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Abstract

The growing complexity of modern systems has escalated the need for performance
metrics. Stochastic models such as queuing networks and stochastic Petri nets
have been used to model these systems so that their performance measures
can be evaluated analytically. Product-form solutions are equilibrium state
probabilities in networks of stochastic nodes (e.g. queues) in the form of a
product of terms relating to each node separately. One can derive various
performance metrics from these product form solutions, thus there is considerable
effort dedicated to finding them in various stochastic models.

An established theorem, the Reversed Compound Agent Theorem (RCAT),
derives mechanically the product-form solutions for stochastic models defined
as a composition of two or more smaller stochastic models, under some conditions.
Its use of the divide-and-conquer approach solves problems of state space
explosion and computational complexity, which standard methods face while
finding product-forms for large and complex networks.

This report presents a working implementation of RCAT in MATLAB and its
extension Multiple Agent RCAT which can be applied to a wide variety of
queuing networks with multiple components. It also provides the first working
implementation of RCAT applied to stochastic Petri nets thus expanding its
utility to analyse models composed of both Petri nets and queuing networks.
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Chapter 1

Introduction

1.1 Motivation

In the recent years, there has been an increase in the complexity of computer
systems making performance models essential for understanding the behaviour
of these systems. These performance models help determine performance
measures of computer systems such as utilisation, throughput and help ensure
that the systems can manage varying workload, that the utilisation of resources
is fair and the list goes on. To analyse these computer systems, they are
described abstractly using stochastic models which are then used to evaluate
various performance measures of the systems.

Queuing networks (models with underlying Markov Processes) and stochastic
Petri nets are two common stochastic models which are known to accurately
describe computer systems and can be evaluated analytically. However due to
the increase in complexity, the number of components of systems has increased,
leading to a large state space and thus very high computational costs while
analysing stochastic models. To improve the efficiency of this process, much
effort has been devoted to finding the product-form solutions for the steady
state probabilities of systems. The product-form solution, when it exists,
can be derived for the joint steady state probabilities of interacting Markov
processes by finding the the reversed process of the interaction. Analytically,
this involves solving Kolmogorov (balance) equations [1] which can quickly
cause state space explosion making the process computationally prohibitive
for systems composed of many components.

To ease the computational difficulty, the Reversed Compound Agent Theorem
(RCAT) [3] has been proved, which provides a method for finding product-form
solutions using the divide-and-conquer approach. RCAT derives mechanically
the product form solutions for steady state probabilities of stochastic models
defined as a cooperation (or synchronisation) of two or more smaller stochastic
models under some conditions. This approach for deriving the steady state
probabilities of Markov processes does not require Kolmogorov equations to
be solved. RCAT uses PEPA (Performance Evaluation Process Algebra), a
Markovian Process Algebra formalism, which has an appropriate recursive
structure for hierarchical analysis done by RCAT. But this does not limit the
application of RCAT to systems specified by Markovian Process Algebra. It
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can also be applied to derive product-forms in Stochastic Petri Nets which are
specified diagrammatically and are more difficult to trace.

The RCAT theorem is proven to automatically derive product form solutions
of G-networks [7] with negative customers, with ease comparable to deriving
product form solutions of simpler Jackson queuing networks. This shows its
compositional utility in validating product form solutions [3]. It can also be
used for finding new product form solutions of networks with no known product
form - such as blocking networks.

1.2 Contributions

The main contributions of this project are summarised below:

• Automatic construction of ‘rate equations’ used to derive product form
solutions by implementing the RCAT and the Multiple Agent RCAT [9],
allowing construction of product forms of queuing models composed of
more than two processes.

• Automatic construction of ‘rate equations’ used to derive product form
solutions of Stochastic Petri Nets (SPNs).

• A parser which translates a pure PEPA description as text input into
a format required in the RCAT implementation. It provides a validator
which checks to see whether the textual input actually resembles a meaningful
PEPA process.

• A formalism for specifying a hierarchically defined subset of SPNs as
programmable input and a parser for translating that input into a format
required by the implementation.

• Ensuring the accuracy of the results generated by running the implementation
over a varied class of queuing models and Petri nets and ensuring the
implementation has ease of use by providing a clean and simple API.

1.3 Report Structure

The remainder of the report is organised as follows:

• Chapter 2 provides a brief introduction to Markov Chains, Markov
processes, Reversed Processes and Queuing networks. It then covers the
theory necessary to comprehend the RCAT such as PEPA and proceeds
to explain RCAT and (E)RCAT, and concludes with a background to
Stochastic Petri Nets and product form Building blocks.

• Chapter 3 describes the design choices and the implementation details
of automating RCAT, starting from the parser - PEPA to MATLAB -
and concluding with generating a system of rate equations and showing
how to use them to generate product form solutions.
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• Chapter 4 describes the implementation details of extending RCAT to
MARCAT and the implementation details of implementing RCAT for
SPNs. It details parsing choices, a new formalism for the SPNs, shows
how product form solutions are generated for SPNs and concludes with a
design analysis for implementing RCAT for chains of interactions between
queues.

• Chapter 5 evaluates the project by running the implementation against
a variety of queuing models and Petri nets and reviews the limitations
and overall contributions of the project.

• Chapter 6 summarises the contributions of this project as a formal
conclusion to the report and includes suggestions for extending the project
in the future.
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Chapter 2

Background

In this chapter, we will explore the theory required for the automatic generation
of product forms by implementing the RCAT. We commence this chapter by
describing the relavent theory behind Markov Chains, Markov Processes and
Reversed Process as shown in [5, 1, 2].

2.1 Markov Chains

In order to comprehend Markov Chains and Markov Processes, one must be
familiar with stochastic processes.

Definition 2.1.1
A stochastic process S is defined as a family of random variables {Xt ∈
Ω | t ∈ T} , which take values from some sample space Ω and are indexed
by values from some parameter space T . Ω and T may be either discrete or
continuous.

A Markov chain is a stochastic process that has the Markov Property with
a countable sample space (or state space) Ω.

Definition 2.1.2
The Markov Property (MP) states that

P (Xt+s = j | Xu, u≤t) = P (Xt+s = j | Xt) (2.1)

This states that the conditional probability distribution of future states
depends only on the current state and not the events that preceded it.

Markov chains can also be denoted as labelled transition systems, undergoing
transitions with different rates between finite number of possible states.
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2.1.1 Discrete Time Markov Chains

Discrete Time Markov Chains (DTMC) are Markov chains with a parameter
space T consisting of discrete times {t0, t1, ...}. We are interested in the
behaviour of a DTMC at equilibrium and the following results are used in
defining it.

Definition 2.1.3
The m-step transition probabilities of a Markov chain defined as

p(m)
ij = P (Xn+m = j | Xn = i), (m ≥ 1)

= (Pm)ij

Since we are interested in the long term behaviour of DTMC, we can use
its m-step transition probabilities to calculate the probabilistic behaviour of
DTMC over any finite period of time. Thus the probability of a DTMC being
in an arbitrary state j at equilibrium is defined as:

πj = limn→∞P (Xn = j |X0 = i)

= limn→∞(Pn)ij

Definition 2.1.4
If C is a subset of states, then it is called closed if j /∈ C implies j cannot be
reached from any i ∈ C .

