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Abstract

Energy conservation has been in the forefront of attention for quite some time. The climate
change, the continuously increasing energy demands and the limited availability of energy resources
have made several bodies look for means to achieve more efficient energy consumption. National
targets have been set in order to limit the environmental effects of fossil fuel consumption. The
residential sector accounts for a big part of the global energy consumption (approximately 26% for
the UK). In order to monitor the national energy consumption, as well as motivate home owners to
improve their electricity consumption behaviour, smart-meters are being deployed in a large scale
in the UK and the USA.

A smart-meter is connected to the electric main of a residence and monitors the energy con-
sumption of the whole house. The collected data are of great value; it may allow for prediction
of the national load and enable optimization of the power grid or enable the utility companies to
provide better services to their clients. Of great interest is the extraction of detailed information
from this data regarding the electricity usage of consumers. Electricity is at the moment an ’invis-
ible’ product, in the sense that it is rather hard to estimate how much is consumed and by which
appliance. Providing more detailed information than simply a monthly bill to the consumers would
enable them to get control over their electricity consumption and make wiser use of it.

The task of extracting end-use and appliance-level information from the measurements of the
whole-house consumption, the aggregate signal, is referred to as energy disaggregation. It has been
the target of research attempts for over 20 years. However, there has not been developed a robust
and accurate technique that could be widely adopted in the residential sector yet. The developed
systems either require special equipment or have important limitations.

This research elaborates on the disaggregation of multi-state appliances that are commonly
found in residences. Multi-state appliances are problematic to disaggregate using classic approaches,
which are based only on the detection of steady states in the power signal, because of the compli-
cated nature of their operation.

A novel supervised pattern recognition technique has been developed, inspired by feature extrac-
tion techniques used in Optical Character Recognition. The designed system attempts to determine
the ’approximate shape’ of the signatures (the measured power consumption of the appliance dur-
ing one single operation) of a multi-state appliance by detecting the main parts that they consist
of. By processing the signatures of various models of the same appliance type, the system attempts
to extract patterns and features that are frequently observed during the operation of an appliance.
The extracted set of features comprises the profile of an appliance, which describes the generic
shape of a multi-state appliance’s signatures. It is an attempt towards the creation of a generic
signature of an appliance, that may describe the appliance type as a whole, independent of the
model’s size, manufacturer or other such factors.

Most previous research attempts performed on data sampled at the frequency range of 1Hz-
0.1Hz only extract the power consumed during steady states of an appliance’s operation. In this
work various features have been investigated, in order to determine a richer set that can accurately
describe an appliance, allowing its detection and at the same time distinguish it from the rest. The
investigated features include durations of states, time intervals between different states, repeating
parts in an appliance’s signature, periods of rapid changes created by an appliance’s operation,
power changes with the form of spikes and more. Signatures of different models of appliances have
been processed, available in various public datasets. Three multi-state appliances were the main
targets of this work: the dishwasher, the washing machine and the dryer.

A system has been implemented in order to extract the various features, generate the profile
of each appliance and, finally, test the approach by disaggregating operations of these appliances.
The profiles generated manage to describe the generic characteristics of an appliance, allowing the
system to detect fairly accurate instances of all three appliances in an aggregate signal (50-100%
disaggregation accuracy in the tested cases). The results were particularly promising taking into
account the very low number of false positives (83-100% detection accuracy in the tested cases),
fact that may allow for further extensions to this work.
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1 Introduction

1.1 Motivation

Between the frequent discussions on the climate change and the annual increase of a households
expenses on electricity bills, the effects of energy overconsumption have become pretty obvious to
anyone nowadays. The energy problem has attracted the attention of many interested bodies. Na-
tional targets have been set, in order for the global carbon emissions to be reduced. The research
community is tackling different aspects of the problem, with much focus on optimizing the energy
usage. An important part of the global energy consumption is due to the domestic sector. For
instance, in the United Kingdom for the year 2011, approximately 26% of the national energy con-
sumption was due to domestic consumption [1]. The biggest percentage of residential consumption
was for space heating (60%) and water heating (18%). Electrical appliances and lighting account
for approximately 22% of the energy consumed by households in the UK for the year 2011 [3].

Final energy consumption, 1980 to 2011
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Total 27.1 38.8 55.2 17.2 138.3

[1) Includes agriculture

Figure 1.1: Energy consumption for the UK, per sector. The noticeable decrease in the
consumption for the domestic sector between the years 2006 and 2011 was mainly caused by the
relatively mild winters. Source:[1]

Furthermore, in the USA, electrical appliances and lighting were found to account approxi-
mately for the 35% of total domestic consumption of 2009 [8]. As presented in the latter research,
electricity consumption has increased by 23% over the past decade in the USA, mostly because of
increased use of air-conditioning and the introduction of new appliances. Projections show that
electricity consumption in the residential vector will continue to increase, estimating consumption
20% higher in 2030 in comparison to 2007.



Inferring Appliance-by-Appliance Energy Consumption 6'" September, 2013

60,000
=——Total ~——Space heating ——Water =~ Lighting and appli -Cooking

50,000
§ 40,000
s
=2
g
3
© 30,000
2
c
c
2
=
€
@ 20,000
=
o
£
E

10,000

—
1970 1975 1980 1985 1890 1995 2000 2005 2011

Figure 1.2: Domestic energy consumption for the UK, by the end use. Source:|3]
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Figure 1.3: Electricity consumption by household domestic appliances, by broad type, UK, 1970
to 2011. Source:[3]

With the continuous introduction of new electrical appliances, computing equipment and gad-
gets, the need for electricity increases, pushing the electricity price higher and higher with every

passing year. Only in the past decade, the price of electricity has been increased by approximately
50% in the UK [4].

The use of a fairly simple device, the smart meter, allows for more efficient use of energy in
the domestic sector. A smart meter is installed on the electric main of the house and measures
the total energy consumption of the house in regular intervals. The data can be of great use to
many different bodies. For instance, utilities are enabled to provide better services to their clients
and consumers may have more control over their electricity consumption. Actually, they tend to
modify their behaviour towards more efficient use of electricity after they are presented with that
kind of data [11], saving money and reducing their carbon footprint. Smart meters also enable the
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development of the “smart grid” by providing data that can be used to achieve, for instance, more
efficient load - balancing. Smart meters will become even more important for the grid operation
with the increase in micro-generation, for example photovoltaic panels, or the future increase in
the use of electric cars.

Millions of smart-meters are already installed globally and their penetration is expected to
rapidly increase [7]. The UK government is overseeing an ambitious programme in order to reduce
the national carbon emissions and also help the consumers deal with the rising electricity prices.
Energy suppliers will be required to install smart-meters in millions of homes and businesses, in
a massive rollout that was scheduled to begin in 2014 and complete in 2019; On May 2013 the
program was delayed for one year to achieve better planning. Some suppliers have already started
installing smart-meters [5, 6].

The data gathered from the smart meters can be the source of various information. From
detecting a malfunctioning device in the house which consumes unusual amounts of energy, to
monitoring the use of electricity for heating or cooling so that the grid operator may predict the
grid’s load for the next winter or summer. This paper elaborates on the disaggregation of the
data gathered for a whole house’s consumption; the inference of the consumption of the individual
appliances within the house. Research in this field has lasted well over 20 years, however still there
seems to be no technique that can be widely adopted in the domestic sector without limitations.
Previous research attempts have been quite successful in disaggregating certain common appliances
with the use of custom equipment sampling the aggregate signal at high frequencies and detecting
features, like transients, which are specific to those appliances. The use of special equipment makes
these techniques rather unattractive for wide adoption in the domestic sector. Advancement in
disaggregation at lower sampling rates has been quite slower, since less features can be detected,
with each technique developed having each own limitations.

1.2 Objectives

Main aims of this research were:

e The development of a technique in order to form a generic profile of an appliance type. It is
an attempt towards the creation of generic signatures for appliances, that would characterize
an appliance type as a whole and enable the disaggregation of the appliance regardless the
size of the model or the operating conditions.

e The investigation for features and patterns in the signatures of appliances, in order to deter-
mine a set of features that may allow for accurate detection of an appliance in the aggregate
signal.

e The development of a disaggregation algorithm that, given a generated profile for an appliance
type, detects with accuracy the operation of the appliance in the whole-house consumption
signal.

e The developed methodology should be able to perform on measurements sampled at rates
between 0.1Hz and 1Hz, in order to be applicable on data gathered from common smart-
meters.

1.3 Contributions

This thesis presents a novel methodology of modelling an appliance with a generalized profile and
disaggregating it by evaluating the existence or absence of a set of features.

The system designed 'maps’ an appliance after processing the signatures (measured consump-
tion of an appliance during one operation) provided for an appliance. This is achieved by detecting

10
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the main parts of an appliance’s operation, the parts which are consistently observed in the signa-
tures of different models. These main parts describe the 'rough shape’ of the appliance’s signature
and are used to form a generic profile of the appliance type.

Most cases of previous related work on low resolution data extract and make use only of the
power consumed in the various steady states of an appliance. This research differs radically from
these approaches. Several power and non-power related features are investigated and extracted
from the signatures of the appliances. These features include the durations and time intervals
between the various states, existence of repeating parts in a signature, spikes, rapid power changes,
ratios between durations of different states. These features complement the generic profile of an
appliance, in an attempt to accurately describe an appliance type as a ’bag of features’.

A pattern recognition technique has been developed which, given a profile of an appliance, dis-
aggregates the instances of the appliance in an aggregate signal.

The designed technique is tested on three multi-state appliances, which pose problems to the
‘conventional’ approaches which only detect steady states. The three targeted appliances are: the
dishwasher, the washing machine and the dryer. The system creates the generic profiles and dis-
aggregates instances of all three appliances in aggregate signals with satisfying accuracy in most
cases. For two out of the three appliances, the disaggregation was performed on untrained models,
with the system managing to successfully generalize.

An important accomplishment is the very small number of detected false positives. The use of
a large set of features in order to describe an appliance prevents the detection of false positives in
the aggregate signal.

1.4 Outline of the Report

Chapter 2: Presents the background and related work on energy disaggregation, analysis and
issues unresolved. Some helpful information of techniques used during this work are also presented.

Chapter 3: Presents the first investigation of the available datasets which are used for this
work, as well as the first comparison of features that led to the initial decisions about the approach
to be attempted.

Chapter 4: In this section are explained the first tools implemented, as well as the first dis-
aggregation attempt. The prototype designed for the disaggregation of the fridge has influenced
the design of the main system. It would be useful (and hopefully interesting!) for the reader to go
through this section before continuing with the design of the main system.

Chapter 5: An overview of the developed technique is presented, along with the main func-
tionality of the implemented system and its various modules.

Chapter 6: Describes the process of forming the profile of an appliance. The Profiler module
determines the main parts of the appliance’s signatures. In this section are also presented the
various features observed, their extraction and their incorporation into the profile.

Chapter 7: Describes the pattern recognition technique developed in order to detect patterns
in the aggregate signal that match the various aspects of the profile and disaggregate the true

operations of the appliance.

Chapter 8: The choice of the classifier is presented and its functionality in the system.

11
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Chapter 9: The system is tested by attempting to disaggregate the three targeted appliances,
the dishwasher, the washing machine and the dryer. The results and problems observed are pre-
sented and analysed.

Chapter 10: Overall discussion of the results and the achievements after the evaluation. The

limitations of the system are also presented. Finally, possible future work for extensions of the
technique is proposed.

12
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2 Background and Related Work

2.1 Energy Disaggregation - Why?

When doing the everyday grocery shopping, it is easy for a consumer to compare the prices of
the different products and make an informed choice, depending on his needs and budget. While
travelling by car, by checking the fuel meters the driver is able to know exactly how much fuel has
been consumed since the beginning of his travel, or even how much the instant consumption rises
when he accelerates to bypass another car. The case of electricity consumption, however, is not
that simple.

In everyday life electricity is taken for granted. It is supplied to homes and businesses and is
used by appliances without any indication of the amount consumed. It is in a way invisible. Con-
sumers only get information on their whole-house consumption when they get their electricity bill.
That makes it hard to have a feeling about how much electricity is used while, for example, playing
a video game. Would the consumer still choose to play it if it was known exactly how much it costs?

Research on the disaggregation of electricity consumption has been performed for many years,
with the aim of accurately inferring the consumption of the individual appliances. It attracted, how-
ever, much more interest these recent years because of the increasing installation of smart-meters.
A smart-meter installed in the main feed of a house measures in regular intervals characteristics
of the electricity consumption, for instance the instant real-power consumption, voltage, current
etc. Measured characteristics differ between smart-meter models. Many benefits can be gained
from a processing technique that can reliably and accurately infer (disaggregate) the individual
consumption of each appliance only by processing the whole-house signal.
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Figure 2.1: A smart meter installed on the electric main.

Imagine if at the end of the month you would receive an electricity bill with analytical listing of
the consumption of each appliance, and you would notice that you spend far more money on lighting
than you would have thought. Wouldnt that make you consider the option of changing your bulbs

14
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for more efficient ones? Or even try to remember turning off the lights when you leave a room?
This kind of changes of consumer behavior has been studied a lot in the literature [9, 10, 11, 12]
suggesting that feedback does bear significant results. Depending on the frequency and type of
feedback, consumers may optimize their behavior and lower their electricity consumption by up to
20%! In her research [10], Fischer outlines that households would prefer their electricity bills to
include clear indication of the various components of the electricity price and she concludes that
feedback in order to be most efficient needs to include appliance-specific breakdown. In [12] it is
suggested that the most important reason why appliance-by-appliance information leads to greater
energy savings is the fact that it enables personalized recommendations. After the identification of
the appliances that consume the most, the consumers can be given personalized feedback on how
to reduce their consumption.

This kind of information for individual appliances can be acquired by installing a consumption
monitor between an appliance and the socket, without the need for any disaggregation techniques.
However the cost of these devices is not negligible, especially taking into account the number of
appliances in a house. It could add up to significant amounts if a consumer would like to monitor
many of them. It also burdens the consumer with the effort for installation. Smart-meters on the
other hand can be installed by the utility, without any disruption of the consumer. The recent
study [12] also compares other options, like the use of smart-appliances, but concludes that smart-
meters in combination with the use of disaggregation algorithms are the most cost-effective way to

go.

Disaggregated data can be of great use to other bodies as well. Utilities would be capable of
providing better services by suggesting, for instance, the best tariff-plan for each consumer or by
informing the consumer of unusual consumption of a particular appliance, which could mean the
appliance is malfunctioning. It would also benefit research a great deal, since this information could
lead to the development of better standards and more energy efficient appliances.

2.2 Non-Intrusive Load Monitoring

As discussed in the previous section, a method to acquire information on the consumption of an
individual appliance is to install a measuring device between the appliance and its socket. This
method is called “intrusive monitoring”. The second method, the one that will be the focus of
the rest of this research, is the disaggregation of data for the total load of a building, acquired
by a single measurement device (a smart-meter). Processing that data, it is possible to acquire
separate information for the consumption of lighting or the washing machine. This method is far
more convenient since it only requires the installation of one meter, which can be installed by the
utility, and has lower costs than acquiring a measuring device for each appliance. Generally called
“Non-Intrusive Load Monitoring” (NILM) or “Nonintrusive Appliance Load Monitor-
ing” (NALM), it is considered the most practical and promising method and has been the focus
of research for many years.

2.2.1 Data Collection for NILM

Almost all the smart meters measure the loads real power, current and voltage. Some may mea-
sure reactive power, phase of the current and voltage or the power factor. Of major importance
is the sampling frequency of the smart meter. Different sampling rates allow for different type of
information to be extracted from the aggregate data. Sampling with low frequency (lower than
1Hz) creates the problem of different events might seem like they happen in parallel. For example,
if one sample is taken every 5 seconds and a toaster is turned on 3 seconds after the kitchen lamp,
the two events will be recorded as if they happened at the same time. This poses one of the major
challenges disaggregation techniques have to solve. On the other hand, high frequencies enable the

15
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Figure 2.2: Total consumption of a whole house (top) and the individual consumption of four
devices (bottom) over the course of an afternoon. Source:|[13]

detection of transient events, harmonics and even voltage noise. These techniques will be discussed
further below. Unfortunately, technology for sampling at higher frequencies comes with higher cost.
Most common smart meters sample up to 1Hz, with the price increasing as the sampling rate goes
up. For reference, the smart-meters that are going to be installed during the rollout in the UK are
expected to have a sampling frequency of one sample per 5 seconds. Energy meters that sample at
a rate of 10 to 100MHz, which are used for voltage noise detection, are usually custom built and
expensive [16].

2.2.2 Previous NILM Approaches

The problem of energy disaggregation is not new; researchers have been working on NILM for more
than 20 years. There are numerous techniques that have been tried, of which the most important
ones will be discussed below. Some very interesting, recent general reviews of the existing tech-
niques can be found at [15, 16].

All of these approaches follow a main principle. They process the data collected by measuring
devices and try to extract “features” that characterize the devices. A feature can be any distinctive
value, behaviour or pattern that can be thought to be distinctive of a device. The disaggregation
algorithms then look in the aggregated data for these features, try to recognize them and thus
manage to distinguish the separate devices inside the total. The most common feature is probably
the transition between steady states in the instantaneous power consumption. For instance, if a
device consumes 1kW when it is ON, then if the algorithm finds a power change in the aggregate
signal of 1kW, then there is a fair chance that this particular device was turned on at that point.
Features will be further discussed in the next sections.

An initial classification of the different disaggregation methods can be done depending on

whether they tackle the problem using Pattern Recognition methodologies or they target it as
an Optimization problem.

16
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Figure 2.3: a) General framework of a NILM approach. b) The aggregated consumption data
obtained from a single point of measurement. c¢) Different load types based on their energy
consumption pattern. Source:|[16]

2.2.2.1 Pattern Recognition

An appliance presents some electrical characteristics during its use. Some examples are the value
of real and reactive power consumed while it is turned on, a spike at its consumption for a short
time after its startup, a slow decay of its power consumption over time, some particular distortion
in the voltage or current caused by its internal hardware. All these features can be collected to
form a “signature”, a pattern, which is distinctive for a device.

