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Abstract

Argumentation is currently a flourishing field in Artificial Intelligence. Assumption-Based Argumenta-
tion (ABA) is a general-purpose argumentation framework suitable for supporting decision making in
areas such as medicine. ABA represents knowledge as a set of logic statements and can be used to derive
whether some other statement is supported by that underlying knowledge. However, it suffers a seri-
ous problem - all current implementations of the derivation procedure are slow, making argumentation
unusable for face-paced environments such as medicine where decisions need to be made quickly.

The aim of this work was to speed up the derivation process. The procedure is non-deterministic -
there are various paths we can take to reach the same conclusions. Hence, it is possible to define a
strategy which guides us through the derivation process. By a smart encoding of derivation strategies
and applying genetic algorithm on encoded representation, we managed to learn key characteristics of an
efficient strategy. We then applied that knowledge to create a set of heuristics which were twice as fast
as the current default derivation strategies when measures on a synthetically generated input.
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Chapter 1

Introduction

1.1 Motivation

Throughout our lifetime, each of us solves many complex problems. They arise from our everyday
activities, from our work or from our studies. Sometimes we consult with other people to find the
solution, but usually, at the end of the day, it is us making the final decision. In order to make that
decision, we use all the knowledge we have gathered about the problem. We obtain that data by answering
questions like: when did the problem occur, what possibly could have caused it and how does it manifest
itself. Unfortunately, the issue with some of the hardest problems is that the amount of data we have
on them is unimaginably large.

Imagine you are a doctor trying to diagnose a patient who has just arrived to the hospital. Usually it is a
routine for you, but his particular symptoms seem very strange. You run many tests on the patient and
you gain more and more knowledge about his current state. But you are still unsure what exactly the
problem is. All your past medical studies and experience together with the data you gained by examining
the patient form your knowledge base about the problem. However, since you cannot find a solution,
you must have some data missing. Maybe you forgot about something you have learnt or experienced?
Or maybe your knowledge is simply insufficient? In any case, you need to consult other sources – your
colleges, available medical journals or international medical community. Now the data possessed by all
of these sources form your knowledge base. However, you run into more problems. Most importantly,
your patient is dying and you do not have time to consult all of these available sources. It could take a
lifetime to go through all medical journals or to consult all experts in the area. Even if you had the time
to do so or you had the information organised more efficiently already, you now have to analyse all of
these opinions and points of views. They are subjective – they may differ or even contradict each other.
But your patient is dying - you need to make a decision and you need to do it fast.

Medicine is not unique in this type of problems. They occur in other areas as well. From our short
story we can identify two things all of them have in common. First of all, they relay on huge amounts of
data which may be scattered all over the world and represented in different ways. Secondly, they require
analysing these big volumes of (possibly inconsistent) data. Does it sound familiar? For anyone who has
taken computer science degree it should. We have built computers to solve exactly this type of issues.
And computers proved many times in the past that they are very good at solving them. All we have to
do is build a decision-supporting computer system, which would take all of the information as an input,
analyse it and produce a decision (a solution to the problem) as its output. Such systems have been
built in the past and are being used every day.

Unfortunately, as our short story indicates, they are further constraints. First of all, our system needs
to deal with inconsistencies in the data, e.g. differing opinions. Secondly, in areas such as medicine, the
decision-making process needs to be fast. Finally, a human being has to be confident with the decision,
so, ideally, the system should be able to justify its own output. Assumption-Based Argumentation (ABA)
has been suggested as a possible approach to tackle all of the described issues.
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1.2 Argumentation

Argumentation is a study of how conclusions could be reached using reasoning. Assumption-Based
Argumentation is a logic framework built on top of that notion and used to support decision-making.
[DKT09] The knowledge base is represented as a set of logic statements which describe: known opinions,
known disagreements between opinions (i.e. counter-opinions) and, finally, inference rules which specify
how further conclusions can be derived from what we already know. The framework is used to prove
or disprove statements basing on its knowledge base. If it manages to prove a certain statement, we
gain further confidence in the truth of that statement which may be very useful for our decision-making
process.

For instance, in our medicine example, the doctor could input all the symptoms and a statement such as
’the patient has brain cancer’. The system would then try to validate that statement and if it manages
to prove it, the doctor could gain further confidence that the brain cancer diagnosis is correct. The
process of conducting that proof is very similar to a real argument two people could have in everyday
life. Imagine a student and a lecturer arguing over an assignment mark. Lecturer’s initial statement is
that the student should get a C for the assignment. He supports his opinion by pointing out a crucial
piece of material which student did not cover in his answer. The student tries to defend himself and
attacks back by pointing out that the material was not covered anywhere during the lectures. It is the
lecturer’s turn to defend. He does so by arguing that the material was, in fact, covered during tutorial
sessions. The dispute ends if one side manages to defeat all arguments of the other side.

Assumption-Based Argumentation works using the same principle. For a given input statement, the
system tries to find all opinions recorded in the ABA knowledge base (also called ABA framework)
which support that statement. Then it tries to attack all of these opinions by finding any disagreeing
counter-opinions and so forth. Thus, for an input statement ’the patient has brain cancer’ it constructs
a full argument of whether the patient really has a brain cancer or not. The doctor could later view
the whole argument – all supporting opinions, counter-opinions etc. to gain further confidence in the
result of derivation. We will present more formal definition of the argumentation framework in chapter
2.

1.3 The problem

One crucial problem which is still not solved in the argumentation theory is the derivation time. The
knowledge bases, such as the medical knowledge base, consist of millions of statements. Many areas (e.g.
medicine) may require the answer to be found within minutes, if not seconds. Our work aims to tackle the
problem of efficiently computing argumentation dispute. As we will see, at each stage of the derivation
process we may have multiple choice points. For example, when we are defending our argument, we
could have many possible ways in which we could attack our opponent’s counter-argument. There may
be one way which would literally take ages to compute as it leads to further long dispute. However, we
may have a second, faster way of disproving opponent’s arguments. Since we only need to prove him
wrong once in order to invalidate his argument, we may considerable speed up the derivation process if
we choose faster way to do so. So the problem narrows down to having some sort of efficient heuristics
which would tell us which option to choose. The aim of this work is to find a way of obtaining these
heuristics for ABA knowledge bases.

1.4 Contributions

The key fact which we will emphasise several times in the report is that our goal was to learn the efficient
derivation strategies. Thus, we proposed a mathematical model which allows us to encode an arbitrary
derivation strategy in terms of various measures. The primary type of measures we have investigated
are graph measures. We investigated both the well-established centrality measures as well as measures
which we proposed ourselves. We can pre-compute them by translating our knowledge base from an
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’argumentation representation’ to a connected graph. We applied a genetic algorithm to learn how each
graph measure influences derivation speed.

We identified measures which have high positive correlation with performance and we performed addi-
tional experiments to discover and exemplify why exactly those measures are important to the derivation
speed. We also identified measures and derivation strategies which did not show any correlation with
performance. We then benchmarked the output of our learning on 400 synthetically generated and 30
real-world medical knowledge bases (’frameworks’) against current default strategy.

For synthetically generated frameworks, the heuristics which we used on average improved the derivation
speed - they were 2 times faster than the default strategy for small networks and about 1.5 times faster
for medium and large frameworks. We also compared their performance with a set of strategies which
were used to generate the synthetic frameworks in the first place. These strategies are considered to be
’good’ or ’correct’ strategies for solving a given synthetic framework as they are guaranteed to find a
solution within some preset time-bound. In this case, for small networks our heuristics proved to be 3
times faster and for medium and large frameworks both groups had a very similar performance. Thus,
we demonstrated that our solution is efficient and generic.

1.5 Summary of the report

In order to explain the derivation procedure and our approach to improving it, we first need to cover
the basis of argumentation theory. We also need to refresh the reader’s knowledge about Graph Theory
and genetic algorithms. Thus, we begin by introducing necessary background information in chapter 2.
We then move on to discuss the derivation problem in a bit more detail and then explore our approach
to solving it (chapter 3). Before diving into the experiments, we will have a short detour where we talk
about our experimental infrastructure (chapter 4). We then move on to the main part of the report where
we discuss learning experiments we performed in order to find correlations between various measures and
derivation speed (chapter 5). The correlations found are further validated by benchmarking them against
current default strategies (chapter 6). We conclude with discussion about further work which can be
done in this area (chapter 7).
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Chapter 2

Background

2.1 Assumption-Based Argumentation

Broadly speaking, argumentation is a process of using logical reasoning to reach conclusions. It is
currently a flourishing field in Artificial Intelligence and Logic. In his original paper, Dung [Dun95]
summarised argumentation by an old saying:

The one who has the last word laughs best.

Assumption-Based Argumentation (ABA) is a general-purpose argumentation framework. Its various
applications include decision-making, default reasoning and legal reasoning. [Ton12] It has also been
applied to solving real world problems, such as medical decision-making. [CTC+12] Intuitively, ABA is
a system which represents certain knowledge as a set of logic statements and can be used to infer whether
some other statement (an input query) is supported by that underlying knowledge or not. In order to
define ABA, we need to define two main underlying concepts – the representation of knowledge in ABA
and the derivation process of a random query. To better explain the concept and provide some common
intuition, we will first try to define ABA informally and then we will give a formal definition.

2.1.1 Definition of ABA framework

ABA framework (i.e. underlying knowledge base) consists of a set of logic statements which can be
divided into:

� assumptions

� non-assumptions

� inference rules

� contraries

Assumptions are sentences in language which are open to challenge. [DKT09] They are uncertain,
hence attacks will be always directed at them. A statement “It will rain” is a typical example of an
assumption.

Non-assumptions are either certain statements (i.e. facts) or conclusions of a set of assumptions or
non-assumptions (as specified by a inference rule). [DKT09] An example of non-assumption could be
statement “John is a lecturer in computer science”.

Inference rules specify how certain conclusions (non-assumptions) may be inferred from a set of as-
sumptions and non-assumptions. [DKT09] In other words, they denote that a non-assumption is a
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consequence of some assumptions and non-assumptions. For instance, a statement “If John is a lecturer
in computer science, then he is an expert in computer science” is a good example of an inference rule.
We will usually denote them in the following way:

expert(john, computer science)← lecturer(john, computer science)

We will usually refer to the left hand side of the inference rule as the head or the conclusion of the rule.
Note that assumptions will never occur as the head of rules. Furthermore, we will usually refer to the
right hand side of the inference rule as the body or the premises of the rule. Both, assumptions and
non-assumptions can be among premises. An empty inference rule, such as this one:

lecturer(John, computer science)←

indicates a fact. Facts always hold and will never be attacked by our opponent.

Finally, we have a set of contraries. Contrary is a sentence which represents a challenge against an
assumption.[DKT09] Intuitively, it is a non-assumption or other assumption which disagree with a given
assumptions. For instance, if our assumption is “The UK economy is strong” a non-assumption contrary
to that particular assumption may be: “UK’s unemployment level is big”. We denote the contrary in
the following way:

strongEconomy(UK) = bigUnemployment(UK)

Definition 1 Formally, an ABA framework is a tuple <L,R,A,¯ >where

� a pair (L,R) is a deductive system with language L and a set of inference rules R

� a set of assumption A, A ⊆ L

� a total mapping ¯ from A to L, where ā is referred to as the contrary of a

Having defined all the basic buildings blocks of ABA framework, we can now go ahead and define what
we mean by an argument and by an attack.

2.1.2 Arguments and attacks

Arguments are deductions of claim (conclusion) supported by a set of assumptions. [DKT09] Intuitively,
an argument is a possible derivation of a certain conclusion (non-assumption). The conclusion we want
to derive may be a statement such as “John is good at playing Starcraft”. We may represent it as a
non-assumption goodAt(john, starcraft). In order to deduce that non-assumption, we need to find an
inference rule where this non-assumption is headed. Suppose we find a rule:

goodAt(john, starcraft)← plays(john, starcraft), noLife(john).

In order to deduce the conclusion of that rule, we need to deduce all of the premises as well. We start
with another non-assumption plays(john, starcraft). We find the following rules:

plays(john, starcraft)← isComputerGame(starcraft), isP layer(john)

isComputerGame(starcraft)←
isP layer(john)←

8



plays(john, starcraft) can be further expanded into non-assumptions which are facts and always hold.
Thus we look at the second premise - noLife(john). It turns out to be an assumption. Since assumptions
are uncertain by definition, we cannot prove them by further expanding them. We can think of it as
if there were no inference rules with assumptions being the head in ABA Frameworks. In practice, we
always have one rule for each assumption which is of the form asm ← asm and comes handy when we
query the ABA framework for assumptions.

Therefore, we are done. We have now constructed an argument for a conclusion goodAt(john, starcraft)
support by a set of assumptions noLife(john). We used a top-down approach to construct that argument
– i.e. we started from the conclusion and expanded it through inference rules until there was nothing
more to prove. The process of constructing an argument is called a derivation. Note that we explicitly
list only the assumptions we have used to construct the argument, omitting any facts. The assumptions
are important because they are uncertain. Our argument relies on an uncertain believe that John has
no life (outside of computer gaming). Thus, the argument is defeasible [DKT09] – there is a possibility
of defeating it. In order to do so our dispute opponent may try to attack it by disproving the claim that
John has no life. We will come back to attacks shortly. We will always denote arguments in the following
way:

Arg = { [Set of SupportingAssumptions] } ` Conclusion

The easiest way to understand arguments is to visualise them as trees. An argument may be represented
as a tree, with the claim being at the root of the tree. The nodes in the tree are either assumptions or
non-assumptions. The edges are formed by the inference rules, with parent being the head of the rule
and children being the premises. For instance, consider our John and Starcraft example above:

Figure 2.1: Starcraft argument tree

The notion of an attack is defined in terms of the contraries. We have previously derived argument (lets
call it A1)

A1 = {noLife(john)} ` goodAt(john, starcraft)

We have also said that, because of the assumption noLife(john) there is a potential for constructing
an attack to defeat that argument. Our opponent will be able to construct an attack only if he man-
ages to find a contrary with assumption noLife(john) on the left-hand side. Suppose such a contrary
exists:

noLife(john) = hasGirlfriend(john)

i.e. if John has a girlfriend than clearly he must have some life outside of computer gaming. Now, all our
opponent has to do is constructing an argument for the claim hasGirlfriend(john). He will be using
exactly the same proof method we have used to construct A1. Suppose he comes up with:
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A2 = {handsome(john), hasFreeT ime(john)} ` hasGirlfriend(john)

We now can say that our opponent has constructed an attack, i.e. his argument A2 attacks our argument
A1.

Definition 2 More formally, an argument S2 ` c2 attacks argument S1 ` c1 if and only if c2 is the
contrary of an assumption in S1. [DKT09]

This is clearly the case here, since the conclusion of A2 (hasGirlfriend(john)) is a contrary of an
assumption in A1 (noLife(john)). However, we have not been defeated yet. Opponent’s attack relies
on an argument which is defeasible. It contains two uncertain assumptions - handsome(john) and
hasFreeT ime(john), which we, in turn, may try to attack. And so the dispute continues.

2.1.3 Acceptability of arguments and assumptions

We have previously stated many times that the Assumption Based Argumentation is used to prove or
validate certain claims (inputs) by analysing its underlying knowledge base. However, we have not yet
defined what we mean by the claim to be proved or valid. Actually, the literature refers to the process
of ’accepting’ the claim. Thus, an ABA framework is used to determine whether the input claim is to
be accepted or not. [DKT09]

In order for the claim to be accepted, each argument generated by the dispute must be ’acceptable’.
There are different notions regarding the acceptability of arguments. Each of them leads to a slightly
different dispute. We will focus here on only two notions of acceptability of arguments: the set of
generated arguments is acceptable either if it is admissible or if it is grounded. We will define both
notions in terms of an attack. So, first of all:

Definition 3 A set of arguments ArgSet1 attacks a set of arguments ArgSet2 if any argument in ArgSet1
attacks any argument in ArgSet2. [DKT09]

Now we are ready to define the notions of acceptability of a set of arguments.

Definition 4 A set of arguments is:

� admissible if it does not attack itself and it attacks every set of arguments that attacks it;

� complete if it is admissible and contains all arguments that it defends;

� grounded if its a minimal complete set (and so it is unique); [DKT09]

Equivalently, we can also use the same notions for assumptions. We can say that the initial claim
is acceptable if the set of assumptions supporting and defending the claim is acceptable (so is either
grounded or admissible). [DKT09]

The definitions may seem hard to grasp but we will try to make them much more clearer by supplying
an example. Consider Figure 2.2 (left). Suppose each node in the graph is an argument and an arrow
indicates attacks between arguments. We will start with admissible sets. We are looking for sets of
arguments which counterattack each attack against them and do not attack themselves. An empty set
is a trivial example. Other examples are: [a], [a,c], [a,d], [d].

Now we can look for complete sets. Since we now that they are admissible, we only need to consider
admissible sets. The first important bit in the definition of a complete set is the notion of defending an
argument. An argument a is defended by set S if S ’neutralises’ (attacks) all arguments attacking a. In
our running example [d] defends itself, [a] does not defend [c] as it does not ’protect’ it against d (it does
not attack d) and so on. Also we know that nothing attacks a. Hence the definition holds trivially -
every subset of arguments which is not attacked by a defends a.

The second important bit in the definition of a complete set is that it contains all arguments it defends.
Thus [d] is not complete since it does not contain a and we said that it does defend a. In fact, since a
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is not attacked by anything, all complete sets must contain a. Hence the complete sets here are [a] and
[a,c]. Grounded is minimal complete so, in this case, its [a].

One of the key differences between grounded and admissible is illustrated in Figure 2.2 (right). Both
[d] and [c] are admissible sets. They are also complete. However, they are not grounded (an empty set
is). Note that Figure 2.2 (right) is an example of an infinite dispute in which proponent and opponent
shout at each other forever. Such a dispute could be admissible (i.e. proponent’s arguments would be
admissible and opponent’s arguments would be admissible) but would not be grounded. This is the
critical difference between admissible and grounded. Since the dispute never ends, admissible derivation
algorithm has to apply special mechanism called filtering (or rather a special type of filtering) to make
the dispute finite. Grounded derivation does not implement this type of filtering and would loop here
forever.

Figure 2.2: Argument graphs

Another way to look at the acceptability is by considering acceptable assumptions not arguments. Ac-
tually, the definitions are very similar:

Definition 5 A set of assumptions A attacks another set of assumptions B if there is an argument
supported by any subset of A which attacks an argument which is supported by any subset of B.

So, if one argument attacks another, we also say that its assumptions ’attack’ the other argument’s
assumptions. [Ton12] The definitions for admissible and grounded set of assumptions follow from the
notion of attack (i.e. are identical to the definitions for arguments).

2.1.4 Dispute

We have now defined the ABA framework together with the most important notions of arguments, attacks
and acceptability. We are now ready to move to the second side of the coin which is the dispute process
itself. We will firstly show how the dispute may be represented as a tree, the so called “dispute tree”.
[DKT09] Then we will demonstrate the way in which we can generate an approximated dispute tree.
The process is called ’dispute derivation’ and interleaves constructing the arguments and determining
their acceptability. [DKT09] The latter indicates that we will actually have two slightly different dispute
derivations – one for admissible and one for grounded arguments.

The easiest way to understand argumentation dispute is to think about it as a game between two players.
The game is similar to a real-life argument people (too) often have. The input query is the subject over
which the players are arguing. Proponent is the player who proposes the input query and his goal is to
defend it against the other player’s – the opponent’s attacks. Thus the game progresses in turns: first the
proponent proposes a subject of the dispute, the opponent tries to attack by forming counter-arguments
contrary to the input subject, the proponent defends himself by forming counter-arguments to opponent’s
counter-arguments and so forth. Unlike the real-life dispute, this one involves two computer agents so
we are guaranteed that all proposed arguments are valid and, if there is a solution, the participants
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will both agree on it (both usually do not hold for human participants, they never hold for politicians).
[Ton12]

Dispute trees

We can represent proponent’s winning strategy as a dispute tree. [DKT09] The main characteristics of
a dispute tree are:

� there are two types of nodes – a proponent node and an opponent node corresponding to the moves
each of the players does

� each node corresponds to an argument formed by a given player

� the root is a proponent node with proponent’s initial argument supporting his input claims

� for each proponent node N with argument X and for each opponent argument Y such that Y attacks
X, there exists a child opponent node (child of N) with argument Y

� for each opponent node X there exists exactly one proponent node with argument Y, such that Y
attacks X

The last two statements tell us that the opponent will be attacking proponent’s arguments in all possible
ways. The proponent, on the other hand, needs only one way to defend against opponent’s attack. Both
players use assumptions when constructing their arguments. Following our earlier intuition for admissible
and grounded sets of arguments, we can say that a dispute tree is admissible if and only if there is no
argument labelling both an opponent and a proponent node. It is grounded if and only if it is finite.
[DKT09] Note that a grounded dispute tree is also admissible.

Lets construct a dispute tree using our ongoing Starcraft example:

goodAt(john, starcraft)← plays(john, starcraft), noLife(john), hasReflex(john)

plays(john, starcraft)← isComputerGame(starcraft), isP layer(john)

hasGirlfriend(john)← relationshipOnFacebook(john,marry), girl(marry),

gaveCardOnV alentines(john,marry)

clumsy(john)← splitCoffeeOnComputer(john)

clumsy(john)← brokeLegOnBannanaSkin(john)

isComputerGame(starcraft)←
isP layer(john)←

relationshipOnFacebook(john,marry)←
girl(marry)←

tookP ity(john,marry)←
doesNotDrinkCoffee(john)←
neverHadBrokenLeg(john)←

noLife(john) = hasGirlfriend(john)

gaveCardOnV alentines(john,marry) = tookP ity(john,marry)

hasReflex(john) = clumsy(john)

splitCoffeeOnComputer(john) = doesNotDrinkCoffee(john)

brokeLegOnBannanaSkin(john) = neverHadBrokenLeg(john)

We are trying to prove whether John is good at Starcraft (goodAt(john, starcraft). The propo-
nent construct an argument which concludes the input query ({noLife(john), hasReflex(john)} `
goodAt(john, starcraft)). The opponent now tries to attack that argument by looking for contraries
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of assumptions used in proponent’s argument and trying to build arguments with these contraries
as heads. The contrary of hasReflex(john) is clumsy(john) and the contrary of noLife(john) is
hasGirlfriend(john).

Note that the we can build two different arguments which support clumsy(john) which the opponent
does. Then the proponent counter-attacks in the same way and so the game continues. In this case, the
dispute ends quickly. Usually, dispute trees contain thousands of nodes. The resulting tree is presented
in Figure 2.3.

Figure 2.3: Starcraft dispute tree

Dispute Derivations

As we have already mentioned, a dispute derivation may be understood as a game between two players – a
proponent and an opponent. We present structured X-dispute derivation - the variant which we will
be trying to speed up. [Ton12] We will focus on two different dispute derivations derived from the notion
of acceptability – admissible derivation and grounded derivation. On success, admissible derivations
return an admissible set of assumptions supporting the input claim. They generate admissible sets
of arguments for both - proponent and opponent. They also approximate an admissible dispute tree.
Grounded derivations, on the other hand, will generate a grounded set of assumptions supporting the
input query, grounded set of arguments for each of the players, and will approximate grounded dispute
trees.

Both dispute derivations will make use of several filtering mechanisms. We will define four filtering
techniques in total. Generally speaking, the purpose of filtering is to avoid redundant computations. It
may happen that a certain assumption was already used by either the proponent or the opponent. To
avoid unnecessary re-computations, we will store all proponent’s assumptions which were attacked by
the opponent, we will call them defences, and all opponent’s assumptions which were attacked by the
proponent, which we will call culprits. [DKT09]

Filtering methods used will slightly differ for each type of derivation. Grounded derivations will only
make use of two filtering methods, whereas admissible derivations will use all four. The following filtering
methods are used in both admissible and grounded dispute derivations:

� of culprits by defences;

� of defences by culprits;

Remember that a dispute tree is admissible when we have no arguments labelling both the proponent
and the opponent node (i.e. arguments attacking themselves). The condition is also a necessary (but not
sufficient) condition for a grounded tree. The above filtering rules were created to enforce the admissible
condition. When the proponent is choosing an assumption to attack, he must check whether he has
not used that assumption before in his argument. Otherwise, he would be attacking his own argument.
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Similarly, the opponent must check whether he is not attacking the assumptions he has used before in
his argument.

Additional two filtering methods are only used in admissible dispute derivations:

� of culprits by culprits;

� of defences by defences;

They ensure that we do not use the same defence or culprit twice in the derivation. If they are allowed to
repeat then an infinite loop would be created and the dispute would continue ad infinitum. Remember
that infinite disputes are actually acceptable for admissible semantics. These filtering rules are used in
admissible derivation process to ensure that the computation terminates. They are not used in grounded
derivations, because grounded derivations on success are finite by definition which means that neither
defences nor culprits would actually repeat. Of course, in practice, when we are running the algorithm
and proposing some input query, we do not know whether the answer is grounded or not (i.e. whether
the derivation will succeed or fail). This is exactly what we want to compute. So if we set the flag to
grounded in the algorithm and run the computation, the computation may loop forever.

A single step in a dispute derivation corresponds to a move by either an opponent or a proponent. Four
data structures are maintained at each step: [DKT09]

� a set P of proponent’s ’arguments under construction’ (also called potential arguments);

� a set O of opponent’s ’arguments under construction’;

� a set C of culprits;

� a set D of defences;

Potential arguments are partially constructed arguments which did not fully expand all non-assumptions
yet. Intuitively, if you go back to section 2.2 where we defined arguments as trees, a potential argument
would be equivalent to a subtree of an argument tree such that it contains the root of that argument
tree. During the derivation arguments are represented as three-element data structures:

arg : {[marked set], [unmarked set], conclusion]}

The conclusion is the sentence which the argument is proving (i.e. the root of the argument tree represen-
tation). The unmarked set consists of assumptions and non-assumptions which are yet to be expanded.
Yet again recall argument tree representation. When we are building the argument we are growing the
tree from the root. At each step we have a subtree with root as the conclusion. The unmarked set mem-
bers are all leafs of that subtree. I.e. there are yet unexpanded assumptions/non-assumptions which
we can expand at the next stage. When the unmarked set is empty then we have finished building the
argument. We expand the argument by choosing assumptions or non-assumptions from the unmarked
set and, in case of non-assumptions, substituting them with a body of a rule in which they occur as
head. Note that unmarked set may grow and shrink during the derivation. The marked set size consists
of only assumptions. It contains assumptions which were already selected from the unmarked set. At
the end of the argument creation, it will contain all assumptions supporting the argument.

