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Abstract

We investigate the performance and applicability of an innovative and novel

time series prediction technique, which differs greatly from conventional

statistical and machine learning techniques such as ARIMA and artificial

neural networks. This technique is a powerful, online and non-parametric

learner. Details of the underlying algorithm are protected by an NDA.

We initially develop an implementation of the technique which includes an

intricate 3D visualisation of the underlying models and provides statistical

functions and utilities which can be used to analyse the predictive power

of the technique. We present a thorough analysis of the complexity and

accuracy of these models tested on a range of artificial and real-world time

series, with a strong emphasis on non-linear chaotic time series which are

known to be very difficult to predict. Benchmark chaotic systems such as

the Mackey-Glass series and the Lorenz system are among those analysed.

The predictor’s ability to handle noisy data is also studied. The predictions

made by the novel technique are compared with those made by current

state-of-the-art machine learning techniques - in particularly the multi-layer

perceptron and the support vector machine.

We find that the algorithm generally constructs good models which cap-

ture the periodicity of periodic series and the determinism in chaotic sys-

tems. Our experiments show that the algorithm is often able to give more

accurate predictions than a basic multi-layer perceptron or support vector

machine - however this is dependent on the series. The algorithm’s abil-

ity to perform single-step prediction is particularly strong, whereas we find

its multi-step prediction capability to be limited and problematic. In the

presence of noisy data, we find that the models produced are not always

optimal. When compared with the results of recent literature we find that

the algorithm performs better than statistical methods such as exponential

smoothing and ARIMA, however adaptations of the neural network model

can outperform the algorithm in some cases.
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1 Introduction

In this project, we investigate a time series prediction technique devised

by Ben Rogers, a programmer with an interest in machine learning and

chaotic series. The underlying algorithm differs from conventional time se-

ries prediction methods in that it is not based on statistical methods or

machine learning techniques; it is a completely novel approach which to the

best of our knowledge has never been attempted before. With a completely

unknown potential, the algorithm provides scope for an interesting investi-

gation - and in this project we explore the applicability and power of the

algorithm with the aim of discovering its strengths and weaknesses.

1.1 Motivation

The analysis of time series data with a view of forecasting future values in

the sequence is known as time series prediction. This is a significant and

challenging task in machine learning which has a diverse range of real-world

applications, such as using stock price movements to predict the direction

of financial markets [1][2], predicting the weather [3] and even forecasting

an earthquake from the analysis of historical seismic activity [4].

Prior to beginning the project, the prediction technique had already been

demonstrated to work effectively for several periodic time series including

the sawtooth and sine waves. However, most intriguingly, it has shown the

capability to learn complex aperiodic mathematical time series, such as the

chaotic logistic map.

Many of the most well established time series analysis techniques, dis-

cussed in Section 2.2 are parametric, meaning they make assumptions about

the structure of the underlying stochastic process of the time series. In order

to make these assumptions, analysis of the time series has to be undertaken

and parameters describing the structure must be passed to the learning

algorithm. This manual process can be very difficult and time consuming.
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In contrast, the technique we investigate in this project is non-parametric

and no assumptions need to be made about the structure of the time series.

We can simply pass an arbitrary time series to the algorithm and it will

begin constructing a predictive model immediately. In addition to this, the

algorithm is an online learner - meaning it learns and refines its model with

every observation, in real-time. If a technique with these characteristics is

able to match the performance of established parametric methods, then this

could prove to be very powerful and influential in the field of time series

analysis. Reflecting the iterative algorithmic nature of the approach, in

this report the technique will be referred to as the ALgorithmic Prediction

Engine (ALPE).

1.2 Objectives

This is an exploratory project in which our primary objective is to investi-

gate and discover the potential of this novel time series prediction technique.

The existing implementation of the algorithm is written in BASIC, one of

the first high-level computing languages. The language is not the most suit-

able choice for an investigation as it is difficult to read and does not benefit

from the advantages of object-oriented programming. Further limitations of

the existing implementation are that it is only able to work with 8-bit inte-

gers and that it is only able to make single-step predictions (i.e. predicting

only one time-step in the future). With this in mind, the key objectives of

this project are to:

• Develop an implementation of the algorithm in an object-oriented pro-

gramming language which can work with an arbitrary number of bits

and make multi-step predictions. The implementation must provide

an API which is easy and understandable for any programmer to use

without requiring an understanding of the underlying algorithm.

• Apply the algorithm to various synthetic and real-world data sets

and investigate the complexity and accuracy of the predictive models

produced by the algorithm.

• Compare the algorithm’s performance with that of established tech-

niques. We aim to find out in which cases the algorithm has potential
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to outperform these techniques and also to discover any flaws or weak-

nesses in the algorithm.

• Explore the possibility of applying the algorithm to problems outside

the domain of time series prediction.

1.3 Contributions

This project has a heavy focus on both software development and the anal-

ysis of time series prediction techniques. The main contributions are as

follows:

• An easy to use and extensible C++ implementation of ALPE which

provides a graphical display of progress and statistics which are up-

dated in step with the algorithm.

• An API which provides the functionality to interact with the under-

lying prediction algorithm - triggering predictions and advancing the

predictor’s learning process.

• A stunning 3D visualisation of predictive models.

• Statistical functions and utilities which can be used to analyse the

algorithm’s power and applicability.

• Analysis of the algorithm’s performance when applied to simple, pe-

riodic and chaotic time series - including both artificially generated

series and those derived from real-world measurements.

• A comparison of the algorithm’s performance with that of established

and emerging techniques. Includes comparisons with statistical tech-

niques (e.g. ARIMA), machine learning techniques (e.g. MLPs and

SVMs) and techniques developed in recent research papers.

• Exploration of the potential to apply the algorithm to compression

problems - including development of a compression analysis utility

and analysis of compression capability for ASCII text files.
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1.4 Report Structure

This report is further organised as follows:

• Chapter 2 gives an introduction to time series, including key proper-

ties as well as a description of relevant chaotic series. An outline of

established prediction techniques and a summary of recent research

is also provided to aid the understanding and interpretation of this

report.

• Chapter 3 describes and justifies the tools and libraries used in the

creation of the C++ implementation. An overview of the class layout

and a description of the functions made available by the API is also

provided.

• Chapter 4 provides implementation details and presents an overview

of the key features and extensions to the basic implementation.

• Chapter 5 focusses on the experimental aspect of the project. Results

are presented on the analysis of the models along with a detailed

and quantitative comparison of ALPE with established techniques and

emerging techniques developed in recent literature.

• Finally, Chapter 6 presents a summary of our results and highlights

the strengths and weaknesses of ALPE.
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2 Background

2.1 Properties of Time Series

A time series is an ordered sequence of values taken from a variable observed

at equally spaced time intervals. In this project we deal with univariate time

series - those which consist of a single scalar observation at each point in

time.

2.1.1 Autocorrelation

All time series considered in this project exhibit the property of autocorre-

lation. This means that successive values in the series are not independent;

they depend on each other. Any time series which does not have this prop-

erty is random, and for such series it would not be possible to predict future

values.

To examine the autocorrelation of a data set, we can plot the autocorre-

lation function (ACF) which shows the correlation of the data for various

lags. For example, for a lag of one the ACF would determine the correla-

tion between observations at an arbitrary time t, Xt and the observation one

time period earlier, Xt−1. Figure 2.1 shows an example plot of the autocor-

relation for a sawtooth wave. In this plot the blue lines indicate bounds for

statistical significance, and we can see that there are significant correlations

for many lags. This is expected as a sawtooth wave is a simple repeating

pattern in which there are bound to be correlations between future values

and past values.

2.1.2 Stationarity

In time series models, stationarity is an important assumption as it implies

that the series behaves in a similar way regardless of time - meaning its

statistical properties are constant over time. A series has the property of
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Figure 2.1: The autocorrelation function of a sawtooth wave

stationarity if it is without trend, has a constant autocorrelation structure

and no periodic fluctuations. This type of series has a mean, variance and

autocorrelation which do not vary over time.

2.1.3 White Noise

A series of observations, {εt} is white noise if its elements are independent

and identically distributed random variables with a mean of zero. In the case

where εt is normally distributed with zero mean, the series is called Gaussian

white noise. Equation 2.1 shows the expected output of the autocorrelation

function on white noise.

ACF =

1 if lag = 0

0 otherwise
(2.1)

In time series prediction, the differences between our predicted values and

the actual observations are called residuals. The concept of white noise is

very important in time series prediction, because in any accurate model

of a time series the residuals must be white noise. If this is not the case,

then our learned model is missing structure in the time series. Analysis

of the residuals can be performed by plotting their autocorrelation and

partial autocorrelation functions. The ACF plot for the residuals should
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look similar to that of figure 2.2, where there is no significant correlation

for any lag.

Figure 2.2: The sample autocorrelation function of white noise

2.2 Current Forecasting Techniques

This section presents some established techniques which are used to un-

derstand and predict future values in the series. These techniques can be

used for both single-step and multi-step prediction. Single-step prediction

is where we predict the next value in a time series, whereas in multi-step

prediction, multiple future values are predicted using the observations made

so far.