If ! a proper subset C ⊂ Ω which is closed, then the Markov chain is called
irreducible.

Definition 2.1.6
The state j is periodic with period m > 1 if

p(k)ii = 0 , k %= rm for any r ≥ 1

and

P (Xn+rm = j for some r ≥ 1 | Xn = j) = 1

Otherwise the state is aperiodic, or has period 1. An aperiodic DTMC is one
in which all states are aperiodic.
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Definition 2.1.5
Let mj is the mean interval between successive visits to state j. If mj < ∞
and πj = 1/mj , then πj > 0 and state j is recurrent non-null or positive
recurrent.

A positive recurrent DTMC is a DTMC in which all states are positive recurrent.

Proposition 2.1.1
If {Xn | n = 0, 1, ...} is an irreducible, aperiodic Markov chain, then the
limiting probabilities {πj |j = 0, 1, ...} exist and πj = 1/mj where mj is the
mean interval between successive visits to state j.

When the limiting probabilities {πj|j = 0, 1, ...} do exist, they form the steady
state probability distribution (SSPD) of a DTMC. This is formally defined by
the following Theorem 2.1.1.

Theorem 2.1.1
An irreducible, aperiodic Markov Chain, X, with state space S and one-step
transition probability matrix P = (pij | i, j ∈ S) , is positive recurrent if and
only if the system of equations

πj =
∑

i∈S

πipij

and (normalisation):

∑

i∈S

πi = 1

has a solution. If it exists, the solution is unique and is the SSPD of X.

2.2 Markov Processes

A Markov process(MP) is a stochastic process, which has a continuous parameter
space T, discrete sample space Ω and the Markov property (refer equation 2.1).
They can also be defined as Markov chains with continuous time parameters.

A Markov process is time homogenous if the transition probability function
of MP, pij(s) = P (Xt+s = j | Xt = i) , is independent of t, or equivalently
pij(s) = P (Xs = j | X0 = i). Markov Property and time homogeneity imply
the memoryless property.

Definition 2.2.1
The memoryless property of a Markov process states that if at time t the
process is in state j, the time remaining in state j is independent of the time
already spent in state j.
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Using time homogeneity, the generators qij of a Markov Process can be uniquely
determined by the products:

qij = µipij

where µi is the rate out of state i and pij is the probability of selecting state j
next. qij is also the instantaneous transition rate from state i to state j, i %= j.
They also form Q , generator matrix of the Markov Process, in which all rows
sum to zero by setting qii = −µi. So Q = (qij) .

2.2.1 SSPD of the Markov Process

If a Markov Process is positive recurrent, the limits πj exist, then πj >
0,
∑

j∈S πj = 1 and {πj | j ∈ S} constitute the SSPD or Steady State Probability
Distribution of the Markov Process. This is formally defined by Theorem 2.2.1.

Theorem 2.2.1
An irreducible Markov Process X with state space S and generator matrix
Q = (qij) (i, j ∈ S) is positive recurrent if and only if
∀j ∈ S , Balance equations:

∑

i∈S

πiqij = 0

and Normalising equation:

∑

i∈S

πi = 1 (2.2)

have a solution. This solution is unique and is the SSPD.

From Theorem 2.2.1, we can rewrite the balance equations as

∑

j $=i

πiqij =
∑

j $=i

πjqji

Following gives the justification of the balance equations:

In equilibrium, πi is the proportion of time that the process spends in state i
and qij is the rate at which the process goes from state i → j (j %= i). Thus,
in unit time, the expected number of transitions from state i to state j is πiqij
. This quantity is called the probability flux from state i to j. So we can infer
that the left-hand side of the balance equation for state i is the total flux out
of state i to any other state. Similarly, the right-hand side is the total flux into
state i from any other state.

=⇒ ∀j , the fluxes balance:
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∑

i $=j

flux(i → j) =
∑

i $=j

flux(j → i) (2.3)

2.2.2 Example - Poisson Process

The Poisson process is a renewal process with renewal period (inter-arrival
time) having cumulative distribution function F and probability density function
(pdf) f

F (x) = P (X ≤ x) = 1− e−λx

f(x) = F ′(x) = λe−λx

where λ is the rate of the Poisson process. Since its an example of a Markov
process its probability of arrival in period (t, t+h) is independent of the process
history before t. So by memoryless property:

P (arrival in (t, t+ h)) = 1− e−λh

= λh+ o(h)

From the above result we get the instantaneous transition rates which can be
then used to find the SSPD for the process.

qij =











λ if j = i+ 1

0 ifj %= i, i+ 1

not defined if j = i

2.2.3 Birth-Death Processes

Birth-death process is a special case of Markov Process with state space {0, 1, ...}
in which a one-step transition can only change the current state by one unit,
so if i → j then |i − j| = 1. This process thus has only non-zero transition
probabilities - ai,i+1 and ai+1,i (i ≥ 0) , representing births and deaths respectively.
This ensures the population need not become extinct when state 0 is reached
which is useful while considering queues, where arrivals can join an empty
queue, represented by state 0. The SSPD of this process is discussed later
taking M/M/1 queue as an example.

2.3 Single Server Queue (SSQ)

The Single Server Queue Model [1] - SSQ - is a birth-death process that consists
of

11



• a Poisson arrival process with a rate of λ

• a queue which the arriving tasks join

• a server with a FIFO queuing discipline and exponentially distributed
service times with parameter µ

The M/M/1 queue is an example of the SSQ model.

2.3.1 Kendall’s Notation

Queues are classified according to Kendall’s notation [1, 5], which defines the
class A/S/m/K/N/D as:

• A describes the nature of the arrival process. For example if the process
is Poisson, then A = M for Markovian.

• S describes the service time distribution. S = M for a Markovian
(exponential) service time distribution, while S = G stands for a general
or non-Markovian service time distribution.

• m denotes the number of servers available to give service to customers in
the queue. m = 1 refers to a single server, while m = m shows a parallel
server.

• K denotes the capacity of the system or the maximum number of customers
allowed in the system.

• N denotes the size of the population from which the customers come.

• D denotes the queuing discipline or priority order in which customers are
served in the queue.

In this paper, the concise form - A/S/m - is used and default values K =
∞, N = ∞, D = FIFO are assumed.

2.3.2 M/M/1 Queue

The M/M/1 queue [1] is an example of the SSQ model with a Poisson arrival
process rate λ, Markovian service time distribution rate µ, unlimited server
capacity and infinite calling population. The rates λ , µ are general functions
of the queue length; so when the queue length is n, we write them as λ(n) ,µ(n).
Considering the M/M/1 queue in equilibrium, in the steady state, we can write
down the probability flux balance equations passing in and out of the states
shown in Figure 2.1.