To illustrate, consider our Starcraft argument (Figure 2.1). When we were building the argument our
marked and unmarked sets could have evolved as follows:

1. [ ], [goodAt(john, starcraft)]

2. [ ], [plays(john, starcraft), noLife(john)]

3. [ ], [isComuterGame(starcrat), isP layer(john), noLife(john)]

4. [ ], [isP layer(john), noLife(john)]

5. [ ], [noLife(john)]

6. [noLife(john)], [ ]
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The admissible dispute derivation may be represented graphically as in Figure 2.4 [Ton12]. The dispute
ends when we have nothing else to prove: P and O are both empty. In this case we have succeeded and
so we return an admissible set of assumptions - D. Otherwise, we proceed in steps.

Figure 2.4: Simplified dispute derivation algorithm. It is slightly different version than presented in
[Ton12] - we added an explicit argument choice node to bring it closer to the actual implementation

We first determine who moves in the current step. If it is proponent’s turn, we select one argument (A)
from his argument set P and we select one sentence (p) from A. If the sentence is an assumption, we drop
it from P and start attack in O. Note that in this case the sentence would already be in the defences set
before we select it, as we expand defences set when we expand rule bodies. If p is not an assumption, we
look for any rules with p being a head. If there is at least one such rule and the rule does not contain
any culprits in its body (i.e. it is a ’good’ rule), we unfold p by replacing it in P with rule’s body and
we add any new assumptions in rule’s body to defences.

If it is opponent’s turn, he begins by selecting an argument S from the set of his available arguments O.
If the argument’s unmarked set is empty, i.e. there are no sentences available to pick, we fail. Otherwise,
the opponent selects one sentence o from S. If it is a non-assumption, he unfolds the non-assumption
in all possible ways (i.e. he attacks in all possible ways). Each different unfolding of a non-assumption
forms a new opponent argument, which we add to O.
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If o is an assumption we have an option to ignore it. Once ignored, o is moved to a marked set of
opponent’s argument and will never be considered again. If we do not ignore o, we filter it by defences
and by culprits. If it is not a member of any of the two, we add it to culprits and start an attack in P
(we add the contrary of o to P).

Choice points

The dispute derivation algorithm we have presented in the previous section has number of points where
we can explore different execution paths. These points are the key elements in our effort to speed up the
execution of the derivation as exploring certain expensive paths may be avoided by using useful heuristics.
In Figure 2.4 the choice points are marked by orange diamonds. There are 6 all together:

� player turn choice

� proponent argument choice

� opponent argument choice

� proponent sentence choice

� opponent sentence choice

� proponent rule choice (opponent expands non-assumptions using all possible rules)

Backtracking

The algorithm presented in Figure 2.4 implicitly employs a mechanism called backtracking. Each time
we fail we have a possibility of ’moving back’ in the derivation procedure and trying out other derivation
paths. Although we have 6 choice points, in current implementation there are only 2 places to which
we can backtrack - proponent’s rule choice and opponent’s ignore choice (which was not included as a
choice point). For the former, we may backtrack and try out a different rule to prove a sentence.

Ignoring needs to be explained a bit more carefully as it is more of an ’implementation detail’. Suppose
the opponent expands argument S and chooses certain assumption ’a’ from S which is added to culprits
and its contrary is added to proponent set. Suppose, however, that the proponent is unable to build a
valid argument which attacks ’a’. He fails but the whole derivation is not finished yet. There may be
other assumptions beside ’a’ in S which proponent may try to attack. This is where ignoring is useful.
We backtrack to ’a’ ignore point and this time we ignore it (we push it to S marked set) in order to move
to other assumptions in S.

2.1.5 ABA Graph

In order to speed up the derivation process we will be representing an ABA framework as a graph
and computing various measures for that graph. The analysis of graph measures will guide us towards
developing useful heuristics for the dispute derivation process. We will call such a representation an
ABA Graph.

Definition 6 Given an ABA framework represented as a tuple <L,R,A,¯ >, let: [Str12]

� V1 = R - the set of ABA Framework rule nodes

� V2 = A - the set of ABA Framework assumption nodes

� V3 = L −A - the set of ABA Framework non-assumption nodes

and:

� E1 is the set of support edges, where support edge is an edge from a rule node to each single premise
in the rule body (either an assumption node or a non-assumption node);
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� E2 is the set of proof edges, where proof edge is an edge from a non-assumption node to a rule node
where the given non-assumption is headed;

� E3 is the set of attack edges, where attack edge is an edge from an assumption node (call it A) to
an assumption/non-assumption node (call it C), such that C is the contrary of A;

ABA Graph G = <V,E>is defined by

� V = V1 ∪ V2 ∪ V3 - a set of vertices of three types

� E = E1 ∪ E2 ∪ E3 - a set of edges of three types

ABA Graph corresponds directly to ABA framework which we have described in section 2.1. There are
three types of vertices (nodes) which correspond directly to the building blocks of ABA frameworks.
There are also three types of edges corresponding to the notions of arguments and attacks.

The graph is directed by definition. Also, the direction of an edge corresponds to the dispute derivation
direction. Support edges and proof edges correspond to expanding potential arguments whereas attack
edges correspond to formulating attacks against arguments. The graph does not need to be connected.
It might contain a couple of disconnected components with no nodes attacking or supporting a node
from other component. It may also contain cycles.

Figure 2.5: Starcraft example ABA Graph representation

Let us consider a simplified example of our previous Starcraft example (assumptions and non-assumptions
were shorten to fit into the graph):

17



goodAt← plays, noLife

plays← isGame, isP layer

isP layer ←
isGame←

Non-assumptions are: goodAt, plays, isGame, isP layer. Assumptions are: noLife. This get directly
translated to the graph:

� the diamond nodes represent non-assumptions

� the box nodes represent assumptions

� the ovals represent rules

The corresponding ABA Graph is presented in Figure 2.5.

2.2 Graph Theory - centrality measures

Centrality measures determine the importance of a node in a graph. [New10] The bigger the centrality
measure, the more ’central’ (important) a given node is. In order to compute most of the centrality
measures we have to use adjacency matrix representation of a graph as we will be calculating eigenvalues
and eigenvectors of that matrix. The ABA Graph analysis will be performed once to find measures
for all nodes. The produced measures will be then fed to the dispute derivation algorithm to guide
the algorithm’s execution at each point of choice. Hence, the measures which we present will only
have to be computed once, off-line (i.e. we do not have to compute them for each input claim during
the derivation). This is extremely important, since the matrix storing the graph will be very sparse.
Consequently, computing eigenvalues and eigenvectors of a sparse matrix is expensive. However, each
time we update an ABA framework, we also have to recompute all its measures.

2.2.1 Degree centrality

Degree centrality measures the number of edges connected to a node. We will be measuring both –
degree-in centrality and degree-out centrality. Degree-in centrality counts the number of edges pointing
to the given node, whereas degree-out centrality computes the number of edges coming from the given
node. Degree centrality is the simplest of our measures and the most straight-forward to compute.

2.2.2 Eigenvector centrality

The problem with degree centrality is that it gives equal scores to each neighbour. However, intuitively
a given node may be more important if a few highly important nodes point to it than if hundreds of
unimportant nodes point to it. So we can slightly change the centrality measure to cater for that fact.
When summing up the number of in-going or out-going edges, we assign weights to each of them. Each
weight is equal to the centrality of a given neighbour. Eigenvector centrality is the weighted sum we
obtain.

Eigenvector centrality can be computed as follows: [New10]

xi = k−1
∑
j

Aijxj

where xi, xj are neighbouring nodes, A is the adjacency matrix and k is the largest eigenvalue of A
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2.2.3 Katz centrality

The problem with eigenvector centrality is the computation. If we consider in-going edges only, a node
with no other nodes pointing at it will have an eigenvalue centrality equal to 0. Hence, if that node itself
points to other nodes, its weight to its neighbours’ centrality will also be 0. The problem affects graphs
which do not have any cycles. In such a graph, we will always have at least one node with eigenvector
centrality equal to 0. Thus, the measure basically becomes useless for graphs without any cycles. It is
an issue for ABA graph, because 0-cycle graphs can occur for some input frameworks.

Katz centrality addresses the problem. In order to get rid of 0-centrality nodes, we pre-assign a small
centrality value to each node. The formula for computing Katz centrality becomes: [New10]

xi = k−1
∑
j

Aijxj + β

where β is the initial centrality we give each node ’for free’.

Unfortunately, the software framework SNAP [Sta] which we will be using to compute all graph measures
does not provide Katz centrality.

2.2.4 PageRank

Katz centrality has one disadvantage – if a node with high Katz centrality points to many other nodes,
they will also get high Katz centrality. PageRank addresses that problem. The centrality we derive
from our neighbours is proportional to their centrality, but we will divide that proportion by neighbour’s
out-degree.

The formula for computing PageRank is: [New10]

xi = k−1
∑
j

Aij
xj
doutj

+ β

where doutj denotes the out-degree of jth node.

2.2.5 Authority and Hub centrality

All of the centrality measures introduced so far give high centrality to a node pointed by nodes with high
centrality. However, we may also be interested in nodes which point to the most interesting nodes. In
other words, we may want to give node a high centrality if it points to other nodes with high centrality.
There are networks where such measurements are desirable. The best known example is a citation
network where we want to identify review articles. The review may contain a small amount of information
itself, but it may point to useful sources of information.

Hence we can define two type of useful nodes in any networks - those which contain useful information
themselves and those which point to useful information. The former group is called authorities whereas
the latter group is called hubs. [New10] Note, authorities and hubs only exist in directed networks.

Authority centrality (xi) of a vertex is proportional to the sum of hub centralities (yj) of the vertices
that point to it: [New10]

xi = α
∑
j

Aijyj
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Hub centrality of a vertex is proportional to the sum of authority centralities of the vertices that the
given vertex point at: [New10]

yi = β
∑
j

Aijxj

where α and β are normalising constants.

2.2.6 Closeness centrality

Closeness centrality measures how close a given node is to all other nodes in the graph. In other words,
it is an average distance from a given node to all other nodes. It measures how “influential” a given
node might be. In order to understand that statement, we have to think about information spreading
in a graph. The closer a given node is to all other nodes in the graph, the faster an information which
passes through that node (or is produced by that node) will reach all other nodes in the graph. Since
smaller average distance would actually mean that a node is more influential, we will take the reciprocal
of the distance as the closeness measure.

Closeness measure is computed according to the following formula: [New10]

Ci =
n∑
j dij

where dij is the length of path between nodes i and j and n is the number of nodes in the network

2.2.7 Betweenness centrality

A potentially more useful measure for our network than closeness is called betweenness. Betweenness is
another measure which computes how “influential” a node is. Generally speaking, betweenness measures
an extent to which a node lies on the path between other nodes. In the literature, it is usually defined in
terms of message passing through a network (graph). If messages pass from source to destination using
shortest available paths, betweenness would measure the number of shortest paths each node lies on.
[New10] Betweenness is independent of other centrality measures – a high value of betweenness does not
imply high values of other centrality measures.

As we can see, calculating betweenness for each node in the graph as defined above is extremely demand-
ing computationally and will prove infeasible for larger frameworks. Betweenness could be approximated
by a random walk betweenness. In the literature it is defined as performing a random walk from random
sources to random destinations a couple of times and counting how many times a given node was visited
for each random walks we performed. [New10] Unfortunately, the software package we are using to
compute graph measures does not include the random walk betweenness. [Sta]

2.3 Evolutionary learning and genetic algorithms

2.3.1 Introduction to genetic algorithms

Computer Scientists very often look to nature for guiding metaphors. The trend started very early in
Computer Science history in times of Alan Turing and John von Neumann. Computer Scientists back
then looked for ways of simulating biological evolution. [Mit98] This promising area of research went
silent for a while but fortunately resurged at 1980. Today, the area is know as Evolutionary computation
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and is believed to be applicable to many research problems. Evolutionary algorithms are widely used in
areas such as optimisation, machine learning and economics, among many others.

Genetic algorithms form a subclass of evolutionary algorithms. They are effectively a search method
which is loosely based on a genetic change of a population of individuals. [Jon88]. Usually, genetic
algorithms consist of three fundamental elements:

� A Darwinian notion of ’fitness’ of each population member. The ’fitness’ governs how likely a
certain individual is to influence future generations.

� Selection function which determines which members of the current population will contribute to
production of the next population.

� Genetic operators which determine the genetic structure of offspring given the genetic material of
their parents.

Genetic algorithms search a space of candidate solutions in order to obtain a desired one. Thus, each
member of a population (also called a chromosome) can be thought of as a point in the search space
of candidate solutions. [Mit98] The algorithms usually proceed in rounds (also called iterations or
generations). In each round they successfully replace one population with another. Thus, a genetic
algorithm can be defined as an iterative process [Mit98]:

1. Start with a randomly generated population sampled from the candidate solutions space.

2. Calculate fitness for each member of the population.

3. Repeat the following until the desired number of offspring has been created:

(a) Select a pair of parent population members from the current population. The probability of
selection should be an increasing function of fitness.

(b) Apply genetic operators to produce offspring from a given parent pair.

4. Replace the current population with a population of offspring generated in the previous step.

5. Go to step 2 or terminate if termination conditions are applicable.

The exact algorithm structure may vary for different approaches. However, as we will see, it is compatible
with our implementation used in this project. Genetic algorithms implementations always vary in:

� population member encoding

� how selection is performed

� genetic parameters (cross-over and mutation)

We will discuss the possible approaches to each of the above in the following sections.

2.3.2 Genetic algorithms applicability

Before we discuss possible genetic algorithms implementations, let us briefly consider in what cases
genetic algorithms are applicable. As we already said, they are effectively a search methodology and
they are often cases where other search methodologies outperform a genetic algorithm. Defining genetic
algorithms applicability is very important in our cases as it was part of the project to asses whether this
approach would be suitable for the problem and justify the decision.

M. Mitchell [Mit98] defines the following criteria:

� search space is large

� search space is known not to be perfectly smooth and unimodal (i.e. it is not a single smooth ’hill’)

� search space is not well understood

� fitness function is noisy (e.g. when fitness function is based on some measurement of the environ-
ment, the measurement contains a lot of noise)
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� the task does not require a global optimum to be found (a ’sufficiently’ good solution is enough)

In each case, if the given criterion is not met, there is a high probability that another, more efficient
search strategy exists which would outperform genetic algorithm. If the search space is not large enough,
we can always search it exhaustively which guarantees that we will find a global optimum. Genetic
algorithm, on the other hand, may end up in local optimum or any other point in the search space
even when the space is small. If the search space is smooth and unimodal we can always apply steepest
descent algorithms which would also converge to a global optimum in this case. If the search space is well
understood, it is very likely that there exist a method using domain-specific heuristics which outperforms
any general-purpose method such as genetic algorithm. If the task requires finding a global optimum we
face the problem we have already described - a genetic algorithm may converge to some point other than
global optimum. Finally, genetic algorithm is resilient to noise as it implicitly accumulates statistics
over many generations (in the form of genetic material passed from generation to generation) so it may
outperform other search methods when we have noisy data.

2.3.3 Population member encoding

Population member encoding is often the hardest and the most important part of the genetic algorithm.
[Mit98] There can be many approaches to encoding a population and the encoding itself may be very
problem dependent. However, there are a few standard approaches which are used most often. By far
the most popular one is bit string encoding. Each population member is encoded as a string of bits.
A single bit or a group of bits specify features of the population members. For example, we could
encode ABA derivation strategies using binary encoding. Suppose each strategy consists of the following
features:

� Feature 1 specifies which player should move first: proponent or opponent

� Feature 2 specifies which argument should each player choose: youngest or oldest

� Feature 3 specifies whether both players should expand assumptions first or non-assumptions first

We could encode the features in the following way:

� Feature 1: 0 encodes proponent moves first, 1 encodes opponent moves first

� Feature 2: 00 encodes both players choose youngest arguments, 01 - proponent chooses youngest
argument, opponent chooses oldest. 10 - proponent chooses oldest, opponent youngest, 11 - both
players choose oldest arguments.

� Feature 3: 0 encodes that both players should expand assumptions first, 1 encodes that both players
should expand non-assumptions first.

And our population could be:

Population member 1 : 1001

Population member 2 : 1101

Population member 3 : 0100

Some authors claim that binary encoding is superior to other types of encoding. However, other authors
argue that in many applications binary encoding is unnatural and other types of encoding should be used.
[Mit98]. The generalisation of binary encoding is called ’value encoding’. Each population member is a
string of any values - e.g. symbols, objects or real numbers.
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2.3.4 Selection operators

Having defined the encoding scheme, a genetic algorithm designer then has to define a selection operator.
Selection operator specifies how we choose individuals which will be used to create offspring and how
many offspring should each pair create. Usually, the selection process is based on fitness - the ’fitter’
the individual is, the higher the chances that he will be selected for mating and reproduction. There are
several standard selection methods which has been proposed in the literature. Below we list and discuss
the most important ones.

Fitness proportionate selection (roulette wheel selection)

In fitness proportionate selection, the probability that a certain member will be selected is computed
by:

pi =
fi∑N
j=1 fj

(2.1)

where fi is the fitness value of ith population member and pi is the probability of ith member selec-
tion.

It is called roulette wheel selection because the procedure can be explained using roulette wheel as an
example. Suppose that we have a circular roulette wheel and its area sums to 1. We can now split the
wheel such that each individual in the population is assigned a slice of wheel’s area. The size of the
slice is equal to the probability of selecting that particular member (pi). The wheel is spun and, after it
stops, the individual under the wheel’s marker will be selected to become a parent. [Mit98] We repeat
the procedure until we have the number of parents we require. Note, a certain individual may become a
parent more than once.

Elitism and truncation

Most genetic algorithms are ’generational’ - the new generation is constructed entirely from the offspring
of the previous generation. There are, however, schemes which preserve some population members. In
elitism some specified proportion of the fittest members is always preserved to the next generation.
[Mit98] Another selection operator which is based on the same idea is called truncation. All population
members are ordered by their fitness. We then select some fraction of the fittest individuals and use that
fraction for reproduction.

Tournament selection

Another common selection operator is called tournament selection. There are several definitions of
tournament selection in the literature. We will describe the simplest one. We choose two population
members at random from the population. We then choose a random number r between 0 and 1. If r
is greater than n (where n is some pre-specified parameter, for example 0.1) we choose the fitter of the
two selected members and add it to the parents list. If r is lower than n we choose the less fit member.
[Mit98]

2.3.5 Genetic operators

Having chosen the selection operator we can now move to specifying genetic operators of our algorithm.
Genetic operators control how exactly the offspring population is created from the selected individuals.
There are two genetic operator: crossover and mutation.

Crossover

Crossover specifies how population members are combined in order to produce offspring. The simplest
crossover is called a single-point crossover. We choose a random position in a population member.
We split each parent in the chosen position. We then exchange split parts and combine them to form
offspring. For instance, consider two parents:
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Parent 1 : 0010

Parent 2 : 1101

Suppose we choose position 2 and split each parent to obtain:

Parent 1 : 00 | 10

Parent 2 : 11 | 01

We can now combine split parts to produce new offspring:

Offspring 1 : 00 | 01

Offspring 2 : 11 | 10

If we are not careful a single-point crossover may significantly decrease the performance. It happens
when we choose a splitting point so that it splits functionality related bits. [Mit98] For example, we may
have several bits encoding the same feature as we did in our encoding example where two bits where
encoding player argument choice. We may prefer to avoid splitting these bits.

There are other variants of crossover operator. A special case of a single-point crossover where we split
population members approximately in half is called a ’uniform crossover’. A ’multi-point crossover’
is a direct relative of a single-point crossover where we spit each population member in multiple points.
Another type of crossover is a ’positional bias crossover’ in which an exchange may happen at each
position (each bit or each real number) guarded by some probability p. [Mit98]

2.3.6 Mutation

Mutation is usually used to prevent population from being stuck in the local optimum point. It is
usually considered to be of secondary importance as most researchers claim that it is the crossover
operator which drives the search forward. [Mit98]. Hence, mutation is usually a random process with a
very small probability of occurring. The exact implementations of mutation operator heavily depends on
which population encoding we choose. For example, for a binary encoding, a common mutation operator
is to change one bit at a random position. For a real numbers encoding, with some probability p we could
replace a single number by a random number drawn from some specified distribution. [MD89]

2.3.7 Learning real number parameters using genetic algorithms

Genetic algorithms has been applied surprisingly rarely to search problems where we have to find a
combination of parameters which improves performance of some model. Real numbers are often the
most intuitive representations of such parameters. Each population member is of the form

[parameter1, parameter2, parameter3...].

However there are very few examples where they were actually encoded using real numbers. It may be
an influence of John Holland, who (in his most famous work) claims that binary encoding is usually
superior to real-number encoding. [Hol75] [Jon88] [Mit98]
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However, when there are records of applying real number encoding to parameters learning, these are
usually successful stories. There are experimental and theoretical evidence stating that genetic algorithms
can learn efficient model parameters encoded as real numbers very quickly. Typically, even for a very
large search spaces (such as 1030) acceptable results are found after only 10 generations. [Jon88] One
of the better known applications of genetic algorithms to real number parameters learning was the
work of David J. Montana and Lawrence Davis who tried to learn efficient neural network parameters.
[MD89]

Since mutation is heavily encoding-dependent, it was worth investigate the best practises applied to
mutate a population of real numbers. Researchers have investigated several approaches: [MD89] [Mit98]
[SK93]

1. With probability p replace parameter value in the population member with a random values chosen
from the initialisation probability distribution (i.e. the one we use to initialise our first population).

2. With probability p add a random value chosen from the initialisation probability distribution to
population member’s parameter value.

3. With probability p replace parameter value with one of the 10 most frequent values for that
parameter observed in all population members.
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Chapter 3

Finding optimal strategies -
description of the approach

3.1 Problem statement

As we already mentioned the main topic of our thesis is analysing Assumption-Based Argument derivation
problem. The issue is simple – the derivation is slow. Querying a random framework with around 50
sentences (assumptions/non-assumptions) using a naive strategy usually will not terminate. Synthetically
generating frameworks with 50 sentences and queries which do terminate is a very challenging task in
itself and a whole master thesis could be written on that issue.

The problem is that frameworks constructed from real data are much larger than 50 sentences. Also,
the requirement is to perform ad-hoc queries on those frameworks which do terminate within seconds.
Consider again a medical application of ABA. A doctor querying for patient’s health will not want to
wait hours to get the results back. In fact, 20 seconds derivation time is a reasonable upper-bound.

3.1.1 Possible solutions

There are two solutions to the derivation time problem. The first one uses parallelization. The idea
is to run the same query on several machines with each parallel run using different derivation strategy.
We could then measure each run progress and kill the one which we think are not progressing very well.
This approach forms a separate master thesis and will not be discussed further here. As a side note, it is
much harder to parallelize the derivation process itself, because we would have to somehow synchronise
the defences and culprits set which are constantly changing during the derivation.

The second idea is to find an efficient derivation strategy. This is not entirely independent of the first
idea, as we can use any efficient strategies found in parallel runs. Before discussing this idea any further,
we have to define what we mean by derivation ’strategy’.

3.1.2 Derivation strategy

ABA dispute derivation progresses in discrete steps. At each step, one of the players expands one of its
arguments by a single rule / contrary application. Each player may have a different strategy deciding
which argument to expand and how to expand it. Each of them may have several options to consider.
Player’s preferences together with deciding which player should play at a given round form what we will
call a ’derivation strategy’ of the game.

More formally, recall that there are 6 choice points in the algorithm:
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� turn choice: decides which of the two players makes a move in this turn

� proponent argument choice: decides which argument the proponent will expand at this step

� proponent sentence choice: decides which sentence the proponent will expand at this step

� proponent rule choice: decides which rule proponent will use to expand a sentence (non-assumption)

� opponent argument choice: decides which argument the opponent will expand at this steps

� opponent sentence choice: decides which sentence the opponent will expand at this step

There is no opponent rule choice as the opponent will use all rules to expand his non-assumptions.
Derivation strategy determines which choices we make at each of these 6 points. To give an example, a
valid derivation strategy for all 6 points could be:

� choose proponent to move first

� proponent chooses his oldest argument to expand (i.e. the one which hasn’t been expand for the
longest time)

� proponent chooses random sentence

� proponent chooses random rule to expand non-assumptions

� opponent chooses his oldest argument

� opponent chooses the first sentence alphabetically (e.g. from [a,b,c] he would choose a)

Different strategies will result in different derivations but will lead to the same solutions. The key
difference between derivation strategies is their termination speed. We will show that it is possible to
construct the derivation strategy which significantly improves the performance over the naive strategies
like the one presented above.

Unless we state otherwise, we also make two key assumptions in all our discussions regarding deriva-
tion:

1. We are always looking for all solutions. This is crucial especially when we consider back-
tracking. If we were to look for just a single solution, backtracking would only occur when we fail
in order to try another possibilities. However, since we are looking for all solutions, we will also
backtrack when we succeed in order to find other derivation branches which lead to a solution.

2. We only consider admissible derivation. Before running our experiments we always explicitly
set the derivation type to admissible. Thus we never run experiments with a grounded derivation
semantics.

3.1.3 Branching and backtracking

In order to derive an efficient strategy, it is crucial to understand what really influences the structured
X-dispute derivation speed. As we will learn in the experiments, there are two main factors affecting
derivation time – branching and backtracking. Branching measures how many different branches of
derivation we have to consider. For instance, when the proponent expands a non-assumption which is
a head of three rules, he will get three possible branches of the derivation. The derivation can take
any of the three branches, but regardless of whether that branch succeeds (leads to a valid solution) or
fails (leads to no solution), the derivation will backtrack to the choice point and explore another branch
by picking a different rule. Backtracking on success happens as well because we are searching for all
solutions.

Branching is crucial to derivation time. For instance, consider the following ABA framework:
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myRule ( p0 , [ x0 , y0 , z0 , t0 , w0 ] ) .
myRule ( y0 , [ a , b , c , d , e , f ] ) .
myRule ( z0 , [ g , h , i , j , k , l ] ) .
myRule ( t0 , [m, n , o , p , q , r ] ) .
myRule (w0 , [ s , t , u , v , w ] ) .

. . . .

myRule ( x0 , [ x ] ) .
myRule ( x0 , [ y , z ] ) .

. . . .

contrary (w, c0 ) .
myRule ( c0 , [ ] ) .

where p0, x0, y0, z0, t0, w0 are all non-assumptions and the rest of sentences are all assumptions.
Suppose that the player choice strategy is set to ’proponent moves as long as he has any valid moves’.
Suppose the proponent is proving p0 (the first rule). He could expand y0, z0, t0 and w0 first - before
expanding x0. Lets suppose he does that and then chooses to expand x0 using the first rule. If we are
lucky, the opponent then could very quickly ’defeat’ the proponent’s argument by using contra-argument
[ ] :- c0 (an argument is represented by ’unmarked set : - conclusion’). The derivation would fail and
the proponent would have to choose the second rule for x0. The derivation would fail immediately as
well, as the opponent would use the same argument [ ] :- c0.

Now consider another strategy in which the proponent chooses x0 first and then y0, z0, t0 and w0.
Opponent then moves and does the same thing as before - disproves proponent’s claim by using [ ] :- c0.
However, now the proponent backtracks to x0 rule choice and he chooses the second rule. The problem is
now we have to repeat the derivation of y0, z0, t0 and w0 leading to twice as much work as before.

