
Imperial College London

Master Thesis

Global Optimisation Using Back-Tracking
and Stochastic Methods

Author:

Karol Pysniak

Supervisor:

Dr. Panos Parpas

A thesis submitted in fulfilment of the requirements

for the degree of Master of Engineering

in the

Department of Computing

June 2013

http://www.imperial.ac.uk
http://www.doc.ic.ac.uk

Declaration of Authorship

I, Karol Pysniak, declare that this thesis titled, ’Global Optimisation Using Back-Tracking and

Stochastic Methods’ and the work presented in it are my own. I confirm that:

� Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

� Where I have consulted the published work of others, this is always clearly attributed.

� Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

IMPERIAL COLLEGE LONDON

Abstract

Department of Computing

Master of Engineering

Global Optimisation Using Back-Tracking and Stochastic Methods

by Karol Pysniak

In this thesis we propose and analyse new back-tracking and stochastic methods applied to

global optimization algorithms. The back-tracking methods in global optimization involve using

the information gathered by the points that have already been visited in the domain. In this

work we introduce an information model based on Gaussian Processes to Multiple Start Search

algorithm and add the integral term to Stochastic Gradient Descent algorithm to steer its

trajectory away from the explored regions. Stochastic methods in global optimization involve

introducing random processes that maintain converging property of algorithms and in this thesis

we propose adding Stochastic Term to the candidate point ranking in Hyperbolic Cross Points

and introduce new cooling functions for Stochastic Gradient Descent algorithm and prove that

those functions do not alter the mathematical properties of the original algorithm.

The performance of the proposed methods is evaluated on three test functions: Pinter function,

Michalewicz function and Restrigin function. Those functions are chosen, because they are

extremely challenging for global optimization algorithms to find a solution, but can be easily

solved by a human. All of the methods are also compared against each other by tracking their

performance when applied to Protein Folding Problem based on AB off-lattice model.

http://www.imperial.ac.uk
http://www.doc.ic.ac.uk

Acknowledgements

I would like to thank my supervisor, Dr. Panos Parpas for agreeing to supervise my project

and providing me with constant support, motivating and inspiration throughout the course

of project. Furthermore, I would like to thank my second supervisor, Dr. Daniel Kuhn for

reviewing my draft report. I would also like to thank my personal tutor, Prof. Paul Kelly for

support and enthusiasm during my four years at Imperial College London. Finally, I would

like to thank my family and friends for their support throughout my time at Imperial College

London.

iii

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

List of Figures ix

1 Introduction 1

1.1 Project Explanation . 1

1.2 Motivation . 2

1.3 Project aims . 4

1.4 Report structure . 5

1.5 Project Evaluation . 6

2 Background 7

2.1 Deterministic Optimization Algorithm . 7

2.2 Deterministic Gradient Descent - Problem of Falling Into Local Minima 8

2.2.1 Newton’s Method . 10

2.2.2 Quasi Newton’s Method . 11

2.3 DFP Algorithm . 11

2.4 The BFGS Algorithm . 12

2.5 Line Search . 12

2.6 Stochastic Processes . 12

2.7 Brownian Motion . 13

2.8 Stochastic Calculus . 13

2.9 Ito’s Integral . 14

2.10 Stratonovich Integral . 15

2.11 Stochastic Differential Equations . 15

2.12 The Euler-Maruyama Method . 16

2.13 Numerical Integration . 17

2.14 Gaussian Processes . 18

2.15 Simulated Annealing . 19

2.16 Optimization Under Constraints . 20

iv

Contents v

2.17 Many-dimensional Test Functions . 21

2.17.1 Pinter’s Function . 21

2.17.2 Michalewicz function . 22

2.17.3 Rastrigin Function . 23

3 Gaussian Processes in Random Starting Points Sampling 24

3.1 Deterministic Gradient-Descent Algorithm . 24

3.2 Random Sampling of Search Space . 25

3.3 Re-exploring the explored regions . 25

3.4 Gaussian Processes Used in Algorithm . 26

3.5 Information Model Based on Gaussian Processes 27

3.6 Gaussian Processes in Practice . 29

3.7 Adding Gaussian Processes . 31

3.8 Merging Gaussian Processes . 31

3.9 Merging weights of Gaussian Processes . 32

3.10 Deterministic Optimization Algorithm . 32

3.11 Termination Conditions . 33

3.12 Evaluation Methodology . 33

3.13 Results . 34

3.13.1 Results for Pinter’s Function . 34

3.13.2 Results for Michalewicz Function . 37

3.13.3 Results for Rastrigin Function . 39

3.14 Conclusions . 42

3.14.1 Number of Function Evaluations and Error Accuracy 42

3.14.2 Computational Complexity and Execution Time 42

3.14.3 Final Conclusion and Method Weaknesses 43

4 Adding Stochastic Term to Hyperbolic Cross Points 44

4.1 Properties of Objective Function . 44

4.2 Hyperbolic Cross Points . 44

4.3 Mapping Hyperbolic Cross Points to Other Constraints 45

4.4 Graphical Examples of Hyperbolic Cross Points 46

4.5 HPC points in Global Optimization . 48

4.6 Ranking Hyperbolic Cross Points . 48

4.6.1 Non-Adaptive Approach . 48

4.6.2 Adaptive Approach . 49

4.6.3 Determinism of HPC Point Ranking . 49

4.6.4 Adding Stochastic Term to HPC Point Ranking 50

4.7 Bounds Calculation . 51

4.7.1 First Approach - Halving Total Probabilities 51

4.7.1.1 Example of Random HPC Point Ranking for Halving Total Prob-
abilities . 52

4.7.2 Second Approach - Halving Consecutive Probabilities 53

4.7.2.1 Example of Random HPC Point Ranking for Halving Consecu-
tive Probabilities . 53

4.8 Convergence of Randomized HCP Algorithm . 54

4.9 Stopping Criteria for Test Simulations . 55

Contents vi

4.10 Evaluation Methodology . 55

4.11 Results . 56

4.11.1 Results for Pinter Function . 56

4.11.2 Results for Michalewicz Function . 59

4.11.3 Results for Restrigin Function . 61

4.12 Conclusion . 63

4.12.1 Number of function evaluations . 63

4.12.2 Computational Complexity . 63

4.12.3 Variance of Stochastic Methods . 64

4.12.4 Final Remarks . 64

5 Simulated Annealing Function Generalization for Stochastic Gradient-Descent
Algorithm 65

5.1 Stochastic Gradient-Descent Algorithm . 65

5.2 Stochastic Optimization Using the Euler-Maruyana Method 65

5.3 Convergence of Stochastic Gradient-Descent Algorithm 66

5.4 Mathematical Properties of Annealing Schedule Function 67

5.5 Advantages and disadvantages of standard simulated annealing function 68

5.6 Mathematical properties of candidates for simulated annealing function 68

5.6.1 Functions converging to 1 . 68

5.6.1.1 Tested example of function converging to 1 70

5.6.2 Functions of form n
√
log(x) . 70

5.6.2.1 Tested example of function converging to 1 of form n
√

log(x) . . 71

5.7 Evaluation Methodology . 72

5.8 Results . 73

5.8.1 Results for Pinter Function . 73

5.8.2 Results for Michalewicz Function . 75

5.8.3 Results for Restrigin Function . 77

5.9 Conclusions . 79

5.9.1 Michalewicz Function . 79

5.9.1.1 Number of Function Evaluations 79

5.9.1.2 Accuracy Error . 79

5.9.1.3 Execution Time . 79

5.9.1.4 Michalewicz Function Conclusion 79

5.9.2 Pinter Function . 80

5.9.2.1 Number of Function Evaluations 80

5.9.2.2 Accuracy Error . 80

5.9.2.3 Execution Time . 80

5.9.2.4 Pinter Function Conclusion . 80

5.9.3 Restrigin Function . 80

5.9.3.1 Number of Function Evaluations 80

5.9.3.2 Accuracy Error and Execution Time 81

5.9.3.3 Restrigin Function Conclusion 81

5.9.4 Final Conclusion . 81

6 Stochastic Gradient Descent with Point Repetition Avoidance 82

6.1 Problem Introduction . 82

Contents vii

6.2 Avoiding Point Repetition . 83

6.2.1 Weighted Trajectory Points . 83

6.3 Mathematical properties of K(t) . 84

6.4 Numerical Integration . 84

6.5 Euler Numerical Solution to SDE . 85

6.6 Evaluation Methodology . 86

6.7 Results . 87

6.7.1 Pinter Function . 87

6.7.2 Results for Michalewicz Function . 89

6.7.3 Restrigin Function . 92

6.8 Conclusions . 94

6.8.1 Observations . 94

6.8.2 Locality Problem of Accumulated Historic Points for K(t) 95

6.8.2.1 Trajectory Local Looping . 98

6.9 Conclusion for No Constraint Problem . 98

6.10 Weaknesses of Method . 100

6.11 Final Conclusion and Future Works . 100

7 Protein Structure Global Optimization 101

7.1 Problem Introduction . 101

7.2 Protein Structure Model . 101

7.3 Model Details . 102

7.3.1 2-Dimensional Problem . 102

7.3.2 3-Dimensional Problem . 102

7.4 Input Framework . 104

7.5 Gradient Evaluation . 105

7.5.1 Gradient for 2-Dimensional Model . 105

7.5.2 Gradient for 3-Dimensional Model . 105

7.6 Problem Constraints . 105

7.7 Evaluation Methodology . 106

7.8 Results . 107

7.8.1 2-Dimensional Protein Folding Results . 107

7.8.1.1 Results for protein types: BABABBAB 107

7.8.1.2 Results for protein types: ABBABBABABBAB 107

7.8.2 3-Dimensional Protein Folding Results . 108

7.8.2.1 Results for protein types: BABABBAB 108

7.8.2.2 Results for protein types: ABBABBABABBAB 108

7.9 Conclusion . 109

7.9.1 Conclusions for 2-Dimensional Protein Folding 109

7.9.1.1 Conclusions for protein types: BABABBAB 109

7.9.1.2 Conclusions for protein types: ABBABBABABBAB 109

7.9.2 Conclusions for 3-Dimensional Protein Folding 109

7.9.2.1 Conclusions for protein types: BABABBAB 109

7.9.2.2 Conclusions for protein types: ABBABBABABBAB 109

7.9.3 Final Conclusion . 110

7.9.4 Model weaknesses . 110

7.10 Extended constraints . 111

Contents viii

8 Conclusion and Future Works 112

8.1 Project Approach Overview . 112

8.2 Experimental Analysis Conclusions . 113

8.2.1 Introduction of Gaussian Processes to Multi Start Search 113

8.2.2 Introduction of Stochastic Term to Hyperbolic Cross Points 114

8.2.3 Testing different cooling functions in Stochastic Gradient Descent algorithm114

8.2.4 Introduction of Integral Term to Stochastic Gradient Descent 114

8.3 Experimental Results for Protein Folding Problem 115

8.4 Final Conclusion . 115

8.4.1 Weaknesses and Future Works . 116

A Appendix A 117

A.1 2-Dimensional Problem . 117

A.1.1 3-Dimensional Problem . 118

A.2 Gradient Evaluation . 118

A.2.1 Gradient for 2-Dimensional Model . 118

A.2.2 Gradient for 3-Dimensional Model . 120

Bibliography 122

List of Figures

2.1 Gradient descent graph . 9

2.2 The Euler-Maruyama Simulation of Forward Stock Prices 17

2.3 Sum of Two-dimensional Gaussian Processes . 19

2.4 Pinter Test Function . 22

2.5 Michalewicz Test Function . 23

2.6 Rastrigin Test Function . 23

3.1 Function graph . 26

3.2 Trajectory Ranking - Function Graph and Starting Points 28

3.3 Final Trajectories . 28

3.4 Possible Gaussian Process added as a result of running the algorithm 29

3.5 Number of Function Evaluations for Pinter Function - GP Results First Barrier . 35

3.6 Execution Time for Pinter Function - GP Results First Barrier 35

3.7 Number of Function Evaluations for Pinter Function - GP Results Second Barrier 36

3.8 Execution Time for Pinter Function - GP Results Second Barrier 36

3.9 Number of Function Evaluations for Michalewicz Function - GP Results First
Barrier . 37

3.10 Execution Time for Michalewicz Function - GP Results First Barrier 38

3.11 Number of Function Evaluations for Michalewicz Function - GP Results Second
Barrier . 38

3.12 Execution Time for Michalewicz Function - GP Results Second Barrier 39

3.13 Number of Function Evaluations for Rastrigin Function - GP Results First Barrier 40

3.14 Number of Function Evaluations for Rastrigin Function - GP Results First Barrier 40

3.15 Number of Function Evaluations for Rastrigin Function - GP Results Second
Barrier . 41

3.16 Number of Function Evaluations for Rastrigin Function - GP Results Second
Barrier . 41

3.17 Function graph . 43

4.1 Hyperbolic Cross Points Grid - Step I . 46

4.2 Hyperbolic Cross Points Grid - Step II . 47

4.3 Hyperbolic Cross Points Grid - Step III . 47

4.4 HCP - Number of Function Evaluations for Pinter Function - First Accuracy
Barrier . 57

4.5 HCP - Execution Time for Pinter Function - First Accuracy Barrier 57

4.6 HCP - Number of Function Evaluations for Pinter Function - Second Accuracy
Barrier . 58

4.7 HCP - Execution Time for Pinter Function - Second Accuracy Barrier 58

ix

List of Figures x

4.8 HCP - Number of Function Evaluations for Michalewicz Function - First Accuracy
Barrier . 59

4.9 HCP - Execution Time for Michalewicz Function - First Accuracy Barrier 59

4.10 HCP - Number of Function Evaluations for Michalewicz Function - Second Ac-
curacy Barrier . 60

4.11 HCP - Execution Time for Michalewicz Function - Second Accuracy Barrier . . . 60

4.12 HCP - Number of Function Evaluations for Restrigin Function - First Accuracy
Barrier . 61

4.13 HCP - Execution Time for Restrigin Function - First Accuracy Barrier 61

4.14 HCP - Number of Function Evaluations for Restrigin Function - Second Accuracy
Barrier . 62

4.15 HCP - Execution Time for Restrigin Function - Second Accuracy Barrier 62

5.1 Number of Function Evaluations for Pinter Function 73

5.2 Accuracy Error for Pinter Function . 74

5.3 Execution Time for Pinter Function . 74

5.4 Number of Function Evaluations for Michalewicz Function 75

5.5 Accuracy Error for Michalewicz Function . 76

5.6 Execution Time for Michalewicz Function . 76

5.7 Number of Function Evaluations for Restrigin Function 77

5.8 Accuracy Error for Restrigin Function . 78

5.9 Execution Time for Restrigin Function . 78

6.1 Number of Function Evaluations for Pinter Function 87

6.2 Accuracy Error for Pinter Function . 88

6.3 Execution Time for Pinter Function . 88

6.4 Number of unique points for Pinter Function . 89

6.5 Number of Function Evaluations for Michalewicz Function 90

6.6 Accuracy Error for Michalewicz Function . 90

6.7 Execution Time for Michalewicz Function . 91

6.8 Number of unique points for Michalewicz Function 91

6.9 Number of Function Evaluations for Restrigin Function 92

6.10 Accuracy Error for Restrigin Function . 93

6.11 Execution Time for Restrigin Function . 93

6.12 Number of unique points for Restrigin Function 94

6.13 Algorithm Trajectory - Step 1 . 95

6.14 Algorithm Trajectory - Step 2 . 96

6.15 Algorithm Trajectory - Step 3 . 96

6.16 Algorithm Trajectory - Step 4 . 97

6.17 Algorithm Trajectory - Step 5 . 97

6.18 Pinter - Error Accuracy - No Constraints . 99

6.19 Pinter - Number of Function Evaluations - No Constraints 99

7.1 Possible representation of 3-Dimensional Protein Folding in the Cartesian coor-
dinate system . 103

7.2 Possible representation of 3-Dimensional Protein Folding 103

7.3 Protein Folding Results for 2 Dimensions and 8 proteins 107

7.4 Protein Folding Results for 2 Dimensions and 13 proteins 107

List of Figures xi

7.5 Protein Folding Results for 3 Dimensions and 8 proteins 108

7.6 Protein Folding Results for 3 Dimensions and 13 proteins 108

Dedicated to my parents. . .

xii

Chapter 1

Introduction

1.1 Project Explanation

The goal of the project is proposing and adding back-tracking and stochastic methods to global

optimization algorithms in order to improve the performance of those algorithms by decreasing

the number of function evaluations and improving error accuracy, that is finding a solution that

is closer to true, global minimum.

Back-tracking in global optimization uses information gathered by points in the domain that

have been already visited by trajectory, that is we do not use only the current knowledge

contained in the position of trajectory, but also the information gained from visiting historic

points and their relations to make a decision on the next step. In this work we introduce

information model based on Gaussian Processes to Multiple Start Search algorithm and add

the integral term to Stochastic Gradient Descent algorithm to steer its trajectory away from

the explored regions.

Stochastic methods in global optimization involve adding random processes to algorithms that

maintain their convergence property. Stochastic methods are used to make algorithms less

deterministic and increase the probability of exploring less likely trajectories. In this thesis,

we introduce Stochastic Term to the candidate ranking in Hyperbolic Cross Points algorithm

and proposed using new cooling functions in Stochastic Gradient Descent that do no alter its

mathematical properties.

Back-tracking and stochastic methods described in this dissertation are applied to three main

classes of global optimization algorithms:

1. Multi Start Search - running local-search deterministic algorithms from multiple start-

ing points uniformly sampled from problem domain

2. Stochastic Gradient Descent - solving Stochastic Differential Equation which expresses

algorithm trajectory [1]

1

Introduction 2

3. Hyperbolic Cross Points - evaluating only points in the domain that compose Sparse

Grid - approximation of multi-dimensional function [2]

Mathematically, global optimization algorithms are used to find the global minimum of non-

linear function:

min
x
f(x) (1.1)

s.t. : x ∈ F (1.2)

where F is a feasible set of a problem:

F = {x ∈ Rn|li ≤ xi ≤ ui} (1.3)

There is a great abundance of problems in such a form in many fields of science, engineering

and finance. The analysed methods could be used to optimize the design of computer system,

determine the most optimal way of sampling DNA or optimize complex stock portfolios. In

many of those applications, the objective function and corresponding constraints are natural to

create, for example, in finance we might want to minimize risk and maximize profit given some

initial amount of capital. In the biotechnology sector it is essential to analyse novel proteins

and the knowledge of how a protein folds gives the opportunity to predict and tune its chemical

and biological properties.

Many local search algorithms exist which can find a local optimum for such models, but effective

global search algorithms that promise to find a global optimum are just beginning to become

available. However, these global optimization algorithms are compromised by an inability to be

scaled up to solve practical, large scale optimization problems, for example, financial portfolio

needs to analysed very often under rapidly changing and developing market conditions. The

focus in this dissertation is put on scalable back-tracking and stochastic methods used in global

optimization algorithms that could be improve the accuracy, precision and rate of convergence

of the currently existing algorithms.

1.2 Motivation

The form of the problem to be solved in this dissertation is defined as:

min
x
f(x) (1.4)

s.t. : x ∈ F (1.5)

where:

F = {x ∈ Rn|li ≤ xi ≤ ui} (1.6)

f is assumed to be twice continuously differentiable.

Introduction 3

The generally used method to find the minimum of the function is following the direction of

gradient of the function, that is at every iteration we update the value of starting point x0 in

the following way:

xk+1 =
∏

[xk − αk∇f(xk)] (1.7)

where ∇f(xk) is a gradient direction and αk is a step size used when following −∇f(xk).

The projection operator
∏

[xi] = yi is defined∏
[xi] = min (ui,max (li, xi)) (1.8)

The described method guarantees only the convergence to the local point of extrema, which does

not necessarily need to be global minimum. Therefore, there is a need for global optimization

algorithms.

One way to solve that problem with falling into local minima is random sampling of the feasible

set F and following the gradient descent from those points. However, random search must be

done very extensively without any guarantee that the global minimum will be found. Another

problem with that method is the fact that due to randomness the same region could be explored

many times which would result in increasing the time the algorithm takes to find a global

minimum. Hence, to tackle that problem, in this dissertation, we are going to propose adding

Gaussian Processes to model the explored areas and rate the points based on how much new

information could be gained by following randomly sampled starting points. By doing this, we

could avoid exploring the already explored regions.

In this dissertation we also consider another global optimization algorithm: Hyperbolic Cross

Points. We propose adding Stochastic Term to ranking of candidate points in Hyperbolic Cross

Points algorithm. The ranking is used to pick the next point in Sparse Grid, the approximation

of objective function to be evaluated. However, the currently used rankings in Hyperbolic Cross

Points algorithm make the algorithm deterministic, therefore not available for Monte-Carlo-like

or batch simulations, or is even independent of the objective function. Hence, we add Stochastic

Term to make it less deterministic and improve its adaptability to objective function.

Another way to overcome the problem of falling into local minimum rather than finding the

global minimum is to add stochastic term to Gradient Descent algorithm. Then, the value of

xk+1 is updated every iteration in the following way:

xk+1 = xk − αk∇f(xk) +
√

2T (t)dB(t) , {xk, xk+1} ⊂ F (1.9)

where B(t) is the standard Brownian motion in Rn. T (t) is defined as annealing schedule and

it is usually of the following form:

T (t) ,
c

log(2 + t)
, c ≤ c0 (1.10)

Introduction 4

where c0 is a constant positive scalar.

However, in the presented form, the algorithm uses only the current position of its trajectory

xk to find another point to evaluate xk+1. It means that we discard any information about the

points we have already visited. In this dissertation, we propose adding the integral term which

could be treated as a bias towards the unexplored regions, that is steering the trajectory away

from the explore regions.