There is only one outgoing arc and one incoming arc. The balance equations
are therefore,

Outward flux (all from state i): πiλ(i) , ∀i ≥ 0, i ∈ S

Inward flux (all from state i+ 1): πi+1µ(i+ 1) , ∀i ≥ 0, i ∈ S

12



Figure 2.1: M/M/1 Queue state diagram

=⇒ balance equations (using equation 2.3)

πiλ(i) = πi+1µ(i+ 1)

So,

πi+1 =
λ(i)

µ(i+ 1)
πi

= [
i

∏

j=0

ρ(j)] π0

where ρ(j) =
λ(i)

µ(i+ 1)

The Normalising equation (refer equation 2.2) implies that

π0(1 +
∞
∑

i=0

i
∏

j=0

ρ(j)) = 1

Solving the equations we get the steady state probability πi for any state i ≥ 0:

πi =

∏i−1
j=0 ρ(j)

∑∞
k=0

∏k−1
n=0 ρ(n)

(i ≥ 0)

In a classical M/M/1 queue, the arrival and service rates, λ and µ respectively,
are constant. So ∀n ∈ S , λ(n) = λ , µ(n) = µ , ρ(n) = ρ = λ

µ . This implies,

πi =

∏i−1
j=0 ρ

j

∑∞
k=0

∏k−1
n=0 ρ

n

= (1− ρ)ρi (i ≥ 0) (2.4)
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The derived result (equation 2.4) is the simplified version of the SSPD of
M/M/1 queues.

Since this (equation 2.4) is a geometric mass probability function, it is easy to
deduce the mean length of the queue (L) and utilisation of the server (U) in
equilibrium.

L =
ρ

(1− ρ)
U = 1− π0 = ρ

It can be noted here that, the mean arrival rate (λ) is equal to the mean
departure rate (Uµ) in steady state, as required.

The above analysis and argument applies to any system in equilibrium.

2.4 Reversed Processes

A reversed process [6, 3, 1, 5] of a stationary Markov process is a stochastically
identical process (to the original MP) with the same state space but in to which
the direction of time has been reversed. Knowledge of the reversed process
allows us solve balance equations of a Markov process in equilibrium and
therefore obtain product-form stationary distributions of complex processes
such queuing network models. Thus comprehension of reversed processes helps
in applying the RCAT theorem (discussed in Section 2.6.2).

Definition 2.4.1
A stochastic process {Xt | −∞ < t < ∞} is stationary if

(Xt1 , Xt2 , ... , Xtn) and (Xt1+τ , Xt2+τ , ... , Xtn+τ )

and have the same probability distribution for all times t1 , t2 , .... , tn and τ .

Definition 2.4.2
A stochastic process {Xt | −∞ < t < ∞} is reversible if

(Xt1 , Xt2 , ... , Xtn) and (Xτ−t1 , Xτ−t2 , ... , Xτ−tn)

and have the same probability distribution for all times t1 , t2 , .... , tn and τ .

Definitions 4.1 and 4.2 relate a stationary Markov process to its reversed
process. Thus the reversed process of a Markov process {Xt} will be the
stationary process {Xτ−t} for any real number τ . We can also define a reversed
process in terms of balance conditions of a stationary Markov process as in the
following Proposition 2.4.1.

14



Proposition 2.4.1
A stationary Markov process {Xt} with a generator matrix Q = (qij) is
reversible if and only if there exists a collection of positive real numbers
{πk | k ∈ S} satisfying the detailed balance equations:

πiqij = πjqji (∀i, j ∈ S, i %= j)

An example of a reversible process is the M/M/1 queue. An M/M/1 queue is
a birth-death process and thus its transition graph is linear - a tree with no
branches. So, the probability flux in and out of states balances as derived at
equation 2.3. Thus by Proposition 2.4.1 the M/M/1 queue is reversible.

The departure process of an M/M/1 queue is also identical to the arrival
process in the reversed queue. To prove this claim let process Nt denote
the number of customers in the queue at time t. An arrival corresponds to
the instants Nt jumps up by one and defines a Poisson arrival process. Due
to reversibility, instants at which N−t jumps upwards by one also define a
reversible process. But arrivals in N−t become departures in Nt thus proving
that the departure process forms an identical Poisson process.

Proposition 2.4.1 would be useful to detect a reversible Markov process but
most Markov processes are not reversible. Thus a method is required to define
a reversed process {Xτ−t} for a Markov process {Xt} that is not reversible.
The stationary distribution π is the same for both the processes and thus the
we can relate the instantaneous transition rates of the reversed process to those
of the original process by the following Proposition 2.4.2.

Proposition 2.4.2
The reversed process of a stationary Markov process Xt with state space S,
generator matrix Q and stationary probabilities π is a stationary Markov
process with generator matrix Q´ defined by

q′ij =
πjqji
πi

∀i, j ∈ S (2.5)

and with the same stationary probabilities π.

2.4.1 Kolmogorov’s criteria

The equilibrium distribution of a stationary Markov process can be found
using the result (Equation 2.5) from Proposition 2.4.2 by guessing possible
instantaneous transition rates {q′ij | i, j ∈ S} for the reversed process and a
collection of positive real numbers {πi | i ∈ S} which sum finitely to G such
that

• The total rate out of state i is the same for reversed and original process:
q′i = qi (∀i ∈ S) where qi ≡ −qii is the total rate out of state i

15



• πiq′ij = πjqji (∀i , j ∈ S , i %= j)

These conditions ensure that π satisfies the Markov process balance equations
and thus the steady state probabilities are {πi/G | i ∈ S} by uniqueness, where
G is the normalizing constant.

But this methodology depends on making the ‘right guesses’ of the unknown
vector π - the equilibrium state probabilities. Since π is defined by the generators
of a Markov process, its instantaneous transition rates, another methodology
which finds reversed processes without reference to π can be useful. The
following proposition, called Kolmogorov’s criteria, provides this by placing
conditions only on the instantaneous rates of a Markov process.

Proposition 2.4.3 - Kolmogorov’s Generalised Criteria
A stationary Markov process with state space S and generator matrix Q has
a reversed process with generator matrix Q′ if and only if

q′i = qi ∀i ∈ S

and for every finite sequence of states i1, i2, ..., in ∈ S ,

qi1i2qi2i3 . . . qin−1inqini1 = q′i1inq
′
inin−1

. . . q′i3i2q
′
i2i1 (2.6)

where qi = − qii =
∑

j : j $=i qij is the total exit rate from state i.

