’, which optimises for size. We managed to reduce the

compiled library size from 628.6kB to 256.0kB. This is 2.45 times size reduction, which

is significant for our project since our AP only has a little less than 1MB for storing

our analyticScan program as we have discussed earlier in Section 5.1.2 under Preparing

Firmware.

It should be noted that at this point, we only want to focus on using HTTP for file

transfer. However, we could easily adapt our program to use HTTPS in the future.

Error handling for transmission failure

Since we have limited RAM and flash storage space on our APs, we need a proper error

handling to avoid causing the device to run out of memory or crashes just because of file

transmission failure. We want our analyticScan program to continue capturing probe

request frames and temporarily store the data on the AP. We would limit the number

of copies of these data files on the AP to prevent it from running out of flash storage

space or memory if we use the /tmp directory4 to store our files.

How this works is, if there is a transmission failure, we would check whether the

number of failures has reach a maximum number of times. If it reaches the the maximum

number of attempts, we would terminate the program and dump a log file of the details

of failure to a directory which saves the file permanently and not in /tmp directory. If

an administrator do not see data sent from this AP after some time, at least he knows

when this AP fails to send the data and why from the log file. In the future, we could

possibly try to send an email to the administrator straight away too using some other

libraries. If the file transmission failure has not reach maximum number of attempts,

we would store the file locally.

After every 30 seconds of capturing probe request frames and ready to send the data,

we would check a condition, a boolean, to see whether there are any backlog of data to

be transmitted.

4/tmp directory stores file in an area on the memory.

52

Chapter 5. Implementation

5.2.5 Cross Compiling Program

One of the main challenge of working with an embedded device such as an AP is

to cross compile program to run on it. This is because an embedded device usually

uses MIPS processor, which runs on a different Instruction Set Architecture (ISA) when

comparing to our everyday computer. Furthermore, since the computing resources such

as space, CPU speed and RAM on an embedded device are limited, we would not be

able to compile our program on the device itself. Cross compiling means compiling a

program on a build machine, could be a laptop with Intel processor, for running on

another computer system with a different ISA. That would be MIPS in our case. This

requires using a special toolchain for the cross compiling the program to run on a different

ISA.

Figure 5.4: List of all toolchains provided by DD-WRT for cross compiling

There are a couple of issues that hinder our progress in cross compiling the program

to successfully run on the AP. We highlight these issues below as well as give a brief

explanation of how we address these issues.

1. DD-WRT does not promote the idea of developers creating program for running

on its firmware, hence, there are very little detail on how to cross compile program

for DD-WRT. Although there may be bits and bytes of documentation by some

developers who tried to explain how they did it, following those instructions did

53

Chapter 5. Implementation

not always work for us. There are always problems here and there during the

compilation when we follow others’ instruction because their machine and ours

are usually not running the same types and version of OS. Furthermore, the other

developers’ machine may have some magical libraries that are required to make

the cross compilation work but we may not have them.

2. From Figure 5.4, we can see that there are 17 different toolchains provided by

DD-WRT. Out of these 17 toolchains, there are 8 with the name mips in them.

No matter how hard we try to find an answer online, we could not find the correct

answer as to which toolchain to use. Hence, we have to experiment with compiling

our program one by one and try to run it on the AP. The hardest part is, since

our program uses some third-party and kernel libraries provided by the firmware,

we are not sure whether a particular feature that is not working is because of

cross compiling problem or there is something wrong with the libraries. Hence, we

decide to focus on trying out each toolchain on compiling a file transmission test

program to see whether cross compiling a program using a third-party library is

working.

3. Just like what we have mentioned in the previous bullet points, we need to use

other libraries, which could be dynamic libraries (end with .so extension) or static

libraries (end with .a extension). If we compile our program using dynamic li-

braries, we need to share this libraries with other programs too and if these li-

braries are not available at program run-time, the functions provided by these

libraries will not work. If we compile our program using static libraries, these

libraries would be statically linked by the linker into the final executable of our

program. This would increase the size of the program.

However, the problem now is we need to find out how we can get the dynamic

or static libraries that we need. This is achieved by downloading the whole source

of DD-WRT, which is over 18GB in size, and attempt to cross compile the whole

firmware to generate the libraries that we need to use. This process is challenging

but also fun at the end when we are able to accomplish it. We believe not many

people are able to cross compile the firmware as there are too many dependencies

and issues to fix during the compilation process.

4. Another issue that we face is also the version of Linux kernel that we need to

include in our Makefile since we also call some of the functions provided by the

kernel. Hence, we have to test a few versions of the kernel as well.

In Figure 5.5, we have illustrated the whole compilation process. At the top of the

diagram, we started off by cross compiling DD-WRT source code and libcurl source

code to get the libraries that we need. Then, we cross compile our program and link

54

Chapter 5. Implementation

Figure 5.5: The Cross Compiling process

Figure 5.6: Detail of the generated executable binary program file

the libraries with it. This generate an executable binary file, which we can transfer by

Secure Copy (SCP) to the AP for executing. In Figure 5.6, it shows the detail of the

executable binary file that we have generated. LSB means Least Significant Byte.

Means of transferring our program to AP

Finally, we would like to mention that since we are able to configure the AP to support

SSH, we are able to use SCP to transfer our executable binary file to the AP. Initially,

before we use SCP, we also try other alternatives such as uploading the binary file onto

a server connected to the internet and use the Linux program wget to download the

program back from the server since the AP has internet connectivity. However, we know

that this is just a quick and dirty way and we use it initially because we are excited to

test our compiled program on the AP. After that, we always use SCP for file transfer to

the AP, which is much more convenient.

55

Chapter 5. Implementation

5.3 Building a Processing Agent

After we have completed the lower stack of our system, we need to implement the

higher level modules to manage the data that is transmitted from the AP and attempt

to process them. Ultimately, we want to convert the raw data that we have collected to

something insightful and useful. In this section, we will explain how we implement the

Processing Agent, which is a server with Java web servlet deployed using Tomcat5.

5.3.1 Initialising Web Servlet

We want our servlet to respond to HTTP GET or POST request, hence, our

ProcessingAgent class extends the HttpServlet. The ProcessingAgent class is the

main servlet class that we have configured in a web.xml setting file to point to. This

means that any HTTP GET or POST request to a url like http://localhost/ProcessingAgent

would be directed to the ProcessingAgent servlet to handle.

When a servlet is created after we start Tomcat, the method init() will be invoked.

Likewise when Tomcat is stopped, the method destroy() will be invoked. Since we are

using HBase as our database choice, which we will explain more on it later, we need to

create a pool of connections to the database that is available for usage when we want to

transmit data to it. We will create this pool within the init() method and close any

connections in the destroy() method. The pool of connections is needed because it is

quite expensive to always having to set up a new connection to the database everytime

each AP send in some data. However, having learnt that the HBase connections in the

pool may become unusable after a long period of time, we choose to refresh6 the pool

every 3 hours. A Check logic has been implemented for this, which checks that if the

pool has been established for 3 hours, we will refresh it.

5.3.2 Receiving and Deserialising Data

An HTTP request could be a GET or a POST. We implement two methods doGet()

and doPost(), which override the existing methods in HttpServlet. Any HTTP GET

request will invoke the doGet() method and any HTTP POST request will invoke the

doPost() method.

5Tomcat is an open source web server that host a Java servlet.
6When we refresh the pool, we mean closing all existing connections in the pool and opening new

ones and put back into the pool so that any instances of object could use the connection.

56

Chapter 5. Implementation

In order to receive file from a remote end via HTTP, we use the ServletFileUpload

class that is available in the org.apache.commons.fileupload.servlet.ServletFileUpload

package. We could then retrieve the content of the file being uploaded from the InputStream.

Apart from receiving the data, we also need to deserialise it. We use the Google

Protocol Buffers generator together with our IDL proto template file to generate a

parser, which also provides accessor methods for retrieving each of the information that

we have serialised. One of the main concern that we have is how do we know how big

is the data that is being uploaded by the AP so that we can allocate the right amount

of memory space to hold it. This is because we do not want to store the data as a file

first before we pass the file to the Protocol Buffer parser. However, it appears that we

are able to pass the InputStream that is used to receive the data straight to the parser.

Hence, there is no intermediate storing of temporary file before we parse the content of

the file.

Checking authenticity of sender

After we deserialise the data, we would check the secret key that we have packed with

the other kinds of data (MAC addresses and RSSI). We compare the secret key with

the one we store on the Processing Agent to make sure the data sent from the AP is

authentic.

5.3.3 Adding Timestamp

We want the time from all APs to be synchronised and agree with each other. If one

AP’s time is 5 minutes faster than another AP’s time, then this will affect our aggregation

of data very seriously. This is because we need to insert a timestamp for each record,

which is make up of terminal’s MAC address, RSSI and the AP MAC address that

detects the terminal. We need the timestamp during the aggregation stage to determine

at what time a terminal leaves a particular area. This is just one of the aggregations

that uses timestamp. We will explain more later in Section 5.5 on aggregating data.

There are two approaches to inserting timestamp and they are discussed below.

Approach 1 to adding timestamp

We can add a timestamp to each record at the AP using the AP’s time. However, this

would mean that we need to carry out clock sychronisation of the AP every now and

then. We may use the Linux program ntptime which provides Network Time Protocol to

sychronise computer clock. This program is available on the DD-WRT firmware but is

unusable. After our testing, we discover that it is not possible to use it to synchronise or

even set the AP’s clock time. There appears to be some bugs with the ntptime program

on DD-WRT firmware.

57

Chapter 5. Implementation

Approach 2 to adding timestamp

We can add the timestamp to each record at the Processing Agent using the server’s

clock time. This would provide an accurate timestamp for all the records. Even if we

are going to deploy more than one Processing Agent by using load balancing solution,

we could still sychronise the servers’ clock time more easily than the APs’ clock time.

There is one problem associated with this mechanism, that is, if there is any delay

in the transfer of data from the AP to the agent, this would be a problem. However,

we just want the timestamp of each records from different APs to agree with each other

and not too particular about the precision. Previously, we have mentioned that we are

going to retry file transmission up to a limit if the current transfer attempt fails. We

do recognise that this is another case to address because if a file fails to be transmitted

from an AP to the agent and after some time of retries, it succeed, the timestamp we

are adding for the record would not be correct anymore.

Final decision

We have seen above that each approach has its advantages and disadvantages. However,

for Approach 1, since DD-WRT does not allow us to set the clock of the AP to a correct

time, Approach 1 would be ruled out completely. Hence, we are left with Approach

2. Although the case of failed transmission may cause the timestamp to be wrong, we

know that it would not always be the case that our AP loses network connectivity to

the Processing Agent and ends up with failed file transmission. Therefore, Approach 2

is the best choice that we can follow for now.

If we have more time to work on this, we could actually insert a notice (a time

counter) at the AP for each of the files that fail to transmit and we can use the time

counter to determine the actual time of each file. For example, if file1, file2 and file3

fail to be sent in this sequence, we will insert a time counter of 3, 2 and 1 to each file

respectively. When we receive each file at the Processing Agent, we would check the

time counter parameter. If it is 3, we will adjust the timestamp for all records from file1

to 30s * 3, i.e., the actual timestamp for file1 is 90s ago. This assumes that file1 is the

first that is failed to be transmitted and file3 is the last.

Format of timestamp

We choose to use the Unix time7, also known as POSIX time, as the format of our

timestamp. This format is more reliable and is not susceptible to the problem of different

timezones or daylight saving. In this project, we noticed that if we did not use Unix

time format, the British Summer Time change would affect our timestamp if we stored

7Unix time is defined as the number of seconds that have elapsed since 00:00:00 Coordinated Universal
Time (UTC), 1 January 1970[31]

58

Chapter 5. Implementation

it in the normal date format (DDMMYYYY HH:mm:ss). With the timestamp in Unix

time format, Java would be able to interpret the correct time based on the timezone the

server uses.

5.3.4 Pushing Data to Database

Finally, pushing the data to the database is the final stage on the Processing Agent.

We push a record for each terminal that our AP has detected to the database. A

detection record is defined as follows:

AP MAC address Terminal MAC address RSSI Timestamp

Table 5.1: A Record

In Table 5.1, the AP MAC is the MAC address of the AP, which has detected that

particular WiFi terminal. From now on, we shall refer to a detection record as having

the structure above so that it is easier for us to explain about the aggregation process

later on.

5.4 Storing and Managing Data

There are many ways that we can store data, but finding the best possible way to

store it so that it fits our data access pattern requires some analysis. In our original

objective, we want to find a database that is massively scalable to handle the continuous

stream of data from all APs, we want to have flexible data types and schema and we

do not need the time critical transaction feature of relational database. This is because

we are not talking about high frequency trading in Banks, in which each of the trade

orders need to observe strict consistency. In order to maintain strict consistency, the

database management system would have to sacrifice read and write performance of

data. Hence, since we do not need such feature, it is clear that we should try out the

next generation database, NoSQL, which becomes more and more popular recently due

to the emergence of different NoSQL databases such as HBase, CouchDB, MongoDB

and Cassandra. NoSQL has very fast write performance, which is good for us to push in

more data simultaneously collected from each AP. Even if we have a thousand of APs,

this would be no sweat for NoSQL database.