Now suppose that we have yet another derivation strategy in which the proponent first chooses w0 and
then chooses w. The opponent immediately seizes the opportunity and disproves p0 by using [ ] :- c0.
This is the ideal, ’least amount of work strategy’ where we avoid any branching and backtracking at
all.

We can draw three important conclusions from the above example. First of all, we should avoid branching
if possible. Secondly, we should do all non-branching work before branching as otherwise we will end up
doing the same work twice. Finally, if we have a chance to kill derivation (e.g. [ ] :- c0) we should use
it immediately.

The key question here is how do we measure the amount of branching a given choice leads to and the
amount of work we will have to do when we choose it. Investigating various measures available at each
choice point and their relationship with derivation time forms the better part of this report. Our initial
idea was to use ABA graph measures to guide the derivation. This approach proved to be partially
successful. We will present all measures, experiments and results in the next chapter.

3.2 Representing derivation strategies

Before we can discuss our approach to learning optimal (with respect to time) derivation strategies, we
have to explain how we represent them. The representation is crucial as it needs to be generic enough
to allow for optimality learning.
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3.2.1 Measures

We start with a general discussion of ’measures’. Each derivation strategy is, in fact, a set of six different
strategies – each associated with one of the six choice points in the algorithm. At each choice point we
have a number of different options to choose from. For example, at proponent sentence choice point the
proponent is choosing between one or more assumptions and non-assumptions. At this derivation step
he will further expand only the premise he chooses. His choice may influence the derivation time as we
have shown in the previous section.

We must differentiate his options and pick the one which we think is the most optimal. In order to
do that we define a set of measures associated with each option. We will always use the same set of
measures for all choices in a single choice point in one experiment. For example, if we are choosing
between assumptions, we will always use the same set of measures for each assumption. But we will use
(or better ’try out’) different sets / combinations of measures in different experiments. Measures are
a way to quantify derivation strategies. They come from various sources – they may be precomputed
before the derivation starts (e.g. ABA Graph measures) or they may be measured during the derivation
(e.g. the number of assumptions which are in defences or culprits). Each measure we use has only
non-negative values.

To illustrate, we will show an example. Suppose we have chosen opponent to make his move. Suppose
that the opponent has the following three arguments to choose from:

arg1 : [ t0 , w0 , x0 , y0 , c ] :− p0

arg2 : [ a , b ] :− p0

arg3 : [ x0 ] :− q0

non−assumption : [ t0 , w0 , x0 , y0 , p0 , q0 ]
assumptions : [ a , b , c ]

where each argument is denoted by: unmarked set :- root.

For each of the four premises we could define the following measures:

� the unmarked set size

� number of assumptions in unmarked set

� sum of PageRank centrality of all premises in the unmarked set measured from the ABA graph

� sum of degree-out of all premises in the unmarked set measured from the ABA graph

The first two measures are computed during the derivation. The last two are precomputed before the
derivation begins. Suppose that the following information was precomputed from the ABA graph:

Node PageRank Degree-out
t0 0.002 1
w0 0.021 4
x0 0.008 2
y0 0.054 6
p0 0.021 4
q0 0.700 14
a 0.011 1
b 0.049 1
c 0.000 0

Table 3.1: Precomputed ABA measures
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We could now compute the measures for each of the arguments by summing measures of its unmarked
set members:

Arg1 Arg2 Arg3
Unmarked Set Size: 5 2 1

Number of Assumptions: 1 2 0
ABA Graph PageRank: 0.806 0.060 0.008
ABA Graph Degree-out: 21 2 2

Table 3.2: Measures computed for each of the arguments

We could now use each measure separately to define a derivation strategy. For instance, we could say
that the opponent should always choose an argument with smallest unmarked set size. In this case,
the opponent will choose argument 3. Alternatively, we could say that the opponent should choose an
argument with largest PageRank centrality which would lead to choosing argument 1.

We can also define a derivation strategy which combines two or more measures. For instance, consider
the following: ’choose argument with smallest degree-out and in case of a tie choose argument with
smallest unmarked set size’. Such strategy would result in choosing argument 3.

Our goal, however, was to learn these or similar strategies, not to guess them. We also wanted to learn
which measures are the most important relative to others and what is the correlation between a given
measure and derivation time. For example, we were interested in knowing whether we should make
choices which have certain measures as small as possible, or whether it is a good idea to make choices
with measures having largest value.

Thus, we needed something general which would be suitable for applying a machine learning technique
and which would also allow us to spot trends in correlation between measures and performance. To
fulfil these requirements we developed the most generic derivation strategy. For each choice point in
the program we define a decision function which computes a weighted sum of all available measures
(decision value).

3.2.2 Model

Suppose that M = [M1,M2,M3...Mn] denotes a set of n available measures for a given option. We also
define a set of n weights: W = [W1,W2,W3...Wn] each weight associated with one measure. The decision
function takes the form:

decision naive(M) = M1 ∗W1 +M2 ∗W2 +M3 ∗W3 + ....+Mn ∗Wn (3.1)

The decision rule is to make choice with the largest decision naive(M) value. We are now able to encode
different strategies by choosing different weight vectors W . To see this lets go through an example.
Consider our previous example of opponent argument choice and measures from 3.2:

Unmarked Set Size w1
Number of Assumptions w2
ABA Graph PageRank w3
ABA Graph Degree-out w4

Suppose we set the weight vector to the following values:

Unmarked Set Size (W1) Number of Assumptions (W2) PageRank (W3) Degree-out (W4)
0 0 0 1
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Using equation 3.1 we can now compute each argument’s decision value:

decision naive(Margn) = Mn
1 ∗W1 +Mn

2 ∗W2 +Mn
3 ∗W3 +Mn

4 ∗W4

Where Mn
i denotes the ith measure of nth argument. For our three arguments we have:

Argument1 : decision naive(Marg1) = 5 ∗ 0 + 1 ∗ 0 + 0.806 ∗ 0 + 21 ∗ 1 = 21

Argument2 : decision naive(Marg2) = 2 ∗ 0 + 2 ∗ 0 + 0.060 ∗ 0 + 2 ∗ 1 = 2

Argument3 : decision naive(Marg3) = 1 ∗ 0 + 0 ∗ 0 + 0.008 ∗ 0 + 2 ∗ 1 = 2

The opponent would choose argument 1. The weight vector [0, 0, 0, 1] encodes a strategy which al-
ways chooses an argument with the largest degree-out measure. Suppose we pick a different weight
vector:

Unmarked Set Size (W1) Number of Assumptions (W2) PageRank (W3) Degree-out (W4)
-1 0 0 0

And compute each argument’s decision value again:

Argument1 : decision naive(Marg1) = 5 ∗ −1 + 1 ∗ 0 + 0.806 ∗ 0 + 21 ∗ 0 = −5

Argument2 : decision naive(Marg2) = 2 ∗ −1 + 2 ∗ 0 + 0.060 ∗ 0 + 2 ∗ 0 = −2

Argument3 : decision naive(Marg3) = 1 ∗ −1 + 0 ∗ 0 + 0.008 ∗ 0 + 2 ∗ 0 = −1

The opponent now chooses argument 3. The weight vector [−1, 0, 0, 0] encodes a strategy which chooses
an argument with the smallest unmarked set size measure.

As we see, we have a way of setting a weight vector so that we get a strategy which prefers measures to
be as small as possible or as big as possible. In the former case, we have to set the corresponding weight
to −1. In the later case, we have to set the weight to +1. In order to make the maths sound, we always
require that each measure has only non-negative values.

Finally, suppose we set the weights in the following way:

Unmarked Set Size (W1) Number of Assumptions (W2) PageRank (W3) Degree-out (W4)
0.5 0 0 -1

And compute each argument’s decision value yet again:

Argument1 : decision naive(Marg1) = 5 ∗ 0.5 + 1 ∗ 0 + 0.806 ∗ 0 + 21 ∗ −1 = −18.5

Argument2 : decision naive(Marg2) = 2 ∗ 0.5 + 2 ∗ 0 + 0.060 ∗ 0 + 2 ∗ −1 = −1

Argument3 : decision naive(Marg3) = 1 ∗ 0.5 + 0 ∗ 0 + 0.008 ∗ 0 + 2 ∗ −1 = −1.5
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We again choose the argument with the largest decision value - argument 2. Note, our strategy now
corresponds to choosing arguments with smallest degree-out and largest unmarked set size. The absolute
magnitude of each weight denotes how we prioritise each measure. Since −1 is larger than 0.5 in absolute
terms, we will give priority to the measure associated with −1. Hence, our strategy here really is: choose
arguments with smallest degree-out and if more than one arguments have similar degree-out value, choose
the one with largest unmarked set size.

3.2.3 Making model sound - normalisation and avoiding 0 measure

So far we have been calling our decision value ’naive’. This is because there are two important issues
with the decision value as it is now. We will consider each in turn.

First, consider the following weights:

Unmarked Set Size (W1) Number of Assumptions (W2) PageRank (W3) Degree-out (W4)
0 1 1 0

The corresponding strategy would be: choose arguments with the biggest number of assumptions and
the biggest PageRank. We now compute the decision values associated with each argument:

Argument1 : decision naive(Marg1) = 5 ∗ 0 + 1 ∗ 1 + 0.806 ∗ 1 + 21 ∗ 0 = 1.806

Argument2 : decision naive(Marg2) = 2 ∗ 0 + 2 ∗ 1 + 0.060 ∗ 1 + 2 ∗ 0 = 2.060

Argument3 : decision naive(Marg3) = 1 ∗ 0 + 0 ∗ 1 + 0.008 ∗ 1 + 2 ∗ 0 = 0.008

And so the opponent chooses argument 2 once more. However, this is probably not what we would
expect. Although argument 2 has 2 times bigger degree-out value than argument 1, its PageRank value
is 13 times smaller than argument’s 1 PageRank. Since we prioritise two measures equally, clearly we
should be choosing argument 1 instead of argument 2. The problem is that each measure has a slightly
different range. In order to make them statistically equally significant, we can normalise them. We will
be using the following normalisation strategy:

decision value(M) =
M1

Sum(M1)
∗W1 +

M2

Sum(M2)
∗W2 +

M3

Sum(M3)
∗W3 + ....+

Mn

Sum(Mn)
∗Wn (3.2)

where Sum(Mi) is defined for k available arguments as follows:

Sum(Mi) =

k∑
j=1

M
argj
i

I.e. we sum ith measure values for all arguments.

If we normalise all measures we will get the following table:

Arg1 Arg2 Arg3
Normalised Unmarked Set Size 0.625 0.25 0.125

Normalised Number of Assumptions 0.34 0.66 0
Normalised ABA Graph PageRank 0.922 0.069 0.009
Normalised ABA Graph Degree-out 0.84 0.08 0.08

Table 3.3: Normalised measures computed for each of the arguments
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Using 3.3 we can now recompute the decision values:

Argument1 : decision vaule(Marg1) = 0.625 ∗ 0 + 0.34 ∗ 1 + 0.922 ∗ 1 + 0.84 ∗ 0 = 1.262

Argument2 : decision value(Marg2) = 0.25 ∗ 0 + 0.66 ∗ 1 + 0.069 ∗ 1 + 0.08 ∗ 0 = 0.729

Argument3 : decision value(Marg3) = 0.125 ∗ 0 + 0 ∗ 1 + 0.009 ∗ 1 + 0.08 ∗ 0 = 0.009

And we now choose argument 1 as required.

Another issue occurs when a certain measure has value 0. Consider the following measures:

Arg1 Arg2 Arg3
Normalised Number of Assumptions 0 0 0

Now consider applying W = −1 and then W = +1 to the Normalised Number of Assumptions (M)
measure. We will get 0 for each of the arguments in both cases. Regardless of what we choose W to be
W ∗M = 0. This is inconsistent with what we have said - weight -1 corresponds making choices with
measure as small as possible, while weight +1 corresponds to making choices with measures as big as
possible. This is not a problem if we know the set of weights in advance and use them in derivation.
However, our aim is to learn the optimal strategy (the optimal set of weights, optimal with respect
to derivation time). Hence we would prefer to avoid unpredictable weight values as it may affect the
learning process.

To solve the issue we seed each measure with a very small number instead of 0. We picked 0.00001 for
the job. We carefully inspected each of the measures we introduced in the experiments to double check
whether adding 0.00001 does influence the decision value. Most measures have values greater than 1.
None of the measures have values in ranges less than 0.00001.

3.3 Learning optimal strategies

The single most important thing about our approach is: we did not want to guess derivation
strategies which just might work. Instead, we wanted to learn those strategies by querying a big
number of synthetically generated frameworks and observing the derivation performance. In this section
we will describe the machine learning approach used for the task.

3.3.1 What do we want to learn

So far we have shown how we can encode different strategies. For example, a strategy which uses 3
measures per each choice point can be encoded as a vector of weights W with 18 weights (6 choice points
each using 3 measures gives us 3 ∗ 6 = 18). Note, it is possible to use the same weight for different choice
points. Also, it is possible to use different measures for different choice points so that the number of
weights per choice point varies.

However, in any case, what we end up with is strategy encoded in a form of vector W = [w1, w2, ...wn].
Our aim is to learn the best performing strategies. Why do so? Recall that weight +1 indicated that we
want to keep the associated measure as big as possible, while weight −1 indicated that we want to keep
the associated measure as small as possible. We can generalise the statement to the following:

Positive weight value indicates that, when choosing between two alternatives (between
arguments, sentences etc), the strategy would be to favour the alternative with bigger
associated measure.
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Negative weight value indicates that, when choosing between two alternatives (between
arguments, sentences etc), the strategy would be to favour the alternative with smaller
associated measure.

What we really want to learn here is not a specific combination of weights in a single strategy which just
happen to make that particular strategy superior in terms of performance. Looking at such strategy as
standalone may be useful but may also be misleading. Suppose, for instance, that a certain measure is
completely irrelevant to the derivation time. But in the single best performing strategy that measure’s
weight is positive. We may be tricked into thinking that there is a sound heuristic which prefers bigger
values of the measure to smaller values.

Instead of looking at a one specific best performing strategy and drawing conclusions from it, we will be
looking at a larger group of well performing strategies. We will be trying to analyse that group, contrast
it with a group of bad strategies and search for any trends and patterns.

For instance, lets consider a group of 1000 strategies (1000 weight vectors [w1, w2, w3...wn]). Suppose
that w1 corresponds to a PageRank value in the proponent sentence choice. Lets pick 25% of best
performing strategies from that group. Suppose that we find out that 90% of strategies in that group
have w1 positive. We then may suspect that picking sentences with big PageRank measure in proponent
sentence choice is a common pattern for best performing strategies and we can propose it as a valid
heuristic.

Hence, the three most important rules we will follow when analysing the output are:

Positive weight values in the majority of the best-performing strategies indicates that the
heuristic to always prefer alternatives with the corresponding measure high may improve
derivation performance.

Negative weight values in the majority of the best-performing strategies indicates that the
heuristic to always prefer alternatives with the corresponding measure low may improve
derivation performance.

If we cannot find a correlation between derivation time and a certain measure and the
same result repeats in a number of experiments, we may conclude that the measure is not
relevant and a good derivation heuristic based on that measure cannot be built.

We will apply the above rules when analysing the output of experiments in next chapter.

3.3.2 How do we learn - genetic algorithm overview

Since we want to analyse the best performing strategies, we need to find those strategies first. We can
think about the problem in terms of search. Suppose we fix the choice points we are considering and we
fix measures used for each of the choice point. Further suppose that we encode each strategy as a vector
[w1, w2, w3...wn]. Our search space consists of all possible such weight vectors.

We can now use a number of search approaches in order to obtain the best performing strategies. For
that we decided to use genetic algorithm. As discussed in the Background chapter, a problem has to
satisfy specific criteria in order to benefit from using genetic algorithm as a search strategy. Our problem
meets most of the criteria:

� The search space is large. If our most complex models will have around 30 parameters.

� The search space is not smooth or unimodal. A small change in one parameter value may rapidly
change the performance of a population member.

� The search space is not well understood. This is actually one of our assumptions - we do not
make any assumption about the search space. We use genetic algorithm specifically in order to
understand the search space better.

� The task does not require a global optimum.

� Its quite straightforward to describe our problem in terms of genetic algorithm.
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The idea behind applying a genetic algorithm to the problem is summarised by the following two con-
cepts:

� each strategy encoded as a weight vector will form a single population member

� fitness will be computed by measuring derivation time of a given strategy

To emphasise, lets explicitly define the key genetic concepts in terms of our problem terminology. From
now on we will be using those terms when we talk about the learning process.

Definition 7 Population member - a single strategy represented by a weight vector. Each population
member will be of the form [w1, w2, w3...wn].

Definition 8 Fitness - average derivation time of a population member measured on a set of ABA
derivation frameworks. Thus, lower values of fitness correspond to better performing population members.

This is crucial to understand the rest of the report. We will be using terms ’population member’ and
’strategy’ interchangeably. We will also be using terms ’fitness’ and ’average derivation time’ interchange-
ably.

Another view of our usage of genetic algorithm here is in terms of sampling. We are more interested in
getting a large group of well performing members than a single best performing member. Thus a genetic
algorithm may serve as a more elaborate way of sampling the search space to obtain well performing
strategies. We then want to analyse those well performing strategies to learn something about the search
space itself (i.e. about the derivation algorithm):

� what are the characteristics of strategies which outperform other strategies

� how can we use these characteristics to create useful heuristics

3.3.3 Genetic parameters

Having the basics in place, we are now ready to define other parameters of the learning algorithm.

Initialisation and fitness measurement

We begin by picking the initial population. Before the learning takes place, we have to agree on choice
points we consider and what measures we use for each choice point. Each population member is a vector
of n real numbers: [w1, w2, w3...wn]. We choose the initial members randomly. Since each wi is a weight,
we initialise it to a random value between −1 and +1. To ensure a satisfactory exploration of the search
space, we need to select initial population size to be ’big enough’. We usually pick it to be between 256
and 512 in order to make the learning process feasible computationally.

Having generated the initial population, we begin the learning experiment by measuring fitness of each
population. To do that we need to supply a set of training (framework, query) pairs. In most of our
experiments we used 100 (framework, query) pairs, each generated so that there exists at least one default
strategy for which the query terminates within 20 seconds (i.e. the frameworks are solvable).

To compute the fitness for each population member we measure member’s derivation time for each
(framework, query) pair and compute the average.

Selection operator

We then proceed to the second stage of genetic learning which is selection. We want to select the best
performing members of population for mating. We usually select 1/2 of all population members. We
will be using a variant of Fitness Proportionate Selection method. The selection probability is inversely
proportional to member’s fitness - the lower the average derivation time of a certain member, the ’fitter’
the member and the higher the probability of his selection.
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To compute the probability of choosing a certain member we first inverse its fitness. We then normalise
that inverse by dividing it by the sum of inverses of all population members. As a result, we will get a
valid probability - inversely proportional to member’s fitness and summing to 1 over all selected members.
This is summarised by the following equations:

Let fitnessi be a fitness value of ith member, n be the number of population members.

inv fitnessi = 1/fitnessi

probabilityi =
inv fitnessi∑n
j inv fitnessj

∗ 100(%)

We then select a fraction (usually 1/2) of population for mating. We make selections with repetitions so
there is a probability of choosing the same member more than once.

Crossover

Crossover is performed by combining selected individuals into pairs (parents) and mixing each pair to
produce two children. The pairs are chosen randomly from selected individuals such that each selected
individual is paired once. We perform a single-point uniform crossover - we always define the split point
to be the centre point of each population member. Thus we split each parent in half and combine the
parts to produce two children:

parent1 :[x1, x2 ... xn
2
, x( n

2 +1) ... xn]

parent2 :[y1, y2 ... yn
2
, y( n

2 +1) ... yn]

And the offspring produced is:

child1 :[x1, x2 ... xn
2
, y( n

2 +1) ... yn]

child2 :[y1, y2 ... yn
2
, x( n

2 +1) ... xn]

It is safe in our case to use a single-point uniform crossover as we do not have any large groups of
common-functionality parameters which we could destroy by doing so.

Mutation

Mutation is the final step of each iteration of learning. There are various approached to mutating real
numbers some of which we covered in the Background section. We chose approach which was also
proposed by Schulze and Kremer in their protein structure experiments. [SK93] If a certain weight is
selected to be mutated, we will be incrementing or decrementing that weight by a very small value (lets
call it ’mutation value’). Whether we increment or decrement is a random decision, each has a probability
of 0.5 to occur. To compute mutation value we use a standard deviation of the corresponding parameter
computed from all population members. Suppose that a weight we are mutating has index 0 (i.e. it
is the very first weight in the vector encoding a population member). To compute mutation value for
member’s w0 we consider all other population members and their w0 value. We take all those w0 values
(all w0 values recorded for the population) and we compute their standard deviation which will be our
mutation value.
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Concrete example

Let us consider a toy example and perform one genetic algorithm iteration. Consider the following
learning parameters:

� Each strategy consists of four weights: [w1, w2, w3, w4]

� Number of training frameworks: 4

� Selection rate: 0.5

� Mutation rate: 0.1

Further suppose we have the following input population (it may have come from previous iteration or it
may have been generated randomly if it is the first iteration):

Member Index w1 w2 w3 w4
1 1 0.5 -0.9 0.0
2 -1 0.0 -0.5 -1
3 0.5 0.1 -0.1 1
4 0.0 1 1 0.5

Table 3.4: Population weights

The first step is to compute average derivation time (fitness) in seconds for each member:

Index Framework 1 Framework 2 Framework 3 Framework 4 Avg Deriv Time (Fitness)
1 0.5 0.5 1.5 2.5 1.25
2 0.1 0.4 0.2 0.3 0.25
3 0.6 0.9 0.4 0.1 0.50
4 0.7 0.3 2.5 3.5 1.75

We now compute the probability of selecting each population member:

Index Fitness Inverse fitness Probability of selection
1 1.25 0.89 11%
2 0.25 4 54%
3 0.50 2 27%
4 1.75 0.57 8%

Since our selection rate is 0.5, we will be selecting two members. Suppose we select population member
2 and population member 3. We pair the two members and produce children:

Member Index w1 w2 w3 w4
parent1 -1 0.0 -0.5 -1
parent2 0.5 0.1 -0.1 1

Member Index w1 w2 w3 w4
child1 -1 0.0 -0.1 1
child2 0.5 0.1 -0.5 -1

Now we perform mutation of each child. Suppose that the mutation rate is 5%. We consider each weight
(in each child) in turn. For each weight, we have 5% chances of mutating that weight. Suppose that for
child1 we did not choose any weight for mutation and for child2 we selected w2. If we extract all w2
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values from Table 3.4, we obtain [-0.9, -0.5, -0.1, 1.0]. We can now compute the standard deviation of
that vector, which is: 0.708. Now we choose whether we want to add or subtract the computed value.
Suppose we choose to add. Hence for child2 we obtain: w2 = −0.5 + 0.708 = 0.208 and our final output
population is:

Member Index w1 w2 w3 w4
member1 (child1) -1 0.0 -0.1 1
member2 (child2) 0.5 0.1 -0.208 -1
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Chapter 4

Experimental Infrastructure

4.1 Overview

Although research and experimentation was the core of the project, it would have been impossible to carry
out any useful experiments without proper supporting infrastructure in place. Hence, in this chapter
we will try to explain all parts of the experimental infrastructure. We will cover every design choice we
have made as well as listing technical details and parameters. Hopefully, after studying this chapter,
the reader will have more confidence in our approach and its soundness and correctness. Although we
did not conduct any formal proof of mentioned properties, we made every possible software engineering
effort to ensure that they hold. We especially wanted to ensure that if any output of learning seems
incorrect or inconsistent it is not due to faulty software.

The second reason why we include this chapter in the main report is to provide a short documentation
of the set-up. This can come in handy in case someone else will be continuing the project and reusing
the same software. However, this chapter will be a very high-level overview of the infrastructure, not a
detailed documentation down to the code-level.

The code-base is organised into 5 major components:

� Frameworks - component responsible for frameworks generation and enrichment, also contains
frameworks database.

� Derivation - code responsible for ABA derivation.

� Learning - code responsible for genetic learning of optimal strategies.

� Benchmarking - component responsible for comparing different strategies and models.

� Output analysing - code responsible for reading the output of the learning phase and transforming
into a more human-friendly form (plots or csv files)

The codebase is a mix of Sicstus Prolog [ICS], C++, Scala and bash scripts.

4.2 Frameworks

4.2.1 Frameworks generation

The generation scripts were not created solely for the purpose of this project. They were provided when
the project started and were not written by the author of this report. The author added a few gluing bash
scripts to automate the generation process and to validate its output. The core generation generation
logic was written in Prolog.
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When we generate a framework we have to specify the number of sentences (the number of assumptions
and non-assumptions) we would like the framework to have. This number determines to which group
the framework will qualify. We use four values, each one corresponding to one of the four groups:

� tiny frameworks: 30 sentences

� small frameworks: 55 sentences

� medium frameworks: 80 sentences

� large frameworks: 150 sentences

We never use tiny frameworks so for the rest of the report we will focus on small, medium and large
frameworks. Only small frameworks are used in learning. All three types of frameworks are used in
benchmarking.

We require all frameworks we generate to be solvable. I.e. a framework has to have a query (a sentence)
and a strategy which solves the query within some reasonable time bound. This is required for the
learning process. If we have a framework and a query on that framework which currently takes 15
seconds to solve with default strategy, we know that it is feasible to solve the framework and we have a
room for improvement for our learning process to obtain better strategies. We can also benchmark our
strategy against the default strategy. Thus we have to specify time upper-bound (in seconds) in which
we want the default strategy to solve the query. If for a certain framework we cannot find a query and
a default strategy which terminates before the time upper-bound is reached, we discard the framework.
Depending on the size of the framework we use different default derivation time upper-bounds:

� small frameworks: 20 seconds

� medium frameworks: 60 seconds

� large frameworks: 120 seconds

Hence, when frameworks are generated they also have two parameters already:

� a query which terminated within the time upper-bound, also called goal

� a strategy which was set to solve that query, also called default strategy

One way to think about framework generations is in terms of (framework, goal) pairs. In fact, when
we specify the number of frameworks to be generated by the script, in reality we specify the number of
unique (framework, goal) pairs, as a certain framework may have a couple of interesting queries. The
same is true for learning or benchmarking - when we specify the number of training or testing frameworks,
in reality we specify the number of unique (framework, goal) pairs.

We also specify time lower-bound to the generation script. This is to ensure that the framework is not
trivial - the default strategy has to take more than time lower-bound seconds to solve the goal. We
usually set the lower-bound to 2 seconds.

The output of framework generation is a Prolog file with the framework itself (assumptions, non-
assumptions and rules) and meta-data which consists of goal and strategy (expressed as a ’goal(G)’
and ’strategy(S)’ predicates).