Another problem in using Stochastic Gradient Descent is its cooling function:

T (t) ,
c

log(2 + t)
, c ≤ c0 (1.11)

The function is used as a cooling function, because algorithm is proved to be weakly convergent

for that function [3]. However, in this dissertation we propose using other functions, that could

change the behaviour of trajectory by altering the variance of ’noise term’
√

2T (t)dB(t) in

stochastic differential equation governing the trajectory. We also prove the convergence of the

new, proposed cooling functions.

1.3 Project aims

The aims of this project are as follows:

• Proposing the improvement to the random sampling of starting points for deterministic,

local gradient-descent search algorithm using Gaussian Processes and creating the model

to annotate the already explored areas and maximize the possible information gain.

• Adding the stochastic term to the conventional, adaptive ranking of candidate points for

Hyperbolic Cross Points global optimization method.

• Analysis, potential gains and effects of using unconventional simulated annealing functions

for Stochastic Gradient Descent. We prove that the convergence and other mathematical

properties of Stochastic Gradient Descent are not compromised by using the proposed

cooling functions.

• Introduction of the integral term to Stochastic Gradient Descent Algorithm that would

use the information gathered by the past points of trajectories to steer away from the

explored regions of the feasibility set

• Analysis of the proposed methods and comparing their performance based on protein

folding problem using AB off-lattice model for 2- and 3-Dimensional problem setting with

13 and 21 proteins.

Introduction 5

1.4 Report structure

The report is structured in the following set of chapters:

• Background chapter: we start the report from giving an introduction to the techniques

and methods used in this project. We explain the mathematics necessary to understand

that project, for example stochastic calculus and stochastic differential equation, Gaussian

processes and their applications. We also present some techniques necessary for numerical

solving of ordinary and stochastic differential as well as techniques for numerical integra-

tion.

• Gaussian Processes in Random Starting Points Sampling: the first proposed

improvement to the current method of random sampling of starting points is adding

Gaussian Processes to model explored areas of the feasible set (search space). We are going

to show the mathematical foundations for adding Gaussian Processes and how they would

behave in different situations to optimize the performance and accuracy of deterministic

gradient-descent search.

• Adding Stochastic Term to Hyperbolic Cross Points: another proposed back-

tracking improvement involves adding stochastic term to the adaptive ranking used in

Hyperbolic Cross Points. We explain the rationale and show that it makes the method

non-deterministic, thus making the method more appropriate for, for instance, Monte-

Carlo simulations. We also present the performance of the proposed ranking against

Adaptive and Non-Adaptive rankings.

• Simulated Annealing Function Generalization for Stochastic Gradient Descent

Algorithm: in this chapter, we are going to present how different simulated annealing

functions (or ’cooling functions’) could be found and generalized for Stochastic Gradient

Descent Algorithm. We prove that using other annealing functions does not impact on

mathematical properties of original Stochastic Gradient Descent Algorithm. We are also

going to show how it affects the performance and error accuracy of the original algorithm

and compare various functions.

• Adding Integral Term to Stochastic Gradient Descent Algorithm: another chap-

ter involves presenting the proposed integral term that uses the information gathered by

the past points in order to steer trajectory in Stochastic Gradient Descent Algorithm away

from the explored regions. The simulations are run to evaluate how the term affects the

trajectory of the algorithm.

• Global optimization for Protein Folding Problem: in this chapter, we present AB

off-lattice model for protein folding energy. Then, we test all of the proposed methods for

global optimization on this problem and compare them against each other based on the

achieved results.

Introduction 6

• Conclusion and Future Work: The final chapters gives both quantitative and qual-

itative conclusions about the proposed improvements in the existing methods. We also

suggest the future works and the natural continuation of the work presented in this dis-

sertation.

1.5 Project Evaluation

We evaluate the results of the project, that is the proposed methods and implementations, at the

end of every chapter. To compare methods and performance, we are going to use mathematical

functions which are difficult to optimize for a computer, but can be easily solved by a human

and are described in the background section. To compare methods, we are going to compare a

few statistics:

1. Number of functions evaluations: Most of the real-life applications involve functions

that are computationally consuming to evaluate. Hence, in most of the applications func-

tion evaluations are likely to take the most of the time. Hence, decreasing their number

improves the performance of the algorithm.

2. Error accuracy: it denotes how close to the true global minimum the achieved result

was.

3. Execution time: that metric denotes how long a tested algorithm takes.

4. Number of unique points: the points are considered to be unique if they are further

from each other than some small value ε. The higher number of unique points, the more

explorative a method is.

Another method we use to evaluate the proposed methods is applying them to the real-life

biochemical application and seeing if they could compete with currently existing algorithms

and optimization techniques. We evaluate the results of the project not only quantitatively by

comparing number of function evaluations or error accuracy, but we also consider the proposed

methods qualitatively, that is we explain why some methods might work better than others.

Chapter 2

Background

2.1 Deterministic Optimization Algorithm

The problem to be solved in this dissertation is of the following form:

min
x
f(x) (2.1)

s.t. : x ∈ F (2.2)

where:

F = {x ∈ Rn|li ≤ xi ≤ ui} (2.3)

F is a feasible set of a problem. f is assumed to be twice continuously differentiable.

To solve that problem for a convex function, that is a function with only one local minimum,

there are many deterministic algorithms. The most basic one is just a simple Gradient Descent

Algorithm. The general principle of gradient-descent methods is that we can choose arbitrary,

feasible x0 ∈ F and on every iteration update the current xk in the following way:

xk+1 = xk − αk∇f(x) (2.4)

However, the biggest problem with that algorithm is that it can easily fall into local minimum,

not necessarily global minimum. Another challenging issue is the fact that the value of αk for

each iteration should be such that:

arg min
αk

f(xk − αk∇f(x)) (2.5)

that is, it should minimize the value of f(xk+1). However, most of the efficient methods for

finding that value might easily miss, or ’slide over’, some local minimum.

7

Background 8

2.2 Deterministic Gradient Descent - Problem of Falling Into

Local Minima

The problem to be solved in this dissertation is of the following form:

min
x
f(x) (2.6)

The objective function can be of arbitrary non-linear form. Although there are many determin-

istic ways to solve that problem for linear functions such as, for example, simplex algorithm,

there is no method to find a global minimum of arbitrary non-linear function. In such a case,

we need to use some other method. We are going to focus on gradient-descent methods. The

general principle of gradient-descent methods is that we can choose arbitrary, feasible x0 ∈ F
and on every iteration update the current xk in the following way: The objective function can be

of arbitrary non-linear form. Although there are many deterministic ways to solve that problem

for linear functions such as, for example, simplex algorithm, there is no method to find a global

minimum of arbitrary non-linear function. In such a case, we need to use some other method.

We are going to focus on gradient-descent methods.

where αk is the optimal step-size for a given iteration. The iterations stops when the gradient

approaches zero or when the maximum number of iterations has been exceeded. The advantage

of this method is the fact that it can be used for any type of function and is easy to implement

and calculate. However, the presented approach does not guarantee that it converges to the

global minima, but only to a local point of extrema. To show the problem with that technique,

let us assume that the function f is of the following form:

f = x2(x− 3)(x+ 2) = x4 − x3 + 6x2 (2.7)

To present the problem clearly, two starting points are chosen xa and xb:

xa = −0.3 (2.8)

xb = 1 (2.9)

The gradient of the example function f is:

∇f(x) = 4x3 − 3x3 + 12x (2.10)

Hence, we update the value of x every iteration in the following way:

xk+1 = xk − αk(4x3k − 3x3k + 12xk) (2.11)

Background 9

In the figure below, the starting points and trajectories followed and indicated by gradients

have been shown for both cases. The arrows denote the directions indicated by gradients. The

starting points for both trajectories and their solutions have also been denoted.

Figure 2.1: Gradient descent graph

As can be seen, the solutions obtained by two trajectories are different and are equal to:

x∗A = 1.406 (2.12)

x∗B = 2.151 (2.13)

The obvious problem with that method that it produces different results depending on what

starting point has been picked. Hence, the global minimum could have been missed and, there-

fore, the method is considered unreliable for global optimization.

To tackle that problem, that is falling into locally optimal minima, it is very common to add

’noise’ term that would allow the trajectory not to follow the gradient direction, but try other,

random direction. Among many other methods, the problem could be also solved by applying

Monte-Carlo simulation and extensively searching a feasible set for a possible solution.

However, currently global optimization is very open problem to research. Due to the increasing

number of applications, for example, in finance, biochemistry or machine learning, more and

more methods are proposed, but there is no definite way of finding a global minimum which

outperforms other methods. Hence, it is very common that new algorithms are proposed with

the aim of finding a global minimum in specific application or type of non-linear function.

Background 10

2.2.1 Newton’s Method

The method presented in the previous sections use only the first derivative of our objective

function f(x). However, sometimes it might be more efficient use both first and second deriva-

tives. To overcome that drawback, we use Newton’s method [4]. The most important fact about

Newton’s Method is that we can obtain an approximation to twice continuously differentiable

function using the Taylor series expansion of f about the current point xk:

f(x) ≈ f(x(k)) + (x− x(k))T g(k) +
1

2
(x− x(k))TF (x(k))(x− x(k)) (2.14)

Because the terms of order three and higher do not impact the rest of the equations, we have

neglected all the terms of third or higher order. Applying the First Order Necessary Condition,

which states that for x∗ to minimize f(x), the following condition must be satisfied:

g(x∗) = ∇f(x∗) = 0 (2.15)

we get:

f(x) ≈ f(x(k)) +
1

2
(x− x(k))TF (x(k))(x− x(k)) (2.16)

According to the Second Order Necessary Condition, for x∗ to be a minimizer, it is must be

true that:

F (x∗) > 0 (2.17)

Applying the SONC to the equation (2.6), we get the following iteration, which represents

Newton’s method:

x(k+1) = x(k) − F (x(k))−1g(k) (2.18)

To guarantee that Newton’s Method has gradient descent property, we can add the step-size αk

to the method:

x(k+1) = x(k) − αkF (x(k))−1g(k) (2.19)

where αk is chosen so that the following equation is satisfied:

f(x(k+1)) < f(x(k)) (2.20)

The biggest problem with Newton’s Method is the fact that it does not always convergence.

In fact, for Newton’s Method to convergence, some conditions must be satisfied, for example,

starting points must be relatively close to the solution and the inverse of second derivative must

exists at the solution.

Background 11

2.2.2 Quasi Newton’s Method

Another substantial drawback of Newton’s Method is the fact that we need to calculate the

inverse of second derivative F (x)−1 every iteration, which might be extremely computationally

challenging. Quasi Newton Algorithms offer easier ways [5]. Their main iteration is:

x(k+1) = x(k) − αkHkg(x(k)) (2.21)

where Hk is a square real matrix and αk is the term guaranteeing the optimal descent property.

To guarantee the decrease in f(x) at every iteration, the matrix must satisfy the following

property:

g(x(k)T)Hkg(x(k)) > 0 (2.22)

or, simpler, Hk must be positive semi-definite.

Now, we are going to present some of the most popular and accurate Quasi-Newton Methods.

2.3 DFP Algorithm

The DFP algorithm, developed by Davidon, Fletcher and Powell in [6] and [7] works as follows:

1. Select starting point x0 and initial real symmetric positive definite H0

2. if ∇f(xk) = 0, stop. Otherwise, dk = −Hk∇f(xk).

3. Set:

αk = arg min
α

f(xk + αkdk) (2.23)

and:

xk+1 = xk + αkdk (2.24)

4. Compute:

∆xk = αkdk (2.25)

∆gk = gk+1 − gk (2.26)

Hk+1 = Hk +
∆xk∆x

T
k

∆xTk ∆gk
− (Hk∆gk)(Hk∆gk)

T

∆gTkHk∆gk
(2.27)

5. Increment k, go back to step (2) of the algorithm.

Background 12

2.4 The BFGS Algorithm

Another, widely used Quasi-Newton Method has been developed by Broyden, Fletcher, Goldfarb

and Shanno [8]. It is very similar to the DFP Algorithm. It differs by how Hn is calculated.

The method used to calculate it is as follows:

Hk+1 = Hk +

(
1 +

∆gTkHk∆gk

∆gTk ∆xk

)
∆xk∆x

T
k

∆xTk ∆gk
−
Hk∆k∆x

T
k + (Hk∆k∆x

T
k)T

∆gTk ∆xk
(2.28)

Although the BFGS Algorithm update of Hn+1 might seem computationally more requiring, it is

not as the equation presented has many common terms and, therefore, it might quite efficiently

calculated.

It ends the presentation of Deterministic Local Search Algorithms that are going to be used in

this dissertation.

2.5 Line Search

Every Deterministic Optimization Algorithm presented so far uses an optimal step-size αk, that

is:

αk = arg min
α

f(xk + αkdk) (2.29)

To find the value of αk, we are going to use the line-search method. The algorithm is as follows:

• Set k = 0, λl = λmin, λ = λmax

• Set λmid = λl+λu
2 if ∇f(λmid) < 0, then λu = λmid if ∇f(λmid) > 0, then λl = λmid

• if |∇f(λmid)| < ε, then stop the algorithm and αk = λmid.

2.6 Stochastic Processes

Stochastic Process is a set of random variables used to represent the behavior of random value or

system over time. The system which involves stochastic process exhibits certain undetermined

behavior and, in contrary to deterministic systems, it can evolve into many, different states.

The format definition is that given a probability space (Ω,F ,P) and a measurable space (S,S,

an S-valued stochastic process is a collection of S-value random variables on Ω, indexed by a

totally ordered set T - time.

Background 13

2.7 Brownian Motion

The Brownian Motion (or the Wiener Process) is a stochastic process W that exhibits the

following properties over time [0, T]:

1. W (0) = 0 with probability 1

2. For 0 ≤ s < t ≤ T , the random variable given by the increment W (t)−W (s) is normally

distributed, that is W (t)−W (s) ∼
√

(t− s)N(0, 1) (µ = 0 and σ2 = t− w.

3. For 0 ≤ s < t < u < v ≤ T , W (t)−W (s) and W (u)−W (v) are independent.

2.8 Stochastic Calculus

Stochastic Calculus is a calculus used to integrate over random variables. There are many

examples of such problems in everyday life, for example, let us imagine the following problem:

number of server requests grow at a rate a(t). However, there is a noise involved due to the

randomness of that process. Therefore, the total rate of growth could be denoted as:

dN

dt
= a(t) + ”noise” (2.30)

The standard calculus and Ordinary Differential Calculus does not allow to integrate over the

unknown random variables. In general, we can write the problem above as:

X

t
= b(t,Xt) + σ(t,Xt)Wt (2.31)

In that equation, Wt denotes the standard Brownian motion.

Let us consider the discrete version of the equation above over [0, t] and let 0 = t0 < t1... <

tm = t:

Xk+1 −Xk = b(tk, Xk)∆tk + σ(tk, Xk)Wk∆tk (2.32)

Considering the assumptions stated for the Brownian Motion, we can write that Wt∆tk = ∆Bk.

Knowing the initial value for X0, we can write:

Xk = X0 +
k−1∑
j=0

b(tj , Xj)∆tj +
k−1∑
j=0

σ(tj , Xj)∆Bj (2.33)

Assuming that some limit exists as ∆j → 0, we can apply standard integration notation to get:

Xt = X0 +

∫ t

0
b(s,Xs) ds+ ”

∫ t

0
σ(s,Xs) dBs” (2.34)

Background 14

It has been shown that, in fact, the solution to the right ”noisy” integral:
∫ t
0σ(s,Xs) dBs exists

and can be found using, for example, Ito’s Integral or Stratonovich’s Integral [9].

2.9 Ito’s Integral

It has been proven by Ito that assuming variable S follows an Ito process, that is it contains a

stochastic and non-stochastic term or:

dSt = µStdt+ σStdWt (2.35)

then the following statement is true:

dG(s, t) =

(
µSt

δG

δS
+
δG

δt
+

1

2
σ2S2 δ

2G

δS2
dt

)
+ σSt

δG

δS
dWt (2.36)

Then, by transforming the given function to the function of the above form, we can calculate

the integral and the solution for a stochastic process. We are going to see the application of

that integral on the following, widely-used example.

In finance, a forward contract is priced as follows:

F0 = S0e
rT (2.37)

or in general:

F = Ser(T1−T2) (2.38)

where: S0 is a starting price, r is a risk-free rate of growth of capital, T is time and, finally, F0

is the expected forward price at time T .

Assuming that S is of the following form:

dS = µSdt+ σSdWt (2.39)

we could use Ito’s lemma and substitute the Ito’s Integral with our current function. Hence, we

can write:

dG(s, t) = dF (s, T) (2.40)

dF (s, T) = (µSt
δF

δS
+
δF

δt
+

1

2
σ2S2 δ

2F

δS2
)dt+ σSt

δF

δS
dWt (2.41)

Now, we need to calculate all the necessary terms:

δF

δt
= −rSer(t1−t2) (2.42)

Background 15

δF

δS
= er(t1−t2) (2.43)

δ2F

δS2
= 0 (2.44)

Having all the terms above calculated, we substitute them into Ito’s Integral and get:

dF (s, T) = (µSte
r(t1−t2) − rSer(t1−t2) +

1

2
σ2S20)dt+ σSt

δF

δS
dWt (2.45)

dF (s, T) = (µSer(t1−t2) − rSer(t1−t2))dt+ σSer(t1−t2)dWt (2.46)

dF (s, T) = (µ− r)Ser(t1−t2)dt+ σSer(t1−t2)dWt (2.47)

Knowing that F = Ser(t1−t2), we have:

dF = (µ− r)Fdt+ σFdWt (2.48)

However, because the second term on the right-hand side of the equation contains dWt is a

standard Wiener process and its expected value is 0, we know that σFdWt → 0. Hence, we can

write:

dF = (µ− r)Fdt+ σFdWt = (µ− r)Fdt (2.49)

By doing this, we have shown that the expected growth of the forward price, that is the difference

between the current and future price of a stack, is proportional to (µ− r)F .

2.10 Stratonovich Integral

There is also another way of solving the problems described in the previous sections. It has

been created by Stratanovich, independent of Ito and his calculus. Although that integral is not

used in this dissertation, it is important to mention that there are many different approached

to the considered problem. The main different between Ito’s Integral and Stratonovich Integral

is the fact that using Stratonovich Integral allows us to apply chain’s rule when manipulating

equations. However, they are equivalent in most of the cases and can be converted to each other

when convenient.

2.11 Stochastic Differential Equations

Stochastic Differential Equations (or SDE in short) is a differential equation which has at least

one stochastic term. The general form of such an equation is:

dSt = µStdt+ σStdWt (2.50)

Background 16

The example of such an equation was the forward pricing problem given in the previous para-

graph. However, the differential equation we are going to focus on and try to solve in this

dissertation is as follows:

xk+1 = xk − αk∇f(xk) +
√

2T (t)dB(t) , {xk, xk+1} ⊂ F (2.51)

where B(t) is the standard Brownian motion in Rn. T (t) is defined as annealing schedule and

it is usually of the following form:

T (t) ,
c

log(2 + t)
, c ≤ c0 (2.52)

However, that equation does not have a close-form solution. Therefore, we are going to use

various numerical experiments to solve that problem.

2.12 The Euler-Maruyama Method

One of the most popular methods to approximate the solution for a stochastic differential

equations is The Euler-Maruyama Method. It generalizes the Euler method used for solving

an ordinary differential equation. It assumes the following form of a Stochastic Differential

Equation:

dXt = a(Xt)dt+ b(Xt)dWt (2.53)

where Xt is the solution. dWt is a standard Wiener Process.

Knowing the initial X0 and the time interval [0, T] which the Stochastic Differential Equation

is to be integrated over, we start from dividing time interval [0, T] into N intervals so that:

∆t =
T

N
(2.54)

Then, we recursively calculate the value of Xi until all intervals have been calculated:

Xi+1 = Xi + a(Xi)∆t+ b(Xi)∆Wi (2.55)

The values of ∆Wi are simulated by random variables, independent of each other and normally

distributed with the mean µ = 0 and standard deviation σ =
√

∆t, where ∆t = T
N .

To show the usefulness and simplicity of that method, we are going to analyze the following

example of pricing a forward price of a stock. The formula that models the price of a stack is

of the following form:

dF = µdt+ σdW (2.56)

Background 17

that is, the price of a stock is influenced by two factors: constant change (µ) and some random

noise. According to Ito’s Integral, the solution to that problem is:

F (t) = F0e
σW (t)+(µ−σ

2

2
)t (2.57)

where F0 is an initial value of a stock. Wt is a noise, t is time and σ is a standard deviation

of the noise. The initial value F (0) is 100. However, we could solve that problem using the

Euler-Maruyama method. The main iteration in that method is as follows:

F (t+ 1) = F (t) + µ∆t+ σ∆Wt (2.58)

F0 = 100 (2.59)

The figure 2.2 below shows the result of running three simulations. As can be seen, each

simulation produced different values and traces. To capture the general trend of some function,

we could run many Monte-Carlo-like simulation and average the results.