2.2.1 Autoregressive Models

An autoregressive (AR) model is a linear regression of the current value of

the time series against previous values in the series. An AR model which

uses p previous values to forecast future values is said to have order p and

is denoted AR(p). In this case an observation at time t can be written:

Xt = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + εt + c (2.2)

where φ1, ..., φp are the parameters of the model, c is a constant and εt is

white noise.

12



2.2.2 Moving Average Models

Moving average (MA) models forecast future values based on a linear com-

bination of past forecast errors (i.e. noise). An MA model which considers

the error of the last q observations is said to have order q and is denoted

MA(q). In these models, an observation at time t can be written:

Xt = θ1εt−1 + θ2εt−2 + ...+ θqεt−q + εt + µ (2.3)

where θ1, ..., θq are the parameters of the model, µ is the mean of the

series (often assumed to be zero) and εt−i are white noise.

2.2.3 ARMA Models

The AR and MA models can be combined to give a sophisticated forecasting

technique: the autoregressive moving average (ARMA) model. This model

considers both past observations and past errors when predicting future

values. ARMA was largely developed by two statisticians, George Box and

Gwilym Jenkins [5] and is sometimes referred to as the Box-Jenkins model.

An ARMA model which considers the p previous values and the q previous

errors is denoted ARMA(p,q). An observation at time t is then given by:

Xt =

p∑
i=1

φiXt−1 +

q∑
i=1

θiεt−i + εt + c (2.4)

A method called differencing can be applied to convert a non-stationary

time series into a stationary time series.

2.2.4 ARIMA Models

In many cases the time series in question consists of non-stationary data

which is not suitable for the standard ARMA model. An extension of

ARMA is the autoregressive integrated moving average (ARIMA) model

which addresses this problem. In ARIMA, a technique called differencing

is applied to the data as a preliminary step. Equation 2.5 shows how this

technique can be applied to give the first order difference of a time series,

Dt.

Dt = Xt −Xt−1 (2.5)

13



Once a stationary series has been obtained, the ARMA method is then

applied and the results are summed (or integrated) to give a final prediction.

The Box-Jenkins models have been applied successfully in a wide variety

of situations. For example, they have been used in prison planning [6]

and to forecast wheat production in Pakistan [7]. While these models are

clearly very successful, they can be tedious and time consuming to use as the

preliminary steps of model identification, parameter estimation and model

diagnosis need to be carried out before any predictions can be made. These

models are therefore not suitable for making real-time predictions from high

frequency data. They are also limited by the assumption of a linear form

for the model. As a result of this, ARIMA models are unable to capture

the highly non-linear relationships which are found in many chaotic and

real-world time series.

2.2.5 Machine Learning Methods

Another approach to time series forecasting is to use techniques from the

fields of machine learning and data mining. This ranges from simple meth-

ods such as linear regression, to more powerful techniques such as the Multi-

Layer Perceptron (MLP) and Support Vector Machine (SVM). MLPs and

SVMs are often applied to forecasting problems, as they are capable of

learning and modelling the non-linear trends in data.

Before these techniques can be applied, the temporal ordering must be

first removed from the time series. However, the temporal information must

be preserved in some way. This can be done by encoding the time depen-

dency using additional input fields, sometimes referred to as lagged vari-

ables [8]. Once the data has been transformed there are many machine

learning and data mining techniques which can be applied.

These are very different to the classical statistical techniques discussed

earlier and in many cases has been shown to be a more powerful approach

- for example Thissen et al. demonstrate how a support vector machine is

able to clearly outperform the ARMA method at predicting a chaotic time

series [9].
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2.3 Artificial Noise

Many real-world time series have a noisy component which obscures the

structure of the underlying data. This noise could arise from the observa-

tions themselves or from inaccuracies in the way observations are measured.

The problem of distinguishing between noise and structure is a key obsta-

cle for time series prediction methods. This is often a difficult task, as

the precise nature (e.g. the distribution and level) of the noise is usually

unknown.

When creating synthetic time series, we may wish to introduce a noise

component to a known series in order to replicate the effect of noise. As

discussed in section 2.1.3 the noise component should have the properties

of white noise. We can therefore generate artificial noise by sampling from

a probability distribution, as long as we ensure that our distribution has

zero mean and a constant variance. Figures 2.3 and 2.4 show the effect of

artificial noise on a time series given by a sine wave signal.

Figure 2.3: Sine wave without a noise component

Figure 2.4: Sine wave with uniformly distributed artificial noise

In this project, we use a variant of the Mersenne Twister for all random

number sampling. With a long period of 219937 − 1 we can be confident in

the quality of our psuedorandom numbers.
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2.4 Measuring Error

Comparing techniques and studying their performance is an important part

of this project and so we need to be able to quantify their ability to make

accurate predictions. For this purpose, we will use an error metric known

as the root-mean-squared error (RMSE) as a way to score an algorithm’s

performance at predicting future values in a time series. With this metric,

we take the square of each of our residuals and then find the square root of

their mean. Equation 2.6 shows the RMSE for n predictions, where pi and

oi signify a prediction and a corresponding observation.

RMSE =

√√√√ 1

n

n∑
i=1

(pi − oi)2 (2.6)

The advantage of using the RMSE is that larger residuals are penalised

more as a result of the square, making the error significantly higher if there

are large residuals. This is good for us since large errors are particularly

undesirable in time series prediction.

The RMSE has the same units as the data being predicted. In order

to make comparisons between models across different data sets, we require

a relative measure. For this purpose, we use the normalised root-mean-

square-error (NRMSE) which is independent of the units and scaling of the

data. Equation 2.7 shows the NRMSE for n predictions, where pi and oi

signify a prediction and a corresponding observation and o is the mean of

the observations.

NRMSE =

√√√√√√√√√
n∑

i=1

(pi − oi)2

n∑
i=1

(pi − o)2
(2.7)

An NRMSE of zero indicates a perfect prediction, while a value greater

than 1 indicates that the predictions are no better than using the mean

value of the time series, o.
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2.5 Chaotic Series

Chaos theory states that small systems and events can cause very complex

behaviour or dramatic outcomes, and that these complex outcomes are ac-

tually the result of a sophisticated, underlying order [10]. In fact, a chaotic

system is a purely deterministic process despite having a seemingly random

appearance. The analysis of these series is very difficult because they consist

of stable and unstable states, interwoven in an extremely complicated pat-

tern [11]. Therefore, a successful technique for chaotic time series prediction

must be able to capture very subtle deterministic features.

Many processes found in our world and in nature exhibit chaotic be-

haviour. Solar system dynamics, the economy, the weather, river flows and

electrical power consumption are just a few examples of processes where

chaotic behaviour can be found. A key characteristic in all of these pro-

cesses is that they are highly sensitive to initial conditions. Therefore, as

shown in Figure 2.5, a slight change in the initial conditions can result in a

dramatically different series of observations. As a result of this, long term

prediction of chaotic time series is impossible - however, highly accurate

short term prediction can be achieved.

For chaotic series we can plot a phase space diagram, which is simply a

plot of Xt against Xt−1. These plots represent the possible states of the

chaotic system and often form distinctive shapes, showing the determinism

in a seemingly random system. For example, as depicted in Figure 2.6, the

phase space plot for the chaotic logistic map resembles an inverted parabola.

When predicting chaotic series, our predictions can be used to plot a phase

space diagram which we can compare to the expected diagram - giving us

an immediate idea of how well the predictor is performing.

In this section some benchmark chaotic series are introduced, along with

a discussion of previous attempts to predict them.

2.5.1 Chaotic Logistic Map

The logistic map is a very simple non-linear equation, given by Equation 2.8.

xn+1 = rxn(1− xn) (2.8)

Interestingly, very complex chaotic behaviour can be observed when the
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Figure 2.5: The effect of a small change in initial conditions [12].

r parameter is set close to 4. In all tests discussed in this report, we use an

r value of 3.99.

2.5.2 Mackey-Glass Chaotic System

The Mackey-Glass chaotic system is given by a non-linear time delay differ-

ential equation (Equation 2.9).

dx(t)

dt
=

0.2x(t− τ)

1 + x(t− τ)10
− 0.1x(t) (2.9)

When generating Mackey-Glass data for our experiments, we will config-

ure our parameters as follows: time step (∆t) is 0.1, the initial value (x0)

is 1.2 and τ = 17. These are the same parameters as are used in [12][13] -

enabling us to make meaningful comparisons.

The Mackey-Glass system has been used as a model of white blood cell

production [14] and with its strong chaotic behaviour has become a bench-

mark for chaotic time series prediction.
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Figure 2.6: The phase space diagram for the chaotic logistic map - showing
the relationship between Xt and Xt−1.

2.5.3 Lorenz System

Lorenz found three ordinary differential equations which closely approxi-

mate a model for thermal convection [15]. These equations have also be-

come a popular benchmark for testing non-linear predictors. The Lorenz

model is given by the equations in 2.10.

dx(t)

dt
= a(y − x),

dy(t)

dt
= bx− y − xz,

dz(t)

dt
= xy − cz

(2.10)

For this system, we will generate two sets of data in order to make compar-

isons with the results obtained in [12] and [16]. One series will be generated

with a = 10, b = 28 and c = 8/3. Another will be generated with a = 16,

b = 45.92 and c = 4. In both cases, a time step of ∆t = 0.01 will be used.

