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Abstract

We consider the problem of determining satisfiability of temporal formulas in general models of
linear time. We start by giving a model expression language for describing general models of
linear time. We describe a new algorithm for determining satisfiability of temporal formulas of
the logics L(F ,P) and L(U ,S) in these models. We provide an implementation of the algorithm,
with a sophisticated user interface. Finally we prove that the algorithm operates in polynomial
space, implying a new result for the complexity of the satisfiability problem itself.
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Chapter 1

Introduction

1.1 Motivation
Temporal Logic is an area of logic which is concerned with reasoning about time and change
through time. Since its inception by Arthur Prior in the late 1950’s , it has found many
applications in the field of computer science, ranging from databases to A.I. (see [11] for a
survey of such applications). In particular as a result of Amir Pnueli’s pioneering paper on
“The Temporal Logic of Programs”([6]) in which he introduced a temporal logic for reasoning
about the correctness of sequential and concurrent programs, temporal logic has found an
important application to the field of formal program verification. The general idea is that of
building a temporal model of a program, and constructing a specification of the program’s
desired behaviour as a set of formulas in some propositional language. The verification of the
program is then reduced to the problem of determining that the formulas of the specification are
satisfied in the model of the program. This form of temporal-propositional system specification
and verification forms a large sub-area of the field of Model Checking, which is concerned with
verification of finite state systems.

When choosing a temporal logic for specifying a system’s desired behaviour, or for any other
purpose, one of the key considerations is the view of time we take. We might for example take
a branching view, where a given point in time may have more than one point directly after it,
or a linear view. Furthermore we might view time as being set of discrete points, or as having a
continuous flow, whereby between any two point in time there are infinitely many more points.
Much of the work within the field of temporal logic itself adopts a natural numbers view of time,
whereby time has a first point and no endpoint, and every point has exactly one direct successor.
Subsequently the aforementioned problem of determining whether a formula is satisfied in a
given model (referred to here as satisfiability) has been thoroughly investigated for propositional
temporal logics over such views of time. For example the complexity of determining satisfiability
of a formula in the logic of Until and Since over a natural numbers view of time has been shown
in [8] to be P-SPACE complete. Such logics have also been used for practical applications, a
prime example being LTL (Linear Temporal Logic introduced in [6]) which has been extensively
used in Model Checking, and for which an EXPTIME1 procedure for deciding satisfiability was
given in [12].

However until recently, the area of temporal logic taking a real-numbers view of time has been
left largely unexplored. Thus it is on such logics that we will focus on in this project. Specifically
we focus on the problem of determining if a given formula is satisfied in a given model, as it
is (in light of the discussion above) of both theoretical and potentially practical interest. To

1specifically its runtime is exponential in the length of the formula but linear in the size of the model
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the best of our knowledge this problem has previously only been considered by Reynolds et al.
in [1].We will consider two temporal languages over such models of time; firstly the logic with
connectives F and P (referred to as L(F ,P)), and subsequently that with connectives U and S
(L(U ,S)). The first of these is the “original” temporal language, as introduced by Prior. The
second is an expressively superior language, which was shown by Kamp([13]) to be expressively
complete over R and N2. The formulas of these languages are by definition finite. Thus the
first problem we are faced with if we are to effectively compute satisfiability for a given model
is that of finitely specifying infinite models. To this end we will introduce a model expression
language similar to that introduced in [1] 3 for describing general models of time. The language
is sufficiently expressive that for any formula F satisfied in a model based on a real-numbers
view of time, F is satisfied in a model described by the language. We proceed to describe an
algorithm for determining satisfiability of formulas in said models, first for L(F ,P) and then
for L(U ,S). We provide an implementation of the algorithm, together with an intuitive user
interface. Finally we consider the complexity of our algorithm, proving that for a significant
sub-problem of the original problem it runs in polynomial time. We then prove that in general it
operates in PSPACE, a result which gives us a new classification ( in terms of its complexity) of
the satisfiability problem for the class of models describable by the model expression language.

1.2 Contributions
The key contributions of the project can be outlined as follows:

• A new algorithm for determining satisfiability of temporal formulas of the logics L(F ,P)
and L(U ,S) in general linear models of time, as described by model expressions.

• An implementation of the algorithm, with a sophisticated user interface. This is to the
best of our knowledge the first implementation of an algorithm solving this problem.

• A complexity analysis of our algorithm, implying a new result for the complexity of the
problem itself.

1.3 Structure of the Report
• Chapter 2: In this chapter give the background knowledge required to understand the

rest of the project. We start by describing the logics L(F ,P) and L(U ,S), after which we
introduce an expression language for describing linear models of time. Finally we briefly
give some background relevant to complexity theory.

• Chapter 3: We describe our algorithm for determining satisfiability of a given formula
A ∈ L(F ,P) in a model described by a model expression. We then extend the algorithm
to L(U ,S).

• Chapter 4: Here we discuss our implementation of the algorithm described in chapter 3.

• Chapter 5: In this chapter we analyse the complexity of the algorithm, and subsequently
of the problem of determining satisfiability itself.

2for every formula a(t) of first order logic, there is a formula F in the logic of U and S, such that F and a(t)
are equivalent over both R and N

3this is quite a natural choice, as the expression language itself originates from the theory of linear orders
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• Chapter 6: We summarise and evaluate the results of the project, and discuss the questions
it raises, outlining future work.

5



Chapter 2

Background

In this chapter we present the background knowledge necessary to understand the rest of this
report. Thus instead of reading it in full, the reader is free to use it as a reference when reading
subsequent chapters.

2.1 The Temporal Logics L(F ,P), and L(U ,S)
We start by fixing a countably infinite1 set L of propositional atoms. Temporal formulas are
defined inductively in terms of these atoms and various operators, the syntax and semantics of
which are defined below. Time is modelled using a linear ordering on a set T of points in time.

Definition 2.1. (Linear Ordering): a linear ordering2 of the set T is a binary relation < on T
(we write t < u to mean (t, u) ∈<) such that for any elements t, u, v in T :

1. t < u ∧ u < v → t < v

2. if t ̸= u, then either t < u or u < t but not both

3. t ≮ t

Linear orderings prove suitable for modeling time as they capture well some of our intuitions
about time: if t is in the past of u and u is in the past of v, then t should be in the past of
v;every point t in time is either in the future or the past of every other point v ;a time t is not
in the past or future of itself. Temporal models can now be defined as follows:

Definition 2.2. (temporal model): A temporal model M is a triple (T,<, h) where

• T is a non-empty set (whose elements correspond to points in time)

• < is a linear ordering of T

• h is an assignment over T , (i.e. a function h : L → ℘(T )3 mapping each atom in L to the
set of points in T at which we consider that the atom is true)

We will consider the formulas of two logics over such models, namely L(F ,P) and L(U ,S).
1intuitively, a countably infinite set is one for which there is a one-to-one correspondence with the natural

numbers
2Note that when a relation < is a linear ordering of a set T , we will often directly refer to the pair (T,<) as

a linear ordering.
3where ℘(T ) denotes the powerset of T
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2.1.1 L(F ,P)

Syntax

Definition 2.3. (L(F ,P) formula):The formulas of L(F ,P) are defined as:
• ⊤

• The atoms in L

• if A and B are formulas of L(F ,P) , then so are ¬A, A ∧B, FA, and PA.

Abbreviations : In addition to the above operators, we will also use the following abbrevi-
ations:

• A ∨B = ¬(¬A ∧ ¬B)

• A → B = ¬(A ∧ ¬B)

Binding Conventions : All unary operators are right associative. All binary operators are
left associative. operators are listed below in order of decreasing precedence:

1. ¬,F ,P (these are unary, so mutual order is immaterial)

2. ∧

3. ∨

4. →

Definition 2.4. (subformulas for L(F ,P)): We define the subformulas of a formula A ∈
L(F ,P) (denoted subformulas(A) ) inductively on the structure of A:

• if A is an atom p ∈ L or ⊤ then A is the only subformula of A.

• if A = ¬B, A = FB or A = PB then the subformulas of A are the subformulas of B, and
A itself.

• if A = B ∧ C then the subformulas of A are the subformulas of B, the subformulas of C,
and A itself.

Semantics

We evaluate these formulas at points of temporal models M = (T,<, h), writing M, t � A for
a formula A in L(F ,P) to mean that A is true at the point t of the model M. Given a model
M = (T,<, h), a world t ∈ T and formulas A,B we define � as follows:

• M, t � ⊤

• For any atom p ∈ L, M, t � p ⇐⇒ t ∈ h(p)

• M, t � ¬A ⇐⇒ M, t 2 A

• M, t � A ∧B ⇐⇒ M, t � A and M, t � B

• M, t � FA ⇐⇒ ∃u.u > t ∧M, u � A
(the Future operator: A is true at some point in the future)

• M, t � PA ⇐⇒ ∃u.u < t ∧M, u � A
(the Past operator: A was true at some point in the past)

7



2.1.2 L(U ,S)

Syntax

Similarly, the formulas of L(U ,S) are defined as:

• ⊤

• The atoms in L

• if A and B are formulas of L(U ,S), then so are ¬A, A∧B, AUB, AWB, ASB and AZB.

Abbreviations: In addition to the above operators, we will also use the following abbrevi-
ations:

• A ∨B = ¬(¬A ∧ ¬B)

• A → B = ¬(A ∧ ¬B)

• GA = AW⊥
(A will be true at all times in the future)

• HA = AZ⊥
(A was true at all times in the past)

Binding Conventions: All unary operators are right associative. All binary operators are
left associative. operators are listed below in order of decreasing precedence:

1. G,H (these are unary, so mutual order is immaterial)

2. U ,S,W,Z (these all have the same precedence)

3. ∧

4. ∨

5. →

Definition 2.5. (subformulas for L(U ,S)): We define the subformulas of a formula A ∈ L(U ,S)
(denoted subformulas(A) ) inductively on the structure of A:

• if A is an atom p ∈ L or ⊤ then A is the only subformula of A.

• if A = ¬B then the subformulas of A are the subformulas of B, and A.

• if A = B ∧ C, A = BUC, A = BWC, A = BSC or A = BZC then the subformulas of A
are the subformulas of B, the subformulas of C, and A itself.

Semantics

Given a model M = (T,<, h), a world t ∈ T and formulas A,B of L(U ,S) we define the relation
� as above for atoms, ⊤, and formulas built using ¬ and ∧. The semantics for the operators
U ,W,S,Z are as follows:

• M, t � AUB ⇐⇒ ∃u.(u > t ∧M, u � B ∧ ∀v.(t < v < u → M, v � A))
(the Until operator: A will true until B becomes true)
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• M, t � AWB ⇐⇒ ∃u.(u > t∧M, u � B ∧∀v.(t < v < u → M, v � A))∨∀v > t.M, v � A
(the Weak Until operator: A will be true until B becomes true, or A will be true forever)

• M, t � ASB ⇐⇒ ∃u.(u < t ∧M, u � B ∧ ∀v.(u < v < t → M, v � A))
(the Since operator: A has been true since B was true)

• M, t � AZB ⇐⇒ ∃u.(u < t ∧M, u � B ∧ ∀v.(u < v < t → M, v � A)) ∨ ∀v < t.M, v � A
(the Weak Since (Zince) operator: A has been true since B was true, or A has always
been true)

It is worth noting that we adopt here what are referred to in the literature as the ’strict’ versions
of the temporal connectives, as opposed to the often used non-strict ones. An example of the
non-strict connectives are F≤ and U≤:

• M, t � F≤A ⇐⇒ ∃u.u ≥ t ∧M, u � A

• M, t � AU≤B ⇐⇒ ∃u.(u ≥ t ∧M, u � B ∧ ∀v.(t ≤ v < u → M, v � A))

For technical reasons, non-strict versions work better with model checking using automata, but
expressively, the strict versions are superior (See [4] p.103).

Finally, we introduce some definition of terms we will use for both L(F ,P) and L(U ,S)

Definition 2.6. (atomic formula): A formula F is atomic if it is a propositional atom a ∈ L,
or ⊤ .

Definition 2.7. (boolean formula): A formula F is boolean if it is atomic, or if it is of the form
A ∧B, or ¬A.

Relationship between L(F ,P) and L(U ,S)

L(F ,P) is in fact a subset of L(U ,S), as FA and PA are expressible in L(U ,S) as ⊤UA and
⊤SA respectively, so any results we prove in the subsequent sections for L(U ,S) will also hold for
L(F ,P). However L(F ,P) although less expressive than L(U ,S) may be sufficient for certain
applications. Thus although an algorithm for determining satisfiability in L(U ,S) would also
be capable of handling L(F ,P), we will start by defining a (hopefully simpler) algorithm for
L(F ,P) initially and then extending it to L(U ,S).

Concluding remarks
Definition 2.8. (satisfied): We say that a formula A (of L(U ,S) or L(F ,P)) is satisfied in a
model M = (T,<, h) (denoted σ(A,M)) if and only if there exists t ∈ T such that M, t � A.

Remark 2.9. In chapter 5, we will write formulas in polish notation.This simply consists in
writing operators as prefixes. So for example the formula aS(b ∧ ¬(c ∧ d)) would be written in
polish notation as Sa ∧ b¬ ∧ cd .
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2.2 Linear Models of time
As mentioned in the previous section, we evaluate temporal formulas at points of models of the
form M = (T,<, h) where < is a linear order on T . Our starting point for constructing general
linear orders will be single point models.

Definition 2.10. (single point model): a single point model is a model of the form ({0}, {}, h)
for some assignment h.

Linear orders can be composed together by means of a lexicographic sum operation in order
to form larger orders. Thus in order to build general temporal models starting from single point
models, we first define the lexicographic sum of models.

Definition 2.11. (lexicographic sum of models): given a finite set of atoms L, a non empty set
I, a linear order <Ion I, and for each i ∈ I a model Mi = (Ti, <i, hi), the lexicographic sum∑

i∈I Mi is defined as the model M = (T,<, h) where:

• T = {‹t, i›|i ∈ I, t ∈ Ti}

• ‹t, i› < ‹t′, j› ⇐⇒ (i <I j ∨ i = j ∧ t <i t
′)

• h(p) = {‹t, i›|i ∈ I, t ∈ hi(p)}

In the theory of linear orderings, there are four well-known operators which are used to build
general linear orders, each of which is an instance of a lexicographic sum. Having defined
lexicographic sums for temporal models, we are now in a position to define these operators,
which we will use to construct finite model expressions describing temporal models.

2.2.1 Model expressions
We start by giving the syntax of model expressions

Definition 2.12. (model expression M): M := a|M +M ’|ωM |ω∗M | < M1,…,Mn >
where a is a finite subset of L.

The semantics of model expressions are as follows

Definition 2.13. (semantics of model expressions): We define the model M described by the
model expression M by induction on the structure of M :

• The expression a describes the single point model ({0}, {}, h) where ∀p ∈ a.h(p) = {0}
and ∀q /∈ a.h(q) = {}

Let M0, M1 describe models M0, M1. Then

• The expression M0 +M1 describes the model
∑

i∈{0,1}Mi, where 0 < 1.

• The expression ωM0 describes the model
∑

i∈NMi, where Mi = M0 for all i ∈ N (and
< is the ordering of the natural numbers). It is illustrated in figure 2.1.

• The expression ω∗M0 describes the model
∑

i∈I Mi, where I = (Z\N) ∪ {0} , and Mi =
M0 for all i ∈ I (and <is the ordering of (Z\N) ∪ {0}). It is illustrated in figure 2.2.

The final operator is the shuffle operator. In order to define it we must first give some
definitions from the theory of linear orders.

10



M M

0 1

...

M

2

Figure 2.1: The model ωM

M M
...

M

0−1−2

Figure 2.2: The model ω∗M

Definition 2.14. (subordering):Let <R be a linear ordering of A, and let <S be a linear
ordering of B, and suppose that A ⊆ B.We say that (A,<R) is a subordering of (B,<S) if for
every t, u ∈ A, t <R u iff t <S u. Thus intuitively, (A,<R) is a subordering of (B,<S) if any
two elements of A are ordered by R in the same way that they are ordered by S.

Definition 2.15. (dense in a linear ordering): Let A be a linear ordering and let D be a
subordering of A. We say that D is dense in A if between any two elements of A there is an
element of D.

We are now in a position to define the semantics of the shuffle operator:

Definition 2.16. (semantics of shuffle operator): LetM1,...,Mn be model expressions describing
models M1,...,Mn respectively. For n ∈ N\0 let Q be partitioned into n subsets {Qj |j < n}
each of which is dense in Q. For each i ∈ Q define Mi to be the model Mj such that i ∈ Qj .
The shuffle < M1,…,Mn > of expressions M1,…,Mn corresponds to the model

∑
i∈QMi.So the

shuffle is essentially a dense mixture of the input models, i.e. between any two points in Q,
there will be a copy of every input model. The idea is illustrated in figure 2.3, which is from
[1].

M1
...

Mn

.
.
.

M1

M1
...

Mn

.
.
.

M1
...

Mn

.
.
.

M2

M1
...

Mn

.
.
.

M1
...

Mn

.
.
.

...

Mn
Q

Figure 2.3: The model < M1,…,Mn >

The usage of the operators is illustrated by example 2.17.

Example 2.17. (example model): Assume we want to describe a model M isomorphic to Q
such that:

• The atom z is true only at the members of Z

• The atom q is true only at the members of Q\Z
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Then M can be described (up to isomorphism) by means of the model expression

M = ω∗({z}+ < {q} >) + {z}+ ω(< {q} > +{z})

Finally we introduce some definitions which will be used in the chapters that follow.