Pattern recognition techniques create a pool of devices and their corresponding signatures and
use them to disaggregate the total measured signal. A pattern recognition algorithm tries to detect
sets of features in the aggregated signal and then tries to find a pattern within the pool of signatures
that matches it close enough. It then proceeds with another set of features, until it has matched
all that it can.

Pattern Recognition techniques are the ones that are most frequently used by researchers, mostly
because of computational performance in comparison to the alternative, optimization techniques.
They can be efficiently used even when the data pool held for known devices is not complete, a
major drawback of optimization techniques [16].

Depending on how the techniques create the pool of known devices-signatures, they are further
classified as supervised and unsupervised techniques.

Supervised Techniques:

Most attempts on disaggregation have been use supervised methods. In this category, training
algorithms are used in order to create the pool of known signatures by processing pre-collected data
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for each device. For most techniques, the consumption of each type of device has to be recorded
prior to the actual disaggregation for a fairly long duration. The training algorithms process that
data to identify a distinctive set of features for this device and create the corresponding signature,
which is labelled by the researcher. After the pool of signatures has been created, it can be used
for the pattern recognition and disaggregation of the total consumption data.

The first and probably the most important work on disaggregation was done by George Hart
back in 1984 [17]. For his technique the real power, reactive power and voltage of the load are mea-
sured every one second. In order to detect the individual appliances inside the total consumption
signal, he used a clustering technique based on the change of power consumed between steady states.

Hart initially identifies three types of appliance models:

e ON/OFF - Two distinct states. The appliance has only one ON state.

e Finite State Machine (FSM) Allows for an arbitrary set of discrete states and state transitions,
for example appliances with multiple settings.

e Continuously Variable Infinite number of states, continuous range of operating power levels.

The consumption patterns of these types can be seen in Figure 2.3 (¢) as Type I, Type III and
Type II respectively.

An edge-detector algorithm passes through the aggregate data and detects all the steady states
and the changes between them. The changes of real and reactive power are then clustered together
in a two dimensional space. Changes of equal magnitude but opposite sign are matched together,
representing the turn on and off cycle of a device. Based on the assumption that different devices
consume different amounts of real and reactive power when they are operating at a steady state,
the operating cycle of a device can be detected within the aggregate signal by the changes in power
consumption. Under another similar assumption, that “distinct states in an FSM appliance model
have distinct operating power levels” (Uniqueness Constraint), Hart‘s algorithm tries to identify
FSMs.

Hart‘s NILM revolutionary technique of course has its limitations. Due to the fact that it uses
the changes of power between steady states to identify individual appliances, it cannot handle the
“Continuously Variable” type of appliance, mentioned above. Moreover, it cannot distinguish be-
tween two different devices if they consume approximately the same power on steady state. The
technique is also problematic when more than one devices change states at the same time. His
work has later been extended by Laughman et al [23] to incorporate more features than the power
consumed, in order to overcome these limitations. This work will be further commented in sec-
tion 2.2.3 about Transients and Harmonics. Further extension to Hart‘s work was made by the
researchers Cole and Albicki in [34] and [35], where they make use of additional features like edges
and slopes in the power signatures to identify particular devices.

An interesting supervised technique seems to be the one developed by Ruzzelli et al [18] using
Artificial Neural Networks. A very interesting fact is that they use, among others, the power-factor
of an appliance as a feature, allowing their method to distinguish between resistive, capacitive and
inductive types. They test their method by trying to disaggregate four types of ON/OFF appli-
ances (kettle, heater, microwave and fridge). They report high accuracy for their method, but from
a testing environment where the rest of appliances have a much lower consumption. Moreover,
their technique cannot be used for multi-state appliances.
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Figure 2.4: Finite State Appliance Models. The circles depict steady states of operation, the
edges represent the changes from a steady state to another. a) generic 1200W two state
appliance, b) refrigerator with defrost state c) three way lamp, d) clothes dryer. Source:[17]
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Finally, a fairly different technique is described in [19], although limited in scope. The technique
evaluates certain rules to identify possible time intervals that a water heater or the refrigerator may
be operating, in order to compute their power consumption. It also used additional features for the
signatures of the devices, for instance the frequency of activation. The sampling rate used was one
sample per 16 seconds; however the assumption that two appliances do not activate or deactivate
at the same time was made.

Unsupervised Techniques:

Unsupervised learning algorithms, unlike supervised methods, do not require a separate set of
measured data for each device in order to process them and learn the devices signatures. Instead,
they get trained straight from the aggregate data. This feature of unsupervised learning algorithms
has attracted the interest of researchers, in order to avoid the problem of having to collect in ad-
vance data for the individual appliances.

A recent and very interesting work following an unsupervised learning approach is presented in
[33]. Kim et al used four different Markov models in their technique, which are depicted in Figure
2.5. The FHMM is the initial model, incorporating the states of all the appliances. By the addition
of extra features, FHMM is extended to the CFHMM model. FHSMM is another extension of
FHMM which alters the probability distributions used for the state occupancy durations of the
appliances, in order to make them more accurate. The second and third models are finally merged
into the CFHSMM model.

Kim et al tested their method on fairly low frequency data (a sample per 3 seconds), evaluating
the three models separately. The forth model comes first, with accuracy approximately 75% for
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Figure 2.5: Relationships between the various models used by Kim et al. Source:|[33]

two houses with eight appliances each. The accuracy of the models decrease as the number of
monitored appliances rises. A very important point to notice, though, is that the CFHMM model,
which was extended with extra features, performs almost as well as CFHSMM and it does not
suffer from accuracy decay as much as the FHMM and FHSMM models, when the number of ap-
pliances increases. That finding is an indication of how important is the use of a rich set of features.

The features used by Kim et al are also of great interest. Some of the non-power features used
are: time of the day that an appliance is used, duration of use and, finally, a correlation of usage
between appliances. For example, there is obviously a dependency between the usage of an Xbox
and the TV.

The novel work of Kim et al has its limitations as well. As the number of the appliances in-
creases, the Hidden Markov Models seem to lose in performance rapidly. The maximum number
of devices used in the tests was 10. Another drawback of the technique is that it needs to be given
the numbers of present appliances before the disaggregation. There is no discussion in the paper
on how the algorithm performs if that number changes by the addition of an unknown appliance
(eg. if a new radio is bought and installed in the house). Finally, the developed method only works
for ON/OFF type of appliances and not with appliances that might have more states of operation.

2.2.2.2 Optimization Optimization techniques, like pattern recognition, make use of known
signatures and try to find the optimal combination that produces the aggregate signal. The dif-
ference with pattern recognition is that the latter processes and tries to detect in the aggregate
signal each device individually. Optimization techniques on the other hand try to find the optimal
solution by detecting the occurrences of all the known signatures at the same time.

Hart describes in his work [17] the optimization problem as follows:
n
a(t) = argmin| P(t) — Y ai(t) P,
“ i=1

where P(t) is the total consumption, P; a p-vector of the power that the i — th device consumes
when it is operating, describes the state of the i — th device, a(t) is a vector with all the states of
the 4 devices.
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Solving the optimization problem becomes particularly computational expensive as the number
of appliances increases [16]. Hart suggests it is “computationally intractable”. Approaches that
have been tried in order to reduce the complexity of the problem include genetic algorithms and
integer programming. Moreover, optimization techniques suffer from one more drawback in com-
parison to pattern recognition techniques. The fact that all the devices cannot always be known
complicates the problem further, because the optimization algorithm tries to find the optimal way
to combine all the known signatures to reproduce the aggregate signal [16]. That factor does not
affect pattern matching techniques since they try to detect the known signatures in the composite
load one by one at a time.

M. Baranski and J. Voss in [20] developed an interesting method that uses a genetic algorithm
to combine clusters to create finite state machine models. Some very interesting research was done
n [21] and [22]. The authors combine the use of different algorithms, both optimization (integer
programming, genetic algorithms) and pattern matching (Artificial Neural Networks). A “Com-
mittee Decision Mechanism”, as they name it, processes the output of the previous algorithms and
computes the optimal final output. It achieves that by using either the Most Common Occurrence,
Least Unified Residue or the Maximum-Likelihood Estimator. Their simulation tests show that
their use of CDM increases the accuracy over the accuracy of every individual algorithm by ap-
proximately 10%. The reported overall accuracy is impressive, reaching 90%. However, it seems as
if their overall accuracy metric does not take into account false positives. Another distinctive point
of their work is that they use a very rich pool of features which among others includes harmonics
and transients.

2.2.3 Disaggregation at high sampling rates - Transients, Harmonics, Noise

In some cases, different kind of devices might have identical power consumption when they are on.
That led many researchers to use “microscopic” features, like short transients and harmonics in
order to achieve higher accuracy of disaggregation.

Hart discussed the use of “Transient Signatures” in [17], although they were not used in his
original disaggregation work as they are harder to detect. Transient waveforms differ in shape,
duration and size; hence they can be used as features of a devices signature. Hart identified three
types of transients, two of which are characteristics of motors. The third one is found in several
appliances, varies a lot and is shorter than one or two voltage cycles. In [14] Zeifman and Roth
suggest that a sampling rate of at least 1kHz is required to detect the harmonics and have distinc-
tive transient signatures.

The work in [21, 22], also commented in the previous section, manages to make use of micro-
scopic features, harmonics and transients, using a sampling rate of at least 12kHz. Laughman et al
in [23] use harmonic analysis during transient events, with a sampling frequency of 8kHz. Making
use of Fourier transformation, they compute the “spectral envelops” that summarize the harmonic
contents of the system. The accuracy is not exactly known and in order to perform well it needs
excessive training beforehand. Norford and Leeb in [24] and Chang et al in [26] also made use of
startup transients in a similar technique.

A novel and interesting approach that makes use of high-frequncy data was presented by Patel
et al in [25]. This method monitors the electrical noise generated by the appliances on startup
events and steady state operation due to their electronic components. It required the use of a
custom device that is plugged in a socket, excessive training and sampling frequency of 500kHz.

The above techniques are generally considered accurate and many researchers agree that the use
of microscopic features should complement the techniques of the previous section to improve accu-
racy. As the most commonly used and cheap smart-meters do not have the capability to measure
at that high frequencies, however, it is preferable to avoid the use of these techniques if possible, at
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least until measuring devices sampling at higher frequencies become cheaper and more widely used.
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Figure 2.6: Turn-on real-power transients for three different types of motors. Source:[26]
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Figure 2.7: Frequency spectrum of a particular light switch being toggled (on and off events).
The on and off events are different enough to be distinguished. Source:|[25]
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2.2.4 Issues

Even though research on disaggregation has lasted for over 20 years, still there is no developed
algorithm that has reported high accuracy and could be widely adopted in the domestic sector.
Some techniques were developed and tested for only a few types of appliances, some require special
equipment for sampling at very high frequencies, others have not reported accuracy. In this section
are discussed some of the major issues that hold research back.

Lack of publicly available datasets:

The development of disaggregation techniques is all about processing of data. From determin-
ing the features to be used and training of the algorithm all the way to testing the results against
the ground truth, a rich data is essential. Energy measurements take time to collect and can block
a research if they are unavailable. But this is not the only problem. Typically, the developed
algorithms were tested on the same data that they were trained from; same devices but in different
operation cycle. However, devices of the same type but of different manufacturer might present
different electrical characteristics. So, there is no assurance that the developed algorithms would
be as accurate disaggregating the consumption of other households.

It has been only recently that the first public databases became available, with the first initia-
tive coming from the MIT with the REDD dataset [27]. More datasets became publicly available
afterwards, like the ones in [28, 29, 30]. Still a lot of work can be done towards a dataset complete
enough that can serve as a reference point. It would allow developed algorithms to be tested against
a common target and allow for proper comparison of their efficiency.

Generic Signatures:

From the literature it became obvious that there is no certain set of features that can be used

to disaggregate all the different types of appliances yet. Harts work [17] was a great start, but the
use of power alone to distinguish between appliances has the drawback that it is not possible to
differentiate two different appliances that consume same power levels. Later efforts introduced the
use of several other features. Attempts like those presented in [19, 23, 33, 34, 35] prove how the use
of extra features can improve accuracy of an algorithm. Still, it seems there are not many features
determined that are specific for certain appliances so that they could be used to disaggregate them
with high level of accuracy.
In addition, as mentioned above, since in most research efforts the algorithms were trained and
tested using the same dataset, it could be the case that the algorithm would not perform well dis-
aggregating a new, unknown aggregate signal. This is based on the fact that different models of the
same appliance type may present different electrical behaviour, for instance power consumption or
duration of operation. The design of generic signatures through the correct set of features, which
would be detected independently of testing conditions and appliance model or size, would be a
great step forward.

Standardized performance metrics:

Finally, even though research on disaggregation has been going on for years, there are no estab-
lished performance metrics. That makes it really hard to compare the developed techniques and
distinguish between efficient and not efficient approaches.

Some algorithms are developed targeting certain types of devices and their accuracy is evaluated
on a per device basis. Some others use overall accuracy metrics dependent on the number of device
instances successfully detected, or the percent of the total power consumption that was successfully
disaggregated. However how does one treat false positives in the accuracy evaluation?
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In their very interesting work [22], J. Liang et al have used three different metrics for the
evaluation of accuracy. These metrics are: Detection Accuracy, Disaggregation Accuracy, Overall
Accuracy. This helps evaluate independently the detection module and the disaggregation module
of their technique. However, their overall accuracy metric seems not to take into account false
positives. Also, it is difficult to infer relations between the different metrics. Another example, in
[26] the results from four different case studies are reported with significant differences in accuracy.
However it is not possible to determine if the system is overall efficient.

2.3 Optical Character Recognition

This work has been initially inspired by techniques used in Optical Character Recognition. With-
out getting into too much detail, an idea of the techniques used in OCR might provide an initial
intuition into the approach.

Optical Character Recognition techniques analyse a hand-
written, typewritten or printed character in order to clas-

sify it correctly - to make the computer understand AN AN
which character of the alphabet or number it is. Most / — =z 7“ / —T= )“
modern approaches process the given character and at- A A
tempt to extract several features from it.  Many dif-

ferent techniques are being used, but all of them aim — -
at analysing the shape of the given character.  When / P % e N
a set of features has been extracted, it is compared “f, i % "II I “f,
with a stored database of feature-vectors which represent o [ A o Lo A A
the known characters.  The already known and stored )A 7A
feature-vectors constitute the profiles of the alphabet char-

acters and numbers. If a close match is found be-

tween the features extracted from the given character and Figure 2.8: Example of

one of the profiled ones, the scanned character is classi- parametrization of two characters.
fied. Source: [38]

Several techniques are used in order to extract features

that can effectively characterize a character, frequently used in combination with each other in
order to achieve higher accuracy. In order to define the shape of a given character, some make
use of histograms, analysing the distribution of the points that make up a character from different
projections. Others aim at decomposing the character into smaller parts, for instance lines, edges,
loops, curves and determining their relative position. Such examples are shown in Figure 2.9.
Additional features extracted are the direction and orientation, as well as topological features, such
as start, end and cross points [37].

A ANTIOUE MALL
a/ ANTIQUE MALL

ANTIQUE MALL
ANITIQUE mALL

(a) (b) ()

Figure 2.9: (a) Detection of curves of a character with the Bezier method. Source: [37] (b)
Histogram of different projections of character ’a’. Source: [36] (c¢) A sliding window scans an
image in order to detect the areas that contain a character.

Finally, a technique used especially in Photo OCR which inspired a part of the disaggregation
technique is the ’Sliding Window Technique’. A window scans the image in order to detect parts
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that contain characters (see Figure 2.9c¢). After these parts are detected, the main processing and
classification of the character takes place.

2.4 Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a probability density function which can be interpreted
as being derived by a weighted sum of a finite number of Gaussian density functions. Gaussian
mixtures are capable of representing a large variety of sample distributions by forming smooth
approximations. Apart from the ability to fit arbitrarily shaped distributions, GMMSs are also
frequently used for modelling underlying hidden classes in the data by their different component
density functions [39].

Given M component Gaussian density functions g (), ..., gar(z), with corresponding means and
standard deviations (p1,01), ..., (ar, oar), the density function of the Gaussian Mixture Model is
given by the equation:

M
p(z|X) = Zwig(ﬂ,ui,o’i),
i=1

where ) represents the set of parameters A = w;, u;, 05,4 = 1, ..., M and the components’ weights
w;, ..., wys satisfy the constraint:

The density function of each Gaussian component function is of the form:
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Figure 2.10: Comparison of distribution modelling (a) histogram of samples, (b) modelling the
data with a simple Gaussian function, (c) fitting a Gaussian Mixture Model. Source: [39]
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Given a set of data, in order to form the Gaussian Mixture that best matches the data it is
needed to compute the set of parameters \. The most common algorithm for the solution of that
problem is the Expectation-Maximization algorithm. It is an iterative optimization method that,
beginning with an initial A, it computes for each point in the data the probability of being generated
by each component of the model. The set of parameters A is tweaked in order to maximize the
likelihood of the points. The new A becomes the initial A of the next iteration and this process
continues until convergence is achieved. Estimation-Maximization is a well studied algorithm for
which information can be found from various sources, such as [41], for that reason it will not be
analysed here in further detail.

2.5 Support Vector Machines

The Support-Vector-Machine is a state of the art supervised binary classification technique, being
widely used for its high accuracy, even when dealing with high-dimensional data. SVMs have been
introduced in 1992 in [43]. It is essentially a mathematical algorithm for detecting the optimal
hyperplane that separates data in a multi dimensional feature space.

In order for an SVM to perform classification, it essentially separates the area of the feature space
into two: the area of positive and the area of negative classification. The plane that separates the
two areas is the hyperplane. In a two-dimensional feature space, such separation can be performed
simply by a line. In a three dimensional feature space, a plane is needed for the separation. The
hyperplane is the analogous in a multi-feature space. This hyperplane is also referred to as decision
boundary.