The best thing that these NoSQL solution provides would be their tight integration

with MapReduce, which is a powerful framework to process huge amount of data in

parallel and across many machines. An alternative to MapReduce would be to use the

Online analytical processing (OLAP) feature of relational database. However, this work

59

Chapter 5. Implementation

slightly different from MapReduce because it requires us to write up a specific query

statement to obtain the aggregated results that we want from the database. OLAP

results are usually generated when the query is executed and the results are usually not

stored. This would be quite expensive if we have many users who want to see the same

results and the database have to execute that many times. Furthermore, MapReduce is

more flexible in allowing us to put in more logic into the Map and Reduce functions than

the OLAP queries. The results from one MapReduce job could be passed on to another

MapReduce job for further processing or stored as tab-separated values in a text file or

stored directly to a database.

5.4.1 Comparison between HBase and CouchDB

After much analysis and reading up of the books written for some of the NoSQL

databases, we have narrowed our choice down to two. We attempt to analyse the per-

formance of HBase and CouchDB and their features. We attempt to gives the rationale

behind our choice below:

Figure 5.7: Illustration of Documents in CouchDB

• Storage: In HBase, data is stored as key-value pair and we have complete control

over what data types the key or value should be stored in. This is because HBase

stores the key and value in bytes and provides a Java Bytes Utility package for

us to do the conversion between bytes and the actual data types (String, Long,

Integer and others). Before we want to store the data in HBase, we will have to

convert it to bytes first, which is really fast with HBase Bytes Utility. In CouchDB,

data is stored in separate documents. For example, in Figure 5.7, we can see that

a detection record8 is stored as a document. CouchDB relies on JSON basic data

types and we have less control on instructing what data types CouchDB should

8We have defined what a detection record means earlier in Section 5.3.4

60

Chapter 5. Implementation

store for each value. In HBase, each detection record can be stored as a row with

multiple columns.

• Access: Data can be inserted into HBase using its Java Client package, which

uses Remote Procedure Call (RPC) in its implementation. However, CouchDB

allows us to insert data into the database by using HTTP via its REST API.

Using HTTP is a little slower and is not that efficient.

• MapReduce: HBase allows us to chain multiple MapReduce jobs, i.e., the result

from the first MapReduce job can be passed as an input to the second MapReduce

job. However, CouchDB has a built-in MapReduce feature, which allows only one

job to be executed. Usually, we require executing a few MapReduce jobs to achieve

a final aggregated results that we want.

Figure 5.8: Storage size for 12817 Documents in CouchDB

Figure 5.9: Storage size for 5181 rows in HBase

Storage size comparison

In Figure 5.8, we can see that for 12817 documents, each storing a detection record with

details shown in Figure 5.7, the total size that is used is 10.2 MB. This is about 834

bytes per detection record. In Figure 5.9, we have attempted to use the HBase facility

to print out all values of each row and we can see that for 5181 rows, only 1.3 MB is

required for storing those rows. This is about 263 bytes per detection record. This is

3.17 times better than how CouchDB stores the data. The reason behind this is that

61

Chapter 5. Implementation

CouchDB has a few extra metadata, which uses up quite a bit of space and CouchDB

does not allow us to control the data types of the value being stored.

Although we have make use of Restlet, a REST client library, to implement the

mechanism to push data into CouchDB from the Processing Agent, we choose to abandon

the code we have written in favour of using HBase.

5.4.2 Setting up of HBase, HDFS, MapReduce and Zookeeper

Setting up HBase is time consuming and with a level of uncertainty. This is because

most of HBase users are corporate users such as Facebook, StumbleUpon and Twitter,

and these companies have active development teams to setup, maintain and write their

applications to make use of HBase. If there are more ordinary users, there would be more

documentations and instructions shared by other users like us. Hence, a large portion

of our time was also spent on setting HBase, HDFS, MapReduce and Zookeeper. Since

HBase makes use of Hadoop Distributed Filesystem for storing its data, it also can

make use of Hadoop MapReduce functionality. We also need to install a Zookeeper, a

distributed coordination service, which is required as part of HBase deployment.

We attempt to use the Cloudera distribution9 for the installation of HBase and other

components. However, even using Cloudera distribution and following its instruction,

we still could not get HBase to work due to a number of problems, which take us a long

time to fix. We have briefly summarised these problems below.

• Incompatible Versions: Since HBase requires a few other components of Hadoop

to be installed, there are incompatible versions. To make things worst, since we

needed to use Hadoop and HBase Java client packages, some versions of the client

packages are not compatible with the version of Hadoop and HBase server compo-

nents. Although we installed HBase 0.94.2 on the server, its associated Java client

package version 0.94.2 is not compatible with it. After we wrote our MapReduce

code making use of the Java client package version 0.94.2, the execution throws

a weird exception, which we could not understand and searching through the in-

ternet yield minimal help. It took us a long time before we realised that using an

older version of the HBase Java client package 0.92.1 works with the HBase server

0.94.2. We have raised this issue to the HBase development community.

• Heap size: Since HBase is built for massive scalability, its memory requirement

is huge as well. For HDFS, there are a few different components such as Datanode

and Namenode. Within HBase, there are Hbase Master, Hbase RegionServer and

REST server. There are also MapReduce TaskTracker and JobTracker as well

9Cloudera provides hosting of some HBase and Hadoop versions that we can download and install.

62

Chapter 5. Implementation

as Zookeeper. Since we choose to setup HBase and Hadoop in Pseudo-distributed

Mode for this project, the whole setup requires huge amount of memory on a single

server. In Pseudo-distributed Mode, each of the components we have mentioned

would exist as a separate process on the computer system. We need to find the dif-

ferent configuration files, which are located in many different locations, to alter the

JVM Max Heap size allowance to limit the amount of memory each process uses.

We also have to decide on a value that would not cause some of the components

to run out of memory.

• IpV6: Currently, HBase is reported to cause some issues with IpV6. We discovered

this after our code threw up some exceptions and we found out that it was related

to IpV6. Hence, we disable the IpV6 support in CentOS, which is the Linux OS

we use for our HBase setup.

• Reverse DNS Lookup: HBase requires that we properly configure the Reverse

DNS Lookup in order for it to function properly.

5.4.3 Data Schema Design

packet details
ap mac terminal mac rssi timestamp

row key1 01:02:03:04:05:06 22:22:22:AS:BB:CC -65 1369908231

row key2

row key3

Table 5.2: HBase Table Structure for Detection Records10

Although HBase is flexible on schema, we still need to know how we define our row

key, so that it allows us to query for our data. Designing a good row key structure is

very important in HBase. This is because it will provide ease of access to the data that

we want and for performance purposes. We have reproduced the same table example

that we have given in Chapter 2 (Background) so that we can easily refer to it in this

chapter. In Table 5.2, row key1 is a row key, packet details is a column family and

ap mac, terminal mac, rssi and timestamp are column qualifiers. ap mac is the MAC

address of the AP, which detects the terminal. terminal mac is the MAC address of the

terminal being detected. rssi is the received signal strength. timestamp gives the time

at which the AP detects the terminal.

We have explained before in Background that HBase might store column families

on different RegionServers (servers that host small chunks of HBase table) for high

availability and scaling purposes. However, HBase also relies on the row key to decide

which rows go to which RegionServers. Hence, if we do not design a good row key, this

may affect the performance of data read and write.

63

Chapter 5. Implementation

Figure 5.10: Balance between sequential read and write performance [18]

In Figure 5.10, sequential key refers to a row key that follows a sequence such as

1,2,3 ... 100. Random key refers to a key that is generated randomly. Using a sequential

key, it would be faster for us to select detection records that fall within a range of time.

We have defined our row key to have the following structure.

〈cluster id〉 − 〈timestamp〉 − 〈ap mac〉 − 〈incremental count〉

The row key shown above is a composite row key, which is make up of different pieces

of information that we combine together for ease of querying the row from the table. It

should be noted that the precedence increases from left to right. We design the key this

way with consideration of the way we are going to select a range of rows for input to

MapReduce jobs later. We provide explanations for the row key design below:

• cluster id We may have many clusters of APs deployed in different location, for

example, 20 APs in Shopping Mall 1 and 30 APs in Shopping Mall 2 and 50 APs in

Shopping Mall 3. The cluster id would serves to segregate the records that belong

to different clusters.

• timestamp Next, we have the timestamp. HBase provides a feature to scan for

a range of rows in order to fetch them. The timestamp contributes the sequential

portion of the key so that we can specify a scan start key and a scan end key to

select rows that have their timestamp portion of the key falling in between the

start and end key. We will explain this more later as we start explaining about

our aggregation logic.

• ap mac As for ap mac, we want to include it in the row key so that we know

which AP the particular record belongs to.

64

Chapter 5. Implementation

• incremental count Finally, since an AP may detect more than one terminals

with the same timestamp (remember that we are inserting timestamp for each

detection record at the Processing Agent), we need to differentiate between the

records by introducing the incremental count component, which has a range of

0 up to n depending on how many terminals an AP would detect within the 30

seconds of scanning.

It should be noted that the row key structure that we have discussed above would

be used for storing a detection record (ap mac, terminal mac, rssi, timestamp).

HBase Scan feature

One of the beautiful feature of HBase is that it has a scan feature, which allows us to

specify the range of rows we want to retrieve. The performance of the scan is subjected

to how well we design the row key too. That is why row key design that we have

explained earlier is important.

1 //clusterid always start from 0
2 byte[] clusterStartID= Bytes.toBytes(CLUSTER START ID);
3
4 // the starting timestamp we want to start retrieving
5 byte[] startTimestamp = Bytes.toBytes(startTime);
6
7 //construct byte arrays for making the startRowKey
8 byte[] startRowKey = new byte[clusterStartID.length + startTimestamp.length];
9 int offset = 0;

10
11 //put the clusterStartID and startTimestamp into the byte arrays we have initialised
12 offset = Bytes.putBytes(startRowKey, offset, clusterStartID, 0, clusterStartID.length);
13 Bytes.putBytes(startRowKey, offset, startTimestamp, 0, startTimestamp.length);
14
15 // padding the tail of row key so they are all zeros with no cardinality
16 startRowKey = Bytes.padTail(startRowKey, APMAC LENGTH + INCRE COUNT LENGTH);
17 ...
18 ...
19 // endRowKey is constructed in about the same way as startRowKey but using
20 // an endTimestamp
21 endRowKey = ...
22 ...
23 ...
24 Scan s = new Scan(startRowKey, endRowKey);
25
26 //specify what columns we want to retrieve
27 s.addColumn(WIFI RAW RECORD FAM, APMAC COL);
28 s.addColumn(WIFI RAW RECORD FAM, RSSI COL);
29 ...
30 ...

Listing 5.4: A simple example to illustrate scanning for a range of rows by specifying
the start and end key.

65

Chapter 5. Implementation

In Listing 5.4, we have shown an example of how we construct the start and end

row key in order to retrieve the range of rows that we want. This is important because

if we want to aggregate records that fall between 10AM and 2PM of today , we would

use the Unix time format of 10AM (1371117600) as the startTime and that of 2PM

(1371132000) as the endTime. Since we have chosen to include the timestamp in the

row key structure, this would allow us to retrieve the detection records that fall within

this range for aggregation simply by creating the scan object like the one we have in

Listing 5.4.

From Listing 5.4, we can see that we pad the tail of the rest of the row key on Line

16. This means that only the cluster id and timestamp would take precedence.

5.5 Aggregating Data

In this section, we will explain the logic behind our MapReduce functions, which are

powerful in localising a terminal, counting the number of terminals near each AP and

tracking how long each terminal stays near an AP. The great thing about using Hadoop

MapReduce together with HBase is the native support from HBase for MapReduce.

This is because HBase’s data is stored on HDFS in a distributed fashion, hence, the

MapReduce component of Hadoop can also be carried out on the HBase’s data in parallel.

The good thing about this is that we can use data that is stored in HBase’s table as

both the source and as a sink. We can specify which table will provide the data as the

input of the Map function and which table will be responsible for storing the output

results from the Reduce function. The scan feature that we have discussed earlier is

extremely useful here for MapReduce. It allows us to specify which range of rows we

want to retrieve and pass as input to the Map function.