Definition 2.18. (isomorphic): We say that two models M = (T,<, h), M′ = (T ′, <′, h′) are
isomorphic (denoted M ∼= M′) if and only if there is a bijection f : T → T ′ such that:

• for all x, y in T , x < y ⇔ f(x) <′ f(y)

• for all x ∈ T , for all p ∈ L, x ∈ h(p) ⇔ f(x) ∈ h′(p)

Isomorphisms preserve truth of temporal formulas ,i.e for any formula A (in L(F ,P) or
L(U ,S)),any t ∈ T , if M′ ∼= M then M, t � A ⇐⇒ M′, f(t) � A. For a proof of this see
[1],p.7.

Definition 2.19. (constructible model): A model M′ is said to be constructible if there is a
model expression M describing a modelM such that M ∼= M′ .

Remark. The distinction between a model expression M and the model M it describes should
be clear. Given that in this report we will be primarily concerned with models described by
model expressions, for the sake of brevity (where there is no danger of confusion) we will refer
to a model expression M when in fact we are referring to the underlying model M it describes.
So for example we will say “The formula F satisfied in the model ωM” to mean “The formula
F satisfied in the model which ωM describes”, we will write M, t � F to mean M, t � F , or∑

i∈I Mi to mean
∑

i∈I Mi.

2.2.2 The power of the operators: modelling general flows of time
A question which arises at this point is why did we choose these operators? how expressive are
they? In other words what kind of models can we build with them? To answer this question
we consider here some relevant results.

Definition 2.20. (≡k): for linear models M , N , and k∈ N, we define M ≡k N to mean that
for any formula A ∈ L(U ,S) with depth(A) ≤ k (where depth(A) is maximum nesting of U , S,
W, Z in A)

σ(A,M) ⇐⇒ σ(A,N)

From the definition of the operators we have the following:

Lemma 2.21. (linearity of models): Any model M constructed using the four operators is
linear.

Theorem 2.22. (constructibilty): Given k∈ N, for any linear model N there exists a model M
constructible using the four operators such that N ≡k M ([3]).

Definition 2.23. (R− restricted constructible model ): We say that a constructible model is
R− restricted if it is constructible by a model expression satisfying the following restrictions:

• the operation M0 + M1 is only defined if M0 has a greatest point and M1 has no least
point, or if M1 has a least point and M0 has no greatest point.

• the operation ωM0 is only defined if M0 has a greatest point and no least point.

12



• the operation ω∗M0 is only defined if M0 has a least point and no greatest point.

• the operation < M1, ...,Mn > is only defined if at least one of the input models M1...Mn

is a single point model, and all remaining input models have endpoints (both a least and
greatest point).

Theorem 2.24. For any R − restricted constructible model M there exists a model N based
on a linear order T ∼= R such that ∀k ∈ N.M ≡k N ( [1] )

Remark 2.25. :M is by construction countable, so it is not isomorphic to N (M � N)

Theorem 2.26. For any k ∈ N, for any model N based on a linear order T ∼= R , there exists
an R− restricted constructible model M such that M ≡k N .( [3])

A direct consequence of the above is that model expressions are sufficiently expressive that
for any formula F satisfied in a model based on a real-numbers view of time, F is satisfied in a
model described by the language. The theorems illustrate the suitability of model expressions
for describing general linear models, and particularly for our purpose of describing models based
on real flows of time.

2.3 Computational Complexity
The field of Computational Complexity is concerned with analysing the resources required by
algorithms in terms of time and space, which is characterised as their time/space complexity.
Furthermore it focuses on the complexity intrinsic to the problems themselves, in other words
the resources required by any optimal algorithm to solve a particular problem.Based on this
characterisation problems are put into different complexity classes.

In order to analyse the complexity of an algorithm, we create a computational model of that
algorithm and analyse the resources it uses. Similarly to analyse the complexity of a particular
problem, we create a computational model of an algorithm solving the problem, and analyse it’s
resource usage. The fundamental model of computation is the Turing Machine. We assume the
readers familiarity with the definition of Turing Machines. Subsequently we consider here only
a few definitions which will be necessary to understand the results in chapters 5 and 6. The
definitions are taken from [10], and should the reader have further queries regarding complexity
theory, we refer them to [10].

Definition 2.27. (Language L): A language L is a set of strings (or words) over a given
alphabet (i.e. set of symbols).

Definition 2.28. (k-tape I/O TM): An input/output k-tape TM (k ≥ 2) has:

• input tape: read only head can move freely, but no change of symbol

• k − 2 work tapes

• output tape:write only head can only move to right

Definition 2.29. (f(n))SPACE: An i/o TM operates within space f(n) if on every input of
length n it uses ≤ f(n) squares of each work tape. L is in (f(n))SPACE if L is decided by an
i/o TM operating within space f(n).
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Definition 2.30. (PSPACE): L is in PSPACE if L is in (f(n))SPACE for some polynomial
f(n).

Remark 2.31. We will write poly(x) to mean “polynomial in x”, and exp(x) to mean “exponential
in x”
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Chapter 3

Determining satisfiability of
temporal formulas in linear models

In this chapter we describe our algorithm for determining if a given formula is satisfied in a
model described by a model expression (recall definition 2.8). Initially we outline an algorithm
for formulas of L(F ,P). We then generalise various parts of the algorithm, so that it can be
extended to handle formulas of L(U ,S).

3.1 Determining satisfiability for L(F ,P)

Our problem is given a model M described by some model expression, and a finite formula A
in L(F ,P), to determine whether A is satisfied in M .

As mentioned previously, M is a lexicographic sum
∑

i∈IMi for some linear order I, and
atomic Models Mi. Thus the most obvious approach is that of looking at each world t of the
model and checking if M, t � A . This clearly may not terminate in the general case, as models
may have infinitely many worlds. A follow up idea is that of focusing on each sub-model instead
of focusing on each world. Specifically to recursively determine what formulas are satisfied in
each of the sub-models Mi, based on this determine what formulas are satisfied in the model
M =

∑
i∈IMi, and finally check if A is one of them. Evidently as there are infinitely many

formulas satisfied in any model, and we are only interested in those relevant to the truth value
of A, namely its subformulas, we restrict our focus to these. Thus the idea is to start at the
leaves (the 1-point models) of the tree of operations describing our model, determine which
subformulas of A are satisfied at each of these, then work our way up the tree determining
which subformulas are satisfied at each level until we get to the root. At this point we will have
the subformulas of A satisfied in the model M , and can just check if A is one of them.

However we need to consider the fact that certain subformulas which are not satisfied in any
of the arguments of a lexicographic sum will be satisfied in the sum itself. For example if we
consider the formula A = Fp and the one point models M1 = {}, M2 = {p}, A is clearly not
satisfied in M1 or M2, but is satisfied in M1 +M2( illustrated in figure 3.1). To handle this we
introduce the notion of formula localization.

Definition 3.1. (localization for L(F ,P)): Given a model M =
∑

i∈IMi for some linear order
(I,<) and a formula F in the logic of F ,P, we define the localization Fi of F at model Mi by
induction on the structure of F :

• If F is atomic then ∀i ∈ I.Fi = F

• (¬A)i = ¬Ai
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Figure 3.1: why we need localisation

• (A ∧B)i = Ai ∧Bi

• (FA)i =

{
⊤ if ∃j >I i.Aj satisfied in Mj

F(Ai) otherwise

• (PA)i =

{
⊤ if ∃j <I i.Aj satisfied in Mj

P (Ai) otherwise

Intuitively, Given a model M =
∑

i∈IMi , the localization Ai of a formula A at a sub model Mi

of M is a rewritten version of the formula incorporating information about the other models in
the sum M =

∑
i∈IMi. Thus evaluating the localization Ai at the worlds of Mi (considering

Mi in isolation) will be equivalent to evaluating the unlocalized formula A at the worlds of the
model Mi in the context of the model M . This idea is formalised by the lemma that follows.

Lemma 3.2. (localization lemma for L(F ,P)): Given a linear order (I,<I), a model M =∑
i∈IMi, and a formula A ∈ L(F ,P):

∀i ∈ I.∀t ∈ Ti.(M, ‹t, i› |= A ⇔ Mi, t |= Ai)

where ‹t, i› denotes the world of M corresponding to the world t of Mi

Proof. Pick arbitrary i ∈ I,t ∈ Ti. we prove the lemma by induction on the structure of A:

• (Base Case) A atomic:

1. M, ‹t, i› |= A ⇔ Mi, t |= A (by definition of M =
∑

i∈IMi for atomic A)
2. Ai = A (by definition of localization for atomic A)
3. M, ‹t, i› |= A ⇔ Mi, t |= Ai(by 1,2)

• Inductive Hypothesis: property holds for A,B

– M, ‹t, i› |= ¬A
⇔ M, ‹t, i› 2 A
⇔ Mi, t 2 Ai(by IH)
⇔ Mi, t |= ¬Ai

⇔ Mi, t |= (¬A)i(by def. of localization)
– M, ‹t, i› |= A ∧B

⇔ M, ‹t, i› |= Aand M, ‹t, i› |= B
⇔ Mi, t |= Aiand Mi, t |= Bi(by IH)
⇔ Mi, t |= Ai ∧Bi

⇔ Mi, t |= (A ∧B)i(by def. of localization)
– to show M, ‹t, i› |= FA ⇔ Mi, t |= (FA)i we have two cases:
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* If ∃j >I i.Aj satisfied in Mj(assumption):
⇒ ∃t′ ∈ Tj .Mj , t

′ |= Aj (by def. 2.8-satisfied)
⇒ ∃t′ ∈ Tj .M, ‹t′, j› |= A(by IH)
⇒ ∃‹t′, j›.‹t, i› < ‹t′, j› ∧M, ‹t′, j› |= A (by assumption, def. of <)
⇒ M, ‹t, i› |= FA
Also by definition of localization and assumption (FA)i = ⊤, so trivially Mi, t |=
(FA)i. Thus M, ‹t, i› |= FA ⇔ Mi, t |= (FA)i as both terms are true.

* Otherwise ¬∃j >I i.Ajsatisfied in Mj (assumption):
⇒ ¬∃j >I i.∃t′ ∈ Tj .Mj , t

′ |= Aj (by def. of satisfied)
⇒ ¬∃j >I i.∃t′ ∈ Tj .M, ‹t′, j› |= A(by IH) (A)
Subsequently
M, ‹t, i› |= FA
⇔ ∃t′.t <i t

′ ∧M, ‹t′, i› |= A (by A, semantics of F and def. of<I)
⇔ ∃t′.t <i t

′ ∧Mi, t
′ |= Ai (by IH)

⇔ Mi, t |= FAi (by defintion of F )
⇔ Mi, t |= (FA)i (by definition of localization and assumption)

– The case for Mi, t |= (PA)i ⇔ M, ‹t, i› |= PA is entirely temporally symmetrical
(replace F with P and < with >).

From this lemma we can prove the following:

Theorem 3.3. (localization Theorem for L(F ,P)): Given a linear order (I,<I), a model
M =

∑
i∈IMi, and a formula A ∈ L(F ,P):

A is satisfied in M =
∑

i∈I Mi⇐⇒ ∃i ∈ I.Aiis satisfied in Mi

Proof. A is satisfied in M =
∑

i∈I Mi

⇔ ∃t ∈ T.M, t |= A (by def. of satisfied)
⇔ ∃i ∈ I.∃t ∈ Ti.M, ‹t, i› |= A (by def. of

∑
i∈I Mi)

⇔ ∃i ∈ I.∃t ∈ Ti.Mi, t |= Ai (by Lemma 3.2)
⇔ ∃i ∈ I.Ai satisfied in Mi(by def. of satisfied)

The localization theorem is the first step towards our goal of using localization to determine
satisfiability. Eventually we will use it to formalise the idea given at the start of this chapter
into an algorithm for solving the model checking problem for L(F ,P), i.e. deciding whether a
given formula A of L(F ,P) is satisfied in a given model M . In order to do this we give some
more definitions.

Definition 3.4. (S(A)): for a formula A ∈ L(F ,P), S(A) is defined as the minimal closure of
A under subformulas, and localization. I.e. it is the smallest set such that:

• A ∈ S(A)

• subformulas(A) ⊆ S(A)

• for any model
∑

i∈I Mi, linear order (I,<I), ∀B ∈ S(A).∀i ∈ I.Bi ∈ S(A)

S(A) can be constructed as the set of every possible localization of every subformula B of
A, where a possible localization of a formula B is the result of replacing any number of its
subformulas of the form FC or PC with ⊤. S(A) is clearly both finite, and finitely computable.
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Definition 3.5. (ΣA(M)): Given a formula A ∈ L(F ,P) and a model M , we define

ΣA(M) = {B ∈ S(A) : B is satisfied in M}

Using these definitions, we can rephrase Theorem 3.3 by defining ΣA(
∑

i∈I Mi) in terms of
ΣA(Mi).

Proposition 3.6. ( definition of ΣA(
∑

i∈I Mi)): for any lexicographic sum
∑

i∈I Mi

ΣA(
∑
i∈I

Mi) = {B ∈ S(A) : ∃i ∈ I.Bi ∈ ΣA(Mi)}

Proof. :

ΣA(
∑
i∈I

Mi) = {B ∈ S(A) : B is satisfied in M} (by definition)

= {B ∈ S(A) : ∃i ∈ I.Bi is satisfied in Mi} (by Localization Theorem-3.3)
= {B ∈ S(A) : ∃i ∈ I.Bi ∈ ΣA(Mi)} ( by definition of ΣA(Mi), as Bi ∈ S(A)

by definition of S(A))

The algorithm
The significance of proposition 3.6 for the purpose of determining satisfiability of a formula A
in a model

∑
i∈I Mi, is that we have moved from considering potentially infinite structures Mi

to finite sets ΣA(Mi) (ΣA(Mi) is by definition finite, as it is a subset of S(A) which is finite).
However to construct ΣA(

∑
i∈I Mi) we still have to construct ΣA(Mi) for each i ∈ I, and I

could be infinite. As such, this does not give us an algorithm. In the following section, we
will show that if M =

∑
i∈I Mi is a constructible model , we can adapt proposition 3.6 into

an algorithm for computing ΣA(M), and subsequently determining satisfiability by checking if
A ∈ ΣA(M).

Specifically we will use proposition 3.6 together with some intermediary lemmas on localiza-
tions in constructible models to show that for any constructible model M = _(M0...Mn) where
_ is one of the four operators and M0...Mn are the input models, we can construct ΣA(M)
purely in terms of ΣA(Mi) for i ∈ {0...n}, where n is by definition finite. The result will be that
for any constructible model M , ΣA(M) can be computed finitely by induction over the model
tree of M . Firstly we note that

Lemma 3.7. (ΣA(a)):There is an algorithm which given any formula A ∈ L(F ,P), and any
single point model a computes ΣA(a).

Proof. : Recall that a is a finite subset of L, denoting the atoms true at the world 0 of a
single point model. initially ΣA(a) = {}. The algorithm first constructs S(A) by generating
the subformulas of A , and for each one generating every possible version of it where arbitrarily
many of its subformulas of the form FC or PC are replaced with ⊤. Then, for each formula
B ∈ S(A) it evaluates it at 0:

• if B is ⊤ return true

• if B is an atom p ∈ L then return true if p ∈ a and false otherwise.
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• if B = ¬C then recursively call the algorithm on C, returning the negation of its result.

• if B = C ∧D recursively call the algorithm on C and D, returning true if both recursive
calls return true and false otherwise.

• if B = FC or B = PC return false

If the formula evaluates to true add it to ΣA(a). When there are no more formulas in S(A)
return ΣA(a).

In the sections that follow, we will describe how to compute ΣA(_(M0...Mn)) in terms of
ΣA(M0)...ΣA(Mn) for each of the four operators.

Computing ΣA(M0 +M1)

By proposition 3.6 and definition of M0 + M1 we have ΣA(M0 + M1) = {B ∈ S(A) : B0 ∈
ΣA(M0) ∨B1 ∈ ΣA(M1)}.

Furthermore, for every B ∈ S(A) we can compute the localizations B0, B1 of B inductively,
by specialising the definition of localisation (definition 3.1) to the model M = M0 +M1 :

• If B is atomic then B0 = B1 = B

• for i ∈ {0, 1}, (¬C)i = ¬Ci

• for i ∈ {0, 1}, (C ∧D)i = Ci ∧Di

• (FC)0 =

{
⊤ if C1 ∈ ΣA(M1)

F(C0) otherwise

• (FC)1 = F(C1)

• (PC)0 = P(C0)

• (PC)1 =

{
⊤ if C0 ∈ ΣA(M0)

P(C1) otherwise

Notice that the localisation context conditions “Ci is satisfied in Mi” become Ci ∈ ΣA(Mi) by
definition of ΣA(Mi), because Ci ∈ S(A) by definition of S(A) (Ci is a possible localisation of
a subformula of B).

From the above it follows that

Lemma 3.8. (ΣA(M0 +M1)): There is an algorithm which for any models M0, M1 given as
input a formula A ∈ L(F ,P) and ΣA(M0), ΣA(M1) computes ΣA(M0 +M1).

Computing ΣA(< M1, ...,Mn >)

By the definition of shuffle as a lexicographic sum where I = Q , and proposition 3.6 we have

ΣA(< M1, ...,Mn >) = {B ∈ S(A) : ∃i ∈ Q.Bi ∈ ΣA(Mi)}

and thus should in theory compute Bi for every i ∈ Q. This is in fact unnecessary as a result
of the following Lemma.
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Lemma 3.9. (Shuffle localization lemma for L(F ,P)): For any formula B ∈ L(F , P ):

∀i, j ∈ Q.(Bi = Bj)

Proof. : Pick arbitrary B ∈ L(F , P ), i, j ∈ Q Then:

• If B is atomic then by definition of localizationBi = Bj = B

(IH): assume the lemma for formulas C,D.