These sets of parameters are commonly used in generating the Lorenz sys-
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tem because the resulting systems have been shown to never form closed

cycles or reach a steady state; instead, these systems exhibit deterministic

chaos.

2.5.4 Henon Map

The Henon chaotic time series can be constructed with the following equa-

tions:

x(t+ 1) = 1− ax(t)2 + y(t),

y(t+ 1) = bx(t)
(2.11)

When generating data for our experiments, we set a = 1.4 and b = 0.3.

These same parameters are used in both [12] and [17].

2.5.5 Sunspot Number

The sunspot number is a naturally occurring chaotic series. It provides a

measure of solar activity and has a period of 11 years - known as a solar

cycle. As solar activity has a significant affect on the climate, satellites and

space missions, it is very useful to be able to forecast the series accurately.

While several sunspot number data series exist, the most useful series to

predict is the smoothed monthly sunspot number. This series has been

shown to exhibit deterministic non-linear chaotic behaviour [18] and so is

inherently very difficult to predict.

2.5.6 River Flow Rates

Another interesting and naturally occuring series is that of daily river flow

rates. River flow prediction is important as it is used to forecast and mitigate

floods, and in the planning and operation of water provision projects. In our

analysis, we use a time series representing the Mississippi river daily flow

rate. The Mississippi river is one of the world’s largest rivers with a length

of over 3700km and has become a popular subject of flow rate prediction

research. It has been shown in previous studies that its daily flow rate

demonstrates chaotic behaviour [19][20].
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2.5.7 Attempts at Chaotic Prediction

The evolution of statistics, artificial intelligence and machine learning has

given rise to numerous attempts to predict chaotic time series. We will

later evaluate the novel technique by comparing its performance with that

of previous efforts.

A statistical approach to modelling non-linear time series is presented

by J. Farmer and J. Sidorowich [21]. They demonstrate their technique

by applying it to several examples, including data from the Mackey-Glass

system.

It has been shown that fuzzy inference systems based on simple ‘If-Then’

rules can achieve a higher predictive accuracy than the traditional statistical

approaches. Jang and Sun show how this technique can outperform auto-

regressive modelling. Similarly to the above, they use the Mackey-Glass

system as a basis for comparison.

Gholipour et al. demonstrate how fuzzy neural networks (an adaptation

of the MLP) can achieve a high predictive accuracy on the Mackey-Glass

system, the Lorenz system and also on the sunspot number time series [12].

As can be seen in Figure 2.7, their best neurofuzzy model is able to perform

a multi-step prediction to predict an entire solar cycle with very high accu-

racy. This is a significant improvement on previous attempts to predict the

sunspot number series, such as the statistical approaches presented in [18]

and [22]. The neurofuzzy models were also shown to be able to predict the

Lorenz system accurately in the presence of artificial noise.

A different method was adopted by Karunasinghe and Liong, who demon-

strated that a global artificial neural network model is often able to out-

perform the widely used local prediction models [16]. They present their

findings on the Lorenz series (both with and without noise) and on two

chaotic river flow time series - one of which is the daily flow rate for the

Mississippi river.

Another interesting approach, presented by Aly and Leung [23], involved

the fusion of results from various predictors (including neural networks and

statistical techniques) to produce a final predictor which is more accurate

than any of the individual predictions. The fusion approach was demon-

strated on the Mackey-Glass series. The paper concludes that the fusion of

predictors is more robust when there is insufficient training data available
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Figure 2.7: Multi-step prediction of the monthly smoothed sunspot numbers
for the 23rd solar cycle, obtained using a fuzzy neural network.

than any of the individual predictors.

There also exists techniques inspired by evolutionary science and genetics.

Cortez et al. have shown how artificial neural networks can be combined

with genetic algorithms [17]. With this technique, an algorithm is used to

find the best neural network solution to a prediction problem by tweaking

parameters and evolving a population of potential solutions towards the

best solution using a ‘fitness’ function. In the case of time series prediction,

the fitness function is higher when the RMSE is lower and when the model is

smaller (to avoid unnecessary complexity). In [17], the evolutionary neural

network approach is compared with ARIMA using several real-world and

chaotic series, including the Henon map.
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2.6 Weka

The Weka project provides a comprehensive collection of machine learning

algorithms and enables researchers to quickly try out and compare a variety

of machine learning methods on a data set [24]. Weka has a time series

framework which applies the machine learning/data mining approach to

time series forecasting, as discussed in section 2.2.5. The project is open

source and is written in the Java language; it has been well developed by

the data mining community and performs many of the same features as

expensive software used by large companies. In addition, Weka provides an

API enabling it to be easily embedded into other applications.
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3 Design

Our new implementation is based on the original prediction algorithm, for

which the pseudocode was provided by Ben Rogers. Initially, our aim was

to create an object-oriented version of the algorithm which solves two key

limitations of the BASIC implementation. The original algorithm is only

able to work with fixed 8-bit integers and only supports single-step predic-

tion. On the other hand, our new implementation supports an arbitrary

bit size for observations and predictions and also provides the functionality

to perform multi-step prediction. In this chapter, the core design and key

aspects of the implementation are discussed. Later, additional features in-

cluding model visualisation and several analytical tools and extensions are

developed.

3.1 Tools & Design Decisions

In this section, we discuss our choice of programming language along with

which tools and libraries can be used in our implementation.

3.1.1 Programming Language

With an initial objective of developing an object-oriented implementation

of ALPE, one of the first decisions to make was which language to use for

the new implementation. The obvious choices were C#, Java or C++, all

of which are powerful and widely used object-oriented languages.

One of the most significant differences between these languages is in their

compilation procedure. At compile time, both Java and C# compile to

an intermediate language which is independent of the target architecture

and operating system and executes in a managed environment. This can

result in very fast compilation, but performance at run-time can suffer as

the intermediate language has to be translated into a set of machine code

instructions. On the other hand, C++ compiles and links the source files
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directly into a native executable and it is possible to compile for both Win-

dows and Linux based platforms. Compilation is generally slower than Java

and C# but the compiler has more time to make optimisations. C# and

Java provide garbage collection for the convenience of the developer, this

adds a performance overhead as objects and references must be tracked by

an additional process. C++ does not have this overhead, again resulting

in improved performance with the trade-off being that the developer has

an additional responsibility to manage memory allocation carefully. In this

project, performance is very important; we want our implementation to han-

dle large predictive models while maintaining a speedy predictor. Therefore,

C++ is a suitable choice for our programming language.

Another advantage of using C++, particularly for this project, arises from

the fact that implementing ALPE requires bit-level manipulation. C++

provides the developer with significantly more control over low level bit

manipulation than Java and C#.

Finally, C++ has been around for a much longer period of time and

subsequently a very large collection of libraries has been made available for

developers to use. This means there is a great choice of graphing libraries

and support for statistical analysis, which are also aspects we will need to

consider.

3.1.2 Graphical User Interface

There are two popular toolkits for C++ graphical user interface develop-

ment: the Qt Framework and WxWidgets. Both are cross-platform com-

patible and having been around for over twenty years are very mature and

widely used. Both have many useful utilities which enable developers to cre-

ate imaginative and stylish user interfaces. However, their biggest difference

is in the tools and documentation packaged with their distributions.

Unlike WxWidgets, Qt is distributed with an integrated development

environment called Qt Creator - which facilitates the design and creation

of interfaces making development considerably faster and more convenient

for the developer. Qt is also heavily documented and there is an exten-

sive amount of support material available, whereas the documentation for

WxWidgets is less extensive. With no experience in developing an interface

for a C++ application, Qt was the preferable choice.
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3.1.3 Additional Libraries

In addition to C++ and Qt, some additional libraries are required for plot-

ting graphs, visualising the predictive models and performing statistical

analysis.

We will use QCustomPlot, a plotting widget which is designed to be

used with Qt. It has a simple and easy to use API, and provides sufficient

graphing functionality for the plotting of observation, prediction and error

graphs in our implementation.

To visualise the predictive models, we will use UbiGraph - a tool for the

dynamic visualisation of graphs. UbiGraph runs in its own process, but

provides a C API which enables communication with the UbiGraph process

over the XML-RPC protocol. We can then make calls to the API to add

nodes and edges to the graph whilst the algorithm is running - resulting in

a real-time visualisation of the model.

The free, open-source R programming language and environment provides

a huge range of pre-packaged statistical functions and data analysis tools. It

is widely used by statisticians and data miners for data analytics and its li-

brary of functions includes the auto-correlation and partial auto-correlation

functions which we will need to analyse our predictions and models.

In order make calls to and communicate with the R environment from

within our C++ implementation, we use the RInside and Rcpp packages.

These packages enable the embedding of R within C++ code. It is also

possible to use RInside with the Qt framework to display graphs generated

by R within our own graphical user interface.

3.2 Class Overview

A simplified UML diagram showing the core classes and relationships in our

new implementation is shown in Figure 3.1. A more complete class diagram

(depicting all classes in the final implementation, including those added as

part of the extensions discussed in Section 4.4) can be seen in Figure A1.

The Predictor class provides direct access to the prediction algorithm

through a simple API which does not require an understanding of the algo-

rithm itself. The API is discussed further in Section 3.3. The Predictor

is composed of n Tree instances, where n is a parameter specifying the
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number of bits a given Predictor instance can handle.