As mentioned, Proposition 2.4.3 can be used to find the instantaneous transition
rates of the reversed process Q′ and then use them to derive the SSPD of both
original and reversed Markov Process. This can be done by using the Equation
2.5 or a modified approach given as follows:

1. We first arbitrarily choose a reference state 0

2. We then find a sequence of directly connected states 0, . . . , j in either
the forward or reverse process

3. We then calculate the steady state probability πj related to a base value
π0

πj = π0

j−1
∏

i=0

qi,i+1

q′i+1,i

= π0

j−1
∏

i=0

q′i,i+1

qi+1,i

2.4.1.1 Example

Consider a 3-state CTMC, as shown in Figure 2.2, with the only non-zero
transition rates given by q12 = q23 = λ and q32 = q31 = µ. Thus using
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Figure 2.2: A forward Markov process and its reversed counterpart

Kolmogorov Generalised Criteria (Proposition 2.4.3) to discover the reversed
rates in its generator matrix Q′ , we start by comparing the outbound rates in
the forward and reversed process:

q1 = λ , q2 = λ , q3 = 2µ gives,

q′1 = q′13 = q1 = λ , q′2 = q′21 + q′23 = q2 = λ , q′3 = q′32 = q3 = 2µ

There are two minimal cycles in the forward process, {1 → 2, 2 → 3, 3 → 1}
and {2 → 3, 3 → 2}, which give the following cycle equations:

q′13q
′
32q

′
21 = λ2µ q′23q

′
32 = µλ

Solving these we get,

q′13 = λ, q′32 = 2µ, q′21 = q′23 =
λ

2

This style of reasoning is used to prove the RCAT and to determine the reversed
rates of PEPA actions in sequential PEPA components, described in later
sections.

2.5 Queuing Networks

Queuing networks [1, 5] are systems that are network of queues with connected
inputs and outputs. Open queuing networks are queuing networks where
external customers are allowed to arrive or depart the system while closed
queuing networks are those where no external customers are allowed in the
system.
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2.5.1 Traffic Equations

Traffic equations are a system of linear equations used to compute the mean
arrival rate values λi to each node i in the network. In queuing networks, for
any node i, the mean number of arrivals to node i is the sum of the mean
external arrivals to node i and the mean arrivals from all other nodes j.

So the traffic equations for node i = 1, 2, . . . , M is defined as:

λi = γi +
M
∑

j=1

λjqji

where γi is the external arrival rate at node i, and qji is the routing probability
that traffic leaving node j is routed to node i. In closed queuing networks, the
external arrival rate γi will be zero.

2.5.2 Jackson Theorem

Using the traffic equations, the utilisation of node i can be derived. For open
queuing networks having nodes with fixed service rates µi, the traffic intensity
is

ρi =
λi

µi

The utilisation therefore at node i is Ui = traffic intensity at node i = ρi.
A network is stable, which means capable of reaching a steady state, if the
following condition holds:

Utilisation at all nodes should be:

ρi =
λi

µi
< 1 : ∀i

To calculate the steady state probability distribution of a stable network, the
Jackson’s theorem is used, which gives a product form solution for open queuing
networks.
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Theorem 2.5.1 Jackson Theorem
If the open queuing network is stable, that is if the condition:

ρi < 1 : ∀i

holds, then the steady-state exists and

π(n1, . . . , nm) =
M
∏

i=1

(1− ρi)ρ
ni
i (2.7)

is the joint probability (or steady state probabilities) where
π(n1, . . . , nm) is the probability that the system has queue length ni at node
i . The result is also called the product form solution of the model.

The product-form result implies that each node can be reasoned about as a
M/M/1 queue in isolation and thus makes obtaining performance measures of
a network such as - mean queue lengths, throughput, mean waiting time - an
easy task. If we analyse the product form solution, we notice that the marginal
distribution of the number of jobs at node i is the same as that of an M/M/1
queue (compare the SSPD solution of a M/M/1 queue from 2.4 to the inner
term of the product form solution obtained 2.7). Thus we can conclude that
for a stable Jackson Network with an arrival rate λi to node i:

• The number of of jobs at any node is independent of the state of any
other node as we get a product form solution

• Node i behaves stochastically as if it were subject to Poisson arrivals
with rate λi.

We can now define (an open) Jackson Network[1] as an open queuing network
with any external arrivals to any node i forming a Poisson stream and the
equilibrium probability distribution resulting in to a product form solution
model. It is a relatively simple queuing network and we shall derive its product
form solution using the RCAT theorem in later sections.

2.5.3 G-Network

A G-network [7], also known as a generalised queueing network or Gelenbe
network and introduced by Erol Gelenbe, are queuing networks with negative
customers. Thus this network has two types of customers:

• positive customers are customers as in a M/M/1 queue which arrive
from other queues or externally as Poisson arrivals. Their departures
(state decrements) are synchronised with state increments (arrivals) in
the destination queue.

19



• negative customers are those customers which remove or ‘cancel’ positive
customers in the queue if it is not empty and have no effect on an empty
queue. They are useful to remove traffic if a network is congested.

A product form solution exists for stationary G-networks despite the traffic
flows forming a system of non-linear equations.

2.6 Formalisms and product-forms

2.6.1 PEPA

PEPA[8, 3, 6, 4] is a formal system description language used in performance
modelling [8]. It is a Markovian Process Algebra (MPA) with the fewest
combinators necessary to provide a semantic model for denoting the states of
a continuous time Markov Chain [4]. As the Jackson Theorem (see Theorem
2.5.1) operates over queuing networks to generate product form solutions,
RCAT operates over PEPA.

In PEPA, a system is an interaction of components which engage in activities.
For example, in a stochastic process components correspond to states while
activities correspond to transitions between them. An activity in PEPA is
specified as α = (a, r) , where a is the action type and r is the activity rate.
The Markov process’s transition rates are represented in PEPA by the activity
rate as a duration which is a random variable with an exponential distribution.
Every activity within the PEPA model with the same action type represents
different instances of that action in the system. A derivation graph, formed by
PEPA terms at nodes (states of an MP) and arcs showing transitions between
them, determine the underlying Markov process of a component P.

2.6.1.1 PEPA Syntax

Definition 2.6.1
The syntax[6] of a PEPA component P is represented by:

P ::= (a,λ).P | P1 + P2 | P1 !"L
P2 | P/L | A

(a,λ).P is called a prefix operation. It represents a process which performs an
action a with a rate parameter λ and then becomes a new process P . The rate
parameter may either be a positive real number or the value , which makes
the action passive in a cooperation.

P1 + P2 is a choice operation. Here the two components P1 and P2 are in a
race condition where the process can evolve into either one of them. The first
component to activate will dictate the direction of choice

P1 !"L
P2 is the cooperation or synchronisation operation. P1 and P2 run in

parallel and synchronise over actions in set L. Synchronising actions must be
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activated jointly by both components. Thus if component P1 can evolve only by
activating a synchronising action a, it may be blocked until P2 is in a derivative
state that can synchronise on a. In a passive cooperation, if P1 evolves with a
rate , on synchronising action a, then the joint action a inherits its rate from
the P2 component alone. Parallelism is a special case of synchronisation where
the set of synchronising actions is empty, that is, P1 !"∅

P2.

P/L is the hiding operation. Observable actions from set L in P are rewritten
as silent τ actions which cannot be used in cooperations with other components.

A is a constant label that is used while constructing recursive definitions.

Processes or agents defined using only assignments or prefixes are called simple
agents while the ones defined using at least one cooperation combinator are
called compound agents.

2.6.1.2 PEPA activity substitution

Relabelling[6] or activity substitution is a method for an activity α = (a, r)
to be syntactically replaced with activity α′ = (a′ , r′). This is particularly
useful in defining reversed processes of cooperations.