1 import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
2 import org.apache.hadoop.hbase.mapreduce.TableMapper;
3 import org.apache.hadoop.hbase.mapreduce.TableReducer;
4 ...
5 ...
6 TableMapReduceUtil.initTableMapperJob(WIFI TABLE NAME, scan, Mapper1.class,
7 ImmutableBytesWritable.class, Put.class, job);
8 TableMapReduceUtil.initTableReducerJob(WIFI AGGRE TABLE NAME, Reducer1.class, job);
9 ...

Listing 5.5: Importing relevant packages and setup MapReduce jobs.

In Listing 5.5, it shows the packages that we need to import in Java in order to use

the Hadoop MapReduce with HBase’s table, in which we create to store data.

66

Chapter 5. Implementation

The initTableMapperJob() function is called to run the Map task by specifying the

table that is used as input, in this case, WIFI TABLE NAME holds the raw detection

records of terminals that we have collected. scan is an object, which we have created

according to the code in Listing 5.4 earlier. Mapper1.class gives the Map function,

which we need to implement. ImmutableBytesWritable.class and Put.class are the data

structures of the output key and value of the Map function respectively. job is just the

MapReduce job we want to run.

The initTableReducerJob() function is called to run the Reduce task by specifying

WIFI AGGRE TABLE NAME as the table that is used to store the output aggregated

results from the Reduce phase. Reducer1.class gives the Reduce function, which we need

to implement.

Apart from using HBase table that is specified like above as input to a Map function,

we could also access other tables in HBase in both Map and Reduce function when

needed. For example, we may have an HBase table that can be used as a lookup table

within the Map or Reduce function. We could even insert or delete data in any HBase

tables within the two functions. This feature becomes handy when we are dealing with

the New versus Returning WiFi users aggregation, in which we store a history of users

we have detected before in order to infer whether they are new or returning and access

this history table within the Reduce function.

Finally, before we zoom into each types of aggregation, we would like to mention

that aggregating data requires getting our hand dirty with the data itself, analysing

each stages step by step to verify that we are aggregating the right thing. This also

involves printing out the data at both the Map and Reduce function to check whether

our logic is right and the output is what we want. We also defined some unit tests that

use specific test suites based on some scenarios and cases we have come up with to check

our aggregation logic.

5.5.1 Overview of Aggregation Process

In our project, a terminals may be detected by a few APs nearby to it, hence, we need

to use the RSSI information to localise a terminal to determine which AP is the terminal

closer to. This corresponds to the MapReduce Job 1 in Figure 5.11. After we have

localised all the terminals, we would have the data available in the Localised Terminal

Records table. The MapReduce job for this localisation process only happens once and

all other types of aggregation can make use of the data in Localised Terminal Records

table. Storing the results is a good approach because we will not waste computing

67

Chapter 5. Implementation

Figure 5.11: MapReduce work flow

resources localising again and again. After localising the terminals, we would carry out

the following aggregations:

• We want to count the number of terminals that are close to each AP. This is

handled by MapReduce Job 2. The Counts of Terminals table stores the aggregated

results, which we can query from the GUI for plotting graphs or drawing charts.

• We want to determine how long each terminals stay close to each AP, i.e. their

residence time at each AP. This is done with MapReduce Job 3 and the results are

stored in Residence Time table.

• We want to determine the number of new and returning terminals for each AP. We

do not use unique terminals but terminal sessions in our counting, i.e., a terminal

may come close to an AP in the morning (count as new) and again in the evening

(count as returning). This aggregation is done with MapReduce Job 4 and the

results are stored in New vs Returning Terminals table.

Now, we should already have a rough idea of how MapReduce works from discussion

above and in Section 2.6.3 of Background, which we attempt to explain how MapReduce

framework works. From here on, we will focus on how we are implementing our Map

and Reduce functions in order to obtain the type of aggregation results that we want.

5.5.2 Localising Terminals

The Localised Terminal Records table that we have in Figure 5.11 would be using

the same row key structure as Raw Records table. This is because MapReduce Job 1

68

Chapter 5. Implementation

just attempts to localise each terminal by associating it to its nearest AP by using RSSI

information, thus, it seems like we are just removing some of the extra detection records

from the Raw Records table. We will use the HBase scan feature to select the range of

rows that we want to pass into the Map function as input.

row key ap mac terminal mac rssi timestamp︸ ︷︷ ︸ ︸ ︷︷ ︸
row key columns

Table 5.3: A Row Representing a Detection Record in Raw Records table and Localised
Terminal Records table. Both tables have the same structure. The row key has the

structure that we explained earlier under Data Schema Design section.

Map function

Input key: 〈row key〉
Input value: 〈ap mac, terminal mac, rssi, timestamp〉
Output key: 〈terminal mac〉 − 〈time(yyyyMMddHHmmss)〉
Output value: 〈row key〉 − 〈ap mac, terminal mac, rssi, timestamp〉

The input key shown above is the row key of a record as illustrated in Table 5.3

and the input value is a collection of columns within the row. Each row, representing a

detection record, that falls within the range of time we have selected using the HBase

scan, would be passed into the Map function one at a time. The Map function would

be executed once for each input key and value.

Within the Map function, we will use the timestamp that is passed in as input value

and convert it to another format that is usable such as yyyyMMddHHmmss (yearMon-

thDayHourMinuteSecond) (1). During the conversion, since we are using Unix time

format, Java would take care of any daylight saving or timezone issue for us by using

the timezone of the server this MapReduce job is execute on. With the format mention

in (1), we will round off the time to the previous 0 seconds or 30 seconds. For instance,

a terminal that is detected at a time of 2013-05-25-14-56-33 would be rounded to 2013-

05-25-14-56-30 and at a time of 2013-05-25-14-56-22 to 2013-05-25-14-56-00. We would

then emit out the output key as a concatenation of terminal mac and time using the

format in (1). What we are trying to achieve here is to classify together the records for

the same terminal, which is generated within the same 30 seconds of time. Then, we

simply pass the input value as the output value.

By emitting the records this way, those records representing the same terminal de-

tected by multiple APs within the same time interval of 30 seconds would be grouped

together under the same key 〈terminal mac and time〉. This group would then be passed

as an input to the Reduce function.

69

Chapter 5. Implementation

Reduce function

Input key: 〈terminal mac〉 − 〈time(yyyyMMddHHmmss)〉
Input value: [{〈row key〉 − 〈ap mac, terminal mac, rssi, timestamp〉}] (2)

Output key: 〈row key〉
Output value: 〈ap mac, terminal mac, rssi, timestamp〉

The output of the Map phase would becomes the input of the Reduce phase. After

the Map phase, those output values sharing the same key would be grouped together.

The input value of the Reduce function is a list of records sharing the same key. We

would iterate over this list and find out the record with the highest RSSI value. We

would then output the row key of that record, which can be obtained from (2), and the

columns for that record also from (2).

Minimise “Ping Pong” effect

After conducting an experiment, which we will cover in Chapter 6 (Evaluation), we

notice that there is a “Ping Pong” effect happening. “Ping Pong” effect happens when

the received signal strength becomes unreliable at times leading to a WiFi terminal

being associated with one AP at one time and to another at subsequent time although

the terminal has not moved. This effect is most commonly observed when a terminal is

located directly in between two APs.

In order to fix this problem, we sort the list of records from the input value of the

Reduce function using natural ordering on the ap mac from each record. We would

then introduce a RSSI DIFF THRESHOLD when comparing the RSSI value between

two records. If one record has RSSI value higher than another record by 5, we will choose

the former one. But if a record has RSSI value higher only by 3 than another one, we

will not consider choosing the former. The natural ordering introduce a precedence or

favour for a record detected by a particular AP. The RSSI DIFF THRESHOLD serves

to break this precedence or favour for a record with RSSI that is distinctively higher.

This would slightly reduce the effect of “Ping Pong”, in which we end up localising a

terminal to one AP at one time and to another at subsequent time, just because there

is a small improvement in RSSI value for the latter.

Object reference error

During the time we worked on this localisation algorithm, there was one particular

bug, which caused us to spend a lot of time in trying to debug. This is because we do

not know whether the error happens in the way HBase execute our Map and Reduce

functions or there is error in our code. From Listing 5.6, we can see that everything seems

70

Chapter 5. Implementation

1
2 //Put is an object representing a row in an Hbase table
3 Put closestRecord = null;
4 int bestRssi = −300;
5
6 for (Put p : values) {
7 int rssi = ... //Get RSSI encapsulated in p
8
9 int rssiDiff = rssi − bestRssi;

10 if(rssiDiff > RSSI DIFF THRESHOLD){
11 bestRssi = rssi;
12 closestRecord = p;
13 }
14 }
15 ...

Listing 5.6: Illustrating a bug in object reference.

to look fine. However, on Line 12, when we store the reference of p, a row (representing

a record) with the highest RSSI so far, to closestRecord, this reference is not persistent.

What we discover is although we reference to the p in the current iteration, Java still

discard that p object for that iteration. The final result of closestRecord actually always

reference the p from the last iteration of the for loop. In order to solve this problem,

we realise that HBase client package provides a method for cloning a Put object by

constructing a new object with the same state as the existing one. In Listing 5.7, we

replace Line 12 in the previous listing with the new code to fix the problem.

1 Put tempPut = new Put(p);
2 closestRecord = tempPut;
3 ...

Listing 5.7: Illustrating a bug in object reference.

5.5.3 Count Statistics

After localising the terminals by associating them to their closest AP, we would

have the aggregated results in Localised Terminal Records table. From here on, all our

aggregations, namely counting, residence time and new versus returning, would make

use of data from Localised Terminal Records table. For this section on Count Statistics,

our objective is to count the number of terminals that are close to each AP. After

this aggregation, we would store the results in Counts of Terminals table, which we

have mentioned in Figure 5.11. It should be noted that we are counting the number of

terminals that are close to each AP during a 1 minute interval.

71

Chapter 5. Implementation

Map function

Input key: 〈row key〉
Input value: 〈ap mac, terminal mac, rssi, timestamp〉

〈ap mac〉 − 〈time(yyyyMMddHHmm)〉 〈terminal mac〉︸ ︷︷ ︸ ︸ ︷︷ ︸
Map output key Map output value

Table 5.4: Count Statistics Map Function Output Key and Value

The input key shown above is the row key of a row (representing a record) in Localised

Terminal Records table and the input value is a collection of columns within the row.

Table 5.4 shows the output key and value of the Map function.

Within the Map function, we will use the timestamp that is passed in as input value

and convert it to another format that is usable such as yyyyMMddHHmm (yearMon-

thDayHourMinute) (3). We position the year portion to the far left of the format in

(3) since it has higher precedence. Notice that this time round, we chop off the sec-

ond part of the time format when compared to previous section on Localising Terminal.

This is because we want to count only those records for different terminals11 that are

generated within the current minute. For example, a terminal is detected at 2013-05-25-

14-56-22 (at 2:56:22PM) and another terminal is detected at 2013-05-25-14-56-51 (at

2:56:51PM), we would consider counting both terminals for the time interval 2013-05-

25-14-56 (at 2:56PM) by chopping off the seconds part of the time. Hence, we will emit

out an output key from the Map function as 〈ap mac〉 − 〈time(yyyyMMddHHmm)〉,
e.g. 〈AA : BB : CC : DD : EE : FF 〉 − 〈201305251456〉, since we want all records

detected by the same AP within the same time interval to be grouped together. The

output value is the terminal mac. We choose to emit out this value for a reason that we

will explain under the Reduce function below.

Reduce function

Input key: 〈ap mac〉 − 〈time(yyyyMMddHHmm)〉
Input value: [{terminal mac}] (4)

Output key: 〈ap mac〉 − 〈time(yyyyMMdd)〉
Output value: 〈no counts〉

Within the Reduce function, we would be receiving all the MAC addresses of termi-

nals that are being detected by an AP specified by the ap mac input key. This means

11Note that we have already done the localising of terminals and we are using the aggregated results
in Localising Terminal table.

72

Chapter 5. Implementation

that after the Map phase, all the terminals that are being detected by the same AP

would be grouped together under the same key and this would be passed to the Reduce

function as a group of terminals’ MAC addresses. In (4), we receive as input value a list

of MAC addresses.

Since we are scanning every 30 seconds and within a 1 minute interval, 2 detection

records for the same terminal are pushed to the server, there is a possibility that we detect

a terminal at say 12:50:13PM and again at 12:50:45PM. The time is not 12:50:43PM

(after 30 seconds elapsed) because we consider that there could be a few seconds of

transmission delay12 and in this example, we just take that as 2 seconds. We would

not want to count the terminal twice, which contributes to the double counting problem.

Hence, we use a HashMap and add each terminal MAC address to the map data structure,

using MAC address as the key of the map and simply use integer value of 1 as value.

Note that HashMap does not allow duplicate keys, which is what we want.

Then, we can obtain the total counts of terminals close to an AP by getting the size

of the HashMap as that would indicate how many key-value elements are there in the

map. This would tell us the number of unique terminals we have detected within the 1

minute interval.