The Predictor also requires a reference to an abstract class,

TimeSeriesProvider, which guarantees provision of a function which

can be used to retrieve a series of observations. In our ini-

tial implementation, there is just one implementation of this class:

TimeSeriesFromFile.

Any developer should be able to create an instance of and use Predictor

with no additional configuration. In our implementation, we chose to

use the Qt framework to design a user interface which interacts with an

instance of Predictor via a separate thread. To accomplish this, a

PredictorInterface class is introduced. This class has the responsi-

bility of handling all logic involving the user interface as well as coordi-

nating communication between components via the Qt signals and slots

mechanism. In order to run the prediction algorithm, an instance of

PredictorThread is created and started by the PredictorInterface.

Predictions can then be made asynchronously, and the thread can emit a

signal to notify the user interface upon each new prediction.

3.3 API Functions

To keep the API simple, just a few key functions are made available by the

Predictor class. These are listed and explained in Table 3.3.
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Figure 3.1: UML diagram showing the relationships between classes in the
basic C++ implementation.
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Method Signature Description

Predictor(TimeSeriesProvider&,
int)

Constructor. Creates new instance of
Predictor and sets its time series provider
accordingly. The int parameter specifies the
expected bit size of each observation.

Prediction
makePredictionAndLearn()

Triggers the predictor to make a new prediction,
given the observations made so far. The predic-
tor will then make a corresponding observation,
compare this with its prediction, and modify the
predictive model appropriately. The prediction
is returned in a Prediction object.

void reset() Restores the predictor instance and the current
model to its original state.

void setMaxNodeCount(int) Sets the maximum size of the predictive model.
(Default value is 2, 000, 000 ∗ n where n is the
bit length of observations.)

void setSignedPredictor(bool) Can be used to toggle the predictor between
signed and unsigned mode. In signed mode, neg-
ative observations are allowed. (Default value is
unsigned, i.e. false.)

void setPlotUbigraph(bool) Enables or disables the model visualisation.
Faster performance is expected with visualisa-
tion disabled. (Default value is true.)

int getBitCount() Returns the observation bit size which the pre-
dictor expects.

int getMaxNodeCount() Returns the current limitation on the size of the
predictive model.

Prediction
makePrediction(vector<long>,
bool) (extension)

Triggers the predictor to make a prediction using
the current model, but pretending that the last
observations made are those given in the vec-
tor parameter. The boolean parameter specifies
whether these observations should be temporar-
ily appended to the actual observations. The
state of the predictor and model are not affected
by a call to this function.

Table 3.1: Description of the key API functions.
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4 Implementation

Development of the C++ implementation was split into several stages.

Firstly, a prototype implementation of a single-bit predictor was developed.

This is a predictor that is only able to learn and model a binary time series.

This implementation was then scaled to support observations and predic-

tions of an arbitrary bit size. Following this, additional features including

model visualisation, artificial noise generation and tools for analysis and

experimentation were developed. In this chapter, we discuss details of the

implementation and provide an overview of the features and extensions.

4.1 Single Bit Predictor

The first stage of development involved creating a prototype single-bit pre-

dictor. The core classes were implemented as discussed in Section 3.2.

Figure 4.1 shows the single bit predictor working as expected on a simple

repeating binary series. QCustomPlot is used to draw observation, predic-

tion and error graphs whilst the predictor is running. Here, the red area in

the error graph indicates that the prediction was different to the observa-

tion. As expected, the predictor learns the repeating series very quickly.

Once satisfied that the single bit predictor was working as expected, the

next challenge was to scale this to work with an arbitrary number of bits.

4.2 Arbitrary Bit Predictor

In scaling the predictor to work with an arbitrary number of bits, it was

important to keep the decrease in performance for larger bit capability as

small as possible.

One of the challenges in ensuring scalability was in implementing a node

recycling scheme. This is required in order to limit the size of the model

while at the same time ensuring that the model can still be improved with
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Figure 4.1: The single bit predictor being tested on a repeating binary series
of eight observations: 00101101

new observations. The recycling of a node involves deleting a leaf node and

replacing it with a new node. Our initial solution involved maintaining a

list of leaf nodes and then picking a random node for deletion from this list.

However, maintaining the list of leaf nodes proved to be very costly and the

predictor operated slowly for a large number of bits. A better solution is

to maintain a pool of all nodes in the model, and select randomly from this

pool until a leaf node is found. As there is a high probability of selecting a

leaf node, this technique works very effectively and scales well.

Another concern was with managing the bits effectively in memory. In

the single bit implementation, the std::bitset is used to hold observa-

tions and predictions in memory. This is a specialist container class which

makes bit-level manipulation easier to program and more efficient in terms

of space optimisation and performance. However, at compile time, this type

requires a template parameter for its size (e.g. std::bitset<8> declares

a bitset with a capacity of 8 bits). In the arbitrary bit predictor, we do not

know the number of bits we need to work with at compile time and so the

std::bitset cannot be used. The popular C++ boost library provides

us with a solution: the boost::dynamic bitset<>, a container similar

to the standard bitset but which allows dynamic specifiction and resizing of

the container size. This type is therefore used for all bit-level manipulation

in the multi-bit predictor.
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To organise the application settings, a new QDialog was created. This

provides a convenient interface which can be used to change settings such

as the number of bits the predictor should handle and the model size limit.

A screenshot of the final settings dialog is shown in Figure A2.

Figure 4.2 shows the multi-bit predictor being tested on a sine wave signal.

It was decided to replace the error plot from the prototype with a more

typical residual plot. To aid analysis, some additional statistics were added

to the user interface, displaying the size of the model and the RMSE error

metric.

Figure 4.2: The multi-bit predictor being tested on a sine wave time series.

4.3 Model Visualisation

As discussed in Section 3.1.3, UbiGraph is used for 3D visualisation

of the predictive models. Upon initialisation of the C++ application,

an instance of Ubigraph is started. Whenever the model is updated

or modified by the predictor, the C++ application communicates with

the Ubigraph instance using the Ubigraph API. For example, a call to

ubigraph new vertex() is used to create a new node in the visualisa-

tion, and a call to ubigraph new edge(vertex id t x, vertex id t

y) is used to link two nodes together. Communication with the Ubigraph

32



instance takes place over the XML-RPC protocol.

Figure 4.3: Visualisation of the model constructed for the sine wave series.

4.4 Additional Features

To test that the new implementation implements the ALPE approach cor-

rectly, we compared the output of the C++ predictor with the output of the

original BASIC implementation for a range of 8-bit series. Having observed

a perfect match between both sets of output across several test cases, we

can be confident that the new implementation is performing correctly. We

were then able to proceed and extend the implementation further.

4.4.1 Negative Numbers

An immediate limitation of the basic implementation is that negative obser-

vations and predictions are not supported. In order to handle negative num-

bers, we use the signed long type which follows the standard two’s com-

33



plement representation. However, there is a complication when converting a

bitset representation to a signed long, since the boost::dynamic bitset

only provides the functionality to convert to an unsigned long. A static cast

alone is not enough to solve this problem since the number of bits used to

represent our values is usually less than the number of bits in a C++ long.

This causes the cast to work incorrectly when dealing with negative num-

bers. For example, an 8-bit signed long representation of −5 is not equiva-

lent to a 64-bit signed long representation of −5. To solve this problem, we

must perform a sign extension operation before performing a type cast. By

doing this, the sign is preserved for negative numbers.
A conversion of bitset ‘bs’ to a signed long is then given by:

long mask = ( long )(−1) << bs . s i z e ( ) ;

static cast<signed long>(

bs . to u long ( ) | ( bs . t e s t ( bs . s i z e ( ) − 1) ? mask : 0)

) ;

Also, the acceptable range of observations and predictions must be changed

when switching between a signed and unsigned predictor. For an n-bit un-

signed predictor, the range is [0, 2n−1] whereas for an n-bit signed predictor,

the range becomes [−2n−1, 2n−1 − 1].

4.4.2 Noise Generation

The ability to add artificial noise to a clean signal before it reaches

the predictor is very useful for analysis. In our implementation, we in-

troduce a new abstract class, NoiseGenerator, which provides a vir-

tual function long addNoise(long). We then alter the implemen-

tation of TimeSeriesProvider so that it can store a reference to a

NoiseGenerator instance. If a noise generator is set, then its addNoise

function is called for each noise-free observation before the observation is

returned to the predictor. This design is depicted in Figure A1.

For now, there is just one subclass of NoiseGenerator, the

UniformNoiseGenerator. This subclass can be used to add

uniformly distributed white noise to observations. To do this,

the boost::random::variate generator is used to combine a

boost::uniform int<> distribution function with a random number

generator. For high quality random number generation an implementation
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of the Mersenne Twister (discussed in Section 2.3), boost::mt19937, is

applied. Of course, if another noise distribution is required, we can easily de-

fine a new subclass of NoiseGenerator. If we apply uniformly distributed

noise in the range of [−5, 5] to a flat (zero) signal, then as expected, our

residuals are completely random over time (see Figure 4.4).

Figure 4.4: Residual graph resulting from applying the predictor to a uni-
form white noise signal.