Definition 2.6.2
The PEPA activity substitution function is defined as:

(β.P ){α ← α′} =

{

α′.(P{α ← α′}) : if α = β

β.(P{α ← α′}) : otherwise

(P +Q){α ← α′} = P{α ← α′}+Q{α ← α′}

(P1 !"L
P2){α ← α′} = P{α ← α′} !"

L{α←α′}
Q{α ← α′}

where L{(a,λ) ← (a′,λ′)} =

{

(L\{a})
⋃

{a′} : if a ∈ L

L : otherwise

2.6.1.3 Reversing a PEPA component

Reversing a PEPA component is done for finding the reversed process of a
Markov process in terms of a PEPA agent with appropriate rates. The RCAT
theorem deals with the reversal of a compound agent, P1 !"L

P2 , and uses
reversing sequential components in its definition.
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Definition 2.6.3
For all states S in a sequential component:

S
def
=

∑

i : Ri→(ai,λi)S

(ai , λi).Ri

Thus the reversed rate of a component S̄ is a choice between all the states
that have S as its immediate successor in the forward process [6]. Thus in
the reversed component, actions a become ā and rates λ become λ̄ where λ̄
can be calculated using Kolmogorov’s generalised criteria (Proposition 2.4.3 -
Equation 2.6 for example). Finding the rates of a reversed compound agent
requires a new rule as an agent may have several actions leading to the same
state that synchronise with distinct actions in a cooperating agent [3].

Definition 2.6.4
The reversed actions of multiple actions (ai,λi), for 1 ≤ i ≤ n that an agent
P can perform, which lead to the same derivative Q, are respectively

(āi, (λi/λ)λ̄))

where λ = λ1+ . . . +λn and λ̄ is the reversed rate of the one-step, composite
transition with rate λ in the Markov chain, corresponding to all the arcs
between P and Q.

Definition 2.6.4 is used in the RCAT theorem for reversing compound agents.

2.6.2 Reversed Compound Agent Theorem (RCAT)

The Reversed Compound Agent Theorem (RCAT) finds the reversed compound
agent of the cooperation P !"

L
Q by finding the reversed rates of the constituent

processes P and Q. For RCAT operation, we define some restrictions on actions
in a component.

Definition 2.6.5
The subset of action types in a set L which are passive with respect to a
process P (i.e. are of the form (a,,) in P ) is denoted by PP (L). The set of
corresponding active action types is denoted by AP (L) = L\PP (L).

Thus an action cannot be both passive and active in the same component. If an
action is active in a component, all its instances are active in that component,
and if it is passive then all its instances are passive. This is necessary as we, in
RCAT, syntactically transform every passive action before reversing an agent
to ensure every passive action rate is uniquely identified with all instances of
its action type [3].
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2.6.2.1 The RCAT theorem

The RCAT as stated in the original paper [3]:

Theorem 2.6.1 Reversed Compound Agent Theorem
Suppose that the cooperation P !"

L
Q has a derivation graph with an

irreducible subgraph G. Given that:

1. every passive action type in PP (L) or PQ(L) is always enabled in P or
Q respectively (i.e. enabled in all states of the transition graph);

2. every reversed action of an active action type in AP (L) or AQ(L) is
always enabled in P or Q respectively;

3. every occurrence of a reversed action of an active action type in AP (L)
or AQ(L) has the same rate in P or Q respectively.

the reversed agent P !"
L
Q, with derivation graph containing the reversed

subgraph G, is:

R∗ !"
L
S∗

where:

R∗ = R{(a, p̄a) ← (ā,,) | a ∈ AP (L)}

S∗ = S{(a, q̄a) ← (ā,,) | a ∈ AQ(L)}

R = P{(a,,) ← (a, xa) | a ∈ PP (L)}

S = Q{(a,,) ← (a, xa) | a ∈ PQ(L)}

where the symbolic rates {xa} are given by:

xa =

{

q̄a : if a ∈ PP (L)

p̄a : if a ∈ PQ(L)

and p̄a and q̄a are symbolic rates of action types ā in P and Q respectively.

The proof of this theorem is detailed in the paper [3] and consists of verifying
that Kolmogorov’s criteria hold.

2.6.2.2 (E)RCAT - Extended RCAT

Conditions 1 and 2 in the RCAT (Theorem 2.6.1) requires every passive action
to be enabled in every derivative (state) of both the forward and reversed
cooperating agents. This ensures that the total outgoing rate from any state is
the same in the two processes in agent P !"

L
Q and its reversed agent. But as

stated in paper [10], relaxing these conditions allows RCAT to be applied on
a large breadth of systems. We define some new notation to account for the
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action types in L that might not be present in every derivative of the forward
and reversed cooperating agents. This is an extension to Definition 2.6.5

Definition 2.6.6
Pi→
A denotes the subset that are passive in A and correspond to transitions

out of state i in the Markov process A ;
Pi←
A denotes the subset that are passive in A and correspond to transitions

into state i in the Markov process A ;
Ai→

A denotes the subset that are active in A and correspond to transitions out
of state i in the Markov process A ;
Ai→

A denotes the subset that are active in A and correspond to transitions into
state i in the Markov process A;
P(i,j)→ = Pi→

P + Pj→
Q and A(i,j)→ = Ai→

P +Aj→
Q ;

P(i,j)← = Pi←
P + Pj←

Q and A(i,j)← = Ai←
P +Aj←

Q ;

α(i,j)
a denotes the instantaneous transition rate out of (joint) state (i, j) in the

Markov process of P !"
L
Q corresponding to active action type a ∈ L;

β(i,j)
a denotes the instantaneous transition rate out of (joint) state (i, j) in the

reversed Markov process of P !"
L
Q corresponding to passive action type a ∈ L.

The theorem with the new notation is defined as follows:
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Theorem 2.6.2 Extended Reversed Compound Agent Theorem[9]
If the following conditions hold,

1. The reversed rate xa of every active action a is the same at every instance,
given by the solution of the rate equations, as in the original RCAT
(Theorem 2.6.1).

2. The forward and reversed passive and active transition rates satisfy:

∑

a∈P(i,j)→

xa −
∑

a∈A(i,j)←

xa =
∑

a∈P(i,j)←\A(i,j)←

β(i,j)
a −

∑

a∈A(i,j)→\P(i,j)→

α(i,j)
a

Then the reversed process of the cooperation P !"
L
Q is

P !"
L
Q = R∗ !"

L
S∗

where:

R∗ = R{(a, p̄a) ← (ā,,) | a ∈ AP (L)}

S∗ = S{(a, q̄a) ← (ā,,) | a ∈ AQ(L)}

R = P{(a,,) ← (a, xa) | a ∈ PP (L)}

S = Q{(a,,) ← (a, xa) | a ∈ PQ(L)}

where the symbolic rates {xa} are given by:

xa =

{

q̄a : if a ∈ PP (L)

p̄a : if a ∈ PQ(L)

and p̄a and q̄a are symbolic rates of action types ā in P and Q respectively.