Improvement to how we store the results

Figure 5.12: Structure of Counts of Terminals table

In Figure 5.12, we have illustrated how we are storing the results from the Reduce

function in Counts of Terminals table. The row key is a composition of ap mac and

date. details is the column family and the column qualifier indicates the time interval

(HHmm) corresponding to the number of counts for that interval, e.g. there are 2 counts

for the interval 1249 which represents the period from 12:49:00PM to 12:59:00PM for

the example in Figure 5.12.

Initially, we do not store the data like the one shown in the figure. We make use of

a different row key design using 〈ap mac〉 − 〈time(yyyyMMddHHmm)〉. We include

the HHmm in the row key instead but this means the we will end up having many rows,

which is not that practical in the long term and also hard for us to query the results

from the front-end GUI.

12Remember that we are adding timestamp at Processing Agent.

73

Chapter 5. Implementation

5.5.4 Residence Time

In order to find out how long each WiFi terminal, indirectly the user, stays close to

an AP, we need to write a much more sophisticated algorithm in the Reduce function

than the one we have before. We would be analysing the traces of a terminal for the

whole day across all our deployed APs.

Since we have the records of a terminal being detected by any of our APs across

the day in the Localised Terminal Records table, we could project out the traces of a

terminal within the day by sorting the detection records according to the timestamp of

each record as illustrated in Figure 5.13. If we have more time for this project, from

these traces, we could even attempt to analyse how a user move within the environment

we are monitoring. This could be combined with the Residence Time MapReduce job.

Map function

terminal mac ap mac, terminal mac, rssi, timestamp︸ ︷︷ ︸ ︸ ︷︷ ︸
Map output key Map output value

Table 5.5: Residence Time Map Function Output Key and Value

Each row (representing a record) from the Localised Terminal Records table would

be an input to the Map function. In other words, the Map function would be applied to

each row in Localised Terminal Records one by one. In the Map function, we will emit

out the terminal mac as the output key and the whole record (ap mac, terminal mac,

rssi, timestamp) as output value as illustrated in Table 5.5.

Reduce function

After the Map phase, since we have emitted out terminal mac as the Map output key,

all the detection records belonging to a terminal would be grouped together under the

same key, terminal mac in this case. Hence, we will receive terminal mac as an input

key in the Reduce function and a list of records ([{ap mac, terminal mac, rssi and

timestamp}]) as input value. We will iterate over this list of records and attempt to

sort these records according to the timestamp, by ascending order of time. Figure 5.13

shows an example illustrating part of the traces of a terminal’s presence across the day,

sorted by the timestamp and show information such as which AP detects the terminal

and what is the RSSI associated.

74

Chapter 5. Implementation

Figure 5.13: Part of the traces of a terminals presence across the day

Criteria for our algorithm in Reduce function

1. What we want to find out here is a collective residence time of all terminals for

each AP, i.e., how many terminals stay for 5 minutes, 10 minutes, 15 minutes and

so on near AP1.

2. Within a day, a terminal maybe detected by several of our APs, depending on

how they move within an environment and how long they stay at each place. For

example, a terminal may be detected by AP1 for the whole 15 minutes, AP3 for

30 minutes and AP6 for 10 minutes when the terminal stays close to these APs for

the respective amount of time. Hence, what we are considering here is counting

the number of terminal sessions and not a unique terminal. Our algorithm must

be able to handle this case.

3. Due to the fact that a terminal may not send out probe request frames that often

as we can see from Section 6.3 (Frequency of Probe Request Frames under Evalua-

tion), an AP may detect a terminal from 12:00PM to 12:10PM and from 12:15PM

to 12:30PM. There is a gap of 5 minutes between 12:10PM and 12:15PM. How-

ever, we do not know whether the terminal actually move away to another place

and come back at 12:15PM or the terminal did not send out probe request frames

during that period of time. Hence, we need to introduce a threshold duration,x,

in which we would consider the terminal already have left a place if the AP that

used to detect that terminal no longer detects it for more than x minutes. If x

here is 10 minutes, that means our algorithm would consider the terminal to have

stayed for a residence time of 30 minutes from 12:00PM to 12:30PM.

4. Due to the fact that there is a “Ping Pong” effect, in which an AP may detect a

terminal for 10 minutes and suddenly, the terminal is detected by another AP for

30 seconds, we need to decide whether we should ignore the record showing an AP

detecting the terminal for just 30 seconds. Hence, we also introduce a threshold

to counter this problem.

75

Chapter 5. Implementation

1 public static class Reducer1 extends TableReducer<ImmutableBytesWritable,
2 Put, ImmutableBytesWritable> {
3 private HTable durationStayTable;
4 private HTable returnClientTable;
5 private HTable historyTable;
6
7 /∗∗
8 ∗ Setup is called only once for all groups that need to be reduced
9 ∗/

10 protected void setup(Context context) {
11 Configuration conf = HBaseConfiguration.create();
12 conf.set(”hbase.zookeeper.quorum”, ZOOKEEPER QUORUM);
13
14 try {
15 //Open connection to two table instances,
16 //one for storing durationStay stats and another for ReturnTerminal lookup
17 durationStayTable = new HTable(conf, WIFI DURATION TABLE NAME);
18 returnTerminalTable = new HTable(conf, WIFI RETURN TABLE NAME);
19 historyTable = new HTable(conf, WIFI RETURN LOOKUP TABLE);
20 } catch (IOException e) {
21 e.printStackTrace();
22 }
23 ...
24 ...
25 }
26
27 protected void reduce(ImmutableBytesWritable key, Iterable<Put> values, Context context)
28 throws IOException, InterruptedException {
29
30 /∗∗
31 ∗ Algorithm for Reduce function here
32 ∗/
33 ...
34 context.write(key, value); //Output value to HBase table
35 }
36 }

Listing 5.8: Reduce class that we pass to HBase MapReduce for executing.

Accessing a cell in HBase table multiple times

Apart from projecting the traces of a terminal, there is one more special thing about

our Reduce function for Residence Time. For a particular terminal within a day, we

may detect multiple sessions of it. For example, a terminal may stay at a place for 30

minutes, move off for 2 hours and come back later to stay for another 1 hour. This

means within that day, there are 2 residence time for that terminal, namely 30 minutes

and 1 hour.

The context.write(key, value) method 13 provided by Hadoop MapReduce would

not be able to insert value into different cells of the table multiple times but this is what

13context.write() method is used for emitting out a key and value from a Map or Reduce function.
If it is used in a Reduce function, it will output the value to an HBase table if we have configured using
a table as a sink for storing the results.

76

Chapter 5. Implementation

we need. Hence, after consulting the HBase community mailing list, a suggested solution

is to open connection to the HBase table within the Reduce class once in the setup()

method as shown in Listing 5.8.

Then we use the Increment object provided by HBase to increment a value in a cell

in an HBase table. Thus, we can access multiple cells now in the Reduce function. To

illustrate why we need to access multiple cells, we will look at the table structure of

Residence Time, which stores the aggregated results for residence time. In Figure 5.14,

each row represents the number of terminal, which has residence time of 5, 10, 15, 20

minutes and so on. For example, an AP with MAC address 000625FFDB3E, has 90

terminal sessions that last for 5 minutes, 51 for 10 minutes, 30 for 15 minutes and so

on, for the date 20130531 (31/5/2013)14.

While analysing a typical terminal’s traces for the day, we may find that a terminal

may have a residence time of 10 minutes at AP1, another 20 minutes at AP1 and 10

minutes at AP2. Hence, after we have this information, we need to access the different

cells in the table shown in Figure 5.14 to update the value by incrementing the count.

Figure 5.14: Structure of Residence Time table

In Listing 5.8, it also shows that we also open connection for other tables too such as

WIFI RETURN TABLE NAME and WIFI RETURN LOOKUP TABLE. These extra

connections are for New versus Returning aggregation, which we will discuss later in the

next section. In Listing 5.8, it also shows the reduce() method, which represents the

Reduce function that we have always been talking about.

5.5.5 New Versus Returning

The idea of deriving this type of analytic is inspired by the Google Analytic feature

of tracking the percentage of new and returning visitors to a website. The idea is to

track what percentage of the visitors15 who come into contact with a particular AP

today has also come into contact with it before, which could be the day before or weeks

or months.

14It should be noted that we are considering terminal sessions here and not a unique terminal as
explained in our algorithm criteria earlier.

15We will use visitors to refer to the WiFi users owning a WiFi terminal. This is easier for business
owners or administrator to understand later when we use this term in our Web GUI.

77

Chapter 5. Implementation

In order to implement this aggregation, we will use the records of terminal being

detected from Localised Terminal Records table. We have tried our best to simplify

the way New versus Returning aggregation is done. This is achieved by thinking along

the line of using the traces of a terminal across the day. This would sound familiar to

us because that is what we have been mentioning in the Residence Time aggregation

section earlier.

Our objective for New versus Returning aggregation is to determine the number of

new visitors that are close to an AP and the number of returning ones. We will count

the number of visitor sessions rather than unique visitors and we will do this for each

AP.

Keeping history of the Past

For this part of aggregation, although it is not entirely similar, we are partly inspired

by the idea of Free space bitmap implemented by some filesystem to track free available

sector. Since HBase table allows us to access a cell value by row and column, we can use

a table like a bitmap. In Figure 5.15, each row represents a terminal’s MAC address16

and each column represents an AP’s MAC address (the AP that detects the terminal).

We will use this History Lookup table to determine whether a terminal session is new or

returning one for each AP.

Figure 5.15: Structure of History Lookup table

Factors to consider for implementing and maintaining History Lookup table

Below shows some of the questions that would come to our mind.

1. How often do we want to flush the History Lookup table? Do we flush the whole

table at the same time or just individual cell value corresponding to a terminal

session close to an AP?

2. Why use terminals’ MAC addresses as rows and APs’ MAC addresses as column?

Now, let us decide how to address those questions and explain further in detail our

implementation of History Lookup table below.

16We have masked part of the terminals’ MAC address so that it is not distinguishable.

78

Chapter 5. Implementation

1. Fortunately and coincidentally, HBase provides a feature called Time-To-Live

(TTL) that we can set at a column family level. This means that if we spec-

ify 18,000 seconds as TTL value for a column family x, any cells that are under

x will expire after 18,000 seconds has elapsed starting from the time each cell is

created. Hence, we can flush history on a cell by cell basis, which is really beautiful

by setting the TTL.

2. We store a terminal’s MAC address as the row key and AP’s MAC address as the

column qualifier because HBase has the capability to allow us to have billions of

rows and millions of columns. Since we may detect massive number of MAC ad-

dresses from terminals that come across any of our APs (assuming for commercial

deployment) and only not more than a few thousands of APs, we can safely store

the data this way.

3. History is stored per AP and not system wide. A visitor that have been to AP1

but not AP2 would be a returning visitor for AP1 but treated as a new visitor to

AP2.

4. HBase stores free null values. If a cell has no value, there is no allocation of space

for the cell in HBase. In contrast, relational SQL explicitly stores the null value or

allocate a space for it. This feature of HBase makes using a History Lookup table

like what we have done an ideal choice.

5.5.6 Summary

We have been discussing a lot about aggregation and it is really a painful and

headache process to go through the raw data when something goes wrong. This is

one of the most challenging part of this project too since we have no experience before

in data analytic of such scale.

As we can see from all types of aggregations so far, the design of the row key for Raw

Records table and Localised Terminal Records table is very important since we make use

of them extensively during the MapReduce process in each types of aggregation we have

discussed above.

MapReduce concept might be easy to understand but the algorithms involved in

each of the functions might require some time to digest. Hence, we hope that we have

at least given the gist of how we are aggregating the data without going too much into

the deep detail of the actual implementation.

79

Chapter 5. Implementation

5.6 GUI Design and Implementation

After we have implemented the bottom and middle layers of our system’s stack, we

finally reach the top layer. This layer is about querying aggregated data from the middle

layer to display beautiful graphs and charts so that it is easier for human to comprehend

the meaning behind the data we have collected. In our Web GUI, we have used some open

source libraries such as Twitter Bootstrap, Smarty PHP Template Engine, jQuery and

jqPlot. We have implemented quite a number of different statistical representations of

the data collected, namely LiveCounts, CountStatistics, ResidenceTime, ResidenceTime

Overall and New Vs Returning visitors. Figure 5.16 shows how the dashboard of our

Web GUI looks like. We would explain the key challenges in implementing some of

these features. In Chapter 6 (Evaluation), we will explore more of our Web GUI when

we attempt to look through the trends that we have observed from our experiment

conducted in the laboratory.

Our dynamic Web GUI is powered by PHP and MySQL in the backend as well

as Javascript and HTML in the frontend. MySQL database is only used for storing

business owners and administrators login account information only. We make use of

PHP sessions to implement the login and logout features.