One of the main attributes that makes SVMs so efficient and popular is that fact that it can
separate non-linear separable data using linear methods. The way it is performed is through the
kernel function. The kernel function, by convolution of the dot-product, is able to add dimensions
to the data. It is thus possible to project non linearly separable data to higher dimensional space,
where they are linearly separable. This trick, also known as "the kernel trick’, can be understood by
referring to figure 2.11. Different kernel functions project the data in different multidimensional-
spaces, with the efficiency depending in a smart choice of a kernel function. Further analysis of the
SVMs can be found in [43] and [44], but it is not required from the reader in order to follow the
rest of this work.
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Figure 2.11: An SVM is able to separate non linearly separable data using linear methods,
through the use of the 'kernel trick’. For instance, the data in the left picture cannot be separated
in the two-dimensional feature space linearly (by a single line). With the use of a second degree
kernel function, the data are projected to a four-dimensional space, in which they can now be
linearly separated. If the data are now projected back to the two-dimensional space, the linear
boundary will have the form of a curve.
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3 Exploring the Data

One of the main problems that research attempts on energy disaggregation stumble upon is the
little availability of data. That may result in various inefficiencies, like the design of a technique
which cannot generalize well enough on different models of an appliance, if for example the design
is based only on one model. From this starting point, before an attempt even begins, the trustwor-
thiness of the final result and its evaluation may be lowered if the data are limited and the designed
system is bound to be trained and tested on the same data.

To avoid such complications, the first step in this work was to collect the needed datasets, check
for inefficiencies, consider for what types of appliances the available data are enough and finally
decide what appliances to target.

3.1 Available Datasets

The first step was to get access to any available data. A rich dataset has been collected by co-
supervisor of this project, Jack Kelly, as part of his PhD research. It is also very fortunate that
fairly recently some datasets became publicly available. The ones used in this work are described
in [27, 28, 29, 30] and some of their characteristics are presented in Table 1. These datasets were
the ones found with a sampling rate within or close to the range of interest, 0.1-1 Hz, and were the
ones processed in order to find patterns and features of interest, training of the algorithms and,
finally, evaluation of the results.

Table 1: Available Datasets

Dataset Signals Sampling Period | Apparent Power (S) | Real Power (P)
Jack Kelly‘s Aggregate 1s/6s Y/Y Y/-
Appliances 6s - Y
REDD Aggregate 1s Y -
Appliances 1s Y -
Tracebase Aggregate - - -
Appliances 2s - Y
Smart* Aggregate 1s Y Y
Appliances 15-25s - Y
AMPds Aggregate 1lm Y Y
Appliances 1m Y Y

Sampling frequency

This work aims to utilize data from smart meters sampled within the frequency range of 0.1Hz
to 1Hz. The data from Smart® and AMPd datasets are measured at lower sampling rates, not
allowing the detection of features like spikes or rapid power changes. They are still valuable, how-
ever, for comparing the signatures of different models in order to spot patterns based on states
with longer durations.

Active and apparent power

An important issue is that different types of smart-meters do not all measure the same type of
values. For instance, the REDD database is created by recording apparent power (S). The Trace-
base dataset is of real power (P) measurements. The sensors used by co-supervisor of this project,
Jack Kelly, measure both apparent and real power for the aggregate signal (with different sampling
rates), but for most of the appliances it is real power that is being monitored.
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Figure 3.1: Difference between real power (blue) and apparent power (red) is usually in the range

of 30-100W (a). The greatest difference was observed during the washing machine operation (b).

The magnitude of the rapid changes created by the motor’s operation may have over double the
size when measured in apparent power than in real power.

An inspection of the aggregate signals available for both real and apparent power revealed two
important points. Apparent power is constantly greater than real power by a varying amount. In
most stable states, this amount is between 30-100W (Figure 3.1(a)). If small appliances are to be
detected, this would make a difference. Most of this work however was focused on large appliances
where this change does not complicate much their detection. It does however make a difference
when calculating the overall power consumption of the appliance, with the consumption of appar-
ent power being greater. The greatest difference between real and apparent power was noticed
during the operation of the washing machine’s motor (Figure 3.1(b)). The inductive nature of the
motor makes the magnitude of the rapid changes being much greater in apparent power than in
real power, fact that needs to be taken into account when calculating the total power consumed.
Overall, features like state transitions and spikes seem to be detectable in both cases. Worth noting
is that the top power value reached by a spike transition seems to be quite greater when observed
in apparent power measurements (even greater than 30%). Although this magnitude was not used
throughout this project, it could be a point worth of attention for future work.
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3.2 Appliances of Interest

The next step was to investigate the common domestic appliances, check the availability of data for
each appliance type and form an initial decision on which to target. The most energy consuming
domestic appliances are presented in Figure 3.2. Since the ultimate goal of energy disaggregation
attempts is to classify correctly as large percentage of the total household consumption as possible,
these appliances were the starting point.
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Figure 3.2: Energy use by various appliances. Source: [47]

3.2.1 First Investigation for Features

Most of these appliances operate at fairly similar power levels, as shown in Figure 3.7a. This fact
reveals early on one of the difficulties faced: the different models of an appliance type operate in
power ranges that overlap with models of appliances of another type. A disaggregation technique
that would only use the magnitude of power changes to detect an appliance would be confused
between those appliances with similar power consumption. Other characteristics are needed to be
found in order to detect one accurately, separating it from the rest.

Figure 3.7b shows the durations of appliances’ operations that have been observed in the
datasets available. A comparison of the distribution reveals a first clue: the usual operation of
these appliances can be used to separate between them. For instance, the microwave is usually
for a very short duration, whereas the washing machine usually operates the longest. Further in-
spection revealed more interesting patterns in the operation of some of those appliances. These
patterns for the dishwasher, the washing machine and the dryer can be observed in the figures
3.4, 3.5 and 3.6. The available datasets include a fair amount of different models for these three
appliances (twelve models of dishwashers, eleven of washing machines, seven models of dryers) and
thus they were the ones that were mainly used in the next steps of this work for development and
evaluation.
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Top Loader washing machine

Another type of washing machine than
the one described above was observed in
the REDD and Smart* datasets. The
power signature of this type can be seen
in Figure 3.3 and differs significantly from
the signatures found in the rest of the
data. This is due to the different op-
eration of the top-loader washing machines
used mainly in the USA, which have a
shorter operation cycle and usually function
with water that is heated before the inser-
tion to the washing machine, by an exter-
nal water-heater. This type of washing ma-
chine has not been focused upon during this
work.

3.2.2 First intuition into the approach

Figure 3.3: Signatures of washing machines
found in the REDD dataset.

The initial findings presented above suggest that the signatures of some appliances can be modelled
as ’bags of features’. The detection of enough of those features would indicate the identity of the
appliance, regardless of the model and size (smaller and bigger washing machines all present rapid
power changes for instance). On the other hand, the absence of some of them would indicate that
this is not the correct appliance and thus avoid the false detection.

It is also interesting to notice that these appliances targeted are multi-state appliances. This
type of appliance is hard or impossible to detect with some of the previous attempts reviewed in
the Related Work section, due to the complexity of the signatures. If however these signatures are
broken into smaller parts, features are extracted and the signatures are treated as a set of those, it
is exactly this complexity that enables their detection. This approach is presented further in the

next sections.
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Figure 3.4: Signatures of three different models of dishwashers. During a dishwasher’s operation
the heating element turns on usually twice. The heating element is the one that consumes high
amount of power. The two heating cycles to warm up the water usually have similar durations,
hence the similar widths of the two ’blocks’ in the signatures. During the rest of the cycle other
mechanisms of the dishwasher, like the circulating motor, turn on and off and consume a smaller

amount of power.
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Figure 3.5: Signatures of three different models of washing machines. The washing machine’s
heating element turns on near the beginning of the operation and consumes high amount of
power. In some cases it turns on and off again a few times if the water’s temperature decreases.
After the main wash, rinsing cycles occur, with a final fast spin in the end of the operation. The
washing machine’s motor creates rapid power changes throughout the operation.
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Figure 3.6: Signatures of three different models of dryers. The dryer’s operation is mostly a
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sampling rates close to 1 second.
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Highest power-level observed in signatures of common appliances
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Figure 3.7: Highest power steady state (a) and durations of one operation (b) for common
appliances, as observed in the available datasets. The rows correspond from top to bottom:
washing machine, dishwasher, dryer, microwave, oven.
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4 Implementing the First Tools - First Disaggregation Attempt

Before any further attempt to process the data and the appliance signatures would be possible, it
was necessary to implement the first tools that would detect the steady states, the power changes,
the spikes and the rapid power changes in the data. This step was also necessary in order to get
acquainted with the different datasets and spot early on any inefficiencies of the measured data.

The second part of this section describes the first attempt in disaggregating an appliance, the
fridge. Although the fridge is rather different than the multi-state appliances focused for the rest of
this research, this attempt helped form part of the final technique. For that reason it is presented
here, in order to give the reader a first idea of the disaggregation process.

4.1 First layer feature detectors

Whenever an appliance turns on or off a change can be ob-
served in the measured power signal. For multi-state appliances,
power changes are observed even during an appliance’s opera-
tion whenever one of its mechanical parts changes state, for in-

stance a heating element or a motor. For the time periods that First Layer Feature

an appliance does not change state, the power signal is fairly REIESIOE
steady.
Instant Change
Detection

I
I
[
I
The First Layer Feature Detectors module that has been im- I
plemented consists of the tools that are used in order to de- I
I
I
I
[
I

tect and process these power changes and steady states in the Spike Detection

data.

Steady States
Detection

Rapid Changes

4.1.1 Steady state detection Detection

Even for periods of time that an appliance does not change state,
the power signal is not as stable as one may think. Small changes
in the voltage supply create changes in the power signal. Small
changes in the state of the electronic parts of an appliance may
also create small changes in the power signal. In order to detect
the main steady states during an appliance’s operation, a threshold
proportional to the average power of the state has been used. Any change smaller than that
threshold does not ’break’ a steady state (Figure 4.2).

feature detectors module.

4.1.2 Normal and Spike power changes detection

A transition between two operational states of an appliance creates a power change, for instance
when an appliance that consumes 1000W turns on a positive power change of 1000W is observed. A
negative power change of -1000W is observed when the appliance turns off. In the case of multi-state
machines, these kind of changes are observed during its operation whenever one of their individual
mechanical or electronic parts change state. Some of those changes are instant whereas some have
the form of a spike. Spikes are created mostly by resistive elements (eg heating elements) when they
turn on, caused by the fact that when the element is initially cold, its electrical resistance is lower
and so it draws greater amount of power. As its temperature increases a few seconds afterwards,
the electrical resistance of the element increases, its power consumption decreases and reaches a
level where it then remains stable.

The detection of normal power changes is achieved by detecting continuous increase (positive
changes) or decrease (negative change) in the signal. Although by naked eye it does seem like
those changes are defined by just two points, it is not always the case. Depending on the sampling
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Figure 4.2: Top: Signature of a dishwasher , Bottom Left: ascending and descending phases of
spikes, Bottom Right: detected steady state (red) and the threshold of power change (green).

frequency, they might last for more than 1 sampling period. Detecting the spikes was accomplished
in a similar fashion, with the detection of continuous increase in the power (ascending phase),
followed by a decrease (descending phase). See Figure 4.2.

4.1.3 Rapid changes detection

The operation of some appliances creates rapid power changes in the electricity signal. For instance
in the case of a washing machine, such changes are caused by the operation of its rotating motor.
Periods of time that such changes occur can be a distinctive characteristic of these appliances’
operation. Their detection is also of importance because these rapid changes add ’noise’ in the
detection of other features. If for instance these changes have a magnitude of 100W, they could be
mistakenly detected as the power change created by a fridge that turns on.

The detection and elimination of these changes was based on their fairly high frequency. The
detector goes through the data and looks for periods where oscillations occur with a short enough
cycle (as if looking for a high frequency sinusoidal signal). After the detection of such periods, the
changes are removed from the data, smoothing it for further processing (Figure 4.3).

37



Inferring Appliance-by-Appliance Energy Consumption 6'" September, 2013

3000

2500

= N
wu o
=} S
5} S}

Power (W)

1000

500

10:23:00 10:28:00 10:33:00 10:38:00  10:43:00 10:48:00 10:53:00 10:58:00

Time

3000 |

2500

= N
wu o
=} =]
S} o

Power (W)

10001

500

\v—\

10:23:00 10:28:00 10:33:00 10:38:00 10:43:00 10:48:00 10:53:00
Time

10:58:00

Figure 4.3: Period of rapid power changes occur during the operation of a washing machine.
After their detection the 'noise’ is removed.
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4.2 First disaggregation attempt

In order to get acquainted with the aggregate signal and identify early the implications of the
disaggregation process, it was decided to gain some initial hands-on experience by attempting to
detect the operation of a fairly simple appliance in the aggregate. The design of the prototype
as well as the the problems encountered during its implementation helped form the final system
and spot inefficiencies of the approach that should be avoided in the next stages, where multi-state
appliances are focused.

Aggregate Signal and the Measured Signatures of the Fridge.

400 — Aggregate
—— Fridge's Measured Signatures

300

Power (W)

!

[

1 1 T

22:04:00 22:34:00 23:04:00 23:34:00 00:04:00
Time

Figure 4.4: Aggregate signal (green) and four signatures of the fridge (red).

4.2.1 The Fridge

Although the refrigerator has been the target of various previous and rather successful attempts,
for instance the work in [19], it has a characteristic that made it an interesting choice for this
experimental prototype.

The fridge is a one-state appliance, turning ON and OFF in regular intervals throughout the
day in order to keep its compartments in the desired temperature (Figure 4.4). As shown in Figure
4.9¢, the power consumed during its operation is fairly low, between 80W and 200W. Power changes
of such magnitude can be caused by various other appliances, making its detection problematic if
based only on that feature. The additional characteristic of frequent operations however (see Figure
4.9b) makes it an exceptional choice for the first experimental design of a technique that detects
appliances as a ’bag of features’.

4.2.2 Design and Implementation

The prototype system designed, presented in Figure 4.5, consists of two main modules. The Pro-
filer module takes as input the measured data with the signatures of the various models of fridges.
It processes all the signatures and gets "trained’ on the power that the various fridges consume and
the duration of their operation. This process is done only once. The output is the 'profile’ of the
fridge appliance, which is provided to the Disaggregation module in order for it to find relevant
power changes in the aggregate signal.
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Figure 4.5: Design of the prototype system.

The Disaggregation module finds pairs of positive and negative changes in the aggregate with
magnitude and time distance within the limits provided by the input (the profile). These pairs are
potential candidates for being the turn ON and OFF events of a fridge’s operation.

Afterwards, it is attempted to infer the characteristics of the particular model of fridge, the one
present in the aggregate signal. This is achieved by comparing the various candidates and finding
the most common magnitude of positive and negative power changes, the most common duration
of operation, as well as the most common time interval between two consecutive operations. As
it is explained further below, this step is based on the fact that the fridge operates several times
throughout a day and these characteristics are fairly stable for several operation cycles (See figure
4.9 at the end of this section.). Finally, the candidates with characteristics closest to the ones found
are disaggregated as being the true fridge operation cycles. This process is further explained below.

4.2.2.1 Forming the Appliance’s Profile

Ultimate goal of any disaggregation system is to be able to identify any model of an appliance,
although the different models might present fairly different characteristics, such as the power level
during their operation. In an attempt to create a generic profile of the fridge appliance, the Profiler
module finds the range of values that the power consumed by the various fridge models fall in. The
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second characteristic of the profile is the duration that a single operational cycle of a fridge lasts,
for which another range of values is formed. In order for this to be achieved, the Profiler processes
the various signatures using the power changes detectors and the steady states detectors. The
minimum and maximum values observed in the signatures form the fridge’s profile. The output of
the Profiler looks like the following table:

Table 2: Example of Profiler’s Output

Minimum Value | Maximum Value
Power Level 82 W 511 W
Duration of Operation 280 sec 4258 sec

4.2.2.2 Finding Relevant Power Changes, Forming the Candidates

After the profile of the appliance has been formed it is given as input to the Disaggregation
module, which is then able to process an aggregate signal. The first step is the detection of power
changes in the aggregate with a magnitude that falls in the range provided by the appliance’s pro-
file. Positive changes with such magnitude are possible turn ON events of a fridge, negative changes
with such magnitude are the possible turn OFF events of a fridge. By detecting the whole range
of magnitudes any model of fridge can be detected, smaller or bigger, as long as its consumption
falls within the range of the previously profiled models. This step is presented in Figure 4.6a.

The process continues by combining the found positive changes with the negative changes in
what may be a pair of turn ON and OFF events of a fridge cycle. A candidate is created out of
each combination of a positive change with every negative change in its proximity. Since the com-
bination of the two changes will form a candidate fridge cycle, the distance of the two changes must
be within the limits given by the appliance’s profile for the duration of a fridge’s cycle. Various
candidates created during this step can be seen in Figure 4.6b.

4.2.2.3 Finding the particular model’s characteristics

A fridge turns ON and OFF in regular intervals, even throughout the night. In addition, by com-
paring several signatures of the same model it has been observed that the power consumed (and
respectively the magnitude of the power changes at the turn ON and OFF events), the duration of
each operation, as well as the interval between two consecutive operations are fairly stable for most
of the models (see Figure 4.9). Based on these observations, the Disaggregation module tries to
infer the characteristics of the particular fridge of the house by extracting the most common value
for these features met in the various candidates. If this process is done over a long enough period
of time, for instance aggregate data from a whole day, it can be inferred with confidence that most
of the candidates are the true fridge operations, thus the values extracted are accurate. This can
be further supported by the fact that the fridge also operates during the night, when not many
other appliances operate. Thus many of the candidates are the true operations of the fridge during
the night, increasing the accuracy of the extracted values.