4.2.2 Framework pre-processing

As all of our models use parameters based on ABA Graph measures, we have to generate that graph
and compute the relevant measures before we can use the framework in learning or benchmarking. Some
of the models also use another type of graph - the Assumption Graph which we will cover in the next
chapter. Also, some of our models use what we call a ’Lookahead Subgraph’ defined for each ABA Graph
node. It is a subgraph of ABA Graph which consists of nodes located within a certain distance from
the node of interest. It will be carefully explained in the next chapter (with pictures). Right now the
important bit is that computing various measures of Lookahead Subgraph is also part of framework pre-
processing and is performed here. Generally, any framework pre-processing and framework enrichment
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is performed in this dedicated component. The code is a mix of Prolog and C++ with bash scripts for
automation and gluing.

The only input required is an ABA framework itself. The framework is represented as a Prolog file.
All meta-data created by the pre-processing component is also represented as a Prolog predicate and
written back to the ABA framework file. We used the following Prolog predicates to describe the meta-
data:

% ABA Graph p r e d i c a t e s :
aba assumption node (NId , Assumption ) .
aba ru l e node (NId , Head , Body ) .
aba non assumption node (NId , Nonassumption ) .
aba at tack edge ( EdgeId , From , To ) .
aba proo f edge ( EdgeId , From , To ) .
aba support edge ( EdgeId , From , To ) .

% Assumption Graph p r e d i c a t e s :
ass assumpt ion node (NId , Assumption ) .
a s s a t t a c k e d g e ( EdgeId , From , To ) .

% Graph measures
d e g r e e c e n t r a l i t y (NId ,V) . % V = Value
c l o s e n e s s c e n t r a l i t y (NId ,V) .
b e t w e e n n e s s c e n t r a l i t y (NId ,V) .
e i g e n c e n t r a l i t y (NId ,V) .
p a g e r a n k c e n t r a l i t y (NId ,V) .
h u b c e n t r a l i t y (NId ,V) .
a u t h o r i t y c e n t r a l i t y (NId ,V) .

% Lookahead measures
n a a s s s e t ( AssId , Set ) . % Assumptions in the lookahead subgraph
n a t r e e s i z e ( AssId , S i z e ) . % S i z e o f the lookahead subgraph
na at tacks ( AssId , Attacks ) . % Number o f a t t a c k s d i r e c t e d at subgraph
r u l e a s s s e t ( AssId , Set ) . % Assumptions in the lookahead subgraph
r u l e t r e e s i z e ( AssId , S i z e ) . % S i z e o f the lookahead subgraph
r u l e a t t a c k s ( AssId , Attacks ) . % Number o f a t t a c k s d i r e c t e d at subgraph

The Prolog program is responsible for reading input ABA framework, generating ABA Graph and (if
required) Assumption Graph and computing all Lookahead measures. C++ component is responsible
for reading in the graph and computing all graph measures (degree, closeness, betweenness, pagerank,
eigen, hub and authority centralities). The computation was outsourced to C++ network library called
SNAP (Stanford Network Analysis Platform) [Sta] as there are no good network frameworks for Sicstus
Prolog currently available.

4.3 Derivation

Once the framework has been pre-processed, it can be supplied to the derivation algorithm and queried.
The derivation algorithm used for this work is called proxdd and is written in Prolog. The core of the
algorithm was already supplied to the author of the report. For the purpose of this work, the algorithm
was extended with additional derivation models which we describe in the next chapter. However, the
core part of the algorithm was unchanged.

Each time a new model was developed it had to be tested for correctness. For that part we had a set
of 18 test frameworks. The frameworks were carefully selected to cover the main parts of the algorithm
(argument selection, rule selection, sentence selection, filtering and backtracking) as well as possible
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edge-cases: no solution for the input query, many (10+) solutions to the input query. We then compared
the output of the new model with the output produced by one of the default strategies. We compared
the solutions produced by both implementations. The test passed if the solution matched.

4.4 Learning

The learning code is the core of the project. As we described in the previous chapter, we used genetic
algorithm for the learning purpose. It was developed in Prolog, with a few bash scripts used for automa-
tion and control (as usual). In order to run the learning process, the user has to set up two configuration
files which specify:

� Directories of all required source files.

� Directory of output/log files.

� Frameworks used for training: framework directory, the number of frameworks we want to use from
that directory and derivation timeout.

� The name of the model we are testing.

� All genetic algorithm parameters: mutation rate, selection rate and initial population size.

We initially used 50 small (framework,query) pairs for training. Then we decided to expand that number
to 100. The usual genetic algorithm parameters were:

� initial population size: 256 (for models with less than 20 parameters), 512 (for models with 20 or
more parameters)

� mutation rate: 0.1 (10% chances of mutating a feature of each population members after the
crossover)

� selection rate: 0.5 (at each iteration we halved the population size)

It turned out that the main software engineering challenge in this part was the computation time of
the whole learning process. Suppose that we use the typical configuration: 50 frameworks, 20 seconds
timeout for each framework, 256 initial population members. Recall that each ’population member’ is a
different parametrisation of the model, i.e. it encodes a different derivation strategy. To compute each
member’s fitness, we have to run it on 50 frameworks, measure derivation time on each (at most 20
seconds) and compute the average. So, the first iteration of the algorithm would run 256 ∗ 50 = 12800
different derivations. The worst case is that each such derivation would take 20 seconds. However, the
average case we observed from the experiments was around 15 seconds. Thus, the whole first iteration
would take:

15 ∗ 12800 = 192000 (seconds) = 53 (hours)

And remember that this is just the first iteration! The whole learning process would take a few days
to complete. And for more complicated models, where we expanded training set size to 100 and initial
population to 512, it would probably take close to a month to complete an experiment.

This is a serious issue. We first looked into decreasing the parameters which have a direct influence
on computation time: initial population size, derivation timeout and number of training frameworks.
However, when we considered each of them in turn, we realised that they are already minimal and
cannot be further decreased. For models with more than 10 parameters, 256 population members barely
cover the search space sufficiently enough. Decreasing the training set was out of question too. In order to
have any significant decrease in derivation time we would have to cut the number by half. Unfortunately,
if we wanted to learn on only 25 (framework, query) pairs, we would have to select them very carefully
to cover the framework space sufficiently well. But we did not even know how to measure that coverage
(i.e. what framework parameters to use). 50 frameworks was a bare minimum.
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The only option was to cut the timeout to 10 seconds. However, we would have to generate new
frameworks from scratch in order to get frameworks which are solvable within 10 second. Furthermore,
it would not give us sufficient computation time boost, as it would decrease the time by half only. Finally,
each decrease in maximal derivation time makes the problem less interesting as there would be less field
for improvement.

For a brief moment we considered changing the approach. However, then we realise that there is a solution
to our problem - parallelization. A genetic algorithm is an ideal candidate for parallelization as each
population member is independent of all others. We decided to split the population into groups with up
to 25 members in each group. Then we could measure fitness for each group separately and combine the
results. Suppose we again have the usual configuration parameters: 50 frameworks, 20 seconds timeout
for each framework, 256 initial population members, 15 seconds average derivation time. Suppose that
this time we split networks into 26 groups and run the first phase of generic algorithm (fitness measuring)
in parallel for each group. We will have 25 groups with 10 members and 1 group with 6 members. If
we assume the ideal scenario, i.e. we have an access to 26 CPUs so that each group can run truly in
parallel, our computation time would be:

10 ∗ 50 ∗ 15(seconds) = 7500(seconds) = 2(hours)

A significant improvement! We could now finish the whole learning process in less than a day. Fortunately,
in reality we did have access to 26+ CPUs through Imperial College Condor system - a high-throughput
batch-processing system. Thus, each group’s fitness measurement was encapsulated in a single Condor
task. For measuring fitness of the first population with 256 members, we had to submit 26 Condor
tasks.

The final flow structure of our parallel genetic algorithm with the default parameters was:

1. Generate 256 population members randomly - this forms the initial population.

2. Split the population into smaller groups with no more than 20 members per group. For example,
for 256 population size and 10 members per group, we would get 26 groups, 25 of which would
have 10 member and 1 would have 6 members.

3. Measure fitness for each group in parallel. For example, if current population was 256, we would
submit 26 condor tasks, each one responsible for measuring average derivation time of a different
member group. All tasks outputted fitness to the same file. Thus, the output of this phase was a
large fitness file listing (member, fitness) tuples.

4. Once all condor tasks finish, perform crossover and mutation by supplying the fitness file produced
in the previous stage as an input. This stage proceeds as described in the previous chapter - 1/2
of population is selected for mating. Each mating pair produces 2 children. We apply mutation to
each produced child. As a result, we will get a new population of strategies which will have half
the number of elements of the previous population. For our running example, the new population
would have 128 members.

5. Either go to step 2 with the new population obtained in the previous step or terminate.

4.5 Output analysis

The algorithm described in the previous section also logs all populations in a separate ’history’ text file.
For each population we log each member of the given population together with member’s average fitness.
As we can imagine, the ’history’ file is big and very hard to manually inspect, especially if the model has
more than 20 parameters. For example, consider the following:

[-0.1 ,0.2,-0.9 ,-0.8, -0.9,0.4,0.8 ,-0.5,0.8 ,-0.4,0.2 ,-0.6, -0.2,-0.2 ,0.0,0.7,0.1 ,0.9,0.6, -0.4 ,0.0, -0.9 ,-0.5,0.2 ,0.7,-0.3 ,-0.4] 15647.1

[ -0.1 , -0.2 , -0.5 , -0.5 , -0.4 ,0.7 ,0.9 ,0.5 , -0.9 , -0.4 ,0.9 , -0.7 ,0.6 ,0.8 , -0.4 , -0.9 ,0.5 ,0.8 ,0.5 , -0.6 ,0.6 ,0.3 , -0.4 , -0.1 ,0.2 ,0.0 ,0.0] 14298.1

[0.4 ,0.6 ,0.6 ,0.8 ,0.5 , -0.5 ,0.2 ,0.7 , -0.7 ,0.5 , -0.3 , -0.6 , -0.9 , -0.3 ,0.6 ,0.5 ,0.6 ,0.9 ,0.8 , -0.6 ,0.0 ,0.7 , -1.0 , -0.7 ,0.4 ,0.8 ,0.7] 13429.7

[0.1 ,0.4 ,0.5 ,0.0 , -0.2 ,0.9 ,0.9 ,0.0 ,0.3 ,0.3 , -0.2 ,0.3 ,0.2 ,0.9 ,0.7 ,0.2 ,0.0 ,0.8 , -0.8 ,0.4 ,0.7 ,0.1 ,0.0 , -0.8 ,0.1 , -0.2 , -0.8] 13810.1

[0.8 ,0.2 , -0.2 ,0.1 , -0.7 , -0.5 , -0.1 ,0.6 ,0.6 ,0.6 , -0.4 , -0.1 ,0.8 ,0.9 ,0.3 ,0.8 ,0.4 , -0.4 , -0.5 ,0.9 , -0.9 ,0.1 ,0.6 ,0.1 ,0.7 ,0.5 ,0.3] 14183.1

[0.3,-0.6,-0.7,-0.8,0.1,0.8,-1.0,-0.2,0.3,-1.0,-0.4,0.1,0.6,-1.0,-0.8,-1.0,-0.1,-0.3,-0.2,0.9,-0.9,0.9,-0.1,0.3,0.4,0.1,0.0] 12939.1
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The above is a subset of the history file, showing a population member (a derivation strategy) and
fitness in the form ’[population member], fitness’. We would ideally want to manipulate that output.
For example, we may be interested in:

� computing average fitness

� printing population members in a tabulated form (csv)

� extracting certain subset of parameters together with fitness (to determine parameters - fitness
correlation)

� computing the ratio of negative values for a certain parameter (the parameters are separated by
colons) across all recorded strategies

� extracting only x% of best performing strategies (according to their fitness)

We could probably achieve some of these tasks with awk or sed. But we decided that it would be more
convenient to define a separate utility to analyse the history file. The module was written in Scala. It
allows for data extraction and manipulation. It also uses JFreeChart library [Obj] for producing plots
from the extracted data. All plots presented in the next chapter were created using our Scala utility and
JFreeChart library.

4.6 Benchmarking

Having learnt useful trends or strategies, we will be interested in validating what we learnt. We will
be also interested in benchmarking the performance of our models. Hence, we have created a separate
utility dedicating to benchmarking. It is very similar to the fitness measurement part of learning utility.
It also runs into computational time problem. Hence, we had to use the parallelization trick and condor
once again.

The benchmarking is performed on different types of frameworks: small, medium, large and medical.
The medical frameworks were not synthetically generated. They are real-life problems represented as
ABA Frameworks. They were provided by Imperial College Computational Logic and Argumentation
group. We use substantially bigger number of frameworks in benchmarking than we use for learning -
300 small frameworks, 100 medium frameworks and 30 medical frameworks. Unfortunately, we only use
10 large frameworks as they are hard to generate within our specified solution time bounds (we require
minimum 2 seconds and maximum 120 seconds to solve them).

The benchmarking script requires a configuration file as well, where we specify:

� input / output directories

� input frameworks directory and the number of frameworks we will be using

� location of a file with all strategies we are benchmarking

The output contains all strategies tested, together with their average derivation time. We also log
another output file - one per strategy. That output lists all goals a given strategy queried, together
with ABA Graph measures recorded for each goal node and the time needed to find the goal. The
second output is used to analyse what graph parameters of the query may influence its derivation
time. E.g. if a given query is a non-assumption, we will measure ABA Graph parameters of that non-
assumption’s node (closeness, betweenness, pagerank and so forth). We will present these results in
Validation chapter.

One final thing to note here is that we always have to set a timeout on derivation in case it does not
finish in seconds. The timeout we used depends on the size of the networks:

� 20 seconds for small frameworks

� 60 seconds for medium frameworks

� 120 seconds for large frameworks and medical frameworks
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Chapter 5

Experiments and results

5.1 Recap of the approach

As we already emphasised, our aim was to learn the strategies (heuristics) which would improve deriva-
tion time. Hence, we wanted to avoid approach in which we first come up with an idea for some good
strategy and then we fit that idea to our experiment. Such an approach could be called ’benchmarking’
or ’validation’, not ’learning’.

However, it is usually impossible to learn everything from data without using any prior knowledge. For
example, although we used all available ABA Graph measures in our very first experiment, for more
complicated models we had to preselect a set of measures we wanted to use. We learnt that making a
model with all possible measures we can think of is not a feasible solution. In order for such a model
to work, we would need to supply it with accordingly large number of training frameworks. Also, our
initial population size would have to be big. Thus, we faced a trade-off between model complexity and
computational feasibility.

For example, consider a model with 10 measures. Suppose that the model has a different decision function
for sentence / rule / argument choice point for each player (one for proponent sentence, one for opponent
sentence etc.). We have 2 ∗ 2 + 1 = 5 different decision functions as rule choice is only for proponent and
we ignore player choice for now. If we suppose that our model is very generic, we probably want to apply
all 10 measures in each possible decision function. If we do so, our model has 5 ∗ 10 = 50 parameters
(weights) all together.

This creates several problems. As already mentioned, we would need more than 512 initial population
members to cover a search space with 50 parameters well enough. Increasing initial population size makes
it computationally harder and harder to learn anything. Also, it is very hard to analyse a model with
50 parameters, not to mention finding correlation between parameters. We quickly learnt that by using
50 parameters we over-parametrise the model and the output of learning is not sensible at all.

Hence, our subjective heuristic is to use at most 4 measures per decision function. The question was how
do we select these measures. Our approach was to start with the most generic model which considers
all ABA Graph measures (7 of them). In order to make it feasible, we had a single decision function for
each choice point. Thus we had 7 parameters in the model all-together. The output of the experiment
showed which measures show promise and which do not. This dictated which measures will be used
in the following experiments. It also suggested which new measures may be added to the next model.
Choosing appropriate measures was our subjective guess.
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5.2 Output visualisation

Since the aim of the experiment was to see a correlation between model weights’ signs and performance
we needed to analyse the output of experiments to see that correlation. Especially, we wanted to see
whether there is any correlation between a positive measure weight and good performance or between a
negative measure weight and good performance. As already explained, the former would suggest using
heuristics which keep the measure as big as possible, while the latter would indicate on a heuristics which
keep the measure as small as possible.

The hard bit was to make sense of the output. Most of our experiments had 20+ parameters (weights)
so it was very hard to spot any correlation just by looking at the numbers. To illustrate, we show a
typical output of our experiment below:

w0 w1 w2 w3 . . . w19 w20 fitness
-0.1 -0.2 -0.4 -0.9 . . . 0.5 -1 4232.5
-0.7 0.2 0 -0.1 . . . 0.7 -0.5 4356.1
-0.4 -0.4 -0.1 -0.4 . . . 0.7 -0.8 4364.8
-0.9 -0.1 0 -1 . . . -0.2 0.9 4471.1
. . . . . . . . . . . . . . . . . . . . . . . .
0.6 0.1 0.7 0.5 . . . 0.8 0 17847.9
0.2 0.2 0.3 -0.9 . . . 0 0.3 17884.5
0.2 0.5 0.4 0.3 . . . 0 0.5 18008.7
0.7 0.4 0.7 -0.8 . . . 0.7 0 18072.7

Table 5.1: 4 best and worst performing population members in tabular form

As we can see, if we have around 500 - 1000 rows of 20+ real number, it is very challenging to see any
correlation. Our first approach was to look at only 10-20% best performing members and try to see
whether most of them are positive or negative. However, this approach is tedious and error prone. Also,
while it is generally possible to see large groups of positive / negative numbers, it gives us no clue on
how important a certain measure is.

Hence, instead of looking at tables of numbers we decided to plot the numbers on graphs and look for
correlations there. We started with a simple scatter plot:

Figure 5.1: Fitness (Average Derivation Time) vs Degree Centrality plotted for 100% of results
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Figure 5.1 illustrates the relationship between average derivation time (x axis) and ABA Graph degree
centrality weight value (y axis). There is an evident correlation here - all best performing weights have
negative value. All worst performing weights have positive value. This may lead to a heuristic which
says that at measured choice point we want to make choices which have degree centrality as small as
possible.

However, the correlation is not always evident. Consider the following scatter plot:

Figure 5.2: Fitness (Average Derivation Time) vs PageRank plotted for 100% of results

Figure 5.2 illustrates the relationship between average derivation time and ABA Graph PageRank cen-
trality weight value. It is very hard to see any correlation. The only thing we notice (if we exclude
the rightmost, worst performing dots) is that the diagram is slightly skewed to the right. This actually
indicates a similar correlation as in figure 5.1 but it is much harder to see.

Figure 5.3: Fitness (Average Derivation Time) vs PageRank plotted for 20% of best performing results

One possible solution is to consider only x% of best performing members. Consider the same figure
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again, but this time we focus only on 20% best performing population members. We make it explicit in
plot 5.3.

However, all we want to observe is whether negative weights dominate in the best performing strategies.
To see that we do not have to plot all points. Instead, we can compute a negative weight ratio: for a
certain weight we can sum up all population members where the weight is negative and divide it by the
total number of members in a population. We can similarly compute a positive weight ratio. This
led us to two more ideas on how to graphically represent successful outcomes.

Figure 5.4: Average fitness vs population number (left), % of negative occurrences of PageRank vs
population number (right)

Figure 5.4 illustrates the first idea. On the left we can see an average derivation time plotted for four
consecutive populations. We can see that the derivation time decreases as populations are improving
through genetic algorithm. On the right we see a similar plot, but this time instead of average derivation
time we plot the ratio of negative PageRank weights for the same populations.

We can see that the ratio is increasing. Thus, there are many more negative PageRank weights in
population 4 than there are in population 1. Since the average derivation time is decreasing and negative
PageRank weight ratio is increasing in consecutive populations we may suspect that there is a relationship
between the two. We will be using that approach when showing experiment results.

We can also show the relationship between negative (positive) ratio and derivation time more explicitly.
Each genetic experiment outputs 5-7 populations of strategies (we choose manually when to stop). Each
population consists of different strategies encoded with weights together with their fitness value. Suppose
that we treat all populations as a one, singe population. We list every strategy we ever measured together
with its average derivation times. We can now assign the strategies to groups.

The first group contains all of them, the second contains 75% best performing strategies (0.75 percentile),
the third one contains 50% best performing strategies, the fourth one 25% and then 10%, 5% and 2.5%.
We thus obtain what we call best performing percentiles. For a certain weight, we can now compute the
negative weight ratio for each percentile (group). As a result, we will obtain a plot which shows how
many negative weights we have among 2.5% best performing members, 5% members and so on.
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Figure 5.5: PageRank negative weight ratio in experiment best performing percentile

Figure 5.5 is an example of the percentile plot for PageRank (the same measure we used in all previous
figures). We can see that that negative PageRank weight ratio is increasing with performance. This
show a direct relationship between PageRank measure and derivation time. This is the most important
type of plot - we will be showing most of our experimental results in this way. So it is worth studying a
bit more carefully.

Remember that we are plotting negative weight ratio. So, if the there is an increasing trend plotted,
we may be saying that negative weights dominate in best performing population members. If the trend
was down-slopping, we could be saying that positive weights dominate in best performing population
members. But, to really see a correlation it is not enough to just look at upward or downward slopping
trends. We also have to consider the ratio itself. If the ratio is 0.6 for 10% best group and then goes
down to 0.5 for 5% and 0.4 for 2.5% we will not consider it as a trend.

5.3 First model - ABA Generic

5.3.1 Justification of the model

ABA Generic is the very first model we used. The very first idea we had on how to improve derivation
performance was to use graph measures and guide the derivation process by computing those measures
for each choice point and then using them to make a decision. The main aim of this experiment was to
validate that approach by:

� checking whether we can improve derivation speed by using graph measures

� checking whether we have any correlations between derivation speed and graph measures used

5.3.2 ABA Graph analysis

As a part of the experiment, we performed an analysis of ABA Graph measures. We wanted to answer
two questions here. First of all, we wanted to see whether the measures are correlated and how they
are correlated. Secondly, we wanted to know whether there are any other special characteristics of the
graph. Recall that ABA Graph has three types of nodes: assumption nodes, non-assumption nodes and
rule nodes. Each type of node may have a slightly different characteristics. Hence, we performed the
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analysis separately for each type of node. To perform the analysis, we used 400 different ABA Graphs
constructed from three types of ABA frameworks: small, medium and large.

Assumption nodes

Figure 5.6: Correlation between degree-in and authority (left), and degree-in and eigen centrality (right)

Figure 5.7: Correlation between degree-in and PageRank (left), and eigen centrality and authority (right)

As we can see, degree-in, authority and eigen centrality are strongly correlated (especially the last two).
This may indicate that using all of them in a single model is redundant. On the other hand, PageRank
is not correlated with any of the measures. We include PageRank correlation with degree here because
we will be using these two measures in most of our models. No further correlations were found.
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Non-assumption nodes

Figure 5.8: Correlation between degree-in and authority (left), and degree-in and eigen centrality (right)

Figure 5.9: Correlation between degree-in and pagerank (left), and eigen centrality and authority (right)

The output is very similar to assumption nodes. Thus, if we consider degree-in, authority and eigen
centrality, the two sets of nodes are very similar.

Rule nodes

No correlations found.

51



5.3.3 Model description

Measures

Measures considered:

� degree centrality

� closeness centrality

� betweenness centrality

� eigen centrality

� pagerank centrality

� hub centrality

� authority centrality

All measures were obtained from ABA graph. I.e. we translated input ABA framework into an ABA
Graph and computed all 7 measures for each node of the graph.

Choice points considered:

� proponent sentence choice

� opponent sentence choice

� proponent rule choice

� proponent argument choice

� opponent argument choice

As a side note, proponent vs opponent turn choice was not considered here. Proponent was given priority
to move every time. This is a simplification of the problem. The aim of this experiment was to deduce
the importance of each measure and decide which measures will be reused in future models, not to find
efficient strategies for opponent and proponent or contrast the respective strategies of different players. In
some future experiments, we will be running a single experiment twice, once giving a proponent priority
and once giving priority to opponent. We will then be contrasting strategies for each player. However, to
manage the complexity, we never implemented a model in which player turn choice was included.

For all other choice points we applied the same set of measures. Getting measures for sentence and rule
choice was straightforward. All we had to do was to read those measures straight from the input ABA
Graph as each sentence and rule node in the graph has all measures precomputed. For example, suppose
that some data equivalent to tables 5.2 and 5.3 is attached to the input framework.

Sentence Node Degree Closeness Betweenness Eigen PageRank Hub Authority
a 3 0.345 92.4 0.07 0.0048 0.0621 0.058
b 1 0.221 0 0.25 0.021 0.0121 0.123
x0 2 0.289 295.64 0.0067 0.012 0 0.1421

Table 5.2: Sentence input measures

Rule Node Degree Closeness Betweenness Eigen PageRank Hub Authority
x0 :- [c,d] 3 0.0 0 0.091 0.042 0.053 0.0

x0 :- [] 1 0.123 225.1 0.012 0.01 0.0236 0.0

Table 5.3: Rule input measures

Suppose we are a proponent and we have to choose a sentence to expand. We have three options: a, b,
x0 (a,b are assumptions, x0 is a non-assumption). All we have to do to get measures associated with
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these options is to read them from input file (which includes information equivalent to 5.2). One way to
think about it is that our derivation procedure has full access to 5.2 so it can read all relevant measures
from the table.

Argument choice is slightly more complicated. We do not have argument nodes in ABA Graph. Gener-
ating all possible arguments from ABA framework is computationally infeasible. Thus, we do not have
precomputed measures per each argument which we can easily read from input framework. To define
any sensible measures for an argument we look at its unmarked set. In fact, this will be the case for all
experiments, so we highlight it here:

To obtain argument’s measures we look at measures associated with its unmarked set.

This is the most intuitive formulation of argument’s measure. Sentences in unmarked set intuitively
denote ’what is left to do’ in order to finish deriving the full argument.

We will show how we compute argument measure by running through a short example. Suppose we have
two arguments:

arg1 : [ a , b ] :− p0
arg2 : [ x0 ] :− q0

where each argument is written in the form: unmarked set :- head. To compute measures for each argu-
ment we add measures precomputed for sentences in its unmarked set. For ’arg1’, we would add measures
precomputed for ’a’ and for ’b’. For arg2, we take measures precomputed for ’x0’. We obtain:

Argument Degree Closeness Betweenness Eigen PageRank Hub Authority
arg1 4 0.566 92.4 0.32 0.0258 0.0743 0.181
arg2 2 0.289 295.64 0.0067 0.012 0 0.1421

Table 5.4: Argument measures

Parameters (weights)

We applied the same set of weights for each choice point. In other words, the model had just 7 parameters
(weights):

� degree centrality weight

� closeness centrality weight

� betweenness centrality weight

� eigen centrality weight

� pagerank centrality weight

� hub centrality weight

� authority centrality weight

To clarify, let us go through a short example. We will explicitly show how different choice points are
evaluated.