4.4.3 Statistical Analysis

As discussed in Section 2.1.3, plotting the ACF and PACF of residuals is

a statistical approach to evaluating our predictive models. We therefore

extend our implementation to incorporate this functionality.

The R environment is first embedded into our C++ application, using

the method described in Section 3.1.3. A series of residuals can be loaded

into the R environment and R’s ACF and PACF functions applied to the

series. The resulting plots are saved to a temporary SVG file and can be

displayed in the C++ application using a QSvgWidget.

4.4.4 Multi-Step Prediction

Many relevant research papers present results for multi-step predictions

rather than for single-step predictions [12][16][23]. The ability to make

multi-step predictions is evidently very desirable in time series prediction,

particularly when forecasting real-world time series. We therefore adapt our

implementation of ALPE to support multi-step prediction - with the aim

of enabling the algorithm to be used to make predictions for an arbitrary

number of steps in the future at any point in time.

Since the algorithm is, by design, an online, single-step learner, an obvious

method of making multi-step predictions is to feed single-step predictions
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back into the predictor as observations. For example, if we make 10 obser-

vations and wish to predict the next 2, this can be achieved by predicting

the 11th observation and then using this prediction along with the 10 obser-

vations to predict the 12th. By doing this iteratively, an arbitrary number

of future observations can be predicted.

To implement this, the predictor’s API has been extended with an addi-

tional function: Prediction makePrediction(vector<long>, bool).

As described in Table 3.3, the vector parameter allows us to feed predictions

back into the predictor to use in the next prediction. By adding each new

prediction to this vector, we are able to use the current model at any point

in the series to make a multi-step prediction.

4.4.5 Phase Space Plot

As discussed in Section 2.5, a phase space plot can be used to give a quick

assessment of how well the predictor is performing on chaotic series. To

implement this, an instance of QCustomPlot is added to a new QDialog.

The PredictorInterface creates a single instance of this dialog upon

instantiation and is able to update the phase space plot in real-time upon

receiving each prediction.

4.4.6 Compression Analysis Utility

A final extension to the C++ implementation is the addition of a com-

pression analysis utility. For purely experimental purposes, we want to

investigate whether the models generated with ALPE could be useful in

the domain of compression. Our motivation for this is discussed further in

Section 5.7. One way of exploring this idea is to apply the algorithm to an

ASCII string, by passing the string to the predictor (as a series of ASCII

characters) one or more times. Having constructed a model, we want to see

how well the algorithm can reconstruct the string, given just the first few

characters. We also need to compare the amount of memory needed to store

the model relative to the amount needed to store the string. To accomplish

this, a utility is developed which can perform all of these functions.

Before developing the utility, a way of using an ASCII text file as a

time series had to be established. This involved creating a new class,

TimeSeriesFromASCII - a subclass of TimeSeriesProvider. This
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class simply interprets each character (byte) in the file as an 8-bit obser-

vation. The utility therefore requires an instance of Predictor with an

8-bit capacity. Similarly, a TimeSeriesFromBitStream class was im-

plemented which enables us to treat an ASCII file (or a binary file) as a

sequence of bits. In doing this, we are able to later experiment with each

method and see which yields the best results for compression. A new di-

alog, ASCIICompressionDialog is used to provide a user interface for

the utility. The dialog enables us to specify the number of times a string

should be passed through the predictor, along with the number of charac-

ters to store for initiating decompression. In the decompression step, the

same approach described in Section 4.4.4 is used to make multiple ‘predic-

tions’ given just a few initial characters. These predictions correspond to

our decompressed characters and are used to reconstruct a string.

The C++ algorithm for this procedure is shown in Figure 4.5. This

algorithm demonstrates how the predictor’s API can be used for multi-step

prediction.

When running the compression analysis procedure, the compression ac-

curacy and model size are calculated each time the string is passed through

the predictor. At termination, the most accurate model is displayed along

with the number of nodes in the model. A screenshot of the utility in action

is shown in Figure A3.
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unsigned int node count = 0 ;

// For each ‘ run ’ ( i . e . pas s ing o f the s t r i n g through the p r e d i c t o r )
for ( int run = 0 ; run < spinRuns−>value ( ) ; run++)
{

// Generate model by running en t i r e s e r i e s through p r e d i c t o r
for ( int i = 0 ; i < s e r i e s . s i z e ( ) ; i++)

pred i c to r−>makePredictionAndLearn ( ) ;

// Use i n i t i a l c ha rac t e r s to genera te a h i s t o r y
std : : vector<long> h i s t o r y ( sp inCharacters−>value ( ) ∗ BITS PER CHAR) ;
for ( int i = 0 ; i < sp inCharacters−>value ( ) ∗ BITS PER CHAR; i++)

h i s t o r y [ i ] = s e r i e s [ i ] ;

// Combine model wi th ‘ i n i t i a l c ha rac t e r s ’ to decompress the f i l e
int pred i c t i on sRequ i r ed = s e r i e s . s i z e ( ) − h i s t o r y . s i z e ( ) ;
for ( int s tep = 0 ; s tep < pred i c t i on sRequ i r ed ; s tep++)
{

Pred i c t i on p r ed i c t i on = pred i c to r−>makePredict ion ( h i s to ry , fa l se ) ;
h i s t o r y . push back ( p r ed i c t i o n . g e tPr ed i c t i on ( ) ) ;
node count = p r ed i c t i o n . getNodeCount ( ) ;

}

// Find ‘ decompressed ’ ASCII s t r i n g
std : : s t r i n g r e s u l t ;
for ( int c = 0 ; c < h i s t o r y . s i z e ( ) ; c += BITS PER CHAR)

r e s u l t . push back ( getChar ( h i s to ry , c ) ) ;

// Ca l cu l a t e decompression accuracy and model comp lex i t y
. . .

}

Figure 4.5: C++ algorithm used in compression analysis.
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5 Experimentation

Given that the true potential of ALPE is completely unknown, we conduct

numerous experiments in order to explore the applicability and power of

the algorithm with the aim of discovering its strengths and weaknesses.

We begin by investigating which types of data the algorithm can handle

and under what conditions it performs best. We add artificial noise to

various time series and observe the effects this has on the algorithm’s model

and predictions. A statistical analysis of the models constructed by the

algorithm is then carried out. To gain an understanding of how ALPE

performs relative to other methods for time series prediction, we perform a

thorough comparison with established and emerging techniques.

5.1 Data Generation & Preprocessing

Prior to beginning the experimental work and analysis of the predictor,

several test data sets were generated and preprocessed. In some cases,

having generated a series, the data points must be scaled to make them

compatible with the predictor. This is because a generated series is often a

set of continuous floating point numbers whereas we require a set of discrete

integers. MATLAB was used for the generation of chaotic time series and

Excel was used for the preprocessing of all data sets. In the generation of

chaotic time series, we use the parameters specified in Section 2.5.

For each series, having generated the data the best way to scale the series

(i.e. the number of bits to use to represent the series) must be determined. If

too few bits are used, then the scaled series will be significantly less accurate

than the original series and our results will not be reliable. If too many bits

are used, then the model constructed will be much larger than it needs to

be. The procedure of determining the optimal scaling is demonstrated here

for the Mackey-Glass series.

Having generated the Mackey-Glass series, we have a set of data points
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in the interval of [0.21922, 1.313768]. This series can be scaled and rounded

so that it is compatible with the predictor. This means that if we scale the

series to lie in the range of [0, 216 − 1] then this will yield a series which

is compatible with a 16-bit predictor. To evaluate a particular scaling, we

pass 2100 data points through the predictor of which the last 100 of these

are used to calculate an error metric. Having calculated the NRMSE for a

number of different scalings, the results shown in Figure 5.1 are obtained.

We observe that in this case, the NRMSE stabilises for approximately 20 or

more bits. Therefore, for this series we use a 20-bit predictor to carry out

our analysis.

Figure 5.1: The variation of the NRMSE with respect to different scalings
of a Mackey-Glass time series.

5.2 Model Analysis

A general analysis of the models constructed by the algorithm is performed.

We analyse the performance of the models in terms of predictive accuracy,

their complexity and the number of observations required to find structure

in chaotic behaviour.
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5.2.1 Correctness

As described in Section 2.1.3, the autocorrelation of residuals give us a

statistical indication of how well the learned model is capturing structure

in the data. By passing 2000 observations through the predictor and then

plotting the ACF and PACF for the last 100 residuals we can see if there is

any significant correlation at any lag. Having done this for several simple

and chaotic series, such as the logistic map as shown in Figures 5.2 and 5.3,

we observed that for all series there is generally no significant correlation

for any lag other than the zero lag.

The confidence bounds shown in the plots are at the 95% significance level.

In some cases there is one statistically significant correlation (such as the 4th

lag for the logistic map) but such anomalies are expected since 20 lags are

being considered at the 95% level. As there is no significant evidence for the

autocorrelation of residuals, this implies that the models being created by

the algorithm are correct in the sense that they are capturing the structure

of the time series well.

Figure 5.2: Plot of the ACF of residuals for the chaotic logistic map.