Figure 2.2: The Euler-Maruyama Simulation of Forward Stock Prices

2.13 Numerical Integration

To evaluation any integral that is hard to solve analytically or is not continuous, we can use

numerical integration methods. In general, we have the following integral to solve:

F (a, b) =

∫ a

b
f(x)dx (2.60)

Background 18

In this dissertation, we are going to use the following method for integral evaluation:

F (a, b)

∫ b

a
f(x)dx ≈ b− a

n

(
f(a)

2
+

n−1∑
k=1

(
f

(
a+ k

b− a
n

))
+
f(b)

2

)
(2.61)

2.14 Gaussian Processes

Gaussian Process is a stochastic process used in probability and statistics. It is an important

and useful tool for simulation and modeling. In general, Gaussian Process gives a value for a set

of random variables such that each of the variables is normally distributed with its own mean µi

and standard deviation σi. To model a Gaussian Process, we need to choose a Gaussian basis

function. The functions are usually problem-dependent and are found mostly empirically. The

basis function used in this dissertation is:

φj = exp

(
−(x− µ)2

2σ2

)
(2.62)

In general, the Gaussian Process for n-dimensional problems could be defined as:

φj = exp

− n∑
j=1

(xj − µj)2

2σ2j

 (2.63)

The very important application of Gaussian Processes is creating models. The models are

described as the sum of Gaussian Processes, that is:

W (x) =
n∑
j=1

φj (2.64)

and using our Gaussian basis function, we have:

W (x) =

n∑
j=1

exp

− n∑
j=1

(xj − µj)2

2σ2j

 (2.65)

The figure below shows the example set of Gaussian Processes. That method could be used

to, for example, model the prices of flats or financial assets when there are many factors that

impact the final price of the product:

Background 19

Figure 2.3: Sum of Two-dimensional Gaussian Processes

2.15 Simulated Annealing

To overcome the problem of falling into local minima when using deterministic gradient descent

in f(x), that is to find such x in the feasible set F so that:

∀x̂ ∈ F f(x) ≤ f(x̂) (2.66)

we can add some randomness when deciding how xk should be changed into xk+1. Instead of

strictly following the gradient direction (for unconstrained case):

xk+1 = xk − αk∇f(x) (2.67)

we can add some noise when updating the value of xk:

xk+1 = xk − αk∇f(x) + ”noise” (2.68)

By doing this, we can escape from local minima. Another advantage is that we can explore

regions that would never have changes to be explored. However, the problem with that approach

is that we can miss minima that would be explored when using deterministic approach. Because

of this, the magnitude of noise should gradually decrease or be updated so that at some point

deterministic optimization and gradient direction could be followed. The methods to control that

process of ’cooling’ annealing is called simulated annealing. It is a reference to physical processes

of metal annealing - with time the metal is colder and colder and the random movements are

less likely. In this dissertation, simulated annealing is used and the direction followed on every

Background 20

iteration is:

xk+1 = xk − αk∇f(x) +
√

2T (t))dB(t) (2.69)

Hence, the magnitude and direction of noise is:√
2T (t)dB(t) (2.70)

where t is time and

T (t) =
c

log(2 + t)
(2.71)

As can be seen above, the function T (t) decreases as t increases and, hence, the magnitude of

’noise’ is gradually decreased and, then, deterministic optimization is followed at the best point

found so far.

2.16 Optimization Under Constraints

It is very often that the solution to our minimization problem should satisfy certain constraints,

for example, we might have budget constraints when optimizing portfolio of stocks or other

financial products. Another possible constraints might be time when, for instance, minimizing

the most profitable way of delivering services. In general, we might write our problem as:

min f(x) (2.72)

s.tAx = b (2.73)

In such a case, following the gradient descent:

xk+1 = xk − αk∇f(x) (2.74)

might obviously lead us beyond the feasible set, that is such a set F :

∀x ∈ F Ax = b (2.75)

To make sure that we do not leave the feasibly set, we need to extra term to the direction we

follow:

xk+1 = xk − Pαk∇f(x) (2.76)

where:

P = I −AT (AAT)−1A (2.77)

Background 21

The term P guarantees us that we stay in the feasible set F , assuming that x0 is in the feasible

set, because:

A(xk − αkP∇f(x)) = Axk − αkAP∇f(x) = b (2.78)

Therefore, using the described technique, we can make sure that our solution complies with the

constraints.

2.17 Many-dimensional Test Functions

In this dissertation, we are going to analyze the performance of global optimization techniques

on a few functions and some real-life applications. The motivation to choose the mathematical

functions presented below is that all of them have a number of local minima and it is very difficult

to find their solutions numerically. However, we can set their global minima by changing given

parameters. In general, it is for a human to find their global minima, but difficult for a computer.

2.17.1 Pinter’s Function

The first function f(x) for multi-dimensional vector x, where x∗ is the desired global minimiser,

is:

f(x) = s
n∑
i=1

(xi − x∗i)2 + sin2(g1P1(x)) + sin2(g2P2(x)) (2.79)

P1(x) =

n∑
i=1

(xi − x∗i)2 +

n∑
i=1

(xi − x∗i) (2.80)

P2(x) =
n∑
i=1

(xi − x∗i) (2.81)

For that function f(x), we need to calculate the gradient of the function so that we could use

it in gradient-descent optimization techniques:

δf(x)

δxi
= 2s(xi−x∗i)+2g1

δP1(x)

δxi
sin(g1P1(x)) cos(g1P1(x))+2g2

δP2(x)

δxi
sin(g2P2(x)) cos(g2P2(x))

(2.82)
δP1(x)

δxi
= 2(xi − x∗i) + 1 (2.83)

δP2(x)

δxi
= 1 (2.84)

The figure below shows what the function looks for one and two-dimensional cases. As can be

seen, there are numerous local minima, but global minimum can be easily spotted and specified

by a human:

Background 22

Figure 2.4: Pinter Test Function

2.17.2 Michalewicz function

Another test function we are going to use in this dissertation is Michalewicz Function. For

n-dimensional case, it is of the following form:

f(x) =
n∑
j=1

sin(xi) sin2m(
ix2i
π

) (2.85)

Now, to use that function in our gradient-descent optimization techniques, we need to calculate

its gradient, which is:

δf(x)

δxi
= cos(xi sin2m(

ix2i
π

) + 4m
i2xi
π2

sin(xi) sin2m−1(
ix2i
π

) cos(
ix2i
π

) (2.86)

The Michalewicz function is a multi-modal function with n! local minima.The larger m parame-

ter is, the more steep valleys are created and the more difficult the search for a global minimum

is.

Background 23

The figure below presents Michalewicz function for two-dimensional case:

Figure 2.5: Michalewicz Test Function

2.17.3 Rastrigin Function

Rastrigin function is the non-convex function of the following form:

f(x) = An+

n∑
j=1

(x2i −A cos(2πxi)) (2.87)

Its gradient is:
δf(x)

δxi
= 2xi + 2Aπ sin(2πxi)) (2.88)

The graph of that function is:

Figure 2.6: Rastrigin Test Function

When A = 10, the global minimum of that function is x = 0 and the value of that function is

f(x) = 10.

Chapter 3

Gaussian Processes in Random

Starting Points Sampling

3.1 Deterministic Gradient-Descent Algorithm

Deterministic Gradient-Descent Algorithm is used to optimize non-linear functions, that is it

finds such x that:

min
x
f(x) (3.1)

The objective function is defined as f : Rn → R and f is assumed to be twice continuously

differentiable. In this dissertation, the feasible set is defined using box constraints:

F = {x ∈ Rn|li ≤ xi ≤ ui} (3.2)

The algorithm starts from choosing the starting point that is in the feasible set F , that is:

x0 ∈ F (3.3)

In general, every iteration the value of x is updated by the following equation:

xk+1 =
∏

[xk − αk∇f(xk)] (3.4)

where ∇f(xk) is a gradient direction and αk is a step size used when following −∇f(xk).

The projection operator
∏

[xi] = yi is defined as:∏
[xi] = min (ui,max (li, xi)) (3.5)

24

Chapter 3. Gaussian Processes in Random Starting Points Sampling 25

The algorithm stops when |xk+1 − xk| < ε, that is we are very close to the point of extrema.

3.2 Random Sampling of Search Space

Although Deterministic Optimization Algorithm finds a minimum, there is no guarantee that

the minimum is in fact the global minimum, and not only local one. To overcome that problem,

Random Sampling of Search Space is used [10]. It works by randomly choosing any starting

point x0 that belongs to the feasible set F . Then, the gradient-descent algorithm is used and

the minimum it reaches is taken note of. The algorithm usually stops when the satisfying point

of minimum is found or when the number of iterations exceeds the maximum number. However,

the algorithm does not necessarily solve the problem of falling into a global minimum as it might

miss the convexity area that could lead to such a point.

3.3 Re-exploring the explored regions

One of the weaknesses of the algorithm described in the previous paragraph is the fact that it

might repeatedly choose the points that leads to the same local minimum. It stems from the

fact that certain regions, for example regions, which are not very steep, but are convex over big

area, are more likely to be explored than small, but very steep regions. To explain that problem

more clearly, we are going to analyze the example of Pinter function defined over the domain:

[0, 30].

The Pinter function f , defined over [0, 30], is of the following form:

f(x) = s

n∑
i=1

(xi − x∗i)2 + sin2(g1P1(x)) + sin2(g2P2(x)) (3.6)

P1(x) =
n∑
i=1

(xi − x∗i)2 +
n∑
i=1

(xi − x∗i) (3.7)

P2(x) =

n∑
i=1

(xi − x∗i) (3.8)

The values of the variables are:

s = 0.05; (3.9)

g1 = 20; (3.10)

g2 = 10; (3.11)

The graph of the function is:

Chapter 3. Gaussian Processes in Random Starting Points Sampling 26

Figure 3.1: Function graph

In the figure above, the red line marks the Pinter function with the optimal solution at x = 14

with value f(x) = 0. The green circle denotes the optimal solution. The two dashed lines

mark the region of the domain that, if a starting point is sampled from that region, the global

minimum will be found. Mathematically, the algorithm would find the global minimum if the

starting point is: 13.15 < x0 < 13.55. However, the starting point is uniformly sampled from

the interval [0, 20] and, hence we have the probability of 13.55−13.15
20−0 = 0.40

20 = 0.02 of finding the

true, global minimum while the probability of 0.98 of finding some other local minimum. After

some number of iterations, the algorithm would find the global minimum, but it could take

long time as it would be constantly ’attracted’ to any other convexity region with only local

minimum. Although in this simple toy example, the problem is not severe, in bigger problems

with many local minima the problem becomes significant.

In general, it would be much faster and more accurate for the algorithm to avoid exploring the

already explored areas and prefer less likely, but not yet explored areas.

3.4 Gaussian Processes Used in Algorithm

Before explaining how Gaussian Processes are going to be used to solve the described problems,

we are going to present what Gaussian Processes used in our solution are going to look like.

Chapter 3. Gaussian Processes in Random Starting Points Sampling 27

The proposed idea to solve the problems described in the previous paragraphs involves adding

Gaussian Processes to Random Sampling of Search Space for Deterministic Gradient-Descent

Algorithm. As has been shown in the background section, a Gaussian Process could be viewed

as a multi-dimensional realization of normal distribution with different means µi and standard

deviation σi for each dimension i. In our application, we are going to define a single Gaussian

Process, that is the value of f(x) for some Gaussian Process at point x, as:

GP (x) = exp

 n∑
j=1

φ(xj)

 (3.12)

where xj is jth component of vector x and φ(xj) is a kernel function.

Depending on how Gaussian basis function is defined, the properties of Gaussian Process mod-

eled differ. In our solution, we use following Gaussian basis function:

φ(xj) =
(µj − xj)2

2σ2j
(3.13)

where µj is the mean of jth component and σj is its standard deviation. The given basis function

results in the following value of our Gaussian Process for point x:

GP (x) = exp

 n∑
j=1

φ(xj)

 = exp

 n∑
j=1

µj − xj
2σ2j

 (3.14)

3.5 Information Model Based on Gaussian Processes

As has been described in the previous paragraphs, preventing Random Search Space Sampling

for Deterministic Gradient-Descent Algorithm from exploring the already explored regions or at

least decreasing the probability of such trajectories, could improve the accuracy of the algorithm

and its rate of convergence.

Our proposed solution involves adding tracking and determining which area has been roughly

explored by some trajectory. Then, based on this information, we create a Gaussian Process

that behaves as centers of ’anti-attraction’ and decreases the probability of any trajectory to

go in that region. That process could be viewed as creating a model that indicates which areas

of the feasibility set are not likely to improve the current solution. To present that idea more

clearly, we are going to show some examples how Gaussian Processes are going to be used. The

creation and placement of Gaussian Processes will be explained in the next sections.

The first example is going to be based on the function and trajectories described in the section

3.4, when Trajectory Ranking Problem has been presented. The function is:

Chapter 3. Gaussian Processes in Random Starting Points Sampling 28

f(x) = x(5x− 1)(x+ 2)(x− 1.5) (3.15)

The domain of the function is [−2,∞].

The graph of the function, and potential starting points are presented in the graph below:

Figure 3.2: Trajectory Ranking - Function Graph and Starting Points

The global minimum is at x =≈ −1.6. However, any point chosen in the region at [0,∞] and its

local minimum is much more likely to be explored, decreasing the probability of finding the true

global minimum. The first points evaluated are x1 and x2. The following graph represents the

final positions of the trajectories achieved by the algorithm. The green circles labeled x1 and

x2 represent the final position reached by the trajectories of the corresponding starting points.

Figure 3.3: Final Trajectories

Chapter 3. Gaussian Processes in Random Starting Points Sampling 29

The following graph presents the possible Gaussian Process that could be added as a result of

running the algorithm for the described starting points:

Figure 3.4: Possible Gaussian Process added as a result of running the algorithm

The green line denotes the added Gaussian Process after the algorithm terminates for the first

two starting points. The higher the value returned by the model (the lower plot in the figure

above), the less likely some trajectory could improve the current state or any new information.

As can be noted in the figure above, the convexity area where most of the trajectories are

heading has already been explored and Gaussian Process has been added there. The area where

the global minimum can be found is not covered by any Gaussian Process and, therefore, the

trajectory x1 which could potentially lead to the global minimum is likely to be chosen over any

other trajectories.

3.6 Gaussian Processes in Practice

Using Gaussian Processes that are created and modeled out of data from tracking trajectories,

we could change the process of determining the value of most optimal starting points. After

randomly drawing some number of potential values for x0 from a search space, we could use

Gaussian Processes in our model to asses them and see if any of the given starting points is

Chapter 3. Gaussian Processes in Random Starting Points Sampling 30

likely to add any new information. We obtain that value by calculating the sum of Gaussian

Processes at some point and rank them by that value.

The algorithm with the proposed improvement involves:

• Step 1: Random Sampling of k points We would start the algorithm from randomly

choosing k points from the search space F .

• Step 2: Starting Points Ranking We would calculate the sum of Gaussian Processes

for all the sampled starting points and sort them by that value in ascending order.

• Step 3: Choosing most optimal points We would drop all the points except for the

first n points.

• Step 4: Running the algorithm We would run Deterministic Gradient Descent Algo-

rithm for all the starting points, that is we would follow the gradient direction:

xk+1 = xk − αk∇f(x) (3.16)

• Step 5: Finalizing the iteration We would take the note of the final points reached

by the trajectories and chose the most optimal one.

• Step 6: Adding Gaussian Processes We would take note of the trajectory paths and

add Gaussian Processes if some trajectory lead through the unexplored region.

• Step 7: Repeating Iteration We would repeat the algorithm after the maximum

amount of iterations has been reached.

Trajectory x will be evaluated using the following equation:

f(x) =

n∑
i=1

wiGPi(x) (3.17)

where GPi is ith Gaussian Process for our Search Space and is expressed as:

GPi(x) =

n∑
j=1

φj (xj , µj , σj) (3.18)

where φj is Gaussian Basis Function, µj is a mean and σj is a standard deviation for that

particular Gaussian Process. wi is the weight of Gaussian Process GPi. It is used in order

to differentiate the impact of difference Gaussian Processes, especially those which have been

merged.

Chapter 3. Gaussian Processes in Random Starting Points Sampling 31

3.7 Adding Gaussian Processes

After choosing the starting points, their gradients are followed by the algorithm. Every time

it happens the note is taken of the points visited during that process. Then, the time series of

that is created. From that data, we calculate the mean µ and standard deviation σ.

Having the value of mean µ, we need to decide now if a new Gaussian Process should be created

or if it should be merged with another one. We are going two use the following condition to

determine that:

|µi − µ| < ε (3.19)

where µi is a mean of any other Gaussian Processes. It means that if there is any other Gaussian

Process which has mean µi very close to our mean µ calculated from the latest data points,

then we should merge those Gaussian Processes as they are most likely to belong to the same

convexity area.

If the condition indicates that Gaussian Process should be in fact added, then using the mean

µ and σ, we have all the data necessary to create it and place in the correct position.

3.8 Merging Gaussian Processes

If the condition for merging Gaussian Process is satisfied, then we need to use those data to

calculate new mean µ and standard deviation σ. There are a rich variety of the ways which can

be used to solved that problem and are presented in [11].

However, in order to efficiently merge two Gaussian Processes, we need to hold certain meta-data

about each Gaussian Process. The most optimal way to hold those data would be storing all

the time series or at least some part of them so that new time series could be just ’incorporated’

into the existing and new mean µ and standard deviation σ could be calculated.

That approach posses one, significant problem: its complexity might grow very quickly and

storing so many data points would take a lot of memory, therefore such an approach could

efficiently be used for small problems. We use that method and try to find the boundary on the

size of a problem for which that approach is efficient and tractable.

Another approach for bigger problems is holding only the mean of Gaussian Process µ and its

standard deviation σ,. In that approach, we could average the means of two Gaussian Processes

so that the new mean µ would simply be:

µ = µi + µj (3.20)

Chapter 3. Gaussian Processes in Random Starting Points Sampling 32

where µi and µj are the means of merged Gaussian Processes.

The proposed approach to obtain the value of σ using the standard deviations of two, merged

Gaussian Processes σi and σj is

σ =
√
σ2i + σ2j (3.21)

3.9 Merging weights of Gaussian Processes

Our model consists of the following function for trajectory x:

f(x) =

n∑
i=1

wiGPi(x) (3.22)

When we merge two Gaussian Processes with weights wi and wj , the impact of the merged

Gaussian Process should be bigger. Therefore, we propose the method to combine weights wi

and wj into new weight w:

w = wi + wj (3.23)

3.10 Deterministic Optimization Algorithm

In our implementation, we use Quasi-Newton method as a Deterministic Optimization Algo-

rithm. In particular, we use the BFGS Algorithm. The difference between the BFGS Algorithm

and standard Newton method is that the main iteration is:

xk+1 = xk − αkFk(xk)−1∇f(xk) (3.24)

where Fk(xk) is a second derivative of our objective function f(x).

The BFGS Algorithm approximates the value of Fk(xk)
−1 as H(xk) so that the main iteration

is now:

xk+1 = xk − αkHk(xk)∇f(xk) (3.25)

where Hk is defined as:

Hk+1 = Hk +

(
1 +

∆gTkHk∆gk

∆gTk ∆xk

)
∆xk∆x

T
k

∆xTk ∆gk
−
Hk∆k∆x

T
k + (Hk∆k∆x

T
k)T

∆gTk ∆xk
(3.26)

Another matter is finding the optimal value of step size αk. We use line search method to find

the optimal condition is:

αk = arg min
α

f(xk − αkHk(xk)∇f(xk (3.27)

Chapter 3. Gaussian Processes in Random Starting Points Sampling 33

3.11 Termination Conditions

As has been mentioned earlier, adding Gaussian Processes to Random Sampling of Search Space

for Deterministic Gradient Descent Algorithm has a few termination conditions. They are as

follows:

• The algorithm terminates if the total number of iterations exceeds the maximum amount

N .

• It also terminates when after M consecutive resets, there has been no improvement in the

minimum value of f(x) encountered.

3.12 Evaluation Methodology

To evaluate the algorithm and the proposed change we measure two main statistics for each

simulation:

• Number of iterations after which algorithm terminates

• Execution time

We take note of those two statistics after the algorithm achieves the accuracy error of 10 and 1

within the true global optimum. The accuracy error is defined as:

error = |x′ − x∗| (3.28)

where x∗ is a true global minimum and x
′

is an experimentally found solution. The smaller the

error is, the more accurate algorithm is.

To take the randomness of the algorithm into account, we use certain statistics and plot whisker-

boxes to compare the values:

• µ - mean of the number of iterations as well as error

• σ - standard deviation of both components

• 5th, 50th (median) and 95th percentiles of the measurements

In order to assess the method, we evaluate obtained results against the results obtained by

Random Search Space Sampling for Deterministic Gradient-Descent Algorithm without adding

Gaussian Processes. The statistics for summing up results for both algorithms are also the

same.

Chapter 3. Gaussian Processes in Random Starting Points Sampling 34

3.13 Results

3.13.1 Results for Pinter’s Function

The first test function is Pinter’s Function f(x) for multi-dimensional vector x, where x∗ is the

desired global minimizer, is:

f(x) = s
n∑
i=1

(xi − x∗i)2 + sin2(g1P1(x)) + sin2(g2P2(x)) (3.29)

P1(x) =
n∑
i=1

(xi − x∗i)2 +
n∑
i=1

(xi − x∗i) (3.30)

P2(x) =

n∑
i=1

(xi − x∗i) (3.31)

The values of the variables are:

s = 0.05; (3.32)

g1 = 20; (3.33)

g2 = 10; (3.34)

The maximal number of iterations is n = 500. Every iteration we are going to randomly pick

and rank k = 100 starting points and chose p = 20 best of them. The domain of the algorithm

is going to be 2-dimensional, that is f : R2 → R and it is going to contained in:

x =

[
x1

x2

]
(3.35)

0 ≤ x1 ≤ 1000 (3.36)

0 ≤ x2 ≤ 1000 (3.37)

The results below shows the number of function evaluations (iterations) for the case where the

domain is between 0 and 10x for each dimension. The graph below shows the number of function

evaluations in the 10-logarithmic scale it takes for the algorithm to reach the optimal solution

within the accuracy error 1:

Chapter 3. Gaussian Processes in Random Starting Points Sampling 35

Figure 3.5: Number of Function Evaluations for Pinter Function - GP Results First Barrier

The graph below shows how long it takes for the algorithm to reach the optimal solution within

the accuracy error 1:

Figure 3.6: Execution Time for Pinter Function - GP Results First Barrier

Chapter 3. Gaussian Processes in Random Starting Points Sampling 36

The graph below shows the number of function evaluations in the 10-logarithmic scale it takes

for the algorithm to reach the optimal solution within the accuracy error 10:

Figure 3.7: Number of Function Evaluations for Pinter Function - GP Results Second Barrier

The graph below shows how long it takes for the algorithm to reach the optimal solution within

the accuracy error 10:

Figure 3.8: Execution Time for Pinter Function - GP Results Second Barrier

Chapter 3. Gaussian Processes in Random Starting Points Sampling 37

3.13.2 Results for Michalewicz Function

Another test function we are going to use to evaluate our method is Michalewicz Function. For

n-dimensional case, it is of the following form:

f(x) =

n∑
j=1

sin(xi) sin2m(
ix2i
π

) (3.38)

The results below shows the number of function evaluations (iterations) for the case where the

domain is between 0 and 10x for each dimension. The graph below shows the number of function

evaluations it takes for the algorithm to reach the optimal solution within the accuracy error

0.1:

Figure 3.9: Number of Function Evaluations for Michalewicz Function - GP Results First
Barrier

Chapter 3. Gaussian Processes in Random Starting Points Sampling 38

The graph below shows how long it takes for the algorithm to reach the optimal solution within

the accuracy error 0.1:

Figure 3.10: Execution Time for Michalewicz Function - GP Results First Barrier

The graph below shows the number of function evaluations it takes for the algorithm to reach

the optimal solution within the accuracy error 1:

Figure 3.11: Number of Function Evaluations for Michalewicz Function - GP Results Second
Barrier

Chapter 3. Gaussian Processes in Random Starting Points Sampling 39

The graph below shows how long it takes for the algorithm to reach the optimal solution within

the accuracy error 1:

Figure 3.12: Execution Time for Michalewicz Function - GP Results Second Barrier

3.13.3 Results for Rastrigin Function

The last function used for evaluation is Rastrigin Function:

f(x) = An+

n∑
j=1

(x2i −A cos(2πxi)) (3.39)

Its gradient is:
δf(x)

δxi
= 2xi + 2Aπ sin(2πxi)) (3.40)

We are testing the function for A = 10.