• (¬C)i
= ¬Ci (by def. of loc.)
= ¬Cj (by IH)
= (¬C)j (by def. of loc.)

• (C ∧D)i
= Ci ∧Di (by def. of loc.)
= Cj ∧Dj (by IH)
= (C ∧D)j (by def. of loc.)

• Assume ∃h >I i such that Ch is satisfied in Mh(assumption)

1. (FC)i = ⊤ (by def. of loc., assumption)
2. ∃x ∈ {0, 1, ..., n}.Mh = Mx (by assumption, def. of shuffle)
3. ∃k >I j.Mk = Mx(by definition of shuffle)
4. Ck = Ch (by IH)
5. ∃k >I j such that Ck is satisfied in Mk (by assumption, 2,3,4)
6. (FC)j = ⊤ (by 5, def. of loc.)
7. (FC)i = (FC)j(by 1,6)

Otherwise ¬∃h >I i such that Ch is satisfied in Mh(assumption) in which case:
(FC)i
= FCi(by assumption, def. of loc.)
= FCj(by IH)
= (FC)j(by assumption, def. of shuffle, def. of loc.)

• The case for (PC)i = (PC)j is symmetric

As a result of the Lemma we can simplify the definition of localization for formulas B ∈ S(A),
in terms of the single localization Bλ that we need to compute:

• If B is atomic then Bλ = B

• (¬B)λ = ¬Bλ

• (C ∧D)λ = Cλ ∧Dλ

• (FC)λ =

{
⊤ if Cλ ∈

∪n
i=0ΣA(Mi)

F(Cλ) otherwise
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• (PC)λ =

{
⊤ if Cλ ∈

∪n
i=0ΣA(Mi)

P(Cλ) otherwise

Note that we consider
∪n

i=0ΣA(Mi) for the localization conditions as by the definition of shuffle
for any i ∈ Q we have

∪
j>iΣA(Mj) =

∪
j<iΣA(Mj) =

∪
i∈QΣA(Mi) =

∪n
i=0ΣA(Mi) . Sub-

sequently

ΣA(< M0,M1...Mn >) = {B ∈ S(A) : ∃i ∈ Q.Bi ∈ ΣA(Mi)}
= {B ∈ S(A) : ∃i ∈ Q.Bλ ∈ ΣA(Mi)} (by Lemma 3.9)
= {B ∈ S(A) : Bλ ∈

∪
i∈Q

ΣA(Mi)}

= {B ∈ S(A) : Bλ ∈
n∪

i=0

ΣA(Mi)} (as
∪
i∈Q

ΣA(Mi) =
n∪

i=0

ΣA(Mi)

by definition of shuffle )

and clearly it follows that:

Lemma 3.10. (ΣA(< M1, ...,Mn >)): There is an algorithm which for any models M1,...,Mn

given as input a formula A ∈ L(F ,P) and ΣA(M1),...,ΣA(Mn) computes ΣA(< M1...Mn >).

Computing ΣA(ωM0)

We start by specialising the definition of localisation to the model ωM0. Recall that for ωM0

the index ordering is I = N. Thus for B ∈ S(A), according to definition 3.1 Bn is defined for
n ≥ 0:

• If B is atomic then ∀n.Bn = B

• (¬B)n = ¬Bn

• (A ∧B)n = An ∧Bn

• (FB)n =

{
⊤ if ∃m.m > n ∧Bm ∈ ΣA(M0)

F(Bn) otherwise

• (PB)n =

{
⊤ if ∃m.0 ≤ m < n ∧Bm ∈ ΣA(M0)

P (Bn) otherwise

By proposition 3.6 we have ΣA(ωM0) = {B ∈ S(A) : ∃n ∈ N.Bn ∈ ΣA(M0)}. According to this
definition in order to compute ΣA(ωM0) we potentially need to compute the localization Bn of
B for all natural numbers. This is in fact not necessary, as a result of the following lemma.

Definition 3.11. (d(F ) for F ∈ L(F , P )):For a formula B∈ L(F , P ), we define d(B) to be the
maximum depth of nesting of P in B:

• If B is atomic then d(B) = 0

• d(¬B) = d(B)

• d(A ∧B) = max(d(A), d(B))
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• d(FB) = d(B)

• d(PB) = d(B) + 1

Lemma 3.12. (ω localization lemma for L(F ,P)): given a model M , a formula A ∈ L(F ,P),
and B ∈ S(A), ∀n ≥ d(B).Bn = Bd(B), i.e. the localizations of B converge at the sub-model
Md(B).

Proof. :

• If B is atomic then d(B) = 0, and ∀n ≥ 0.Bn = B0 = B

(IH): assume the lemma for formulas C,D.

• B = ¬C: pick n ≥ d(¬C) = d(C).
(¬C)n
= ¬(Cn) (by def. of loc.)
= ¬(Cd(C)) (by IH )
= (¬C)d(C) (by def. of loc.)
= (¬C)d(¬C) (by def. of d())

• B = C ∧D: pick n ≥ d(C ∧D) = max(d(C), d(D))

(C ∧D)n
= Cn ∧Dn (by def. of loc.)
= Cd(C) ∧Dd(D)(by IH)
= Cd(C∧D) ∧Dd(C∧D) (by IH, as d(C ∧D) ≥ d(C), d(C ∧D) ≥ d(D))
= (C ∧D)d(C∧D)(by def. of loc.)

• B = FC: pick n ≥ d(FC) = d(C)
Recall:

(FC)n =

{
⊤ if ∃m.m > n ∧ Cm ∈ ΣA(M0)

F(Cn) otherwise

(FC)d(FC) =

{
⊤ if ∃m.m > d(FC) ∧ Cm ∈ ΣA(M0)

F(Cd(FC)) otherwise
However
Cn = Cd(C) (by IH, as n ≥ d(C))
= Cd(FC) (by def. of d())
Thus F(Cn) = F(Cd(FC)). Additionally, as n ≥ d(FC) = d(C) the conditions for the ⊤
cases are both equivalent to Cd(C) ∈ ΣA(M0) by IH. It follows that (FC)n = (FC)d(FC).

• B = PC: pick n ≥ d(PC) = d(C) + 1 ( ⇒ n > d(C))
Recall:

(PC)n =

{
⊤ if ∃m.0 ≤ m < n ∧ Cm ∈ ΣA(M0)

P (Cn) otherwise

(PC)d(PC) =

{
⊤ if ∃m.0 ≤ m < d(PC) ∧ Cm ∈ ΣA(M0)

P (Cd(PC)) otherwise

We first show equivalence of the conditions for the ⊤cases:
∃m.0 ≤ m < n ∧ Cm ∈ ΣA(M0)
⇔ ∃m.(0 ≤ m ≤ d(C) ∨ d(C) < m < n) ∧ Cm ∈ ΣA(M0) (as n > d(B))
⇔ ∃m.(0 ≤ m ≤ d(C)) ∧ Cm ∈ ΣA(M0) (as by IH m > d(C) ⇒ Cm = Cd(C))
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⇔ ∃m.(0 ≤ m < d(C) + 1) ∧ Cm ∈ ΣA(M0)
⇔ ∃m.(0 ≤ m < d(PC)) ∧ Cm ∈ ΣA(M0) (by def. of d())
Additionally:
P (Cn)
= P (Cd(C)) (by IH, as n > d(C))
= P (Cd(C)+1) (by IH, as d(C) + 1 > d(C))
= P (Cd(PC)) (by def. of d())

So(PC)n = (PC)d(PC).

As a result of Lemma 3.12 we have ΣA(ωM0) = {B ∈ S(A) : ∃n ∈ N.Bn ∈ ΣA(M0)} =
{B ∈ S(A) : ∃n ≤ d(B).Bn ∈ ΣA(M0)}. Furthermore, as a result of the Lemma we have
that for n ≤ d(B) the context condition ∃m.m > n ∧ Bm ∈ ΣA(M0) which is required for
computing (FB)n is equivalent to the finitely computable condition (∃m.n < m ≤ d(B)∧Bm ∈
ΣA(M0)) ∨ (n = d(B) ∧Bn ∈ ΣA(M0)).
Claim 3.13. n ≤ d(B) ∧ ∃m.m > n ∧ Bm ∈ ΣA(M0) ⇐⇒ (∃m.n < m ≤ d(B) ∧ Bm ∈
ΣA(M0)) ∨ (n = d(B) ∧Bn ∈ ΣA(M0))

Proof. :
n ≤ d(B) ∧ ∃m.m > n ∧Bm ∈ ΣA(M0)
⇔ (n = d(B) ∧ ∃m.m > n ∧Bm ∈ ΣA(M0)) ∨ (n < d(B) ∧ ∃m.m > n ∧Bm ∈ ΣA(M0)) (def. of
≤ distributivity of ∧ )
⇔ (n = d(B) ∧Bn ∈ ΣA(M0)) ∨ (n < d(B) ∧ ∃m.m > n ∧Bm ∈ ΣA(M0)) (by Lemma 3.12)
⇔ (n = d(B) ∧Bn ∈ ΣA(M0)) ∨ ∃m.((n < m < d(B) ∨m ≥ d(B)) ∧Bm ∈ ΣA(M0))
⇔ (n = d(B) ∧ Bn ∈ ΣA(M0)) ∨ ∃m.((n < m < d(B) ∧ Bm ∈ ΣA(M0)) ∨ (m ≥ d(B)) ∧ Bm ∈
ΣA(M0))) (distributivity of ∧ )
⇔ (n = d(B) ∧ Bn ∈ ΣA(M0)) ∨ ∃m.((n < m < d(B) ∧ Bm ∈ ΣA(M0)) ∨ (m = d(B)) ∧ Bm ∈
ΣA(M0))) (by Lemma 3.12 )
⇔ (n = d(B) ∧Bn ∈ ΣA(M0)) ∨ ∃m.((n < m ≤ d(B) ∧Bm ∈ ΣA(M0)))

As a result of this we get a finitely (inductively) computable definition of localization for
B ∈ S(A), n ≤ d(B):

• If B is atomic then ∀n.Bn = B

• (¬B)n = ¬Bn

• (A ∧B)n = An ∧Bn

• (FB)n =


⊤ if ∃m.n < m ≤ d(B) ∧Bm ∈ ΣA(M0)

or n = d(B) ∧Bn ∈ ΣA(M0)

F(Bn) otherwise

• (PB)n =

{
⊤ if ∃m.0 ≤ m < n ∧Bm ∈ ΣA(M0)

P (Bn) otherwise

As we have shown ΣA(ωM0) = {B ∈ S(A) : ∃n ≤ d(B).Bn ∈ ΣA(M0)} from the above it
follows that
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Lemma 3.14. (ΣA(ωM0)): There is an algorithm which for any model M0 given as input a
formula A ∈ L(F ,P) and ΣA(M0) computes ΣA(ωM0).

Computing ΣA(ω
∗M0)

as the ω∗ operator is the mirror image of the ω operator, this whole case will be the mirror
image of the case above, so we will only outline it.

Recall that for ω∗M0 the index ordering is I = (Z\N) ∪ {0}. As in the case for ΣA(ωM0),
we have a similar localization lemma.

Definition 3.15. (d∗(F ) for F ∈ L(F , P )):For a formula B∈ L(F , P ), we define d∗(B) to be
the maximum depth of nesting of F in B:

• If B is atomic then d(B) = 0

• d(¬B) = d(B)

• d(A ∧B) = max(d(A), d(B))

• d(PB) = d(B)

• d(FB) = d(B) + 1

Lemma 3.16. (ω∗ localization lemma for L(F ,P)): given a model M , a formula A ∈ L(F ,P),
and B ∈ S(A), ∀n ≤ −d∗(B).Bn = B−d∗(B), i.e. the localizations of B converge at the sub-model
M−d∗(B).

Proof. : the mirror image of the proof of Lemma 3.12.

As a result of this we get a finitely (inductively) computable definition of localization for B ∈
S(A), −d∗(B) ≤ n ≤ 0:

• If B is atomic then ∀n.Bn = B

• (¬B)n = ¬Bn

• (A ∧B)n = An ∧Bn

• (FB)n =


⊤ if ∃m.n < m ≤ 0 ∧Bm ∈ ΣA(M0)

or n = d(B) ∧Bn ∈ ΣA(M0)

F(Bn) otherwise

• (PB)n =


⊤ if ∃m.− d∗(B) ≤ m < n ∧Bm ∈ ΣA(M0)

or n = −d∗(B) ∧Bn ∈ ΣA(M0)

P (Bn) otherwise

As a result of the lemma we also have ΣA(ω
∗M0) = {B ∈ S(A) : ∃n. − d∗(B) ≤ n ≤ 0.Bn ∈

ΣA(M0)}. So unsurprisingly, as in the ΣA(ωM0) case we get

Lemma 3.17. (ΣA(ω
∗M0)): There is an algorithm which for any model M0 given as input a

formula A ∈ L(F ,P) and ΣA(M0) computes ΣA(ω
∗M0).
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Summary

Proposition 3.18. There is an algorithm which given any formula A ∈ L(F ,P), and any
model expression M , computes ΣA(M).

Proof. : By induction on the structure of M . Pick arbitrary A ∈ L(F ,P) and model M :

• (Base Case) M = a: can compute ΣA(M) by lemma 3.7

(IH) Assume lemma holds for M0,...,Mn, i.e. we can compute ΣA(Mi) for i ∈ {0..n}

• M = M0 +M1: can compute ΣA(M) by IH and lemma 3.8

• M =< M1, ...,Mn >: can compute ΣA(M) by IH and lemma 3.10

• M = ωM0: can compute ΣA(M) by IH and lemma 3.14

• M = ω∗M0: can compute ΣA(M) by IH and lemma 3.17

The algorithm in question works as follows: Consider the syntax tree of the model expression
M , the leaves of which are the one point models a. We start by computing ΣA(a) for each of
these models. Starting from these models, work up the tree, at each stage computing ΣA(Mi)
of a node Mi in the tree, in terms of ΣA(M1)...ΣA(Mn) where M1, ...Mn are its children (using
the definitions given in the preceding four sections). Iterate this procedure all the way to the
root of M . At this point we will have computed ΣA(M).

Determining if A is satisfied in M is then reduced to just checking if A ∈ ΣA(M), as by
definition of ΣA(M), A ∈ ΣA(M) ⇔ A is sastisfied in M .
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3.2 Determining satisfiability for L(U ,S)
In this section we will extend the algorithm described in the previous section to decide satis-
fiability of formulas of L(U ,S) in constructible models M . As noted in Chapter 2, L(F ,P) is
in fact a subset of L(U ,S) meaning that this new algorithm is a more powerful extension of the
one described in the previous section. In order to generalise the algorithm to L(U ,S) we must
first generalise the definitions and results of the previous section to L(U ,S). The starting point
is the key concept of the algorithm, namely that of localization.

Definition 3.19. (localization for L(U ,S)): Given a model M =
∑

i∈IMi for some linear order
(I,<) and a formula C in L(U ,S), we define the localization Ci of C at model M i by induction
on the structure of C:

• If C is atomic, ∀i ∈ I.Ci = C

• (¬A)i = ¬Ai

• (A ∧B)i = Ai ∧Bi

• (AUB)i=
{
AiWBi if ∃j >I i.(σ(Bj ∧HAj ,Mj) ∧ ∀k.(i <I k <I j) → ¬σ(¬Ak,Mk))

AiUBi otherwise

• (AWB)i=


AiWBi if ∃j >I i.(σ(Bj ∧HAj ,Mj) ∧ ∀k.(i <I k <I j) → ¬σ(¬Ak,Mk))

or ∀k >I i.¬σ(¬Ak,Mk)

AiUBi otherwise

• (ASB)i=
{
AiZBi if ∃j <I i.(σ(Bj ∧ GAj ,Mj) ∧ ∀k.(j <I k <I i) → ¬σ(¬Ak,Mk))

AiSBi otherwise

• (AZB)i=


AiZBi if ∃j <I i.(σ(Bj ∧ GAj ,Mj) ∧ ∀k.(j <I k <I i) → ¬σ(¬Ak,Mk))

or ∀k <I i.¬σ(¬Ak,Mk)

AiSBi otherwise

We can now generalise the localization lemma of L(F ,P) (lemma 3.2 ) to L(U ,S)

Lemma 3.20. (localization lemma for L(U ,S)): Given a linear order (I,<I), a model M =∑
i∈IMi, and a formula C ∈ L(U ,S):

∀i ∈ I.∀t ∈ Ti.(M, ‹t, i› |= C ⇔ Mi, t |= Ci)

where ‹t, i› denotes the world of M corresponding to the world t of Mi

Proof. Pick arbitrary i ∈ I,t ∈ Ti. we prove the lemma by induction on the structure of C.
The cases where C is boolean are identical to those in the proof of the localization lemma for
L(F ,P) (lemma 3.2 ), so we consider here only the cases for C = AUB, C = AWB, C = ASB,
C = AZB. Assume inductively that the lemma holds for A, B (IH).