A first step is to fix a strategy. Suppose we have:

w1 w2 w3 w4 w5 w6 w7
-1.0 0.5 0.0 1.0 0.25 0.25 0.0

Table 5.5: Derivation strategy

Suppose the proponent is currently moving. First, he will be selecting an argument. Suppose he is
making a choice between arguments defined in table 5.4. He has to compute decision value associated
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with each argument. For that he will be using measures defined in 5.4 (call them Marg1 and Marg2) and
weights defined in 5.5 (vector W ).

Before computing decision value, we have to normalise the measures:

Argument Degree Closeness Betweenness Eigen PageRank Hub Authority
arg1 0.67 0.67 0.24 0.98 0.68 1 0.56
arg2 0.33 0.33 0.76 0.02 0.32 0 0.44

Table 5.6: Argument measures - normalised

We can now apply them to compute decision value for each argument:

decision value(arg1) = W ∗ normalised(Marg1)

= 0.67 ∗ −1.0 + 0.67 ∗ 0.5 + 0.24 ∗ 0 + 0.98 ∗ 1.0 + 0.68 ∗ 0.25 + 1 ∗ 0.25 + 0.56 ∗ 0.0 = 1.065

decision value(arg2) = W ∗ normalised(Marg2)

= 0.33 ∗ −1.0 + 0.33 ∗ 0.5 + 0.76 ∗ 0 + 0.02 ∗ 1.0 + 0.32 ∗ 0.25 + 0 ∗ 0.25 + 0.44 ∗ 0.0 = −0.065

The proponent chooses argument 1. Now, the proponent has to choose the sentences from arg1’s un-
marked set size which he wants to expand. Again, we computed the normalised measures for each
sentence:

Sentence Node Degree Closeness Betweenness Eigen PageRank Hub Authority
a 0.75 0.61 1 0.22 0.19 0.84 0.68
b 0.25 0.39 0 0.78 0.81 0.16 0.32

Table 5.7: Sentence input measures - normalised

And now we use exactly the same set of weights as for argument choice to compute the decision value
for each sentence:

decision value(a) = W ∗ normalised(Ma)

= 0.75 ∗ −1.0 + 0.61 ∗ 0.5 + 1 ∗ 0 + 0.22 ∗ 1.0 + 0.19 ∗ 0.25 + 0.84 ∗ 0.25 + 0.68 ∗ 0.0 = 0.0325

decision value(b) = W ∗ normalised(Mb)

= 0.25 ∗ −1.0 + 0.39 ∗ 0.5 + 0 ∗ 0 + 0.78 ∗ 1.0 + 0.81 ∗ 0.25 + 0.16 ∗ 0.25 + 0.32 ∗ 0.0 = 0.9675

And we choose b. In this model the same vector of weights - e.g. [-1.0, 0.5, 0.0, 1.0, 0.25, 0.25, 0.0] is
applied to each choice point (proponent, opponent, rule, sentence, argument etc). In later models we will
introduce separate weight for each of the choice points (e.g. proponent sentence degree weight, opponent
argument pagerank weight etc.).
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5.3.4 Learning outcomes

Representing outcome graphically

Figure 5.10: Average Fitness for consecutive populations

Figure 5.10 shows that average fitness was improving with consecutive populations. The output for each
measure is expressed as percentile graphs below:

Figure 5.11: Fitness (Average Derivation Time) vs Authority (left) and Hub Centrality (right) for 100%
of results
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Figure 5.12: Fitness (Average Derivation Time) vs Closeness (left) and Betweenness (right) for 100% of
results

Figure 5.13: Fitness (Average Derivation Time) vs Eigen Centrality (left) and PageRank centrality
(right) for 100% of results
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Figure 5.14: Fitness (Average Derivation Time) vs Degree Centrality for 100% of results

5.3.5 Output analysis

We can observe correlations for most of the measures. The only flat percentile graph we observed belongs
to closeness centrality (Figure 5.12 left). This may lead to a belief that closeness is not the best candidate
for derivation heuristics. The tendency for Hub Centrality is also uncertain (Figure 5.11 right). Although
the diagram is downward-sloping it does so only for 5% and 2.5% best performing strategies. In these
groups, we noted a larger number of positive weights than negative weights but the tendency is very
uncertain. For all other measures the diagrams are mostly upward slopping and the ratio of negative to
positive weights is usually higher than 0.6 even for only 50% of best strategies. Hence all other measures
seem to be converging toward negative weight values. In some cases the tendency is much more evident
than in others.

The strongest correlation was observed for degree centrality (Figure 5.14), eigen centrality (Figure 5.13
left) and PageRank centrality (Figure 5.13 right). They all converge toward negative values which
suggests that best performing strategies prefer choices with small degree centrality, eigen centrality and
PageRank centrality measures. However, the experiment does not give us an explicit justification as to
why these measures may be important. As of now, we can only guess.

Eigen centrality is correlated with degree-in centrality (Figure 5.9 right). Minimising eigen centrality may
be equivalent to minimising degree-in centrality. Authority is strongly correlated with eigen centrality and
also with degree-in (Figure 5.8). It is not surprising that authority also converges toward negative weight
values, just like eigen centrality. PageRank centrality is not correlated with any other measure.

A slightly less evident tendency was observed for betweenness centrality which seems to be converging
toward negative weight values.

5.3.6 Results validation

One of the problems with above graphs is that we are not exactly certain which measure is the most
important. Several measures are correlated and we would like to choose one of them for further exper-
iments as choosing all would be redundant. Also, we identified measures with the strongest correlation
with performance and we would like to validate that.

We employed a simple scheme to do a quick validation. We set the weights of the model so that we
make the notion we want to validate explicit. For instance, if we want to check whether what we learnt
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about degree centrality is correct - i.e. efficient heuristic would prefer to keep it small, we could check
the performance of the following strategies:

Degree Weight w2 w3 w4 w5 w6 w7
-1.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 5.8: Degree competing strategies

i.e. we explicitly set Degree Weight to -1 and to +1 and we let the two strategies compete. We can do
the same for the rest of strategies. Here is what we obtained:

Num Degree Closeness Betweenness Eigen PageRank Hub Authority Avg T (ms)
1 -1 0 0 0 0 0 0 7031.2
2 0 -1 0 0 0 0 0 16173.7
3 0 0 -1 0 0 0 0 13959.5
4 0 0 0 -1 0 0 0 9168.9
5 0 0 0 0 -1 0 0 10341.6
6 0 0 0 0 0 -1 0 19487.1
7 0 0 0 0 0 0 -1 13208.7
8 1 0 0 0 0 0 0 20000
9 0 1 0 0 0 0 0 20000
10 0 0 1 0 0 0 0 20000
11 0 0 0 1 0 0 0 20000
12 0 0 0 0 1 0 0 20000
13 0 0 0 0 0 1 0 19175.4
14 0 0 0 0 0 0 1 20000

Table 5.9: Results for small frameworks with timeout 20sec

Evidently, degree centrality proved to be the most significant measure for derivation time (strategy
1), followed by eigen centrality (strategy 4) and PageRank (strategy 5). Also, we can see that learnt
tendency toward negative values holds - the strategies which prefer choices with larger ABA graph
measures timeout (i.e. the strategies with positive weights - from strategy number 8 to 14), while the
strategies which minimise the measures perform much better (strategies from 1 to 7 excluding 6). The
interesting case is for hub centrality. Although figure 5.11 (right) may indicate that there is a slight
tendency toward positive weights, we said that the trend is very uncertain. However, consider strategies
13 and 6. In the former, we set the weight explicitly to +1 and in the latter we set the weight to
-1. We see that their performance is very similar. Finally, closeness centrality, although did not show
any correlation in Figure 5.12, here we can see that the ’negative-weight’ closeness (strategy 2) slightly
outperforms the ’positive weight’ closeness (strategy 9).

5.3.7 Conclusions and next course of action

Below we present several ideas why it may be beneficial to minimise degree centrality (note, degree
centrality is computed by summing degree-in and degree-out of nodes). We will come back to these
ideas and explain them carefully in later experiments. They will help us justify measures we use in other
models.

� Choosing non-assumptions/arguments with small degree-out may end derivation and force back-
tracking. For instance, consider opponent argument choice where he has two arguments - arg1 has
empty unmarked set and was not attacked by proponent, arg2 has many premises in its set. Arg1
would have a small degree-out measure, arg2 would have a bigger degree-out measure. If we choose
arg1 we effectively end derivation (or the current path in derivation) because the proponent has
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no way of attacking arg1. The algorithm would backtrack to the previous proponent rule choice to
choose another derivation path. If we choose arg2, we may prolong the derivation and do some un-
necessary work (expanding arg2) since, regardless of what arg2 is, the opponent will, at some time
in future, finally choose arg1 anyway, thus ending derivation and leading to the same conclusion.

� Proponent choosing assumptions with 0 degree-out or arguments with assumptions which has 0
degree-out reduces the number of ways he can be attacked. Recall that an assumption node in
ABA Graph has degree out either 0 (if it does not have any contrary) or 1 (if it does).

As we can see, we need to further experiment to discover the exact reasons why degree centrality is signifi-
cant. In next experiments we try to split degree weight into many independent weights. We will introduce
degree-in and degree-out measures and separate measures for assumptions and non-assumptions. We will
also differentiate between proponent and opponent and sentence, argument, rule choice points.

We can list similar conclusions for authority centrality and eigen centrality as they are correlated with
degree centrality. A very weak correlation was observed for closeness and hub centralities so we will not
be experimenting further with these measures. We also observed correlation between performance and
negative PageRank centrality which we will further investigate in future experiments.

Moreover, we observed a similar correlation for betweenness. Recall that betweenness measures the
number of shortest paths in the graph a given node lies on. In ABA terms, this could approximate the
number of derivation paths a given node lies on, i.e. the number of times a given nodes occurs in any
derivation. So the experiment would suggest that the better performing strategies prefer to choose nodes
which occur less often in derivations. However, the definition of betweenness excludes backtracking so it
is a very rough approximation. It is also infeasible to compute for larger frameworks. Hence, it is a very
interesting measure but we will not consider it in further experiment. In order to be useful, it would
probably need to be redefined.

All of the above discussion relates to assumption and non-assumption nodes and measures. For rule
nodes, we have not spotted any correlations in graph parameters. This creates a problem - which
measures should we use for rule nodes. Since we do not have any data our best guess is to use the same
measures as for assumption and non-assumption nodes.

5.4 Second model - ABA Simple

5.4.1 Model justification

As the previous experiment indicated, not all ABA Graph measures may be a good candidate to be used in
efficient derivation heuristics. Also, some ABA graph measures are correlated and so, following Occam’s
Razor, it is enough to focus on just one of the correlated measures, reducing the number of parameters
in the model. We thus had to choose measures on which we will be focusing. We immediately got rid
of closeness centrality and hub centrality as they showed the least correlation with performance in the
previous experiment. We also excluded betweenness as it was only slightly correlated with performance
and, more importantly, it is extremely hard to compute (infeasible for real-life networks).

Degree centrality, eigen centrality and authority are correlated, as shown on figures 5.6 and 5.8. As we
already mentioned, we decided to choose only one of them and the choice fell on degree centrality, as it
showed the strongest correlation with derivation time in the previous experiment. Since PageRank was
not correlated with any other measure and we saw in ABA Generic Experiment that it is quite possible
that PageRank influences derivation time, we included it here as well.

Thus, there were two main aims of the experiment. First of all, we wanted to further explore the corre-
lation between degree centrality and derivation speed but this time without a dozen of other parameters
interfering with learning process. Secondly, we wanted to see whether PageRank is worth further ex-
perimentation as a measure. Finally, we included a new parameter - unmarked set size for arguments
choice point. It is our initial attempt at discovering whether our intuition with choosing arguments with
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empty unmarked set to speed up derivation (previous section) would manifest here as a strong correlation
between unmarked set size and performance.

5.4.2 Model description

The model is a simplified version of ABA Generic model considered in the previous experiment. Hence,
the two are very similar. ABA Simple uses only three measures:

� M1: Degree Centrality

� M2: PageRank Centrality

� M3: Unmarked Set Size

The first two weights are used in each choice point we consider: proponent/opponent sentence choice,
proponent rule choice and proponent/opponent argument choice. The last one is used only for argument
choice.

Computing measures for sentences and rules is straightforward - we simply read Degree Centrality and
PageRank Centrality precomputed for sentence node and rule node straight from input ABA Framework
(same as in ABA Generic). Computing measures for arguments is slightly more complicated. Argument
Degree Centrality and Argument PageRank Centrality are computed in exactly the same way as in ABA
Generic - we sum degree and PageRank measures of each sentence in argument’s unmarked set. To
compute Unmarked Set Size, we count the elements in argument’s unmarked set.

We use the same set of weights for each choice point (again, same as ABA Generic). Thus, we have only
three parameters:

� W1: Degree Centrality Weight

� W2: PageRank Centrality Weight

� W3: Unmarked Set Size Weight

For proponent/opponent sentence choice and for proponent rule choice, we compute the decision value
of each possible derivation choice in the following way:

decision value(choice) = W1 ∗M1(choice) +W2 ∗M2(choice)

For argument choice, we also include unmarked set size (M3):

decision value(argument) = W1 ∗M1(argument) +W2 ∗M2(argument) +W3 ∗M3(argument)
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5.4.3 Learning outcomes

Figure 5.15: Average Fitness for consecutive populations

Figure 5.15 shows that average fitness was improving with consecutive populations. The output for each
measure is illustrated below:

Figure 5.16: Degree Centrality weight vs Derivation Time - scatter plot (left), Degree Centrality changes
in consecutive populations (right)
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Figure 5.17: Degree Centrality weight in best performing percentiles

Figure 5.18: PageRank weight vs Derivation Time - scatter plot (left), PageRank changes in consecutive
populations (right)
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Figure 5.19: Degree Centrality weight in best performing percentiles

Figure 5.20: Unmarked Set Size weight vs Derivation Time - scatter plot (left), Unmarked Set Size
changes in consecutive populations (right)
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Figure 5.21: Unmarked Set Size weight in best performing percentiles

5.4.4 Results validation

Similarly as in ABA Genetic case, in order to validate the results we prepared strategies where we set
parameters manually in order to match the output of the learning. We then benchmarked those strategies
on small and medium synthetic frameworks.

Deg PR USS Description Small (ms) Medium (ms) Large (ms)
1 -1 0 0 Low Degree 8394.52 37100 46684.44
2 0 -1 0 Low PageRank 11585.5 44699.33 86692.22
3 0 0 -1 Low Unmarked Set Size 13717.44 49982.67 92184.44
4 1 0 0 High Degree 19973.66 60000 120000
5 0 1 0 High Pagerank 19956.875 60000 120000
6 0 0 1 High Unmarked Set Size 20000 60000 120000
7 -1 -0.5 0 Low Degree, low PageRank 15317.025 43329.22 66252.22
8 1 0.5 0 High Degree, high PageRank 19960.9 60000 120000

Table 5.10: Result of benchmarking strategies on Small, Medium and Large frameworks

5.4.5 Output analysis and discussion

Evidently, degree centrality has the biggest impact on derivation time. As we can see in figure 5.16
(left), the strategies were split into two groups - all best performing members have negative degree
centrality weight while all worst performing members have positive degree centrality weight. It seems
to be a decisive factor when it comes to derivation performance. Other figures further validate that
notion. In figure 5.17 we again see a that negative degree centrality dominates - all best 50% performing
members (0.5 best percentile) have degree centrality -1. Also, derivation time is decreasing in consecutive
populations (figure 5.15) while the number of negative degree centrality weights is increasing (figure
5.16).

The trend seems much weaker when we consider PageRank measure. Figure 5.18 (left) shows that it
is hard to find any correlation between PageRank and performance. While the very best performing
members have negative PageRank value (the group with average derivation time around 5000 ms), the
next best performing group (6000ms) has mostly positive PageRank. Although the number of negative
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PageRank weights is increasing for best performing percentiles (figure 5.19), the same cannot be said
about consecutive populations where negative PageRank weights do not seem to dominate (Figure 5.18
right).

Finally, it is very hard to argue that there is any trend for Unmarked Set Size parameter. Although it
does seem to converge toward negative values when we consider the best performing members (figure
5.21), the trend is not very significant. For instance, if we consider a group of 25% best performing
strategies, only slightly more than 50% of them have negative unmarked set size (figure 5.21 again).
Contrast it with Degree Centrality, where in the same group 100% members have Degree Centrality =
-1 (figure 5.17).

The output is compatible with validation we have performed. Low Degree strategy (number 1) is the
best performing strategy for all types of networks considered. Low PageRank strategy (2) falls behind,
especially in the largest set of frameworks. Note that any strategy which maximises any of the measures
(strategies 4, 5, 6, 8) mostly time-out and have much worse performance than strategies which minimise
instead. Furthermore, if we add mix Degree Centrality and PageRank (strategy 7) we actually decrease
the performance, especially for small frameworks.

This leads us to the following conclusions:

� Degree Centrality is important for derivation performance and may form a basis for a valid heuristic
speeding ABA derivations.

� In order to propose useful heuristics, we need to learn why Degree Centrality impacts performance,
which we will try to do in next experiments.

� PageRank had much smaller impact on performance. When we mixed it with Degree Centrality
(Table 5.10), the performance decreased. Thus, we decided to exclude it from future models.

� The experiment did not show any correlation between performance and Unmarked Set Size. This
parameter was introduced to check whether a strategy which prefers choosing smaller arguments
(i.e. arguments with less ’work to do’) over larger arguments (or vice-versa) may form a valid
heuristic. Neither validation (where we set unmarked set size parameter to -1) nor learning showed
any evidence which would support this claim.

5.5 Third model - ABA Simple Extended

5.5.1 Model justification

In the previous experiments we saw that Degree Centrality has a huge impact on derivation performance.
However, we have not yet discovered why. When discussing ABA Generic experiment we listed two
possible reasons:

� choosing smaller degree-out arguments/non-assumptions to reduce the amount of work we have to
do and to favour empty/nearly empty arguments which may end derivation (especially in opponent’s
case)

� choosing 0 degree-out assumptions or smaller degree-out arguments/non-assumptions leading to
fewer assumptions reduces the number of attacks we are exposed to (may be especially significant
for proponent)

We had an initial go at validating the first one by introducing Unmarked Set Size to the previous
experiment, but it was unsuccessful.

In this experiment, we will focus on testing Degree Centrality. Since we suspect that degree-out and
degree-in may have different impact on derivation, we will separate Degree Centrality into Degree-In
Centrality and Degree-Out Centrality. We also suspect that:
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� Different choice points may have different significance in derivation performance and may require
different priorities/different measures. For example, we could have a strategy which picks arguments
with smallest degree-out but picks rules with largest degree-out.

� Different players may also have different priorities. For example, the opponent may prefer to choose
arguments with largest unmarked set, while the proponent may prefer to choose arguments with
smallest unmarked set.

� Assumptions and non-assumptions may also require different treatment, e.g. a different set of
measures. Hence, we will be treating them separately as well.

5.5.2 Model description

The result of separating Degree Centrality is that we will have many more parameters. But we will still
follow a heuristic not to choose more than 4 parameters for each choice point (for each decision value
equation). In fact, we had three iterations of ABA Simple Extended model, each of them gradually
increasing the granularity of Degree Centrality. The first model was still using single Degree Central-
ity, but used different weights for proponent, opponent and for each choice point. The second model
introduced different weights for assumptions and non-assumption. The third model finally split Degree
Centrality into Degree-In and Degree-Out centralities. We initially used PageRank centrality as well,
but then we decided that it is not showing any promise and the model is over-parametrised anyway and
so we removed it.

We arrived at model which uses 21 measures/parameters (i.e. weights, a single weight corresponds to
each measure). We will discuss each parameter in the context of its corresponding choice-point.

Proponent sentence choice

We have five parameters here:

� sentence proponent assumption in degree

� sentence proponent assumption out degree

� sentence proponent non assumption in degree

� sentence proponent non assumption out degree

� sentence type

The last parameter is unique and is shared between proponent and opponent. Although it can take any
value from -1 to +1 (initially), it should be treated as a binary weight. Sentence Type decides which
type of sentences we are expanding. The rule is:

If Sentence Type is >= 0 we are always choosing assumptions over non-assumptions (pro-
vided that we have any to choose from). If Sentence Type is < 0 we are always choosing
non-assumptions over assumptions (provided that we have any to choose from).

The first strategy is often referred to as eager selection, while the second as patient selection. So when
Sentence Type >= 0 and we have any assumptions, we do not need to consider non-assumptions at all and
vice-versa. This allows us to introduce different measures for assumptions and non-assumptions.

Once we pick which type of sentences we are considering, we apply the corresponding measures as usual.
Here, we have two - Degree-In Centrality and Degree-Out Centrality. We read them directly from input
ABA Graph, normalise them and multiply them by their corresponding weights to get decision value.
We then pick sentence with highest decision value.
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Opponent sentence choice

We have five parameters here as well:

� sentence opponent assumption in degree

� sentence opponent assumption out degree

� sentence opponent non assumption in degree

� sentence opponent non assumption out degree

� sentence type

We use different set of weights than in proponent choice. Thus each player is given his unique set of
weights (we are done with sharing). Other than that, the computation is exactly the same as in proponent
sentence choice described in previous subsection.

Rule choice

There are two parameters here:

� rule proponent in degree

� rule proponent out degree

We read Degree-In and Degree-Out Centralities straight from the input ABA framework and we compute
decision value as usual. There is no opponent rule choice as non exist in the algorithm (opponent always
chooses all rules to expand his non-assumptions).

Proponent Argument choice

We have five parameters:

� arg proponent unmarked size

� arg proponent assumption in degree

� arg proponent assumption out degree

� arg proponent non assumption in degree

� arg proponent non assumption out degree

Although the previous experiment showed that Unmarked Set Size was irrelevant to the derivation, we
decided to stick with it and give it a second chance. We thought that maybe Unmarked Set Size will
matter only for proponent or only for opponent, or one of the players will want to maximise it while the
other will want to minimise it.

We do not have any sentence type parameter here. We compute decision value by plugging in 5 parame-
ters, non-assumption and assumption parameters together. The process is very similar to ABA Generic
model and ABA Simple model. The only difference is that instead of computing a single Degree Central-
ity value, we now compute 4 measures - in/out degree for assumptions/non-assumptions. We proceed
as in previous models - we read in/out degree from input framework for both assumptions and non-
assumption and then we do the sum - we add assumptions’ in/out degrees and non-assumptions’ in/out
degrees. For example, suppose our argument’s unmarked set consists of 4 sentences - 2 non-assumptions
(x0 and y0) and two assumptions (a and b). We have the following:
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Sentence Node Degree-In Degree-Out
a 2 1
b 3 0
x0 4 3
y0 5 7

Table 5.11: Sentence input measures

From which we can compute the following argument measures:

Unmarked Set Size Asm Deg-In Asm Deg-Out Non-asm Deg-In Non-asm Deg-Out
4 5 1 9 10

Table 5.12: Argument measures

We repeat the process for all arguments we are considering. Then we apply the usual technique - we
normalise the measures and multiply them by corresponding weights to get the decision value.

Opponent Argument choice

We proceed in exactly the same way as in proponent’s case.

Turn choice

We did not add turn choice to the model. Instead, we run the experiment twice - in first run we always
give priority to proponent to move first (provided he has any valid moves). In the second run, we always
give priority to opponent. Both runs showed a very similar results with major trends being the same.
We will be following exactly the same approach in all later experiments.

5.5.3 Output analysis and discussion

Since we have 21 parameters, we will not be including all graphs showing each parameter’s correlation
with performance. Instead, we will be focusing on parameters for which we noted correlations. In this
section, we will list and describe the major patterns observed.

Negative Degree-Out Centrality in opponent argument choice

As we suspected, there is a strong trend for negative Degree-Out weight for non-assumptions. It is
especially visible in opponent’s argument choice (figure 5.22). The same trend was observed regardless
of whether proponent or opponent was given the priority to move. This may be a basis of a useful
heuristic - opponent should choose arguments with smallest ABA graph degree-out of its
unmarked sentences. Remember that argument’s non-assumption degree-out measure is computed
by summing degree-outs of argument’s unmarked non-assumptions. Hence, the heuristic would favour
arguments with smallest unmarked set size (as there are fewer non-assumptions to sum). This is indeed
the case here, as illustrated in Figure 5.23 where we can see Unmarked Set Size weight also converging
toward negative values. Also, the heuristic would generally prefer arguments which are ’smaller’. I.e. if
we consider an argument as a tree with its head being a root, the heuristic would generally prefer trees
with less nodes. Consider two trees derived from ABA Graph from Figure 5.24.
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Figure 5.22: Fraction of negative Non-Assumption Degree-Out Centrality weights for opponent argument
choice increases in best performing percentiles (left), it also increases in consecutive populations (right)

Figure 5.23: Fraction of negative Unmarked Set Size weights for opponent argument choice increases in
best performing percentiles (left), it also increases in consecutive populations (right)
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Figure 5.24: Arg1 tree representation (left) vs Arg2 tree representation (right)

Arg1 non-assumption degree-out is 7, arg2 non-assumption degree-out is 3. Although the trees are not
fully expanded yet, there is a high probability that the first tree will be bigger than the second one. Hence,
degree-out is an estimator of how big the argument may be. But why should the opponent choose to
expand ’smaller’ arguments first? Suppose the opponent is choosing from the following arguments:

arg1 : p0 :− [ a , z0 ]
arg2 : q0 :− [ x0 , y0 ]
arg3 : w0 :− [ ]

Arg3 has the smallest non-assumption degree-out. Intuitively, by choosing it, the opponent wins as the
proponent has no way to counter-attack. In practice the algorithm backtracks to last branching point
(for example, proponent rule choice). Suppose we choose arg2 instead and spend 10000 derivation steps
to expand it. Then we finally choose arg3 and the derivation backtracks to the exactly same branching
point. We have just wasted 10000 derivation steps for doing useless work. Hence, by choosing smaller
arguments for opponent, we enforce backtracking to happen sooner than later and reduce useless work.
Choosing arguments with Small Unmarked Set Size has a similar effect. The key difference is that
Degree-Out Centrality approximate the size of argument a bit more accurately. Consider Figure 5.24
again - both arguments has unmarked set size equal 3.

No patter found in proponent argument choice

No such pattern was found in proponent argument choice. To see why we have to consider ABA derivation
algorithm again. Unlike the opponent, if the proponent chooses an argument with empty unmarked set,
he does not ’win’. In order to win, he has to reduce all of his arguments to empty unmarked set and
defend against all opponent’s attacks. The algorithm does not backtrack either. After reducing one of his
arguments, the proponent will have to choose another one anyway. Thus, he gains nothing by reaching
arguments with empty unmarked set as soon as possible.