4.2.2.4 Assigning Scores

In order to evaluate the confidence of a candidate being a true instance of a fridge operation, the
candidates are assigned scores. Four scores are assigned to each candidate with a value from zero
to one:

e Magnitude of its positive change in relation to the most common value found among the
candidates.
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Figure 4.6: (a) Aggregate signal and the detected relevant power changes. Both instant positive
changes (blue) and spike changes (red) are detected. (b) Four candidates created by combinations
of the positive and negative detected changes.

e Magnitude of its negative change in relation to the most common value found among the
candidates.

e [ts duration in relation to the most common value found among the candidates.

e [ts distance from its three previous and three next candidates, in relation to the most common
value found for the distance between consecutive candidates.
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4.2.2.5 Disaggregation

The last step, the actual disaggregation is achieved with a technique inspired by the ’Sliding
Window’ technique used in Photo Optical Character Recognition. A window of width 150% of the
found most-common-candidate-duration swipes the data and stops at the first candidate with an
overall score over 50%. In this section of the data it chooses and finally disaggregates the candidate
with the highest confidence. This last step is required since more than one candidates may be
formed by the same positive change combined with different nearby negative changes, with more
than one of them having a fairly high score. After the top candidate has been selected, the window
continues swiping the rest of the data.

4.3 Evaluation

The above technique has been tested on the data from house-1 and house-6 of the REDD dataset.
For both cases, the test covered aggregate data for approximately 2.3 days period (200k seconds).
The results are presented in Table 3.

Table 3: Evaluation of Fridge disaggregation

REDD: House-1 | REDD: House-6
Actual Number of Signatures 49 45
Actual Power Consumption 2.78 kWh 4.54 kWh
(excl. standby power)
Number of Signatures Disag- 41 37
gregated
Number of True Positives 41 34
Number of False Positives 0 3
Power Consumption Cor- 1.92 kWh 2.99 kWh
rectly Disaggregated

In the case of house-1, the technique disaggregated accurately 83% of the signatures, with 69%
accurately disaggregated energy consumption. In this particular house, however, the main that the
fridge is connected to is a fairly tranquil one. In order to get an overall better idea of the accuracy,
the technique was also tested on data from house-6 of the same dataset. In the case of house-6 the
percentage of accurate signature disaggregation was 75% with consumption disaggregated equal
to 66% of the actual value. In this second case, false positives were also detected, reducing the
detection accuracy to 91.9% (Number of True Positives / Number of Disaggregated Events, as
defined in [22]). The disaggregation of the refrigerator has been attempted in previous work with
rather successful results (for instance [22] and [19]). As it was not the main aim of this research,
no further attempts were made to increase the accuracy of the technique.

4.4 Conclusions

The disaggregation of the fridge was mostly based on its frequent operation throughout the day, in
fairly stable time intervals. Other appliances do not present this characteristic. However during the
development of this prototype certain parts of the design were found promising and were adopted
in the design of the final system.

The Profiler module designed and implemented in this version was found to be an interesting
step towards creating a generalized signature of an appliance. If designed and extended in an
appropriate manner it could provide a profile able to characterize the various models of a certain
appliance type. It can also be, however, one of the main reason of disaggregation failure if a new
model differs significantly from the ones processed during the profiling phase.
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The method of forming the various candidates in the aggregate out of combinations of the rel-
evant power changes was also fairly successful. It was observed, however, that during periods that
an appliance creates many power changes in the aggregate, a big number of candidates is created.

A method to limit the number of candidates being evaluated should be found, in order to avoid
computational inefficiency.

Using scores in order to evaluate the confidence of a candidate presented fairly positive results.
The soft-limit of 50% confidence used in this design however would not suffice for more complicated
appliances. In order to avoid the detection of false positives the use of a classifier should be adopted.
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Figure 4.8: Example of false disaggregation during development of the system. The blue arrows
point out the power changes in the aggregate signal created by the fridge. A wrong candidate is
disaggregated, created by the power changes indicated by the red arrows.
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Figure 4.9: Different models of fridges and the power (a), duration of an operation (b) and time
interval between two consecutive operations (c), as observed in their signatures in the available
datasets. Dark colours indicate frequent occurrences of these values.
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5 Forming a Generic Profile of a Multi-State Appliance

The initial inspiration towards a methodology for forming a profile of an appliance was given by
methods used in Optical Character Recognition (see section 2.3). In order to recognize a character,
various feature-extraction algorithms were developped in order to evaluate its shape. For instance,
it may be broken down into lines, curves and loops. Capital A’ for instance consists of three lines,
whereas 'D’ can be broken down in a vertical line and a curve. The relative positions of these parts
are also extracted. The result of this process, a 'map’ of the character which is invariant of the size
or font, is compared with a known dataset with profiles of all the known characters of the alphabet.
If a close match is found, the character is classified.

Multi-state appliances like the dishwasher, the washing machine or the dryer have a rather
complicated operation cycle. Methodologies that are successful for ON/OFF appliances, based
for instance on detecting and clustering positive and negative changes of similar magnitude fail
in accuracy when tried upon multi-state appliances. Moreover, the appliances stated above usu-
ally operate at fairly similar power levels (see Figure 3.7), making it hard to determine by which
appliance a power change was created when processing magnitudes alone. The first observations
presented in section 3.2.1 (also see figures 3.4, 3.5 and 3.6) suggested that an approach based on
a larger number of features could be more successful.
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Figure 5.1: The main parts that consist the signatures of the appliances can be extracted and
mapped, in order to determine the rough shape of the appliance’s signature. Complemented with
additional features observed in the signatures of the appliance, a generic profile of the appliance
can be formed.

The methodology developed initially aims at identifying the main parts that consist the signa-
tures of an appliance. By extracting the parts that are consistently observed within the signatures
of the different models of an appliance, it is possible to create a parameterized 'map’ of the ap-
pliance’s signature, which roughly describes the shape of the signatures. Complemented with
additional features extracted from the signatures, the generic profile of an appliance is formed.
This profile essentially describes an appliance as a ’set of features’, the combination of which may
allow a distinction of the appliance within the aggregate signal.
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5.1 Design of the System

In this section is presented an overview of the system designed in order to enable the processing
of the signatures and the extraction and analysis of features. From these features a generic profile
of an appliance is formed and the methodology is tested by attempting the actual detection and
disaggregation in the aggregate signal. A flowchart of the whole system is presented in figure 5.2.
The various components of the system are described in more detail in the corresponding sections
of the report. The design of this system was also influenced by the Prototype system described in
the previous section, a reading of which could provide a better intuition to the reader.

5.2 The Profiler

Aiming towards the main objective of forming a generic profile of an appliance, the Profiler mod-
ule was designed. Inspired by feature extraction used in OCR, it processes the signatures of the
various models and through certain steps tries to determine the rough shape of the signatures by
identifying and 'mapping’ parts of the signature that are consistently observed in the signatures of
the various models. After the main parts are identified, the mapping is achieved by evaluating the
magnitudes of the main power changes in the signature and their relative positions. The Profiler
afterwards evaluates the existence of features in the signatures, like the existence of spikes, rapid
changes and parts of the signatures that are repeated during an operation of the appliance. The
output is the profile of the appliance, a collection of features that describe the generic shape of the
appliance’s signatures.

The above process is preceded by extracting from each individual signature the main steady
states and the power changes that lead from one main steady state to the other, process done by
the secondary module Signature Mapper.

5.3 The Pattern Recognition Module

In order to test the efficiency of the approach it was needed to develop a module that would de-
tect possible operation cycles of the appliance in the aggregate signal and compare them with the
generated profile. The Pattern Recognition module receives as input the profile of an appliance, as
formed by the Profiler, as well as the data to be scanned. Making use of the profile’s parameters, it
detects in the aggregate signal patterns that are possible operations of the appliance (candidates).
It then proceeds to compare them with the profile and evaluate them, assigning scores in different
areas. This results in a list of scores for each candidate, which is provided to the classifier for the
final step, the classification.

The Pattern Recognition module also plays a part in the training phase of the classifier. For the
training phase, the module receives as input a set of appliance signatures, labelled as positives or
negatives depending on whether they belong to the actual appliance or another type. In a similar
fashion as described above, it detects the candidates in the signatures and evaluates them. The
high scored candidates from the positive signatures and the low scored candidates from the negative
signatures are passed to the classifier for training.

5.4 The Classifier

The final part of the system is a One-vs-All Classifier which is called to make the final decision on
whether a candidate is a true operation of the appliance or not. As input, the Classifier receives
scores provided by the Pattern Recognition module, after evaluation of the candidates. These var-
ious scores are actually the features for the classifier. Initially the classifier needs to get trained
on the labelled as positive or negative scores. The training needs to be done once. After that, the
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Figure 5.2: Flowchart of the system’s design.
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classifier ’knows’ what scores correspond to the true appliance and is ready for the disaggregation
phase. During the disaggregation the classifier receives a list of scores for each candidate found in
the aggregate data by the Pattern Recognition module. It then proceeds to compare them with
the trained scores and classifies a candidate as a true operation of the appliance if the scores of the
candidate are close enough.

5.5 Why not a Sample-by-Sample Pattern Matching Approach?

Certain techniques in character recognition and other areas of computer vision follow a pattern
matching approach. The to-be identified image is compared to a collection of stored images on a
pixel-by-pixel basis. Alternatively but in a similar fashion, a classifier is trained on a collection
of images, where each pixel represents a feature for the classifier. The classifier then processes
pixel-by-pixel the new image and classifies it positively or negatively depending on how close its
pixels are to the trained set.
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Figure 5.3: A dishwasher and a washing machine operating at the same time. A pattern matching
technique would fail recognizing their 'skewed image’ in the aggregate signal, generated due to the
additive nature of power consumption.

In the case of energy disaggregation, an appliance’s signature could be considered as a ’one
dimensional image’ with its timestamp representing a pixel and the corresponding power value
representing the color of the pixel. This way, it could be treated with a similar technique with the
ones described above? Unfortunately the problem is more complicated and such an approach is
likely to fail.

In order to detect a character or another object in an image (for instance a face), the computer
vision techniques mentioned above process images where the object is clearly visible. In the case
of energy disaggregation however, the aggregate signal is produced by the sum of the power con-
sumption signals of all the appliances. If two appliances operate at the same time, their signals
are mixed, thus their 'image’ in the aggregate signal is skewed (see Figure 5.3). An analogy with
character recognition would be two characters written on top of each other. A pattern recognition
system, like the suggested one, may manage to extract enough features in the 'image’ that indicate
the operation of a certain device.
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6 Profiling an Appliance

The various models of an appliance present several differences in their operation. For instance a
large model of a dishwasher consumes higher amount of power than smaller models. Differences can
be observed even between two operations of the same model when a different program is selected.
As an example, many models of washing machines allow the user to choose the number of rinsing
cycles. This complexity makes it difficult for a disaggregation system to detect accurately different
models than the ones trained upon, when based only on a few features such as power consumed
and duration of use.

Despite this complexity, the initial investigation of the appliances’ signatures, which was pre-
sented in section 3.2.1, revealed that some patterns can be consistently observed in the signatures
of an appliance. For instance the dishwasher’s heating element usually turns up twice during its
operation. Other elements of the dishwasher consume a smaller amount of power throughout the
operation. The washing machine’s heating element is preceded by the motor, which rotates for
almost the whole duration of the program. At least a rinsing cycle is observed near the end of the
wash in any program. Finally, the dryer’s heating element usually turns on and off several times,
staying on for similar amounts of time in order to keep the temperature at steady high levels. These
observations have been presented in 3.4, 3.5 and 3.6).

In this section are presented the steps followed in order to form a profile of an appliance. The
creation of the profile is based on detecting certain parts of the signatures that are consistently
present in the signatures of the various models. It can be perceived as an attempt to describe the
approximate shape of the signatures with the main ’blocks’ observed in their shape. The profile
describes the values that the various characteristics of the signatures take for the different models,
for instance the magnitudes of the main power changes and the distances between them. It also
describes the existence in the signatures of features such as spikes, rapid changes and repeating parts
of the signatures, as well as how often these features are observed. By including this information,
the profile fits in a generic way all the different models of the appliance type processed during the
forming of the profile. Thus it can be used by a pattern recognition system in order to detect in the
aggregate patterns that are close to what the profile describes. By incorporating various features
it allows for detection of the targeted appliance even if some of them are not detectable in the
aggregate signal, for instance by the operation of another appliance. The various steps followed to
form this generic profile are presented in the rest of this section.

6.1 Mapping each Individual Signature

When an appliance operates in a steady state, its power consumption remains at a fairly steady
level. When a transition between states occurs, a power change is observed in the signature. The
first step is to process each signature individually and extract the steady states and power changes
that determine the main shape of the signature. This is accomplished by the secondary module
Signature Mapper, which processes each signature individually and extracts the main steady states
observed. Since the goal is to extract the rough shape of the signatures, neighbouring steady
states of same power level are grouped together, discarding any short breaks in between (see figure
6.2). After the main steady states of each signature have been determined, the power changes
that lead from one main state to the other are detected. The Mapper also detects the type of a
power change, whether it is an instant change or a spike. This process is done for every signature
provided in the data and the extracted steady states and power changes are provided to the Profiler.

6.2 Choosing the Main Blocks of the Signatures

After the profiler receives the extracted steady states and power changes of each signature from
the Mapper, it processes them all together in order to extract the parts of the signatures that are
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Figure 6.1: The steps towards forming the generic profile of an appliance. The Mapper processes
initially each signature individually, extracting their main steady states and power changes. Then
the profile is created in certain steps, by determining the consistent parts of the signatures and
evaluating the existence of various features.

consistently observed in the majority of them. The area below a main steady state in a signature
can be described as a "block’; because of its shape, with height equal to the steady state’s power level
and width equal to the steady state’s duration. A block consistently observed in the signatures can
be interpreted as a part of the operation that a certain element of the appliance has turned on and
operates, for instance the heating element in the beginning of the washing machine’s operation.
The main steady states detected in the various signatures are processed in order to choose the
‘main blocks’ that will roughly describe the generic shape of the signatures. This process is done
according to the following algorithm:

e The main steady states observed in each appliance are separated in three groups. The highest-
power group with power-level between 100%-70% of the maximum power level in the signa-
ture, the medium-power group with 70%-35% of the maximum power level and, finally, the
low-power group with the steady states consuming power between 35%-0% of the maximum
power level. This separation can be seen in figure B.1.

e Choice of first main-block: Choose the first (leftmost) block of the highest power group, as
long as one exists in the majority of the signatures. Else, choose one from the next power

group.

e Choice of second main-block: Choose a block from the next power group, before or after the
first chosen block, depending on where a block is found more consistently in the signatures
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Figure 6.2: The Signature Mapper module processes each signature individually and detects the
main steady states and the power changes that lead from one state to the other. Small transitions
or short breaks are of little interest and are discarded, as the goal is to extract the rough shape of
the signature. The type of the changes is also detected; whether they are instant changes or have

the form of a spike.

and as long as one is found in the majority. If before, choose the leftmost block. If after,
choose the rightmost block. If no case is consistent, try choosing from next power group.

e Choice of third main-block: Choose a block from the next power group, before, between or
after the two previously chosen blocks, as long as one exists in the area for at least 50% of the
signatures. If no case is consistent, check if choosing the second main-block from this group
and the third main-block from the previous power group leads to consistency. If not, do not
choose third block.

e In the case that a power group is empty (no steady states belong to it for most signatures),
the next block can be chosen again from the highest power state.

This algorithm might seem quite unintuitive. The result however is simply the choice of up to
three blocks from the different power-groups, in certain relative positioning, consistently observed
in the majority of the signatures. Having determined these consistent blocks allows the ‘'mapping’
of the signatures’ shape in relation to them, as presented in the next steps. Examples of the chosen
blocks resulting by the algorithm in the case of the dishwasher, the washing machine and the dryer
are visualized in figures 6.10a, 6.10b and 6.10c.

Positioning of the chosen blocks and the steady states they correspond to

The main blocks represent the main parts of the appliance’s signatures, or at least up to three
of them. Depending on the area of the signature that the blocks were chosen from, they refer
to certain steady states in the signatures. The steady states that the chosen blocks refer to for
the different cases of the algorithm are presented in figure 6.3. For instance the first and second
block for the dishwasher (see Figure 6.10a) have been chosen from the same power-group of steady
states. However the first block corresponds to the first steady state of the group, whereas the
second block corresponds to the last one of the group. These certain steady states, their durations,
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Figure 6.3: The chosen blocks from the algorithm described in subsection 6.2 refer to certain
steady states in the signatures. The steady states they refer to depend on the power-group they
were chosen from and the position that the block was chosen, in relation to the other blocks.
These steady states are the ones that the appliance’s profile is built around.

the magnitudes of the positive and negative corresponding power changes and the distances from
each other are the characteristics that will help form the 'map’ of the signature in the next steps.

Design of the algorithm

The ’blocks’ chosen in this subsection are the basic patterns around which the profile of an
appliance is created in the next steps. They are also the patterns that are going to be looked for
in the aggregate during the pattern recognition stage. The aim of the above algorithm is to choose
at least one block from every power-group of the steady states, in order to represent them in the
generic profile of the signature generated afterwards. This design does not immediately limit the
capabilities of the technique, although initially it seems to leave out big part of the signature. Since
a block is chosen from every power-group, it is possible to add to the model other parts of the sig-
nature with similar power-level as 'repeated parts’ of the signature, as long as they are consistently
observed in the signatures. This process will be further explained in the corresponding section.

Since the aim is, in a sense, to find all the consistent parts in the signatures and roughly de-
scribe its shape, one may ask why to choose only three blocks. The answer is that these chosen
blocks represent the basic pattern that the Pattern Recognition module will try to detect in the
aggregate signal. To be more precise, what is being detected during the pattern recognition phase
are the power changes in the aggregate signal with magnitudes similar to the power changes that
make up the edges of the main blocks. By any combination of such power changes detected, a
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candidate (possible operation of the appliance) will be formed and evaluated. The use of a forth
block increases exponentially the number of combinations, making the disaggregation particularly
inefficient in some cases that many such power changes occur. This will be further understood after
the analysis of the Pattern Recognition module.