• to show M, ‹t, i› |= AUB ⇔ Mi, t |= (AUB)i we have two cases:

– If ∃j >I i.(σ(Bj ∧HAj ,Mj) ∧ ∀k.(i <I k <I j) → ¬σ(¬Ak,Mk)) (assumption)
then ∃j >I i such that
∀k.(i <I k <I j) → ¬σ(¬Ak,Mk)
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⇒ ∀k.(i <I k <I j) → ¬∃t ∈ Tk.Mk, t |= ¬Ak (by def. 2.8-satisfied)
⇒ ∀k.(i <I k <I j) → ∀t ∈ Tk.Mk, t |= Ak

⇒ ∀k.(i <I k <I j) → ∀t ∈ Tk.M, ‹t, k› |= A (by IH) (1)
and
σ(Bj ∧HAj ,Mj)
⇒ ∃w ∈ Tj .Mj , w |= Bj ∧HAj (by def. 2.8-satisfied) (2)
* ⇒ Mj , w |= Bj (by 2)

⇒ M, ‹w, j› |= B (by IH) (3)
* ⇒ Mj , w |= HAj (by 2)

⇒ ∀t <j w.Mj , t |= Aj

⇒ ∀t.‹t, j› < ‹w, j› → M, ‹t, j› |= A(by IH, def. of lexicographic sum) (4)
⇒ ∃w ∈ Tj .(∀t.‹t, j› < ‹w, j› → M, ‹t, j› |= A

∧
M, ‹w, j› |= B) (3,4) (5)

Subsequently we have
Mi, t |= (AUB)i
⇔ Mi, t |= AiWBi (by assumption, def. 3.19-localization)
⇔ ∃u.(u >i t ∧Mi, u � Bi ∧ ∀v.(t <i v <i u → Mi, v � Ai)) ∨ ∀v >i t.Mi, v � Ai (by
semantics of W)
⇔
* ∃u.(u >i t ∧Mi, u � Bi ∧ ∀v.(t <i v <i u → Mi, v � Ai))

⇔ ∃u.(‹u, i› > ‹t, i› ∧M, ‹u, i› � B ∧ ∀v.(‹t, i› < ‹v, i› < ‹u, i› → M, ‹v, i› � A))
(by IH, def. 2.11-lexicographic sum)
⇔ M, ‹t, i› |= AUB (by semantics of U , def. of lexicographic sum)

or
* ∀v >i t.Mi, v � Ai

⇔ ∀v.(‹v, i› > ‹t, i› → M, ‹v, i› � A) (by IH,def. 2.11-lexicographic sum)
⇔ ∀v.(‹v, i› > ‹t, i› → M, ‹v, i› � A)

∧
∀k.(i <I k <I j → ∀t ∈ Tk.M, ‹t, k› |=

A)
∧
∃w ∈ Tj .(∀t.(‹t, j› < ‹w, j› → M, ‹t, j› |= A)

∧
M, ‹w, j› |= B) (by 1 , 5,

assumption)
⇔ ∃j ∈ I.∃w ∈ Tj .(‹w, j› > ‹t, i›

∧
M, ‹w, j› |= B

∧
∀‹v, k›.(‹t, i› < ‹v, k› <

‹w, j› → M, ‹v, k› |= A)) (by def. of lexicographic sum, assumption)
⇔ M, ‹t, i› |= AUB (by semantics of U , def. of lexicographic sum)

– otherwise ¬∃j >I i.(σ(Bj ∧HAj ,Mj) ∧ ∀k.(i <I k <I j) → ¬σ(¬Ak,Mk)) (assump-
tion)
Subsequently we have
M, ‹t, i› |= AUB
⇔ ∃u.(u >i t ∧M, ‹u, i› � B ∧ ∀v.(t <i v <i u → M, ‹v, i› � A)) (by semantics of U ,
def. of lexicographic sum, assumption)
⇔ ∃u.(u >i t ∧Mi, u � Bi ∧ ∀v.(t <i v <i u → Mi, v � Ai)) (by IH)
⇔ Mi, t |= AiUBi (by semantics of U)
⇔ Mi, t |= (AUB)i (by assumption and def. of localization)

• The case for M, ‹t, i› |= ASB ⇔ Mi, t |= (ASB)i is entirely temporally symmetrical to
(replace U with S and < with >).

• Showing M, ‹t, i› |= AWB ⇔ Mi, t |= (AWB)i is similar to the U case.

• The case for M, ‹t, i› |= AZB ⇔ Mi, t |= (AZB)i is entirely temporally symmetrical.
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From this lemma we have:

Theorem 3.21. (localization Theorem for L(U ,S)): Given a linear order (I,<I), a model
M =

∑
i∈IMi, and a formula A ∈ L(U ,S):

A is satisfied in M =
∑

i∈I Mi⇐⇒ ∃i ∈ I.Aiis satisfied in Mi

Proof. : identical to the proof of theorem 3.3, but using lemma 3.20.

Having generalised the localization theorem to L(U ,S), the next step is to generalise the defin-
ition of S(A) (definition 3.4). Unfortunately definition 3.4 will not work for L(U ,S), because
the minimal closure of A under subformulas and localisation does not contain the formulas
necessary to determine the context for a given formula. Consider for example the formula aUb.
The minimal closure of aUb under subformulas and localisation is {a, b, aUb, aWb}. However
in order to localise aUb at any model Mi in the context of

∑
i∈I Mi we may need to know

σ(b ∧ Ha,Mj) for some j ∈ I. Thus if we want this information to get inductively computed
for each submodel we need to amend the definition of S(A) to include these additional context
formulas.

Definition 3.22. (S(A)): for a formula A ∈ L(U ,S), S(A) is defined as the smallest set such
that:

• A ∈ S(A)

• if B ∈ S(A) then subformulas(B) ⊆ S(A)

• for any model
∑

i∈I Mi, linear order (I,<I), ∀B ∈ S(A).∀i ∈ I.Bi ∈ S(A)

• if CUD ∈ S(A) or CWD ∈ S(A), then D ∧HC ∈ S(A) and ¬C ∈ S(A)

• if CSD ∈ S(A) or CZD ∈ S(A), then D ∧ GC ∈ S(A) and ¬C ∈ S(A)

We do not modify the definition of ΣA(M) beyond generalising it to apply to A ∈ L(U ,S)
, and to use the set S(A) of definition 3.22.

Definition 3.23. (ΣA(M)): Given a formula A ∈ L(U ,S) and a model M , we define

ΣA(M) = {B ∈ S(A) : B is satisfied in M}

As for L(F ,P), using these definitions, we can rephrase theorem 3.21 by defining ΣA(
∑

i∈I Mi)
in terms of ΣA(Mi).

Proposition 3.24. ( definition of ΣA(
∑

i∈I Mi)): for any lexicographic sum
∑

i∈I Mi

ΣA(
∑
i∈I

Mi) = {B ∈ S(A) : ∃i ∈ I.Bi ∈ ΣA(Mi)}

Proof. :

ΣA(
∑
i∈I

Mi) = {B ∈ S(A) : B is satisfied in M} (by definition)

= {B ∈ S(A) : ∃i ∈ I.Bi is satisfied in Mi} (by Localization Theorem-3.21)
= {B ∈ S(A) : ∃i ∈ I.Bi ∈ ΣA(Mi)} ( by definition of ΣA(Mi), as Bi ∈ S(A)

by definition of S(A))
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The algorithm
Having generalised the previous definitions to L(U ,S), the idea of the algorithm for inductively
computing ΣA(M) for any model expression M will be exactly the same as for L(F ,P). Thus
we need to specify an algorithm for each model expression M = _(M0...Mn) (where _ is one
of the four operators and M0...Mn are the input models) which given a formula A ∈ L(F ,P)
and ΣA(Mi) for i ∈ {0...n}can construct ΣA(M).

Computing ΣA(a)

Lemma 3.25. (ΣA(a))There is an algorithm which given any formula A ∈ L(U ,S), and any
single point model a computes ΣA(a).

Proof. : Firstly we need to compute S(A) according to definition 3.22. Recall that GA, HA
abbreviate AW⊥, AZ⊥ respectively. Here, a possible localization of a formula is an edited
version of it where arbitrarily many of it’s subformulas of the form AUB are replaced with
AWB (and vice versa), and arbitrarily many of those of the form ASB are replaced with AZB
(and vice versa). Initialise S(A) to just be the subformulas of A. Then iterate through each
formula of S(A), adding formulas to it according to the definition. As soon as an iteration
adds no formulas S(A) has been computed. The process is bound to terminate as S(A) is by
definition finite. Then, for each formula B ∈ S(A) evaluate it at 0:

• if B is ⊤ return true

• if B is an atom p ∈ L then return true if p ∈ a and false otherwise.

• if B = ¬C then recursively call the algorithm on C, returning the negation of its result.

• if B = C ∧D recursively call the algorithm on C and D, returning true if both recursive
calls return true and false otherwise.

• if B = CSD or B = CUD return false

• if B = CZD or B = CWD return true

If the formula evaluates to true add it to ΣA(a). When there are no more formulas in S(A)
return ΣA(a).

In the sections that follow, we will describe how to compute ΣA(_(M0...Mn)) in terms of
ΣA(M0)...ΣA(Mn) for each of the four operators.
Remark 3.26. IMPORTANT NOTE TO READER: The following sections (through to the
end of the chapter 3) contain a typographical error which was discovered very late in the writing
process, and has as such been left uncorrected for fear that correcting it may introduce more
errors. The error is that although we are implicitly assuming that the overall formula for which
we are trying to determine satisfiability is called A (as indicated by the references to ΣA(M)
in the localisation conditions ) we also refer to one of the current subformulas as A (e.g. in
(A ∧ B)i). Thus all references to ΣA(M) and S(A) are referring to the overall formula A, not
the unfortunately named subformula. We apologise in advance for this error, and hope that it
does not lead to confusion.
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Computing ΣA(M0 +M1)

By proposition 3.24 and definition of M0 + M1 we have ΣA(M0 + M1) = {C ∈ S(A) : C0 ∈
ΣA(M0) ∨ C1 ∈ ΣA(M1)}.

Furthermore, for every C ∈ S(A) we can compute the localizations C0, C1 of C inductively,
by specialising the definition of localisation (definition 3.19) to the model M = M0 +M1 :

• If B is atomic then C0 = C1 = C

• for i ∈ {0, 1}, (¬A)i = ¬Ai

• for i ∈ {0, 1}, (A ∧B)i = Ai ∧Bi

• (AUB)0 =

{
A0WB0 if B1 ∧HA1 ∈ ΣA(M1)

A0UB0 otherwise

• (AUB)1 = A1UB1

• (AWB)0=


AiWBi if B1 ∧HA1 ∈ ΣA(M1)

or ¬A1 /∈ ΣA(M1)

AiUBi otherwise

• (AWB)1 = A1WB1

• The definition of (ASB)i for i ∈ {0, 1} is symmetric to that of (AUB)i

• The definition of (AZB)i for i ∈ {0, 1} is symmetric to that of (AWB)i

Notice that the localisation context conditions σ(Bi∧HAi,Mi) become Bi∧HAi ∈ ΣA(Mi), as
σ(Bi ∧ HAi,Mi) ⇐⇒ Bi ∧ HAi ∈ ΣA(Mi) by definition of ΣA(Mi), because Bi ∧ HAi ∈ S(A)
by definition of S(A) (AiUBi is a possible localisation of a formula in S(A)). By the same
argument we have ¬σ(¬Ai,Mi) ⇐⇒ ¬Ai /∈ ΣA(Mi)

From the above it follows that

Lemma 3.27. (ΣA(M0 +M1)): There is an algorithm which for any models M0, M1 given as
input a formula A ∈ L(U ,S) and ΣA(M0), ΣA(M1) computes ΣA(M0 +M1).

Computing ΣA(< M1, ...,Mn >)

By the definition of shuffle as a lexicographic sum where I = Q , and proposition 3.24 we have

ΣA(< M1, ...,Mn >) = {B ∈ S(A) : ∃i ∈ Q.Bi ∈ ΣA(Mi)}

and thus should in theory compute Bi for every i ∈ Q. This is in fact unnecessary as a result
of the following Lemma.

Lemma 3.28. (Shuffle localization lemma for L(U ,S)): For any formula C ∈ L(U ,S):

∀i, j ∈ Q.(Ci = Cj)

Proof. : Pick arbitrary C ∈ L(F , P ), i, j ∈ Q Then:

• If B is atomic then by definition of localizationCi = Cj = C

(IH): assume the lemma for formulas A, B.
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• (¬A)i
= ¬Ai (by def. 3.19-loc.)
= ¬Aj (by IH)
= (¬A)j (by def. of loc.)

• (A ∧B)i
= Ai ∧Bi (by def. of loc.)
= Aj ∧Bj (by IH)
= (A ∧B)j (by def. of loc.)

• To show (AUB)i = (AUB)jwe have two cases:
Assume ∃h >I i.(σ(Bh ∧HAh,Mh) ∧ ∀k.(i <I k <I h) → ¬σ(¬Ak,Mk)) (assumption)

1. ∃x ∈ {0, 1, ..., n}.Mx = Mh (by def. of shuffle)
2. ∃r >I j.Mr = Mx(by definition of shuffle)
3. σ(Bh ∧HAh,Mh) (by assumption)

⇒ ∃t ∈ Th.(Mh, t |= Bh and Mh, t |= HAh) (by def.2.8 :satisfied, semantics of ∧)
⇒ ∃t ∈ Tr.(Mr, t |= Bh and Mr, t |= HAh) (by 2,3 Mr = Mh)
⇒ ∃t ∈ Tr.(Mr, t |= Br and Mr, t |= HAh) (by IH Bh = Br)
⇒ ∃t ∈ Tr.(Mr, t |= Br and ∀v <r t.(Mr, v |= Ah) (by def. of H)
⇒ ∃t ∈ Tr.(Mr, t |= Br and ∀v <r t.(Mr, v |= Ar) (by IH Ah = Ar)
⇒ ∃t ∈ Tr.(Mr, t |= Br and Mr, t |= HAr) (by def. of H)
⇒ σ(Br ∧HAr,Mr) (by def.2.8 :satisfied, semantics of ∧ )

4. ∀k.(i <I k <I j) → ¬σ(¬Ak,Mk) (by assumption)
5. Pick arbitrary s ∈ Q

(a) ∃h ∈ {0, 1, ..., n}.Mh = Ms (by def. of shuffle)
(b) ∃k ∈ Q.(i <I k <I j ∧Mk = Mh (by def. of shuffle)
(c) Mk = Ms(by a, b)
(d) ¬σ(¬Ak,Mk) (by 5)
(e) ¬σ(¬As,Ms) (by c,d, as assuming σ(¬As,Ms) implies σ(¬Ak,Mk) by IH and

def. of satisfied, contradiction)
6. ∀k ∈ Q.¬σ(¬Ak,Mk) (by 6.e, as s was arbitrary)
7. ∀k.(j <I k <I r) → ¬σ(¬Ak,Mk) (by 7)
8. ∃r >I j.(σ(Br ∧HAr,Mr) ∧ ∀k.((j <I k <I r) → ¬σ(¬Ak,Mk))) (by 3, 4, 8)
9. (AUB)j = AjWBj (by 9)
10. (AUB)i = AiWBi (by def. of loc., assumption)
11. (AUB)i = (AUB)i (by 9,10 and IH)

Otherwise ¬∃h >I i.(σ(Bh ∧HAh,Mh)∧∀k.(i <I k <I h) → ¬σ(¬Ak,Mk)) (assumption)

1. (AUB)i = AiUBi (by assumption, def. of loc.)
2. Assume for contradiction that ∃h′ >I j.(σ(Bh′ ∧ HAh′ ,Mh′) ∧ ∀k.(j <I k <I h′) →

¬σ(¬Ak,Mk)). Then by applying same argument as above (swapping i and j) we
can show ∃h >I i.(σ(Bh ∧ HAh,Mh) ∧ ∀k.(i <I k <I h) → ¬σ(¬Ak,Mk)), which
contradicts our assumption. Subsequently ¬∃h′ >I j.(σ(Bh′ ∧HAh′ ,Mh′)∧∀k.(j <I

k <I h′) → ¬σ(¬Ak,Mk)).
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3. (AUB)j = AjUBj (by 2, def. of loc.)
4. (AUB)i = (AUB)j (by 1,3 and IH)

• The case for (AUB)i = (AUB)j is similar

• The case for (ASB)i = (ASB)j is symmetric to that for (AUB)i = (AUB)j

• The case for (AZB)i = (AZB)j is symmetric to that for (AWB)i = (AWB)j

As a result of the Lemma we can simplify the definition of localization for formulas B ∈ S(A),
in terms of the single localization Bλ that we need to compute:

• If B is atomic then Bλ = B

• (¬B)λ = ¬Bλ

• (A ∧B)λ = Aλ ∧Bλ

• (AUB)λ=
{
AλWBλ if Bλ ∈

∪n
i=0ΣA(Mi) ∧ ¬Aλ /∈

∪n
i=0ΣA(Mi)

AλUBλ otherwise

• (AWB)λ=
{
AλWBλ if ¬Aλ /∈

∪n
i=0ΣA(Mi)

AλUBλ otherwise

(ASB)λ=
{
AλZBλ if Bλ ∈

∪n
i=0ΣA(Mi) ∧ ¬Aλ /∈

∪n
i=0ΣA(Mi)

AλSBλ otherwise

• (AZB)λ=
{
AλZBλ if ¬Aλ /∈

∪n
i=0ΣA(Mi)

AλSBλ otherwise

Note the modified localization conditions as a result of

∃j >I i.(σ(Bj ∧HAj ,Mj) ∧ ∀k.(i <I k <I j) → ¬σ(¬Ak,Mk))

⇐⇒ ∃j >I i.(σ(Bλ ∧HAλ,Mj) ∧ ∀k.(i <I k <I j) → ¬σ(¬Aλ,Mk))

( by lemma 3.28)

⇐⇒ ∃i ∈ {0...n}.σ(Bλ,Mi) ∧ ∀i ∈ {0...n}.¬σ(¬Aλ,Mi)

( by definition of shuffle)

⇐⇒ Bλ ∈
∪n

i=0ΣA(Mi) ∧ ¬Aλ /∈
∪n

i=0ΣA(Mi)

(by def of ΣA(Mi), as Bλ ∈ S(A), ¬Aλ ∈ S(A) )

Subsequently, as for L(F,P) we have
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ΣA(< M1, ...,Mn >) = {B ∈ S(A) : ∃i ∈ Q.Bi ∈ ΣA(Mi)}
= {B ∈ S(A) : ∃i ∈ Q.Bλ ∈ ΣA(Mi)} (by Lemma 3.28)
= {B ∈ S(A) : Bλ ∈

∪
i∈Q

ΣA(Mi)}

= {B ∈ S(A) : Bλ ∈
n∪

i=0

ΣA(Mi)} (as
∪
i∈Q

ΣA(Mi) =
n∪

i=0

ΣA(Mi)

by definition of shuffle )

and clearly it follows that:

Lemma 3.29. (ΣA(< M1, ...,Mn >)): There is an algorithm which for any models M1,...,Mn

given as input a formula A ∈ L(U ,S) and ΣA(M1),...,ΣA(Mn) computes ΣA(< M1, ...,Mn >).