Please login into our Web GUI and try out our app-like web interface, in which

the selection of each option in the dropdown menu would present a graph live without

Figure 5.16: Dashboard of our Web GUI

80

Chapter 5. Implementation

reloading of webpage. The details of the URL, username and password are below. If you

would like, you can even visit http://fyp.console.magagram.com/signup.php to sign up

for an account of your own since we have configured in the backend for this to happen

just for this demonstration. If there are any issues with the Website, please contact the

author at hs4110@doc.ic.ac.uk.

• Web GUI URL: http://fyp.console.magagram.com

• Login Username: demo

• Login Password: 123456

• This website is optimised and work correctly according to our testing on Chrome

Browser. When copying and pasting the URL into the address bar of the browser,

ensure that the URL is exactly the same as above and no extra spacing is added.

5.6.1 Retrieving Data from HBase

HBase may provide all the exciting features and capabilities that we have seen along

the way, however, it also has its downside. This would be the inconvenience of retrieving

data from the database if the platform we are working on is not using Java. Since we

are using PHP, Javascript and HTML for our Web GUI, we need to find another way

to retrieve data from HBase. HBase currently provides a good Java client library for

accessing the data stored in the table but not for other languages. Although HBase does

provide a REST API, its functionality is limited, which requires some extension in order

to allow us to query the set of data that we want.

Figure 5.17: Two proposed ways of retrieving data from HBase to Web GUI

81

Chapter 5. Implementation

In Figure 5.17, we have proposed two ways of retrieving data from HBase.

1. Using Thrift: Thrift is a RPC software framework for scalable cross-language

communication [30]. Thrift has support for many programming languages but it

requires us to define an Interface Definition Language (IDL) to create a Thrift

service in a language we are working on. In our case, the language is PHP. HBase

has a Thrift Gateway module that can be installed on the same server as Region-

Server (server that stores small chunks of the table). However, we are required

to use the Thrift IDL file for HBase to generate a Thrift service for PHP. The

current documentation for doing this is not very clear and after spending some

time studying the feasibility of using Thrift, we think that it would not worth the

effort since we do not have enough support for this method.

2. Using REST: HBase provides a REST17 API that allows us to query for data in

some way. We can query for a whole row from an HBase table by specifying the

row key in a URI, e.g. http://hbase-rest/table name/row key. However, although

on HBase wiki, there is a scan feature which we can specify a range of rows we

want to query, the feature does not seem to work after much effort. Hence, we

decide to implement this scan feature in Java by utilising the HBase Java client

package and deploy this module on Tomcat. We call our module HBaseEnhance-

dREST, which is shown in Figure 5.17 as Tomcat with Enhanced REST.

Since we want to use Javascript extensively to create an app-like effect for

our Web GUI, we need to make jQuery Ajax HTTP GET request18 directly in

Javascript. However, there is a cross-domain restriction policy imposed by all

browsers for security reason, which state that any direct Ajax HTTP GET request

to a server requires that the server respond with Content Header set to includes

“Access-Control-Allow-Origin: *”. This means that the server allow access from

any origin, hence, the browser would trust that the server permits it to make Ajax

HTTP GET request to it. If no such Content Header is set, the browser will not

accept the server’s response.

HBase REST API does not set Content Header to include “Access-Control-

Allow-Origin: *”, hence, we cannot directly make Ajax GET request to HBase

REST API in Javascript. The only work around is by setting up a PHP Proxy as

17REST is a software architecture that involves client-server, in which the server provides a standard-
ised application programming interface for accessing and modifying data.

18jQuery Ajax HTTP GET request is a method provided by jQuery Javascript library to get data
from a server on a client-side using HTTP.

82

Chapter 5. Implementation

shown in Figure 5.17. We use the open source Simple PHP Proxy [15]. This proxy

basically just accepts Ajax HTTP GET request from the Web GUI in Javascript

and forward that using PHP cURL module to the HBase REST API. Since PHP

cURL does not requires the server’s response Content Header to include “Access-

Control-Allow-Origin: *”, it can interact with HBase REST API without any

problems. When the data returns from HBase, the proxy would pass it to the Web

GUI with proper Content Header set. It should be noted that the Thrift in PHP

shown in Figure 5.17 would have to do the same thing of setting proper Content

Header.

After some analysis and experimentations, we decide to use the second approach

above, Using REST. This is because the Thrift approach does not promise a working

solution while we know the REST approach is much more feasible in terms of implemen-

tation. Thus, if we want to retrieve a whole row or any rows from HBase, we will use

the default HBase REST API via our PHP Proxy. If we want to use the scan feature to

query a range of rows from HBase, we will use our HBaseEnhancedREST API, which

we have implemented.

Javascript Bytes Utility and REST wrapper

HBase REST has another problem, which we need to overcome. However, this is a

common problem for everyone and if we manage to solve it, it would bring great benefits

to the whole HBase community. Currently, if anyone wants to use the HBase REST,

the data type for each cell in the table can only be string, which opposes the original

idea of HBase being flexible on data types and schema.

Let us explain why this is happening. HBase stores the value of the cell in bytes

and this value could be of any data types. If the developers can retrieve these bytes

from HBase table, they would have known how to decode it since they know what data

types these bytes represent. Since HBase REST uses JSON format to transmit the

queried data to a client-side, it is not possible to represent bytes in JSON. Hence, the

bytes have to be encoded somehow before it is transmitted to the client-side. However,

HBase REST is just like a middle man who does not know what the bytes for these

cell represent, hence, it could not autonomously interpret the data types of these cell

values and convert them to their corresponding data types. Therefore, HBase basically

states that if we want to use HBase REST, we must store the content of each cell in

the table in string so that HBase REST knows that the bytes represent string. HBase

REST converts the cell value in bytes to string first and then use Base64 19 to encode

19Base64 is a scheme used to represent binary data in ASCII string standard.

83

Chapter 5. Implementation

the string value before transmission to client-side. On the client-side, we use Base64 to

decode the data into string.

However, we think that by doing that, we would waste a lot of space used to store

integer, long and short data types in string. Hence, we write a Mini Javascript Bytes

Utility for HBase and licensed it under the Apache License Version 2.0 for anyone who

faces the same situation like us to use. We are sure that other developers would not want

to be forced to store other data types as string in HBase table just because of the above

problem. In this utility, we make use of some byte shifting techniques in Javascript to

do conversion between bytes and string, integer, long or short.

Figure 5.18: Illustration of return query from HBase REST API

We also write a Javascript wrapper functions for HBase REST API, which we also

release under the same license as above. We make use of window.atob() to decode

Base64 encoded values. In Figure 5.18, we can see that the returned data from HBase

REST API is a great mess in which we need to understand and do appropriate conver-

sions. This is when our Bytes Utility and REST wrapper comes in handy. This utility

and the one we mentioned earlier are released on the popular open source repository,

GitHub, at github.com/hengsok/hbase.

5.6.2 Making Asychronous Ajax Request

Within our Web GUI, we make extensive number of HTTP Ajax GET request to

REST interface. All of these requests can only be done by using jQuery $.ajax()

function, which is asynchronous in nature. Asynchronous in this context means when

we make a HTTP request to the server, the Javascript code will not wait for the server

to response but continue executing. This creates quite a challenge for us because we

have to write our code to handle asynchronous call carefully.

84

Chapter 5. Implementation

For instance, after a user chooses a date amongst the options of a dropdown menu,

we make an asynchronous HTTP GET request to the server to fetch the data for that

date. However, how would we know when the data comes back from the server so that

we could start plotting the graphs. This is done using a beautiful feature in Javascript

called promise. Promise is a programming construct that have been introduced since

1976 [33].

1
2 var promise = REST.getAllRowsAllCols(restEndpoint,”TABLE NAME”);
3
4 promise.success(function (data) {
5 if(data.status.http code == 200){
6 //use data safely here
7 }
8 });

Listing 5.9: Using Javascript promise to manage asynchronous function call.

In Listing 5.9, REST.getAllRowsAllCols() is an asynchronous function call. We

make this call and store the promise that it returns. In REST.getAllRowsAllCols()

function, we return a promise. Then we have the handler promise.success(), which

will be invoked when the asynchronous call succeeds. We could then call any other

functions or do something within this handler.

5.6.3 CountLive and CountStatistics

Figure 5.19: Illustration of CountLive page in Web GUI

85

Chapter 5. Implementation

A CountLive feature is great to reflect the number of terminals that are currently

close to each of our deployed APs. Although we use the word currently, our implemen-

tation has a delay of 1.5 minutes from actual statistics of the real environment. This

is because the MapReduce job for localising terminals and counting them requires some

time to run.

In order to know when data is available for querying, we need to run a count down

clock, which will attempt to query the server for data every 60 seconds. The time is 60

seconds because we run the MapReduce job for localising terminals and counting them

every minute. We also need to carry out some error handling here in the case that data

is not available, i.e., the APs are offline and not deployed.

In CountLive webpage, we also provide the checkbox option as shown in Figure

5.19 to select only the APs that we are interested to view. Whenever a check-box is

changed, we will redraw the div HTML element in order to reorganise the thumbnails

(blue rounded corner box).

In Figure 5.20 and 5.21, we show how our CountStatistics webpage looks like, which

is a different webpage from CountLive.

Figure 5.20: Illustration of histogram on CountStatistics page in Web GUI

86

Chapter 5. Implementation

Figure 5.21: Illustration of Daily View with controller on CountStatistics page in
Web GUI

5.6.4 ResidenceTime and ResidenceTime Overall

For ResidenceTime webpage, we show only histogram of residence time for one AP

across a day as illustrated in Figure 5.22.

For the ResidenceTime Overall page, we have attempted to draw up a probability

density distribution across all APs for each day. This distribution is an approximation

from a histogram for the residence time data. We also attempt to normalise the distri-

bution in order to generate a better approximation. Furthermore, we make use of the

smoothing algorithm of jqPlot, a Javascript graph plotting library, to smoothen out the

curve.

5.6.5 New and Returning Visitors

For New and Returning Visitors webpage, we decide to draw a piechart to better

illustrate the percentage of each type of visitors (Figure 5.23).

87

Chapter 5. Implementation

Figure 5.22: Illustration of ResidenceTime page in Web GUI showing histogram of
residence time for one AP across one day

Figure 5.23: Illustration of New and Returning Visitors page in Web GUI

88

Chapter 6

Evaluation

6.1 Setting up of Experiment in Laboratory

After implementing a system to track WiFi terminals, we should put it to a good

test. There is a couple of issues that almost prevent us from conducting an experiment

in the Department Of Computing laboratory successfully.

Firstly, our university’s network and security team was concerned that our APs might

interrupt the experience of using wireless internet access by individual students in the

laboratory. These include radio signal interference and some students may unexpectedly

connect to our APs. To solve part of these problems, we disable the broadcast of SSID

across all our APs. Even if a terminal knows our SSID, we use WEP as a simple

protection to prevent it from connecting to our APs.

Secondly, our department was concerned that it would be hard to wire our APs to

the department’s existing network. In order to solve this problem, we had decided to

setup our own private network by linking up all our APs wirelessly by setting some APs

into client bridge mode and some into repeater bridge mode. We used another AP, which

really worked in AP infrastructure mode but not connected to the university’s network,

as the main AP that other APs would connect to and extend the network. This allows

us to have a wireless private network in which each of the APs can communicate with

each other easily. Our main objective is to allow each AP to have access to a central

Processing Agent so that it could sent the collected data to it.

Finally, since our university’s network and security team was concerned that our

APs may exist in AP infrastructure mode, our APs are not allowed to connect to the

school’s network to gain internet access. Hence, we could not send the data collected to

the database, which is hosted somewhere else on the internet. To solve this problem, we

attempted to buy a 3G Dongle from O2 in order to provide internet access via one of

our APs. This could be done since we have a Mini 3G AP from TP-Link, which allows

us to connect the 3G Dongle to it and there is a RJ-45 port on the Mini 3G AP that

provides internet access via Ethernet. Hence, we can connect one of our APs using this

port and all our other APs would be configured to receive the internet connectivity as

well.

89

Chapter 6. Evaluation

After successfully tested out this idea, we realised that everything works according

to what we expected. However, there was one issue with high latency caused by the

unstable 3G connection. Sometimes, the 3G connection would lose internet connectivity

for a short period of time before regaining. This means that if we use this method of

providing internet access to our APs, there may be period of time where there are inter-

ruptions. Even after we have implemented the error handling, which we have explained

in Implementation chapter, we believe this mode of providing internet connectivity is

too unreliable.

Therefore, we thought again of other alternatives. We came up with an alternative,

which promised to allow us to run the experiment in the laboratory successfully. We

connected a laptop to the main AP, which we have mentioned before, to provide the

laptop access to the private network that we had set up. We bought an extra USB WiFi

adapter and plugged into the laptop to provide a second network interface for the laptop.