The domain is enclosed between 0 and 100x for each dimension.

The graphs show the number of function evaluations (iterations) for the case where the domain

is between 0 and 100x for each dimension. The graph below shows the number of function

evaluations it takes for the algorithm to reach the optimal solution within the accuracy error

0.1:

Chapter 3. Gaussian Processes in Random Starting Points Sampling 40

Figure 3.13: Number of Function Evaluations for Rastrigin Function - GP Results First
Barrier

The graph below shows how long it takes for the algorithm to reach the optimal solution within

the accuracy error 0.1:

Figure 3.14: Number of Function Evaluations for Rastrigin Function - GP Results First
Barrier

Chapter 3. Gaussian Processes in Random Starting Points Sampling 41

The results below shows the number of function evaluations (iterations) for the case where

the domain is between 0 and 100x for each dimension. The graph below shows the number of

function evaluations it takes for the algorithm to reach the optimal solution within the accuracy

error 1:

Figure 3.15: Number of Function Evaluations for Rastrigin Function - GP Results Second
Barrier

The graph below shows how long it takes for the algorithm to reach the optimal solution within

the accuracy error 1:

Figure 3.16: Number of Function Evaluations for Rastrigin Function - GP Results Second
Barrier

Chapter 3. Gaussian Processes in Random Starting Points Sampling 42

3.14 Conclusions

3.14.1 Number of Function Evaluations and Error Accuracy

From the constructed results and graphs plotted for the test functions we conclude that our

proposed method performs, in general, better than simply using random sampling in the sense

that they decrease the number of function evaluations to reach certain level of error accuracy.

However, the level of improvement is not the same across all of the test cases and domain sizes.

In particular, we note that the number of function evaluations needed to reach the error accuracy

below 10 in the case of the Pinter function or the error accuracy below 1 in the case of the

Michalewicz function is considerably smaller than the results for the corresponding tests in the

case of the original Random Sampling of Starting Points. Therefore, we conclude that the

method is efficient in the beginning of the search. Afterwards, when looking for the values of

accuracy error below the second error accuracy barrier, the performance of the method is still

better than that of simple random sampling, but it is not so considerable.

It might be caused by the fact that Gaussian Processes in our model at first helpfully deflect

searching through the explored regions. However, due to the extremely big number of local

minima in our test functions, our global minimum might be covered by some Gaussian Processes

from its neighbor convexity areas which hold local minima and when the algorithm tries to

explore the convexity area which contains global minimum, it is deflected by those Gaussian

Processes. Another reason for such a trend might be the fact that we use the constant number

of Gaussian Processes. Hence, it might turn out that we have too few or too many Gaussian

Processes to accurately cover different convexity areas of the explored domain.

3.14.2 Computational Complexity and Execution Time

Another important factor to consider is the complexity of our method and its impact on the

general performance of the algorithm. As could be seen in the graphs above, the method

does not add much complexity to the proposed algorithm. Because the test functions used are

not computationally exhaustive, the contribution of function evaluations to the total execution

time is not as significant as the algorithm itself. However, the difference between the proposed

algorithm and Random Search is not considerable. One of the reasons for this could be the

fact that the most computationally exhaustive part of the algorithm is not ranking the starting

point, but running local, deterministic gradient search.

As can be noted in the graph below, the function presented above has a huge number of local

minima.

Chapter 3. Gaussian Processes in Random Starting Points Sampling 43

Figure 3.17: Function graph

Such a situation is problematic for our method due to the fact that maintaining, storing and

utilizing our model of Gaussian Processes would require huge amount of space and computational

power. Also, it might turn out that sometimes the evaluation of the model itself takes longer

than many evaluations of objective function. In such cases, our method would perform worse

than simple random sampling although the number of function evaluations could be smaller.

3.14.3 Final Conclusion and Method Weaknesses

The proposed method performs better for the test functions than Random Sampling of Starting

Points. Another advantage of our methods is the fact that there are many parameters which

could be used to tune it to specific problems, for example, it could be experimented what is

the best method of merging Gaussian Processes or the optimal weight below which Gaussian

Processes should be discarded from our model. Interestingly, we also notice that the bigger error

accuracy can be accepted, the better the proposed method performs in comparison to Random

Sampling of Starting Points. As explained, the error accuracy beyond which the proposed

method loses that advantage might be caused by the number of factors such as, for example,

number of Gaussian Processes or number of local minima that the objective function has.

However, we found certain weaknesses of our method. The most severe one of them is the fact

that it might scale badly whenever we have a problem with the huger number of local minima.

In such a case, our method might become intractable and computationally too challenging and

would not be advisable. However, in such a case we can tune parameter to fit the problem

by, for example, setting the maximum number of Gaussian Processes to certain, acceptable

value. Another weakness of the proposed method is certainly the huge number of parameters

and it might be challenging to create certain heuristics or methods of choosing values for them.

Despite those drawbacks, the methods and the approach itself of using Gaussian Processes for

global optimization might be considered successful and promising for future works.

Chapter 4

Adding Stochastic Term to

Hyperbolic Cross Points

4.1 Properties of Objective Function

Hyperbolic Cross Points method, described and analyzed by E. Novak in [2], is used for finding

a global minimum of function f(x) : Rn → R for box constraints, that is every constraint for

dimension i is expressed as an interval:

ai ≤ xi ≤ bi (4.1)

The only assumption is that the following should contain an open set for ε:

{xi ∈ [ai, bi]| inf
xi∈[ai,bi]

f(x) + ε} (4.2)

The property above is true for any continuous or upper semi-continuous function.

4.2 Hyperbolic Cross Points

Now, we explain how hyperbolic cross points are generated. To show the process, we use the

example where the constraints are given as:

[a, b] =

d∏
i=1

[−0.5, 0.5] (4.3)

44

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 45

The example is based on work in [12]. Hyperbolic cross point is defined as any point which have

co-ordinates equal to:

xi = ±
k∑
j=1

aj2
−j , aj ∈ {0, 1} (4.4)

Another very important notion used in producing hyperbolic cross points is the level of a point.

It is defined as the sum of its components:

lev(x) =

d∑
i=1

lev(xi) (4.5)

The starting point with of level lev(x0) = 0 is a zero point. The neighbor of hyperbolic cross

point x is its neighbor which is different only in one coordinate. The neighbor point of x of level

k is the neighbor of degree m which has level equal to k +m and is defined as:

x′i = xi ± 2−lev(xi)−m ∧ x′j = xj for j 6= i (4.6)

To explain how the point are created more clearly, we show it by the following example.

Let us assume that x is:

x = (0.5, 0) (4.7)

The level of x is 1. The neighbor of x of degree 1 can be:

x′ = (0.5, 0.5) (4.8)

or:

x′ = (0.5,−0.5) (4.9)

4.3 Mapping Hyperbolic Cross Points to Other Constraints

The definition of hyperbolic cross points given above are given for the constraints of the form

[−0, 5, 0.5] for each coordinate. For the general case where the coordinates are defined as:

[a, b] =
d∏
i=1

[ai, bi] (4.10)

where ai ∈ R and bi ∈ R. The hyperbolic cross point is now defined as:

xi = ±bi − ai
2

k∑
j=1

aj2
−j , aj ∈ {0, 1} (4.11)

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 46

In such a case, the coordinates of starting point is defined as:

xi =
bi − ai

2
(4.12)

The neighbors of point x are also defined a little bit different:

x′i = xi ±
bi − ai

2
2−lev(xi)−m ∧ x′j = xj for j 6= i (4.13)

As can be noticed, the hyperbolic point cross for the general case is just the linear mapping of

the base case.

4.4 Graphical Examples of Hyperbolic Cross Points

The following diagrams show the points which have been generated using the hyperbolic cross

points method for different levels. The first diagram has the red square marking the initial point

in the middle of the domain:

Figure 4.1: Hyperbolic Cross Points Grid - Step I

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 47

The next diagram has the green squares added the points which are the neighbors of the initial

point (red square):

Figure 4.2: Hyperbolic Cross Points Grid - Step II

The next diagram has the blue squares added the points which are the neighbors of the green

squares (Hyperbolic Cross Points - Level I):

Figure 4.3: Hyperbolic Cross Points Grid - Step III

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 48

4.5 HPC points in Global Optimization

To use Hyperbolic Cross Points for Global Optimization, we iteratively generate hyperbolic

cross points. At each generation, we evaluate our objective function f(x). The final result of

using Hyperbolic Cross Points method to generate the set H of the HPC points is x defined as:

x : x ∈ H ∧ ∀x∗ ∈ H : f(x) ≤ f(x∗) (4.14)

In practice, at each stage we generate a few candidates for the next point to evaluate and rank

them. Then, the best point is picked and the algorithm continues.

The algorithm terminates when we exceed the maximum number of function evaluations or

when we reach satisfactory results.

4.6 Ranking Hyperbolic Cross Points

There are two main different methods of finding the next point from candidate neighbors points

to be evaluated. Those rankings are adaptive or non-adaptive. They are described and analyzed

in [12].

4.6.1 Non-Adaptive Approach

In non-adaptive version of the algorithm, the ranking is used to measure how thoroughly the

region has been already searched. To calculate the ranking of a given point, we use a few

metrics. First of all, the level of the point is used: the smaller the level of the point is, the less

explored the region is. In addition to this, we also take into account the degree of the point.

The degree of the point is defined as the number of times it has been chosen as the best point

plus one. Similarly to the level, it is also used to express how well explored the search region is

and how likely it is to add new information. The ranking is defined quantitatively as:

g(x) = lev(x) + deg(x) (4.15)

The evaluated value of g(x) is used to order and compare points. The smaller the value of g(x)

is, the more preferable point is. Such an approach is called non-adaptive, because it does not

depend on which function is optimized.

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 49

4.6.2 Adaptive Approach

In adaptive version of the algorithm, we try to add some information that could be used to

take advantage of some properties of an objective function. In addition to calculating the level

and degree of evaluated point, we also define the following ranking for adaptive version of the

algorithm:

rank(x) = #{y ∈ Y |y ≤ f(x)} (4.16)

The set Y is the set of values evaluated by functions, that is:

Y = {f(x1), f(x2), ..., f(xk)} (4.17)

In other words, the function rank(x) returns what is the ranking of the function value evaluated

at point x.

Now, the ranking function g(x) is defined for adaptive version of the algorithm as:

g(x) = (lev(x) + deg(x))αrank(x)1−α where: α ∈ [0, 1] (4.18)

Depending on the value of α, the algorithm can be set to more or less adaptive. For α = 0 the

algorithm becomes non-adaptive, and for α = 1 it depends only on the function value.

4.6.3 Determinism of HPC Point Ranking

In the current setting of the algorithm, the points are ranked and ordered using the value of

g(x). The exact form of g(x) depends on how adaptive our algorithm is expected to be. In the

next steps, the best points are evaluated. Depending on whether or now we want the algorithm

to continue its execution, it might continue or terminate.

As can be noticed, the given approach makes the algorithm deterministic. In the case of non-

adaptive algorithm, we always choose the points in the same order for given constraints inde-

pendent of the objective function. For non-adaptive approach, the function will be optimized

to the same value every time the algorithm is used on it.

Such determinism limits us in a few ways. In particular, we might want to perform Monte

Carlo or batch simulations, but running the algorithm many times would not produce different

results. Another important fact is that it would not make any sense to run the algorithm in

parallel or in distributed systems as they would not produce different results given the same,

constant maximum number of evaluations. Hence, to tackle those limitations, we propose adding

stochastic term to the method and compare the results.

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 50

4.6.4 Adding Stochastic Term to HPC Point Ranking

As has been defined previously, in the deterministic version of the algorithm, the points to be

evaluated next are ranked in the following way:

EvaluationRank(x) = #{y ∈ Y |y ≤ g(x)}+ 1 (4.19)

For Non-Adaptive Version, we have:

g(x) = lev(x) + deg(x) (4.20)

For Adaptive Version, we have:

g(x) = (lev(x) + deg(x))αrank(x)1−α where: α ∈ [0, 1] (4.21)

where:

rank(x) = #{y ∈ Y |y ≤ f(x)} (4.22)

The proposed change of the algorithm involves adding randomness to the process of ranking.

Currently, the point ranked to be number 1 has the probability of being chosen equal to 1, while

all the others have zero probability of being chosen. To change that, we assign each point its

own non-zero probability.

We start from selecting n points to be randomly chosen. The first step is to change how points

are exactly evaluated. As can be seen in the previous equation, the points can have the same

values. In such a case when the points have equal ranking position, we adjust their rankings by

given the priority to the points which were evaluated first. Now, having made sure that each

point has its unique position in ranking, we can evaluate their position k in the ranking. Each

point is going to be assigned specific bounds. The upper value of the bound for kth point is

denoted as Bup(k) and the lower value of the bound is Bdown(k). Then, the next step is to draw

a number p from a uniform distribution over [0, 1]. Having that value, we can locate in which

band it is, that is for which point the following is true:

Bdown(k) ≤ p < Bup(k) (4.23)

The point for which the equation above is true is chosen for the next evaluation.

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 51

4.7 Bounds Calculation

In this section, we present two proposed approaches of calculating probability bounds.

4.7.1 First Approach - Halving Total Probabilities

The first presented approach assumes that the following equation should be preserved:

p(xi) = 2
n∑

j=i+1

p(xj) (4.24)

In words, this approach expresses the fact choosing a point ranked k is twice as likely as choosing

any point ranked higher k.

The value of the upper bound is defined as:

Bup(xk) =
1

3(k−1)
(4.25)

The value of the lower bound is defined as:

Bdown(xk) =
1

3k
(4.26)

As can be noticed, the upper value of the first point is equal to:

Bup(1) =
1

3(k−1)
= 1 (4.27)

In addition to this, we can notice that:

Bupper(k) = Bdown(k + 1) (4.28)

And, finally, the lower bound of the last point is explicitly defined to be:

Bdown(xn) = 0 (4.29)

Hence, because Bup(1) = 1, Bdown(n) = 0 and Bdown(k) = Bup(k + 1), we can be sure that the

whole domain [0, 1], which we draw a random point from, is covered by the bound assignment.

We show that the bounds given above satisfies our assumption:

p(xj)∑n
j=i p(xj)

=
Bup −Bdown∑n

j=i p(xj)
=

1
30
− 1

3∑n
j=i p(xj)

=
1
3∑n

j=i p(xj)
(4.30)

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 52

Probability of choosing a point which is after k, given than the point equal to or after is chosen,

is given by:
p(xi)∑n

j=i+1 p(xj)
=

1− p(xi)∑n
j=i p(xj)

=
2
3
1
3

= 2 (4.31)

Hence, our assumption is satisfied. However, it is important to notice to make sure that we

cover the whole region [0, 1] over which we sample our random variable we did specify that

Bdown(n) = 0, the probability of the last point to be chosen is, in fact, equal to:

p(xn) = 1−
n∑
i=1

(Bup(i)−Bdown(i)) (4.32)

It results from this that our assumption does not hold for the following case:

p(xn−1) = 2p(xn) (4.33)

In other words, we add the residual probability to the last term.

4.7.1.1 Example of Random HPC Point Ranking for Halving Total Probabilities

Let us assume that n = 3, that is there are four points to be ranked. Then, each point has the

following bounds:

• x1: Bup = 1, Bdown = 1
3

• x2: Bup = 1
3 , Bdown = 1

9

• x3: Bup = 1
9 , Bdown = 0

Also:

p(x1) =
2

3
(4.34)

and:

2(p(x2) + p(x3) = 2(
2

9
+

1

9
= 2

1

3
=

2

3
(4.35)

Now, if we happen to draw a random number p = 0.5, then we would chose the point x1,

because:

Bdown(x1) < 0.5 ≤ Bup(x1)→
1

3
< 0.5 ≤ 1 (4.36)

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 53

4.7.2 Second Approach - Halving Consecutive Probabilities

The second presented approach assumes that the following equation should be preserved true:

p(xi) = 2p(xi+1) (4.37)

Hence, the upper bound is equal to:

Bup(xk) =
1

2k−1
(4.38)

and its lower bond is:

Bdown(xk) =
1

2k
(4.39)

and:

p(xk) = Bup −Bdown =
1

2k−1
− 1

2k
=

1

2k
(4.40)

Hence, we can prove our assumption:

p(xk)

p(xk+1)
=

1
2k

1
2k+1

=
1
1
2

= 2 (4.41)

Similarly to the previous method, we can define see that:

Bup(1) = 1 (4.42)

and:

Bdown(k) = Bup(k + 1) (4.43)

To make sure that the whole sample domain [0, 1], we write that:

Bdown(n) = 0 (4.44)

4.7.2.1 Example of Random HPC Point Ranking for Halving Consecutive Proba-

bilities

Let us assume that n = 3, that is there are four points to be ranked. Then, each point has the

following bounds:

• x1: Bup = 1, Bdown = 1
2

• x2: Bup = 1
2 , Bdown = 1

4

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 54

• x3: Bup = 1
4 , Bdown = 0

Also:

p(x1) =
1

2
∧ p(x2) =

1

4
(4.45)

and:
p(x1)

p(x2)
=

1
2
1
4

= 2 (4.46)

Now, if we happen to draw a random number p = 0.3, then we would chose the point x2,

because:

Bdown(x2) < 0.3 ≤ Bup(x2)→ 0.25 < 0.3 ≤ 0.5 (4.47)

4.8 Convergence of Randomized HCP Algorithm

For deterministic version of the algorithm (both adaptive and non-adaptive), it is relatively

easy to show the convergence of the method. First, we define the notation used. The following

sequence shows function evaluations after n steps:

Nn(f) = (f(x1), f(x2), .., f(xn)) (4.48)

We can also define the inverse mapping, that is:

xk = ψk(Nn(f)) (4.49)

To denote a global optimization method, we use the following notation:

φn = (ψ1, ψ2, ..., ψn) (4.50)

The error of our global optimization method can be now defined as:

∆(φn, f) = f(x∗)− inf
x∈[a,b]

f(x) (4.51)

Where x∗ denotes our obtained solution, and infx∈[a,b] f(x) the true global minimum. In HPC

method, it simply takes the minimum of Nn(f), that is:

x∗ = min(Nn(f)) = min(f(x1), f(x2), .., f(xn)) (4.52)

Now, to show that the method converges, we need to show that the following statement is true:

lim
n→∞

∆(φn, f) = 0 (4.53)

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 55

It means that after infinite number of iterations, we are guaranteed to find the global minimum

of our objective function f . The following equation is true, because Hyperbolic Cross Methods

simply tends to imitate dense grid after enough number of iterations.

To show that for our randomization of the method the algorithm is still guaranteed to converge,

we can show that every point in the domain of the function is guaranteed to be tested. As can

be noticed, the probability of not choosing some points is:

lim
n→∞

(1− ¯p(xi))
n = 0 (4.54)

Hence, we are guaranteed to evaluate every point as it would be evaluated in the dense grid,

which does in fact guarantee convergence.

4.9 Stopping Criteria for Test Simulations

For all of the ranking methods used, we assume that if a point has the neighbors closer than

ε = 0.1 and has the value of objective function lower than all the neighbors, it is assumed to

be a local minimizer. What is more, when the level of the point exceeds certain constant for

some dimension lev(xi) = 10, we do not proceed with finding its neighbors as the difference

is too small, which could result in substantially increasing the complexity and length of the

simulations.

4.10 Evaluation Methodology

To test the proposed addition of stochastic term to the algorithm, we measure the performance

of the algorithm against four metrics:

1. Number of function evaluations and execution time before the algorithm reaches the op-

timal solution within the accuracy error of 10 to the true, optimal solution

2. Number of function evaluations and execution time before the algorithm reaches the op-

timal solution within the accuracy error of 1 to the true, optimal solution

Each of the method is tested over various domains. We are going to plot whisker plots from the

obtained results. The algorithms will be tested on three functions described in the background.

The performance of the proposed methods is measured against the original version of Stochastic

Gradient Descent. In the presented graphs for each function, the following notation is used:

• Non-Adaptive - Hyperbolic Cross Points using Non-Adaptive Ranking, that is choosing

the point with the lowest overall level and degree.

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 56

• Adaptive - Hyperbolic Cross Points using both the total level and degree of the point

as well as its current position in terms of objective function relative to other evaluated

points. The value of alpha is kept constant for all the simulations and is equal to: α = 0.5.