Computing ΣA(ωM0)

We start by specialising the definition of localisation to the model ωM0. Recall that for ωM0

the index ordering is I = N. Thus for C ∈ S(A), according to definition 3.19 Cn is defined for
n ≥ 0:

• If C is atomic, ∀i ∈ I.Ci = C

• (¬A)n = ¬An

• (A ∧B)n = An ∧Bn

• (AUB)n=
{
AnWBn if ∃m >I n.(Bm ∧HAm ∈ ΣA(M0) ∧ ∀k.(n <I k <I m) → ¬Ak /∈ ΣA(M0))

AnUBn otherwise

• (AWB)n=


AnWBn if ∃m >I n.(Bm ∧HAm ∈ ΣA(M0) ∧ ∀k.(n <I k <I m) → ¬Ak /∈ ΣA(M0))

or ∀k >I n.¬Ak /∈ ΣA(M0)

AnUBn otherwise

• (ASB)n=
{
AnZBn if ∃m <I n.(Bm ∧ GAm ∈ ΣA(M0) ∧ ∀k.(m <I k <I n) → ¬Ak /∈ ΣA(M0))

AnSBn otherwise

• (AZB)n=


AnZBn if ∃m <I n.(Bm ∧ GAm ∈ ΣA(M0) ∧ ∀k.(m <I k <I n) → ¬Ak /∈ ΣA(M0))

or ∀k <I n.¬Ak /∈ ΣA(M0)

AnSBn otherwise

Notice that as in the case of computing ΣA(M0 + M1), σ(Bm ∧ HAm,Mm) is replaced with
Bm∧HAm ∈ ΣA(M0) (as ∀n ∈ N.Mn = M0, and σ(Bm∧HAm,Mm) ⇐⇒ Bm∧HAm ∈ ΣA(M0)
as Bm ∧ HAm ∈ S(A)). By proposition 3.24 we have ΣA(ωM0) = {B ∈ S(A) : ∃n ∈ N.Bn ∈
ΣA(M0)}. According to this definition in order to compute ΣA(ωM0) we potentially need to
compute the localization Bn of B for all natural numbers. As in the L(F ,P) algorithm this is
in fact not necessary, as lemma 3.12 can be generalised to L(U ,S).

Definition 3.30. (d(F ) for F ∈ L(U , S)): For a formula B∈ L(U ,S), we define d(B) to be the
maximum depth of nesting of S/Z in B:
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• If B is atomic then d(B) = 0

• d(¬B) = d(B)

• d(A ∧B) = d(AUB) = d(AWB) = max(d(A), d(B))

• d(ASB) = d(AZB) = max(d(A), d(B)) + 1

Lemma 3.31. (ω localization lemma for L(U ,S)): given a model M , a formula A, and C ∈
S(A),

∀n ≥ d(C).Cn = Cd(C)

i.e. the localizations of C converge at the sub-model Md(C).

Proof. : We prove the lemma by induction on the structure of C. The cases where C is boolean
are identical to those in the proof of the ω localization lemma for L(F ,P) (lemma 3.12 ), so
we consider here only the cases for C = AUB, C = AWB, C = ASB, C = AZB. Assume
inductively that the lemma holds for A, B (IH).

• C = AUB: Pick arbitrary n ≥ d(AUB) = max(d(A), d(B)) (assumption).To show:
(AUB)n = (AUB)d(AUB)

1. We first show that the localization context conditions are equivalent:
∃m > n.(Bm ∧HAm ∈ ΣA(M0) ∧ ∀k.(n < k < m) → ¬Ak /∈ ΣA(M0))
⇔ ∃m > n.(Bd(B) ∧HAd(A) ∈ ΣA(M0) ∧ ∀k.(n < k < m) → ¬Ad(A) /∈ ΣA(M0))
(by IH, as m, k > n ≥ max(d(A), d(B)), so m > d(A), m > d(B), and k > d(A))
⇔ ∃m > n.(Bd(AUB) ∧ HAd(AUB) ∈ ΣA(M0) ∧ ∀k.(n < k < m) → ¬Ad(AUB) /∈
ΣA(M0))
(by IH, as d(AUB) ≥ d(A), d(AUB) ≥ d(B))
⇔ ∃m > d(AUB).(Bd(AUB) ∧ HAd(AUB) ∈ ΣA(M0) ∧ ∀k.(d(AUB) < k < m) →
¬Ak /∈ ΣA(M0))
( as n ≥ d(AUB) ≥ d(A), so Ak = Ad(A) and Ad(AUB) = Ad(A) by IH)
⇔ ∃m > d(AUB).(Bm∧HAm ∈ ΣA(M0)∧∀k.(d(AUB) < k < m) → ¬Ak /∈ ΣA(M0))
(by IH, as m > d(AUB) ≥ d(A), m > d(AUB) ≥ d(B))

2. AnUBn = Ad(A)UBd(B) = Ad(AUB)UBd(AUB) (as n ≥ d(AUB) ≥ d(A), n ≥ d(AUB) ≥
d(B) so by IH An = Ad(A) = Ad(AUB), Bn = Bd(B) = Bd(AUB))

3. AnWBn = Ad(A)WBd(B) = Ad(AUB)WBd(AUB) (by same argument as 2)
4. (AUB)n = (AUB)d(AUB) (by 1-3)

• C = ASB: Pick arbitrary n ≥ d(ASB) = max(d(A), d(B)) + 1 (assumption).To show:
(ASB)n = (ASB)d(ASB)

1. n ≥ d(ASB) > d(B) (by assumption)
2. n ≥ d(ASB) > d(A) (by assumption)
3. AnSBn = Ad(A)SBd(B) = Ad(ASB)SBd(ASB) (as n ≥ d(ASB) > d(A), n ≥ d(ASB) >

d(B) so by IH An = Ad(A) = Ad(ASB), Bn = Bd(B) = Bd(ASB))
4. AnZBn = Ad(AZB)ZBd(AZB) (by same argument as 3)
5. We now show that the localization conditions are equivalent. For any i ∈ N, let

X(i) = ∃j < i.(Bj ∧ GAj ∈ ΣA(M0) ∧ ∀k.(j < k < i) → ¬Ak /∈ ΣA(M0)). Let
m = max(d(A), d(B)), and m′ = d(ASB) = m+ 1.
To show: ∀i ≥ m′.X(i) ⇔ X(m′). Pick arbitrary i ≥ m′.
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– X(i) ⇒ X(m′): Assume X(i). Then ∃j < i with the properties described in
X(i). There are two cases for j:
* j ≤ m: Then we trivially have X(m′) by just using the same j.
* j > m: so m′ ≤ j < i. Bj ∧ GAj ∈ ΣA(M0). As j > m ≥ d(A), j >

m ≥ d(B), this means that by IH Bj = Bm = Bd(B), and Aj = Am =
Ad(A). Hence Bm ∧ GAm ∈ ΣA(M0). Additionally, as m′ = m + 1 we
have ∀k.(m < k < m′) → ¬Ak /∈ ΣA(M0). Thus X(m′) holds,as we have
∃m < m′.(Bm ∧ GAm ∈ ΣA(M0) ∧ ∀k.(m < k < m′) → ¬Ak /∈ ΣA(M0)).

– X(m′) ⇒ X(i): Assume X(m′). Recall i ≥ m′. Clearly if i = m′ then we have
X(i), so pick i > m′. There are two cases for j:
* j < m: Then we have
(a) ∀k.(j < k < m′) → ¬Ak /∈ ΣA(M0) (as we assumed X(m′))
(b) ¬Am /∈ ΣA(M0) (by (a), as j < m < m′)
(c) ∀k′ ≥ m.Ak′ = Am (by IH, as k′ ≥ m ≥ d(A))
(d) ∀k′ ≥ m.¬Ak′ /∈ ΣA(M0) (by (b), (c))
(e) ∀k.(j < k < i) → ¬Ak /∈ ΣA(M0) (by (a), (d), i ≥ m′)
(f) Bj ∧ GAj ∈ ΣA(M0) (as we assumed X(m′))
(g) X(i) (by (e),(f), using j)
* j = m: Bm ∧ GAm ∈ ΣA(M0) (as we assumed X(m′)). Take j′ = i − 1.

Then j′ ≥ m′ (as i > m′ by assumption), so j′ > m. By IH this implies
Bj′ ∧ GAj′ = Bm ∧ GAm, so we have Bj′ ∧ GAj′ ∈ ΣA(M0). Also trivially
as j′ = i − 1 we have ∀k.(j′ < k < i) → ¬Ak /∈ ΣA(M0). Subsequently
∃j′ < i.(Bj′ ∧ GAj′ ∈ ΣA(M0)∧ ∀k.(j′ < k < i) → ¬Ak /∈ ΣA(M0)), so X(i).

6. (ASB)n = (ASB)d(ASB) (by 3,4,5)

• C = AWB: similar to C = AUB.

• C = AZB: similar to C = ASB.

As a result of Lemma 3.31 we have ΣA(ωM0) = {C ∈ S(A) : ∃n ∈ N.Cn ∈ ΣA(M0)} = {C ∈
S(A) : ∃n ≤ d(C).Cn ∈ ΣA(M0)}. Furthermore, as a result of the Lemma we have that for
i ≤ d(C) the localization context conditions are equivalent to the finitely computable condition
given below. This can be shown by an argument very similar to that of proof of claim 3.13.

As a result of this we get a finitely (inductively) computable definition of localization for
C ∈ S(A), i ≤ d(C) (where m = d(AUB) = max(d(A), d(B))):

• If C is atomic, ∀i ∈ I.Ci = C

• (¬A)i = ¬Ai

• (A ∧B)i = Ai ∧Bi

• (AUB)i=


AiWBi if i < m− 1 ∧ ∃j.(i < j ≤ m ∧ (Bj ∧HAj ∈ ΣA(M0))

∧∀k.(i < k < j) → ¬Ak /∈ ΣA(M0))

or i ≥ m− 1 ∧ (Bm ∧HAm ∈ ΣA(M0))

AiUBi otherwise
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• (AWB)i=



AiWBi if i < m− 1 ∧ ∃j.(i < j ≤ m ∧ (Bj ∧HAj ∈ ΣA(M0))

∧∀k.(i < k < j) → ¬Ak /∈ ΣA(M0))

or i < m− 1 ∧ ∀k.(i < k ≤ m) → ¬Ak /∈ ΣA(M0)

or i ≥ m− 1 ∧ (Bm ∧HAm ∈ ΣA(M0) ∨ ¬Am /∈ ΣA(M0))

AiUBi otherwise

• (ASB)i=
{
AiZBi if ∃j.(0 ≤ j < i ∧ (Bj ∧ GAj ∈ ΣA(M0)) ∧ ∀k.(j < k < i) → ¬Ak /∈ ΣA(M0))

AiSBi otherwise

• (AZB)i=


AiZBi if ∃j.(0 ≤ j < i ∧Bj ∧ GAj ∈ ΣA(M0) ∧ ∀k.(j < k < i) → ¬Ak /∈ ΣA(M0))

or ∀k < i.¬Ak /∈ ΣA(M0)

AiSBi otherwise

As we have shown ΣA(ωM0) = {C ∈ S(A) : ∃n ≤ d(C).Cn ∈ ΣA(M0)} from the above it
follows that

Lemma 3.32. (ΣA(ωM0)): There is an algorithm which for any model M0 given as input a
formula A ∈ L(U ,S) and ΣA(M0) computes ΣA(ωM0).

Computing ΣA(ω
∗M0)

as the ω∗ operator is the mirror image of the ω operator, this whole case will be the mirror
image of the case above. So unsurprisingly, as in the ΣA(ωM0) case we get

Lemma 3.33. (ΣA(ω
∗M0)): There is an algorithm which for any model M0 given as input a

formula A ∈ L(U ,S) and ΣA(M0) computes ΣA(ω
∗M0).

Summary

Proposition 3.34. There is an algorithm which given any formula A ∈ L(U ,S), and any model
expression M , computes ΣA(M).

Proof. : By induction on the structure of M . Pick arbitrary A ∈ L(U ,S) and model M :

• (Base Case) M = a: can compute ΣA(M) by lemma 3.25

(IH) Assume lemma holds for M0,...,Mn, i.e. we can compute ΣA(Mi) for i ∈ {0..n}

• M = M0 +M1: can compute ΣA(M) by IH and lemma 3.27

• M =< M1, ...,Mn >: can compute ΣA(M) by IH and lemma 3.29

• M = ωM0: can compute ΣA(M) by IH and lemma 3.32

• M = ω∗M0: can compute ΣA(M) by IH and lemma 3.33

Our overall algorithm for determining satisfiability for A ∈ L(U ,S) then works in the same
way as the one for A ∈ L(F ,P), but using the algorithms for computing ΣA(M) for A ∈ L(U ,S).
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3.3 Summary
We have given an algorithm for determining the satisfiability of formulas in the logics L(F ,P),
and L(U ,S) by using the idea of localization. Note that this approach is one way of using
localizations to determine satisfiability, but it is not the only way. In chapter 5 we will consider
two variations of this algorithm which use localization to determine satisfiability in a different
way.
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Chapter 4

Implementation of the Algorithm

In this chapter we briefly discuss our implementation of the algorithm for L(U ,S).

4.1 Motivation
A question which arises naturally at this point is why did we implement the algorithm? We have
defined it in full, and illustrated (by means of the various intermediary lemmas) its correctness.
Thus we know that it can be implemented in theory. There are however a number of reasons why
it is beneficial to actually implement it in practice. The first of these relates to analysing the
algorithms performance. It’s true that we can analyse the algorithm theoretically, and determine
how it is likely to perform for inputs of various sizes and structures, without implementing
it. However having an implementation allows us to get a much more realistic idea of the
algorithm’s performance. Even if it takes exponential time in theory, it may be the case that
in practice its performance is reasonably good for the average input1. The second reason
we value an implementation is that it allows us to easily illustrate the algorithm to others.
The algorithm itself is fairly complex, and the length and technical detail of its description
alone will doubtlessly put some readers off. On the other hand the implementation combined
with its intuitive interface allows users to understand the algorithm much faster, by visualising
the computation in an interactive way. Subsequently the implementation is a useful tool for
demonstrating the algorithm to others.

4.2 Key Implementation Decisions
Computing localisations

The first and most important decision made with regards to implementing the algorithm was
that of iteratively computing localisations, instead of doing so recursively, in order to eliminate
unnecessary recomputation. Assume we are trying to compute ΣA(M) at a given node M .
The idea is to localise the formulas of S(A) in order of increasing size,and store the computed
localisations. What this means is that whenever considering a formula C in S(A), we will have
already computed and stored the localisations of its subformulas (as they are in S(A), and will
by definition be shorter that C). Thus all we need to do to localise C at a given Mi is look up
these stored localisations, and check whether the context formula for C is contained in ΣA(Mj)
(for some child Mj of M). Having computed Ci we just need to check whether Ci ∈ ΣA(Mi),

1consider for example the simplex method for linear programming, which is exponential in the worst case but
polynomial for the average case
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where ΣA(Mi) is recursively computed and stored (so it is only computed once). Subsequently
localisation is just determined by looking up stored results. We illustrate this idea by means of
an example. Consider the node M = M0 +M1, for which we have already computed ΣA(M0)
and ΣA(M1) and want to compute ΣA(M). We start iterating through the formulas C of S(A).
Assume that at some point C = AUB. Recall that ΣA(M0 + M1) = {C ∈ S(A) : C0 ∈
ΣA(M0) ∨ C1 ∈ ΣA(M1)}. Subsequently we need to compute C0 and C1. By the definition

of localization for +, we have that (AUB)0 =

{
A0WB0 if B1 ∧HA1 ∈ ΣA(M1)

A0UB0 otherwise
. As B, A

are subformulas of C = AUB (and thus shorter in length) we will already have computed and
stored A1, B1, and thus all that is required to compute B1∧HA1 ∈ ΣA(M1) is a simple lookup.
Similarly A0, B0 have already been computed and stored, so overall we can compute (AUB)0 by
just looking up four stored localisations, and testing set membership. The case for (AUB)1 by
definition requires only two lookups, and the cases for other formulas are similar. In summary
by caching intermediate results we can eliminate the recomputation which would be necessary
to recursively compute localisations according to the definitions (albeit at the cost of additional
space usage).