Then, we changed the priority of the network cards/interfaces on Windows 8, which our

laptop had installed so that the laptop could still have internet access via one interface

and access to our private network via another. If we do not do this, we would not be

able to get internet access on the laptop (running Windows) when another interface is

connected to a private network.

The laptop served as a central Processing Agent in which we deployed our servlet

on it using Tomcat. All APs had network access to this agent and they would push

all collected data to it. Then, this agent would process the data, insert timestamp and

establish a connection to the database to push the processed data to the database hosted

on the internet.

Ideally, in the future, we require that all our APs would have internet connectivity,

which should be the case since they are APs.

6.1.1 Deployment Overview

In Figure 6.1, it shows an overview of our deployment in the laboratory. Since we

do not want to publish the map of our laboratory, we have shown only the locations,

which we deployed our APs. We purposely deployed AP3 and AP2 close together to see

whether our aggregation algorithm is working correctly. Indeed, we did observe a strong

“Ping Pong” effect from the data we collected between these 2 APs, which prompted

us to alter our Localising Terminal algorithm to introduce a threshold. This serves to

indicate that our Localising Terminal aggregation is working properly after the change

to our algorithm. In the figure, it also could be seen that AP2 is placed very close to

the corridor. This is because it acts as a repeater bridge in which AP1 can connects to

90

Chapter 6. Evaluation

Figure 6.1: Overview of deployment

and since AP1 is in the common room, we need to keep AP2 within the range at which

AP1 can connect wirelessly.

6.1.2 Monitoring APs’ Heartbeat

In order to monitor the progress of our experiment and to ensure that everything

was running as expected with no AP offline, we have written a simple code in our

Processing Agent to output a progress statement to the Tomcat log file. Then, we used

the BareTail program to follow the tail of the log file. The software would show green

colour highlighting if the APs are adding detection records to the Processing Agent

successfully and red if something wrong is happening. Everything was live updated and

this is shown in Figure 6.2.

91

Chapter 6. Evaluation

Figure 6.2: Monitoring progress of experiment

6.2 Measuring Performance of Terminals Detection

In this section, we analyse the results that we have observed from the experiment in

the Department Of Computing Laboratory. In order to evaluate the performance of our

system in detecting the number of WiFi users, we carried out ground truth observation

of the number of students within a confined area in the laboratory, which we had two of

our APs deployed around that area. The two APs have MAC addresses 98FC11828B25

(AP3) and 000625FFDB3E (AP5).

6.2.1 Procedure to Prepare Evaluation Graphs

We conducted our experiment on 5 days in the laboratory. Each day, we carried out

a ground truth observation of the number of students in the laboratory and record it

down. In order to calibrate and determine which values of RSSI we should set on our

APs to filter out, we changed this parameter on different days of our experiment. This

is because if we do not filter out detection records with their associated RSSI values,

our APs might even detect terminals that are outside the laboratory and across the

street. Hence, on 29/05/2013 and 30/05/2013, we set the filtered RSSI parameter1 to

1We would use the term filtered RSSI parameter from now on to refer to the RSSI that we have set
to filter only those detection records with RSSI value higher than the specified amount. Note that RSSI
is in dBm, which means that the less negative the value, the better.

92

Chapter 6. Evaluation

-80, which means that we will only accept those terminals that our APs have detected

with RSSI more than or equal to -80. We have summarised this detail below:

• 29/05/2013 (Wed), filtered RSSI parameter: -80.

• 30/05/2013 (Thurs), filtered RSSI parameter: -80.

• 31/05/2013 (Fri), filtered RSSI parameter: -70.

• 01/06/2013 (Sat), filtered RSSI parameter: -65.

• 03/06/2013 (Mon), filtered RSSI parameter: -60.

Figure 6.3: Evaluation Table showing details of number of terminals detected and
students observed

By changing the filtered RSSI parameter, we want to see whether this would helps to

increase the accuracy of our detection. In Figure 6.3, it shows that we have carried out

7 instances of observation at a 5 minute interval. We chose 5 minutes to allow sufficient

time for the environment to evolve. Detected represents the number of terminals we

have detected and Observed represents the number of students we have counted in the

predefined area of observation. We compute the total Detected counts for the two APs

and the total Observed counts for the corresponding areas. Detected Avg takes the

average of the total number of terminal counts across the 7 instances. Observed Avg

takes the average of the total number of student counts across the 7 observations.

To view all the evaluation tables, please refer to Appendix A.

Minimising the problem of infrequent probe requests sent by terminals

Within the 5 minutes interval, a terminal may choose to send out probe request frames

at the first minute or the last minute of the 5 minutes interval. If we simply just take the

93

Chapter 6. Evaluation

number of counts of detected terminals on the dot at each time interval, 19:30, 19:35,

19:40, etc, we may miss out some terminals from being detected. Since we can see that

the number of observed students do not fluctuate that much within the confined area, we

choose to use the counts of the number of unique terminals within the 5 minutes interval,

i.e., at 19:30, we would include the number of unique terminals detected between 19:25

and 19:30 by our APs and compare this to the number of students we count at 19:30.

We have written a code to find out the number of unique terminals that fall within

each 5 minutes interval.

6.2.2 Factors Affecting Accuracy of Detection

Before we start discussing the results of our observations and detections, we would

like to explain what are the factors that would influence the accuracy in our results. In

particular, these factors would cause the number of terminals that we have detected to

deviate from the number of students we have counted.

1. Firstly, in our evaluation of the frequency of probe request being sent out by ter-

minals later in Section 6.3, we would notice that the frequency varies according to

different brands and models of devices due to their difference in OS implementa-

tions. Most devices do not send out probe request that often and this would serve

to decrease the number of terminals that we detect.

2. Secondly, since our experiment is conducted in a university computing laboratory,

each student usually carries more than one WiFi terminals with them such as a

laptop, a smartphone and a tablet. This would increase the number of terminals

that our APs would detect when compared to the number of students we observe

in the laboratory.

3. Finally, our APs may pick up radio signal from terminals that are not physically

in the the room under observation but adjacent to it. There may also be people

walking by the room along the corridor, which may be detected by our terminals.

This would increase the number of terminals that our APs detect.

Although the factors above may affect the accuracy of our evaluation, we would still

want to know how our system performs by analysing the number of terminals detected by

our APs and the number of students we have observed. In particular, we would calculate

an average of the number of terminals detected and number of students observed and

we draw a line for each in the same graph. By keeping the scale of the axis constant,

we want to see how close the two line would be. The closer they are on the graph, the

more accurate is our system in detecting the number of WiFi users.

94

Chapter 6. Evaluation

6.2.3 Discussion of Results

Across from Figure 6.4 to Figure 6.8, we can observed some trends from the graphs

plotted. It should be noted that the scale for x-axis and y-axis remains unchanged across

all the graphs. This would allow us to visually observe the change in trend across all

graphs.

First, let us compare the graph in Figure 6.4, which shows the count of the number

of terminals for 29/05/2013 (Wed) and Figure 6.5, for 30/05/2013 (Thurs). On these

two days, we keep the filtered RSSI parameter the same, i.e., at -80. What we can see

from the graphs of Detected Avg and Observed Avg reflects that filtered RSSI parame-

ter is crucial since this parameter causes these two graphs to shift up and down. The

ratio of Detected Avg to Observed Avg is 1.866 (calculated by 57.857/31) for 29/05/2013

and 1.887 (calculated by 52.285/27.714) for 30/05/2013. The ratios for both days re-

main almost unchanged, which indicates that by keeping the filtered RSSI parameter

unchanged, the accuracy of our detection would remain about the same too. Hence, it

also gives a good indication that no matter how the environment changes, as long as

the factors we have mentioned in Section 6.2.2 remain unchanged, our mechanism would

work as expected in detecting the number of terminals within the environment moni-

tored. Thus, it injects a great level of confidence that our aggregation process correctly

localises and counts the number of terminals.

Another very interesting trend that we observe across all graphs is as filtered RSSI

parameter increases from -80 to -70 and to -65, the Detected Avg and Observed Avg lines

become closer and closer, which indicates that our estimation of the actual number of

students in the confined area becomes more accurate up to this point. However, it should

be noted that on 01/06/2013, in which the filtered RSSI parameter was set at -65, it

was a Saturday and there were fewer number of students who came to the laboratory.

As the filtered RSSI parameter increases further to -60, which means that we ba-

sically filter out terminals with associated RSSI less than -60, we have reduced the

coverage that our APs would detect terminals. This actually has a negative effect and

does not bring the Detected Avg and Observed Avg lines close together.

There is one more trend which we can also observe across all graphs. From Figure

6.4 (29/05/2013) to Figure 6.7 (01/06/2013), the graphs of Detected and Detected Avg

are always above the graphs of Observed and Observed Avg. However, at one point when

we set the filtered RSSI parameter to -60, the opposite of what we have seen happens,

i.e., the graphs of Observed and Observed Avg are above the graphs of Detected and

Detected Avg as shown in Figure 6.8 instead. We know that filtered RSSI parameter of

-65 is actually the value that is suitable for our environment in the laboratory. From

95

Chapter 6. Evaluation

this, we know that there must be some values of filtered RSSI that can be calibrated for

each different environment in order for us to get a good approximation of the number

of WiFi users in each environment. Each environment has its own unique profile. By

tweaking the filtered RSSI parameter, we essentially minimise other factors affecting

our counts of terminals, such as detecting terminals that are located far outside the

monitored environment. This allows our system to approach a good approximation of

the number of WiFi users within the environment under monitored by our APs.

19
:3
0

19
:3
5

19
:4
0

19
:4
5

19
:5
0

19
:5
5

20
:0
0

0

10

20

30

40

50

60

70

Time

N
o.

O
f

T
er

m
in

al
s

Count of No. of Terminals Against Time for 29/05/2013 (Wed)

Detected
Observed

Detected Avg
Observed Avg

Figure 6.4: Comparing number of terminals being detected and observed near AP3
and AP5 on 29/05/2013 filtering out RSSI less than -80. Notice that Detected Avg is
a little higher than Observed Avg.

96

Chapter 6. Evaluation

19
:3
0

19
:3
5

19
:4
0

19
:4
5

19
:5
0

19
:5
5

20
:0
0

0

10

20

30

40

50

60

70

Time

N
o.

O
f

T
er

m
in

al
s

Count of No. of Terminals Against Time for 30/05/2013 (Thurs)

Detected
Observed

Detected Avg
Observed Avg

Figure 6.5: Comparing number of terminals being detected and observed near AP3
and AP5 on 30/05/2013 filtering out RSSI less than -80. Notice that Detected Avg is
still a little higher than Observed Avg.

11
:3
0

11
:3
5

11
:4
0

11
:4
5

11
:5
0

11
:5
5

12
:0
0

0

10

20

30

40

50

60

70

Time

N
o
.

O
f

T
er

m
in

a
ls

Count of No. of Terminals Against Time for 31/05/2013 (Fri)

Detected
Observed

Detected Avg
Observed Avg

Figure 6.6: Comparing number of terminals being detected and observed near AP3
and AP5 on 31/05/2013 filtering out RSSI less than -70. Notice that Detected Avg is
getting closer to Observed Avg.

97

Chapter 6. Evaluation

19
:1
5

19
:2
0

19
:2
5

19
:3
0

19
:3
5

19
:4
0

19
:4
5

0

10

20

30

40

50

60

70

Time

N
o.

O
f

T
er

m
in

al
s

Count of No. of Terminals Against Time for 01/06/2013 (Sat)

Detected
Observed

Detected Avg
Observed Avg

Figure 6.7: Comparing number of terminals being detected and observed near AP3
and AP5 on 01/06/2013 filtering out RSSI less than -65. Notice that Detected Avg is
closest to Observed Avg amongst all other graphs.

10
:1
5

10
:2
0

10
:2
5

10
:3
0

10
:3
5

10
:4
0

10
:4
5

0

10

20

30

40

50

60

70

Time

N
o
.

O
f

T
er

m
in

a
ls

Count of No. of Terminals Against Time for 03/06/2013 (Mon)

Detected
Observed

Detected Avg
Observed Avg

Figure 6.8: Comparing number of terminals being detected and observed near AP3
and AP5 on 03/06/2013 filtering out RSSI less than -60. Notice that Detected Avg is
now lower than Observed Avg instead.

98

Chapter 6. Evaluation

6.2.4 Analysing Trends from Web GUI

In Figure 6.9, we can observe a trend of the number of visitors in the laboratory.

We can see tht at around 12:45 and from 14:30 to 15:15, the number of visitors drop.

This indicates to us that these two periods are the most common periods that students

go out to have lunch. The peak of the histogram happens between 15:45 and 17:45,

indicating the peak period of the laboratory. This is true since we normally observe

that the laboratory is very packed around that time. Please note that the histogram in

the figure only shows the result for one AP. In the Web GUI, we can choose any AP to

view the statistics for it. Please refer to Section 5.6 for the URL and login details.