• Stochastic - Hyperbolic Cross Points using the total level and degree of the point, its

current position in terms of objective function relative to other evaluated points as well

as stochastic term added to the final ranking. The value of alpha is kept constant for all

the simulations and is equal to: α = 0.5.

4.11 Results

The number of iterations is n = 100. The domain of the algorithm is going to be 2-dimensional,

that is f : R2 → R.

4.11.1 Results for Pinter Function

Another test function is Pinter Function f(x) for multi-dimensional vector x, where x∗ is the

desired global minimizer, is:

f(x) = s
n∑
i=1

(xi − x∗i)2 + sin2(g1P1(x)) + sin2(g2P2(x)) (4.55)

P1(x) =
n∑
i=1

(xi − x∗i)2 +
n∑
i=1

(xi − x∗i) (4.56)

P2(x) =

n∑
i=1

(xi − x∗i) (4.57)

The values of the variables are:

s = 0.05; (4.58)

g1 = 20; (4.59)

g2 = 10; (4.60)

The graph below shows the number of function evaluations (in logarithmic scale) for the algo-

rithm to reach the optimal solution within the accuracy error of 10:

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 57

Figure 4.4: HCP - Number of Function Evaluations for Pinter Function - First Accuracy
Barrier

The graph below shows the execution time (in logarithmic scale) for the algorithm to reach the

optimal solution within the accuracy error of 10:

Figure 4.5: HCP - Execution Time for Pinter Function - First Accuracy Barrier

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 58

The graph below shows the number of function evaluations (in logarithmic scale) for the algo-

rithm to reach the optimal solution within the accuracy error of 1:

Figure 4.6: HCP - Number of Function Evaluations for Pinter Function - Second Accuracy
Barrier

The graph below shows the execution time (in logarithmic scale) for the algorithm to reach the

optimal solution within the accuracy error of 1:

Figure 4.7: HCP - Execution Time for Pinter Function - Second Accuracy Barrier

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 59

4.11.2 Results for Michalewicz Function

The first test function we are going to use to evaluate our method is Michalewicz Function. For

n-dimensional case, it is of the following form:

f(x) =

n∑
j=1

sin(xi) sin2m(
ix2i
π

) (4.61)

The graph below shows the number of function evaluations for the algorithm to reach the optimal

solution within the accuracy error of 10:

Figure 4.8: HCP - Number of Function Evaluations for Michalewicz Function - First Accuracy
Barrier

The graph below shows the execution time for the algorithm to reach the optimal solution within

the accuracy error of 10:

Figure 4.9: HCP - Execution Time for Michalewicz Function - First Accuracy Barrier

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 60

The graph below shows the number of function evaluations (in logarithmic scale) for the algo-

rithm to reach the optimal solution within the accuracy error of 1:

Figure 4.10: HCP - Number of Function Evaluations for Michalewicz Function - Second
Accuracy Barrier

The graph below shows the execution time for the algorithm to reach the optimal solution within

the accuracy error of 1:

Figure 4.11: HCP - Execution Time for Michalewicz Function - Second Accuracy Barrier

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 61

4.11.3 Results for Restrigin Function

The last function used for evaluation is Restrigin Function:

f(x) = An+

n∑
j=1

(x2i −A cos(2πxi)) (4.62)

We are testing the function for A = 10. The graph below shows the number of function

evaluations (in logarithmic scale) for the algorithm to reach the optimal solution within the

accuracy error of 10:

Figure 4.12: HCP - Number of Function Evaluations for Restrigin Function - First Accuracy
Barrier

The graph below shows the execution time (in logarithmic scale) for the algorithm to reach the

optimal solution within the accuracy error of 10:

Figure 4.13: HCP - Execution Time for Restrigin Function - First Accuracy Barrier

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 62

The graph below shows the number of function evaluations (in logarithmic scale) for the algo-

rithm to reach the optimal solution within the accuracy error of 1:

Figure 4.14: HCP - Number of Function Evaluations for Restrigin Function - Second Accuracy
Barrier

The graph below shows the execution time (in logarithmic scale) for the algorithm to reach the

optimal solution within the accuracy error of 1:

Figure 4.15: HCP - Execution Time for Restrigin Function - Second Accuracy Barrier

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 63

4.12 Conclusion

4.12.1 Number of function evaluations

The obtained results suggest the superiority of Adaptive and Stochastic ranking methods over

Non-Adaptive ranking method. The better performance is most likely caused by the fact that

Adaptive and Stochastic ranking methods are not independent of the objective functions, but

can be considered greedy, that is it almost always explores the current most promising point.

However, the difference in performance is not uniform across different functions and it suggests

that the performance of Ranking Methods is likely to depend on the number of local minima

in the test functions. However, we need to remember that we tested the methods for alpha =

0.5. That variable is used in ranking in the following equation to vary the influence of local

information (values of objective function and position in ranking) and the global information

(the point with the highest total degree and level):

g(x) = (lev(x) + deg(x))αrank(x)1−α where: α ∈ [0, 1] (4.63)

The fact that we kept the value of α might have influenced the performance of different meth-

ods for various functions. Hence, to get a more representative conclusions about the total

performance of the methods, we could in the future run more tests, but for different values of

α. It would enable us to make more conclusions about the general behavior of the methods

independent of the value of α.

4.12.2 Computational Complexity

As is evident from the graphs above, the results for the execution time for different functions

and domain sizes follow the patterns seen in the graphs of the number of function evaluations.

However, they do not follow them very closely and it also proves that the non-adaptive ranking

of hyperbolic cross points is the least computationally exhaustive. The reason for this is the fact

that it does not require any meta-data processing for each point such as, for example, keeping

sorted list of candidate points with regards to the values of objective function. The other three

methods, that is adaptive and stochastic ranking methods require more resources to evaluate

the next most appropriate point to evaluate.

The difference stems from the fact that the non-adaptive method ranking does not require

much of the computational resources when determining the next point to evaluate. It simply

takes another point from the queue of hyperbolic cross points. On the other hand, when other

methods try to determine the next point to evaluate, they need to sort all the candidate points.

It is not only extremely computationally demanding, but it also puts a lot of strain on memory.

Surprisingly, there is not much difference between using the stochastic method and deterministic

ranking. However, it might be explained by looking at how probabilities are distributed among

Chapter 4. Adding Stochastic Term to Hyperbolic Cross Points 64

different candidate points, for example, in the first method the first point has the probability

of being chosen equal to 0.5, while the next one has 0.25, and so on. Hence, it can be expected

that in most of the time, half at least, the point is chosen very quickly as, for example, the 10th

has only the probability of being equal to about: 1
210

.

4.12.3 Variance of Stochastic Methods

In general, we conclude that the performance of the proposed Stochastic ranking methods is

not substantially different from that of Adaptive ranking method. What is more, the means

of all three methods are roughly the same and are quite likely different only due to statistical

deviations. However, what is evident from the graphs, the Stochastic ranking methods result

in greater variance in both execution time as well as the number of function evaluations. What

is more, there is no apparent difference between the proposed ways of calculating probabilities

for the points in the ranking in Stochastic Ranking method. However, the value and scale of

variance are most likely to depend on the method of calculating probabilities for different points

in the method. Hence, it could make sense to test other Stochastic method that would enable,

for example, uniform sampling of the first k points instead of varying their probabilities based

on their position in the original ranking.

4.12.4 Final Remarks

All four tested methods have certain advantages over the others. The the Non-Adaptive method

is more appropriate for finding the optimum of the objective functions which do not have highly

computationally demanding calculations or have big domain. It is due to the fact that that

ranking method does not use any extra ordering and ranking of the candidate points, making

the method more computationally scalable. In comparison to this, the Adaptive and Stochastic

ranking methods require keeping the ordered list of the candidate points so that their position

in the final ranking could be estimated. What is more, although the Adaptive and Stochastic

methods seem to have similar performance, the Stochastic Ranking Methods are random and,

therefore, they are not deterministic. That property is particularly useful in certain applications,

for example, rerunning the same algorithm for the same function might improve the result for

Stochastic Ranking method.

However, we note certain weaknesses of the tested methods. In particular, the proposed methods

are extremely memory demanding as they need to keep the list of not only all the candidate

points, but also of their levels and degrees. In addition to this, our proposed methods might have

now bigger parameter space as we need to chose not only the optimal value for the parameter

α, but also the optimal value of probability distribution for ranked, candidate points. However,

the methods still seem very promising and we think that in the future it could be useful to run

more experiments varying the value of α and ways of probability distribution over candidate

points to create some heuristics for setting up their values in practical problems.

Chapter 5

Simulated Annealing Function

Generalization for Stochastic

Gradient-Descent Algorithm

5.1 Stochastic Gradient-Descent Algorithm

In the current version of Stochastic Gradient-Descent algorithm [13], the trajectories are updated

in the following way:

X(0) = y ∈ F (5.1)

dX(t) = −∇f(X(t))dt+
√

2T (t)dB(t) (5.2)

where B(t) is the Brownian motion in Rn and F is the feasible set. T (t) is called annealing

schedule and is used to decrease the effect of random variables over time. T (t) is defined as:

T (t) ,
c

log(2 + t)
(5.3)

where c is problem-dependent positive scalar.

5.2 Stochastic Optimization Using the Euler-Maruyana Method

Now, to solve that problem, we need to use numerical experiment to calculate the solution to that

Stochastic Differential Equation. We use the Euler-Maruyama method to get for constrained

case:

X(0) = y ∈ F (5.4)

65

Chapter 5. Simulated Annealing Function Generalization 66

X(t+ 1) =
∏[

X(t)−∇f(X(t)) + µX(t)−1 +
√

2T (t)∆tu
]

(5.5)

The projection operator
∏

[xi] = yi is defined as:∏
[xi] = min (ui,max (li, xi)) (5.6)

where ∆t is the length of discrete time step and u is a n-dimensional vector of normally dis-

tributed numbers with mean µ = 0 and standard deviation σ = 1. For unconstrained case, the

term P is ignored, that is its values is equal to unity and the iteration is as follows:

X(t+ 1) = X(t)−∇f(X(t))∆t+
√

2T (t)∆tu (5.7)

The algorithm starts by dividing the time length into n steps, that is:

∆t =
T

n
(5.8)

The next step is to startm different trajectories from each starting point. Each of the trajectories

is different due to the randomness of its stochastic term. Every iteration the effect of the

stochastic term is decreased. After such a period, we start ranking each of the trajectories.

The trajectories are ranked simply by comparing its values, that is f(x) is ranked higher than

f(x∗) if and only if f(x) < f(x∗). k of the worst trajectories are then discarded and k of

the best trajectories are duplicated. In the next period we just take the produced trajectories

and treat them as new starting points. If the vector of highest-ranked trajectories does not

change for more than l iterations, we reset noise term. The algorithm terminates when the

noise term is too small to make any difference or, in other words, when our stochastic gradient-

descent technique turns into linear gradient-descent technique. Another termination condition

is when after some number r of noise resets there is no improvement in the best trajectory

encountered. All constants are problem-dependent and should be experimented with to receive

the best results.

5.3 Convergence of Stochastic Gradient-Descent Algorithm

It has been shown in [14] that for u : Rn → [0,∞), we can choose the annealing schedule

function T (t) such that the algorithm converges weakly to a probability measure π around the

global minima of U . In such a case, π is the weak limit of the following Gibbs density:

p(t, x) =

[
exp{−f(x)

T (t)
}
] [∫

Rn

f(x)

T (t)
dx

]−1
(5.9)

Chapter 5. Simulated Annealing Function Generalization 67

In most of the previous papers on Stochastic Gradient-Descent Algorithm, the function used

for the annealing schedule has been:

T (t) =
c

log(t)
(5.10)

where c is constant.

Based on the proof given in [14], we can extract the necessary mathematical property that

the annealing schedule function should satisfy so that it would still be true that the algorithm

weakly converges to the probability π.

5.4 Mathematical Properties of Annealing Schedule Function

In the proof given by [14], it can be noted that the annealing schedule function σ2(t) is used to

prove lemma: ∫ β(s,t)

s

σ2(u)

σ2(s)
du = t (5.11)

The function and its properties are used in the last part of the proof, that is:

B(t) =

∫ t

0
|b(Y (s, u))|2

(
log β(s, u)

log s
− 1

)2 1

σ2(s)
du (5.12)

≤ M2

σ2(s)

∫ t

0

(
log β(s, u)

log s
− 1

)2

du (5.13)

=
M2

σ2(s)

∫ t

0

(
log u

log s
− 1

)2 log u

log s
du→ 0 (5.14)

The proof is satisfied by σ2(t) = c
log t in the following way:

≤ M2

σ2(s)

∫ t

0

(u
s
− 1
)2 log u

log s
du (5.15)

≤ constant

log(s)

∫ t

0

(u
s
− 1
)2
du (5.16)

=
constant

log(s)

(β(s, t)− s)3

s2
(5.17)

≤ constant

log(s)
→ 0 (5.18)

Chapter 5. Simulated Annealing Function Generalization 68

5.5 Advantages and disadvantages of standard simulated an-

nealing function

The standard simulated annealing function, σ2(t) = c
log t , has some very useful properties when

used for global optimization. First of all, its value decrease relatively slowly and, therefore, it

gives the algorithm enough time to discover many regions. In mathematical sense, the variation

of the random walk stays relative big and it does not drop so drastically. It suits to most of the

problems.

However, as could be noted in the previous section, to prove that the stochastic gradient-descent

algorithm converges weakly to π, we do not need to necessarily use the proposed simulated

annealing function σ2(s), but could use any other as long as it proves the lemma.

One of the effects of such a change would result in convergence rate, that is we could faster

converge to global minimum. Of course, the rate of convergence and, in ours case, simulated

annealing function could have various performance for different applications. However, identi-

fying other potential simulated annealing function and testing them could result in improving

performance either by increasing the rate of convergence or its error accuracy. Hence, we start

by showing some candidates which could be used as a cooling function and, then, we run them

on our test functions to see how they affect the performance.

5.6 Mathematical properties of candidates for simulated an-

nealing function

5.6.1 Functions converging to 1

To show the first class of functions of possible candidates for simulated annealing, we start from

defining the set of functions F1, which is a set of all functions monotonically converging to 0:

F1 : Rn → R : ∀x ∈ R : f(x) ≥ 1 ∧ f(x)→ 1 as x→∞ (5.19)

The possible new candidates for simulated annealing function could be now defined as:

σ2(s) =
c

log(s)

1

f(s)
(5.20)

where: f ∈ F .

Chapter 5. Simulated Annealing Function Generalization 69

Now, to show that such a choice would not change the properties of the stochastic gradient-

descent algorithm, the following proof is presented:

B(t) =

∫ t

0
|b(Y (s, u))|2

(
log β(s, u)

log s
− 1

)2 1

σ2(s)
du (5.21)

≤ M2

σ2(s)

∫ t

0

(
log β(s, u)

log s
− 1

)2

du (5.22)

=
M2

σ2(s)

∫ t

0

(
log u

log s
− 1

)2 log u

log s
du (5.23)

=
M2 log(s)

c
f(s)

∫ t

0

(
log u

log s
− 1

)2 log u

log s
du (5.24)

≤ constant

log(s)
f(s)

∫ t

0

(u
s
− 1
)2
du (5.25)

From our assumptions, we know that:

f(s) ≥ 1 (5.26)

Hence:
constant

log(s)
f(s)

∫ t

0

(u
s
− 1
)2
du (5.27)

≤ constant

log(s)
f(s)

(β(s, t)− s)3

s2
(5.28)

≤ constant

log(s)
f(s) (5.29)

Now, we know because:

lim
s→∞

f(s) = 1 (5.30)

and:

lim
s→∞

constant

log(s)
= 0 (5.31)

we have:

≤ constant

log(s)
f(s)→ 0 (5.32)

which completes our proof.

Chapter 5. Simulated Annealing Function Generalization 70

5.6.1.1 Tested example of function converging to 1

In our work, we test one candidate for a simulated annealing function and test its influence.

The function, as shown above, needs to satisfy the following assumptions:

• ∀x ∈ R : f(x) ≥ 0

• lims→∞ f(s) = 1

The function which satisfies those conditions is:

f(x) =
1

x
+ 1 (5.33)

and this function is used in our tests. Hence, our simulated annealing function is now:

σ2(x) =
c(

1
x + 1

)
log x

(5.34)

5.6.2 Functions of form n
√
log(x)

In this subsection, we try to show how we could use the functions of the following form:

σ2(x) =
c

log(x)

1
n
√

log(x)
(5.35)

for all n ≥ 1.

The propose simulated annealing function would be now:

Now, to show that adding a function of such a from would not change the convergence properties

of the stochastic gradient-descent algorithm, the following proof is presented:

B(t) =

∫ t

0
|b(Y (s, u))|2

(
log β(s, u)

log s
− 1

)2 1

σ2(s)
du (5.36)

≤ M2

σ2(s)

∫ t

0

(
log β(s, u)

log s
− 1

)2

du (5.37)

=
M2

σ2(s)

∫ t

0

(
log u

log s
− 1

)2 log u

log s
du (5.38)

=
M2 log(s)

c
f(s)

∫ t

0

(
log u

log s
− 1

)2 log u

log s
du (5.39)

≤ constant

log(s)
f(s)

∫ t

0

(u
s
− 1
)2
du (5.40)

Chapter 5. Simulated Annealing Function Generalization 71

From our assumptions, we know that:

f(s) = n
√

log(s) (5.41)

Hence:
constant

log(s)
n
√

log(s)

∫ t

0

(u
s
− 1
)2
du (5.42)

≤ constant

log(s)
n
√

log(s)

∫ t

0

(u
s
− 1
)2
du (5.43)

=
constant

log(s)
n
√

log(s)
(β(s, t)− s)3

s2
(5.44)

≤ constant

log(s)
n
√

log(s) (5.45)

≤ constant
1− 1

n
√

log(s)
(5.46)

Now, we know because:

lim
s→∞

constant

log(s)
= 0 (5.47)

then:

lim
s→∞

constant
1− 1

n
√

log(s)
= 0 (5.48)

we have:
constant
1− 1

n
√

log(s)
→ 0 (5.49)

which completes our proof.

5.6.2.1 Tested example of function converging to 1 of form n
√

log(x)

As has been shown above, the other possible candidate for simulated annealing function can be:

σ2(x) =
c

1+ 1
n
√

log(s)
(5.50)

where n ∈ R and:

n ≥ 1 (5.51)

Chapter 5. Simulated Annealing Function Generalization 72

5.7 Evaluation Methodology

To test the proposed changes to the algorithm, we measure the performance of the algorithm

against based on two metrics:

1. Number of function evaluations

2. Error accuracy:

error = f(x∗)− inf
x∈[a,b]

f(x′) (5.52)

where x∗ is the obtained solution, and x′ is the true global minimum.

3. Execution Time

Each of the method is tested over various domains. We plot whisker plots from the obtained

results. The proposed annealing functions are tested on three functions described in the back-

ground. The performance of the proposed methods is measured against the original version of

Stochastic Gradient Descent. In the presented graphs for each function, the following notation

is used:

• Standard Log - results for the standard cooling function: T (t, c) = c
log(t+2)

• Modified Log - results for cooling function: T (t, c) = c
1+ 1

n
√
log(t+2)

• Decreasing To One - results for cooling function: T (t, c) = c

(1
t
+1) log(t+2)

Chapter 5. Simulated Annealing Function Generalization 73

5.8 Results

The number of simulations is n = 100. We run the algorithm with the given cooling function

until it stops. The domain of the algorithm is 2-dimensional, that is f : R2 → R.

5.8.1 Results for Pinter Function

Another test function is Pinter Function f(x) for multi-dimensional vector x, where x∗ is the

desired global minimizer, is:

f(x) = s
n∑
i=1

(xi − x∗i)2 + sin2(g1P1(x)) + sin2(g2P2(x)) (5.53)

P1(x) =

n∑
i=1

(xi − x∗i)2 +

n∑
i=1

(xi − x∗i) (5.54)

P2(x) =
n∑
i=1

(xi − x∗i) (5.55)

The values of the variables are:

s = 0.05; (5.56)

g1 = 20; (5.57)

g2 = 10; (5.58)

The graph below shows the number of function evaluations (log-scale) before the algorithm

stops:

Figure 5.1: Number of Function Evaluations for Pinter Function

Chapter 5. Simulated Annealing Function Generalization 74

The graphs below shows the accuracy error (log-scale) achieved by the algorithm and the exe-

cution time (log-scale) of the algorithm with different cooling functions:

Figure 5.2: Accuracy Error for Pinter Function

Figure 5.3: Execution Time for Pinter Function

Chapter 5. Simulated Annealing Function Generalization 75

5.8.2 Results for Michalewicz Function

The first function we use to evaluate our method is Michalewicz Function. For n-dimensional

case, it is of the following form:

f(x) =

n∑
j=1

sin(xi) sin2m(
ix2i
π

) (5.59)

Now, to use that function in our gradient-descent optimization techniques, we need to calculate

its gradient, which is:

δf(x)

δxi
= cos(xi sin2m(

ix2i
π

) + 4m
i2xi
π2

sin(xi) sin2m−1(
ix2i
π

) cos(
ix2i
π

) (5.60)

The graph below shows the number of function evaluations before the algorithm stops:

Figure 5.4: Number of Function Evaluations for Michalewicz Function

Chapter 5. Simulated Annealing Function Generalization 76

The graphs below shows the accuracy error achieved by the algorithm and the execution time

of the algorithm with different cooling functions:

Figure 5.5: Accuracy Error for Michalewicz Function

Figure 5.6: Execution Time for Michalewicz Function

Chapter 5. Simulated Annealing Function Generalization 77

5.8.3 Results for Restrigin Function

The last function used for evaluation is Restrigin Function:

f(x) = An+
n∑
j=1

(x2i −A cos(2πxi)) (5.61)

Its gradient is:
δf(x)

δxi
= 2xi + 2Aπ sin(2πxi)) (5.62)

We are testing the function for A = 10. The domain is enclosed between 0 and 100x for each

dimension.