Computing localisations for ωM

The second design choice which significantly affects the computation is the way in which loc-
alisations are computed for models of the form ωM . Recall from section 3.2 that ΣA(ωM0) =
{C ∈ S(A) : ∃n ≤ d(C).Cn ∈ ΣA(M0)}. Thus we need to compute d(C) localisations (using
the aforementioned iterative approach). Furthermore , examining the definition of localisation
for ωM it appears that to compute any individual localisation Ci we may need to compute
O(d(C)) localisations (in the cases of U , W, S,Z). Upon examining the definition carefully,
it should be clear that in fact the different localisations Ci we need to compute have some
overlapping computation, and so we can actually compute Ci for all i ≤ d(C) by just doing
O(d(C)) lookups (the key idea is to compute Ci for decreasing i, starting with Cd(C)). As a
result of this computing ΣA(ωM0) takes at most O(d(C)) as many steps as computing ΣA(M)
when M is not of the form ωT .

Technologies used

We chose to implement the algorithm in Java, as we wanted to create an intuitive interface
as quickly as possible. The user interface was implemented using the JUNG(Java Universal
Network/Graph) graphics library, in conjunction with java’s built in SWING graphics library.

4.3 Performance Analysis
In order to analyse the performance of our implementation, we start by considering the al-
gorithm, and determining the input parameters which are likely to significantly affect the al-
gorithm’s performance. Let M , F be the input model and formula respectively. We identify
the following parameters:

1. |S(A)|, |F |: Clearly the key parameter affecting the performance of the algorithm is |S(A)|,
as the size of all intermediate sets computed is O(|S(A)|). Examining the definition of
S(A) we notice that :

(a) |S(A)| is exponential in the number of temporal operators in F : we see that the
number of possible localisation of a formula F is exponential in the number of tem-
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poral operators F contains. By the definition of S(A), this in turn implies that S(A)
will be of size exponential in the number of temporal operators F contains.

(b) |S(A)| is polynomial in the size of F if F contains a bounded number of temporal
operators.

2. The size of M for a given F .

3. d(F ), number of ω’s in M : As a result of the previous section we know that computing
ΣA(ωMi) takes O(d(F )) more time than computing ΣA(Mj) where Mj is some other
submodel of M and is not of the form ωT .

In order to identify the impact of each of these parameters on the algorithm’s performance, we
consider the following test cases:

1. For S(A):

(a) Fix a large general model MG. Fix the size of F . Vary the number of temporal
operators in F . Expect an exponential decrease in performance.

(b) Fix a model M . Fix a number of temporal operators. Vary the size of F . Expect a
polynomial decrease in performance.

2. For the size of M

(a) Fix a Formula F . Vary the size of M . Expect polynomial decrease of performance.

3. For d(F ), number of ω’s in M :

(a) Fix model M with some omegas, fix the size of F , increase d(F ).
(b) Fix F with some d(F ), fix size of M , increase number of ω’s in M .

Input data
In order to generate meaningful results, we must consider reasonably large inputs, which in turn
means that it becomes impractical to manually create input, and we resort instead to generating
it :

1. We generate random formulas, with given length, and given number of temporal operators,
so that our result are not specific to any kind of formula structure. Additionally a given
atom never occurs more than once in a given formula.

2. Generating random models is harder, due to the way that they have been implemented.
Thus in an attempt to maintain generality we consider models of the form MG(x) for
x ∈ N where:
MG(0) =< {}+ {}, ω∗{}, ω{} >
MG(x) =< MG(x− 1) +MG(x− 1), ω∗MG(x− 1), ωMG(x− 1) >
These are easy to generate, and as they contain all operators nested within each other
they are fairly general, and so should not bias our test results significantly.
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S(A) Test cases
We first note that with regards to the size of S(A) it is only the number of temporal operators
that has a significant impact, not their type, so the only temporal operator appearing in F will
be S. There is some variance in the time the algorithm takes for a given input pair, due to the
fact that we are generating a random formula F for each call. In order to reduce this, for any
given input F , M combination we generated 10 formulas F , and take the average runtime of
the algorithm for all 10 runs.

Fixed model, fixed formula length, varying occurrences of S

We consider M = MG(0) and random F with |F | = 50 , |F | = 100, varying the number of
occurrences of S. The test results are displayed in figure4.1 . Note that the y axis is displayed
on a logarithmic scale.
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Figure 4.1: varying number of temporal operators

As expected, increasing the number of temporal operators quickly creates an exponential
blow-up in the size of S(A), meaning that even for small models (M = MG(0) has depth = 2
and only 4 operators ) the algorithm’s performance rapidly degrades.

Fixed model, fixed number of temporal operators, varying formula length

We consider first M = MG(1) and then M = MG(2), and random F with 3 occurrences of S,
increasing |F | from 5 to 305. The test results are displayed in figure4.2 .
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We notice that the performance does not degrade significantly as we increase formula size,
even for fairly large models (MG(2) has 84 operator applications).

Size of M Test cases
We have already seen that even for small models, increasing the number of temporal operators
rapidly degrades performance. Thus in order to measure the impact that the size of the model
alone has on the performance, we consider a formula F with |F | = 100 and only 1, then 2, then
3 occurrences of S. For each case we run the algorithm for MG(0),MG(0) +MG(0),(MG(0) +
MG(0))+MG(0),etc. varying the number of MG(0)’s in the sum from 1 to 100. The results are
displayed in figure 4.3.
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Figure 4.3: varying the model size

We notice that varying the model size seems to only affect performance polynomially, but in-
creasing the number of occurrences of S even slightly makes the performance curve significantly
steeper.

d(F ), ω Test cases
We already know from the very first test case that increasing the number of occurrences of S
in the input formula F causes an exponential decrease of performance even for a model with a
single ω. This implies that we will have at least an exponential decrease of performance when
increasing d(F ). Thus what remains to be determined is how the number of ω’s in M affect
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performance for a given F with fixed d(F ). To establish this we consider formulas consisting
solely of nested S’s with d(F ) = 5, d(F ) = 6 and d(F ) = 7 respectively. For each of these values
we create a model consisting purely of nested ω’s, varying the size from 1 to 100. Arguably
we are varying both the size of the model and the number of ω’s, however as we have already
established that increasing the model size generally only increase runtime polynomially for a
given formula, it seems reasonable to consider such nested omega models without too much loss
of generality (as compared to the ideal case where the size of M is fixed throughout).The test
results are illustrated in figure 4.4.
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Figure 4.4: varying the number of ω’s

Once again, we see that for a given d(F ) varying the number of ω’s seems to only affect
performance polynomially, but increasing d(F ) even slightly makes the performance curve sig-
nificantly steeper.

Summary of test results
Given that we don’t have any specific application in mind, it is hard to use the above results
to evaluate the algorithm’s performance in absolute terms. What the cases do allow us to do
however is understand it’s potential applicability or lack thereof for certain applications. The
cases all seem to generally indicate the algorithm’s performance is pretty good if we have a low
bounded number of temporal operators appearing in formulas, and degrades exponentially as
the number of temporal operators increases. However having a bounded number of temporal
operators in formulas of arbitrary length, considering models of arbitrary size, still seems like
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a fairly general use case, and so arguably does not limit the algorithm’s potential applicability
significantly.
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Chapter 5

Complexity

In this chapter we will analyse the time and space complexity of our algorithm for determining
satisfiability of a formula A ∈ L(U ,S)1 in a model expression M , a problem which for the rest
of this chapter will be referred to as MODELSAT. When calculating the resource usage of an
algorithm (i.e. analysing it’s space\time complexity), it is often the case that we modify the
computation in way which will minimise the usage of whatever resource we are trying to measure
the usage of. If for example we are trying to measure space usage, we would consider a version
of the algorithm which favours recomputation of intermediate results over storing them, at the
expense of time.Similarly if we are trying to measure the time complexity, we want to avoid
recomputation but are not concerned with how much space we use, and would thus probably
consider a version of the algorithm which caches results to avoid recomputation, at the cost of
using additional space.

Thus we will consider two different version of our algorithm, one optimising the time usage
and one the space usage, and use these modified version to get a precise idea of the minimal
amount of time and space required. Both of these versions of the algorithm are different to the
one presented in chapter 3. However all three are arguably variations of the same algorithm as
they rely on the same fundamental computational idea, namely that of formula localization.

5.1 Reducing MODELSAT to BALLOONMODELSAT
Recall the algorithm from section 3.2 for determining if a given formula A ∈ L(U ,S) is satisfied
in a model expression T . The idea was to compute the set ΣA(T ) of all subformulas\possible
localizations of A that are satisfied in T by induction on the structure of the model expression.

Here we consider a different approach. Instead of computing the set ΣA(T ) of all subformu-
las/possible localizations satisfied at a given node T in the model expression tree by computing
ΣA(Ti) for each of it’s children Ti, we will just compute the localization Ai of A at each of the
children Ti of T , and then recursively compute whether Ai is satisfied in Ti for any child Ti.
Localization will be computed according to the four localization definitions (one for each of the
operators) given in section 3.2. The only difference will be that in each definition of localization
all terms of the form Fi ∈ ΣA(Ti) will be replaced by a recursive call to the overall procedure.
Thus using the results of section 3.2 the computation of determining satisfiability of F in a
model T can be modelled by a recursive functionσ(F, T ) defined as follows

Definition 5.1. σ(F, T ):

• σ(F, a) ≡ a, 0 |= F

1We limit our focus to L(U ,S) as it is the more expressive than L(F ,P)
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• σ(F, T0 + T1) ≡ σ(F0, T0) ∨ σ(F1, T1)

• σ(F,< T1, ..., Tn >) ≡ ∃i ∈ {0, ..., n}.σ(Fλ, Ti)

• σ(F, ωT0) ≡ ∃n ≤ d(F ).σ(Fn, T0)
2

Remark 5.2. Note that the choice of σ(F, T ) (which was previously used to abbreviate F is
satisfied in T ) as the name of the function is appropriate, as by definition (and our work
in chapter 3 ) it returns true if and only if F is satisfied in T . Thus σ(F, T ) will be used
interchangeably (depending on the context) to denote the statement “F is satisfied in T” or a
call to the function deciding this.

Examining definition 5.1 we notice that for +, and < ... > the definition just recurses on
the structure of the model expression T , in other words it generates one recursive call to σ for
each child Ti of T . However for ωT0 this is not the case, as here we generate d(F ) calls3 to σ.
For the purposes of complexity analysis, such a definition is inconvenient, i.e. we would prefer
if we could define σ purely by recursion on the structure of T . Thus our idea is given a model
expression T to transform it into an equivalent (for the purposes of localization) expression T ′

without any occurences of ω. The overall complexity for deciding if A is satisfied in T will then
be that of transforming T into T ′, and determining if A is satisfied in T ′.

To achieve this we start by defining omodel expressions.

Definition 5.3. (omodel expression ): T = a| < T, ..., T > |T + T |+o T |+o T

The new operators +o, +o will be used to eliminate ω, ω∗ respectively. Note that as the
handling of +o is completely symmetrical to that of +o, in what follows we will consider only
the latter. We define localization for the new operator +o:

Definition 5.4. The localization Fλ of a formula F at the child T of +oT is defined as :

• If F is atomic, Fλ = F

• (¬A)λ = ¬Aλ

• (A ∧B)λ = Aλ ∧Bλ

• (AUB)λ=
{
AλWBλ if σ(Bλ ∧HAλ,M)

AλUBλ otherwise

• (AWB)λ=
{
AλWBλ if σ(Bλ ∧HAλ,M) ∨ ¬σ(¬Aλ,M)

AλUBλ otherwise

• (ASB)λ = AλSBλ

• (AZB)λ = AλZBλ

Localization for+oT is symmetrical. We will then say that A is satisfied in the omodel expression
+oT , if and only if Aλ is satisfied in T . So we redefine σ(F, T ) for omodel expressions T as
follows:

Definition 5.5. σ(F, T ):
2and symmetrically for σ(F, ω∗T0)
3recall that d(F )(definition 3.30 ) was defined to be the maximum depth of nesting of S/Z in B
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• σ(F, a) ≡ a, 0 |= F

• σ(F, T0 + T1) ≡ σ(F0, T0) ∨ σ(F1, T1)

• σ(F,< T1, ..., Tn >) ≡ ∃i ∈ {0, ..., n}.σ(Fλ, Ti)

• σ(F,+oT0) ≡ σ(Fλ, T0)
4

It is essential at this point to emphasize that the expression +oT does not have any real
meaning. The sole purpose of omodel expressions is to allow us to model the way that sat-
isfiability is computed (by means of definition 5.5) in a way which is easier to analyse. They
are a purely syntactical construct. How we can transform a given ωmodel expression into an
equivalent (for the purposes of satisfiability) omodel expression (with ω’s removed) becomes
apparent from the following proposition.

Proposition 5.6. for any formula F ∈ L(U ,S),for any model expression M , we have

F is satisfied in ωM ⇐⇒ F is satisfied in (

d(F )−1∑
i=0

M) + (+oM)

Remark 5.7. We adopt here the convention that for x, y ∈ N, if y < x then the expression
(
∑y

i=xM) + (+oM) is equivalent to the expression (+oM).

Proof. : It can be shown that there is a sort of associativity for the model expression operator
+ with regards to localization. So for example given models M = (M0 + M1) + M2, N =
M0 + (M1 +M2) the localization of a formula F at the sub model M1 of M which we denote
FM
M1

is identical to the localization of F at the submodel M1 of N , i.e. FM
M1

= FN
M1

.
Bearing this associativity in mind, pick arbitrary k ∈ N, and an arbitrary model expression

M , and consider the models ωM and N = (
∑k−1

i=0 M)+(+oM). Let FωM
i denote the localisation

of F at the i-th copy of M in the context of ωM , and FN
i denote the localisation of F at the

i-th copy of M in the the context of N . So for i < k, FN
i is just F localised at the ith element of

(
∑k−1

i=0 M), but FN
k denotes the localization of F at +oM in the context ofN , further localised at

M in the conext of +oM . So in summary FωM
i = FωM

Mi
, and FN

i =

{
(FN

+oM )+
oM

M if i = k

FN
Mi

0 ≤ i < k
.

It can then be shown by induction on the structure of a formula F ∈ L(U ,S) that for any
F such that d(F ) ≤ k, ∀i ≤ k.FωM

i = FN
i .This property is illustrated in figure 5.1.

+

+

+

+

+

+

+
...

...

M M M M

M M M

M

+
...M

0 1 k − 1 k

ωM :

N = (
∑

k−1

i=0
M) + (+o

M) :

Figure 5.1: ∀i ≤ k.FωM
i = FN

i

As a result of this we have that for N = (
∑d(F )−1

i=0 M) + (+oM), ∀i ≤ d(F ).FωM
i = FN

i . So
4and symmetrically for σ(F,+oT0)
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1. ∀i ≤ d(F ).FωM
i = FN

i

2. F is satisfied in ωM ⇐⇒ ∃i ≤ d(F ).σ(FωM
i ,M) (By definition 5.1)

3. F is satisfied in (
∑d(F )−1

i=0 M) + (+oM) ⇐⇒ ∃i < d(F ).σ(FN
i ,M) ∨ σ(FN

+oM ,+oM)
(by definition 5.1, noted associativity of + with regards to localization)

4. ∃i < d(F ).σ(FN
i ,M)∨σ(FN

+oM ,+oM) ⇐⇒ ∃i < d(F ).σ(FN
i ,M)∨σ((FN

+oM )+
oM

M ,M) ⇐⇒
∃i ≤ d(F ).σ(FN

i ,M)
(by definition 5.5 for +oM , and the def. of FN

i )

5. F is satisfied in ωM ⇐⇒ F is satisfied in (
∑d(F )−1

i=0 M) + (+oM) (by 1,2,3,4)

It should be clear that a symmetrical proposition relating ω∗ and +o can be proved. Based
on proposition 5.6 we can define a procedure for constructing omodel expressions from ωmodel
expressions.

Definition 5.8. (o(F, T )): we define the function o(F, T ): L(U ,S)× ωmodel → omodel which
given an ωmodel expression T and a formula F ∈ L(U ,S) computes an “equivalent” omodel
expression o(F, T ):

• T atomic, then o(F, T ) = T

• o(F, T0 + T1) = o(F, T0) + o(F, T1)

• o(F,< T1, ..., Tj >) = <o(F, T1), ..., o(F, Tj) >

• o(F, ωTi+1) = (
∑d(F )−1

i=0 o(F, Ti+1)) + (+oo(F, Ti+1))

• o(F, ω∗Ti+1) = (+oo(F, Ti+1)) +
∑d(F )−1

i=0 o(F, Ti+1)

The sense in which T and o(F, T ) are equivalent is illustrated by the following proposition:

Proposition 5.9. (omodel expresion equivalence) for any formula F ∈ L(U ,S), for any model
expression T , we have

F is satisfied in T ⇐⇒ F is satisfied in o(F, T )

Proof. : By induction on the structure of T , using proposition 5.6(and a symmetrical proposition
relating ω∗ and +o).

As a result of this we can compute σ(F, T ) by computing σ(F, o(F, T )) instead. Finally we
consider the complexity of transforming an ωmodel expression Tω into the equivalent omodel
expression T = o(Tω)

Proposition 5.10. For any ωmodel expression T , and formula F there is a Turing Machine
TMo which computes o(F, T ) in time O(d(F )k ∗m), and polynomial space.