Negative non-assumption Degree-Out Centrality in proponent sentence choice

Unlike in proponent argument choice, negative Degree-Out Centrality was observed in proponent sentence
choice (Figure 5.25). Again, we observed the same trend regardless of which player had priority to move.
Again this forms a basis for a heuristic - when choosing non-assumptions for proponent, choose
the one with smallest degree-out measure. Again, why should we do that? Consider another
two small ABA graphs (Figure 5.26). y0 has degree-out 3, while x0’s degree-out is 1. Suppose the
proponent chooses y0 first. Since y0 is a head of three rules, the proponent will be forced to backtrack
three times to expand y0 in three possible ways. This may be unavoidable. However, the problem is
when the proponent chooses y0, expands it in one possible way (say by applying rule1) and then expands
x0. Although x0 does not immediately causes branching, it may be expensive to expand (thousands of
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derivation steps). Suppose we then fail at some point (or succeed and find a solution) and backtrack to
y0 choice again. We choose rule2 this time. And then we choose x0 again and repeat our thousands of
derivation steps to expand it.

The key issue here is with the amount of work we do before we reach branching point. As the example
illustrates, it is always better to do work before we branch. We could then avoid doing expensive
derivations in each derivation branch. Another thing to note here is that the more work we do before
branching the higher the probability that we could fail and not even reach the branching point. Suppose
we choose x0 first and fail before picking y0. We will backtrack somewhere higher up in the derivation
and may never comeback to x0/y0 choice again.

Figure 5.25: Fraction of negative Non-Assumption Degree-Out Centrality weights for proponent sentence
choice increases in best performing percentiles)

Figure 5.26: Two non-assumptions which proponent can choose represented as ABA graph

Negative degree-out validation

As we have just seen, we learnt two useful degree-out heuristics - both the opponent and the proponent
want to minimise their degree-out, the opponent mainly for argument choice and the proponent mainly
for non-assumption choice. Let us explicitly set the parameters of the model to obtain the heuristics and
validate them by querying 300 small and 100 medium networks. We already followed the same approach
in the previous experiments. As a side note, we initially considered moving all validation to the next
chapter. However, we will often use validation to draw conclusions supporting (or not) what we learnt.
Since we want to have all models and parameters related discussion in one place, we will be interleaving
discussion and validation for all future models.
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Description Proponent Priority Opponent Priority
Strategy

description
Weights Used Small Medium Small Medium

Reduces branching
by minimising

degree-out

Negative
non-assumption

out-degree (-1) and
negative unmarked
set size (-0.25) for
all choice points

7729 37828 4260 26289

Increases branching
by maximising

degree-out

Positive
non-assumption

out-degree for all
choice points

19918 60000 17366 54000

Increases branching
for proponent and
reduces branching

for opponent

Positive
non-assumption

out-degree for all
proponent choices,

negative for all
opponent choices

10520 49020 7074 34880

Table 5.13: Different degree-out strategies benchmarked on small and medium frameworks. The results
reported are average derivation times in milliseconds.

Consider Table 5.13. Two sets of results denote cases when we give each player priority to move first.
The strategy parametrised with negative degree-out weights significantly outperforms the strategy with
positive degree-out weights regardless of which player is given priority to move. This is consistent
with what we learnt. Also, it outperforms the strategy which assigns positive proponent-choice degree-
out weights and negative opponent-choice degree-out weights. Finally, we notice that all strategies
where the opponent was given priority to move outperformed the corresponding ’proponent moves first’
strategies.

No pattern found for rule choice

None of the experiments we performed with ABA Simple Extended model indicated on any relationship
between derivation and Degree Centrality or PageRank (previous model iterations) for rule choice. A
possible explanation comes again if we consider ABA derivation algorithm. Throughout derivation once a
certain non-assumption is chosen by the proponent, it will be expanded in all possible ways. It is different
than opponent’s expansion where the non-assumption gets expanded in all possible ways immediately.
For proponent, we expand it in one way and then backtrack to try other ways. Nevertheless, we will
expand it in all possible ways before derivation ends. It seems that the trick is to choose right non-
assumptions in the first place as already discussed. Once a non-assumption is chosen, choosing rule to
expand it may be less important.

Sentence type choice - preferring assumptions over non-assumptions

All experiments also agreed in another matter - when faced with a sentence choice between assumptions
and non-assumptions, we should favour choosing assumptions. Recall that we introduced an explicit
binary weight to control that choice. Figure 5.27 (left) illustrates how many negative sentence-type weight
values we had in best performing percentiles of strategies. The right figure shows how the negative ratio
was changing in consecutive (improving) populations. In both cases the negative ratio decreases. We
have many more positive instances of sentence-type weight value in best performing strategies. Positive
weight corresponded to choosing assumptions over non-assumptions (eager selection). Thus, the result
seem to indicate that when faced with sentence choice, choose assumptions first.
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We regret not splitting the weight into proponent sentence-type choice and opponent sentence-type choice
which would be more insightful. For proponent choosing assumptions over non-assumptions maximises
work we do before branching since non-assumptions lead to branching as already demonstrated. However,
for opponent the opposite is true - the opponent branches and backtracks to his assumption choice to
decide whether to mark the assumption or not. On the other hand, by choosing assumptions the opponent
expands culprits set, increasing the probability of backtracking through filtering. Hence there is no
obvious explanation why choosing assumptions is a better choice for the opponent. We will investigate
that in future experiments.

Figure 5.27: Fraction of negative Sentence Type weights decreases in best performing percentiles (left),
it also decreases in consecutive populations (right)

Selecting high-degree assumptions for proponent sentence choice

While so far we have only discussed non-assumptions, the experiments also showed some trending between
assumptions’ measures and performance. It was far less significant than what we spotted for non-
assumptions, but we present the results nevertheless (Figure 5.28). The figures indicate that the best
performing strategies preferred choosing assumptions with high degree-in and degree-out for proponent,
i.e. ’popular assumptions’. High degree-in indicates that the assumption occurs in bodies of many rules.
We may prefer to choose such an assumption because it increases chances that we will use filtering to
reduce the amount of work we have to do (filtering forces backtracking in some cases). We will explain
that clearly and investigate assumptions and filtering in future experiments.
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Figure 5.28: Fraction of negative weights increases in best performing population for proponent sentence
choice. The weight presented are assumption degree-in (left) and assumption degree-out (right).

We remain uncertain about any trends here so we decided to ask 300 small frameworks and 100 medium
frameworks about their point of view on the issue.

Description Proponent Priority Opponent Priority
Strategy

description
Weights Used Small Medium Small Medium

Picks popular
assumptions for
proponent and
unpopular for

opponent

Positive
assumption

in-degree and
out-degree for

proponent choices,
negative for
opponent

14003 53260 10200 41222

Picks unpopular
assumptions for
proponent and

popular for
opponent

Negative
assumption

in-degree and
out-degree for

proponent, positive
for opponent

11801 46523 8888 41099

Picks popular
assumptions for

both players

Positive
assumption

in-degree and
out-degree for all

choice points

13916 53403 10190 41189

Table 5.14: Different assumption strategies benchmarked on small and medium frameworks. The results
reported are average derivation times in milliseconds.

Consider Table 5.14. ’Popular’ assumptions refer to assumptions with high degree-in/degree-out mea-
sures. The last strategy listed is the one we learnt. However, it is not superior to any other strategies.
The only thing suggested by Table 5.14 is the superiority of ’opponent moves first’ strategies when
contrasted with ’proponent moves first’ strategies (again).

For now the most only true conclusion we can draw is that we do not have any major assumption
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trends. This may indicate that the current graph (ABA Graph) is not the best tool to reason about
assumptions and their impact on derivation. We will check that explicitly in the next experiment.
Moreover, in future experiments we will try out a different graph to see how assumption choices may
influence derivation.

5.5.4 Next course of action

As demonstrated by ABA Generic, ABA Simple and ABA Simple Extended models, graph measures can
be used to form derivation strategies with good performance. In next experiments we will be introducing
measures which are not derived directly from ABA Graph. Nevertheless, the idea to introduce those
measures came directly from analysing ABA graph measures and their correlation with performance.
We will also try to experiment more with assumptions and filtering. We will look for measures defined
on assumptions which may show some correlation with performance.

5.6 Experiments chronology

Before we move to the next experiment, we would like to give some background on what was the
chronology of experiments’ runs. Knowing the chronology will help to understand some (otherwise
strange) design choices. In next two models, we validate our rule which says that we should not use
more than 5 parameters per decision value equation. We also used PageRank measure although previous
experiments indicated that PageRank is not useful for ABA derivation. This is because we do not present
the experiments here chronologically, exactly as we performed them. The real chronological order was:
we run ABA Simple Extended with PageRank first but we did not get satisfactory results (both in
terms of derivation time speed-up and in terms of clear trends which could explain the speed-up). We
moved on to ABA Lookahead and Assumption Lookahead models but we did not get satisfactory results
either. We then decided that one of the reasons why the results were not good was that we were over-
complicating the models. Thus, we decided to come back to ABA Simple Extended, remove PageRank
measure and re-run the experiment. The results were much more clear and are presented in the previous
section. However, due to time constraint, we did not simplify and rerun ABA Lookahead and Assumption
Lookahead models. Instead, we moved on to the last model which we call Assumption Dynamic.

Thus the models presented below could probably be improved to reveal more interesting correlations.
Nevertheless, we present them below to illustrate the ideas we had and some interesting output we
obtained. They can also be considered as a negative result - we will, to some extend, show that certain
ideas are not applicable to ABA Derivation speed-up. As Thomas A. Edison once said (some Internet
sources also contributed the quote to Albert Einstein):

I have not failed, I have just found 10, 000 ways that don′t work.

5.7 Fourth model - ABA Lookahead

5.7.1 Model justification

In previous experiments we mostly focused on non-assumptions and their degree-out. We argued that we
should be choosing non-assumptions and arguments with small degree-out in order to fail and backtrack
more quickly, reduce derivation branching and maximise the amount of work we do before reaching
branching point (a point to which we will later have to backtrack). However, we did not employ filtering
in any form. Since filtering occurs when a certain player uses an assumption which has already been
used in derivation, we thought that in order to investigate filtering we have to focus our model on
assumptions.
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In our first ’assumption model’ we still use ABA Graph. Almost all measures we use in the model
are based on ABA Degree-In and Degree-Out centrality measured only for assumption nodes. We do
not measure anything for non-assumption and rule nodes. Measures applied when choosing between
non-assumptions and rules are derived from assumptions. To do that we look at assumptions to which
choosing a given non-assumption or rule leads (i.e. assumptions further down in the derivation tree).
We will explain that clearly in the next section.

There are two important factors related to assumptions which could potentially speed up the derivation
process. The first one is filtering. In certain situations reusing assumptions which has already been used
in the derivation leads to immediate derivation failure and backtracking. For instance, each time we
perform filtering of defences by culprits and we find out that a given defence was already used by the
opponent as a culprit, we will fail and backtrack. Consider a culprit set C = [a] and proponent choosing
between two arguments:

arg1 : p0 :− [ a , b , x0 , y0 ]
arg2 : q0 :− [ x0 ]

D: [ ]
C: [ a ]

Although the second argument may have smaller Degree-Out Centrality (as computed in ABA Simple
Extended model), suppose we choose the first argument and then select ’a’ as a sentence. We then
would apply filtering of defences by culprits, ending current derivation branch (failing) and causing
backtracking. In terms of speeding up derivation process, choosing arg1 is much more optimal. We do
not have an explicit parameter which says whether a given assumption is in defences or culprits set (we
will add it later). Using ABA Graph, however, we can say something about the ’popularity’ of certain
assumptions. If an assumption has high Degree-In Centrality, then it occurs in many rules. Intuitively,
assumptions with higher Degree-In have higher probability of being reused in the derivation. Thus, it
may be a good idea to choose arguments with highest assumption Degree-In.

The second factor is related to assumption Degree-Out. In ABA graph, assumptions Degree-Out is either
0 or 1. 1 indicates that an assumption has a contrary and thus can be attacked. We may be interested
in choosing assumptions which are not attacked by anything, as deriving an attack adds work for each
player. Building on top of that, we may be interested in expanding arguments or non-assumptions which
lead to assumptions which are not attacked. I.e. we would prefer arguments and non-assumptions which
minimise the number of attacks targeted at them.

5.7.2 Model description

As we already mentioned, the model uses mostly assumption measures. This creates a problem - how
do we define measures for non-assumptions, rules and arguments. We had a similar problem previously
with arguments were we derived argument measures from its unmarked set members. We will do a
similar thing here but we will focus only on assumptions. Lets illustrate the idea. Consider Figure 5.29
(left).

Suppose we want to define measures for a non-assumption x0 in terms of assumptions further down in
the tree. The first step is to decide how far down the tree we will be looking. We can define a parameter
to specify that. It will measure the maximum distance from the non-assumption we are considering to
assumptions down in the graph (with distance here being the number of edges). Lets call that parameter
non-assumption lookahead.

Suppose we set it to 5 here. We then look for all assumptions which are located at most 5 hops away
from x0. We find 5 assumptions - a (distance = 2), b, c, d (distance = 4) and e (distance = 5). However,
we will exclude e from the result as we had to cross an attack edge (d − > n0) to get to e. This means
that e will belong to a different argument than x0. And so we do not want to include it. The general rule
is when using any lookahead mechanism to look further into the graph, never cross attack
edges.
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Figure 5.29: ABA Graph (left), x0 Lookahead-4 Subgraph (right)

A very important fact is that lookahead assumptions can always be precomputed. All we need is an
ABA framework. We found that lookahead 10 is feasible to compute even for large synthetic frameworks.
However, for real-life frameworks we have to stick with lookahead 5 at most as it becomes computationally
infeasible beyond that.

So for x0 we got the following set of ’lookahead 5 assumptions’: [a,b,c,d]. For each of them we have
an easy access to all ABA Graph measures: degree-in, degree-out, PageRank. Thus we can define
non-assumption’s measures by summing its lookahead assumptions measures. For example, we would
compute: degree in(x0) = degree in(a) + degree in(b) + degree in(c) + degree in(d). We can proceed
in exactly the same way to produce all rule graph measures in terms of rule’s lookahead assumptions.
We start at the rule node and look for assumptions at most rule lookahead from that rule node. We
pre-compute that set and include it with the input framework. During the derivation we proceed in
exactly the same way as for non-assumptions to compute rule measures.

Apart using ABA Graph assumption measures we also decided not to abandon the most important
conclusions from previous experiment. However, instead of using non-assumption degree-out, we made
the measure more explicit. We said that if we visualise an argument as a tree, degree-out approximates the
size of the tree. We also learnt that in a lot of cases we want to choose arguments or non-assumptions
which minimise degree-out. Since we are already analysing a part of ABA Graph in order to find
lookahead assumptions, we could also compute the size of that subgraph and use it instead of degree-
out.

For example, consider again Figure 5.29 (left). Count the number of nodes which are reachable from x0
in 4 or less hops. Remember not to cross attack edges. There are 13 nodes (including x0 non-assumption
node) which are within distance 4 from x0. We marked them on Figure 5.29 (right). We will call that
parameter Subgraph Size.

Deriving measures for assumptions is much more straightforward as we can read them directly from
the graph. In order to derive measures for arguments we again consider their unmarked set. We then
compute measures for assumptions and non-assumptions as we would for a sentence choice. Finally, we
add them up to get measures per argument.

All in all, we use 29 parameters in the model. Table 5.15 summarises what measures where applied to
each choice point. Sentence Type is the 29th parameter.
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Choice point Measures used
Proponent Sentence Assumption Degree-In, Degree-Out, PageRank
Proponent Sentence Non-assumption Degree-In, Degree-Out, PageRank, Subgraph Size
Opponent Sentence Assumption Degree-In, Degree-Out, PageRank
Opponent Sentence Non-assumption Degree-In, Degree-Out, PageRank, Subgraph Size
Proponent Rule Degree-In, Degree-Out, PageRank, Subgraph Size
Proponent Argument Unmarked Set Size, Degree-In, Degree-Out, PageRank,

Subgraph Size
Opponent Argument Unmarked Set Size, Degree-In, Degree-Out, PageRank,

Subgraph Size

Table 5.15: Model measures

5.7.3 Output analysis and discussion

Maximising Assumption Degree-In

Figure 5.30: Fraction of negative Assumption Degree-In Centrality weights decreases in best performing
percentiles for proponent sentence choice (left) and for opponent argument choice (right)

As Figure 5.30 illustrates, the ratio of negative assumption degree-in weights is decreases in best perform-
ing percentiles, which indicates that the best strategies prefer to choose assumptions with big degree-in.
The trend was spotted for proponent sentence choice and for opponent argument choice. As we already
explained, by choosing popular assumptions (assumptions with high degree-in) we increase the proba-
bility of exploiting filtering and forcing derivation to fail. However, the trend is very weak - the curve is
slopping down very gently. Also, in both cases the negative weights ratio never goes below 0.2. As we
have seen in the previous model, if we have a real correlation, we can usually spot it already for 0.25 or
even 0.5 best performing percentile.
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Minimising Assumption Degree-Out

Figure 5.31: Fraction of negative Assumption Degree-Out Centrality weights increases in best performing
percentiles for proponent sentence choice (left) and for opponent sentence choice (right)

We spotted a much stronger tendency for assumptions degree-out parameter (Figure 5.31). The tendency
manifested for assumptions in proponent sentence choice and opponent sentence choice. The negative
weights dominate in best performing percentiles which suggests a heuristic to minimise assumption
degree-out when making choices in derivation. Since in ABA Graph assumptions may either have degree-
out 1 or 0, depending on whether they are attacked or not, the output indicates that both players prefer
to choose assumptions which are not attacked by anything.

Validating assumption trends

As usual, we have decided to validate what we have just learnt about choosing assumptions with big
ANA Graph degree-in and small ABA Graph degree-out. Thus we set the parameters manually and run
validation on a set of 300 small and 100 medium frameworks.

Description Proponent Priority Opponent Priority
Strategy

description
Weights Used Small Medium Small Medium

Chooses most
central nodes

Positive degree-in
and degree-out in
all choice points

19849 60000 16243 54109

Maximises
degree-in,
minimises
degree-out

Positive degree-in
and negative

degree-out in all
choice points

19849 60000 14252 51732

Minimises
degree-in,
maximises
degree-out

Negative degree-in
and positive

degree-out in all
choice points

19833 60000 15252 50433

Table 5.16: Different assumption heuristics benchmarked on small and medium frameworks. The results
are report in milliseconds.
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In short, Table 5.16 says that the heuristics we have learnt do not work. The strategy which we have
learnt is the second strategy presented in Table 5.16. If we contrast it with its ’polar opposite’ strategy
(the third one) we see that they have a very similar performance. This is the only time that the
output of validation directly contradicts the output of learning. We did not investigate this issue further
because:

1. Due to the general lack of results, we decided to abandon ABA Lookahead model and introduce a
radically new approach in order to find any useful assumption heuristics.

2. As we will see in the next subsection, the performance of ABA Lookahead model is determined by
the subgraph size measure and so we focused on analysing it.

Subgraph parameter

Figure 5.32: Fraction of negative Subgraph Size weights in best performing percentiles for opponent
argument choice (left) and for proponent sentence choice (right)

Previous experiments strongly indicated that both players should prefer non-assumptions with negative
ABA degree-out. We obtained that result regardless of which player was given a priority to move.
One could expect that subgraph size parameter, which is a direct extension of ABA non-assumption
degree-out, would also converge to negative values in ABA Lookahead model. It did so for opponent
argument choice (Figure 5.32 left). However, surprisingly, an opposite trend was noted for proponent
sentence non-assumption choice (Figure 5.32 right) which shows subgraph size negative weight ratio
rapidly converging to 0. This indicates that a proponent should be choosing non-assumptions with
largest subgraph size parameter which contradicts our discussion in ABA Simple Extended experiment.
However, the correlation presented in Figure 5.32 (right) was observed only in experiment run which
gives move priority to proponent. No such correlation was observed when the opponent was given
a priority to move. To validate that, we manually set the weights and asked our test frameworks library.
We present the results in Table 5.17. The first strategy minimises subgraph size for both - proponent
and opponent. The second strategy maximises subgraph size for proponent non-assumption choice and
minimise for opponent argument choice, i.e. the strategy plotted in Figure 5.32.
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Description Proponent Priority Opponent Priority
Strategy

description
Weights Used Small Medium Small Medium

Reduces branching
by minimising
subgraph size

Negative subgraph
size in all choice

points
11141 49777 5676 38943

Increases
branching for

proponent reduces
for opponent

Positive subgraph
size for all

proponent’s choice
points, negative for

opponent’s

4772 34882 8628 44674

Table 5.17: Opposite subgraph size heuristics benchmarked on small and medium frameworks. The
results are report in milliseconds.

As we can see, when proponent is given the priority to move, the the second strategy significantly
outperforms the first one which is consistent with the output of learning from Figure 5.32. The same
does not hold when we give the priority to opponent. We will further discuss this outcome in the last
two experiments which show exactly the same result.

5.7.4 Conclusions and next course of action

We think it is useful to wrap up the discussion here and list the key outcomes of the experiment:

� Very few trends were found for ABA Lookahead model. Even when we did find trends, they
were not as strong as in the previous model. For example, consider the percentile graph. When
we discussed negative degree-out for ABA Simple Extended model (Figure 5.22) we saw that the
fraction of negative weights was equal to 1 for 0.5 percentile already. On the other hand, consider
Figure 5.31(left). For 0.5 percentile only around 60% of weights are negative. This is a much
weaker trend.

� More importantly, we failed to validate assumptions degree-in and degree-out strategies which we
learnt in the experiment.

� From observations above we can draw the following conclusion - If there is any relationship
between derivation performance and assumptions, using ABA Graph measures alone
will not allow us to model that relationship. Thus, we need to consider using other measures.
This will be the focus of our last two models.

5.8 Fifth model - Ass Lookahead

5.8.1 Assumption Graph

A key conclusion from the previous experiment was that ABA Graph alone will not allow us to learn
assumption-centred heuristics. One possible approach which we will investigate in this experiment in-
volves defining a new graph which explicitly represents attacks between assumptions. We will call the
new graph Assumption Graph. We will then define derivation strategies based on Assumption Graph
measures just like we did with ABA Graph in previous experiments.

Assumption Graph has just one type of node - assumption node and one type of edge - attack edge.
Usually, when we talk about assumptions attacking each other, we refer to sets of assumptions. Repeating
the definition from Chapter 2:

Definition 9 A set of assumptions A attacks another set of assumptions B if there is an argument
supported by a subset of A which attacks an argument supported by a subset of B.
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We could also define direct attacks between assumptions as:

Definition 10 Assumption a1 attacks assumption a2 iff a1 supports arg1, a2 supports arg2, arg1 attacks
arg2.

Generally, it is infeasible to build a graph which models all attacks between assumptions. It would
require constructing all arguments, which is infeasible even for small frameworks. Hence we use an
approximation. We will derive Assumption Graph straight from ABA Graph. The idea is similar to
lookaheads from the previous model. We will be looking for assumptions which are lookahead distance
away from each other in ABA Graph and which are separated by exactly one attack edge. Hence, we
define an attack between assumptions to be:

Definition 11 Assumption ’a’ attacks assumption ’b’ iff there exists a path from ’b’ to ’a’ in ABA Graph
such that the path uses an attack edge exactly once and is shorter than Assumption Lookahead distance.

By using Assumption Lookahead parameter we restrict the length of the path. Otherwise, it would
be infeasible to generate Assumption Graph from large frameworks. Note that in ABA Graph an attack
edge goes from an assumption being attacked to a contrary. In Assumption Graph, an attack edge will go
from attacking assumption to assumption being attacked. Lets illustrate Assumption Graph derivation
through example. Consider ABA Graph presented in Figure 5.33 (left). Suppose we choose Assumption
Lookahead to be 5. The result Assumption Graph is presented in 5.33 (right).

Figure 5.33: Input ABA Graph (left), derived Assumption Graph (right)
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Before building the model we performed an analysis of Assumption Graph measures. As in the ABA
Graph case, we wanted to see whether measures are correlated and whether we have any special charac-
teristics of the graph which could affect learning process. A desirable property is that we no longer have
three types of nodes and edges and we can treat everything uniformly. Also, recall that in ABA Graph
assumption nodes had degree-out 0 or 1 and rule nodes had degree-in always equal to 1. We do not have
these undesirable properties here.

Figure 5.34: Correlation between degree-in and authority (left), and degree-in and eigen centrality (right)

Figure 5.35: Correlation between degree-in and pagerank (left), and eigen centrality and authority (right)
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Figure 5.36: Correlation between pagerank and authority centrality (left) and eigen centrality (right)

Figure 5.37: Correlation between degree-out and hub centrality

Correlations between measures are much weaker than in ABA Graph. We could say that there is a
correlation between degree-in and authority centrality (Figure 5.34). But we could have a hard time jus-
tifying correlation between degree-in and eigen centrality (Figure 5.34 (right)) or degree-in and PageRank
(Figure 5.35 (left)). Similarly, its hard to argue about correlation between degree-out and hub central-
ities (Figure 5.37). However, there is a correlation between eigen centrality, authority and PageRank
centralities (Figures 5.35 (right) and 5.36).

In theory, authority, PageRank and eigen centralities are ’in-centrality’ measures as we discussed in
the Background Chapter. When we compute authority, PageRank or eigen centrality for a given node,
we mainly consider incoming edges. This explains their relationship with degree-in centrality measure.
Similarly, hub centrality is an ’out-centrality’ measure. To compute it we mainly consider outgoing edges.
Hence its relationship with degree-out.

Although the above is theory, the results show that the correlations are not so obvious. Hence, it could
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be worthwhile to investigate all possible pairs of in-centrality and out-centrality measures. However, due
to the time constraint, in this experiment we only focused on the simplest pair - degree-in and degree-out
centralities.

5.8.2 Model justification

The idea behind this model (as well as the previous one) is: choosing the right assumptions may
lead to faster derivation. In the previous model we were not able to prove that statement. Thus,
we radically changed the measures we use by introducing a new graph. We focus on two measures
of Assumption Graph - degree-in and degree-out. Both have very intuitive explanation - for a given
assumption ’a’: degree-in measures how many other assumptions attack ’a’, whereas degree-out measures
how many assumptions ’a’ attacks in turn. Our aim is to learn which type of assumptions should we
prefer. We have four types:

� assumptions with high degree-out (aggressive assumptions) - they attack a lot of assumptions

� assumptions with low degree-out (peaceful assumptions) - they attack a very few or 0 assumptions

� assumptions with high degree-in (victimised assumptions) - they are attacked by a lot of other
assumptions

� assumptions with low degree-in (untroubled assumptions) - they are not attacked by anyone or by
a very few other assumptions.

Note that from now on each time we write about ’degree-in’ or ’degree-out’ we refer to measures from
Assumption Graph, not ABA Graph. To avoid confusion, if we mean measures from ABA Graph, we
will explicitly call them ’ABA Graph degree-in’ etc.