6.3 Main-Changes of the Profile

As explained above, the profile should describe the generic shape of the appliance’s signature, in
order for a pattern recognition system to ’know’ what kind of patterns to look for in the aggregate.
At this point it is important to note that in the aggregate signal the steady states in power are of
little use because of the additive nature of the power signal. For example the steady state of the
heating element of the dishwasher might not be visible because of an other appliance turning on
during its duration. What is actually observable are the power changes created when an appliance
changes state.

For that reason, the profile of an appliance is formed around the main power changes. Main
power changes of an appliance are the positive and negative changes that make up the edges of
the chosen main blocks of the profile. The main changes of the profile of the dishwasher, the
washing machine and the dryer can be seen in figures 6.10. The profile of the appliance is formed
around them in the sense that it incorporates characteristics such as the magnitudes that these
main changes take in the signatures of the various models. They are also used as the reference for
‘mapping’ the signature of the appliance, for instance for defining the area that the rapid power
changes begin when a washing machine turns on.

6.4 Magnitudes of Main Power Changes

After the main blocks of the generic profile have been chosen, it is possible to start forming the
profile of the appliance in more detail. The next step towards this goal is to find the power that
the several models of the appliance consume in the corresponding steady states, as well as the
magnitudes of the relevant power changes. This way the profile is capable of describing the power
changes generated during the appliance’s operation, which should be looked for in the aggregate
signal for disaggregation.

The power consumption during the various steady states and subsequently the magnitude of
the corresponding power changes varies from model to model. Histograms depicting the values ex-
tracted for the first heating cycle of the dishwasher from various signatures available in the datasets
are presented in figure 6.4. For the rest of the appliances the results can be found in the relevant
section of the Appendix. To incorporate this information about the power consumption of the
various models into the profile of the appliance, a density function is fit to the extracted values.

Initially, a Gaussian function has been used for such purpose. In some cases the values seemed
to present a Normal distribution. In other cases the distribution differed significantly however. The
use of the Gaussian function was attempted based on the belief that the datasets are not particu-
larly complete, so a Gaussian could generalize over values that were missing. In later steps of the
project, this choice was abandoned. Gaussian mixtures were adopted instead, which are capable of
fitting such distributions with fairly abstract shapes much more accurately.

A Gaussian Mixture Model fits a density function to the samples. The Gaussian mixture is
composed by a number of components, each component is itself a Gaussian function (see section 2.4
for more information on Gaussian Mixture Models). The components of the GMM are automati-
cally determined, up to a number of three components, depending on which number better fits the
distribution. The upper bound of three components was used in order to avoid overfitting the data.
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Figure 6.4: (a) Power consumption during the heating cycle of the various dishwasher models in

the available datasets. Up to ten signatures were processed from each model, with some models

having less signatures available in the data. (b) Histogram of the magnitudes of the positive and
negative power changes of the first heating cycle observed for the various dishwashers. Gaussian
Mixture Models have been used in order to determine the density function that best fits the data.

This choice also agrees with the fact that there can be three sizes of appliances, small, medium and
large models. Such density functions generated for the dishwasher can be seen in figure 6.4.

In figure 6.4, it is important to notice the difference between the values observed for the mag-
nitudes of the positive and negative power changes associated with the first block of the appliance,
the first heating cycle. The magnitudes found for the positive changes that lead to the steady state
of the first heating cycle and the negative changes at the end of it are different than the power
level of the state, and slightly different from each other. The reason is that in some signatures
another steady state precedes the first heating cycle, or another one follows it. Thus, the power
changes have magnitudes that correspond to the difference of the power levels of these steady states.

The density functions presented above are one of the main parameters of the profile describing

the appliance. They are one of the factors that allow the pattern recognition module to estimate
the probability that a power change observed in the aggregate data during the disaggregation is
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a power change created by a change of state of the profiled appliance. If changes of similar mag-
nitudes have been observed frequently in the signatures of the models during the creation of the
profile, the power change in the aggregate has a high probability. In a similar way, density functions
will be used to describe more aspects of the profile in the next steps.

6.4.1 Inconsistent States and Power Changes

When choosing the main-blocks of an appliance’s profile, it is a requirement that the corresponding
states appear in the majority of the signatures. It does not mean however that they do appear in
every single signature. In the case that a certain state does not appear, neither do the corresponding
main changes. It could also be the case that a certain block appears in a signature, but one of the
corresponding main changes does not. This case can be easily understood by observing a signature
of a dryer and the blocks chosen for the profile of the dryers in figures 6.9 and 6.10c. In order to
take this into account, the profile is complemented by a percentage describing the consistency of
each main power change of the profile, the percentage of models’ signatures that the main change
actually appears.

6.5 Correlation between Magnitudes of Power Changes

The main blocks chosen to form the generic profile of an appliance correspond to states that are
consistently found in the signatures of the different models. However, different models may present
different intermediate states. A certain model may go from main state A to the zero power state
for a while, and then to main state B. Another model may have another intermediate state between
the two main states. To model such behaviour the profiler is complemented with entries describing
a correlation of the magnitudes of the main power changes involved. This can be better understood
by referring to Figure 6.5.

Appliance Model A Appliance Model B
Main 4 (™ Main Q, 4 (P Main
Change Change Change Change
#0 #1 #0 #1
Main Block Main Block
A Mai A
Main Ch;r:ge Main Main
Change #3 Change Change
#2 #2 #3
Main Block Main Block
B B

2 \

Figure 6.5: Different models may present different sequences of states. For instance a model may
move from the first main state (corresponding to main-block A) to the zero power state, then
move to the second main state (corresponding to main-block B). Another model may move to an
intermediate state. In order to model such behaviour an entry is added to the profile, describing a
correlation between the magnitudes of the main changes such as:

Magn(Main Change#0) = Magn(Main Change#1)

OR Magn(Main Change#0) = Magn(Main Change#1)+Magn(Main Change#2).
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6.6 Distances between the Main Power Changes

The next important parameter of the profile is the time distance between each main power change.
It allows the profile to describe the duration of the main states of an appliance, for example for
how long the heating element stays on. It also allows describing the time between two different
parts of the appliance’s operation, such as the time from the beginning of the heating cycle to the
beginning of the rinsing cycle of the washing machine. The Profiler evaluates the distances between
each main-change. For each pair of main changes, the distances observed in the various signatures
are extracted and a Gaussian Mixture Model is used to fit a density function to the values, in a
similar fashion as described above for the magnitudes of the power changes.
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Figure 6.6: (a) Histograms and density functions of (a) the duration of the first heating cycle, (b)
the time interval between the beginning of the two heating cycles of a dishwashers, as extracted
from the various signatures in the available datasets.

6.7 Repeated Parts of the Signature

While investigating the data, it was noticed that during the operation of some appliances, some
parts of the operation are repeated. The more distinctive such behaviour has been observed for the
dryer, easily noticed in dryers’ signatures. The heating element of the dryer turns on and off several
times throughout its operation for most of the available models, in order to keep the temperature
high and stable (see Figure B.9). It was also noticed that the duration of most of the cycles,
as well as the time interval between them is fairly stable. A similar behaviour was observed for
the heating element and the rinsing cycle of the washing machine, although this behaviour is less
consistent between the various models than the case of the dryer (see Figure B.10).
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These repeating cycles are detected by the Profiler as repeats of the main-block with similar
power consumption. The signature duration is divided into areas before,between and after the
main blocks, allowing the Profiler to detect the area that the repeats occur. If such repeated cycles
occur consistently in an area for the majority of the signatures, the feature is added to the generic
profile. The information added to the profile describes the main block that the repeating parts
have similar power levels with and the area that they occur. Finally, an entry describes the number
of the repeated cycles and whether they have been observed to have similar durations and steady
time intervals between them.

=== First main block
Repeated parts
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Power (W)
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Figure 6.7: During the operation of various models of washing machines the heating element
turns on more than once. The Profiler detects the subsequent heating cycles as repeats of the first
chosen block, the first heating cycle.

6.8 Other features
6.8.1 Type of Power Changes - Spikes

A fairly distinctive characteristic of some appliances is the existence of positive power changes that
present an initial overshoot, referred to as ’spikes’ because of their shape. These spikes are mostly
observed when a heating element turns on, as explained in section 4.1.2. When the power changes
are detected in the signatures by the Mapper their type is also extracted, whether it is a regular
change or a spike. Each main change is associated with an entry in the profile, expressing in what
percent of the signatures processed the change was found to be a spike.

6.8.2 Rapid power changes

A very distinguishable features for certain appliances is the existence of rapid power changes at
certain parts or throughout their operation. This feature can be easily observed in the signatures
of the washing machine, created by the motor of the appliance. If such rapid changes are detected
in the majority of an appliance’s signatures, the Profiler detects the periods where they usually
begin and end. These periods are mapped with relative distances from the main changes and the
profile of the appliance is updated with an entry for this feature.
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6.8.3 Ratios Between Durations of States

While investigating the appliances’ signatures, it has been observed that in some cases certain parts
of their operation tend to have similar durations. This can be fairly easily noticed in the signatures
of the dishwashers (see 6.9a), where two cycles of the heating element tend to last for similar
amounts of time. After this observation, the data were further processed in an attempt to discern
more such relations. A relevant finding was extracted from the data for the dryer. In this case it
was found that the subsequent heating cycles last significantly shorter than the first heating cycle
of the operation. These findings are presented in figures 6.8.

In an attempt to incorporate such features into the generated profile of an appliance, the Profiler
module iterates through the appliances’ signatures and checks the ratio between the durations of
the states that correspond to the chosen main-blocks of the profile. A Gaussian Mixture Model
is used to fit a density function to the extracted ratios. Since such meaningful findings were only
noticed for states of the same power level, the current version of the Profiler evaluates only these
cases.
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Figure 6.8: (a) Histogram of the ratios of the second heating cycle’s duration to the first heating
cycle’s duration, for the various dishwasher models. (b) Ratios of the duration of a following
heating cycle to the duration of the first heating cycle, as observed in signatures of dryers. Up to
three subsequent cycles were checked for each signature. Gaussian Mixture Models are used to fit
a density to the values and incorporate them to the profile of the appliances.
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6.9 Why the big number of features

One may wonder why incorporate all these different features in the profile. Some of them may seem
to describe essentially the same thing. For instance one may question adding features like ratios
of durations between two states, when the distances between the main changes have already been
profiled. The reason is to attempt and reduce the probability of a false positive during the pattern
recognition phase. In order to understand this, one must consider that an objective of the profile
is generalization. Thus it cannot be too restrictive about the values allowed, for instance for the
distances between the power changes. One has then to consider that the aggregate signal is created
by a big number of appliances, turning ON and OFF at random time intervals. The numerous
power changes generated can be combined in several ways and create a vast amount of patterns
and shapes. The generalization and the numerous power changes in the aggregate may lead to the
detection of patterns during the disaggregation phase that are falsely considered as fairly confident
candidates, even though a certain feature of theirs is rather off. For instance, a candidate might
have a certain state duration rather long, but still acquire a fairly high probability by the corre-
sponding GMM density function because of generalization. In that case the evaluation of another
feature, for instance the ratio of durations between two states, might bring the confidence of the
candidate down, eliminating a false positive. By using features that describe from different aspects
the generic shape of a signature, the probability of a false positive is reduced.

6.10 Limitations Introduced

The technique that was presented forms a profile for an appliance after detecting parts of the appli-
ance’s signature that are consistently observed in the signatures of the different models processed.
Parts of the signatures that are not observed in the majority of the signatures will not be chosen as
a main block. Similarly, other parts of the signature, which consume similar power to a main block,
will be modelled as 'repeats’ of a main block only if they are consistently observed. This design
was made in order for the profile to be generic and describe the whole appliance type, independent
of the model. Unfortunately it does mean that parts of the signatures are left out. Parts of the
signature that are not described by the profile are essentially 'unknown’ to the Pattern Recognition
module and will not be detected. However, taking into account that those parts are not observed
in many appliances, the overall efficiency of the technique is not expected to be greatly reduced.

62



Inferring Appliance-by-Appliance Energy Consumption 6'" September, 2013

2000

1500

1000

500

° 10:37:00 10:47:00 10:57:00 11:07:00 11:17:00 11:27:00 11:37:00 11:47:00 11:57:00

(a)

2000}

1500

1000

500

15:09:00 15:24:00 15:39:00 15:54:00 16:09:00 16:24:00 16:39:00 16:54:00 17:09:00 17:24:00

(b)

3000

2500}

2000}

1500

1000

500
LJN"ﬂHﬁﬂﬂnhwﬂﬂhﬂrLthw\«

0 03:48:00 03:58:00 04:08:00 04:18:00 04:28:00 04:38:00 04:48:00

()

Figure 6.9: Signatures of the three multi-state appliances targeted. (a) Dishwasher, (b) Washing
machine, (¢) Dryer
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Figure 6.10: The main blocks and the main changes of the profile generated for (a) the
dishwasher, (b) washing machine, (c¢) dryer. Up to three main blocks are chosen in order to
represent the rough shape of the signatures. The magnitudes and distances between the main
changes depicted are the means of the values found while processing the various signatures and
are used only to help visualize the blocks’ positioning. The actual profile incorporates Gaussian
mixture functions to describe the values observed in the signatures.
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7 Pattern Recognition

The development of the Profiler module which implements the feature extraction went hand in
hand with the development of the Pattern Recognition module, in order to allow for the testing of
the technique. The basic functionality of this module was influenced by the design of the prototype
system. Naturally, it was extended in various steps in order to utilize the various features extracted
by the Profiler.

Disaggregation Phase Training Phase
Aggregate Signatures
Data Data

Find relevant
changes

Form candidates

Evaluate
Candidates

Disaggregation

Labeled Candidates'

1al Training of
Scores for Training

the Classifier

 Candidates’ Scorezl

Classification Result

Classification

Figure 7.1: Flowchart of the processes performed by the Pattern Recognition module.

The basic functionality of the module can be described as follows: After the profile of an appli-
ance has been generated, it is provided as input to the Pattern Recognition module. The profile’s
entries essentially describe to the module how the appliance’s signatures look like. By scanning the
power signal given as an input, the PR module detects all the power changes that are of relevance
to the profile. It then combines the detected changes, creating patterns with similar form to the
ones described by the profile. These various combinations are the possible candidates for being dis-
aggregated as an operation cycle of the appliance. It then assigns various scores to each candidate,
different scores for the various features and characteristics described in the profile. Depending on
how close the candidates’ features match those of the profile, higher or lower scores are assigned.
These scores are then provided to the Classifier.

The Pattern Recognition module plays a double role in the system. Before disaggregation is
attempted, the classifier needs to be trained. This is accomplished via the help of the Pattern
Recognition. Data with the labelled signatures of appliances are given as input to the PR module,
which locates all the candidates in them (multiple candidates can be formed even in one signature,
because of the multiple power changes) and assigns scores to them. Candidates with the highest
scores are passed to the classifier as positive samples, whereas candidates with low scores are passed
as negative samples for training. There is more to be explained about the choice of candidates for
training in the relevant section. The second role of the PR module is of course the disaggregation
itself, after the classifier had been trained once. After the various candidates are formed in the
aggregate signal, they are passed for classification. The PR receives the results from the classifier
and finally disaggregates the most confident ones.
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7.1 Detection of Relevant Power Changes and Forming the Candidates
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(a) The signal is scanned for power changes with magnitudes within the range allowed for the main
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maximum magnitudes that were observed for each main change during the profiling stage. Above are
depicted changes detected as relevant to the dishwasher’s profile.
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(b) Candidates are formed by the various combinations of the detected power changes. Pairs of positive
and negative changes form the main blocks of the candidates. Each candidate is a possible instance of the
appliance’s operation. After evaluating how close each candidate matches the profile, the closest matches

are disaggregated as actual operations of the appliance. Four candidates of the dishwasher are depicted

above.

Figure 7.2

The aggregate signal, as commented in section 6.3, is of additive nature. It is created by the
addition of the power signals generated by all the operating (and even standby) appliances. When
an appliance turns on during the operation of another one, the power consumption adds up and the
shape of the aggregate signal is a skewed image, of the two signatures on top of each other. Steady
states are for this reason not of much use when it comes to processing the aggregate signal for
patterns. What is actually observable in most cases is the power change generated at the change of
state of an appliance; thus the disaggregation attempt begins with the detection of power changes
in the aggregate, relevant to the profile.
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(b) Four washing machine candidates, formed out of possible combinations of the relevant detected changes.

Figure 7.3

Since, for instance, it is unknown what model of a dishwasher exists in the house, it is needed
to find all the changes in the signal that could have been generated by a dishwasher, small or
big model. The generic profile generated for an appliance describes the values of the magnitudes
that the main changes of the profile take in the signatures of the various models of the appliance.
Each main change is described by an individual entry, consisting of not only the density function
representing the distribution of the magnitudes as they were extracted from the various signatures,
but also of the minimum and maximum magnitudes observed during the profiling process. By
inputting the profile to the Pattern Recognition module, it has all the information needed to detect
the relevant power changes in the signal. The aggregate signal is scanned for any change with mag-
nitude that falls within the range defined by the minimum and maximum values observed for a main
change. The aggregate is scanned both for instant changes and for changes with the form of a spike.

The detected changes are essentially all the possible changes in the signal that could be the
main changes of the appliance’s profile (see Figure 7.2a). They are subsequently combined in
order to form the candidates in the signal. The candidates are the patterns in the signal that are
possible operations of the appliance. They are initially just combinations of up to six main changes
that form the up to three main blocks of the profile. This step can be seen in Figure 7.2b for a
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dishwasher and in Figure 7.3b for a washing machine. In these figures are presented various candi-
dates that are created even when processing data from a single signature of an appliance. Even in
a single signature of a multi-state appliance, it may be the case that several changes appear with
magnitudes within the range allowed for the main-changes of the profile. Various candidates may
be formed out of their combinations. In an aggregate signal where multiple appliances operate,
some of which may consume similar power, the number of candidates becomes quite large. The
characteristics and features of all these candidates are compared with the profile of the appliance,
in order to find candidates whose characteristics are a close match to the profile.