Proof. :Let T be of size m (i.e. the model expression tree has m nodes), and have k occurrences
of ω. For the sake of simplicity, we consider ωmodel expressions T with no occurrences of
ω∗. Starting at the root of T , at each level of recursion of o(F, T ) (which corresponds to
a level in the input model expression tree T ) it transforms all subtrees Tj = ωTj+1 at that
level into T ′

j = (
∑d(F )−1

i=0 Tj+1) + (+oTj+1), so size(T ′
j) = O(d(F ) ∗ size(Tj)), and subsequently
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size(T ′) = O(d(F )∗size(T )) (the worst case occurs when T = ωTj for some Tj). The number of
these tree modifying levels of recursion is bounded by k (it will be equal to k when all ω are nested
within each other). Thus for the final tree o(F, T ) we have size(o(F, T )) = O(d(F )k∗size(T )) =
O(d(F )m ∗ m), so the size of the new model is exponential in the size of the original model.
Consider a Turing machine TMo implementing o(F, T ). As all that TMo is doing is copying
over nodes of T from it’s input tape to it’s output tape, and the overall number of nodes it
needs to copy over is O(d(F )k ∗m), we can argue that this is also a reasonable upper bound for
it’s time complexity. So time(o(F, T )) = O(d(F )k ∗m).

Additionally TMo operates in polynomial space: recall that it is just copying over parts of
the tree T . This can be done by traversing T , and at each level creating a map of nodes at
that level to number of times they must be written to output tape (with ω replaced by d(F )
applications of +, and +o at the end). This map can then be use to build the corresponding
levels of the resulting omodel expression o(F, T ) in space that is polynomial in the size of the
map. Clearly the map for the last level (leaves) will be the largest , as it will have the most
nodes, and the largest number of copies for each node (compared to previous levels). Thus the
space usage of TMo is polynomial in the size of this final map. The map has polynomially many
elements in the size of the model, and each element maps to a number which is exponential in
the size of T . Thus such a number will be representable by a bit string of size polynomial to
the size of the original model. Hence the map takes space polynomial in the input size, and
subsequently TMo is in PSPACE.

Note that at the start of the proof we assumed for simplicity that there were no occurrences
of ω∗in M . It should be clear that a completely symmetrical argument to the one above can be
applied to extend the proof to cover the case where ω∗ does occur in M .

Summary
Given a formula F and a model expression Tω, we have reduced the problem of computing
σ(F, Tω) to that of computing the expression T = o(F, Tω), and then computing σ(F, T ). We
have considered the complexity of computing T = o(F, Tω). Subsequently we can now proceed
to analyse the complexity of computing σ(F, T ), in order to analyse the overall complexity of
computing σ(F, Tω).
Remark 5.11. In the sections that follow, the problem of determining whether F is satisfied in
an omodel expression T will be referred to as BALLOONMODELSAT, to contrast it with our
original problem of determining whether F is satisfied in an ωmodel expression Tω, which we
refer to as MODELSAT.

5.2 Deciding BALLOONMODELSAT in P
It can be shown that a direct recursive implementation of definition 5.5 in fact takes time
exponential in the size of the input (the proof is beyond the scope of this section). The cause of
this is that as we are just recursively computing σ(F, T ) from the root of the omodel expression
to it’s leaves, we will have to recompute various intermediate results exponentially many times.
In this section we will present a modified version of the naive algorithm implied by definition
5.5, which by caching intermediate results can compute σ(F, T ) in polynomial time.
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5.2.1 Overview of the algorithm
We start by giving an overview of the algorithm, where C is the input formula, and T is the
omodel in which we want to determine whether C is satisfied.

1. loop over subformulas of C in order of increasing size (from atomic subformulas up to C
itself) and for each such subformula F :

• If F is a Boolean (atom, conjunction, negation) iterate through every node Ti of
model tree T trivially computing and storing the localization Fi (the localizations of
F ’s subformulas at that node will have been inductively computed).

• If F = ASB:
(a) Starting from the leaves of T and working to the root, compute σ(Bi∧GAi, Ti),σ(¬Ai, Ti)

at each node Ti in terms of σ(Bj ∧ GAj , Tj),σ(¬Aj , Tj) where Tj i s any child of
Ti, storing the results as 2 bits.

(b) Then starting from the root of T and working towards the leaves, compute the
localization (ASB)i at each node Ti of T and store it. By (a) we have computed
and stored the localization context for each Ti, and we have also inductively
computed and stored the localizations Ai and Bi at Ti. Thus we compute (ASB)i
by a simple look-up.

• Similarly for F = AZB .
• If F = AUB we do the same as for F = ASB but this time computing and storing

σ(Bi ∧HAi, Ti) instead of σ(Bi ∧ GAi, Ti) for each node.
• Similarly for F = AWB .

2. On the final iteration of the loop above, we consider C itself. At the end of this iteration,
we will have computed the localization of C at each atomic world, and thus to determine
if C is satisfied in T just need to check whether σ(Ci, Ti) for any atomic world Ti.

Claim 5.12. This algorithm decides BALLOONMODELSAT in p-time.

Proof. : We give in detail the steps of the algorithm outlined above, and simultaneously analyse
the time taken by each step.

1. One iteration for each subformula of F so number of iterations is linear in the size of the
formula. For each iteration:

• If F is boolean, then loop over nodes Ti of T , computing and storing Fi at each one:
– F is atomic: trivially F = Fi

– F = A ∧ B: we have inductively computed and stored Ai and Bi, so just store
Fi = Ai ∧Bi

– F = ¬A: similarly we have inductively computed and stored Ai, so just store
Fi = ¬Ai

The number of nodes Ti is linear in the input size, so this case takes polynomial time.
• If F = ASB:

(a) loop over the nodes Ti of T starting from the leaves (single point models) and
working up the tree to the root of T :
i. If Ti atomic: can compute σ(Bi ∧ GAi, Ti),σ(¬Ai, Ti) in p-time (Ai, Bi have

been computed and stored by previous iterations).
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ii. Ti = Tj + Tk: σ(Bi ∧ GAi, Ti) = σ((Bi ∧ GAi)j , Tj) ∨ σ((Bi ∧ GAi)k, Tk).
(Bi ∧ GAi)k = Bik ∧ GAik by def. of localization, and we have already
computed and stored σ(Bik ∧ GAik, Tk) as the computation is moving up
the tree. On the other hand again by the definition of localization (Bi ∧

GAi)j = Bij ∧ (GAi)j , where (GAi)j = (AiW⊥)j =

{
⊥ if σ(¬Aik, Tk)

GAij otherwise
.

As σ(¬Aik, Tk), σ(Bij ∧ GAij , Tj) have already been computed and stored
(and clearly σ(Bij ∧⊥, Tj) = ⊥), we can compute σ(Bi∧GAi, Ti) in constant
time, by just looking up our stored results.
Similarly σ(¬Ai, Ti) = σ(¬Aik, Tk)∨σ(¬Aij , Tj) which can again be determ-
ined in constant time as we have already computed and stored σ(¬Aik, Tk)
and σ(¬Aij , Tj).

iii. Ti = +oTj : very similar to ii.σ(Bi ∧ GAi, Ti) = σ((Bi ∧ GAi)j , Tj). (Bi ∧

GAi)j = Bij ∧ (GAi)j , where (GAi)j =

{
⊥ if σ(¬Aij , Tj)

GAij otherwise
. As above

all necessary terms have already been computed as we are moving up the
tree, so here too we compute σ(Bi ∧ GAi, Ti) in constant time. Similarly
σ(¬Ai, Ti) = σ(¬Aij , Tj) which has already been computed.

iv. Ti = +oTj : similarly σ(Bi∧GAi, Ti) = σ((Bi∧GAi)j , Tj) = σ(Bij∧GAij , Tj),
σ(¬Ai, Ti) = σ(¬Aij , Tj).

v. Ti =< T1...Tk >: as by the definition of localization for shuffle the loc-
alization context is the same for all shuffled models, we have that σ(Bi ∧
GAi, Ti) =

∨k
j=1 σ((Bi ∧ GAi)λ, Tj). (Bi ∧ GAi)λ = Biλ ∧ (GAi)λ, where

(GAi)λ =

{
⊥ if

∨k
j=1 σ(¬Aiλ, Tj)

GAiλ otherwise
. Each of the σ(¬Aiλ, Tj) terms has

been inductively computed so we can compute the disjunction in p-time.
Similarly all the σ(Biλ∧GAiλ, Tj) terms have been inductively computed, so
that σ(Bi ∧ GAi, Ti) can be computed in p-time.

Thus in conclusion for any node Ti the algorithm computes σ(Bi∧GAi, Ti),σ(¬Ai, Ti)
in p-time, and as there are polynomially many nodes, computing it for all of them
will be p-time.

(b) Starting from the root of of T , we recursively compute and store F i at each
of it’s successors T i, until we get to the atomic models. Thus at any given
iteration we are considering the localization Fi of F at some node T i, and trying
to determine Fij for each child Tj of Ti. Clearly Fi = AiSBi or Fi = AiZBi.
Assume Fi = AiZBi (the Fi = AiSBi case is computationally slightly simpler
as we have a simpler good context condition). Then:
i. If Ti atomic: do nothing, as it has no children.
ii. Ti = Tj + Tk: By definition of localization (AiZBi)j = AijZBij , where Aij ,

Bijhave already been inductively computed and stored.

Similarly(AiZBi)k =

{
AikZBik if σ(Bij ∧ GAij , Tj) ∨ ¬σ(¬Aij , Tj)

AikSBik otherwise
where

Aik , Bik have been inductively computed and stored, as has the good context
condition σ(Bij ∧GAij , Tj)∨¬σ(¬Aij , Tj) (in part (a)). Thus the algorithm
computes Fij , Fik in constant time by looking up the stored results.

iii. Ti = +oTj : By definition of localization (AiZBi)j = AijZBij .
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iv. Ti = +oTj :(AiZBi)j =

{
AijZBij if σ(Bij ∧ GAij , Tj) ∨ ¬σ(¬Aij , Tj)

AijSBij otherwise
where

Aij , Bij have been inductively computed, and the good context condition
has been computed in (a). Thus the algorithm computes Fij in constant
time by looking up the stored results.

v. Ti =< T1...Tk >: (AiZBi)λ =

{
AiλZBiλ if ¬(

∨k
j=1 σ(¬Aiλ, Tj))

AiλSBiλ otherwise
where

Aiλ , Biλhave been inductively computed, as have all the σ(¬Aiλ, Tj) terms(
in (a) ), so Fij is computed in p-time.

So all localisations computed in p-time, polynomially many nodes to localise at,
so (b) takes p-time overall.

• The case for F = AUB is symmetrical to that for F = ASB and thus no more
computationally complex..

• The case forF = AZB is almost identical to that of F = ASB albeit with a slightly
more general context, but clearly no more computationally complex.

• The case for F = AWB is symmetrical to that for F = AZB and thus no more
computationally complex.

In conclusion (a) and (b) both take polynomial time, and the number of iterations is linear
in the length of their formula, so the whole of part 2 is p-time.

2. Determining if any of the localizations of C at the atomic worlds are satisfied is clearly
p-time (polynomially many such worlds, p-time to check satisfiability at each one).

Thus the algorithm consists of 2 polynomial time parts, and as such takes p-time overall. It
should also be clear from the above that it decides BALOONMODELSAT (as all computation
is according to definition 5.5, and the respective definitions of localisation).

From the above we know that there exists a machine TMBMSAT deciding BALLONMODELSAT
in polynomial time. As a result of section 5.1 we know that by composing the machine TMo

within TMBMSAT we get a machine TMo ·TMBMSATwhich decides MODELSAT. This gives us
an interesting result. Consider the problem MODELSAT-K which is the same as MODELSAT,
but where the number of ω’s in the input model is bounded by an integer K.

Proposition 5.13. (MODELSAT-K): MODELSAT-K is in P (for any K ∈ N)

Proof. :Recall that by proposition 5.10 time(TMo) = O(d(F )k ∗ m). as k ≤ K, we have
time(TMo) = O(d(F )K ∗m) where K is constant, implying that TMo operates in p-time, and
as TMBMSAT is p-time TMo ·TMBMSAT will also be p-time (as P is closed under composition),
and by their definition decides MODELSAT-K.
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5.3 Deciding MODELSAT in PSPACE
In this section we will show that MODELSAT can be decided in PSPACE. We start be consid-
ering the machine TMo · TMBMSAT described in the previous section. Unfortunately it does
not operate in polynomial space.Recall that given an ωmodel Tω of size m, TMo outputs an
omodel T of size m′ where m′ = exp(m), d(T ) = poly(d(Tω))). As the algorithm described in
section 5.2 is storing localizations at every node of T , and the size of T is exponential in the
size of the model Tω, the algorithm’s space usage will be exponential in the size of the input
model Tω. Subsequently we will modify the algorithm to use space linear in the depth of T , as
this is only polynomially larger than that of Tω. The result will be an algorithm which given
T and a formula F of size f , decides BALLOONMODELSAT in poly(m, f)− SPACE.

We start by giving a high level overview of the algorithm. We then give give a formal
description of the Turing Machine implementing this algorithm, and analyse it’s space usage.

5.3.1 Overview of the algorithm deciding BALLOONMODELSAT in poly(m, f)−
SPACE

The algorithm for deciding σ(A, T ) is illustrated in figure 5.1. We limit our focus to models
T with no operators occurring apart from +. This is because the other operators are handled
in a similar way, and will be covered in detail in the following section where we give a formal
description of the machine implementing the algorithm.

5.3.2 The machine M deciding BALLOONMODELSAT in poly(m, f)−SPACE

We now proceed to give a formal description of the Turing Machine implementing the algorithm.

5.3.2.1 Input Encoding

Model Encoding: Model T is encoded as tree of nodes, with a node corresponding to
each operation application, and single point model. Each node has a unique identifier, and is
encoded as a triple (nid, type, children) where:

• nid is the identifier of that node.

• type is a, +, +o, +o or<> .

• children is a list of the nodes children (so for + an ordered list of two elements, for
+o, o+ a list with a single element, for <> an unordered list of n elements, for a a list of
propositional atoms).

A model tree is then encoded as a list of nodes. E.g. the expression +o({p, q}+ {r}) could be
encoded as {(0,+o, [1]), (1,+, [2, 3]), (2, a, [p, q]), (3, a, [r])}.

Formula Encoding: Formula F is written in polish notation.

5.3.2.2 Machine Description

In this section we describe the aforementioned machine.The machine we describe can be con-
ceptually split into two parts. The first is the Mσ part, which decides satifiability, by making
calls to the localization part Mλ. Mλ in turn computes localizations of formulas by making
calls to the Mσ part in order to determine localization contexts. Each part has it’s own work
tapes, but there is one global input tape, and one global output tape. The input tape contains
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Algorithm 5.1 the algorithm deciding σ(F, T )

f unc t i on σ(F, T ) :
i f T i s atomic :

eva luate F at s i n g l e world o f T , r e tu rn ing r e s u l t
else i f T = T0 + T1 :

Create two cop i e s F0 , F1 o f F to ed i t in loop below
loop over subformulas o f F , from atomic subformulas up to F i t s e l f :

i f cur rent subformula i s BUC :
e x t r a c t subformulas B1 , C1 o f F1 cor re spond ing to B , C
i f σ(C1 ∧HB1, T1) : // r e c u r s i v e c a l l

r ep l a c e the charac t e r U in F0 corre spond ing
to the U in BUC by W

else i f cur rent subformula i s BWC :
e x t r a c t subformulas B1 , C1 o f F1 cor re spond ing to B , C
i f ( not σ(C1 ∧HB1, T1)) and σ(¬B1, T1) : // r e c u r s i v e c a l l s

r ep l a c e the charac t e r W in F0 cor respond ing
to the W in BWC by U

else i f cur rent subformula i s BSC :
mirror image o f U case ,
swapping U with S , W with Z ,
0 with 1 and H with G

else i f cur rent subformula i s BZC :
mirror image o f W case ,
swapping U with S , W with Z ,
0 with 1 and H with G

end i f
end loop
i f σ(F0, T0) : // r e c u r s i v e c a l l

return true
i f σ(F1, T1) : // r e c u r s i v e c a l l

return true
return fa l se

end σ(F, T )
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model T and formula F . On the tapes, we represent models by the nid of their root, which
takes space O(log(m′)). If we need any other information about a particular node, such as it’s
children we can use an O(log(m′)) counter to look it up in the input tape using the node’s nid.
Thus for the remainder of this section, whenever we refer to storing a model on a tape, all that
we are actually storing is the nid of the root of that model. Finally, it is worth noting that as
this is a recursive computation, we treat all tapes as stacks, and assume the existence of some
stack element delimiter character. For a given stack tape S, we will assume the existence of a
stack pointer tape, and will use Ssp to denote the top of the stack tape S.

Below we describe the two parts of the machine.

The Mσ part

The Mσ part of the machine models a recursive function σ(F, T ) which determines if F is
satisfied in model T . It does this by localising F at each child Ti of T in turn(by calling a local-
ization procedure λ(F, T, Ti)), and recursively computing σ(Fi, Ti).This behaviour is formalised
in figure 5.2.

Algorithm 5.2 σ(F, T )

σ(F,T){
if (T= atomic) {

//σ1(F,T) evalutes F
// at single point model T
return σ1(F,T);

}
else{

for (U child(T)) {
FL = λ(F,T,U);
If( σ(FL,U)) {

return true;
}

}
return false;

}
}

We can now describe the part of the machine implementing this behaviour. It has 3 tapes:

• Tσ: stack of models for which we want to determine satisfiability.

• Uσ: stack of submodels. Submodels of different models separated by ‘*’ character. The
submodels at the top of the Uσ stack are the children of the model at the top of the Tσ

stack.

• Fσ: stack of localised formulas.

The overall machine M starts by pushing the input model T to the tape Tσ (updating Tσsp),
and pushing the input formula F onto the tape Fσ (this is only done once), after which it
invokes Mσ.