Furthermore, we also did not give up on our favourite subgraph size measure. It will be interesting to
see whether the current experiment agrees with the previous one where we had a hard time trying to
justify what we learnt about subgraph size. We are also interested in discovering whether we can form
strong enough heuristics based on assumption measures alone which could compete with degree-out /
subgraph size heuristics.Finally, we introduced a new measure which counts the number of attacks we
expose ourselves to when making a certain choice. We discussed it in the previous experiment and here
we decided to make the idea explicit.

5.8.3 Model description

If we consider the implementation only, this model is very similar to the previous one. It also uses the
notion of lookahead (hence its name) to precompute the set of assumptions for a given non-assumption
or rule. It then computes non-assumption and rule measures by summing Assumption Graph measures
computed for their corresponding lookahead assumptions. As we said, there are two measures of interest
- degree-out and degree-in and both are computed for non-assumptions and rules. So the procedure is
exactly the same as in the previous model. The only difference is that we use different graph. Similarly,
we compute subgraph size measure for each non-assumption and rule in exactly the same way as we did
in the previous model.

Number of attacks is the new measure so we will spend a bit more time explaining it here. As the name
suggests, it measures how many attacks we may be exposed to if we choose certain non-assumption, rule or
argument. For non-assumptions and rules we compute it by (again) looking at ABA framework subgraph
which consists of ABA Graph nodes located within lookahead distance from the non-assumption/rule
node. This time we count outgoing attack edges which are adjacent to the subgraph. It is worth
explaining it by example. Consider Figure 5.38. The grey line marks the subgraph of ABA framework
which is within 4 hops from x0. There are 3 outgoing attack edges adjacent to the subgraph which we
mark by thick red line. Thus, our estimated number of attacks against x0 is 3. Note that this is only an
estimation, as not all of the attacks may lead to a valid counter-argument.
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Figure 5.38: x0 lookahead-4 subgraph

Having define measures for non-assumptions and assumptions, we can define measures for arguments.
Here we follow exactly the same logic as always - we consider argument’s unmarked set, we compute
measures for each member of the unmarked set (either assumptions or non-assumptions) and we sum
them to get argument measures.

To summarise, we use the following measures for each of the choice point:

Choice point Measures used
Proponent Sentence Assumption Degree-In, Degree-Out
Proponent Sentence Non-assumption Degree-In, Degree-Out, Number of Attacks, Subgraph Size
Opponent Sentence Assumption Degree-In, Degree-Out
Opponent Sentence Non-assumption Degree-In, Degree-Out, Number of Attacks, Subgraph Size
Proponent Rule Degree-In, Degree-Out, Number of Attacks, Subgraph Size
Proponent Argument Unmarked Set Size, Degree-In, Degree-Out, Number of At-

tacks, Subgraph Size
Opponent Argument Unmarked Set Size, Degree-In, Degree-Out, Number of At-

tacks, Subgraph Size

Table 5.18: Model measures

5.8.4 Output analysis and discussion

Maximising assumption degree-out for proponent

Although the trend here is not crystal-clear, we do see a tendency for decreasing number of negative
degree-out weights for proponent sentence assumption choice (Figure 5.39 left) and proponent argument
choice (Figure 5.39 right). I.e. the number of positive degree-out weights dominates in the best perform-
ing percentiles of strategies. The majority of best performing strategies prefers choosing assumptions
and arguments with bigger degree-out measures. Recall that assumption’s degree-out measures the num-
ber of assumptions which the assumption is attacking. Hence, here we prefer choosing an ’aggressive’
assumption - a one which attacks many other assumptions.
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Figure 5.39: Fraction of degree-out negative weights decreases in best performing strategies for proponent
sentence choice (left) and proponent argument choice (right).

Minimising assumption degree-out for opponent sentence choice

Figure 5.40 illustrates that in the majority of best performing strategies the opponent chooses non-
assumptions which have small degree-out. To be more precise, he chooses non-assumptions which lead
to assumptions with small degree-out (from the definition of non-assumption measures). Thus, the
opponent seems to prefer ’peaceful’ assumptions - the one which do not attack many other assumptions.
This is the opposite strategy to what the proponent does.

Figure 5.40: Fraction of degree-out negative weights increases in best performing strategies for opponent
non-assumption sentence choice.
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Validating learnt degree-out heuristics

As we have seen before, although Figures 5.39 and 5.40 show correlation between degree-out measures and
performance, the correlation is weak and hence may be irrelevant to the actual derivation performance.
We have to check that claim with our test framework set. Consider Table 5.19 where we show two
derivation strategies. The first one corresponds to what we learnt (maximise degree-out for proponent
choices, minimise degree-out for opponent choices), the second one is the polar opposite. As we can
see, our learnt strategy significantly outperforms the second strategy. Unfortunately, it is far from being
satisfactory in terms of performance. We were also unable to find any intuitive explanation of learnt
heuristics.

Description Proponent Priority Opponent Priority
Strategy

description
Weights Used Small Medium Small Medium

Chooses aggressive
assumptions for
proponent and

peaceful for
opponent

Positive degree-out
in all proponent’s

choice points,
negative degree-out

in all opponent’s
choice points

8119 31929 9236 41477

Chooses peaceful
assumptions for
proponent and
aggressive for

opponent

Negative
degree-out in all

proponent’s choice
points, positive in

all opponent’s
choice points

19915 60000 16504 52001

Table 5.19: Different degree-out strategies benchmarked on small and medium frameworks. The results
are report in milliseconds.

Sentence choice - choosing assumptions over non-assumptions

Again, we obtained a strong tendency toward preferring assumptions over non-assumptions when choos-
ing sentences for both players (Figure 5.41).

Figure 5.41: Fraction of sentence type negative weights decreases in best performing strategies.
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Opponent argument choice - minimising assumption degree-in and minimising number of
attacks

Figure 5.42 (left) shows the fraction of degree-in negative weights in opponent argument choice. As we
see, the fraction is increasing. Thus, here the opponent seems to prefer assumptions with lower degree-in
- assumptions which are not attacked by many other assumptions. He also seems to prefer expanding
arguments which have lower number of potential counter-arguments (Figure 5.42). The correlations
observed here are much stronger than in the previous case. We can observe that negative weight ratio
reaches 0.8-0.9 in 0.25 percentile. This is even more explicit in degree-in case, where negative degree-in
weight significantly dominates as early as in 0.5 percentile.

Although the trend is apparent, we will still need to validate it on our test frameworks. Consider Table
5.20. The first incorporates our learnt opponent argument degree-in heuristics - it tries to minimise
it. Its opposite strategy is presented in the second row. The difference in performance in significant,
especially when proponent is given priority to move.

Similarly, the third strategy minimises the number of attacks each player exposes himself to when choos-
ing an argument, whereas the fourth strategy maximises that number. We note a similar difference in
performance in favour of the heuristic which we learnt (third row).

It is also hard to intuitively explain heuristics proposed in this section. One thing to note here is that there
are somehow very similar - when the opponent chooses arguments with assumptions which are attacked
by fewer other assumptions, there exists a high chance that he implicitly chooses arguments which are
attacked by few other arguments. Thus, the two measures he is minimising here approximate the same
thing. One possible explanation could be that when expanding argument which has smaller chances
of being counter-attacked, the opponent is getting closer to winning. Recall that when the opponent
formulates a valid argument, the derivation immediately fails and backtracks. Thus, heuristics which
’support’ the opponent in his struggle against the proponent may also lead to faster derivations.

Figure 5.42: Fraction of degree-in negative weights decreases in best performing strategies for opponent
argument choice. (left) Fraction of attack number negative weights decreases in best performing strategies
for opponent argument choice. (right)
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Description Proponent Priority Opponent Priority
Strategy

description
Weights Used Small Medium Small Medium

Chooses victimised
assumptions for
proponent and

untroubled
assumptions for

opponent

Positive proponent
degree-in, negative
opponent degree-in
in all choice points

6282 31779 10123 47219

Chooses
untroubled

assumptions for
proponent and

victimised
assumptions for

opponent

Negative
proponent

degree-in, positive
opponent degree-in
in all choice points

19833 60000 13514 41561

Minimises number
of attacks for both:

proponent and
opponent

Negative number
of attacks for both
players in all choice

points

11140 40830 7678 42182

Maximises number
of attacks for both

players

Positive number of
attacks for both

players in all choice
points

19823 60000 17158 52757

Table 5.20: Different degree-out strategies benchmarked on small and medium frameworks. The results
are report in milliseconds.

Minimising Subgraph Size for opponent but maximising for proponent

Consider Figure 5.43. The right figure shows the ratio of Subgraph Size negative weights for opponent
non-assumption choice. It is increasing - the opponent prefers choosing non-assumptions which expand
into smaller derivation trees. This is compatible with our extensive discussion in ABA Simple Extended
model where we were always minimising ABA Graph degree-out centrality - a direct relative of subgraph
size measure. In ABA Simple Extended model that fact was a decisive factor when it came to derivation
performance.

Consider Figure 5.44 where we plot subgraph size negative weights fraction as measured for opponent
argument choice. We have always argued that choosing ’small’ arguments potentially leads to faster
derivation failure and, as a result, speeds up the derivation. In Figure 5.44 we also see that negative
weights dominate in best performing strategies. However, it is far from sharply rising figures in ABA
Simple Extended model where half of the strategies had negative degree-out weight ratio equal to 1.
Nevertheless, there is an evident trend toward negative subgraph size weights (a trend to minimise
subgraph size) for opponent choices.

However, consider Figure 5.43 (left) where we show fraction of subgraph size negative weights for propo-
nent non-assumption choice. It is decreasing which is a complete contrary to the results of ABA Simple
Extended experiment. Proponent here prefers non-assumptions with bigger subgraph size which in ABA
Simple Extended terms would roughly correspond to choosing non-assumption with higher ABA Graph
degree-out. This trend was only observed for experiments where we gave proponent priority to move. It
is consistent with the previous experiment.

We can manually set the subgraph size weight and use test frameworks to see whether we have just said
does not fall apart. The results are presented in Table 5.21. They are identical to what we obtain in the
previous experiment (Table 5.17). It should not be surprising, considering that we are using exactly the
same measure in both experiments. We will discuss this result in the final experiment.
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Figure 5.43: Fraction of Subgraph Size negative weights decreases in best performing strategies for
proponent non-assumption choice (left) but decreases for opponent non-assumption choice (right).

Figure 5.44: Fraction of Subgraph Size negative weights for opponent argument choice.
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Description Proponent Priority Opponent Priority
Strategy

description
Weights Used Small Medium Small Medium

Reduces branching
by minimising
subgraph size

Negative subgraph
size in all choice

points
11490 45999 5972 39454

Increases
branching for

proponent reduces
for opponent

Positive subgraph
size for all

proponent’s choice
points, negative for

opponent’s

4935 35244 8908 45774

Table 5.21: Different subgraph size strategies benchmarked on small and medium frameworks. The
results are report in milliseconds.

5.8.5 Conclusions and next course of action

Again, we think that it is useful to finish the discussion with a few key points learnt from the experi-
ment:

� Although we found valid assumptions heuristics they still did not offer a derivation boost similar
to degree-out/subgraph size heuristics. Compare best performing strategies from Table 5.21 with
strategies from Tables 5.20 or 5.19. The former outperform the latter by a significant margin.

� We had problems with intuitively understanding some of the learnt trends. It was easy to find
intuition and explain learnt trends on toy derivation examples for the first three models. However,
here we struggled and could not relate learnt output to any simple intuitive explanation.

However, we still do not give up on the notion that assumptions play a key role in the derivation
performance. What we realised here is that we approached the problem too indirectly. We defined a new
graph and argued that certain properties of that graph correspond to certain properties of the derivation
process. Most importantly, we argued that by choosing ’central’ or ’important’ assumptions (assumptions
which have higher probability of repeating themselves in derivation process) we facilitate the filtering and
speed derivation up. But if we really want to facilitate the filtering, why not model that directly as one
of the parameters. Thus, in the last experiment we consider what we call ’defences/culprits membership’
- we keep track of defences and culprits sets throughout derivation and compute intersections between
defences/culprits and the set of assumptions we are currently considering. This allows us to encode
strategies which can either choose assumptions which are in defences or culprits or stay away from
selecting such assumptions.

5.9 Sixth model - Assumption Dynamic

5.9.1 Model justification

This is the last model we developed. We had two primary goals when developing the model:

� We wanted to have one last try on learning correlation between assumption selection and derivation.
In the last two models we were unsuccessful. We decided here to make our approach much more
direct. Since our main focus was on learning how assumption choice may help in filtering, we made
the relationship between assumptions and filtering explicit by introducing new parameters to the
model.

� If possible, we wanted to contrast two approaches we have investigated so far. We have just
discussed the first one - choosing the right assumptions to drive derivation and facilitate the filtering.
The second one was presented in ABA Simple Extended experiment and concentrates on reducing
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derivation branching, killing branches as soon as possible (by choosing ’smaller’ opponent arguments
to hasten failures) and maximizing work before we branch. We also saw the evidence of the
approach in the last two models were the efficient strategy for the opponent was often to minimise
the Subgraph Size parameter. Hence, the model parameters here will be a mix of parameters
related to the two approaches.

5.9.2 Model description

As we already mentioned, we have radically changed parameters used in the model. We have added a
number of parameters which are explicitly related to assumptions.

For non-assumption and rule nodes we have added two parameters:

� the number of assumptions belonging to non-assumption’s/rule’s Lookahead Subgraph

� the size of intersection between the union of defences and culprit and the set of assumptions in
non-assumption’s/rule’s Lookahead Subgraph

Recall the definition of Lookahead Subgraph. It is a subgraph of ABA Graph which consists of all
nodes located within lookahead distance of a given non-assumption or rule node. To illustrate how we
compute the new parameters, consider our running example (Figure 5.45). The subgraph is marked by
grey contours. We have also marked all assumption nodes in red. To compute the first new measure, we
count the assumptions belonging to the Lookahead Subgraph. In this case we have 5. To compute the
second measure, we need to look at defences and culprits as well. Suppose we have the following:

� Defences: [a,h]

� Culprits: [c,g]

To compute the second measure we do the union of defences and culprits - [a,c,g,h] and the compute the
intersection between [a,c,g,h] and our Lookahead Subgraph assumptions - [a,b,c,d,f]. We get [a,c] and
hence the measure is 2.

Figure 5.45: x0 lookahead-4 subgraph.

Hence, two new parameters measure:
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� How many assumptions a certain choice leads to. If our goal is to expand defences or culprits, we
would probably prefer choices with bigger number of assumptions in Lookahead Graph. If we want
to avoid immediate attacks, we would probably prefer choices with the measure being smaller.

� How many of these assumptions are in defences/culprits. Again, if we want to force the filtering,
we would prefer to make choices with this measure being bigger. If we want to avoid filtering, we
would choose the opposite.

For non-assumption and rule choice we also have Subgraph Size measure which is computed in exactly
the same way as in previous models.

Arguments have exactly the same measures as non-assumptions and rules. Argument measures are again
derived from members of argument’s unmarked set. Yet again, consider an example. Suppose we are
computing measures for argument arg1 with unmarked set size: [m0, n0, a, b]. Suppose we know the
following about non-assumptions:

NAsm Size of Lookahead Subgraph Assumptions in Subgraph
m0 14 [a,e,f,g]
n0 28 [c]

Suppose that the union of defences and culprits U = [a,b,d]. To compute argument’s number of assump-
tions we compute the size of the union between assumptions in argument’s unmarked set and assumptions
in m0’s and n0’s subgraph. We get [a,b,c,e,f,g] and hence the measures is 6. To compute the number
of assumptions in D or C we take the intersection of argument’s assumptions and U. We get [a,b] and
hence the measure is 2. To compute argument’s subgraph size we add its non-assumptions subgraph
sizes. We get 42. We also add the number of assumption in arguments unmarked set which is 2 (in case
the argument does not have any non-assumptions in unmarked set). The final measure is 44.

We have also defined three new parameter for assumption choice:

� Binary parameter similar to Sentence Type parameter - decides whether we should give priority
to assumptions which are in Defences or Culprits or not. We will again use the following rule: if
the parameter is >= 0 we always give priority to assumptions which are in Defences or Culprits
(if there are any). If the parameter is < 0 we will give priority to assumptions which are not in
Defences or Culprits.

� Number of defence and culprits in contrary’s subgraph. Since we do not have access to a full
argument supporting the contrary, we will estimate that measure by considering assumptions from
contrary’s Lookahead Subgraph

� Graph Size of the contrary of assumption.

Lets consider an example. Suppose we are a proponent and we are choosing between three assumptions:
[a,b,c]. Lets consider the following parameters:

w1 w2 w3 D C
1 -1 0 [a] [c]

Where w1, w2 and w3 are three assumption choice parameter weights (for parameters as defined above
respectively). Since the first assumption parameter is set to +1, we will be considering only assumptions
which are either in D or C. We will be choosing between [a, c]. Suppose the contrary of a is x0 and c
does not have a contrary. Thus, the two other measures for c will be 0 (in fact, it will be 0.00001 as
discussed in Chapter 3). We need to compute measures for a. Consider again figure 5.45. The number
of assumptions in Defences or Culprits which are in the subgraph of x0 is 2 (a and c). The size of the
subgraph for x0 is 12. Hence we have

� measures for a: [2, 12]

� measures for c: [0.00001, 0.00001]
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Since the second weight is negative and the third one is 0, we choose c.

To summarise, the following measures are used for each choice point:

Choice point Measures used
Proponent Sentence Assumption D/C membership (binary), Number of D/C assumptions in

contrary’s lookahead subgraph, Size of contrary’s lookahead
graph

Proponent Sentence Non-assumption Number of assumptions in subgraph, Number of D/C as-
sumptions in subgraph, Size of subgraph

Opponent Sentence Assumption D/C membership (binary), Number of D/C assumptions in
contrary’s lookahead subgraph, Size of contrary’s lookahead
graph

Opponent Sentence Non-assumption Number of assumptions in subgraph, Number of D/C as-
sumptions in subgraph, Size of subgraph

Proponent Rule Number of assumptions in subgraph, Number of D/C as-
sumptions in subgraph, Size of subgraph

Proponent Argument Number of assumptions in subgraph, Number of D/C as-
sumptions in subgraph, Size of subgraph

Opponent Argument Number of assumptions in subgraph, Number of D/C as-
sumptions in subgraph, Size of subgraph

Table 5.22: Model measures

5.9.3 Output analysis and discussion

No correlation between filtering measures and performance

This is the most crucial outcome of the experiment. The last three models were driven with a single
idea in mind - assumptions do matter in derivation performance. However, the success was very minor
(if any). One of the reason which lead us to believe in assumptions was that in each model the sentence
type weight was always converging toward choosing assumptions over non-assumptions. We got the same
results even here. (Figure 5.46 left)

Figure 5.46: Positive weights dominate for sentence type (left), negative values dominate in ’number of
assumptions’ weight for opponent argument choice (right)
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Another was the analysis of the derivation algorithm and the observation that by applying the filtering
of defences by culprits, we may immediately end derivation if we happen to try to reuse a culprit as
a defence. Hence, we should be facilitating that fact and driving our derivation so that if the failure
happens anyway, it should happen as soon as possible.

The above is all true, but either it is not sufficient to create a heuristic that could significantly improve
performance or we did not consider the right approach to do so. In any case, the current model did not
show any correlation between any of assumption measures and performance. The only exception was
opponent argument choice when we had a significant tendency toward choosing argument with smaller
number of assumptions (Figure 5.46 (right)).

However, we noticed exactly the same trend for subgraph size measure as in two previous experiments (we
shall discuss it in the next section). Thus, the main conclusion here is that parameters which explicitly
measure derivation branching and speed-up backtracking by choosing empty arguments are by far more
important to the derivation speed that any other measures we tried. Consider Table 5.23. The four
strategies encode four different approaches to using defences and culprits during the derivation. Looking
at the first two strategies we may be tempted to say that, generally speaking, its better to move away
from defences and culprits (i.e. choose arguments which do not have them).

We may try to fit intuition behind that choice - e.g. ’both players prefer to expand their defences/culprits
hence they choose argument in which those do not occur’. Even better, looking at Table 5.23 again, we
may also say that the third strategy is outperforming the others, so the proponent should be choosing
derivation paths leading to defences or culprits whereas the opponent should be doing the opposite.
Intuitively, it makes sense as then the opponent would be expanding culprits set and the proponent
would be actively looking to facilitate that expansion by choosing defences which belong to culprits and
thus failing (and speeding derivation).

Description Proponent Priority Opponent Priority
Strategy

description
Weights Used Small Medium Small Medium

Moves toward D/C

Pos D/C
membership and

number of D/C in
subgraph weights

19544 60000 17566 54923

Moves away from
D/C

Neg D/C
membership and

number of D/C in
subgraph weights

11526 56408 7703 36410

Proponent goes
towards D/C,
opponent goes

away

Pos D/C weights
for proponent, neg

for opponent
8706 59336 10563 43965

Proponent goes
away from D/C,
opponent goes

towards

Neg D/C weights
for proponent, pos

for opponent
19775 60000 13844 45231

Table 5.23: Different defences and culprits strategies benchmarked on small and medium frameworks.
The results are report in milliseconds.

Although the above may be true, we propose another explanation of numbers in Table 5.23. Consider
Table 5.24 and consider its similarity with Table 5.23. The key is that two types of measures are
correlated themselves. If we choose arguments with smaller number of defences and culprits, we are
likely choosing a smaller argument. And vice-versa, if we are choosing a smaller argument (i.e. smaller
subgraph size) we are likely choosing an argument with smaller number of defences and culprits. Thus,
the first strategy in Table 5.24 corresponds to the second strategy of Table 5.23. Similarly, if we the
proponent is choosing argument with bigger number of defences and culprits, he is probably choosing
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arguments with bigger subgraph size. Hence, the thirds strategy in Table 5.23 corresponds to the second
strategy of Table 5.24. Our claim is that the performance of strategies in Table 5.23 is mostly driven by
their correlation with branching measures, not by the fact that they are following efficient ’assumption
strategy’ (i.e. they are choosing the right assumptions).

Thus we claim that measures in Table 5.24 are the key factors to derivation performance. Our final proof
is the third strategy in Table 5.24 where we mixed branching heuristics with defences / culprits heuristics
from Table 5.23 . Contrast it with the second row in 5.24, which is exactly same strategy but without
d/c heuristics mixed it. Performance-wise, adding d/c heuristics did not improve anything.Quite the
contrary, the first-row strategy has slightly better performance than the third-row strategy.

Description Proponent Priority Opponent Priority
Strategy

description
Weights Used Small Medium Small Medium

Reduces branching
by minimising
subgraph size

Neg subgraph size
in all choice points

10589 58043 4492 28341

Increases
branching for

proponent reduces
for opponent

Pos subgraph size
for all prop’s choice

points, neg for
opp’s

4077 28564 9309 47564

Increases
branching for

proponent, reduces
for opponent,

proponent goes
towards D/C,
opponent goes

away from D/C

Negative subgraph
size (-1) for

opponent, positive
(+1) for

proponent, positive
D/C measures for

proponent (+0.25),
negative for

opponent (-0.25)

5269 42208 Ö Ö

Table 5.24: Different defences and culprits strategies benchmarked on small and medium frameworks.
The results are report in milliseconds.

Subgraph size parameter analysis

Like the two previous model, this model also shows the following trend:

� If we give move priority to opponent, we will observe domination of negative weights in all kind of
branching measures (Figures 5.47 and 5.48)

� If we give move priority to proponent, we will observer domination of negative weights in all
branching measures (Figure 5.49) except proponent non-assumption choice (Figure 5.50). This is
also validated by Table 5.24.
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Figure 5.47: Proponent assumption choice - choosing assumptions which lead to smaller counter-
arguments (left), proponent non-assumption choice - choosing non-assumptions with smaller subgraph
size (right)

Figure 5.48: Opponent non-assumption choice - choosing non-assumptions with smallest subgraph size
(left), opponent argument choice - choosing argument with smallest subgraph size (right)
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Figure 5.49: Opponent sentence choice - minimising non-assumption subgraph size (left), opponent
argument choice - minimising argument subgraph size (right)

Figure 5.50: Proponent sentence choice - maximising non-assumption subgraph-size

If the proponent is given the priority to move, he will expand all of his non-assumptions anyway, before
the opponent makes any move. Hence, non-assumption choice parameters determine in what order the
proponent expand his non-assumptions. This may be crucial to derivation time as each non-assumption
choice with non-assumption which is headed in more than one rule leads to backtracking.

Thus, through non-assumption choice, the proponent actually chooses a backtracking strategy. Suppose
we can choose between two non-assumptions: x0 and y0. x0 heads three rules whereas y0 heads two. Its
very likely that x0 will have a higher subgraph size than y0. Depending on the order in which we choose
the two, the derivation may branch in two different ways (Figure 5.51). Since the proponent prefers
large subgraph size alternatives, he will follow the first branching strategy. We are not certain what the
intuition is behind this choice.
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Figure 5.51: Two backtracking strategy: choosing x0 (high degree-out / high subgraph size node) first
(left) vs choosing y0 (low degree-out / low subgraph size node) first (right)

5.10 Common trends

Finally let us close our discussion with a short summary of repeating trends, which we observed in most
of the experiments:

1. Sentence type choice: prefer assumptions over non-assumptions. We obtained the same
result in all experiments where we had an explicit measure controlling which type of sentences we
should consider first.

2. Opponent argument choice: choose empty/smaller arguments. This was measured by
ABA Graph degree-out and unmarked set size in the first three experiments and by subgraph size
in later experiments. In all of them the corresponding weight values were mostly negative for all
best performing strategies.

3. Proponent non-assumption choice: maximise branching when proponent given priority
to move. If the proponent has priority to move, he will expand all his non-assumptions anyway.
The experiments indicate that for performance gains he should expand non-assumptions which lead
to highest dispute branching first.

4. Proponent non-assumption choice: maximise branching when opponent given priority
to move. However, when opponent is given the priority to move, experiments with ABA Simple
Extended and Assumption Dynamic models indicate that the proponent should be choosing non-
assumptions which lead to smallest dispute branching. This is intuitive - the more we branch, the
longer it takes derivation to finish.

5. Assumption-based measures we considered do not influence derivation. We have tried
various possibilities to measure how smart assumption choice may influence the derivation perfor-
mance. Our approaches included: ABA Graph based measures, Assumption (attack) Graph based
measured, explicit filtering measures. None of the approaches worked.

6. Rule choice: no heuristics found. This should be expected. Since we are looking for all
solutions, the rule choice does not matter as we will backtrack to that choice anyway and explore
all possibilities. It probably would have been significant if we were instead looking just for a single
solution and ending derivation after it has been found.
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Chapter 6

Validation

6.1 Models evaluation

The results presented here were benchmarked on 300 small, 100 medium, 10 large and 30 medical
(framework,query) pairs. The full output of each benchmarked strategy is available in Appendix A.
For each model we selected a group of interesting strategies which highlight the trends we learnt in the
experiments.