5.2.2 Complexity

We can use our visualisation of the model to keep track of the number of

nodes (vertices) in use at any point in time. This corresponds to the size

of the model. Table 5.1 shows how the size of the model varies for series

of different complexities. As we expected, more complex problems require

more nodes in the model. For simple series, such as the sawtooth and sine
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Figure 5.3: Plot of the PACF of residuals for the chaotic logistic map.

waves, the algorithm is able to construct a perfect model and so the size

shown is exact. For chaotic time series, it is impossible for the algorithm to

construct a perfect model and so we can only show an approximation of the

model size. This corresponds to the approximate size of the model when

the RMSE becomes stable.

Bit Size Node Count

Sawtooth Wave 8 864

Sine Wave 8 1577

Logistic Map 16 ∼ 37000

Mackey Glass 20 ∼ 200000

Table 5.1: Variation in model size with series of different complexities.

During experimentation we also observed that in the presence of noise

(of any level) the model size grows infinitely large, until the node limit is

reached. This is because it is in the nature of the algorithm to continually

build the model while predictions are not perfect. Therefore, in some cases,

it is important to set an appropriate node limit to prevent the algorithm

from building an unnecessarily large model. The effect of noise is further

discussed in Section 5.4.
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5.2.3 Phase Space

Through examining the phase space plot during the prediction of chaotic

series, we can get a good idea of how quickly the predictor is learning the

deterministic behaviour in the chaos. For the chaotic logistic map, it is

difficult to gain an understanding of how well the predictor is performing by

examining the observations and predictions alone. As shown by Figure 5.4,

the series appears to be extremely random. If we instead examine how

the predictor’s phase space plot changes over time, we are able to see the

distinctive parabola formation after just 200 observations (Figure 5.5). This

demonstrates how quickly the algorithm is able to learn the structure.

Figure 5.4: 1000 observations of the chaotic logistic map time series.

Figure 5.5: The predictor’s phase space plot after 200 observations of the

chaotic logistic map.
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Similarly, for the Henon map we see that after 1000 observations a clear

resemblance of the expected phase space has become visible (Figure 5.6).

Again, this highlights the algorithm’s ability to quickly find structure in

chaos.

Figure 5.6: Left - The predictor’s phase space plot after 1000 observations of
the Henon map. Right - The expected appearance of the Henon
map’s phase space [25].

5.3 Comparison with Weka

The predictor’s accuracy is compared with the data mining methods dis-

cussed in Section 2.2.5 using Weka’s time series framework. A comparison

is made with the MLP and SVM approaches for both single-step and multi-

step predictions. In each test, the first 2000 observations were used for

training and then the NRMSE error metric was calculated over the next

20 data points. As an exception, for the multi-step Mackey-Glass test 200

data points were used in our calculation. This is because the Mackey-Glass

series follows a smooth curve and so more time is needed to observe its

chaotic behaviour. Since the MLP and SVM give continuous predictions,

these predictions were rounded to integers before calculating the NRMSE,

so that we are able to make a fair comparison with ALPE.
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Table 5.2 presents our results for the noise-free sine wave (8-bit), chaotic

logistic map (16-bit) and Mackey-Glass series (20-bit) for both single-step

and multi-step prediction.

Single-Step Multi-Step

ALPE MLP SVM ALPE MLP SVM

Sine Wave 0.0000 0.0082 0.0046 0.0000 0.0243 0.0137

Logistic Map 0.0374 0.0410 5.3592 0.7679 1.2144 10.7654

Mackey-Glass 0.0346 0.0107 0.0127 1.4341 1.0394 0.9998

Table 5.2: The NRMSE for ALPE, the Multi-Layer Perceptron (MLP) and

Support Vector Machine (SVM).

For the sine wave all three predictors achieve an NRMSE very close to

zero, which is what we would expect given that this is a simple cyclic noise-

free series. Here, ALPE has an NRMSE of zero for both single-step and

multi-step prediction as it is able to model the discrete nature of the time

series perfectly, whereas since the MLP and SVM are intended for continu-

ous data there is often a small error in their predictions.

For the logistic map, ALPE and the MLP are able to make single-step

predictions very well, showing that they are both able to model the deter-

minism in the chaotic series. With multi-step prediction, ALPE is the only

technique which scores an NRMSE less than one, meaning that it is more

accurate than using the mean of the series for every prediction. However, it

is still a high NRMSE which indicates that the algorithm is not able to make

multi-step predictions for the logistic map very well. This can be explained

by the short-term predictability of chaotic series.

Finally, for the Mackey-Glass series, we see that the MLP and SVM

achieve a slightly lower NRMSE for single-step prediction than ALPE, how-

ever clearly all three techniques are able to make very accurate short-term

predictions for this series. In multi-step prediction, we see that all three

techniques are unable to make accurate long-term predictions.
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5.4 Adding Artificial Noise

To find out how well the predictor handles noise, uniformly distributed

white noise in the range of [−x, x] is added to each series, where x is 10% of

the standard deviation of the clean series. The same tests as described in

Section 5.3 are then performed on noisy versions of the sine wave, logistic

map and Mackey-Glass series.

An initial observation for the sine wave experiment is that the predictions

are consistently more noisy than the observations. We can also see that

there appears to be a trend in the residuals. To confirm this, we examine the

autocorrelation of residuals (see Figure 5.8) and find that there is significant

autocorrelation in the residuals at several lags. As the residuals themselves

have structure (as opposed to being uncorrelated white noise), this implies

that the predictor is not finding the best possible model for the noisy sine

wave. For the logistic map and Mackey-Glass series, no significant trend in

the residuals was found.

The results for all three series are presented in Table 5.3. We see that for

single-step prediction, all three series have an NRMSE of approximately 0.2.

This shows that the models are still reasonably good and that the predictor

is still able to capture the deterministic behaviour of the chaotic series in

the presence of noise.

Figure 5.7: Plot of observations, predictions and residuals on a noisy sine
wave.
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Figure 5.8: The PACF of residuals when predicting a noisy sine wave.

Clean Noisy
Single-Step Multi-Step Single-Step Multi-Step

Sine Wave 0.0000 0.0000 0.2280 0.0901

Logistic Map 0.0374 0.7679 0.2272 1.1963

Mackey-Glass 0.0346 1.4341 0.2185 1.6209

Table 5.3: A comparison of the NRMSE on clean and noisy time series using
ALPE.

5.5 Non-Stationary Series

We investigate how well the predictor is able to forecast non-stationary time

series. Here, we apply the predictor to an airline passenger dataset which

consists of 144 monthly passenger numbers for an airline for the years of

1949 to 1960. As can be seen in Figure 5.9, this is a non-stationary time

series with a linear trend.

Figure 5.9: Non-stationary monthly passenger number data set.
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The predictor is first applied to this unaltered series by observing the first

124 data points and then predicting the following 20 using both single-step

and multi-step prediction. Then, the series is differenced using the method

described in Section 2.2.4, resulting in a new series with the linear trend

removed (Figure 5.10).

Figure 5.10: Differenced monthly passenger number data set.

The experiment is then repeated for the differenced series, using a signed

predictor. This yields the results shown in Table 5.4. The predictor is

clearly more capable of predicting the differenced series than the original

series. This shows that for better results, the predictor requires a time se-

ries to be made stationary - which is not surprising given that the statistical

techniques discussed in Section 2.2.1 have the same requirement.

Single-Step Multi-Step
RMSE NRMSE RMSE NRMSE

Unaltered Series 90.0197 0.4422 101.3573 0.8760

Differenced Series 82.7726 0.2839 51.5650 0.1819

Table 5.4: The RMSE and NRMSE when predicting the unaltered and dif-
ferenced airline passenger data set.

Using Weka, we find that with the SVM approach an excellent perfor-

mance can be achieved on the non-stationary airline passenger data set.

As shown in Figure 5.11, support vector regression is able to model this se-

ries very well and make accurate multi-step predictions. These results imply

that data mining techniques are more effective at forecasting non-stationary

time series.
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Figure 5.11: Using a data mining approach to forecast the non-stationary
airline passenger number time series.

5.6 Comparison with Literature

A number of experiments have been carried out using synthetic and real-

world chaotic time series with the aim of comparing the performance of

ALPE with some of the recent chaotic prediction literature discussed in

Section 2.5.

5.6.1 Synthetic Chaotic Time Series

Two versions of the Lorenz system are generated as described in Section 2.5.3.

For this, a MATLAB implementation of the fourth order Runge-Kutta ap-

proximation technique is used. The generated data points are then scaled

to work with a 16-bit predictor. To compare with the results found in [12]

and [16], two experiments are carried out. For the first Lorenz system, 5500

data points are generated of which the first 3000 are discarded (to avoid a

transient response), the next 1500 are passed to the predictor as observa-

tions and the last 1000 are used to test the predictor and measure our error.

For the second Lorenz system, 5400 data points are generated of which the

first 4800 are used in training and the following 600 are used in testing.

These experiments are then repeated on a noisy versions of the Lorenz

system. For this, MATLAB is used to add Gaussian white noise to the

series. For the first system, a zero mean Gaussian noise with a standard

deviation of 5% of the standard deviation of the clean signal is added to
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the clean signal. For the second system, white noise with a standard devia-

tion of 0.1 is added to the clean signal. The results are reported in Table 5.5.

ALPE Literature
Noise-Free Noisy Noise-Free Noisy

Lorenz System 1 0.1203 0.1300 3.13e-5 0.0256

Lorenz System 2 0.1633 0.2033 3.10e-4 0.0634

Table 5.5: NRMSE for single-step prediction of a noise-free and noisy Lorenz
system.