Mσ starts by checking if Tσsp is atomic, in which case it just calls the machine Mσ1 for
determining satisfiability in an atomic model, returning it’s result.
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If on the other hand Tσsp is not atomic, Mσ pushes all the children of Tσsp onto the stack
Uσ. For each child Ti on Uσ in turn, it first computes the localization Fi by calling Mλ(F, T, Ti),
then pushes the result Fi onto Fσ, and pops Ti off Uσ, pushing it onto Tσ, and then recursing.
Subsequently if any recursive call returns true (meaning that the localization Fi of F at some
atomic model Ti is satisfied in that model) Mσ returns true, and if none of them do then Mσ

returns false. This is formalised by the pseudocode in figure 5.3.

Preliminary remarks concerning figure 5.3:

• In the code that follows, it is implicitly assumed that a “return” statement only writes to
the output tape if its is nested within the original call to Mσ(F, T ) . If on the other hand
it is called as a result of a recursive call to Mσ by Mλ, then the machine M just notifies
the caller of the result.

• It is implicitly assumed that the machine pushes and pops symbols indicating recursive
calls as necessary. We omit such symbols from the pseudocode in order to not further
obscure it’s function.

• We assume the existence of a machine Mσ1 which determines if a formula is satisfied in
a single point model using the algorithm given as part of the proof of lemma 3.25. This
can be done by using space linear in the size of the formula for evaluation, and a counter
which takes logspace in the size of the model. Thus it makes no significant contribution
in terms of space usage.

• We often refer in the code to “ the last call to Mσ by Mλ”. Clearly there will be only one
top-level call to Mσ which is not made by Mλ, and that is the original call by the machine
M itself.
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Algorithm 5.3 The Mσ part of the machine

1 //these lines are executed once to get input
2 //onto work tapes
3 push input.M to Tσ

4 push input.F to Fσ

5
6 Mσ:
7 //Ssp indicates the top element of stack S.
8 if (Atomic(Tσsp)) {
9 pop Fσ, Tσ to Mσ1 input tape

10 res= run Mσ1

11 If (res == True) {
12 pop all data put onto Fσ,Tσ,Uσ by the last recursive call to Mσ by Mλ

13 return True
14 }
15 else if (isEmpty(Tσ) ) {
16 // isEmpty(Tσ) determines if there are no more models to check on
17 // Tσ for the last call to Mσ by Mλ,
18 // indicating that we have recursively checked all models for that call.
19 pop all data put onto Fσ,Tσ,Uσ by the last recursive call to Mσ by Mλ

20 return False
21 }
22 else {
23 while (Uσsp='*') {
24 // This is the case where we have checked all submodels
25 // for Tσsp
26 pop Tσ //updates Tσsp
27 pop Fσ

28 pop Uσ // Uσsp should now be pointing to last submodel of Tσsp
29 }
30 jumpto Localize
31 }
32 }
33 else{//Tσsp.type = +|| < ... > ||+o ||+o

34 push '*' onto Uσ //indicates new set of submodels
35 for ( model child: Tσsp.getChildren()) {
36 push child onto Uσ

37 }
38 Localise:
39 if (isEmpty(Tσ) ) {
40 pop all data put onto Fσ,Tσ,Uσ by the last recursive call to Mσ by Mλ

41 return False
42 }
43 //call Mλ

44 push Tσsp to Tλ, Uσsp to Uλ, |Fσsp| to FC, Fσsp to F0 and F1
45 Call Mλ

46 pop Tλ, Uλ, FC, F0, F1//clean up
47 //recursive call to Mσ

48 push Mλ.result onto F
49 // Mλ.result is F0sp or F1sp depending on what we're localising
50 pop Uσ, push result onto Tσ

51 jumpto Mσ

52 }

58



The Mλ Part

The aforementioned localisation procedure λ(F, T, Ti) is implemented by the Mλ part of the
machine, which computes the localization of the formula F at the child model Ti of model T .
It has 5 tapes:

• Tλ: stack of models.

• Uλ: stack of models, each of which is a child of a model on Tλ, at which we are trying to
localise F .

• FCλ: stack of pointers. Each pointer indicates the current position of localization in F0,
F1.

• F0: it’s top element is the localisation at world T0 for the model Tλsp if Tλsp = T0 + T1,
or the single localization for Tλsp if it’s of the form +oT0,+oT0, < T0, ..., T1 >.

• F1: it’s top element is the localisation at world T1 for the model Tλsp if Tλsp = T0 + T1.

The top element of each tape/stack represent the current (recursive) computation. So at any
given time, we know that Mλ is localising a formula F at the submodel Uλsp of the model
Tλsp, with F0sp, F1sp corresponding to the partially computed localizations of F , and FCsp

indicating the progress of the localization of F .
Initially the formula F is pushed onto F0, F1, and FCsp points to the last symbol of

F0sp, F1sp. On each iteration Mλexamines the symbol of F0sp, F1sp pointed to by FCsp
. If it is a boolean symbol, it leaves it unmodified. If on the other hand it is a temporal
symbol (U ,W ,S or Z) it calls the Mσ part (by jumping to Mσ) in order to determine the
localization context (where the context is determined based on our definitions of localization for
each formula/model). After each symbol is processed the counter FCsp is decremented. When
the counter reaches 0, F0, F1 will contain the localizations of the original formula F .

The whole procedure is formalised below by means of four cases, depending on the type of
the model T in the context of which we are localising.

T = T0 + T1:
Initially FCsp = |F |. In a loop, process F0sp[FCsp] (the symbol of F0sp at index FCsp),
F1sp[FCsp] according to the following rules:

• if F0sp[FCsp] = U : Find the sub formulas of F0sp which are the arguments of this U ,
call the left one A1, and the right one B15, and push B1∧HA1 onto F�, T1 onto T� . Run
M�. if it returns true then set F0sp[FCsp] = W, else leave it unmodified.

• if F0sp[FCsp] = W: As above, but else case becomes: push ¬A1 onto F�, T1 onto T�.
Run M�. If it returns true set F0sp[FCsp] = U . Note that the second call M�(¬A1, T1)
reuses the space of the first, so space complexity will be the same as for U .

• if F0sp[FCsp] = S: temporally symmetrical to U case (F0sp[FCsp] is not modified but
F1sp[FCsp] may be), thus no more complex in terms of space.

5finding these formulas can be done with a single counter taking logspace in the size of F0, F1
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• if F0sp[FCsp] = Z: temporally symmetrical to W case (F0sp[FCsp] is not modified but
F1sp[FCsp] may be), thus no more complex in terms of space.

After processing a symbol, we decrement FCsp. When FCsp = 0 we exit the loop, and we will
have computed both localizations of F , F0 = F0sp, F1 = F1sp.

The remaining cases T = +oT0, T = +oT0, T =< ... > are extremely similar, with the
notable difference that there is only a single localization to compute, and we use the F0 tape
to compute it. As in the T = T0+T1 case we process each symbol of F0sp, F1sp in a loop, and
all that changes is the handling of U ,W,S,Z.

T = +oT0:

• if F0sp[FCsp] = U : Identical to the case for T0 + T1, with the exception that we call
M�(B0 ∧HA0, T0) instead of M�(B1 ∧HA1, T1).

• if F0sp[FCsp] = W: Identical to the case for T0 + T1, with the exception that we call
M�(¬A0, T0) instead of M�(¬A1, T1).

This case clearly has the same space complexity as +.

T = +oT0: This case is temporally symmetrical to the +o case (swap S case with U case, Z
case with W case, and replace H with G ), so space complexity is no higher than for +o.

T =< ... >:

• if F0sp[FCsp] = U : As in the previous cases extract arguments A0, B0 of U . For each
child Ti of T one after the other, push B0 onto F�, Ti onto T�, and run M�. Do this
successively, reusing space for each call. If any call returns true then successively for each
child Ti of T , push ¬A0 onto F�, Ti onto T�and run M�(reusing space between calls). If
none of them returns true then set F0sp[FCsp] = W.

• if F0sp[FCsp] = W: Similarly to the above, call Mσ(¬A0, Ti) for each child Ti, and if
any call returns true set F0sp[FCsp] = U .

• if F0sp[FCsp] = S: temporally symmetrical to U case, thus no more complex in terms of
space.

• if F0sp[FCsp] = Z: temporally symmetrical to W case, thus no more complex in terms
of space.

Due to reuse of space this case is also no more complex in terms of space than that of +.

5.3.2.3 Space Usage

Let s(X) denote the space used by an element X on the tapes of the machine, where X is a call
to Mσ, Mλ, a formula F , or an nid T . In order to analyse the space complexity of the machine
described, we rely on the fact that space can be reused between recursive calls (to Mσ or Mλ )
that are not nested within each other. So all calls made at a given depth of recursion can reuse
space.
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s(Mσ(F, T )) =
s(T.children) +max(s(T ) + s(Ti) + 2 ∗ s(F ) + s(Mλ(F, T, Ti)), s(Fi) + s(Ti) + s(Mσ(Fi, Ti)))

where

• s(T.children): space used to store T.children, figure 5.3 line 36.

• s(T ) + s(Ti) + 2 ∗ s(F ) + s(Mλ(F, T, Ti)): pushing T to Tλ, Ti toUλ, and F to F0 and
F1 respectively, and running Mλ (|F | takes log(|F |) so does not contribute significantly
to space)

• s(Fi) + s(Ti) + s(Mσ(Fi, Ti)): determining if resulting localization Fi is satisfied in Ti.

We take the maximum space of localising/checking if localisation is satisfied, as one can reuse
the space of the other, and furthermore this space can be reused amongst children of a given
node.

s(Mλ(F, T, Ti) = s(F ′) + s(Ti) + s(Mσ(F
′, Ti))

where

• s(F ′)+s(Ti)+s(Mσ(F
′, Ti)): recursively calling Mλ,where F ′ is one of the extra formulas

we need to determine the context for a temporal formula, e.g. Bi ∧HAior ¬Ai

Although we are iteratively computing localizations for larger subformulas of F for each of
which we must make a call to Mσ(F

′, Ti), this space can be reused between the subformulas of
F .

So by expanding the above we get
s(Mσ(F, T ))
= s(T.children) +max(s(T ) + s(Ti) + 2 ∗ s(F ) + s(F ′) + s(Ti) + s(Mσ(F

′, Ti)), s(Fi) + s(Ti) +
s(Mσ(Fi, Ti)))
= s(T.children) +max(3 ∗ s(T ) + 3 ∗ s(F ) + s(Mσ(F

′, Ti)), s(Fi) + s(Ti) + s(Mσ(Fi, Ti)))
(as |Fi| = O(|F |), |F ′| = O(|F |) by sup. arg. 1, and T , Ti are both nid’s of the same size )
≤ s(T.children) + 3 ∗ s(T ) + 3 ∗ s(F ) + s(Mσ(|F + 2|, Ti))
(as s(Mσ(Fi, Ti) ≤ s(Mσ(|F +2|, Ti) trivially, and s(Mσ(F

′, Ti) ≤ s(Mσ(|F +2|, Ti) by sup. arg.
2)6

≤ s(T.children)+3∗s(T )+3∗s(F )+s(Ti.children)+3∗s(Ti)+3∗s(|F+2|)+s(Mσ(|F+2+2|, Tij))
≤ d(T ) ∗ |T.maxNoChildren| ∗ s(T ) + 3 ∗ d(T ) ∗ s(T ) + 3 ∗ d(T ) ∗ (s(F ) + 2 ∗ d(T ))
where d(T ) is the depth of T and is polynomial in m, |T.maxNoChildren| = poly(m) by sup.
arg. 3, s(T ) = poly(m) by sup. arg.4. So whole machine takes space polynomial in m,f .

Supplementary arguments (sup. arg.):

1. |F ′| = O(|F |): Let A and B be formulas, and let F = AUB. then F ′ = B ∧ HA or
F ′ = ¬A. clearly |¬A| = O(|F |). On the other hand |B ∧ HA| = |B ∧ (AZ⊥)| =
|AUB|+ 2 = O(|F |). Same argument applies for W,S,Z.
|Fi| = O(|F |):this follows from the fact that Fi is just F but with some temporal operators
replaced with their weaker/stronger counterparts.

6Mσ(|F + 2|, Ti) is a call to Mσ on a formula of length 2 longer than F
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2. s(Mσ(F
′, T ) ≤ s(Mσ(|F + 2|, T ): Let A and B be formulas, and let F = AUB. Then

F ′ = B ∧ HA or F ′ = ¬A. The case for F ′ = ¬A is trivial. For F ′ = B ∧ HA, we have
|F ′| = |B∧HA| = |B∧(AZ⊥)| = |AUB|+2. Recall the high level overview of the algorithm
given at the start of this chapter. In order to compute σ(F ′, T ) = σ(B ∧ (AZ⊥), T ), we
need to recursively compute σ(⊥∧GA, Ti) = σ(⊥∧ (AW⊥), Ti) for some child Ti of T (in
order to localise (AZ⊥) ). However ⊥∧(AW⊥) is no longer than F ′, so the recursive calls
to σ generated by σ(F ′, T ) are all on formulas of size no more than |F +2|. Subsequently
s(Mσ(F

′, T ) ≤ s(Mσ(|F + 2|, T ).

3. |T.maxNoChildren| = poly(m):

(a) The maximum number of children of any node in ωmodel Tω is O(m).
(b) The maximum number of children of any node in T is polynomial in the maximum

number of children of any node in Tω(by construction of T ).
(c) Thus maximum number of children of any node in T (denoted |T.maxNoChildren|)

is poly(m) (by a, b).

4. for any nid of a node in T , s(T ) = |nid| = log(m′) = log(exp(m)) = poly(m).

5.3.3 Conclusion
Proposition 5.14. MODELSAT is in PSPACE

Proof. : By composing the machine TMo described in proposition 5.10 with the machine M
described in the previous section. TMo·M decides MODELSAT. However the model T produced
by TMo on input model Tω is exponentially larger than Tω, thus storing it would use too much
space; instead we don’t store it, but use the phantom input tape trick from the proof of logspace
being closed under composition from [5], p.164. The basic idea is that we remove M ’s input
tape, and instead maintain a counter i representing the position of the head in the ”phantom”
input tape (which is incremented/decremented accordingly by M to reflect a change of the
head’s position). We start by running M . As soon as M requires the current symbol from
it’s phantom input tape, we put M on hold, and run TMo, only outputting the ith bit of it’s
output (we only need a logspace counter to determine the ith bit). As we are no longer storing
the output of TMo, overall space usage is just the sum of the space usage of TMo and M (the
counter i takes space logarithmic in the size of T , so polynomial in the size of Tω). TMo takes
polynomial space, and M takes space polynomial in the size of the input to TMo. Subsequently
the whole machine TMo ·M takes space polynomial in the size of it’s input.
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Chapter 6

Conclusion

Evaluation of contributions and discussion of future work
The first contribution of this project is a new algorithm for determining satisfiability of formulas
of L(U ,S) in L(F ,P), as well as an implementation of said algorithm. The implementation is
definitely valuable as a tool for introducing the algorithm to others, as well for performance
analysis of the algorithm itself. Whether its value extends beyond this into the realm of actual
model-checking applications is currently unknown. Model checking generally models systems
as finite state processes, and so is concerned with determining the satisfiability of formulas in
models specified as finite state processes as opposed to model expressions (essentially expression
trees). It would be interesting to investigate the relationship between the two specification
approaches, with a view to determining the potential applicability of our algorithm to model
checking. As a result of the performance analysis section, we already know the kind of reasoning
for which the algorithm is suited, namely reasoning over formulas where the number of temporal
operators is relatively low.

Of particular interest are our complexity results. As a result of proposition 5.13, we know
that the problem of satisfiability is solvable in polynomial time when the number of ω’s in model
expressions is bounded. This implies that the problem of satisfiability is in P if we restrict input
models to contain only the operators +,< ... >. Thus the first question raised is whether we
might be able to get a similar classification for other subsets of operators. If for example we
considered model expressions containing only ω’s , could it be that we can again achieve a lower
complexity than for unrestricted model expressions? In a similar vein it would be interesting to
consider the complexity of the algorithm for other temporal operators. For example it might be
that if we just consider formulas of L(F ,P) the algorithm allows us to decide satisfiability in a
lower complexity class than for L(U ,S). Finally, it would be interesting to consider extending
the algorithm to handle formulas of the µ-calculus.

However the main extension to the project is to answer the obvious question raised by our
most significant result. As a result of proposition 5.14 we showed that the problem MOD-
ELSAT of determining whether a given formula in L(U ,S) is satisfied in a model expression
is in PSPACE. This is a new complexity characterisation of a significant problem. This res-
ult immediately raises the question of whether or not MODELSAT is PSPACE-COMPLETE.
Apart from giving us an even more precise characterisation of MODELSAT’s complexity, prov-
ing PSPACE-COMPLETEness would also imply optimality of our algorithm (with respect to
the complexity class hierarchy). To prove it we would have to show that MODELSAT is in
fact PSPACE-HARD, as this would imply that MODELSAT is one of the “hardest” problems
in PSPACE, and thus unlikely to be solvable by an algorithm in any complexity class believed
to be smaller than PSPACE. Proving PSPACE-HARDness consists in identifying a PSPACE-
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COMPLETE problem which can be reduced to MODELSAT in polynomial time, i.e. finding
a language L ∈ PSPACE − C and a function f(x) computable in polynomial time such that
x ∈ L ⇐⇒ f(x) ∈ MODELSAT . Furthermore, as a result of proposition 5.13 we have some
clues to the nature of f ; namely we know that we should not be able to bound the number of
omegas contained in the model part M of f(x), as given that f(x) is computable in polynomial
time this would imply that L is in fact in P (which is false unless P=PSPACE) . Bearing this
in mind, the main extension to our work would be to identify such a function f , proving that
MODELSAT is PSPACE-COMPLETE.
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