Figure 6.9: Trend of number of students in laboratory

6.3 Frequency of Probe Request Frames

Since we have collected so much data about WiFi devices, we could put it to good

use. We attempt to find out the average probe request frequency of major brands. We

want to know how often WiFi devices from each brand send out probe request frames.

This is probably the largest compilation of the frequency of probe request by carrying

out random sampling across the population of each brand. Previously, researchers would

measure the frequency of probe request of specific devices. This might not be a good

representation of a population of WiFi devices under each brand. We do recognise that

our results might not fully reflect the probe request frequency of each brand. However,

the results at least give us an idea of the general trend, in which we will analyse further

below.

99

Chapter 6. Evaluation

6.3.1 Compiling Process

Figure 6.10: Calculations of probe request frequency

In Figure 6.10, we have shown the table that we used to calculate the frequency

of probe request for each brand. First, we sort the detection records according to the

timestamp in ascending order and we only include those that we believe the terminal

still stay at the place it is being detected, i.e., our Residence Time algorithm has not

considered the terminal to have moved away somewhere else. Then we take the time the

terminal is first detected and the last time is it detected as shown in Figure 6.10. We

then count the number of records that exist between these two timestamps, n.

We use the formula below to determine the probe request frequency of each device.

last time detected− first time detected

n − 1

After this, we take the average across the number of samples we have for each brand.

We do recognise that the larger the number of samples, the better our representation

of the population. However, some brands of WiFi devices that we have detected have a

small population, hence, the sample size for each brand is different. This should be fine

since we classify each brand of devices as different population while we do our random

sampling, i.e., we randomly select devices for each brand.

We would like to thank MACVendorLookup [12] for providing the list of Organiza-

tionally Unique Identifier (OUI) that belongs to each manufacturer.

100

Chapter 6. Evaluation

6.3.2 Discussion of Results

0 1 2 3 4 5 6 7 8 9 10

Average across
all brands

Research In
Motion (RIM)

HTC Corporation

Sony Ericsson Mobile
Communications

Nokia Corporation

LG Electronics

Samsung Electronics

Apple, Inc

Intel Corporate

Samsung Electro-
Mechanics

5.89

1.98

7.2

9.57

9.53

7.13

4.38

4.59

2.67

5.94

Time (Minutes)

Probe Request Frequency of Major Brands

Figure 6.11: Probe request frequency of major brands

In Figure 6.11, we present our chart of the frequency of probe request for each brand

we have selected. We hope this would be useful for other academics too.

From the figure, we could see that Intel Corporate’s WiFi devices has a higher

frequency of sending out probe request than many other brands. This could be because

the samples for this brand come mostly from laptop computers of the students in the

laboratory. We could then infer that laptop send out probe request more frequently than

mobile devices since we could see that other major mobile devices’ brands have lower

frequency of sending out probe request. From the same figure, we have two Samsung

brands but the OUIs they own are registered under different company names. Due to

101

Chapter 6. Evaluation

the limited further information we can obtain, we could only guess that each of the

brands is used for different types of devices.

We also can derive that for all the brands we have studied, their probe request

frequency falls below 10 minutes. We could be quite confident that this might be true

for majority of WiFi devices since most of the brands we have covered are either major

laptop or smartphone manufacturers.

6.4 Microbenchmark

In order to understand how effective our chosen mechanism performs in detecting

the terminals, we set up a micro-benchmark experiment. This experiment measures the

performance and accuracy of our detection mechanism in different environments. We

had carried out 2 experiments in the laboratory and 2 experiments in open space.

Figure 6.12: Illustration of how students move for Mobility experiment

For each environment, we conducted a static and mobility experiment. For the

static experiment, we sought the help of 5 friends, each carrying two WiFi terminals,

and they would stand at different distance intervals from an AP that we set up. We

then configured our AP to filter out only those MAC addresses of terminals that had

been registered for this experiment. We wanted to understand out of 10 terminals, as

the terminals move further and further away from AP, how many we could still detect

reliably. For the mobility experiment, we also had 5 students carrying 2 terminals each.

We asked the 5 students to carry out different mobility movement such as walk, jog and

102

Chapter 6. Evaluation

run across a point that is at a fixed distance from the AP and is perpendicular to it.

This is illustration in Figure 6.12, in which the students would move at different speed

in a group along the arrow line.

We have shown our results of findings in the graphs from Figure 6.13 to Figure 6.16.

From the graphs, we have noticed that mobility does not really affect the accuracy of

our detection mechanism that much. However, as the group of students moves further

and further away from the AP, for static experiment, the number of terminals detected

drops. This could be due to the fact that radio signal becomes weaker as distance from

AP increases.

5 10 15 20
0

2

4

6

8

10
10 10

8

7

Distance from AP (m)

N
u

m
b

er
of

T
er

m
in

al
s

No. of Terminals out of 10 detected in Lab (Static)

Figure 6.13: Number of terminals out of 10 detected in Lab (Static)

103

Chapter 6. Evaluation

10 20 30 40
0

2

4

6

8

10
10

8

7

5

Distance from AP (m)

N
u

m
b

er
of

T
er

m
in

al
s

No. of Terminals out of 10 detected in Open Space (Static)

Figure 6.14: Number of terminals out of 10 detected in Open Space (Static)

Walk Jog Run
0

2

4

6

8

10
10 10 10

Types of Mobility

N
u

m
b

er
of

T
er

m
in

a
ls

No. of Terminals out of 10 detected in Lab (Mobility) at 10m from AP

Figure 6.15: Number of terminals out of 10 detected in Lab (Mobility) at 10m from
AP

104

Chapter 6. Evaluation

Walk Jog Run
0

2

4

6

8
8

7 7

Types of Mobility

N
u

m
b

er
o
f

T
er

m
in

al
s

No. of Terminals out of 10 detected in Open Space (Mobility) at 20m from AP

Figure 6.16: Number of terminals out of 10 detected in Open Space (Mobility) at
20m from AP

6.5 Unit Tests

In order to verify that our aggregation algorithms are working correctly, we have

written some unit tests for them. This is done by having test sets, which contain

detection records for specific cases that we want to test out. We have shown some

screenshots in Figure 6.17 and 6.18.

Figure 6.17: Unit Test showing a test with error

105

Chapter 6. Evaluation

Figure 6.18: Unit Test showing a successful test

6.6 Summary

From the evaluation results that we have above, it shows that we have managed to

detect the presence of terminals, processed the collected data with the right logic and

displayed the results on a webpage. We have noticed that when we changed one of the

parameter of the experiment such as the filter RSSI value, this causes the ratio of the

number of terminals counted to the number of users observed to change as well.

The random sampling of probe request frequency as shown in Figure 6.11 gives us a

very good indication of the performance of our detection mechanism. The average probe

request frequency across all brands is 5.89 minutes, which suggests that our mechanism

has a tracking accuracy of around 5 minutes. This is good enough since we are not really

into tracking a specific user’s whereabouts but to track collective mobility of WiFi users

to understand a general trend and behaviour.

Finally, our micro-benchmark experiment put the sensitivity of our detection mech-

anism to test. The experiment indicates that our detection mechanism has a 100%

accuracy of detecting terminals that are 10m away from the AP, 80% for 20m, 70% for

30m and 50% for 40m in open space. As for the laboratory environment, which has

more interference, we have a detection accuracy of 100% for up to 10m of distance from

AP and 70% at a distance of 20m.

106

Chapter 7

Conclusion and Future Extensions

7.1 Conclusion

From detecting to aggregating and to displaying, each stage enables us to learn many

different aspects of computer science. We have dived into the lower level implementa-

tion of a program to run on an embedded device, employed the use of modern analytic

framework, MapReduce, and new breed of database, NoSQL, which has become ever

more popular due to the rise of Bigdata, and finally make use of the latest web technol-

ogy, HTML5, together with Javascript to create an app-like web interface experience.

Throughout the whole process, we learn and evaluate the suitability of each piece of

technology as well as understand their usage in big organisations by analysing relevant

case studies. This allows us to learn the best practice from these companies.

There are three main phases in this project. We began first by studying how different

WiFi components under the umbrella of IEEE 802.11 operate and communicate with

each other. Then we proposed a few different mechanisms that could be used to detect

the presence of WiFi terminals. We chose the best one, the detection of probe request

frames, that requires no actions to be taken from the users of the terminals while allowing

us to detect them passively. This mechanism was proven to work effectively in our

evaluation, in which we observed distinctive trend in the number of terminals detected

across the day in the laboratory, where we observed the period when students went out

for lunch break and the peak hours of the laboratory. Furthermore, the average number

of detected terminals were not too far away from the average number of students we

observed in the confined area. We provided reasons to explain the difference in the

number of terminals detected and number of users observed, as there are still limitations

in our project, which we could look into to extend in the future. This is discussed later

under Future Extensions.

While implementing the mechanism to detect terminals, we faced issues of flashing

the right firmware onto the AP and also the limitations in the computing resources of an

embedded device in terms of RAM and flash storage space. The cross compiling process

was the most rewarding one since it allowed us to successfully run our program on the

107

Chapter 7. Conclusion and Future Extensions

AP. If the compiling step did not succeed, we would have to look into alternative device

for implementation such as using a laptop with its NIC to simulate an AP.

In the second phase, we picked the most suitable method of aggregating the data

collected from each AP. At this phase, we managed to learn a lot about how to build

a collective representation of the mobility of WiFi users in a wireless network environ-

ment, using just the detection records we have, which compose of AP and terminal MAC

addresses, RSSI information and timestamp. These records are the fuel for our aggre-

gation engine, which makes use of the logic we have built into it to turn all this little

information into some meaningful statistics. It was also at this phase that we managed

to learn a lot more about the phenomenon we are faced with such as the “Ping Pong”

effect and the infrequent probe request broadcast. These phenomenons prompted us to

think further on how to fine tune our algorithms so that we could minimise the effect

of such problems. However, we do recognise that there is no easy way to increase the

frequency of probe request of terminals since that is dependant on the implementation

of the OS of the terminals.

In our final phase, although our aggregation engine could generate useful values, we

still have the task of visualising these values into something that human can comprehend.

We decided to build a web interface, which is the current most convenient way to browse

through information. Graphs and charts are plotted and drawn with colours and symbols

to explain what are going on at each AP. We managed to determine the number of

visitors located close to each AP, their residence time and the number of new and

returning visitors. Although this number does not actually represent the true number

of visitors, they give a good approximation to it since we could assume that most users

bring only one WiFi terminal either in their pocket or handbag when they are out in

shopping mall, supermarket or stadium. These are the places that our APs would most

likely be deployed in for a commercial roll-out.

7.2 Future Extensions

During our experiment, we observe a few phenomenons, which are real and need to

be addressed if we can extend this project further.

7.2.1 A More Reliable Way of Localising Terminal

We recognise that using just RSSI information to localising a terminal is not accurate

enough, which leads to the “Ping Pong” effect that we have mentioned earlier. After

108

Chapter 7. Conclusion and Future Extensions

reading through research papers and reviewing them under Related Work, we noticed

that there are various localisation techniques that could be employed to improve the

accuracy of localising a terminal. One such technique is triangulation, which requires

the use of 3 or more APs to detect and determine the position of a terminal.

7.2.2 Enclosing the Environment Under Monitored

Another issue that we noticed from our experiment is that, our APs are detecting

terminals that are outside the area that we are supposed to track. This contributes

to the inaccuracy that we may have in our statistics. In order to track the collective

mobility of users within a confined environment, we could develop techniques to ignore

users that are outside the confined space.

7.2.3 Ignoring Static Terminals

After our experiment, we also realised that there are WiFi terminals that just sit

there for hours and hours and there are no human carrying them. These terminals were

most likely be placed in the Computing Support Group room, which is located next

to the Common Room in which we have one AP deployed there for tracking terminals.

Furthermore, we also discovered a beautiful MAC address, 00:00:01:00:00:00, which

belongs to a Xerox brand, suggesting that it could be a printer having WiFi capability.

These devices should be ignored using appropriate technique.

7.2.4 Protecting Privacy of Individuals

Finally, throughout this project, we have been observing many different MAC ad-

dresses. Although we could not really pinpoint a MAC address to a person, unless the

person reveal this information, we would still like to enhance the privacy of individuals

that our system is tracking. This could be done by making use of a strong one-way hash

function with a salt to encrypt the MAC addresses. Whenever we detect a terminal’s

MAC address, we would hash it according to the hash function we have chosen and we

could still identify a unique terminal that we have detected before by comparing this

hashed values with the one we store in our database.