The graph below shows the number of function evaluations (log-scale) before the algorithm

stops:

Figure 5.7: Number of Function Evaluations for Restrigin Function

Chapter 5. Simulated Annealing Function Generalization 78

The graphs below shows the accuracy error (log-scale) achieved by the algorithm and the exe-

cution time (log-scale) of the algorithm with different cooling functions:

Figure 5.8: Accuracy Error for Restrigin Function

Figure 5.9: Execution Time for Restrigin Function

Chapter 5. Simulated Annealing Function Generalization 79

5.9 Conclusions

As can be noted from the results presented above, there is no uniform pattern across various

test functions. Hence, we start the analysis of the proposed method by considering each test

function separately.

5.9.1 Michalewicz Function

5.9.1.1 Number of Function Evaluations

There is no apparent difference in the number of function evaluations when the standard log

cooling function and the modified log cooling function are used. However, when the ’decreasing

to one’ cooling function is used, it results in the increase in the number of function evaluations.

The reason for this could stem from the fact that using that cooling function offers higher

decay of the noise factor. Hence, the method would ’cool’ more quickly and it could lead more

frequently than other methods to local minima. In the case of Michalewicz function, when there

are O(!N), where N is the size of dimensions, the number of local minima is very high. Hence,

the proposed cooling function might needlessly explore the local minima.

5.9.1.2 Accuracy Error

In this category, the best performing method was the ’decreasing to one’ cooling function. The

reason for this might be the property discussed above, that is the function tends to explore more

local minima and is more likely to find a minimum. However, the difference is not significant

and could result as a statistical random difference.

5.9.1.3 Execution Time

As the proposed cooling functions do have similar computational complexity, there is no signif-

icant difference in the execution time. The execution times also seem to agree with the pattern

of the number of function evaluations, that is the highest execution time is when the ’decreasing

to one’ cooling function is used.

5.9.1.4 Michalewicz Function Conclusion

Summing up, there is no dominant strategy of choosing one cooling function over the others.

As has been discussed above, there is a trade-off between the number of function evaluations

or execution time and the accuracy error. When the number of function evaluations is meant

to be minimized (for example, when function evaluation is very expensive), then the standard

Chapter 5. Simulated Annealing Function Generalization 80

log or the modified log cooling function should be preferred. However, when we are keen on

minimizing the accuracy error, we should prefer the ’decreasing to one’ cooling function instead.

5.9.2 Pinter Function

5.9.2.1 Number of Function Evaluations

Similar as in the case of Michalewicz Function, the least number of function evaluations resulted

from using the standard log or modified log cooling function. However, the difference is not

as significant as it was in the case of Michalewicz Function. It might confirm our theory that

the different behavior results from the smaller number of local minimum in case of the Pinter

Function, that is the cooling functions behave differently when there are different number of

local minima.

5.9.2.2 Accuracy Error

All three functions performed extremely well in finding the global minimum and there is no

apparent difference between using them.

5.9.2.3 Execution Time

The pattern is the same as for the number of Function Evaluations.

5.9.2.4 Pinter Function Conclusion

The results for the Pinter Function seem to confirm our conclusions for Michalewicz Function,

that is the number of local minima influences which cooling function should be used. However,

as there is no apparent difference in accuracy error between the proposed cooling methods, and

the standard log and modified log cooling functions perform better than the ’decreasing to one’

cooling function in terms of the number of function evaluations and execution time, we conclude

that for the Pinter Function it is not preferred to used the ’decreasing to one’ cooling function.

5.9.3 Restrigin Function

5.9.3.1 Number of Function Evaluations

Similar as in the case of both Michalewicz Function and Pinter Function, the least number of

function evaluations is found when using the standard log or modified log cooling function.

Chapter 5. Simulated Annealing Function Generalization 81

5.9.3.2 Accuracy Error and Execution Time

The substantial better accuracy error and smaller number of function evaluations are achieved

when using the ’decreasing to one’ cooling function.

5.9.3.3 Restrigin Function Conclusion

The results for the Restrigin Function seem to confirm our conclusions from the previous func-

tions: the standard log and modified log cooling functions lower the total number of function

evaluations, but the ’decreasing to one’ cooling function results in lower accuracy error.

5.9.4 Final Conclusion

The final conclusion might suggest that there is a difference in performance when using different

cooling functions and each of the proposed functions offer some trade-off when using for spe-

cific function. In particular, we could use the standard log and modified log cooling functions

interchangeably without any significant impact on performance in case of our test functions.

In general, those two cooling functions performed better than the ’decreasing to one’ cooling

function. However, in the situation when the number of local minima is substantial and we are

keen on sacrificing the execution time or number of function evaluations for the sake of accuracy,

we might consider using the ’decreasing to one’ cooling function.

The results from testing the proposed cooling functions show that there is a variety of other

cooling function, except for the most widely used: T (t, c) = c
log(t+2) that retains its mathematical

rigorousness, but offering slightly different behavior. It seems that the specific behavior of

different cooling functions might depend on the specific problem. Hence, using different cooling

functions might be used as a tuning of algorithm to the specific problem.That result shows the

potential for method and the usefulness of analyzing various approaches to cooling function.

However, one of the biggest weaknesses of the proposed method is that we have only heuristics

how they might work for different problem. Hence, it might be necessary to run different

methods for new problems to asses their performance. In addition to this, another weakness is

that no cooling function might be considered a dominating one in the sense that it performs

better than another considering all statistics. Therefore, we might reason if, for example, we

are keen on sacrificing the execution time for the sake of achieving the better result.

We also think in the future works it might be useful to run the proposed methods on more test

problems to determine their exact properties and behavior under various circumstances in order

to create heuristics or more mathematically rigid methods for choosing the most appropriate

annealing function.

Chapter 6

Stochastic Gradient Descent with

Point Repetition Avoidance

6.1 Problem Introduction

In the previous chapter, we consider Stochastic Gradient Descent Algorithm [13]. It is as follows:

X(0) = y ∈ F (6.1)

dX(t) = −∇f(X(t))dt+
√

2T (t)dB(t) (6.2)

where B(t) is the Brownian motion in Rn. T (t) is called annealing schedule and is used to

decrease the effect of random variables over time. T (t) is defined as:

T (t) ,
c

log(2 + t)
(6.3)

where c is problem-dependent positive scalar.

However, one of the problems of the described algorithm is that currently there is no mechanism

to prevent the algorithm from exploring the already explored areas. The next point at time t

has the following probability distribution:

xt+1 ∼ N (xt −∇f(xt), 2T (t)) (6.4)

In has been proven in [14] that the method is weakly convergent. As can be noted, every point

has non-zero probability of being at any other place, even coming back to the previous position.

82

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 83

6.2 Avoiding Point Repetition

Avoiding exploring the already explored regions should not affect the problem accuracy, but

it might decrease the number of function evaluations. The proposed method of avoiding the

repeated exploration is adding the following term to the stochastic differential equation:

K(t) = α

∫ t

max(0,t−C)
(x(t)− x(s)) exp

(
‖x(t)− x(s)‖22

β

)
ds (6.5)

where the term C is the limit of number of points used in the algorithm. One of the main

advantages of that is that we do not need to keep track of all the points from the start, but we

could prune them and keep only C latest ones of them. In addition to this, it is supposed to

prevent the algorithm from getting stuck and creating local minima towards which the trajectory

is drawn.

The stochastic differential equation evaluated at each time is now:

dX(t) = −∇f(X(t))dt+K(t) +
√

2T (t)dB(t) (6.6)

dX(t) = −∇f(X(t))dt+ α

∫ t

max(0,t−C)
(x(t)− x(s)) exp

(
‖x(t)− x(s)‖22

β
ds

)
+
√

2T (t)dB(t)

(6.7)

The next point has now the following distribution:

xt+1 ∼ N (xt −∇f(xt) +K(t), 2T (t)) (6.8)

xt+1 ∼ N

(
xt −∇f(xt) + α

∫ t

max(0,t−C)
(x(t)− x(s)) exp

(
‖x(t)− x(s)‖22

β

)
ds, 2T (t)

)
(6.9)

6.2.1 Weighted Trajectory Points

Another tested version of the proposed modification takes into account how current the given

point is, that is it weights the influence of the points trajectory encountered:

K(t) = α

∫ t

max(0,t−C)

t− s
C

(x(t)− x(s)) exp

(
‖x(t)− x(s)‖22

β

)
ds (6.10)

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 84

Hence, the next point in the trajectory is now defined as:

xt+1 ∼ N

(
xt −∇f(xt) + α

∫ t

max(0,t−C)

t− s
C

(x(t)− x(s)) exp

(
‖x(t)− x(s)‖22

β

)
ds, 2T (t)

)
(6.11)

6.3 Mathematical properties of K(t)

Intuitively, the additional term K(t) can be considered to be a dynamic bias against the explored

regions, for example, if the algorithm is between two relatively explored areas, the term K(t)

will be close to zero and the trajectory is not modified. Similarly, when a point is well-explored

areas, the term K(t) also will be zero and the trajectory is also evaluated as it was in the

original version of the algorithm. However, once some point is reached while the other point

have already been explored, the trajectory is discouraged by continuing the exploration of that

region.

More rigorously, the algorithm stops when the convergence is reached, that is we have:

|xt+1 − xt| < ε (6.12)

It means that the value of K(t) should decrease to zero for the algorithm to stop:

lim
t←∞

K(t) = 0 (6.13)

However, the value of K(t) for some point x(t) whenever the trajectory has evenly explored the

points around the point. Therefore, the trajectory is encouraged to explore the region more

evenly, which means avoiding exploring the already explored regions.

6.4 Numerical Integration

To evaluation the term K(t), we need to calculate the following integral for the first version of

the proposed change:

K(t) = α

∫ t

max(0,t−C)
(x(t)− x(s)) exp

(
‖x(t)− x(s)‖22

β

)
ds (6.14)

For the weighted version of the proposed change, we have:

K(t) = α

∫ t

max(0,t−C)

t− s
C

(x(t)− x(s)) exp

(
‖x(t)− x(s)‖22

β

)
ds (6.15)

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 85

However, the integrated function is not continuous, hence we need to use a numerical algorithm

to evaluate it. In this dissertation, we use the following method for integral evaluation:

∫ b

a
f(x)dx ≈ b− a

n

(
f(a)

2
+

n−1∑
k=1

(
f

(
a+ k

b− a
n

))
+
f(b)

2

)
(6.16)

In the given algorithm, the size of time-step k is 1. Furthermore, at time t we have only t

number of points. Hence, we have n = t and the integral is evaluated as:

K(t) = α

∫ t

0
(x(t)− x(s)) exp

(
‖x(t)− x(s)‖22

β

)
(6.17)

and:

k(s) = (x(t)− x(s)) exp

(
‖x(t)− x(s)‖22

β

)
(6.18)

or:

k(s) =
t− s
C

(x(t)− x(s)) exp

(
‖x(t)− x(s)‖22

β

)
(6.19)

b− a
n

(
f(a)

2
+

n−1∑
k=1

(
f

(
a+ k

b− a
n

))
+
f(b)

2

)
≈

(
f(0)

2
+

n−1∑
k=1

(f (k)) +
f(t)

2

)
(6.20)

K(t) ≈ k(0)

2
+

n−1∑
s=1

k (s) +
k(t)

2
(6.21)

6.5 Euler Numerical Solution to SDE

Using the Euler solution to Stochastic Differential Equation, we have:

xk+1 = xk −∇f(X(t))dt+K(t) +
√

2T (t)dB(t) (6.22)

xk+1 = xk −∇f(X(t))dt+ α

∫ t

max(0,t−C)
k(s)ds+

√
2T (t)dB(t) (6.23)

Substituting the numerical solution to the integral, the trajectory is updated at every iteration

with the following equation:

xk+1 = xk −∇f(X(t)) +

(
k(0)

2
+
n−1∑
s=1

k (s) +
k(t)

2

)
+
√

2T (t)dB(t) (6.24)

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 86

6.6 Evaluation Methodology

In this chapter, we run the experiments to determine whether or not the addition of the proposed

term influence the number of function evaluations and the trajectory taken by the algorithm.

We run simulations on the three test functions and take note of the following outcomes:

1. Number of function evaluations

2. Execution time

3. Accuracy Error

4. Number of repeated points within some interval, that is the cardinality of the following

set: | {xis.t.∃xj , i 6= j, |xi − xj | < ε} |

The results are compared against the original Stochastic Gradient Descent Algorithm. We run

two version of the proposed added term:

1. Time-weighted points

2. Equally weighted points

From the initial tests, we have determined that the most promising values of α and β are:

• α = −1

• β = −2

Hence, we run simulations using those values. We run N = 100 for each function to get an idea

about the performance of the proposed changes. The epsilon value is ε = 0.1.

In graphs produced from results, we are going to use the following notation for marking what

method was used to produce given results:

1. Std. SDE: Standard Stochastic Gradient Descent algorithm. It is the original version of

the algorithm as presented in [?].

2. Equal K(t): the algorithm with added the integral term K(t), where each of the past

points contributes equally to the final value of K(t).

3. Weight K(t): the algorithm with added the integral term K(t), where each of the past

points contributes the final value of K(t) proportionally to how recent it is.

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 87

6.7 Results

The number of iterations is n = 100. Every iteration we run the algorithm with the given cooling

function until it stops. The domain of the algorithm is 2-dimensional, that is f : R2 → R.

6.7.1 Pinter Function

Another test function is Pinter Function f(x) for multi-dimensional vector x, where x∗ is the

desired global minimizer, is:

f(x) = s
n∑
i=1

(xi − x∗i)2 + sin2(g1P1(x)) + sin2(g2P2(x)) (6.25)

P1(x) =

n∑
i=1

(xi − x∗i)2 +

n∑
i=1

(xi − x∗i) (6.26)

P2(x) =
n∑
i=1

(xi − x∗i) (6.27)

The values of the variables are:

s = 0.05; (6.28)

g1 = 20; (6.29)

g2 = 10; (6.30)

The graph below shows the number of function evaluations the algorithm takes:

Figure 6.1: Number of Function Evaluations for Pinter Function

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 88

The graphs below shows the accuracy error achieved by the algorithm and the execution time

of the algorithm with different cooling functions:

Figure 6.2: Accuracy Error for Pinter Function

Figure 6.3: Execution Time for Pinter Function

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 89

The last graph presents the number of unique points explored by the algorithm:

Figure 6.4: Number of unique points for Pinter Function

6.7.2 Results for Michalewicz Function

The first function we use to evaluate our method is Michalewicz Function. For n-dimensional

case, it is of the following form:

f(x) =

n∑
j=1

sin(xi) sin2m(
ix2i
π

) (6.31)

Now, to use that function in our gradient-descent optimization techniques, we need to calculate

its gradient, which is:

δf(x)

δxi
= cos(xi sin2m(

ix2i
π

) + 4m
i2xi
π2

sin(xi) sin2m−1(
ix2i
π

) cos(
ix2i
π

) (6.32)

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 90

The graph below shows the number of function evaluations the algorithm takes:

Figure 6.5: Number of Function Evaluations for Michalewicz Function

The graphs below shows the accuracy error achieved by the algorithm and the execution time

of the algorithm with different cooling functions:

Figure 6.6: Accuracy Error for Michalewicz Function

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 91

Figure 6.7: Execution Time for Michalewicz Function

The last graph presents the number of unique points explored by the algorithm:

Figure 6.8: Number of unique points for Michalewicz Function

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 92

6.7.3 Restrigin Function

The last function used for evaluation is Restrigin Function:

f(x) = An+
n∑
j=1

(x2i −A cos(2πxi)) (6.33)

Its gradient is:
δf(x)

δxi
= 2xi + 2Aπ sin(2πxi)) (6.34)

We are testing the function for A = 10. The domain is enclosed between 0 and 100x for each

dimension.

The graph below shows the number of function evaluations the algorithm takes:

Figure 6.9: Number of Function Evaluations for Restrigin Function

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 93

The graphs below shows the accuracy error achieved by the algorithm and the execution time

of the algorithm with different cooling functions:

Figure 6.10: Accuracy Error for Restrigin Function

Figure 6.11: Execution Time for Restrigin Function

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 94

The last graph presents the number of unique points explored by the algorithm:

Figure 6.12: Number of unique points for Restrigin Function

6.8 Conclusions

6.8.1 Observations

For each of the tested functions, the number of function evaluations for different sizes of domain

is approximately the same. There is no general advantage of using one method over another.

However, it can be noted that every method performs differently for different domain. In

particular, adding the point avoidance term K(t) performs better when using bigger domains in

terms of error accuracy, that is it is more likely to find the better solution before the termination

conditions are met. Another trend we spotted is the fact that the bigger the size of domain, the

better the proposed methods perform. However, as can be noted, that improvement comes at

some price: execution time increase almost ten times. That result is not surprising as we need

to iterate through C = 1000 last points to evaluate the integral term K(t). It is both CPU-

and memory-intensive. Those conclusions are based on the results from Pinter and Michalewicz

functions. In the case of Restrigin function, the algorithms almost always find the true, global

minimum for the given termination conditions.

Another trend that could be noticed is that there is not much improvement in the unique

number of points evaluated when we add the proposed integral term K(t). Considering that

the accuracy error has improved, that result is surprising. However, it could be explained by

the fact that although the number of unique points stays roughly the same, the distribution of

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 95

the evaluated regions changes, that is the trajectory is encouraged by the term K(t) to evaluate

points that are considerably separate from each other while the original version might result in

evaluating many different points, but in the same neighborhood or convexity region. This result

shows that the trajectory in the original version of the algorithm is more suited for exploring

local convexity areas, while the proposed term K(t) encourages points that are more evenly

distributed across domains.

6.8.2 Locality Problem of Accumulated Historic Points for K(t)

In the resultant graphs, it is visible that although the means of accuracy error in case of the

proposed changes are better than those of the original algorithm, the proposed changes have

much bigger standard deviation. Although on average the proposed methods outperform the

original algorithm, there are also cases that when their performance is much worse. To find

out the reason for this, we ran another set of simulations. We focus on Pinter function, and

notice that the proposed method might get stuck. The following graph shows a couple of initial

iterations of the first proposed version of the algorithm when its trajectory gets stuck. The

results are taken for domain: 0 − 10 in one dimensional problem. The domain is deliberately

small to see how it affects the trajectory. The red dot is the current position of the trajectory

at a given iteration. The blue line represents the Pinter function.

Figure 6.13: Algorithm Trajectory - Step 1

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 96

Figure 6.14: Algorithm Trajectory - Step 2

Figure 6.15: Algorithm Trajectory - Step 3

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 97

Figure 6.16: Algorithm Trajectory - Step 4

Figure 6.17: Algorithm Trajectory - Step 5

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 98

6.8.2.1 Trajectory Local Looping

We conclude that the trajectory gets stuck and cycle between two points: 0 and 10. Those

points are boundary limits. We also observe is that as the trajectory proceeds the value of K(t)

gradually and considerably increases. It can be understood when the numerical integration of

that term is analyzed:

K(t) ≈ α

(
k(0)

2
+

n−1∑
s=1

k (s) +
k(t)

2

)
(6.35)

where:

k(s) = (x(t)− x(s)) exp

(
‖x(t)− x(s)‖22

β

)
(6.36)

Hence, as the algorithm proceeds, the points are accumulated and the value of the integral

term K(t) grows whenever the trajectory happens to deviate from the majority of the past

points. For small domains the described problem results in the trajectory ’bumping against’

box constraints very quickly due to the high value of the integral term K(t) and, therefore,

prevents the algorithm from achieving any sensible results.

6.9 Conclusion for No Constraint Problem

As has been shown in the previous sections, the proposed method can perform very poorly

in certain cases for relatively small box-constraints. Hence, we decided to test the proposed

methods on the cases when there are no constraints at all. The results are taken only for Pinter

function.

In the graphs below, the methods are indexed as follows:

1. - Original Version of Stochastic Gradient Descent

2. - Stochastic Gradient Descent with the integral term K(t)

3. - Stochastic Gradient Descent with the weighted version of the integral term K(t)

The first graph shows the error accuracy for all the considered algorithms. The next graph

presents the number of function evaluations.

As can be observed, the number of function evaluations is roughly similar in terms of their

means. However, the standard deviation of the number of function evaluations for the standard

Stochastic Gradient Descent is much bigger than those for other two methods. What is more,

the error accuracy for both the standard Stochastic Gradient Descent and its modified version

which uses equal weights for past points are also roughly the same. However, the version of

Stochastic Gradient Descent algorithm with time-weighted past points outperforms the other

two versions of the algorithm.

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 99

Figure 6.18: Pinter - Error Accuracy - No Constraints

Figure 6.19: Pinter - Number of Function Evaluations - No Constraints

That results, that is the better performance of the version of Stochastic Gradient Descent

algorithm with time-weighted past points, is quite different from the results for constrained

problems. It could be explained by the fact that in unconstrained case, there are no boundaries

which create the loop between a small set of points. It also shows the potential of using the

past points when considering the trajectory in Stochastic Gradient Descent algorithm.

Chapter 6. Stochastic Gradient Descent with Point Repetition Avoidance 100

6.10 Weaknesses of Method

One of the biggest weakness of the proposed methods is the fact that they might perform

extremely bad for constrained cases. What is more, whether or not the trajectory will loop

between a couple of points is determined very early, within a few first iterations. Another

disadvantage of the method is that we need to carefully chose the values for α, β and C (number

of past points considered). However, finding the most appropriate values for those variables

might be simply viewed as another optimization problem.

The method is also extremely time-consuming in comparison to the original version of the

Stochastic Gradient Descent. At each iteration, we need to keep track of the last C points and

we need to evaluated our K(t) function. However, such an approach results in considerable

slow-down. Therefore, using the proposed methods make sense, but only in the situations when

objective function is also computationally hard to compute. Then, the additional cost of using

the proposed methods is not considerable and could be neglected.