A last thing to note is the creation of candidates that miss one or more of the main changes of
the profile. When the various candidates are created out of the combinations of the detected power
changes, additional candidates are created by the module, which miss one or more of the main
changes. This enables the module to try to detect an appliance, even if a certain power change is
not detected in the aggregate signal (for instance because it is covered by a simultaneous power
change which was created by another appliance that turned ON). It also allows for the detection of
models of appliances that does not present a certain or more power changes during their operation.

7.2 Evaluating the Candidates - Assigning Scores

The candidates formed initially are just combinations of changes found in the signal, forming the
main blocks of the profile. The next step is to compare their characteristics with those described
by the appliance’s profile, in order to find the candidates that are matching it the most.

Each candidate is assigned a list of scores. Each feature described by the profile is evaluated
and a candidate is given a score in the different areas. The list of scores consists of five scores for
each main change and three additional scores for the features of rapid changes, repeated parts and
the ratio between durations of certain states of the signature. Those various scores are values from
zero to one, with higher values indicating that a candidate’s feature matches the profile better.
This list of scores from each candidate is a sample passed to the classifier for the final decision,
whether the particular candidate is a close enough match to be considered a true instance of the
appliance.

The overall score of a candidate is calculated as presented below out of the various scores
assigned to the candidate in the different areas. It is an indication of how close the shape of a
candidate is to the shape described by the profile. The overall score of a candidate is used during
the pattern recognition process in order to separate probable and improbable candidates. However
it is not the one used for the final classification, but the whole list of scores of the candidate.

OwverallScore = (weighty * Scorechange—o + -.. + weights x Scorechange—s + Scoresoiher Features) /9

where:

ScoreChange—i = (SCOTeMagnitude—i + SCOTeCOTTElatiOTL—i+

+ SCOTeDistance—OppositeC’hange—i + SCOTeDistance—OtherChanges—i + ScoreType—i)/5

Scoresother Features = SCOTERepeatingParts =+ SCOTeRapidChanges + ScoreratioDurations

The weight of a change is a percentage associated with each main change in the appliance’s
profile. This percentage expresses the consistency of the particular main change in the signatures
processed during the profiling phase; in other words, in what percent of the signatures the partic-
ular main change actually existed (also see section 6.4.1). This weight is used in order to lower the
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influence of the inconsistent changes’ scores in the overall score of the candidate.

It needs to be noted here that if an appliance’s profile has been formed after choosing less than
three main blocks, the number of main changes is smaller, so the list of scores is shorter. Such is
the case of the washing machine, where its profile incorporates only four main changes (two main
blocks).

7.2.1 Scores for each Main Change

Each candidate consists initially by a combination of up to six power changes detected in the signal.
The main part of the candidates’ evaluation is to compare these power changes with the charac-
teristics described by the profile for the six main-changes of the appliance’s profile. Each of the
candidate’s changes is assigned separate scores in different areas.

The change’s magnitude

When first detecting the relevant power changes in the signal, all that was taken into account
is for their magnitude to be between the minimum and maximum magnitude allowed by the profile
for the particular main change. This is obviously not enough. In order to evaluate how probable
it is for a power change of such magnitude to have been created by a model of the disaggregated
appliance-type, the Gaussian Mixture density function of the corresponding main-change entry of
the profile is used. As described in 6.4, this density function was formed by fitting a Gaussian
Mixture Model to the distribution of the magnitudes observed in the profiled signatures. The
probability returned by the density function for the value of the magnitude of the candidate’s
power change is a factor of confidence that the particular change could have been created by the
appliance. If during the profiling phase many models were processed that created main changes of
such magnitude, the higher the probability returned for the candidate’s change. This probability,
after normalization, is the first score assigned to the power change for its magnitude.

Correlation of magnitude with other changes

The detected magnitudes have a random magnitude within the range allowed by the profile.
By comparing the changes against the entry of the profile expressing the correlations between the
main changes, higher scores are assigned to the changes of candidates that fulfil certain conditions.
For instance, a requirement from the profile might be that main-change0 and main-changel should
have about the same magnitude. In another case, it could be allowed that the magnitude of main-
change0 should be approximately equal to the some of two other main-changes. Each power change
of a candidate is assigned a score depending on whether it fulfils such requirements.

Distances between the candidate’s power changes

In a similar way as candidates’ changes were assigned scores for their magnitudes, the distances
between the various changes of the candidates are evaluated. For the case of the distances, two
scores are assigned to each change of the candidate. The first score depends only on the distance
between the particular change and the corresponding opposite change that together form a main
block of the candidate. This distance describes the duration of a block of the candidate, one of its
main states of operation. The score is the normalized probability taken from the density function
in the profile that corresponds to the distance between the particular main changes.

A second score is assigned by evaluating the distance of the particular change from all others.
In this case the score is the average of the normalized probabilities, which are obtained from the
various density functions corresponding to the distances between the couples of changes. This score
describes the positioning of the change in relation to the others of the candidate.

Two different scores are assigned, in order to give an increased weight to the distance between
corresponding positive and negative changes, that together form a main block of the signature.
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Type of each change - Spikes

The change is assigned a score depending on its type, whether it is a normal shaped power
change or a spike. The profile contains a percentage that expresses in how many signatures a main
change had been observed to be a spike, out of all the signatures processed during the profiling
phase. This percentage is the score assigned to the candidate’s change if it is indeed a spike, or its
complement is assigned if it is of a regular shape.

7.2.2 Scores for Other Features

Scores for the existence of Repeating Parts

Three further features are evaluated for each candidate, the first of which is the existence of
repeating parts of the signature. As explained in section 6.7, during the operation of certain appli-
ances it is observed that some of their elements, for instance the heating element of the dryer, turn
on and off several times. These parts of the signature are modelled as repeats of a main block. If
such behaviour has been observed for an appliance, its profile contains an entry with the number of
the main block that is repeated, as well as the area that the repeats occur. This area is described
with the use of distances from the main changes of the profile. Finally, the entry describes the
type of the repeats. As explained also in section A, the type describes the number of the repeats
usually observed in the various signatures of the appliance, as well as whether they have fairly
similar durations and time intervals between them.

In order to evaluate this feature for every candidate, using the distances provided in the profile
and the position of the candidate’s power changes, the area that they are supposed to occur is de-
fined in the signal. Any changes that are detected in the specific area of the signal with magnitudes
similar to the candidate’s change specified by the profile are extracted. These changes are then
grouped together to form blocks, the repeating parts. If their number and type is according to the
type described by the profile, a score of 1.0 is assigned to the candidate for this feature and the
repeating blocks are added to the candidate as parts of it.

Existence of rapid changes

If during the profiling phase it has been found that there are periods of rapid changes in the
appliance’s operation, an entry of the profile describes the areas that the rapid changes begin and
end, in relation to the main changes. If there is such a requirement from the profile, the Pattern
Recognition module locates the areas described by the profile in relation to the changes of each
candidate. It checks if there are indeed rapid changes beginning and ending there. If this is the
case, a score of 1.0 is assigned to the candidate for this feature, or a zero if the rapids are not found.

Ratios between durations

A last possible feature of an appliance’s profile is the ratio between the durations of certain
states of the appliance’s signature. If there is such a feature, the relevant entry of the profile
contains the characteristics of the GM density function. The ratio between the distances of the
candidate’s changes that correspond to these durations is calculated. The normalized probability
obtained by the density function for the candidate’s ratio value is the score assigned for this feature.

7.3 Candidates for Training of the Classifier

The Pattern Recognition module plays an important role in the training of the classifier. For this
phase, the data with the signatures for training are passed as input to the Pattern Recognition
module, which processes each signature individually. The relevant changes are detected in each sig-
nature and then it proceeds to form candidates out of their combinations. As discussed in 7.1, even
when processing a single signature of the appliance there are various candidates being formed. In
order to accomplish the positive training of the classifier, the PR module follows the steps presented
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above and assigns scores to all the candidates. It then calculates the overall score of a candidate,
as introduced in 7.2.

The overall score of a candidate is an approximation of how close the characteristics of the can-
didate match those of the profile. In order to extract the positive training samples for the classifier,
out of every signature of the appliance the candidates with the highest overall score are chosen. The
set of scores (and not the overall score) of each candidate is a training sample for the classifier. At
this point it is interesting to notice a convenience of the use of candidates and scores. As mentioned
before, even in a single signature there are more than one candidates created. This offers on option
for the positive training: The classifier can be positively trained on either the top ranked candidate
from each signature or , alternatively, in more than one high ranked candidates, as long as they
have an overall score close enough to the highest one. The second option seems rather unusual.
However, it is rather convenient as it allows for the ’artificial’ creation of positive training sam-
ples with slight differentiation. This allows the classifier to generalize more efficiently than when
trained on only one positive sample from each signature, because of the fairly limited available data.

The negative training can be accomplished in a similar way as the positive. In this case the use
of candidates also allows for a rather unusual choice. The first and obvious choice is to input data
with signatures of other appliances to the PR module, extract the candidates and provide their
scores to the classifier with negative labels. However, since the characteristics of those candidates
are usually very far from the profile’s characteristics, the scores are really low. This attempt did
not give good enough results, as the classifier does not manage to adjust its decision boundary
appropriately. The alternative is to extract candidates from the signatures of the actual (true)
appliance that the classifier is being trained to classify. In this case, the PR module gives as neg-
ative training samples to the classifier the scores from candidates that are further below the top
ranking ones, but still have high scores in certain characteristics of the profile. This approach led to
better results, although it was still not the final one adopted. The final choice of classifier does not
actually require negative training. This will be further explained in the section about the Classifier
module.

7.4 Disaggregation

The final step is the actual disaggregation. Out of the various candidates, some are classified by the
Classifier module as true operations of an appliance, others as false, depending on how close their
scores are to the trained positive ones. There is however one final thing to take into account. As
explained in section 7.1, the amount of candidates created by all the combinations of the relevant
detected power changes in the signal is big, with some of them being very similar with each other.
For instance some of them have common five out of six main changes and have almost all features
in common. In some cases this results to a positive classification of more than one candidates in
the same area of the data.

In order to solve this problem, the disaggregation is achieved similar to the one described for
the prototype version. Inspired by the ’sliding window’ technique used in OCR, the data are swiped
from the beginning to the end. If a positively classified candidate is met, it is checked whether
within its duration there is also some other positively classified candidate. If it is not the case,
the lone positive candidate is disaggregated as a true operation of the appliance, its position and
energy consumed is reported for evaluation. The window continues swiping the data from the
point that the disaggregated candidate’s duration is finished. In the case of more than one posi-
tive candidates within the proximity, the classification score returned from the classifier is checked.
Only one of candidates is disaggregated, the candidate with the highest reported classification score.
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7.5 Computational Efficiency Problems and Optimization

One of the biggest issues faced while designing the pattern recognition technique had to do with
computational efficiency. As commented in previous sections as well, the aggregate signal is a rather
complicated signal. The operation of the numerous appliances in a house create a wide variety of
patterns in the aggregate. In addition, different appliances may consume similar amounts of power.
As a result, there are areas in the aggregate signal where the PR module may detect a big number
of power changes that are relevant to the profile. A big number of relevant changes can create a
vast amount of candidates out of all the possible combinations.

If m main-changes are used in an appliance’s profile, the number of candidates formed is:

candidates = ng * Nq * ... * Nypy_1 * Ny

where n; is the number of changes detected relevant to the main change 4. If we assume n detected
changes relevant to each main change, the number of candidates can be expressed as n'.

The fact that the number of candidates increases exponentially with the number of main changes
used in the profile, explains the choice of creating the profile by choosing only up to three main-
blocks, as explained in the previous section. With six corresponding main changes, there are still
too many candidates being formed occasionally in the signal. Evaluating all the candidates is a
time consuming process. This bottleneck created various problems throughout this work and vari-
ous attempts were made in order to achieve some better efficiency.

7.5.1 More Efficient Candidate Creation

The initial attempt to reduce the number of candidates was to take into account the distance be-
tween the detected changes in the aggregate signal. The only candidates that are formed should be
created by combinations of power changes that do not have a smaller or greater distance than what
is allowed by the profile. For instance if during the profiling phase of a dishwasher, the shortest
heating cycle observed for the various models of dishwasher lasted X minutes and the longest one Y
minutes, no candidates should be formed where the corresponding power changes in the aggregate
have a distance outside that range.

The profile of the appliance contains entries for the distances between each couple of main
changes. These entries contain the minimum and maximum value that each certain distance has
been observed to take among all signatures of the appliance profiled. Using this information, when
processing the various combinations of power changes, candidates are only formed by combinations
where the distances of the power changes fall within the corresponding limits. This initial require-
ment limited to a great extend the number of candidates. Still, it was not enough in certain cases,
where the operation of various appliances at the same time would create a big amount of power
changes.

7.5.2 Removal of Malshaped Candidates

The next attempt to reduce the number of candidates was to eliminate in early stages of the pro-
cess those that formed malshaped patterns. Such a candidate is presented in Figure 7.5. The
candidates’ power changes form the various main blocks of the appliance’s profile, which essentially
represent the operation of certain elements of the appliance. Since the height of the block is the
power consumption of the appliance during that shape, the power level does not make sense to
drop below that level for the duration of the block. When the candidates are formed out of all the
combinations of the power changes, various such mal shaped candidates are formed. By detecting
whether the power drops below acceptable levels during the duration of a block, such candidates
can be eliminated in early stages of the process, gaining a lot of computational time in the next
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Figure 7.4: Candidates are only formed by combinations of power changes the distances of which
are within allowed range by the profile. The above picture presents an example of allowed ranges
for the various main changes. A candidate will be created by combination of changes that fall
only within those ranges. For instance, the first detected positive change (which corresponds to
main-change( of the profile) will only be combined with negative changes within rangel to form
the first block of candidates.
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Figure 7.5: In order to reduce the number of candidates, the ones with mal shaped blocks are
eliminated in the early stages of the process. Above are presented the three blocks of such a
candidate during the disaggregation of a dishwasher. The first block of the candidate is
problematic, with intermediate power changes during its duration that drop the power level below
acceptable.

'During the profiling process, short breaks in an appliance’s state were overlooked, in order to extract the main

shape of the signature (see section 6.1). The same threshold is applied in this case, disregarding very short intermediate
breaks in a block
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7.5.3 Clearing Low Score Candidates

In a further attempt to reduce the number of candidates and achieve shorter processing times,
candidates’ overall score is checked halfway through the evaluation process. After the assignment
of scores to each change of a candidate and before the evaluation of the rest of the features, their
current overall score is checked in order to remove low scoring candidates. By removing the can-
didates with overall score less than the 50% of the highest score in the scanned area of the signal,
the number of candidates is reduced by approximately 55% in most cases, shortening significantly
the rest of the process. The threshold of 50% has not been found to cause problems by eliminat-
ing wanted candidates, since it is unlikely for an appliance’s model to score that low in all areas
evaluated for the main changes. An increased threshold however increases this risk significantly,
reducing the ability of the technique to generalize to unknown models.

7.6 Limitations Introduced

The design of the pattern recognition technique introduced some limitations to the system. The
first limitation influences the detection of the relevant changes in the signal. In order for the power
changes in the signal to be considered as relevant to the profile’s main changes and subsequently be
taken into account for the creation of the various candidates, their magnitudes have to be between
the minimum and maximum magnitudes found for a main change when creating the profile of the
appliance. If, for instance, a dishwasher model is smaller than all of the models processed during the
profiling, the power changes it creates will not be detected, as they will have a smaller magnitude
than the allowed by the profile. The disaggregation attempt is bound to fail from the very first step.

The second limitation is of similar nature. In the second step of the process, in order to reduce
the number of candidates created, the distances between the changes is taken into account. Candi-
dates are created only from combinations of power changes that their distances fall within certain
limits, provided by the appliance’s profile (see section 7.5.1). Just like the case explained for the
magnitudes, if a model of an appliance has a shorter duration of operation than all the models
processed during the profiling process, proper candidates will not be formed and the disaggregation
will fail.

This problem is alleviated by adjusting the limits of the magnitudes and distances limits by
a small percent, for instance by 20%, allowing the system to be more flexible when detecting un-
known models. Still, disaggregation of an even smaller or larger model of the appliance would fail.
This problem is not a limitation of this approach alone. In every pattern recognition approach,
classification of a sample depends a lot on a complete enough training set. A sample that is far
different from the ones observed during training is very probable to be misclassified.

Finally, an important limitation has been introduced to the system because of the design of
the disaggregation phase. The system cannot disaggregate two appliances of the same type if both
operate simultaneously. For instance the module cannot disaggregate multiple dishwashers in a
laundry room, operating at the same time.
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8 Classification

The classifier is the module which completes the system. After the aggregate signal has been
processed by the Pattern Recognition module and the various candidates have been formed and
evaluated, the classifier is called to make the final decision whether a candidate represents a true
operation of the disaggregated appliance or not. This is achieved by comparing the scores that
each candidate received in the various aspects of the profile, against the trained samples, scores
acquired from the signatures of various models of the appliance during the training phase. If the
candidate’s scores for the various features are close enough to the ones trained from the signatures,
the candidate is positively classified. The results from the classifier, a positive or negative label for
each candidate, are returned to the PR module in order to do the final disaggregation. The choice
of the classifier, its training and functionality are discussed below.

8.1 Choice of the Classifier

During the early stages of the system’s development, a naive version of a classifier was used as
a place-holder in order to allow for debugging. This simplistic classifier was simply calculating
the overall scores of the candidates, and classified as true operation of the appliance the highest
ranking candidate in the region of the data, as long as its overall score was over 50%. This version
proved really useful for debugging and was actually still used for that reason even during the final
stages of the work, since it is guaranteed to return the candidate with the highest score without
any training. Of course it fails to eliminate any high scoring false positives, problem alleviated
after the adoption of an actual classifier.

The investigation for a classifier began by trying linear classifiers such as Logistic Regression
with first order features, as well as the linear Perceptron. These linear classifiers failed to provide
any good results. This seemed rather unexpected at first, since the scores provided to the classifier
are defining a close match when they take high values, negative classification when they are low.
One would expect that by simply adjusting the weights of a linear decision function would suffice.
However when the investigation for the classifier choice was performed, the system was still not in
its final form, with various problems in the scoring process. This did not allow a linear classifier to
perform well.