2.6.2.3 Practical Application of the RCAT method

For using the RCAT method practically, the algorithm detailed below can
be used. This algorithm does not require the whole reversed processes to be
determined in RCAT Theorem 2.6.1 but does require the specific reversed rates
of the synchronising active actions. These rates are computed using equation
2.5 which use the equilibrium state probabilities of each component process.

Generic Algorithm [9]

Consider the cooperation P1 !"
L
P2. The algorithm is as follows

1. From Pk construct Rk by setting the rate of every instance of action
a ∈ L that is passive in Pk to xa, for k = 1, 2 (each a will be passive for
only one k);
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2. For each active action type a in Rk , k = 1, 2, check that its reversed
rate is the same for all of its instances, that is for for all transitions i → j
it denotes states i, j in the state transition graph of Rk. Compute and
denote this reversed rate (in the reversed process Rk) by the equation

ria =
πk(i)ria
πk(j)

(2.8)

where ria is the specified forward rate (any, if more than one) of the
instance of action type a going out of state i. In fact, if the reversed
process of the cooperation is required, the full reversed processes Rk

must be computed;

3. Noting that the symbolic reversed rate ra will in general be a function of
the xb(b ∈ L), solve the equations xa = ra for each a ∈ L and substitute
the solutions for the variables xa in each Rk;

4. Check the enabling conditions (detailed in [12]) for each co-operating
action in each process Pk. For queueing networks, these are as in the
original RCAT, namely that all passive actions be enabled in all states
and that all states also have an incoming instance of every active action;

5. The required product-form for state s = (s1 , s2) is now π(s) ∝ π1(s1)π2(s2)
where πk(sk) is the equilibrium probability (which may be unnormalised)
of state sk in Rk.

Example [6]

Figure 2.3: A simple tandem queue system

Consider a tandem queue system, as in Figure 2.3, which has 2 M/M/1 queuing
nodes where input in queue 2 is coming from output from queue 1. Queue 1
has an external arrival rate of λ and queuing nodes i, where 1 ≤ i ≤ 2, have
a service rate of µi. Let external arrival be represented by action e, internal
transfer between queues be action a and departure from the system be action
d. This system can be modelled in PEPA as follows:

Sys
def
= P0 !"

a
Q0

P0
def
= (e,λ).P1

Pn
def
= (e,λ).Pn+1 + (a, µ1).Pn−1

Q0
def
= (a,,).Q1

Qn
def
= (a,,).Qn+1 + (d, µ2).Qn−1
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Using Step 1 of the algorithm and activity substitution we get,

R0
def
= (e,λ).R1

Rn
def
= (e,λ).Rn+1 + (a, µ1).Rn−1

S0
def
= (a, xa).S1

Sn
def
= (a, xa).Qn+1 + (d, µ2).Qn−1

Step 2: Now we need to find reversed rates for action type a. Since both
the queuing nodes are M/M/1 queues, their equilibrium state probabilities are
known to be π1(q) = (1 − ρ1)ρ

q
1 for node 1 and π2(q) = (1 − ρ2)ρ

q
2 for node 2

(refer equation 2.4), where ρ1 =
λ
µ1

and ρ2 =
xa

µ2
, since the arrival and service

rates are state independent.

=⇒

ra =
π1(n + 1)rn+1

a

π1(n)
= ρµ1

= λ

Step 3: Solving equation xa = ra and executing step 3 of the algorithm we get,

xa = λ

Finally, we can calculate the product form solution result by step 5,

π(Pm, Qn) = π(Pm)π(Qn)

= π1(m)π2(n)

= (1− ρ1)ρ
m
1 (1− ρ2)ρ

n
2

= (1− ρ1)ρ
0
1(1− ρ2)ρ

0
2ρ

m
1 ρn2

= π(P0, Q0)ρ
m
1 ρn2

where where ρ1 = λ
µ1

and ρ2 = xa

µ2
= λ

µ2
. The derived product form solution

aggress with Jackson’s Theorem (Theorem 2.5.1, equation 2.7) confirming its
validity.

2.6.3 Stochastic Petri nets (SPNs)

Stochastic Petri Nets [13] (SPNs) are a popular higher level formalism for
Markovian (and other interacting) systems apart from Stochastic Process Algebra
like PEPA. They are more expressive in a natural graphical way than SPAs
but are more difficult to analyse structurally.
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Definition 2.6.7
A stochastic Petri net can be defined as a tuple,
SPN = (P,T ,X ( . ), I( . ),O( . ),m0) where:

• P = {P1, . . . , PN} is a set of N places,

• T = {T1, . . . , TM} is a set of M transitions,

• X : T → R+ is a positive valued function that associates a firing rate
with every transition,

• I : T → NN associates an input vector with every transition,

• O : T → NN associates an output vector with every transition,

• m is a vector called marking which denotes the number of tokens mi

placed in every place Pi. m0 is the initial marking.

To help analyse SPNs we define a fundamental structure called the Building
Blocks or BBs, give an expression for its product-form solution and conditions
required for its existence.

2.6.3.1 Building blocks

Definition 2.6.8
A SPN S with set of transitions T and set of N places P is a building block
if it satisfies the following conditions:

1. For all T ∈ T then either T is an output transition with O(T ) = ∅ or T
is an input transition with I(T ) = ∅.

2. For each T ∈ TI (set of input transitions), there exists T ′ ∈ TO (set of
output transitions) such that O(T ) = I(T ′) and vice versa.

3. Two places Pi, Pj ∈ P, 1 ≤ i, j ≤ N, are connected if there exists a
transition T ∈ T such that the components i and j of I(T ) or of O(T )
are non-zero.

Thus condition 1 requires all transitions to be either input or output transitions.
Condition 2 required any input transition Ty of the building block feeding a
subset of places y to have a corresponding output transition T ′

y that consumes
the tokens from the same subset y. Finally condition 3 requires the SPN to
be connected. Figure 2.4 is an example of a building block with three places
P = {P1, P2, P3}, three input transitions TI = {T12, T23, T3} and three output
transitions TO = {T ′

12, T
′
23, T

′
3}
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Figure 2.4: Example of a building block

2.6.3.2 Product form of building blocks

A product form result can be derived for an arbitrary building block using
ERCAT and is detailed with proof in paper [13]. The paper thus derives a
theorem for a product form result of an arbitrary building block, given below.

Theorem 2.6.3
Consider a Building block S with N places and N ⊆ 21,...,N\∅. Let ρy = λy

µy
for

Ty, T ′
y ∈ T , |y| ≥ 1. If the following system of equations has a unique solution

ρi, (1 ≤ i ≤ N):

{

ρy =
∏

i∈y ρi ∀y: Ty, T ′
y ∈ T ∧ |y| ≥ 1

ρi =
λi

µi
∀i : Ti, T ′

i ∈ T , 1 ≤ i ≤ N

then the net’s balance equations – and hence stationary probabilities when
they exist – have product-form solution:

π(m1, . . . ,mN ) ∝
N
∏

i=1

ρmi
i

.