We see that while ALPE is able to achieve reasonable predictive accuracy

on both the noise-free and noisy Lorenz series, machine learning methods

developed in the most recent research papers are able to achieve a much

lower NRMSE when predicting the Lorenz system.

For further comparison, we perform a multi-step prediction on the first

Lorenz system. This means the predictor attempts to predict all 1000 values

just given those seen in training and without any correction to the actual

values at each step. As reported in [12], we would expect the multi-step

prediction to diverge rapidly due to the system’s extreme sensitivity to

initial conditions. However, interestingly we find that instead of diverging,

the recursive prediction gets ‘stuck’ in a loop and makes the same set of

predictions repetitively. This result is shown in Figure 5.12. This indicates

that ALPE is not suitable for the multi-step prediction of time series which

produce oscillating behaviour.

Next, we perform tests on the Mackey-Glass system in a similar fashion

to the experiments carried out in [13]. The series is generated for 0 ≤ t ≤
2000 of which 1000 points between t = 124 to 1123 are kept for training

and testing. Having scaled the data appropriately, a 20-bit predictor is

trained on the first 500 observations and then the next 500 are used to

evaluate the predictive accuracy. The predictions are then scaled back to

their original form and the RMSE error metric is calculated. We found that

ALPE achieved an RMSE of 0.069. When compared with the results of

[13], we find that this is an improvement on the best auto-regressive model

found for which the RMSE was 0.078. However, it was also shown that a

fuzzy inference system could predict the same series with an RMSE of just
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Figure 5.12: Prediction loop when making a recursive multi-step forecast for
1000 Lorenz series values.

0.0015. It should be noted that there is a significant disadvantage to the

fuzzy inference system approach: their model took over 2 hours to build on

an HP Apollo 700 Series workstation. This would perhaps be only a few

minutes on today’s computers, however our implementation of ALPE builds

a model and makes its predictions in under ten seconds.

Finally, we experiment with the Henon map. The series is generated for

0 ≤ t ≤ 1000 as described in Section 2.5.4. The first 900 observations

are used in training, and error metric is computed over the remaining 100.

The algorithm achieves an NRMSE of 0.3394. This shows that a reason-

able model has been constructed for the Henon map, as we suspected in

Section 5.2.3. When compared with the findings of [17], we see that this is

much better than the exponential smoothing and ARIMA techniques which,

when applied to the same data set, completely failed to model the chaotic

behaviour - as they scored NRMSEs of 1.06 and 0.83 respectively. However,

the evolutionary neural network approach is shown to be the most accurate

when applied to the Henon map, with an NRMSE of 0.13.
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5.6.2 Real-World Chaotic Time Series

The time series for the smoothed monthly sunspot number, discussed in

Section 2.5.5, was downloaded from the SIDC (World Data Center for the

Sunspot Index) [26].

A multi-step prediction of the 23rd solar cycle is then carried out, by

passing all data up to January 1999 to the predictor and then predicting the

next 26 months (corresponding to the 23rd solar cycle). Figure 5.13 shows

that our predictions do not follow the actual series very closely, though the

general trend is predicted correctly. When compared with Figure 2.7 we see

that the neurofuzzy models from [12] make a better multi-step prediction.

Their model has also estimated the solar cycle’s peak (120.8) very accurately,

whereas our predictions give an overestimation.

Figure 5.13: The predictor’s recursive multi-step forecast for the 23rd solar
cycle (January 1999 - 2001).

The predictor is now applied to problem of predicting daily river flow

rates of the Mississippi river. Data for the daily river flow rates between

the years of 1969-1987 are obtained from the US Geological Survey. Being

real-world measured data, there were inevitably some missing data points.

We were able to approximate these missing values using linear interpolation.

The data was then scaled for compatibility with a 20-bit predictor, and the
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first 15 years (5480 data points) were passed to the predictor for model

construction. We then predicted the following two years (730 data points)

using single-step prediction. As shown in Figure 5.14, the predictor’s model

proved to be very accurate for single-step prediction, with the occasional

‘spike’ where the prediction deviates from the actual value. This experiment

was repeated using 3-step ahead prediction and 5-step ahead prediction and

the NRMSE metric calculated for each.

Figure 5.14: The predictor’s single-step forecast for the daily flow rate of
the Mississippi river over a two year period (1984-1986).

We compare our results with those of [16], where an artificial neural net-

work is used to tackle the same prediction problem. The data from 1975-

1993, as used in [16], was unfortunately unavailable and so while we use

the same amount of training and test data in our experiments, it should be

noted that the data itself is not identical. For all three experiments, our

results and those from [16] are shown in Table 5.6.

ALPE MLP

1-step ahead 0.1197 0.0388

3-step ahead 0.2517 0.1330

5-step ahead 0.3635 0.2435

Table 5.6: Comparison of NRMSE of ALPE with the MLP approach when
predicting Mississippi river daily flow rates.
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Our results show that ALPE performs very well for the single-step pre-

diction and makes reasonable predictions when predicting 3 and 5 steps

ahead. However, the MLP appears to have achieved a lower NRMSE in all

three experiments. Of course, this could be a result of differing data in the

learning and test phases.

5.7 Application to Compression

Having observed the models produced by ALPE we decided to investigate

whether the algorithm could be used in the domain of compression. When

applied to time series, the algorithm builds a model to predict future values

in the series. What if, instead of passing numeric observations to the learn-

ing algorithm, we pass ASCII characters or the bytes of a binary file? If the

algorithm’s model can represent the data accurately there is potential for

compression, depending on the size of the model. Even if the model is not a

perfect representation of the data, there is potential for lossy compression.

To find out if the ALPE method can be applied in this way, we use the

ASCII compression utility described in Section 4.4.6 to test the predictor’s

compression capability on some simple ASCII strings. The compression ca-

pability is evaluated by calculating the decompression accuracy (percentage

of characters correctly predicted in the reconstructed string) and the size of

the model. This analysis is performed twice: firstly using an 8-bit predictor

where each ASCII character is treated as an observation and secondly using

a single-bit predictor where the ASCII file is treated as a stream of bits.

The strings used in testing are:

(1 ) abc (24 b i t s )

(2 ) aaabc (40 b i t s )

(3 ) agbyagagbyagbybyagbyagbybyagagby (256 b i t s )

(4 ) The quick brown fox jumps over the lazy dog (344 b i t s )

Table 5.7 shows the smallest model size (number of nodes) and minimum

number of initial characters needed to decode the original string with 100%

accuracy, for each string.

We can see that the model size needed to represent a string with 100% ac-

curacy is always less for the single-bit model than for the 8-bit model when

using the same number of initial characters. Therefore the single-bit model
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8-Bit Model 1-Bit Model
String Runs Chars Nodes Runs Chars Nodes

(1) 2 1 42 3 1 24

(2) 2 3 74 3 3 40

(3) 12 6 557 41 6 257

(4) 3 5 776 5 5 345

Table 5.7: Number of runs, minimum initial characters and minimum model
size needed to decode each test string with 100% accuracy.

always gives a more optimal solution. However, the number of nodes re-

quired by the single-bit model is always approximately equal to the number

of bits needed to store the original ASCII string - therefore no compression

can be gained from using these models. During experimentation, it also be-

comes clear that a small decrease in the model size leads to a big decrease

in accuracy. For example, if we decrease the number of runs used in (4)

from 5 to 4, the accuracy drops from 100% to 44% and the number of nodes

in the model drops from 345 to 335. In this case, a decrease in the model

size of just 3% has resulted in a 56% drop in accuracy. This indicates that

it is not feasible to apply the algorithm in its current form to compression

problems.
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6 Conclusions & Future Work

We have developed a fully functional and feature-rich C++ implementation

of ALPE which has enabled us to conduct an in-depth investigation into the

power, applicability and potential of this novel technique. By extending the

original algorithm to handle observations and predictions of an arbitrary bit

size, we were able to apply the algorithm to a diverse range of time series,

as long as the series were first scaled appropriately. In this chapter, we

present a summary of our results and discuss the conclusions we can draw

from them.

Our initial experimentation showed that, statistically, the algorithm con-

structs a good model for many series, as no significant evidence for the auto-

correlation of residuals was found. We saw that the algorithm demonstrates

the potential to make single-step predictions for certain chaotic series with

remarkable accuracy. This is especially true for the chaotic logistic map

and the Henon map - two non-linear chaotic series which are known to be

very difficult to predict. The algorithm’s ability to learn from the very first

observation and to discover complex patterns within a short space of time is

particularly impressive. The best example of this is for the chaotic logistic

map, where ALPE is able to construct an accurate phase space representa-

tion after observing under 200 data points.

When artificial white noise was added to the data we found that the

algorithm was still able to construct a reasonable model for both simple

and chaotic series - however, the noise had a larger effect than expected.

We found that when noise is added to the periodic sine wave there is clear

autocorrelation in the residuals - indicating that in this case the algorithm

is not building the best possible model for the observed series.