More classifiers where tried in the following attempts, including a Logistic Regression classifier
with the use of second and third degree features, as well as Support Vector Machines classifiers,
with the use of various kernels. All these attempts gave fairly positive results after some configu-
ration. The Logistic Regression classifier was still used in the final stages of this work for various
testings. The final choice however was the use of a One-Class-SVM by Scholkopf, implemented in
the libsvm library.

One-Class Support Vector Machine

The One-Class-SVM classifier is a one-vs-all classifier (see section 2.5) with a very interesting
and convenient attribute. The particular type of SVM does not need negative training. It is only
trained on positive samples and adjusts a hyperplane in the multi-dimensional feature space in or-
der to envelop those positive samples. New, unknown samples are classified as positive or negative,
depending in which area of the feature space they fall in; positive if they fall in the inner side of the
hyperplane, negative if on the outside. At the risk of oversimplifying, the One-Class-SVM ’learns’
the values that the features of the positive training samples take. The area in the multidimensional
feature space that the positive candidates belong is defined by the coordinates given by those val-
ues. It then classifies a new sample whether or not its features are close to the trained ones. This
classifier is used for novelty detection and anomaly detection problems, where the positive state is
well known. Everything that does not match the known characteristics well enough is an anomaly
and classified negatively. The nature of this classifier matched particularly well the nature of our
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problem.

The One-Class SVM can be used with various types of kernels. Various of them were tried
during a short validation phase. The kernels that gave the best results were the RBF (Gaussian)
kernel and the third degree polynomial kernel. Both types of kernels performed well in classifying
the anomalies in the scores, giving very few false positives even from the very first tests. The RBF
kernel proved to be a little more strict than the polynomial, misclassifying as false approximately
20% of true candidates more than the polynomial. The polynomial kernel seemed to be able to
generalize better, so it was the final choice, used for the final evaluation of the approach.

Disadvantage of the use of Support Vector Machines

Classifiers such as Logistic Regression and Neural Networks are able to report a probability
score, describing their confidence. Their confidence score is the output of their sigmoid function.
Unfortunately the Support Vector Machines do not have a similar property. SVMs do report a
classification score, which is the distance of a sample from the hyperplane separating the mul-
tidimensional feature space in the areas of positive classification and negative classification. A
positive high score means positive classification with high confidence. Unfortunately this score is
non-normalised, with a range that depends on the decision function, subsequently on the training
set and the parameters of the SVM. A method has been developed in [45] for estimating such a
probability. Because of the fact that such a probability would not be of much use to the system with
the current design and also to avoid making the process of the candidates even more computational
expensive, the technique was not used.

8.2 Training and Classification

The One-Class-SVM is a one versus all classifier. It is trained to classify positively one and only
class. Just like one profile needs to be generated for each appliance type, a separate classifier object
needs to be trained for each type of appliance. This process needs to be done only once for each
appliance. Each training sample for the classifier is the list of scores that a candidate has received
during its evaluation by the Pattern Recognition module. The training set consists of such scores
from various candidates, the top ranking candidates extracted from the signatures of the appliance.
The process of extracting the appropriate candidates for the training set is described in section 7.3.

Depending on the number of main changes in the profile, the number of features that the clas-
sifier gets trained on (which is the number of scores for each candidate) varies. For each main
change of the profile five scores are assigned, with additional scores assigned for the existence of
rapid changes, repeated parts in the signature and the ratio between the durations of certain states
in the signature with similar power values (see section 7.2). This fairly big number of features, up
to thirty-three features for a six-main changes profile (three main blocks chosen), comprises the
feature space of the classifier. Within this multidimensional space the classifier is called to adjust
the hyperplane decision boundary.

Visualising a feature space of that many dimensions is impossible. It is possible however to
get a feeling of the task that the classifier performs by visualising pairs of the features in the two-
dimensional space. In figure 8.1 are presented the decision boundaries of an One-Class SVM with
an RBF kernel, trained on a dishwasher (a) and a dryer (b). The classifier separates the feature
space into two areas. Candidates that belong in the inner side of the decision boundary, closer to
the trained samples, are positively classified. Candidates with scores that put the in the outer side
of the decision boundary are detected as anomalies and are negatively classified.

In the same figure can also be observed an interesting point about the use of a big number of

features in the profile. Some of the features seem to not help particularly in the distinction between
a positive and a negative candidate. For instance, in the case of the dishwasher the score for the
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distance of the first main change from the opposite negative change takes a big range of values,
with the classification area of the SVM extending from one side of the feature space to the other.
The same feature,however, does make a difference in the case of a dryer. The SVM ’learns’ during
the training that the various models of dryers present either a high or a low score in this feature.
This can be compared with the density functions for the particular feature, extracted during the
profiling process, presented in figures B.6(a) and B.8(a) (As a explained in section 7.2.1, a score
for a feature is the normalised value acquired from the density function generating by fitting a
GMM to the values extracted during the profiling process).
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Figure 8.1: The decision boundary of an One-Class SVM RBF classifier (red), in the two
dimensional space of the features: score of the first main change for the distance from the
opposite main change (x-axis), score of the first main change for its distance from the rest of the
main changes (y-axis). Candidates that fall inside the decision boundary are positively classified.
An important thing to notice is that some features might not make much difference for one
appliance, but they may do for another. For instance, the first feature does not help reduce the
length of the positive classification area for the case of the dishwasher (a). However, in the case of
the dryer (b) it does lead to such reduction.
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9 Evaluation

The designed technique and system were tested separately for the three targeted multi-state ap-
pliances, the dishwasher, the washing machine and the dryer. The aim was to investigate the
generalization capabilities of the technique by attempting to disaggregate a model of each appli-
ance that the profiler and the classifier were not trained on. The evaluation was performed on two
datasets: The REDD dataset, sampled every 1 second. The second dataset tried is the one col-
lected by Jack Kelly, co-supervisor of this research. This dataset was available in two granularities,
sampled every 1 second and every 6 seconds. For the cases that Jack Kelly’s dataset was used
(dishwasher and washing machine), both the sampling rates were tried in order to test whether the
system is influenced by the sampling rate. The detected events were very similar in the two cases,
so they are presented only once below.

9.1 Metrics

As discussed in section 2.2.4, presenting the overall efficiency of a disaggregation technique is not a
trivial task. The false positives detected by a disaggregation system (patterns that are mistakenly
detected as operations of the appliance) make it difficult to evaluate its overall efficiency. For
instance, a system might detect all the operations of an appliance in the aggregate signal but at
the same time falsely report many other patterns as being operations of the appliance. In order to
provide a complete and coherent view on the system’s efficiency, the following metrics are used to
describe the performance on a dataset:

e Disaggregation Accuracy:
True Positives

Actual Events

This metric (introduced in [22]) describes the percent of the actual operations of an appliance
that the system managed to detect.

e Detection Accuracy:
True Positives

True Positives + False Positives

This metric describes the efficiency of the system taking into account the effect of false
positives detected (also introduced in [22]).

e Percent of Energy Consumption Correctly Disaggregated:

Total Energy Consumption of True Positives

Total Energy Consumption of all Actual Events

The ultimate goal of a disaggregation attempt is not only to detect when an appliance op-
erates, but also calculate the energy it consumes. This metric reports the percent of the
total energy consumed by the actual event which is accurately disaggregated (not taking into
account false positives).

e Percent of Energy disaggregated from Detected Events:

Total Energy Consumption of True Positives

Total Energy Consumption of Corresponding Actual Events

This last metric is used in order to describe what part of the energy consumption of the
detected events the system manages to disaggregate. It allows to estimate the part of the
operation that the system leaves out, due to undetected parts of the signature.
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9.2 Evaluation for the Dishwasher

Disaggregating the dishwasher was attempted on two aggregate signals. The first belongs to a
house from the dataset collected by co-supervisor of the project, Jack Kelly. The second signal is
from House-2 of the REDD dataset, in order to allow for comparisons with future work.

Before the disaggregation attempts, the profile of the appliance had to be formed, as well as
train the classifier. In both cases, the profile was created by all the models of dishwashers in
the available datasets, except the particular model that was to be disaggregated. Because not all
models have the same number of signatures available, only up to four signatures were used from
each model, in order to have approximately the same influence from each model to the profile and
training sample. Same thing applies for the training of the classifier. This is an important point,
in order to prove the capabilities of the technique in generalizing for unknown models. Please note
that this is not discussed in lots of cases of previous related work, with the possibility that the
designed techniques and the reported results may come from training and testing a system on the
same dataset.

The system was tested at first on measurements from 25 days from the first house. For the

disaggregation attempt on the house from the REDD dataset, the aggregate signal was scanned for
18 days in total. The results from the two attempts are presented in table 4.

Table 4: Dishwasher disaggregation: Results

Jack Kelly’s dataset: | REDD:
House-1 House-2

Actual Number of Signatures 9 6
Actual Power Consumption 11.55 kWh 4.05 kWh
Number of Signatures Disaggregated 10 6
Number of True Positives 6
Number of False Positives 1 0
Energy Consumption Correctly Disaggregated 10.16 kWh 3.6 kWh
Disaggregation Accuracy 100% 100%
Detection Accuracy 90% 100%
Percent of Energy Correctly Disaggregated 87.9% 88.9%
Percent of Energy Disaggregated
from Detected Events 87.9% 88.9%

The results from both houses are satisfying for the dishwasher. The system manages to detect
all the instances of the appliance’s operation, even though neither the profile was formed, nor the
classifier was trained using the models being disaggregated. The technique seems to successfully
generalize to other models for the case of the dishwasher. A very important point to notice is the
very low number of false positives. With only one false positive found in one of the houses, the
reliability of the technique seems rather high. This is the result of using a big set of features in
order to detect the pattern of the disaggregated appliance. Although many candidates-patterns
are found in the aggregate signal, the big number of features lowers the probability that a random
pattern will match an actual dishwasher’s operation in most of them. As a result, the classifier de-
tects those missing features of the candidate-patterns as an ’anomaly’ in comparison to the trained
samples, resulting in the low number of false positives.

Inefficiencies

Very interesting are the results for the amount of energy disaggregated and the reasons behind
this percentage. Figure 9.1 presents a disaggregated instance of a dishwasher. It is easy to notice
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Figure 9.1: The aggregate signal (top), the signature of a dishwasher (bottom) and the
disaggregation’s result (red). The pattern recognition fails to detect some parts of the operation.
The reason is that the low-power parts on either side of the heating cycles are not among the
three main blocks chosen to represent the rough shape of the appliance’s signature. They are not
represented as repeats of the third main-block (low-power middle block) of the signature either,
because the Profiler failed to detect them consistently in the dishwasher’s signatures. This led to
inability to represent them in the dishwasher’s profile and subsequently to detect them.

the parts of the signature that are not disaggregated, the small blocks on the left and right of each
heating element’s block, as well as a part of the blocks that correspond to the two heating cycles. It
is easy to find the explanation for this failure if we look back at how the Profiler describes the rough
shape of an appliance’s signature. A visualisation of the profile’s chosen main blocks have been
presented in Figure 6.10 (a). The Profiler detects up to three consistent blocks of the appliance’s
signatures. The low-power parts not detected during disaggregation are not among the three main
blocks of the appliance’s profile. These parts could be represented as 'repeated parts’ (see section
6.7), repeats of the third main block of the profile (the low-power block in the middle part of the
signature). However, during the creation of the profile, the blocks in the first and last part of the
signature were not found in the majority of the signatures of the models. For that reason they were
not added to the profile as repeated parts either, leading to inability to detect them. The missing
top part of each heating cycle is a consequence of not detecting the low-power blocks that precede
them. During the pattern recognition, the power changes that are detected are the ones leading
from the lower power state to the high power state. Since the preceding low-power parts of the
operation are not detected, the heights of the two main blocks corresponding to the heating cycles
are lower, leading to reduced disaggregated energy.
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9.3 Evaluation for the Washing Machine

The process followed for the evaluation on the washing machine is similar to the one followed for
the dishwasher. The washing machine’s profile was formed out of the signatures of all the models
available in the datasets, but the signatures of the model that was to be disaggregated. The One-
Class-SVM classifier was trained on the same signatures. Just like the case of the dishwasher, up
to four signatures were used from each model of washing machine, in order for the profile formed
and the classifier’s training to be equally influenced by each model.

As explained in section 3.2.1, the washers in the REDD dataset are of a different type, with a
very different operation. These washing machines were not targeted in this work. For this reason
the aggregate signals from the REDD dataset could not be used for this part of the evaluation.
Instead, the evaluation was performed using the aggregate signals from two different houses in the
dataset collected by co-supervisor of this work, Jack Kelly. The system was tested on measurements
from the first house of 17 days length. The aggregate signal from the second house was scanned
for 22 days. The results from the two attempts are presented in table 5.

Table 5: Washing machine disaggregation: Results

Jack Kelly’s dataset: | Jack Kelly’s dataset:
House-1 House-2

Actual Number of Signatures 10 11
Actual Power Consumption 9.75 kWh 4.93 kWh
Number of Signatures Disaggregated 9 7
Number of True Positives 9 7
Number of False Positives 0 0
Energy Consumption Correctly Disaggregated 7.55 kWh 2.71 kWh
Disaggregation Accuracy 90% 63.6%
Detection Accuracy 100% 100%
Percent of Energy Correctly Disaggregated 77.4% 55.0%
Percent of Energy Disaggregated
from Detected Events 86.0% 86.5%

Disaggregating the washing machine from aggregate signal of the first house was performed with
high disaggregation accuracy, missing only one of the washer’s operations. The system was not as
efficient on the second house however, missing 4 out of 11 operations. The reason behind this is
that the operation of the second house’s model has the shortest duration out of all the models in
the datasets. As a result, the classifier has less confidence in identifying its operation, classifying
some true events as anomalies. Even though some true events were missed, in both houses the
detection accuracy of the system was 100%, avoiding to detect any false positives. Moreover, the
percent of energy disaggregated from the detected events is fairly satisfying.

Inefficiencies

Aside the overall percent of disaggregated energy, checking the energy disaggregated for each
individual signature that was successfully detected reveals an average percent of 86.0% for house-1
and 86.5% for house-2. Certain parts of the washing machines’ operation were consistently missed.
In figure 9.2 are presented disaggregated instances from house-1 (a) and house-2 (b). The wash-
ing machine of house-1 presents multiple rinsing cycles. Similar with the case of the dishwasher,
these parts are not represented in the appliance’s profile. These parts of the signature could be
represented in the profile as repeats of the final rinsing cycle, but during the evaluation they have
not been observed in the majority of the profiled signatures. Additional tests with a different set
of signatures were performed, where the majority did exhibit that behaviour and those parts were
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modelled by a ’repeating parts’ entry in the profile. The results were improved, but not by much.
The Pattern Recognition module still had problems detecting them. The reason is that the shape
of these parts does not really resemble a ’block’, the kind of shape that is easily detected by the
technique.

The second problem observed concerns the detection of the short activations of the heating
element. These short, high-power consuming parts of the signatures are modelled in the profile as
repeats of the first main block of the signature, the main heating cycle. Those repeats were mostly
observed in the middle part of the signatures during the profiling phase. The washing machine
model of house-2 is one of the few models in the datasets that exhibit such behaviour at the begin-
ning of the signature, before the main heating cycle. Since this behaviour is not observed for most
models, the profile does not include a ’repeating parts’ entry for the area at the beginning of the
signature. As a result, those parts are not modelled, they are 'unknown’ for the Pattern Recogni-
tion module and are not detected. Another problem regarding the 'repeating parts’ model of the
system is observed in figure 9.2 (a). The three first repeats are successfully detected. However
an unknown appliance with similar power consumption and similar duration turned ON within the
area that is specified by the profile that these repeats occur. This unknown device is therefore
detected as a forth repeat, mistaken for a part of the washing machine’s operation.
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(a) Aggregate signal (top) and signature of the washing machine (bottom) in house-1, with the
disaggregation’s result (red).
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(b) Aggregate signal (top) and signature of the washing machine (bottom) in house-2, with the
disaggregation’s result (red).

Figure 9.2: Detected instances of the washing machine’s operation in (a) house-1, (b) house-2,
with problematic detection of certain parts of the signature. Certain parts of the operation have
not been consistently observed in the signatures of the various models. For that reason they have

not been added to the profile, preventing their detection as the Pattern Recognition does not

’know’ of their existence. Moreover, an unknown device is falsely detected as being part of the

washing machine’s operation, because of its similarity with true parts of the signature.
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9.4 Evaluation for the Dryer

The last targeted appliance is the dryer. Disaggregation of this appliance was attempted in the
aggregate signal of house-1 from the REDD dataset in order to test a certain aspect of the designed
technique, the ability to disaggregate a model of the appliance even when some of the main changes
of the profile do not occur at all during its operation.

In figure 9.3 is presented the signature of the dryer in house-1 of the REDD dataset, in compar-
ison to a signature from house-3 of the REDD dataset. The first is the only model of the dryer in
the datasets that the low-power states are not observed. The profile created by the Profiler module,
after processing all the dryer models, represents the last of these low power states with one of the
main blocks (see figure 6.10c). In order to allow the detection of appliances that do not present
all the states during their operation, when the Pattern Recognition module creates the various
candidates out of the possible combinations of the detected power changes, additional candidates
that are missing one or more main changes are created (see section 7.1). This functionality is tested
with the disaggregation of the particular model of dryer.

Unlike the cases of the dishwasher and the washing machine, for this evaluation the classifier
had to be trained on the particular model of dryer that would be disaggregated. The reason is that
it is the only model with this kind of signature and the classifier needs to be trained that there
are dryers that do not present all the states during their operation. The classifier was trained on
eight signatures of the model. The disaggregation was performed on aggregate data of 20 days
length, during which 10 operations of the appliance occured, different than the ones trained on.
The results are presented in table 6.