Please refer to paper [13] for detailed proof of Theorem 2.6.3. Thus the
conditions required for the building block in Figure 2.4 in product form are











ρ12 = ρ1ρ2

ρ23 = ρ2ρ3

ρ3 =
λ3
µ3

which gives the steady state probabilities and product form unconditionally as
as:

π(m1,m2,m3) ∝

(

λ12λ3µ23

µ12µ3λ23

)m1
(

λ23µ3

µ23λ3

)m2
(

λ3

µ3

)m3

From Theorem 2.6.3, the following corollary can be derived.
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Corollary 2.6.1
Consider a Building block S in product form as defined in Theorem 2.6.3, let
Ty´ ∈ TO. The reversed rate of transition Ty´ is λy, which is the the rate of
the corresponding input transition Ty.

2.6.3.3 RCAT for Stochastic Petri Nets

We can specify many complex SPNs as a composition of multiple building
blocks (BBs). Since the BBs themselves are in product form we can say that:

1. the reversed rates of the reversed actions corresponding to the output
transition firings are constant;

2. the input transitions are always enabled;

3. each state of the BB can be reached by the firing of any output transition.

This ensures that the three RCAT conditions hold and we can run Multiple
Agent RCAT ([9]) on a composition of several BBs to find a product form for
complex SPNs.

2.6.3.4 Practical Example

The Figure 2.5 gives an example of a simple SPN composed of two building
blocks. The dotted lines show the passive composition between the two building
blocks. The output transitions T ′

12 and T ′
23 from one building block (BB1)

corresponds with input transition T45 of the second building block (BB2).
Similarly, output transition T ′

5 from BB2 corresponds with input transition
T23 from BB1. The conditions for BB1 to be in product form are:































ρ12 = ρ1ρ2

ρ23 = ρ2ρ3

ρ3 =
λ3
µ3

ρ12 =
λ12
µ12

ρ23 =
x23
µ23

where x23 is the unknown rate for input transition T23. Similarly the conditions
for BB2 to be in product form are:























ρ45 = ρ4ρ5

ρ4 =
λ4
µ4

ρ5 =
λ4
µ4

ρ45 =
x45
µ45

where x45 is the unknown rate for input transition T45.
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Figure 2.5: A simple SPN with two building blocks

We then derive rate equations for unknowns x23 and x45 by applying RCAT
and using corollary 2.6.1. Thus the rate equations are:

{

x45 = µ̄12 + µ̄23 = λ12 + x23

x23 = µ̄5 = λ5

Substituting the values into the rate equations the conditions for product form
are:

{

(λ12 + λ5)µ5µ4 = µ45λ4λ5

λ5µ2µ3 = λ2λ3µ23

These conditions yield the product form solution:

π(m1,m2,m3,m4,m5) ∝

(

λ12λ3µ23

µ12µ3λ5

)m1
(

λ5µ3

µ23λ3

)m2
(

λ3

µ3

)m3
(

λ4

µ4

)m4
(

λ5

µ5

)m5
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Chapter 3

Implementation of the RCAT

This chapter covers the design, implementation and testing aspects of the
RCAT implementation. Since RCAT was implemented from scratch, considerable
effort was put in to produce easy and scalable application programming interface
(API) and clean and modularised code.

3.1 Design Decisions

The first design consideration was the API of the RCAT solver. The inputs
to the RCAT algorithm (Theorem 2.6.1) are two PEPA compound agents
synchronising over some action labels. Thus while considering the input to
the automated version of RCAT, there were two choices:

1. User splits input requiring minimal automated parsing

In this possible implementation, the user is required to write PEPA processes
such that they be can directly used in reversed rate calculation with minimal
automated parsing. For example, a PEPA description, Pn = (e,λ).Pn+1(n ≥
0), can be converted to a process structure in MATLAB as shown in Figure
3.1.

p( 1 ).definition( 1, : ) =
{ ‘n’, ‘e’, ‘lambda ’, ‘n+1’, ‘n>=0’ }

Figure 3.1: PEPA Process Description converted to MATLAB format

This option is thus easier to program but is non-intuitive and cumbersome to
the user. The program would also be prone to calculation errors as we would
not be able to robustly validate the input. An additional disadvantage would
be coupling the API to close to the functional logic of RCAT. Finally it would
also require the user to have some knowledge of the programming language to
supply a ready made PEPA structure as input as can be seen from the Figure
3.1.
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2. User inputs Pure PEPA descriptions

In this implementation, the user inputs component descriptions as they would
to a non-automated RCAT theorem (shown in Figure 3.4). This ensures ease
of use and is quite intuitive for the user. It also deals with input validation
and decoupling of the API from functional aspects of the RCAT theorem.

Option two was selected for its aforementioned advantages. In further detail,
the API is simply a function RCATscript which accepts the full PEPA description
as text. For example, we write PEPA process description for the RCAT
algorithm as

Pn = (e,λ).Pn+1 (n ≥ 0)

Pn = (a, µ1).Pn−1 (n > 0)

Qn = (a,,).Qn+1 (n ≥ 0)

Qn = (d, µ2).Qn−1 (n > 0)

P0 !"
a
Q0

This is an example of a queueing network (a basic tandem network with two
nodes) modelled in PEPA. Its corresponding translation to code is shown in
Figure 3.2. Please note that the unspecified action rate , effectively has the
value of ∞, and is therefore represented as infinity in the program.

P(n) = (e, lambda).P(n+1) for n >= 0
P(n) = (a, mu1).P(n-1) for n > 0
Q(n) = (a, infinity).Q(n+1) for n >= 0
Q(n) = (d, mu2).Q(n+1) for n > 0

Figure 3.2: Pure PEPA Process Description translated to RCAT Program
input

From Figure 3.2, it is apparent that with minimal substitution we can translate
a pure PEPA process description to code input. RCAT also requires as input
the cooperating agents (processes) with the actions they are synchronising on,
which are converted into code input as shown in Figure 3.3.

P(0) with Q(0) over {a}

Figure 3.3: PEPA Cooperating Agents translated to RCAT Program input

P (0) and Q(0) are the cooperating agents and {a} is the set of synchronising
actions. It is mandatory that the cooperation is written as in Figure 3.3 for
parsing.
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Running RCAT in MATLAB

The RCAT algorithm is run as shown in Figure 3.4, with the converted PEPA
process description (Figure 3.2) in a cell array as the first input and with PEPA
cooperation string (see Figure 3.3) as second input.

> input1 = { ‘P(n) = (e, lambda).P(n+1) for n >= 0’,
‘P(n) = (a, mu1).P(n-1) for n > 0’,
‘Q(n) = (a, infinity).Q(n+1) for n >= 0’,
‘Q(n) = (d, mu2).Q(n+1) for n > 0’ }

>
> input2 = ‘P(0) with Q(0) over {a}’
>
> RCATscript( input1, input2 )

Figure 3.4: Function used to run the RCAT Program

Choice of programming language

The next design consideration was the choice of programming language and
effort was made to make a choice comfortable for both the developer and
user and meeting the demands of the program. MATLAB was chosen as the
implementation language for the project because of its capability to perform
symbolic calculations as RCAT operates largely on symbolic variables. Its
Symbolic Math Toolbox provides a large library of functions for symbolic variable
instantiation, substitution, handling and operating on symbolic math expressions.
Its greatest advantage is that programs can calculate in terms of symbolic
variables giving a symbolic result.