109

Appendix A

Evaluation Tables

Figure A.1: Evaluation tables for experiments on 29/05/2013 (Wed) and
30/05/2013 (Thurs)

110

Chapter 7. Conclusion and Future Extensions

Figure A.2: Evaluation tables for experiments on 31/05/2013 (Fri) and 01/06/2013
(Sat)

111

Chapter 7. Conclusion and Future Extensions

Figure A.3: Evaluation tables for experiments on 03/06/2013 (Mon)

112

Bibliography

[1] J.C. Anderson, J. Lehnardt, and N. Slater. CouchDB: The Definitive Guide. Animal

Guide Series. O’Reilly Media, 2010. ISBN 9780596155896.

[2] M. Azizyan, I. Constandache, and R. Roy Choudhury. Surroundsense: mobile

phone localization via ambience fingerprinting. Proceedings of the 15th annual in-

ternational conference on Mobile computing and networking, pages 261–272, 2009.

[3] DD-WRT Linux based Open Source firmware for Wireless routers and embedded

systems. URL http://dd-wrt.com.

[4] Broadcom. Broadcom Linux hybrid wireless driver. URL http://www.broadcom.

com/docs/linux_sta/README.txt. Accessed: 06/06/2013.

[5] Protocol Buffers. URL https://code.google.com/p/protobuf/. Accessed:

07/06/2013.

[6] Tom Carpenter. CWNA Certified Wireless Network Administrator Official Study

Guide: Exam PW0-100. Certification Press Series. McGraw-Hill Osborne Media,

2005. ISBN 9780072255386.

[7] Cisco. Channels and maximum power settings for cisco aironet autonomous access

points and bridges. October 2007. Pages 1-9 to 1-12.

[8] Cisco. 20 myths of wi-fi interference. pages 1–6, December 2007.

[9] Cisco. 802.11 network security fundamentals. 2008. Pages 1-2 to 1-4.

[10] WL Command. URL http://www.dd-wrt.com/wiki/index.php/WL. Accessed:

06/06/2013.

[11] cURL and libcurl. URL http://curl.haxx.se/docs/faq.html#What_is_

libcurl. Accessed: 07/06/2013.

[12] MAC Address OUI Vendor/Manufacturer Lookup Database. URL http://www.

macvendorlookup.com. Accessed: 15/06/2013.

[13] N. Dimiduk, A. Khurana, M.H. Ryan, and M. Stack. HBase in Action. Running

Series. Manning Publications Company, 2012. ISBN 9781617290527.

[14] OpenWrt Linux distribution for embedded devices. URL https://openwrt.org.

113

http://dd-wrt.com
http://www.broadcom.com/docs/linux_sta/README.txt
http://www.broadcom.com/docs/linux_sta/README.txt
https://code.google.com/p/protobuf/
http://www.dd-wrt.com/wiki/index.php/WL
http://curl.haxx.se/docs/faq.html#What_is_libcurl
http://curl.haxx.se/docs/faq.html#What_is_libcurl
http://www.macvendorlookup.com
http://www.macvendorlookup.com
https://openwrt.org

Bibliography

[15] Simple PHP Proxy: JavaScript finally ”gets” cross domain. URL http://

benalman.com/projects/php-simple-proxy. Accessed: 14/06/2013.

[16] Frequencies and Channels. Wikipedia. URL http://en.wikipedia.org/wiki/

IEEE_802.11#Frequencies_and_Channels. Accessed: 05/06/2013.

[17] Jim Geier. 802.11 Beacons Revealed. October 2002. URL http://www.

wi-fiplanet.com/tutorials/article.php/1492071. Accessed: 05/06/2013.

[18] L. George. HBase: The Definitive Guide. O’Reilly Media, 2011. ISBN

9781449315221.

[19] Minkyong Kim, David Kotz, and Songkuk Kim. Extracting a mobility model from

real user traces. INFOCOM 2006. 25th IEEE International Conference on Com-

puter Communications. Proceedings, pages 1–11, April 2006.

[20] Firmware Modification Kit. URL https://code.google.com/p/

firmware-mod-kit. Accessed: 11/06/2013.

[21] D. Kotz and K. Essien. Analysis of a campus-wide wireless network. Wireless

Networks, 11(1–2):115–133, 2005.

[22] libpcap. URL http://www.tcpdump.org/manpages/pcap.3pcap.html. Accessed:

06/06/2013.

[23] Kayle Miller. SNR, RSSI, EIRP and Free Space Path Loss. September 2010. URL

https://supportforums.cisco.com/docs/DOC-12954. Accessed: 05/06/2013.

[24] Wireless Operating Modes. URL http://wireless.kernel.org/en/users/

Documentation/modes. Accessed: 6/06/2013.

[25] Jan Newmarch. Data serialisation. URL http://jan.newmarch.name/go/

serialisation/chapter-serialisation.html. Accessed: 07/06/2013.

[26] Nanopb: protocol buffers with small code size. URL http://koti.kapsi.fi/jpa/

nanopb. Accessed: 07/06/2013.

[27] Wireless Setup. Archlinux. URL https://wiki.archlinux.org/index.php/

Wireless_Setup. Accessed: 06/06/2013.

[28] Bill Siwicki. More consumers access public wi-fi via mobile devices than lap-

tops. August 2012. URL http://www.internetretailer.com/2012/08/21/

more-access-public-wi-fi-mobile-devices-laptops. Accessed: 27/05/2013.

[29] “standards.”. Oxford University Press. 2013. URL http://oxforddictionaries.

com/definition/english/standard. Accessed: 04/06/2013.

114

http://benalman.com/projects/php-simple-proxy
http://benalman.com/projects/php-simple-proxy
http://en.wikipedia.org/wiki/IEEE_802.11#Frequencies_and_Channels
http://en.wikipedia.org/wiki/IEEE_802.11#Frequencies_and_Channels
http://www.wi-fiplanet.com/tutorials/article.php/1492071
http://www.wi-fiplanet.com/tutorials/article.php/1492071
https://code.google.com/p/firmware-mod-kit
https://code.google.com/p/firmware-mod-kit
http://www.tcpdump.org/manpages/pcap.3pcap.html
https://supportforums.cisco.com/docs/DOC-12954
http://wireless.kernel.org/en/users/Documentation/modes
http://wireless.kernel.org/en/users/Documentation/modes
http://jan.newmarch.name/go/serialisation/chapter-serialisation.html
http://jan.newmarch.name/go/serialisation/chapter-serialisation.html
http://koti.kapsi.fi/jpa/nanopb
http://koti.kapsi.fi/jpa/nanopb
https://wiki.archlinux.org/index.php/Wireless_Setup
https://wiki.archlinux.org/index.php/Wireless_Setup
http://www.internetretailer.com/2012/08/21/more-access-public-wi-fi-mobile-devices-laptops
http://www.internetretailer.com/2012/08/21/more-access-public-wi-fi-mobile-devices-laptops
http://oxforddictionaries.com/definition/english/standard
http://oxforddictionaries.com/definition/english/standard

Bibliography

[30] Apache Thrift. URL http://wiki.apache.org/thrift. Accessed: 14/06/2013.

[31] Unix time. Wikipedia. URL http://en.wikipedia.org/wiki/Unix_time. Ac-

cessed: 12/06/2013.

[32] Wiviz: Wireless Network Visualization. URL http://devices.natetrue.com/

wiviz. Accessed: 06/06/2013.

[33] CHRIS WEBB. Promise and Deferred objects in JavaScript Pt.1: The-

ory and Semantics. URL http://blog.mediumequalsmessage.com/

promise-deferred-objects-in-javascript-pt1-theory-and-semantics.

Accessed: 14/06/2013.

[34] Aaron Weiss. Introduction to Kismet. March 2006. URL http://www.

wi-fiplanet.com/tutorials/article.php/3595531. Accessed: 06/06/2013.

[35] Aaron Weiss. Introduction to NetStumbler. March 2006. URL http://www.

wi-fiplanet.com/tutorials/article.php/3589131. Accessed: 06/06/2013.

[36] T. White. Hadoop: The Definitive Guide: The Definitive Guide. O’Reilly Media,

2009. ISBN 9780596551360.

[37] Kismet: An 802.11 wireless network detector. URL http://www.kismetwireless.

net. Accessed: 11/06/2013.

[38] Wireshark. URL http://www.wireshark.org. Accessed: 06/06/2013.

115

http://wiki.apache.org/thrift
http://en.wikipedia.org/wiki/Unix_time
http://devices.natetrue.com/wiviz
http://devices.natetrue.com/wiviz
http://blog.mediumequalsmessage.com/promise-deferred-objects-in-javascript-pt1-theory-and-semantics
http://blog.mediumequalsmessage.com/promise-deferred-objects-in-javascript-pt1-theory-and-semantics
http://www.wi-fiplanet.com/tutorials/article.php/3595531
http://www.wi-fiplanet.com/tutorials/article.php/3595531
http://www.wi-fiplanet.com/tutorials/article.php/3589131
http://www.wi-fiplanet.com/tutorials/article.php/3589131
http://www.kismetwireless.net
http://www.kismetwireless.net
http://www.wireshark.org

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Objectives
	1.2 Contributions
	1.3 Structure of Thesis

	2 Background
	2.1 Understanding IEEE 802.11 standards
	2.1.1 WiFi Channels
	2.1.2 RSSI & SNR
	2.1.3 Management Frames
	2.1.4 Active versus Passive Scanning
	2.1.5 Joining and Leaving a WLAN

	2.2 Wireless Chipset and Network Interface Card (NIC)
	2.2.1 Types of Chipsets
	2.2.2 List of Broadcom Chipset Commands
	2.2.3 NIC modes

	2.3 Custom OS for AP
	2.3.1 DD-WRT
	2.3.2 OpenWrt

	2.4 Related Wireless LAN Software tools
	2.4.1 Kismet
	2.4.2 NetStumbler
	2.4.3 Wireshark
	2.4.4 Wiviz
	2.4.5 Tcpdump and libpcap
	2.4.6 Summary

	2.5 Data Transmission
	2.5.1 Serialisation of Data
	2.5.2 File Transfer Library for Embedded Devices

	2.6 Storing and Aggregating Big Data
	2.6.1 Relational SQL versus NoSQL database
	2.6.2 NoSQL Databases
	2.6.3 MapReduce Framework

	2.7 Summary

	3 Related Work
	3.1 Mechanisms for Tracking WiFi Terminals
	3.2 Factors Affecting Accuracy of Detecting WiFi Terminals
	3.3 Localisation Techniques
	3.4 Summary

	4 Design
	4.1 Overview of Design Architecture
	4.2 Detection Mechanisms
	4.3 Types of Aggregation
	4.4 Web GUI

	5 Implementation
	5.1 Chipset and Custom AP Firmware
	5.1.1 Choosing a Suitable Firmware
	5.1.2 Preparing Firmware
	5.1.3 Flashing AP Filesystem

	5.2 Detecting, Transferring and Compiling
	5.2.1 Detection Program
	5.2.2 Data Serialisation
	5.2.3 Securing Transmission
	5.2.4 File Transmission
	5.2.5 Cross Compiling Program

	5.3 Building a Processing Agent
	5.3.1 Initialising Web Servlet
	5.3.2 Receiving and Deserialising Data
	5.3.3 Adding Timestamp
	5.3.4 Pushing Data to Database

	5.4 Storing and Managing Data
	5.4.1 Comparison between HBase and CouchDB
	5.4.2 Setting up of HBase, HDFS, MapReduce and Zookeeper
	5.4.3 Data Schema Design

	5.5 Aggregating Data
	5.5.1 Overview of Aggregation Process
	5.5.2 Localising Terminals
	5.5.3 Count Statistics
	5.5.4 Residence Time
	5.5.5 New Versus Returning
	5.5.6 Summary

	5.6 GUI Design and Implementation
	5.6.1 Retrieving Data from HBase
	5.6.2 Making Asychronous Ajax Request
	5.6.3 CountLive and CountStatistics
	5.6.4 ResidenceTime and ResidenceTime Overall
	5.6.5 New and Returning Visitors

	6 Evaluation
	6.1 Setting up of Experiment in Laboratory
	6.1.1 Deployment Overview
	6.1.2 Monitoring APs' Heartbeat

	6.2 Measuring Performance of Terminals Detection
	6.2.1 Procedure to Prepare Evaluation Graphs
	6.2.2 Factors Affecting Accuracy of Detection
	6.2.3 Discussion of Results
	6.2.4 Analysing Trends from Web GUI

	6.3 Frequency of Probe Request Frames
	6.3.1 Compiling Process
	6.3.2 Discussion of Results

	6.4 Microbenchmark
	6.5 Unit Tests
	6.6 Summary

	7 Conclusion and Future Extensions
	7.1 Conclusion
	7.2 Future Extensions
	7.2.1 A More Reliable Way of Localising Terminal
	7.2.2 Enclosing the Environment Under Monitored
	7.2.3 Ignoring Static Terminals
	7.2.4 Protecting Privacy of Individuals

	A Evaluation Tables
	Bibliography