Table 6: Dryer disaggregation: Results

REDD:House-1
Actual Number of Signatures 10
Actual Power Consumption 11.56 kWh
Number of Signatures Disaggregated 6
Number of True Positives )
Number of False Positives 1
Energy Consumption Correctly Disaggregated 5.52 kWh
Disaggregation Accuracy 50%
Detection Accuracy 83.3%
Percent of Energy Correctly Disaggregated 47.8%
Percent of Energy Disaggregated
from Detected Events 85.8%

In this test case the disaggregation accuracy is fairly lower than for the previous cases. However,
the detection accuracy remains high, with only one false positive detected. The percent of energy
that the system manages to disaggregated is also satisfying, like in the previous cases.

Inefficiencies

The disaggregation of the dryer proved quite more inaccurate in comparison to the previous
cases, even though the classifier was trained on the particular dryer model. There are two main
reasons for this inefficiency. The first one is the fact that this particular model of a dryer is different
than the rest. The classifier is trained on all of them, but is less confident in disaggregating this
particular model since most of its training samples are different.

The second reason is the problematic detection of the multiple heating cycles, which are the
dryer’s most distinctive feature. Those cycles are modelled in the appliance’s profile as repeats
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Figure 9.3: Signatures of two different models of dryers. During the operation of the dryer from
house-1 of the REDD dataset (a) the low-power states are not observed. In (b) is presented a
dryer’s signature from house-3 of the REDD dataset. The shape of this signature is the most

commonly observed among the signatures of the various dryer models in the available datasets.

of the first main block. Their detection, one of the latest extensions to the system, is performed
in a rather simplistic way. Their detection is mainly based on finding power changes with similar
magnitudes in a certain area specified by the profile, with fairly consistent distances from each
other. In occasions where multiple such repeating cycles occur with durations and distances that
vary, the detection mechanism is inefficient. Inaccurate detection of such parts of a signature are
depicted in figure 9.4b), the false positive detected event.
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Figure 9.4: Two disaggregated events during the evaluation of the dryer. An accurately
disaggregated operation of the dryer is depicted in (a). The detection of the repeating parts of
the dryer’s operation is only based on detecting power changes with similar magnitudes and at

fairly stable distances from each other. The detection mechanism proves to be inefficient in
occasions that the distances between some of the parts vary significantly, such as the operation of
the dryer depicted in (b). In addition, intermediate power changes are observed, which bring the
power below the height of the detected blocks, which is an obvious inefficiency of the current
version of the detection mechanism for the repeating parts.
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10 Conclusions and Future Work

10.1 Achievements

The designed system has shown very promising results, even though the disaggregation accuracy
was not exceptional in all the cases of the evaluation. First of all, the system was able to form
a generic profile for each of the targeted multi-state appliances after processing the signatures
from the various models, by detecting their main states and power changes. The rough shape of an
appliance’s signature is 'mapped’ by the use of the distances between the main power changes, as
well as their magnitudes. Various features extracted from the signatures of the targeted appliances
complement the profile. With the use of Gaussian Mixture Models, it has been achieved to incor-
porate density functions to the profile that describe the values that the various features take for the
different models of an appliance. During the evaluation, the system was able to generalize and
detect unknown models of a dishwasher and washing machine that were not processed during
the creation of the profile with satisfying accuracy. The evaluation for the dryer showed that the
system is also able to detect models of an appliance that might not present certain main power
changes of the profile during their operation, albeit with lower accuracy.

The results of the evaluation display high detection accuracy of the system. In every tested
case, the number of false positives detected in the aggregate signal was small. This is a result
of the use of a large number of features for forming an appliance’s profile. The profile is able
to describe the various characteristics of an appliance’s operation, allowing the disaggregation of
true operations. On the other hand, the various random patterns in the aggregate signal might
present some similarities with an actual operation of the disaggregated appliance, but it is unlikely
to closely match the profile in every aspect. As a result, the classifier detects the missing features
as anomalies and the case of false positives is generally avoided. This is one of the main attributes
of the designed technique. The high detection accuracy of the technique can be a stepping stone for
further work, building on top of the high confidence that the detected events are true operations
and not false positives.

The system is fairly successful in disaggregating the energy consumption of a detected
event. The profile formed for an appliance describes the rough shape of an appliance’s signature
by determining the main parts that the signature consists of. Parts of the appliance’s operation
that are not observed consistently during the operation of the various models are not added to
the profile. Subsequently, they are not detected. However, for the cases of the three targeted
appliances, the undetected parts of the operation usually consume low amounts of power or their
durations are fairly short. Subsequently the energy consumed during those parts of the operation
is low and the overall percentage of disaggregated energy is not severely reduced.

10.2 Limitations

The investigated approach and the implemented system do have their limitations. The technique
for forming the generic profile of an appliance is based on detecting the states that are consistently
observed during the operation of the various models. This sets the requirement that the signa-
tures of the various appliance models need to present similarities in the first place. For
instance it is impossible for a single profile to be formed that describes both the top-loader washers
(see section 3.2.1) and the washing machine type focused in this work. Other such problematic
cases can be appliances that their signatures vary significantly, depending on the selected program
of operation. Such a case is the microwave. Depending on the program selected, its operation may
last half a minute or well over ten minutes. The profile formed would not be able to model such
behaviour accurately.

Another problem regards the generalization capability of the technique, the ability to detect
models different than the ones processed during the profiling process and the training. The greatest
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limitation in this regard has been introduced by the design of the pattern recognition technique. As
explained in section 7.6, the system fails to detect unknown appliance models that during
the main states of their operation consume lower or higher power than the minimum
and maximum values observed in the signatures of the various models during the pro-
filing process. The same limitation applies for the distances between the main power changes
during their operation. For instance, if the system was called to disaggregate a model of a washing
machine that is fairly bigger and more power hungry than the models in the available datasets, the
attempt would fail. However this limitation is not of this approach alone. Most supervised pattern
recognition techniques have to assume a fairly complete training set, that is representative of the
whole appliance type.

Another problematic point is that parts of an appliance’s operation that are not ob-
served in the majority of the models’ signatures are not modelled by the profile. As a
result they are undetectable during the pattern recognition phase. As explained above, in the case
of the appliances targeted during this work, those non-profiled parts do not contribute much to the
total energy consumption of the appliance. In the cases of other appliances, however, perhaps this
loss would be greater. Moreover, it is very important for a disaggregation technique to be able to
‘clear’ the detected event from the aggregate signal. By doing so, it is possible to use the technique
in combination with another algorithm, that could detect the rest of the appliances. The current
version of the system, however, does not detect all the power changes generated by the disaggre-
gated appliances. Removing the detected changes from the aggregate signal would still leave a
number of changes behind. These changes could be mistakenly detected by another disaggregation
system as operations of another appliance.

The current version of the system also has the limitation that it cannot disaggregate two
appliances of the same type if they operate simultaneously. As explained in section 7.4, in
a part of the aggregate signal that an actual operation of a multi-state appliance occurs, there can
be detected various candidate-patterns resembling the ’rough shape’ of the appliance’s signature,
as described by the profile. Out of those candidates only one is disaggregated, the one with the
highest score, as long as it is classified positively by the classifier. As a result, if for instance two
washing machines in a laundry room operate at the same time, only one will be disaggregated. An
extension to the system could give the solution to this problem, by performing a second scan of the
aggregate signal after the first detected instances were removed from the signal.

Finally, the technique would fail to create a profile and detect appliances which do not
present discrete power levels during their operation. Examples of such continuously varying
loads are dimmer lights and motors controlled by adjustable speed drives.

10.3 Future Work

Learn the particular model in the aggregate and perform a second-pass disaggregation

The designed technique has presented a high detection accuracy, avoiding the detection of false
positives. Even if some operations of an appliance are missed during the disaggregation, it can be
inferred that most of the detected events are true positives. Based on this, it could be possible
to extract the characteristics of the particular model of the appliance that is present in the house
by processing the disaggregated events. For instance, it is possible to extract the actual amount
of power it consumes in the various states, as well as the durations of the states. In addition, by
processing the aggregate signal in the areas that the events were detected, patterns that are cre-
ated by the particular model’s operation could be extracted since they would consistently appear
in those areas of the aggregate. Using the new information, a new and more accurate profile could
be formed, adapted to the characteristics of the particular model. Finally, a second-pass over the
aggregate signal could be performed. The second pass could find operations of the appliance that
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were missed during the first pass, re-evaluate the confidence of the already detected events, or even
detect parts of the appliance’s signatures that were missed in the first pass because they were not
part of the generic profile.

Combine the designed technique with different algorithms

The designed system could be used in combination with other techniques, in order to comple-
ment each other. For instance, it could be used in combination with an algorithm that is more
accurate in disaggregating the whole signature of an appliance, even if it is more prone to false
positives. Since our designed technique presents high detection accuracy, it could report the areas
of disaggregated events to the second algorithm. The latter would only scan the specified areas.
This way the false positives are still avoided and the weakness of the designed system, leaving out
parts of a signature, is countered.

Further investigation for features and their addition to the profile

The use of a big number of features for the detection of an appliance seems to be promising.
Further investigation could be performed to extract more patterns that may help distinguish an
appliance. Such features could be the magnitude of a spike’s overshoot or the power decays that
follow them in some cases. To take it even further, the investigated features could be of non-power
nature. For instance, it could be investigated whether certain appliances are usually operated at
certain parts of the day. Perhaps dishwashers tend to be operated the next hours after lunch or
dinner time. The designed technique has a very convenient attribute; it is fairly easy to extend
in order to incorporate any additional feature into the profile of an appliance. Just an additional
entry to the profile and an additional score assigned to the candidates will suffice.

Addition of less consistent features into the profile.

In the current version of the system, a feature is added to the generic profile of an appliance
only if it is observed in the majority of the signatures of the various models. However, it would
be possible to extend the technique in order to add less consistent features to the profile with an
appropriate use of weights. Such an extension would improve the accuracy when disaggregating
models that exhibit such features. In addition, the percentage of energy disaggregated would be
improved, by enabling the detection of parts of the signatures that are currently left out.

Optimization of the pattern recognition process

Throughout the development of the presented system, one of the main problems was to avoid
making the process too computational heavy. As explained in section 7.5, a big number of candi-
date instances are generated during the pattern recognition process. Many attempts and extensions
were made to reduce that number, gradually making the process far more optimized than the first
versions of the system. Still, there is a lot of room for improvement. For instance, after every
evaluation of a feature, candidates with very low scores assigned for that feature could be carefully
removed, making the rest of the evaluation lighter. Such an improvement would not only affect the
disaggregation time. As explained in the end of subsection 6.2, the main reason that only three
main blocks are chosen for creating the appliance’s profile is exactly this computational inefficiency.
An improvement over it would allow for the choice of one more main block and subsequently de-
scribe in more detail the operation of the appliance.

Investigate more appliances

The three appliances that were targeted in this work were chosen after an initial investigation.
Their signatures are complicated but the various models consistently present certain patterns which
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enable their profiling as a ’set of features’. More appliances should be investigated in order to find
such consistent patterns, extend the system and take the approach further.
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Appendices

A Form of the Generated Profile

The creation of the profile is described in section 6. The form of the various entries of the profile
are presented below:

The entry of the profile for the magnitudes of the main power changes consists of a sub entry for
each main change, consisting of the min value observed, the max value observed, the parameters of
the Gaussian Mixture representing the density function of the magnitudes observed in the signatures
and, finally, the weight of the main change, which is the percentage of the signatures that the main
change actually existed. The form of the entry is as follows:

C

[min_magn_O, max_magn_O, [parameters_of_the_gmm_O0], weightO],
[[min_magn_5, max_magn_5, [parameters_of_the_gmm_5], weight5]
]

If correlations between the magnitudes of the certain main changes were observed, an entry is
created to the profile to describe it. For instance, if a correlation has been found for changes XY
and Z, the following entry describes that the magnitude of X must be equal to the magnitude of
Y, or equal to the addition of Y and Z:

[main_change_X, main_change_Y, main_change_Z]

The entry for the distances between the main changes is similar to the entry for the magnitudes.
However it consists of one sub entry for each main change which describes the distances of all the
other main changes from this particular one. For instance, the sub entry for the main-change-0 is
as follows:

(o,
[min_distO0_1, max_distO_1, [parameters_of_the_gmm_0_0]],

[min_distO0_5, max_distO0_5, [parameters_of_the_gmm_0_5]]
]

In the case that repeating parts of the signature were found, an entry is added to the profile with
the type of the repeating parts, the main change with which the repeating parts have a similar

magnitude, and two further sublists. The type of the repeating parts entry can be one of the
following;:

e ’lonly’ - meaning that only one repeat of the cycle was observed consistently in the
e signatures.

e ’lor2’ - meaning that in most of the signatures there were either one or two repeats of the
cycle.

e ’consistent’ - meaning there were at least three repeats in most of the signatures and their
duration and the time intervals between them were fairly stable.

e ’any-number’ - describes the case that there have been repeated parts observed in most of
the signatures but their number is fairly random.

These two sublists describe the area in which the repeating parts have been observed. By
providing the number of a main change of reference and the minimum and maximum distance from
it, the beginning and the end of the area that the repeating parts have been observed is defined.
The entry is of the form:
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[type, main_change_with_similar_magnitude,
[main_change_X, min_distance_from_X, max_distance_from_X],
[main_change_Y, min_distance_from_Y, max_distance_from_Y],

]

The type of each main change is described by a list of percentages, one for each main change.
Those percentages represent the percentage of the signatures that the corresponding main change
was found to be a spike. The entry is a simple list of the form:

[percentage_0, . . . , percentage_5 ]

The existence of rapid changes is described by an entry with two sublists. The first one contains
the minimum and maximum distances that the periods of rapid changes were observed to begin
from a certain main change. The second sublist contains the same information for the point that
the rapids are ending. The main changes of reference are also included, which are chosen to be the
main changes closest to the beginning and ending points of the periods of rapids. The entry is of
the form:

[[main_ch_X, min_dist_from_X_raps_start, max_dist_from_X_raps_start],
[main_ch_Y, min_dist_from_Y_raps_end, max_dist_from_Y_raps_end]]

An entry of the following form describes that the ratio between the duration of X and the
duration of Y has been found to have a density function modelled by the given GMM function:

[block_X, block_ Y, [parameters_of_the_gmm]]
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B Diagrams

B.1 Forming An Appliance’s Profile

B.1.1 Separation of Steady States into Power-Groups

Signature of a Dishwasher, main steady states and the three power levels.
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Figure B.1: Signatures of (a) dishwasher, (b) washing machine, (c) dryer, the steady states
extracted by the Mapper and their separation into three power-groups in the first step of choosing
the main blocks of an appliance’s generic profile (section 6.2).
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B.1.2 Chosen Main Blocks and Main Changes of the profiles
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Figure B.2: The main blocks and the main changes of the profile generated for (a) the dishwasher,
(b) washing machine, (c) dryer. Up to three main blocks are chosen by the algorithm described in
section 6.2, in order to represent the rough shape of the signatures. The magnitudes and
distances between the main changes depicted are the means of the values found while processing
the various signatures and are used only to help visualize the blocks’ positioning. The actual
profile incorporates Gaussian mixture functions to describe the values observed in the signatures.
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B.1.3 Power Consumption and Magnitudes of Main Changes
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Figure B.3: (a) Histogram and density function of the power consumption observed during the
high power states of dishwashers. (b) Magnitudes of the positive and negative power changes of
the first chosen block (first heating cycle) of the dishwasher profile. (c¢) Histogram and density
function of the power consumption observed during the low power states of dishwashers. (d)
Magnitudes of the positive and negative power changes of the third (low power) chosen block of
the dishwasher profile.

99



Inferring Appliance-by-Appliance Energy Consumption 6'" September, 2013

1o Ho.0035

{0.0030
10

0.0025

®

0.0020

Occurences
ohability Density

a

10.0015 £

Ho.0010

2r {0.0005

o 2200 2400 2600 2800 30000-0000

Power (W)
(a)
10 0.0020
EEEm Positive Change Magnitude
N Negative Change Magnitude
8

Ho.c01s
=
s ‘G
2 H

=

E 0.0010 &
= =
s 1 g
&=

0.0005

>l
1200 2000 2200 FoP000
Power (W)

(b)

0.004

0.003

{0.002

Occurences
Probability Density

0.001

Power (W)

()

6 o0.006
N Positive Change Magnitude
mmmm Negative Change Magnitude

0.005

{0.004

{0.003

Occurences
Probability Density

{0.002

0.001

O 300 400 500 G080
Power (W)

()

Figure B.4: (a) Histogram and density function of the power consumption observed during the
high power states of washing machines. (b) Magnitudes of the positive and negative power
changes of the first chosen block (heating cycle) of the washing machine profile. (c¢) Histogram
and density function of the power consumption observed during the low power states of washing
machines. (d) Magnitudes of the positive and negative power changes of the second (low power)
chosen block of the washing machine profile.
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Figure B.5: (a) Histogram and density function of the power consumption observed during the
high power states of dryer. (b) Magnitudes of the positive and negative power changes of the first
chosen block (heating cycle) of the dryers. (c¢) Histogram and density function of the power
consumption observed during the low power states of dryers.
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B.1.4 Durations of States and Distances of Main Changes
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Figure B.6: (a) Histogram and density function of the duration of the first heating cycle, as
observed in the various signatures of dishwashers. (b) Histogram and density function of the time
interval between the beginning of the two heating cycles of dishwashers.
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Figure B.7: Histograms and density functions of (a) the duration of the first chosen block
(heating cycle), (b) second chosen block, (c) the time interval between the beginning of the two
blocks, as observed in signatures of washing machines
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Figure B.8: Histograms and density functions of (a) the duration of the first chosen block, (b)
second chosen block, (c) the time interval between the beginning of the two blocks, as observed in
signatures of dryers
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B.1.5 Repeating Parts of the Signatures
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Figure B.9: Histogram of the number of heating cycles found in the signatures of dryers. The
heating element turns on and off several times for most models of dryers.
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Figure B.10: Histogram of the number of heating cycles found in the signatures of washing

machines. Just like the dryer, during the operation of many models the heating element turns on
and off more than once.
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