We use two types of ’default strategies’ here:

� default strategy - a strategy which is a default implementation in proxdd (prolog implementation
of the derivation algorithm)

� generation strategy - a strategy with which the (framework, query) pair was generated; recall that
in order to ensure that (framework, query) pairs are none-trivial and solvable at the same time
after we generate a framework we test it on the query using some default strategy - the generation
strategy. We only accept it for learning and benchmarking if it finds all solution to the input query
within a preselected time interval.

The default strategy applies the following heuristics:

� always give priority to proponent to move

� choose argument with smallest unmarked set size (for both, proponent and opponent)

� choose non-assumptions over assumptions

� choose rule with the smallest body

Therefore the generation strategy which we present here is really a set of derivation strategies, one
for each benchmarked (framework, query) pair. Each of them is guaranteed to solve its corresponding
framework within some time interval (1-20 seconds for small frameworks, 1-60 seconds for medium and
1-120 seconds for large). Thus, they represent a set of ’good’ or ’correct’ derivation strategies for a given
(framework, query). Note that for medical frameworks there is no generation strategy.

6.1.1 Models comparison

We begin our analysis by comparing the performance of each model assessed based on their best per-
forming derivation strategy. We were unable to collect measurement from large frameworks for ABA
Generic model due to a memory overflow issue which we could not solve. The results are presented in
Table 6.1.
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Model Name Small Medium Large
ABA Generic 7619 28473 Ö

ABA Simple 8394 37100 46684
ABA Simple

Extended
4010 26504 36991

ABA Lookahead 4935 35244 58301
Assumption
Lookahead

4851 27658 59277

Assumption
Dynamic

3229 25963 47274

Default Strategy 8140 40640 69448
Generation

Strategy
10632 24221 33937

Table 6.1: Best performing strategies from each model benchmarked on small, medium and large frame-
works. The results are reported in milliseconds.

We see that the difference in performance between simple models (the first two) and the rest is significant
for small networks. We also see that there are two models slightly outperforming the rest: ABA Simple
Extended and Assumption Dynamic. This is not a coincidence - the majority of interesting strategies
presented below was constructed using these two models. Furthermore, we see that four of of our models
beat the default derivation strategy. The biggest gain is for small frameworks derivation times where
we observe approximately 2 times better performance for our proposed models. The difference decreases
for medium and large frameworks, but our models still manage to outperform the default strategy by
approximately 1.5.

When we compare our heuristics with generation strategy, we observe significant gains in performance for
small networks. The generation strategy slightly outperforms our models for medium and large networks.
However, the best strategies of ABA Simple Extended and Assumption Dynamic models manage to keep
up with it even for large frameworks. The generation strategy is really a set of ’good’ strategies for
solving a given (framework, query) pair. Taking that fact into account, the performance of our models
is a very positive result.

6.1.2 Heuristics validation

We compare here the best performing and most interesting strategies from all models. For ABA Simple
Extended and Assumption Dynamic models we also include single best performing strategy found by
the genetic algorithm (i.e. the best performing population member in all populations every recorded),
because these two models showed the best performance during training. We first show the performance
of the heuristics on the synthetic frameworks and contrast it with the default heuristic. Then we repeat
the process for medical frameworks.
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Best performing strategies

Number Model Player choice
Short

description
Parameters used

1
ABA Simple

Extended
opponent

Reduces branching
by minimising

degree-out

Negative
non-assumption

out-degree (-1) and
negative unmarked
set size (-0.25) for
all choice points

2
ABA Simple

Extended
proponent

Best performing
training strategy -

minimises
branching

Negative non-asm
deg-out, positive
asm in-deg and

out-deg

3
ABA Simple

Extended
opponent

Best performing
training strategy -

minimises
branching

Negative non-asm
deg-out, positive
asm in-deg and

out-deg

4
ABA Simple

Extended
proponent

Minimises
branching and

picks most popular
assumptions

Negative non-asm
deg-out (-1),

positive asm in-deg
and out-deg (+0.5)

5
ABA Simple

Extended
opponent

Minimises
branching and

picks most popular
assumptions

Negative non-asm
deg-out (-1),

positive asm in-deg
and out-deg (+0.5)

6
Assumption
Lookahead

proponent
Considers all

observed trends

Neg subgraph size
for opp, pos for
prop (+1), pos

prop deg-in (0.25),
neg opp deg-in

(-0.75), pos prop
deg-out, neg opp
(0.5), neg number
of attacks for both

(-0.25)

Table 6.2: Best performing and most interesting strategies
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Strategy Model Player choice
Short

description
Parameters used

7
Assumption
Lookahead

opponent
Considers all

observed trends -
opponent priority

Neg subgraph size
(-1) and num of

attacks (-0.5), pos
deg-in and deg-out
for prop (0.25), neg

for opp (-0.25)

8
Assumption

Dynamic
opponent

Proponent reduces
branching, goes
away from D/C,

maximising
assumptions,

opponent reduces
branching, goes

toward D/C,
minimising

assumptions

Neg subgraph size
for all choice

points, negative
D/C weights for

proponent, positive
D/C weights for

opponent, positive
number of

assumptions for
proponent,
negative for
opponents

9
Assumption

Dynamic
proponent

Increases
branching for

proponent, reduces
for opponent,

proponent goes
towards D/C,
opponent goes

away from D/C

Negative subgraph
size (-1) for

opponent, positive
(+1) for

proponent, positive
D/C measures for

proponent (+0.25),
negative for

opponent (-0.25)

10
Assumption

Dynamic
opponent

Reduces branching
for both players,

both players move
away from D/C
and minimise
assumptions

Negative subgraph
size (-1) for both

players in all choice
points, negative

D/C weights and
’number of

assumptions’
weights (-0.25) for

both players

11
Assumption

Dynamic
proponent

Best training
strategy learnt -

proponent priority
to move

Neg subgraph size
for opp, pos for
prop, neg D/C

weights

12
Assumption

Dynamic
opponent

Best performing
strategy learnt -

opponent priority
to move

Neg subgraph size
for prop and opp,
pos D/C weights

Table 6.3: Best performing and most interesting strategies

One common thing for all strategies which is not mentioned in the table is that they all prioritise
assumptions over non-assumptions.
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Performance on synthetic frameworks

Strategy Small Medium Large

1 4260 26289 66668

2 4550 28317 51317

3 4610 25458 80000

4 7314 38774 89366

5 4010 26504 36991

6 4851 27658 59277

7 7888 42611 120000

8 4748 25799 57168

9 5269 42208 106667

10 4750 28777 63492

11 3229 25963 47274

12 5629 32834 69191

Default 8140 40640 69448

Generation 10632 24221 33937

Table 6.4: Strategies performance on synthetic small, medium and large frameworks. The results are
reported in milliseconds.

We illustrate the difference in performance for the 12 strategies we selected in Table 6.4. The majority
of them outperform the default strategy. Strategies 5 and 10 (which we have already seen in Table 6.1)
manage to keep up with the generation strategy.

Performance on medical frameworks

Strategy
Derivation time
in milliseconds

1 116001

2 40006

3 116000

4 40005

5 116010

6 40014

7 104012

8 108012

9 40023

10 108004

11 40012

12 104008

Default 56002

Table 6.5: Strategies performance on real-life medical frameworks. The results are reported in millisec-
onds.

The performance of our strategies on real life frameworks is significantly different than on synthetic
frameworks. Approximately half of the strategies took 40 seconds on average to solve the input query.
But the other half took 100 seconds. Interestingly, the best performing strategies on synthetic frameworks
- strategies 5 and 10 are members of the latter group. If we take a closer look at Tables 6.2 and 6.3 we
notice that the best performing group (strategies 2,4,6,9 and 11) all have one feature in common - the
proponent is given the priority to move. The other half of the strategies all give priority to the opponent.
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However, if we only consider the better performing group, we can see that there is an improvement over
the default strategy.

Another interesting fact to note is that they all have very similar performance. The only possible
explanation (which does not involve analysing the input frameworks) is that all strategies were built
around our most important heuristics which we learnt in the previous chapter. They all prioritise
assumptions over non-assumptions and they all minimise subgraph size / degree-out, the only exception
being proponent non-assumption choice where subgraph size is maximised. In order to understand
the output here a bit better we would have to analyse the medical frameworks and compare their
characteristics with what we learnt about synthetic frameworks. Also, a small amount of frameworks we
used here (30) may be another factor leading to the extraordinary uniformity of results.

6.2 Validation summary

To conclude, we have demonstrated that the strategies we propose outperform the default strategy by a
large margin. They also significantly outperform the generation strategy on small networks and tie with
it on medium and large frameworks. Since the generation strategy is really a set of different strategies,
each one considered as a ’good’ or ’correct’ strategy to solve a given (framework, query) pair, the results
show that the strategies we learnt are efficient and generic - they perform well on different types of
frameworks.
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Chapter 7

Conclusions

The aim of our work was to analyse the main issue with ABA structured X-dispute derivation - its time
efficiency. We wanted to get further insights on what influences the derivation performance and how to
improve it. We made the analysis from the algorithmic point of we, we did not consider factors such
as hardware or cache. We also wanted the discussion and the outcomes to be generic. Thus, we used
Machine Learning approach applied to a set of artificially generated frameworks. To do that we first had
to define a model which encodes an arbitrary measure-based derivation strategy. Hence, we were able to
apply a genetic algorithm in order to search the space of all possible derivation strategies and identify
the best performing ones.

The genetic algorithm served primary as a sampling tool. It allowed us to generate a large sample
of efficient derivation strategies. We could then analyse that sample to spot any correlations between
measures we used to define the derivation strategy and performance. Mathematical properties of our
strategy encoding schema allowed us to perform such analysis.

We were successful in identifying a couple of trends which influence the performance of ABA derivations.
First of all we analysed measures obtained from ABA framework graph representation - ABA Graph.
We used measures which are well-established in Graph Theory such as PageRank or degree centrality.
We identified a strong tendency between degree-out centrality and derivation time. We also learnt that
the majority of ABA Graph centrality measures did not show any correlation with performance. Hence
we did not include those measures in our further discussion.

We experimented a lot with degree-out centrality measure in order to explain its impact on derivation
time. We discovered what is really intuitive - degree-out measure controls derivation branching and
hence should be minimised. Also, by picking arguments with small degree-out for opponent we hasten
inevitable derivation failures which also speeds up the process.

Having explored the standard centrality measures, we moved on to defining our own - some based on
ABA Graph and some on our own ideas. We further validates our notion with degree-out by modelling
it more explicitly (through a subgraph size measure). A lot of our ideas were driven by a belief that
assumptions play a key role in speeding up the derivation process due to filtering. We thought that we
could develop an efficient derivation strategy based on assumption measures. Unfortunately, this proved
to be a dead-end.

Most of the time after learning about certain trends we also immediately tried to validate those trends
by constructing a derivation heuristic which reflects them and benchmarking that heuristic on a set of
synthetic frameworks. In the final part of the project, we identified a set of efficient heuristics which
we learnt through experimentation and we validated them on synthetic frameworks and real-life medical
data.

We compared their performance with current default derivation strategy and we noticed 1.5 - 2 times im-
provement in the synthetic framework case. Even more importantly, most of our strategies outperformed
or had a very similar performance to what we called a ’generation strategy’ - a set of strategies, one
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per framework, used to generate their corresponding frameworks. Since each of generation strategies is
tailored for a single framework and is guaranteed to solve the framework within some small time-bound,
by beating them or tying with them we demonstrated that the derivation strategies we learnt are efficient
and generic - they work well for different types of frameworks.

7.1 Future work

The most natural extension to the project would be to implement an efficient derivation strategy basing
on our analysis presented in this report. The heuristics which we proposed are only parametrisation
of a generic model. Hence, they may be less efficient than a specific implementation. We could then
benchmark the implemented strategy against medical frameworks and see whether we have any significant
speed improvement.

Another possible extensions involve further work with the models we defined to understand some of the
learnt trends a bit better. First of all, we never gave a clear and intuitive explanation to our sentence
choice strategy which prioritises assumptions over non-assumptions. We did not have enough data to
infer anything more here. As a next step we could define a new model where we have that parameter
split into two - one for proponent sentence choice and one for opponent sentence choice. Such a strategy
worked in degree-out centrality case where it allowed us to understand the learning output.

Secondly, we never explained why the proponent should be choosing non-assumptions which lead to bigger
derivation branching when he is given priority to move. We also never defined any useful heuristics for
turn choice. In most of our experiments we always gave priority to one of the players. A natural extension
of our models would be to define player choice heuristics in terms of argument measures available for
each player.

Another possible next step is to reverse the problem and analyse the queries in terms of performance.
For instance, we would be interested in knowing what types of queries give our strategies the hardest
time. We could analyse them by measuring query-node parameters from ABA Graph. Such analysis
may give ideas leading to better search heuristics.

Furthermore, we used admissible semantics in all of our experiments and validation. It would be useful
to repeat the whole process with grounded semantics and compare the difference between trends learnt
for admissible derivations.

Finally, we did not attempt to analyse the medical frameworks which may explain the output we obtained
in Validation Chapter. It may also lead to another heuristics ideas. It may be useful to include medical
frameworks in the training process as well.
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Appendix A

Glossary

The definitions here will be largely informal. Formal definitions are given in the appropriate sections
of the report. This is for quick reference only if the reader is lost in the amount of jargon used in the
report.

ABA Graph: a graph representation of ABA Framework

ABA Framework: a set of assumptions, non-assumptions, inference rules and contraries which form
an ABA representation of some knowledge base

backtracking: taking a different path in derivation (e.g. choosing different rule) after finding solution
or failing

branching: generally refers to the fact that we may have a several different derivation paths which we
may take and to which we have to later backtrack

body: usually a body of a rule, i.e. each rule is of the form: head :- body

choice point: a point in the derivation algorithm where there is more than one option on what to do
next - for example we have more than one arguments and we have to select one

claim: usually an input query to ABA derivation procedure

conclusion: usually a head of a rule

culprits: assumptions used by the opponent and attacked by the proponent

decision function: a function of measurements which determines which option we should choose from
a set of available alternatives at each choice point

decision value: a value computed by decision function

defences: assumptions used by the proponent and attacked by the opponent

derivation: see dispute derivation

derivation strategy: a strategy used to prove input query, specifies which player we choose, which
sentences/rules/arguments proponent chooses and which sentences/arguments opponent chooses; in ge-
netic algorithm context, a strategy is encoded using real numbers vector and is the same as a population
member

derivation time: time elapsed between starting a derivation and getting all solutions for an input
query

dispute derivation: a process of finding all solutions which support an acceptability of input query,
i.e. deriving whether input query is acceptable and if it is finding all ways to prove it

eager selection: choose assumptions over non-assumptions if any available
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filtering: a mechanism used in dispute derivation to ensure that it is acceptable and it terminates
(for admissible semantics) by keeping track of used assumptions and making sure they are not used
again

fitness: in our case an average derivation time of a population member, measured on 50-100 (framework,
query) pairs

framework: see ABA Framework

(framework, query) pair: when an ABA Framework is synthetically generated we always test if its
solvable within some specified time interval for some query, we then always use only that query on the
framework in learning or benchmarking as we are guaranteed it is not trivial and it is solvable

goal: see query

head: usually a head of the, i.e. each rule is of the form: head :- body

lookahead (parameter): number of edges we travel from some given node to construct its lookahead
graph;

lookahead subgraph (of a node): a part of ABA Graph located within lookahead distance from the
given node

measure: usually refers to one of the measures used to select an option when the dispute reaches a
choice point with many options (e.g. PageRank);

model: a set of measures and decision functions which specify how options are selected at choice
points

model parameter: usually a weight associated with some measure, for example ’proponent argument
choice degree-in weight’;

option: usually refers to possible alternative we have when we reach a choice point; for example we have
to choose between 3 arguments, each argument is refereed to as option

parameter: see model parameter

patient selection: choose non-assumptions over assumptions if any available

population: a set of strategies used in genetic algorithm, usually each strategy is a vector of real
numbers (of weights)

population member: a derivation strategy encoded as a vector of real numbers used in genetic algo-
rithm

potential argument: argument not yet fully expanded

premise: a body of a rule

query: an input sentence to a ABA derivation procedure which we want to prove

sentence: either an assumption or a non-assumption

strategy: see derivation strategy

unmarked set (of an argument): a set of assumptions and non-assumptions which we yet have to
expand to get a full argument

weight: a random number between -1 and 1 which assesses the importance of a measure in decision
function, each strategy / population member is a vector of weights
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Appendix B

Full validation results

Before we present all strategies we have validated on test framework suit and the full output we have
obtained. Unfortunately, the output was not available for some large frameworks due to memory-overflow
issues which we were unable to solve.

ABA Simple

Strategy
description

Weights Used Small Medium Large

Low degree Degree -1 8394 37100 46684
Low pagerank PageRank -1 11585 44699 86692

Low unmarked set
size

Unmarked Set Size
-1

13717 49982 92184

High degree Degree +1 19973 60000 120000
High pagerank PageRank +1 19956 60000 120000

High unmarked set
size

Unmarked Set Size
+1

20000 60000 120000

Low degree, low
pagerank

Degree -1,
PageRank -0.5

15317 43329 66252

High degree, high
pagerank

Degree +1,
PageRank +0.5

19960 60000 120000

Best performing
strategy learnt

All measures
negative

15215 44008 73824

Table B.1: Different ABA Simple strategies benchmarked on small, medium and large frameworks. The
results are report in milliseconds.
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ABA Generic

Strategy
description

Weights Used Small Medium

Low degree
Respective

measure -1, all
other measures 0

7619.1761904762 28473

Low closeness
Respective

measure -1, all
other measures 0

9493.6571428572 35571

Low betweenness
Respective

measure -1, all
other measures 0

10162.44 37723

Low eigen
Respective

measure -1, all
other measures 0

10217.9230769231 36351

Low pagerank
Respective

measure -1, all
other measures 0

12078.2 41091

Low hub
Respective

measure -1, all
other measures 0

14795.4555555556 48987

Low authority
Respective

measure -1, all
other measures 0

12455.1555555556 40147

High degree
Respective

measure +1, all
other measures 0

20000 37077

High closeness
Respective

measure +1, all
other measures 0

20000 38989

High betweenness
Respective

measure +1, all
other measures 0

20000 60000

High eigen
Respective

measure +1, all
other measures 0

20000 60000

High pagerank
Respective

measure +1, all
other measures 0

20000 60000

High hub
Respective

measure +1, all
other measures 0

17692.05 42178

High authority
Respective

measure +1, all
other measures 0

19921.7 40498

Best performing
strategy learnt

Negative degree,
eigen, pagerank
and betweenness

13120.65 32123

Table B.2: Different ABA Generic strategies benchmarked on small, medium and large frameworks. The
results are report in milliseconds.
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ABA Simple Extended

Description Proponent Priority Opponent Priority
Strategy

description
Weights Used Small Medium Large Small Medium Large

Reduces branching
by minimising

degree-out

Negative
non-assumption

out-degree (-1) and
negative unmarked
set size (-0.25) for
all choice points

7729 37828 94013 4260 26289 66668

Increases branching
by maximising

degree-out

Positive
non-assumption

out-degree for all
choice points

19918 60000 120000 17366 54000 120000

Increases branching
for proponent and
reduces branching

for opponent

Positive
non-assumption

out-degree for all
proponent choices,

negative for all
opponent choices

10520 49020 106667 7074 34880 93353

Picks popular
assumptions for
proponent and
unpopular for

opponent

Positive
assumption

in-degree and
out-degree for

proponent choices,
negative for
opponent

14003 53260 120000 10200 41222 66683

Picks unpopular
assumptions for
proponent and

popular for
opponent

Negative
assumption

in-degree and
out-degree for

proponent, positive
for opponent

11801 46523 106674 8888 41099 106666

Picks popular
assumptions for

both players

Positive
assumption

in-degree and
out-degree for all

choice points

13916 53403 x 10190 41189 x

Best performing
learnt strategy:

minimises
branching

Mostly negative
non-asm deg-out,

positive asm in-deg
and out-deg

4550 28317 51317 4610 25458 80000

Best strategy made
explicit: minimises

branching and
picks most popular

assumptions

Negative non-asm
deg-out (-1),

positive asm in-deg
and out-deg (+0.5)

7314 38774 89366 4010 26504 36991

Table B.3: Different ABA Simple Extended strategies benchmarked on small, medium and large frame-
works. The results reported are average derivation times in milliseconds.
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ABA Lookahead

Description Proponent Priority Opponent Priority
Strategy

description
Weights Used Small Medium Large Small Medium Large

Chooses most
central nodes

Positive degree-in
and degree-out in
all choice points

19849 60000 Ö 16243 54109 108018

Maximises
degree-in,
minimises
degree-out

Positive degree-in
and negative

degree-out in all
choice points

19849 60000 Ö 14252 51732 53340

Minimises
degree-in,
maximises
degree-out

Negative degree-in
and positive

degree-out in all
choice points

19833 60000 Ö 15252 50433 120000

Reduces branching
by minimising
subgraph size

Negative subgraph
size in all choice

points
11141 49777 Ö 5676 38943 80001

Increases
branching for

proponent reduces
for opponent

Positive subgraph
size for all

proponent’s choice
points, negative for

opponent’s

4772 34882 Ö 8628 44674 106666

Table B.4: Different ABA Lookahead strategies benchmarked on small, medium and large frameworks.
The results are report in milliseconds.

Assumption Lookahead

Description Proponent Priority Opponent Priority
Strategy

description
Weights Used Small Medium Large Small Medium Large

Considers all
observed trends -
proponent priority

Neg subgraph size
for opp, pos for
prop (+1), pos

prop deg-in (0.25),
neg opp deg-in
(0.75), pos prop
deg-out, neg opp
(0.5), neg number
of attacks for both

(-0.25)

4851 27658 59277 Ö Ö Ö

Considers all
observed trends -
opponent priority

Neg subgraph size
(-1) and num of

attacks (-0.5), pos
deg-in and deg-out
for prop (0.25), neg

for opp (-0.25)

Ö Ö Ö 7888 42611 120000

Table B.5: Different Assumption Lookahead strategies benchmarked on small, medium and large frame-
works. The results are report in milliseconds.
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Assumption Lookahead

Description Proponent Priority Opponent Priority
Strategy

description
Weights Used Small Medium Large Small Medium Large

Chooses aggressive
assumptions for
proponent and

peaceful for
opponent

Positive degree-out
in all proponent’s

choice points,
negative degree-out

in all opponent’s
choice points

8119 31929 Ö 9236 41477 Ö

Chooses peaceful
assumptions for
proponent and
aggressive for

opponent

Negative
degree-out in all

proponent’s choice
points, positive in

all opponent’s
choice points

19915 60000 Ö 16504 52001 Ö

Chooses victimised
assumptions for
proponent and

untroubled
assumptions for

opponent

Positive proponent
degree-in, negative
opponent degree-in
in all choice points

6282 31779 Ö 10123 47219 106666

Chooses
untroubled

assumptions for
proponent and

victimised
assumptions for

opponent

Negative
proponent

degree-in, positive
opponent degree-in
in all choice points

19833 60000 Ö 13514 41561 80000

Minimises number
of attacks for both:

proponent and
opponent

Negative number
of attacks for both
players in all choice

points

11140 40830 Ö 7678 42182 Ö

Maximises number
of attacks for both

players

Positive number of
attacks for both

players in all choice
points

19823 60000 Ö 17158 52757 Ö

Reduces branching
by minimising
subgraph size

Negative subgraph
size in all choice

points
11490 45999 Ö 5972 39454 Ö

Increases
branching for

proponent reduces
for opponent

Positive subgraph
size for all

proponent’s choice
points, negative for

opponent’s

4935 35244 58301 8908 45774 Ö

Table B.6: Different Assumption Lookahead strategies benchmarked on small, medium and large frame-
works. The results are report in milliseconds.
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Assumption Dynamics

Description Proponent Priority Opponent Priority
Strategy

description
Weights Used Small Medium Large Small Medium Large

Reduces branching
by minimising
subgraph size

Neg subgraph size
in all choice points

10589 58043 Ö 4492 28341 57168

Increases branching
by maximising
subgraph size

Pos subgraph size
in all choice points

19775 60000 Ö 17887 55373 Ö

Increases
branching for

proponent reduces
for opponent

Pos subgraph size
for all prop’s choice

points, neg for
opp’s

4077 28564 Ö 9309 47564 80000

Moves toward D/C

Pos D/C
membership and

number of D/C in
subgraph weights

19544 60000 Ö 17566 54923 Ö

Moves away from
D/C

Neg D/C
membership and

number of D/C in
subgraph weights

11526 56408 Ö 7703 36410 Ö

Proponent goes
towards D/C,
opponent goes

away

Pos D/C weights
for proponent, neg

for opponent
8706 59336 Ö 10563 43965 Ö

Proponent goes
away from D/C,
opponent goes

towards

Neg D/C weights
for proponent, pos

for opponent
19775 60000 Ö 13844 45231 Ö

Minimises
assumptions

Neg ’number of
assumptions’
weight for all
choice points

10182 52137 Ö 7261 37471 80000

Maximises
assumptions

Pos ’number of
assumptions’
weight for all
choice points

19726 59742 Ö 16720 54789 112111

Table B.7: Different Assumption Dynamics strategies benchmarked on small, medium and large frame-
works. The results are report in milliseconds.
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Assumption Dynamics

Description Proponent Priority Opponent Priority
Strategy

description
Weights Used Small Medium Large Small Medium Large

Proponent reduces
branching, goes
away from D/C,

maximising
assumptions,

opponent reduces
branching, goes

toward D/C,
minimising

assumptions

Neg subgraph size
for all choice

points, negative
D/C weights for

proponent, positive
D/C weights for

opponent, positive
number of

assumptions for
proponent,
negative for
opponents

10384 49693 Ö 4748 25799 57168

Increases
branching for

proponent, reduces
for opponent,

proponent goes
towards D/C,
opponent goes

away from D/C

Negative subgraph
size (-1) for

opponent, positive
(+1) for

proponent, positive
D/C measures for

proponent (+0.25),
negative for

opponent (-0.25)

5269 42208 106667 Ö Ö Ö

Reduces branching
for both players,

both players move
away from D/C
and minimise
assumptions

Negative subgraph
size (-1) for both

players in all choice
points, negative

D/C weights and
’number of

assumptions’
weights (-0.25) for

both players

Ö Ö Ö 4750 28777 63492

Best performing
strategy learnt -

proponent priority

Maximises
subgraph size for

prop
non-assumption

choice, minimises
subgraph size for

all other, goes
away from

assumptions and
D/C

3229 25963 47274 Ö Ö Ö

Best performing
strategy learnt -

opponent priority

Minimises
subgraph size for
all choice points,

goes toward
assumptions and

D/C

Ö Ö Ö 5629 32834 69191

Table B.8: Different Assumption Dynamics strategies benchmarked on small, medium and large frame-
works. The results are report in milliseconds.
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