6.11 Final Conclusion and Future Works

We show the advantage of using the past points when considering the next evaluated point for

a trajectory in the Stochastic Gradient Descent. In particular, we show that using the proposed

methods might considerably improve the accuracy of the algorithm without any significant im-

pact on the number of function evaluations. We present that using the time-weighted past points

might outperform the original version of Stochastic Gradient Descent algorithm. However, that

improvement comes at certain price: execution time substantially increases. We have also en-

countered and explained the problem of the trajectory falling in the loop of traveling between

only a small number of boundary points when the proposed methods are used for problems with

small domains. That problem does not seem to present when there are no constraints.

In the future, the proposed methods could be improved by finding possibly other, more appro-

priate values for α, β and C. However, finding those values might be just another optimization

problem. What is more, the proposed methods require extremely efficient implementations

so that the impact of keeping track and analyzing the past points on the overall algorithm

performance is not considerable.

Chapter 7

Protein Structure Global

Optimization

7.1 Problem Introduction

In this chapter, we present how our proposed techniques could be used to find out and predict

what the most likely structure of proteins is.

Prediction of protein structure involves finding the tertiary structure of a protein with the least

energy level, that is the one that is the most stable. Due to its chemical properties, after some

time proteins will stabilize and reach its most stable state.

Protein structure prediction has many useful applications, especially in biomedicine and drug

making. One of the most significant is finding out the predicted tertiary structure of proteins in

drugs, which then is used to model the effect of drugs on different bacteria and viruses. Another

useful application of protein structure prediction is the analysis of how different protein might

react under various external conditions.

In this chapter, we choose a protein structure prediction model AB off-lattice model, described

in [15] and test our proposed changes to global optimization techniques to see how successful

they are for practical applications.

7.2 Protein Structure Model

Each protein structure prediction model makes different assumptions. In this dissertation, we

test our proposed changes on one of simplified models. The simplified model is described in

[16]. The difference between the original AB off-lattice model is dropping the constrain that

the distance between neighbor proteins should be equal to 1 as described in [17].

101

Chapter 7. Protein Structure Global Optimization 102

In the model used for our tests, only two types of amino acids are used: hydrophobic, denoted

by capital letter H, and hydrophilic, denote by capital letter P. It is also assumed that the

only interaction is between non-adjacent, neighboring hydrophobic monomers. Despite such

seemingly significant assumption, the model is still used in practice with satisfying results.

More complex model, that would be more suitable for bigger problems, would also consider the

forces between local neighbors and acids within monomers.

7.3 Model Details

7.3.1 2-Dimensional Problem

The 2-Dimensional Protein Structure in AB Off-lattice is expressed as:

E =

n−2∑
i=2

Eθ(i) +

n−2∑
i=1

n∑
j=i+2

ELJ(rij , ξi, ξj) (7.1)

where:

Eθ(i) =
1

4
(1− ui · ui+1) (7.2)

and:

ELJ(rij , ξi, ξj) = 4
[
r−12i − C(ξi, ξj)r

−6
ij

]
(7.3)

Finally, the constant C(ξi, ξj) is defined as:

C(ξi, ξj) =


+1 ξi = A ∧ ξj = A

+1
2 ξi = B ∧ ξj = B

−1
2 (ξi = A ∧ ξj = B) ∨ (ξi = B ∧ ξj = A)

(7.4)

In the model expressions above, ui denotes the position of ith monomer. The distance between

residues i and j is denoted as rij .

In the assumed model, the objective function f is the energy functional E.

7.3.2 3-Dimensional Problem

The used protein structure 3-dimensional prediction model assumes that the energy function

for any n monomers chain is expressed by:

E =
n−2∑
i=1

Eθ(i) +
n−3∑
i=1

Eτ (i) +
n−2∑
i=1

n∑
j=i+2

ELJ(rij , ξi, ξj) (7.5)

Chapter 7. Protein Structure Global Optimization 103

where:

Eθ(i) = ui · ui+1 (7.6)

and:

Eτ (i) = −1

2
ui · ui+2 (7.7)

ELJ(rij , ξi, ξj) = 4C(ξi, ξj)
[
r−12i − r−6ij

]
(7.8)

Finally, the constant C(ξi, ξj) is defined as:

C(ξi, ξj) =


+1 ξi = A ∧ ξj = A

+1
2 ξi = B ∧ ξj = B

+1
2 (ξi = A ∧ ξj = B) ∨ (ξi = B ∧ ξj = A)

(7.9)

In the model expressions above, ui denotes the position of ith monomer. The distance between

residues i and j is denoted as rij .

The graph below shows the possible representation of proteins in the Cartesian coordinate

system:

Figure 7.1: Possible representation of 3-Dimensional Protein Folding in the Cartesian coordi-
nate system

The graph below shows the possible representation of proteins viewed as chemical monomers:

Figure 7.2: Possible representation of 3-Dimensional Protein Folding

Chapter 7. Protein Structure Global Optimization 104

7.4 Input Framework

Our test cases are obtained using Fibonacci sequences of proposed amino-acids. They are defined

as:

S0 = A (7.10)

S1 = B (7.11)

Sn+1 = Sn−1 ∗ Sn (7.12)

where ∗ is a concatenation operation, that is combining amino-acids sequences of Sn−1 and Sn.

The examples are:

1. S0 = A

2. S1 = B

3. S2 = S0 ∗ S1 = A ∗B = AB

4. S3 = S1 ∗ S2 = B ∗AB = BAB

5. S4 = S2 ∗ S3 = AB ∗BAB = ABBAB

where the symbol A denotes hydrophobic amino-acid and the symbol B stands for hydrophilic

amino-acid.

As other example, we will show how to use the function C(ξi, ξj). Let us assume the amino-acid

sequence is:

ξ = ABBAB (7.13)

Now, the function for i = 1 and j = 2 is defined as:

C(ξ1, ξ2) = C(A,B) = −1

2
(7.14)

The following table presents how the structures are created:

Fibonacci Sequence Index Fibonacci Sequence Number of Acids Used

0 A 1

1 B 1

2 AB 2

3 BAB 3

4 ABBAB 5

5 BABABBAB 8

6 ABBABBABABBAB 13

7 BABABBABABBABBABABBAB 21

Chapter 7. Protein Structure Global Optimization 105

7.5 Gradient Evaluation

The gradient and its derivation of the presented AB off-lattice model is in Appendix A. In this

section, we only show the final form for 2- and 3-Dimensional versions of the problem.

7.5.1 Gradient for 2-Dimensional Model

For 2-Dimensional version of the problem, we have:

δE

δxi
=
δEθ(i)

δxi
+
δEθ(i− 1)

δxi
+

n∑
j=i+2

δELJ(rij , ξi, ξj)

δxi
+

i−2∑
j=1

δELJ(rji, ξj , ξi)

δxi
(7.15)

δE

δyi
=
δEθ(i)

δyi
+
δEθ(i− 1)

δyi
+

n∑
j=i+2

δELJ(rij , ξi, ξj)

δyi
+

i−2∑
j=1

δELJ(rji, ξj , ξi)

δyi
(7.16)

for each monomer, which has the coordinate (xi, yi).

7.5.2 Gradient for 3-Dimensional Model

For 3-Dimensional version of the problem, we have:

δE

δxi
=
δEθ(i)

δxi
+
δEθ(i− 1)

δxi
+

n∑
j=i+2

δELJ(rij , ξi, ξj)

δxi
+

i∑
j=1

δELJ(rji, ξj , ξi)

δxi
+
δE(i)τ
δxi

+
δE(i+ 2)τ

δxi

(7.17)

δE

δyi
=
δEθ(i)

δyi
+
δEθ(i− 1)

δyi
+

n∑
j=i+2

δELJ(rij , ξi, ξj)

δyi
+

i∑
j=1

δELJ(rji, ξj , ξi)

δyi
+
δE(i)τ
δyi

+
δE(i+ 2)τ

δyi

(7.18)

δE

δzi
=
δEθ(i)

δzi
+
δEθ(i− 1)

δzi
+

n∑
j=i+2

δELJ(rij , ξi, ξj)

δzi
+

i∑
j=1

δELJ(rji, ξj , ξi)

δzi
+
δE(i)τ
δzi

+
δE(i+ 2)τ

δzi

(7.19)

7.6 Problem Constraints

For the described problem, we use box constrains for each dimension. The given protein is

centered at the origin point of the coordinate system. For 2-dimensional problem, we have:

∀i, 0 < i ≤ N, xmin ≤ xi ≤ xmax (7.20)

∀i, 0 < i ≤ N, ymin ≤ yi ≤ ymax (7.21)

where N is the number of acids used.

Chapter 7. Protein Structure Global Optimization 106

In addition to both constraints, we have the following constraint for 3-dimensional version of

the problem:

∀i, 0 < i ≤ N, zmin ≤ zi ≤ zmax (7.22)

7.7 Evaluation Methodology

All of the tested methods are applied to the described practical application of global optimization

for finding the most optimal protein folding. The methods are numbered as:

1. Random Sampling of Starting Points (Chapter 3)

2. Sampling of Starting Points with Gaussian Processes (Chapter 3)

3. Stochastic Gradient Descent with the standard logarithmic cooling function (Chapter 4)

4. Stochastic Gradient Descent with the modified logarithmic cooling function (Chapter 4)

5. Stochastic Gradient Descent with the ”decreasing to one” cooling function (Chapter 4)

6. Hyperbolic Cross Points with Non-Adaptive Point Ranking (Chapter 5)

7. Hyperbolic Cross Points with Adaptive Point Ranking (Chapter 5)

8. Hyperbolic Cross Points with Stochastic Point Ranking - Version I (Chapter 5)

9. Hyperbolic Cross Points with Stochastic Point Ranking - Version II (Chapter 5)

10. Stochastic Gradient Descent - Using Past Points Version I (Chapter 6)

11. Stochastic Gradient Descent - Using Past Points Version II (Chapter 6)

We run the simulations with different dimensionality for 2- and 3-Dimensional Problem. For

each run, we take note of the total number of function evaluations, the achieved error accuracy

and the execution time. We run the simulations for the proteins that contain the following

acids:

1. BABABBAB

2. ABBABBABABBAB

For each configuration, we run the algorithms N = 15 times.

Chapter 7. Protein Structure Global Optimization 107

7.8 Results

7.8.1 2-Dimensional Protein Folding Results

7.8.1.1 Results for protein types: BABABBAB

Figure 7.3: Protein Folding Results for 2 Dimensions and 8 proteins

7.8.1.2 Results for protein types: ABBABBABABBAB

Figure 7.4: Protein Folding Results for 2 Dimensions and 13 proteins

Chapter 7. Protein Structure Global Optimization 108

7.8.2 3-Dimensional Protein Folding Results

7.8.2.1 Results for protein types: BABABBAB

Figure 7.5: Protein Folding Results for 3 Dimensions and 8 proteins

7.8.2.2 Results for protein types: ABBABBABABBAB

Figure 7.6: Protein Folding Results for 3 Dimensions and 13 proteins

Chapter 7. Protein Structure Global Optimization 109

7.9 Conclusion

7.9.1 Conclusions for 2-Dimensional Protein Folding

7.9.1.1 Conclusions for protein types: BABABBAB

For 2-dimensional problem with the given acid types, the graph shows that the best result has

been achieved by using Sampling of Starting Points with Gaussian Processes. However, it is also

a method with the greatest variance. Another, almost equally successful method is Hyperbolic

Cross Points using Non-Adaptive Ranking and Stochastic Gradient Descent algorithm with

added non-weighted integral term. Almost all of the other methods converged to the same

solution in all of the simulations performed.

7.9.1.2 Conclusions for protein types: ABBABBABABBAB

The best result was achieved by using Stochastic Gradient Descent algorithm with added

weighted integral term. Another, well-performing method was Sampling of Starting Points

with Gaussian Processes. In comparison to the results for a smaller size problem, the results

achieved by the methods have much bigger variance. What is more interesting, the means of

the results achieved by the methods are much closer to each other than in the previous problem.

7.9.2 Conclusions for 3-Dimensional Protein Folding

7.9.2.1 Conclusions for protein types: BABABBAB

The best result, both in terms of the mean and the minimum, was achieved by the original

version of Stochastic Gradient Descent algorithm. On the other hand, the worst performing

method for this setting of the problem was, both in therms of the mean and the worst results,

Hyperbolic Cross Points with Stochastic Point Ranking - Version I (Chapter 5). Interestingly,

Random Sampling of Starting Points has hardly any variance. Both Adaptive and Non-Adaptive

Hyperbolic Cross Points methods also converged to the same solution.

7.9.2.2 Conclusions for protein types: ABBABBABABBAB

For this setting of the problem, the best performing method was the Stochastic Gradient Descent

Algorithm with the weighted integral term (Chapter 6). It considerably outperformed the rest

of the methods. However, there is no definite worst-performing method. In terms of the mean,

Stochastic Gradient Descent with the modified logarithmic cooling function (Chapter 4) achieved

the worst results. However, the worst results in terms of achieving the maximum energy level

Chapter 7. Protein Structure Global Optimization 110

was achieved by Hyperbolic Cross Points with Stochastic Point Ranking - Version I (Chapter

5).

7.9.3 Final Conclusion

In total, it seems that for the proposed model, the following two methods perform especially

well:

1. Sampling of Starting Points with Gaussian Processes (Chapter 3)

2. Stochastic Gradient Descent - Using Weighted Past Points Version II (Chapter 6)

However, it is important to emphasize that there is no dominant strategy that outperform all

the other methods. The two elected methods perform well in most of the simulations. However,

each of the method offered some kind of trade-off, in particular some of the best performing

methods did achieve a better minimal result, but at the same time they achieve much worse

mean values. What is more, each of the method required different time and memory complexity.

Hence, depending on the resources, some of the methods might be preferred over the others.

7.9.4 Model weaknesses

The biggest weakness of the model is the fact that it uses simplified constraints:

∀i, 0 < i ≤ N, xmin ≤ xi ≤ xmax (7.23)

∀i, 0 < i ≤ N, ymin ≤ yi ≤ ymax (7.24)

where N is the number of acids used.

In addition to both constraints, we have the following constraint for 3-dimensional version of

the problem:

∀i, 0 < i ≤ N, zmin ≤ zi ≤ zmax (7.25)

However, in the reality those constraints cannot be clearly justified. In fact, the better approach

would be to assume that the each acid within a protein is at one unit distance from each other,

as described in [17] and presented below:√
(xi − xi+1)2 + (yi − yi+1)2 + (zi − zi+1)2 = 1 (7.26)

In other words, the distance between consecutive particles should be equal to one.

Chapter 7. Protein Structure Global Optimization 111

7.10 Extended constraints

To add the proposed constraint which makes sure that the distance between consecutive particles

is equal to one, we add the penalty function:

P (r) =

N∑
i=2

(1− (xi − xi+1)
2 − (yi − yi+1)

2)2 (7.27)

and the energy function is now:

EP (r, λ) = ELJ + λP (r) (7.28)

The updated gradient is now for 2-dimensional problem is now:

δEP
δxi

=
δELJ
δxi

+4λ(1−(xi−xi−1)2−(yi−yi−1)2)(xi−xi−1)−4λ(1−(xi+1−xi)2−(yi−yi+1)
2)(xi+1−xi)

(7.29)
δEP
δyi

=
δELJ
δyi
−4λ(1−(xi−xi−1)2−(yi−yi−1)2)(yi−yi−1)−4λ(1−(xi+1−xi)2−(yi−yi+1)

2)(yi+1−yi)

(7.30)

Hence, setting λ to high value should result in the constraint being fulfilled and making potential

results more physically accurate.

Chapter 8

Conclusion and Future Works

8.1 Project Approach Overview

The aim of the project is the analysis of back-tracking and stochastic methods used in global

optimization algorithms. Back-tracking methods when used for global optimization algorithms

allow us to take advantage of the already visited and analyzed past points in domain, while

stochastic methods are used to make algorithms less deterministic and more robust to rich

variety of different real-life problems. Back-tracking and stochastic methods analyzed in this

thesis are applied to three main classes of global optimization algorithms:

1. Multi Start Search - running local-search deterministic algorithms from multiple start-

ing points across domain

2. Stochastic Gradient Descent - solving Stochastic Differential Equation which expresses

trajectory

3. Hyperbolic Cross Points - evaluating only points that compose Sparse Grid - ap-

proximation of multi-dimensional function that avoids Curse of Dimensionality type of

complexity: O(Nd), where N is the number of points in every dimensions and d is the

number of dimensions

We proposed and analyzed four back-tracking and stochastic methods for Global Optimization

Algorithms. The proposed methods involve:

• Introduction of Gaussian Processes to Multi Start Search in order to mark the

regions that have already been explored and avoid re-exploring such regions

• Introduction of Stochastic Term to Hyperbolic Cross Methods to change the

order of evaluated points, make the method less deterministic and usable for Monte-Carlo

type simulations

112

Chapter 8. Conclusion and Future Works 113

• Analysis and Proof of Convergence of various cooling functions used in Stochastic

Gradient Descent algorithm

• Introduction of Integral Term to Stochastic Gradient Descent algorithm that

keeps track of the past points and decreasing the probability of re-exploring the already

explored regions

8.2 Experimental Analysis Conclusions

For each of the methods, we run the experiments on three functions:

• Pinter function

• Michalewicz function

• Restrigin function

Each of those functions are extremely challenging for a computer to be optimized, but can be

easily solved graphically by a human. The results obtained were analyzed under a few different

statistics:

• Number of function evaluations

• Accuracy error

• Execution time

• Number of unique evaluated points

8.2.1 Introduction of Gaussian Processes to Multi Start Search

This method has proven to be very successful. In particular, the experimental results show

that the number of function evaluations decreased for all of the tested methods. The accuracy

error achieved by the method is also better than that for Random Starting Point Search. In

particular, we conclude that the method works considerably well for small domains. After the

closer analysis, we also conclude that the main challenge when using Gaussian Processes in Multi

Start Search Algorithm is the additional computational complexity, especially when there is a

huge number of local minima. One of the future works for that method could involve tackling

that problem by, for instance, testing various methods of merging and setting value of standard

deviations as well as efficient parallel implementation.

Chapter 8. Conclusion and Future Works 114

8.2.2 Introduction of Stochastic Term to Hyperbolic Cross Points

Another tested method involved adding Stochastic Term to Adaptive Ranking used in Hyper-

bolic Cross Points. After running simulations for that method and comparing the results against

other ranking methods Adaptive and Non-Adaptive Rankings, we conclude that, although the

proposed changes do not impact algorithm performance in terms of number of function eval-

uations or error accuracy, the main effect of introducing Stochastic Term to Ranking is the

introduction of bigger variance in the final results. Therefore, the biggest advantage of using

the proposed method is making Hyperbolic Cross Points less deterministic and usable for Monte-

Carlo-type and batch simulations. The method does not impact negatively on the performance

of Hyperbolic Cross Points method when compared to using Adaptive ranking, because in both

cases the most computationally exhaustive part is keeping the list of candidate points sorted.

Hence, we also conclude that the method could be used, given computational resources, as an

alternative to Adaptive Ranking.

8.2.3 Testing different cooling functions in Stochastic Gradient Descent al-

gorithm

In Stochastic Gradient Descent algorithm, the cooling function is used to determine the current

variance of trajectory expressed by Stochastic Differential Equation. Hence, the impact of that

value on the performance of the algorithm is substantial. We propose two different function and

prove that the mathematical properties of Stochastic Gradient Descent algorithm such as, for

example, weak convergence are maintained. The experimental results show that using each of

the functions influence the number of function evaluations and error accuracy. We also conclude

that every function performs differently for different function and domain sizes. Hence, they

might be used to tune up the algorithm to different problems, for example, some of the methods

prefer thorough scrutiny of the local basins of attraction, which makes them more useful when

there is a small number of more dispersed local minimum, while others are more appropriate for

exploring huge number of convexity areas. Another conclusion is that the biggest challenge in

that method is matching the most appropriate cooling function to some application and future

works could possibly involve creating heuristics for making that decision.

8.2.4 Introduction of Integral Term to Stochastic Gradient Descent

The last proposed method involves the introduction of the integral term that collects the infor-

mation about the visited points. It is used to steer the trajectory away from the already explored

regions and, mathematically, could be viewed as a bias towards the unexplored regions. We also

introduce two additional variables that can be used to scale the influence of that term. Another

choice that we made is about how many past points should be used for calculating the integral

term, because, as it turns out, using all of the past points turns out to be computationally

Chapter 8. Conclusion and Future Works 115

too challenging. The experimental results for our test functions show that the method is very

promising. Although it does not lower the number of function evaluations before the algorithm

terminates, it particularly improves the error accuracy and number of unique points visited in

the domain. In addition to this, we also discovered that sometimes the integral term might

grow too big and it causes the problem when the trajectory starts bumping against our box

constraints, especially they are small. The performance for unconstrained case proves to sup-

port the usefulness of the proposed method. However, we think that the next improvement to

that method could be efficient implementation of storing and processing past points as well as

creating heuristics for setting the values for its option variables.

8.3 Experimental Results for Protein Folding Problem

In this dissertation, we have also run simulations for Protein Folding Problem using AB off-

lattice model. Its main advantage is the concise mathematical descriptions. In addition to this,

it is relatively very physically accurate. The main aim of running that application was to test

the usefulness of the proposed methods as well as compare them against each other. We run a

few experiments in various settings where we differ the number of proteins and dimensionality

of the problem to see how it affects the performance.