Our experiments with the Weka machine learning framework demonstrate

that the algorithm is able to outperform the basic MLP and SVM on certain

series, such as the sine wave and chaotic logistic map. However, this is not

always the case. In particular, for the Mackey-Glass series, the MLP and
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SVM yield more accurate predictions. We also saw that ALPE performs

best on stationary data - where any linear trend has been removed. When

applied to a non-stationary series, Weka’s SVM approach showed the ability

to model the series with considerably higher accuracy. This was not a sur-

prising result, given that statistical prediction techniques, such as ARIMA,

share the same requirement of stationary data.

For the Lorenz system we observed similar results to those found with

the Mackey-Glass series. Other techniques were able to give a better per-

formance on both noise-free and noisy versions of the system. Interestingly,

it seems that ALPE performs best on chaotic series derived from difference

equations (e.g. the logistic map and Henon map) rather than those derived

from differential equations, such as the Mackey-Glass series and Lorenz sys-

tem.

When applied to real-world data series, we saw that ALPE was able to

achieve impressive accuracy for single-step prediction. This was demon-

strated by its accurate predictions of the Mississippi river daily flow rate.

However, for multi-step prediction of the sunspot number series we found

that techniques developed in recent literature give a significantly better per-

formance.

From our own analysis, as well as our comparison with recent literature,

the MLP and adaptations of it appear to present the strongest competition

in the field of time series prediction at present. When choosing a prediction

technique, there are many aspects to consider including preprocessing steps,

configuration requirements, accuracy, model size and the speed and com-

plexity of the learning procedure. Many of these key differences between

ALPE and the typical MLP are summarised in Table 6.1.

Our work in developing a compression analysis utility and applying the

algorithm to the problem of compression proved to be an interesting exper-

iment. We saw that the models generated by the algorithm can be used to

encode a bit stream and later decode the original data or a lossy approxima-

tion of it. However, the models were consistently too large for the algorithm

to have any useful application in this domain.

In summary, we have shown that ALPE is a powerful, online, non-parametric

learning technique which can be applied successfully to a diverse range of

stationary time series. It’s performance on chaotic time series is particu-

larly impressive and it is able to outperform state-of-the-art statistical and
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machine learning methods in certain cases. When compared with other tech-

niques which require careful parameter configuration and consist of separate

training and testing phases, ALPE’s speed of learning and easy configura-

tion stands out as being significantly advantageous.

Listed below are some ideas for future work and investigation on the

algorithm and C++ implementation.

• Determine the reason for apparent anomalies when predicting the

Mackey-Glass and Lorenz systems. These are commonly the cause

of higher than expected prediction errors.

• Investigate the cause of cyclic behaviour in multi-step prediction.

Adapt the algorithm to avoid prediction loops.

• Investigate the potential of producing more compact and efficient mod-

els. If successful, re-evaluate the algorithm’s applicability to compres-

sion.

• Alter the C++ implementation to automatically detect the required

bit size needed to represent a given series - to avoid the need to set

this manually.

• Extend the C++ implementation to include functionality for addi-

tional preprocessing, such as differencing and automatic scaling. Again,

this would reduce the manual steps which are currently necessary to

analyse certain time series.

While the algorithm analysed and evaluated in this report is a very effec-

tive prediction technique, ongoing work to refine the algorithm and resolve

issues including those mentioned above is being undertaken by Ben Rogers.

The algorithm is currently protected under an NDA. For further informa-

tion, Ben can be reached at ben.rogers1@virgin.net.
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Figure A2: The settings dialog in the C++ implementation.
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Figure A3: The compression analysis utility in action.
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C. Rubio-Escudero, “Pattern recognition to forecast seismic time se-

ries,” Expert Systems with Applications, vol. 37, no. 12, pp. 8333–8342,

2010.

[5] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis,

Forecasting and Control. Englewood Clifs, NJ: Prentice Hall, 3rd ed.,

1994.

[6] B.-S. Lin, D. MacKenzie, and T. Gulledge Jr, “Using ARIMA models

to predict prison populations,” Journal of Quantitative Criminology,

vol. 3, pp. 251–264, 1986.

[7] N. Saeed, A. Saeed, M. Zakria, and T. M. Bajwa, “Forecasting of wheat

production in pakistan using ARIMA models,” International Journal

of Agriculture & Biology, 2000.

[8] “Time Series Analysis and Forecasting with Weka.” http:

//wiki.pentaho.com/display/DATAMINING/Time+Series+

Analysis+and+Forecasting+with+Weka. Accessed:

15/01/2013.

64

http://wiki.pentaho.com/display/DATAMINING/Time+Series+Analysis+and+Forecasting+with+Weka
http://wiki.pentaho.com/display/DATAMINING/Time+Series+Analysis+and+Forecasting+with+Weka
http://wiki.pentaho.com/display/DATAMINING/Time+Series+Analysis+and+Forecasting+with+Weka


[9] U. Thissen, R. Van Brakel, A. De Weijer, W. Melssen, and L. Buydens,

“Using support vector machines for time series prediction,” Chemomet-

rics and intelligent laboratory systems, vol. 69, no. 1, pp. 35–49, 2003.

[10] D. M. Rice, “Predictability of outcomes: chaos theory and diabetes

education,” The Diabetes Educator, vol. 33, no. 1, pp. 31–32, 2007.

[11] H. Peitgen, H. Jürgens, and D. Saupe, Chaos and fractals: new frontiers

of science. Springer, 2004.

[12] A. Gholipour, B. Araabi, and C. Lucas, “Predicting Chaotic Time

Series Using Neural and Neurofuzzy Models: A Comparative Study,”

Neural Processing Letters, vol. 24, pp. 217–239, 2006.

[13] J. Jang and C. Sun, “Predicting Chaotic Time Series with Fuzzy If-

Then Rules.” University of California Berkeley, 1993.

[14] M. Mackey and L. Glass, “Oscillation and chaos in physiological control

systems,” Science, vol. 197, p. 287, 1977.

[15] H. Abarbanel, Analysis of Observed Chaotic Data. 1996.

[16] D. Karunasinghe and S. Liong, “Chaotic time series prediction with a

global model: Artificial neural network,” Journal of Hydrology, vol. 323,

pp. 92–105, 2006.

[17] P. Cortez, M. Rocha, and J. Neves, “Evolving time series forecasting

neural network models,” 2001.

[18] Q. Zhang, “A nonlinear prediction of the smoothed monthly sunspot

numbers,” Astronomy And Astrophysics, vol. 310, pp. 646–650, 1996.

[19] S. Liong, K. Phoon, M. Pasha, and C. Doan, “Efficient implementation

of inverse approach for forecasting hydrological time series using micro

ga.,” Journal of Hydroinformatics, vol. 7, pp. 151–163, 2005.

[20] X. Yu, S. Liong, and V. Babovic, “Ec-svm approach for real-time hy-

drologic forecasting.,” Journal of Hydroinformatics, vol. 6, pp. 209–223,

2004.

[21] J. Farmer and J. Sidorowich, “Predicting Chaotic Time Series,” Phys-

ical Review Letters, vol. 59, no. 8, 1987.

65



[22] S. Sello, “Solar cycle forecasting: a nonlinear dynamics approach,”

Astronomy And Astrophysics, vol. 377, pp. 312–320, 2001.

[23] M. Aly and H. Leung, “Chaotic Time Series Prediction Using Data

Fusion.” International Conference on Data Fusion, 2001.

[24] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and

I. Witten, “The weka data mining software: an update,” ACM

SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[25] “Henk Bruin’s Research Interests.” http://http://personal.

maths.surrey.ac.uk/st/H.Bruin/res.html. Accessed:

08/06/2013.

[26] “World Data Center for the Sunspot Index.” http://sidc.oma.be/

sunspot-data/. Accessed: 31/05/2013.

66

http://http://personal.maths.surrey.ac.uk/st/H.Bruin/res.html
http://http://personal.maths.surrey.ac.uk/st/H.Bruin/res.html
http://sidc.oma.be/sunspot-data/
http://sidc.oma.be/sunspot-data/

	Introduction
	Motivation
	Objectives
	Contributions
	Report Structure

	Background
	Properties of Time Series
	Autocorrelation
	Stationarity
	White Noise

	Current Forecasting Techniques
	Autoregressive Models
	Moving Average Models
	ARMA Models
	ARIMA Models
	Machine Learning Methods

	Artificial Noise
	Measuring Error
	Chaotic Series
	Chaotic Logistic Map
	Mackey-Glass Chaotic System
	Lorenz System
	Henon Map
	Sunspot Number
	River Flow Rates
	Attempts at Chaotic Prediction

	Weka

	Design
	Tools & Design Decisions
	Programming Language
	Graphical User Interface
	Additional Libraries

	Class Overview
	API Functions

	Implementation
	Single Bit Predictor
	Arbitrary Bit Predictor
	Model Visualisation
	Additional Features
	Negative Numbers
	Noise Generation
	Statistical Analysis
	Multi-Step Prediction
	Phase Space Plot
	Compression Analysis Utility


	Experimentation
	Data Generation & Preprocessing
	Model Analysis
	Correctness
	Complexity
	Phase Space

	Comparison with Weka
	Adding Artificial Noise
	Non-Stationary Series
	Comparison with Literature
	Synthetic Chaotic Time Series
	Real-World Chaotic Time Series

	Application to Compression

	Conclusions & Future Work
	Appendix