The results have shown that, in general, the methods perform relatively similar and could be

successfully applied in practice. There is no one dominant method that always performs better

than the others. However, we found that the two methods were one of the best performing

methods in all of the experimental settings:

1. Multiple Start Search with Gaussian Processes

2. Stochastic Gradient Descent algorithm with added Integral Term

8.4 Final Conclusion

After analyzing and testing the proposed back-tracking and stochastic methods, we conclude

that they can be successfully used to improve the performance of the global optimization al-

gorithms. We also think that the use of stochastic and back-tracking methods can compete

against other available methods. Another conclusion from the analysis of the performance of

the proposed methods is the fact that each of them offer certain trade-off. They can be tuned

to particular application, but such a tuning might be also additionally challenging in terms of

computational resources as it is in the case of choosing the most appropriate cooling function for

Stochastic Gradient Descent or choosing the specific variables for the proposed Integral Term

added to the trajectory followed by SDE Algorithm. What is more, we also note that in some

methods the number of function evaluations can be compromised for the sake of improving

Chapter 8. Conclusion and Future Works 116

error accuracy as in the case of adding Gaussian Processes to Multiple Start Search algorithm.

Another successful outcome of the project is making Hyperbolic Cross Points method less deter-

ministic and available for, for example, batch simulations or efficient parallel implementations.

Based on the experimental results of the proposed methods, we deem the project to be successful.

8.4.1 Weaknesses and Future Works

Although the proposed methods proved to be successful, we think that there are certain trade-

off one must make when using such methods. In particular, every back-tracking method is

extremely computationally challenging as they usually require a lot of additional memory and

CPU-time, for example, adding the Integral Term to Stochastic Gradient Descent require us to

keep all or at least some part of the past points and iterating over all of them at each step.

Adding Gaussian Processes also adds a lot of complexity as we need to maintain the model

with our Gaussian Processes every time we choose a new point for evaluation. In the future, we

think that problem could be solved using efficient parallel implementations of the methods.

Another weakness of the problem is the scope of variables that could be used to tune up the

method to particular method, for example, choosing the best cooling function for Stochastic

Gradient Descent algorithm. Currently, there is no heuristics for setting their values. However,

we think that further experiments and broadening the scope of tested functions could result in

some useful heuristics for that problem.

Appendix A

Appendix A

In this appendix, we present how we found the gradient for AB Off-Lattice model for Protein

Folding problem,

A.1 2-Dimensional Problem

The 2-Dimensional Protein Structure in AB Off-lattice is expressed as:

E =
n−2∑
i=2

Eθ(i) +
n−2∑
i=1

n∑
j=i+2

ELJ(rij , ξi, ξj) (A.1)

where:

Eθ(i) =
1

4
(1− ui · ui+1) (A.2)

and:

ELJ(rij , ξi, ξj) = 4
[
r−12i − C(ξi, ξj)r

−6
ij

]
(A.3)

Finally, the constant C(ξi, ξj) is defined as:

C(ξi, ξj) =


+1 ξi = A ∧ ξj = A

+1
2 ξi = B ∧ ξj = B

−1
2 (ξi = A ∧ ξj = B) ∨ (ξi = B ∧ ξj = A)

(A.4)

In the model expressions above, ui denotes the position of ith monomer. The distance between

residues i and j is denoted as rij .

In the assumed model, the objective function f is the energy functional E.

117

Appendix A - AB Off-lattice gradient evaluation. Appendix A. 118

A.1.1 3-Dimensional Problem

The used protein structure 3-dimensional prediction model assumes that the energy function

for any n monomers chain is expressed by:

E =
n−2∑
i=1

Eθ(i) +
n−3∑
i=1

Eτ (i) +
n−2∑
i=1

n∑
j=i+2

ELJ(rij , ξi, ξj) (A.5)

where:

Eθ(i) = ui · ui+1 (A.6)

and:

Eτ (i) = −1

2
ui · ui+2 (A.7)

ELJ(rij , ξi, ξj) = 4C(ξi, ξj)
[
r−12i − r−6ij

]
(A.8)

Finally, the constant C(ξi, ξj) is defined as:

C(ξi, ξj) =


+1 ξi = A ∧ ξj = A

+1
2 ξi = B ∧ ξj = B

+1
2 (ξi = A ∧ ξj = B) ∨ (ξi = B ∧ ξj = A)

(A.9)

In the model expressions above, ui denotes the position of ith monomer. The distance between

residues i and j is denoted as rij .

A.2 Gradient Evaluation

A.2.1 Gradient for 2-Dimensional Model

The energy function for any n monomers chain is:

E =

n−2∑
i=2

Eθ(i) +
n−2∑
i=1

n∑
j=i+2

ELJ(rij , ξi, ξj) (A.10)

where:

Eθ(i) =
1

4
(1− xixi+1 − yiyi+1 − zizi+1) (A.11)

and:

ELJ(rij , ξi, ξj) = 4
[
r−12ij − C(ξi, ξj)r

−6
ij

]
(A.12)

Appendix A - AB Off-lattice gradient evaluation. Appendix A. 119

The distance between two monomers is expressed as:

rij = ‖ui − uj‖ =

√
(xi − xj)2 + (yi − yj)2 (A.13)

We have the following gradients:
δEθ(i)

δxi
= −1

4
xi+1 (A.14)

δEθ(i)

δyi
= −1

4
yi+1 (A.15)

δEθ(i)

δxi+1
= −1

4
xi (A.16)

δEθ(i)

δyi+1
= −1

4
yi (A.17)

and:

δ

(
1
r6ij

)
δxi

=
−12(xi − xj)

r7ij
(A.18)

δ

(
1
r12ij

)
δxi

=
−24(xi − xj)

r13ij
(A.19)

δ

(
1
r6ij

)
δxj

=
12(xi − xj)

r7ij
(A.20)

δ

(
1
r12ij

)
δxj

=
24(xi − xj)

r13ij
(A.21)

hence:
δELJ(rij , ξi, ξj)

δxi
= 4

[
−24(xi − xj)

r13ij
− C(ξi, ξj)

−12(xi − xj)
r7ij

]
(A.22)

δELJ(rij , ξi, ξj)

δyi
= 4

[
−24(yi − yj)

r13ij
− C(ξi, ξj)

−12(yi − yj)
r7ij

]
(A.23)

δELJ(rij , ξi, ξj)

δxj
= 4

[
24(xi − xj)

r13ij
− C(ξi, ξj)

12(xi − xj)
r7ij

]
(A.24)

δELJ(rij , ξi, ξj)

δyj
= 4

[
24(yi − yj)

r13ij
− C(ξi, ξj)

12(yi − yj)
r7ij

]
(A.25)

Appendix A - AB Off-lattice gradient evaluation. Appendix A. 120

Hence, we have:

δE

δxi
=
δEθ(i)

δxi
+
δEθ(i− 1)

δxi
+

n∑
j=i+2

δELJ(rij , ξi, ξj)

δxi
+

i−2∑
j=1

δELJ(rji, ξj , ξi)

δxi
(A.26)

δE

δyi
=
δEθ(i)

δyi
+
δEθ(i− 1)

δyi
+

n∑
j=i+2

δELJ(rij , ξi, ξj)

δyi
+

i−2∑
j=1

δELJ(rji, ξj , ξi)

δyi
(A.27)

for each monomer, which has the coordinate (xi, yi).

A.2.2 Gradient for 3-Dimensional Model

For 3-Dimensional Protein Folding Problem, the energy is expressed as:

E =

n−2∑
i=1

Eθ(i) +

n−3∑
i=1

Eτ (i) +

n−2∑
i=1

n∑
j=i+2

ELJ(rij , ξi, ξj) (A.28)

The gradients are:
δEθ(i)

δxi
= xi+1 (A.29)

δEθ(i)

δyi
= yi+1 (A.30)

δEθ(i)

δzi
= zi+1 (A.31)

δEθ(i)

δxi+1
= xi (A.32)

δEθ(i)

δyi+1
= yi (A.33)

δEθ(i)

δzi+1
= zi (A.34)

and:
δELJ(rij , ξi, ξj)

δxi
= 4C(ξi, ξj)

[
−24(xi − xj)

r13ij
− −12(xi − xj)

r7ij

]
(A.35)

δELJ(rij , ξi, ξj)

δyi
= 4C(ξi, ξj)

[
−24(yi − yj)

r13ij
− −12(yi − yj)

r7ij

]
(A.36)

δELJ(rij , ξi, ξj)

δzi
= 4C(ξi, ξj)

[
−24(zi − zj)

r13ij
− −12(zi − zj)

r7ij

]
(A.37)

δELJ(rij , ξi, ξj)

δxj
= 4C(ξi, ξj)

[
24(xi − xj)

r13ij
− 12(xi − xj)

r7ij

]
(A.38)

Appendix A - AB Off-lattice gradient evaluation. Appendix A. 121

δELJ(rij , ξi, ξj)

δyj
= 4C(ξi, ξj)

[
24(yi − yj)

r13ij
− 12(yi − yj)

r7ij

]
(A.39)

δELJ(rij , ξi, ξj)

δzj
= 4C(ξi, ξj)

[
24(zi − zj)

r13ij
− 12(zi − zj)

r7ij

]
(A.40)

As can be noted, the gradients are the same as for 2-Dimensional Problem. Now, we need to

calculate the gradient of the additional function for 3-Dimensional problem, that is:

Eτ (i) = −1

2
ui · ui+2 = −1

2
(xixi+2 + yiyi+2 + zizi+2) (A.41)

Hence, we have:
Eτ (i)

xi
= −1

2
xi+2 (A.42)

Eτ (i)

yi
= −1

2
yi+2 (A.43)

Eτ (i)

zi
= −1

2
zi+2 (A.44)

and:
Eτ (i)

xi+2
= −1

2
xi+2 (A.45)

Eτ (i)

yi+2
= −1

2
yi+2 (A.46)

Eτ (i)

zi+2
= −1

2
zi+2 (A.47)

The final gradient is:

δE

δxi
=
δEθ(i)

δxi
+
δEθ(i− 1)

δxi
+

n∑
j=i+2

δELJ(rij , ξi, ξj)

δxi
+

i∑
j=1

δELJ(rji, ξj , ξi)

δxi
+
δE(i)τ
δxi

+
δE(i+ 2)τ

δxi

(A.48)

δE

δyi
=
δEθ(i)

δyi
+
δEθ(i− 1)

δyi
+

n∑
j=i+2

δELJ(rij , ξi, ξj)

δyi
+

i∑
j=1

δELJ(rji, ξj , ξi)

δyi
+
δE(i)τ
δyi

+
δE(i+ 2)τ

δyi

(A.49)

δE

δzi
=
δEθ(i)

δzi
+
δEθ(i− 1)

δzi
+

n∑
j=i+2

δELJ(rij , ξi, ξj)

δzi
+

i∑
j=1

δELJ(rji, ξj , ξi)

δzi
+
δE(i)τ
δzi

+
δE(i+ 2)τ

δzi

(A.50)

Bibliography

[1] Panos Parpas, Berç Rustem, and Efstratios N Pistikopoulos. Linearly constrained global

optimization and stochastic differential equations. Journal of Global Optimization, 36(2):

191–217, 2006.

[2] Erich Novak and Klaus Ritter. Global optimization using hyperbolic cross points. In State of

the art in global optimization (Princeton, NJ, 1995), volume 7 of Nonconvex Optim. Appl.,

pages 19–33. Kluwer Acad. Publ., Dordrecht, 1996. doi: 10.1007/978-1-4613-3437-8 2.

URL http://dx.doi.org/10.1007/978-1-4613-3437-8_2.

[3] Vincent Granville, Mirko Krivánek, and J-P Rasson. Simulated annealing: A proof of

convergence. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 16(6):

652–656, 1994.

[4] Jorge J. Moré and D. C. Sorensen. Newton’s method. In Studies in numerical analysis,

volume 24 of MAA Stud. Math., pages 29–82. Math. Assoc. America, Washington, DC,

1984.

[5] David F Shanno. Conditioning of quasi-newton methods for function minimization. Math-

ematics of computation, 24(111):647–656, 1970.

[6] R. Fletcher and M. J. D. Powell. A rapidly convergent descent method for minimization.

Comput. J., 6:163–168, 1963/1964. ISSN 0010-4620.

[7] John Greenstadt. On the relative efficiencies of gradient methods. Math. Comp., 21:360–

367, 1967. ISSN 0025-5718.

[8] John E Dennis, Jr and Jorge J Moré. Quasi-newton methods, motivation and theory. SIAM

review, 19(1):46–89, 1977.

[9] Brett Williams. On Stochastic Differential Equations in the Ito and in the Stratonovich

Sense. PhD thesis, 2012.

[10] Francisco J Solis and Roger J-B Wets. Minimization by random search techniques. Math-

ematics of operations research, 6(1):19–30, 1981.

[11] Christian Hennig. Methods for merging Gaussian mixture components. Adv. Data Anal.

Classif., 4(1):3–34, 2010. ISSN 1862-5347. doi: 10.1007/s11634-010-0058-3. URL http:

//dx.doi.org/10.1007/s11634-010-0058-3.

122

http://dx.doi.org/10.1007/978-1-4613-3437-8_2
http://dx.doi.org/10.1007/s11634-010-0058-3
http://dx.doi.org/10.1007/s11634-010-0058-3

Bibliography 123

[12] Y-K Hu and YP Hu. Global optimization in clustering using hyperbolic cross points.

Pattern recognition, 40(6):1722–1733, 2007.

[13] Anatoly Zhigljavsky and Antanas Zilinskas. Stochastic global optimization, volume 504.

Springer New York, 2007.

[14] Tzuu-Shuh Chiang, Chii-Ruey Hwang, and Shuenn Jyi Sheu. Diffusion for global optimiza-

tion in rˆn. SIAM Journal on Control and Optimization, 25(3):737–753, 1987.

[15] Christine Kehyayan, Nashat Mansour, and Hassan Khachfe. Evolutionary algorithm

for protein structure prediction. In Advanced Computer Theory and Engineering, 2008.

ICACTE’08. International Conference on, pages 925–929. IEEE, 2008.

[16] Mao Chen and Wen-qi Huang. Heuristic algorithm for off-lattice protein folding problem.

Journal of Zhejiang University SCIENCE B, 7(1):7–12, 2006.

[17] Marco Locatelli and Fabio Schoen. Fast global optimization of difficult lennard-jones clus-

ters. Computational Optimization and Applications, 21:55–70, 2000.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	1 Introduction
	1.1 Project Explanation
	1.2 Motivation
	1.3 Project aims
	1.4 Report structure
	1.5 Project Evaluation

	2 Background
	2.1 Deterministic Optimization Algorithm
	2.2 Deterministic Gradient Descent - Problem of Falling Into Local Minima
	2.2.1 Newton's Method
	2.2.2 Quasi Newton's Method

	2.3 DFP Algorithm
	2.4 The BFGS Algorithm
	2.5 Line Search
	2.6 Stochastic Processes
	2.7 Brownian Motion
	2.8 Stochastic Calculus
	2.9 Ito's Integral
	2.10 Stratonovich Integral
	2.11 Stochastic Differential Equations
	2.12 The Euler-Maruyama Method
	2.13 Numerical Integration
	2.14 Gaussian Processes
	2.15 Simulated Annealing
	2.16 Optimization Under Constraints
	2.17 Many-dimensional Test Functions
	2.17.1 Pinter's Function
	2.17.2 Michalewicz function
	2.17.3 Rastrigin Function

	3 Gaussian Processes in Random Starting Points Sampling
	3.1 Deterministic Gradient-Descent Algorithm
	3.2 Random Sampling of Search Space
	3.3 Re-exploring the explored regions
	3.4 Gaussian Processes Used in Algorithm
	3.5 Information Model Based on Gaussian Processes
	3.6 Gaussian Processes in Practice
	3.7 Adding Gaussian Processes
	3.8 Merging Gaussian Processes
	3.9 Merging weights of Gaussian Processes
	3.10 Deterministic Optimization Algorithm
	3.11 Termination Conditions
	3.12 Evaluation Methodology
	3.13 Results
	3.13.1 Results for Pinter's Function
	3.13.2 Results for Michalewicz Function
	3.13.3 Results for Rastrigin Function

	3.14 Conclusions
	3.14.1 Number of Function Evaluations and Error Accuracy
	3.14.2 Computational Complexity and Execution Time
	3.14.3 Final Conclusion and Method Weaknesses

	4 Adding Stochastic Term to Hyperbolic Cross Points
	4.1 Properties of Objective Function
	4.2 Hyperbolic Cross Points
	4.3 Mapping Hyperbolic Cross Points to Other Constraints
	4.4 Graphical Examples of Hyperbolic Cross Points
	4.5 HPC points in Global Optimization
	4.6 Ranking Hyperbolic Cross Points
	4.6.1 Non-Adaptive Approach
	4.6.2 Adaptive Approach
	4.6.3 Determinism of HPC Point Ranking
	4.6.4 Adding Stochastic Term to HPC Point Ranking

	4.7 Bounds Calculation
	4.7.1 First Approach - Halving Total Probabilities
	4.7.1.1 Example of Random HPC Point Ranking for Halving Total Probabilities

	4.7.2 Second Approach - Halving Consecutive Probabilities
	4.7.2.1 Example of Random HPC Point Ranking for Halving Consecutive Probabilities

	4.8 Convergence of Randomized HCP Algorithm
	4.9 Stopping Criteria for Test Simulations
	4.10 Evaluation Methodology
	4.11 Results
	4.11.1 Results for Pinter Function
	4.11.2 Results for Michalewicz Function
	4.11.3 Results for Restrigin Function

	4.12 Conclusion
	4.12.1 Number of function evaluations
	4.12.2 Computational Complexity
	4.12.3 Variance of Stochastic Methods
	4.12.4 Final Remarks

	5 Simulated Annealing Function Generalization for Stochastic Gradient-Descent Algorithm
	5.1 Stochastic Gradient-Descent Algorithm
	5.2 Stochastic Optimization Using the Euler-Maruyana Method
	5.3 Convergence of Stochastic Gradient-Descent Algorithm
	5.4 Mathematical Properties of Annealing Schedule Function
	5.5 Advantages and disadvantages of standard simulated annealing function
	5.6 Mathematical properties of candidates for simulated annealing function
	5.6.1 Functions converging to 1
	5.6.1.1 Tested example of function converging to 1

	5.6.2 Functions of form [n]log(x)
	5.6.2.1 Tested example of function converging to 1 of form [n]log(x)

	5.7 Evaluation Methodology
	5.8 Results
	5.8.1 Results for Pinter Function
	5.8.2 Results for Michalewicz Function
	5.8.3 Results for Restrigin Function

	5.9 Conclusions
	5.9.1 Michalewicz Function
	5.9.1.1 Number of Function Evaluations
	5.9.1.2 Accuracy Error
	5.9.1.3 Execution Time
	5.9.1.4 Michalewicz Function Conclusion

	5.9.2 Pinter Function
	5.9.2.1 Number of Function Evaluations
	5.9.2.2 Accuracy Error
	5.9.2.3 Execution Time
	5.9.2.4 Pinter Function Conclusion

	5.9.3 Restrigin Function
	5.9.3.1 Number of Function Evaluations
	5.9.3.2 Accuracy Error and Execution Time
	5.9.3.3 Restrigin Function Conclusion

	5.9.4 Final Conclusion

	6 Stochastic Gradient Descent with Point Repetition Avoidance
	6.1 Problem Introduction
	6.2 Avoiding Point Repetition
	6.2.1 Weighted Trajectory Points

	6.3 Mathematical properties of K(t)
	6.4 Numerical Integration
	6.5 Euler Numerical Solution to SDE
	6.6 Evaluation Methodology
	6.7 Results
	6.7.1 Pinter Function
	6.7.2 Results for Michalewicz Function
	6.7.3 Restrigin Function

	6.8 Conclusions
	6.8.1 Observations
	6.8.2 Locality Problem of Accumulated Historic Points for K(t)
	6.8.2.1 Trajectory Local Looping

	6.9 Conclusion for No Constraint Problem
	6.10 Weaknesses of Method
	6.11 Final Conclusion and Future Works

	7 Protein Structure Global Optimization
	7.1 Problem Introduction
	7.2 Protein Structure Model
	7.3 Model Details
	7.3.1 2-Dimensional Problem
	7.3.2 3-Dimensional Problem

	7.4 Input Framework
	7.5 Gradient Evaluation
	7.5.1 Gradient for 2-Dimensional Model
	7.5.2 Gradient for 3-Dimensional Model

	7.6 Problem Constraints
	7.7 Evaluation Methodology
	7.8 Results
	7.8.1 2-Dimensional Protein Folding Results
	7.8.1.1 Results for protein types: BABABBAB
	7.8.1.2 Results for protein types: ABBABBABABBAB

	7.8.2 3-Dimensional Protein Folding Results
	7.8.2.1 Results for protein types: BABABBAB
	7.8.2.2 Results for protein types: ABBABBABABBAB

	7.9 Conclusion
	7.9.1 Conclusions for 2-Dimensional Protein Folding
	7.9.1.1 Conclusions for protein types: BABABBAB
	7.9.1.2 Conclusions for protein types: ABBABBABABBAB

	7.9.2 Conclusions for 3-Dimensional Protein Folding
	7.9.2.1 Conclusions for protein types: BABABBAB
	7.9.2.2 Conclusions for protein types: ABBABBABABBAB

	7.9.3 Final Conclusion
	7.9.4 Model weaknesses

	7.10 Extended constraints

	8 Conclusion and Future Works
	8.1 Project Approach Overview
	8.2 Experimental Analysis Conclusions
	8.2.1 Introduction of Gaussian Processes to Multi Start Search
	8.2.2 Introduction of Stochastic Term to Hyperbolic Cross Points
	8.2.3 Testing different cooling functions in Stochastic Gradient Descent algorithm
	8.2.4 Introduction of Integral Term to Stochastic Gradient Descent

	8.3 Experimental Results for Protein Folding Problem
	8.4 Final Conclusion
	8.4.1 Weaknesses and Future Works

	A Appendix A
	A.1 2-Dimensional Problem
	A.1.1 3-Dimensional Problem

	A.2 Gradient Evaluation
	A.2.1 Gradient for 2-Dimensional Model
	A.2.2 Gradient for 3-Dimensional Model

	Bibliography