Other languages considered were Python and Java. Python has a symbolic
manipulation library called ‘sympy’ which is a lightweight normal Python
module which aims to be a full-featured computer algebra system. MATLAB
was chosen over Python as it is better tested and documented and because of
its vast Library of functions. Java despite is object oriented capabilities was
not chosen as a symbolic manipulator would have to be written from scratch
and robustly tested thus making the task extremely time consuming.

Before starting implementation, we decided to break the RCAT Theorem into
smaller implementation tasks. Since the project was not object oriented,
we structured the system according to the implementation stages. These
undermentioned implementation stages are based on the generic RCAT algorithm
detailed in the background (Section 2.6.2).

1. Parsing PEPA input and constructing process structures Pk and Rk

2. Checking that RCAT conditions (1-3) hold for input PEPA model

3. Calculating reversed rates of passive actions

4. Replacing passive actions with symbolic reversed rates

5. Deducing the product-form solution of the model.
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3.2 Implementation

3.2.1 Parsing PEPA input

The initial step in implementing the project was parsing the PEPA input and
converting it to the process structure Pk. On analysing a process description,
we realised that a PEPA process definition can be broken into parts (or process
descriptors) such as ‘name of the process’, ‘source state of the transition’, ‘
destination state of the transition’, ‘ process action label’, ‘action rate’, and
‘process state domain’. For example, a process definition Pn = (e,λ).Pn+1(n ≥
0) has P as the name of the process, n as the state P is currently in, n+ 1 as
the the state P is transitioning to, e as its action label, λ as it action rate and
n ≥ 0 as the state domain. We thus parse this information from the process
input by using regular expressions.

Thus the program RCATscript, on receiving input, a process description string
(Figure 3.2), calls the function registerProcess with one process description
at a time. The program registerProcess is responsible for parsing the process
string and storing it in a map of processes, ordered by process name. Parsing
is done using regular expressions as in Figure 3.5.

matches = regexp( processDescription ,
‘([A-Z][0 -9]*) \((.+) \) = \((.+) , (.+) \) \.([A-Z][0 -9]*)\
((.+)\) (?: for )?(.*) ’, ‘tokens ’ );

Figure 3.5: Code for parsing PEPA process description using regular
expressions

The built in MATLAB regexp function allows retrieving matched text from an
input string, that corresponds to portions of the regular expression(s) enclosed
in parentheses. In further detail, the regular expression ([A-Z][0-9]*) will
match one letter in the upper case and zero or more numbers, thus allowing
a process P and a process P1 to both be parsed. Regexp \((.+)\) will
ignore parentheses and match anything within them while (?: for)?(.*)

will optionally look for the keyword for and optionally match anything after
it. It thus gives the flexibility of having an optional state domain descriptor
for a process.

Running the code in Figure 3.5 on code input- ‘P(n) = (e, lambda).P(n+1)

for n >= 0’, we ultimately get a list of aforementioned process descriptors -
{P, n, e, lambda, n+1, n>=0}.

3.2.1.1 Constructing Pk

Pk is a structure consisting of k PEPA processes with their definitions. k = 1, 2
is used in our initial system/network models used as input to RCAT, thus
Pk will correspond to two separate PEPA processes analogous to P and Q
respectively in Figure 3.2.
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Function addToProcessStructure stores processes, ordered by process name,
in a map called registeredProcesses. So multiple descriptions of any process P
will be stored under the same key ‘P’. The map registeredProcesses behaves
as the Pk for this implementation of RCAT.

A description of a process with name P comprises of aforementioned process
descriptors and is added to registeredProcesses as a map with the process
descriptors as keys. Figure 3.6 lists the keyset which each process description
map is ordered by. If a process P has multiple descriptions (as shown in Figure
3.2), they are converted into maps ordered by process descriptors and stored
together in a cell array (a data structure in MATLAB which allows entries of
different classes). Thus registeredProcesses has a key-value pair : ‘process
name’-‘descriptions cell array’.

keyset = { ‘transitionFromState ’,‘actionName ’,‘actionRate ’,
‘transitionToState ’,‘domain’ };
valueset = { eval(processDefinition{2}), actionLabel ,
actionRate , eval(processDefinition{6}),
[domainMin , domainMax] };

Figure 3.6: Process description map’s keyset and valueset

Values of every process description ( as shown in Figure 3.6) have certain
properties

1. transitionFromState is the source state the transition is coming from
while transitionToState is the destination state for that transition. They
are stored as a MATLAB symbolic variables to simplify implementation
stages such as RCAT condition checking (Section 3.2.4).

2. actionName is stored as a String

3. actionRate is stored as MATLAB symbolic variable as it is used extensively
in reversed rate calculations (Section 3.2.2).

(a) RCAT requires all passive action rates (rate = ,) to be relabelled
to avoid confusion in multiple infinite action rates. We achieve this
by relabelling all action rates with ‘infinity’ to symbolic variable ‘x’
postfixed with the action name of that passive rate. So a process
with action rate ‘infinity’ and action label ‘a’ will be relabelled as
‘x_a’.

(b) Action rates are also parsed to check if they are mathematical
expressions using function stringToMatlabExpr. It parses a string,
finds variables in the string, makes them symbolic and then returns
the evaluated string as a symbolic variable which is stored as action
rate. This requires action rates to compulsorily begin with an
alphabet in the lower case and is validated by the same function.
While evaluating the action rates, the program makes an assumption
that no active action rate can have value ‘infinity’ as this would
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cause the program to assume the action was passive when it was
actually active.

4. domain is an equality or an inequality mathematical expression. This is
analysed to give a range of values for which the state transition holds.
The function parseDomain achieves this by parsing the (in)equality string
and returning a tuple of (domainMin, domainMax ), which denotes the
maximum and minimum number of the range that process transition
is valid for. We assume the state space for all Rk to be [0,∞]. Thus
the maximum domain of a condition string n > 0 will be ∞. But the
maximum and minimum domain of a condition string n = 0 will be
evaluated as [0, 0].

The program addToProcessStructure also stores all active action names and
passive action names for each process in cell arrays and inserts them into
maps activeActionLabels and passiveActionLabels respectively ordered
by process name. This simplifies the task of creating the structure Rk.

3.2.1.2 Constructing Rk from Pk

Rk, similar to Pk, is structure consisting of k PEPA processes where k = 1, 2.
Rk in this implementation is modelled as a MATLAB structure array (an array
with named fields that can contain data of varying types and sizes) called
r. Each entry in the structure r contains fields for various properties of the
processes which are populated using function createRk. The definitions

field refers to the parsed PEPA descriptions, the activeLabels field refers the
set of active actions for each Pk and the passiveLabels field refers the set of
passive actions for each Pk. Figure 3.7 is an example of structure r used to
model two PEPA processes.

r =

1x2 struct array with fields:
definitions
activeLabels
passiveLabels

Figure 3.7: Fields in structure r containing r(1) and r(2)

The function createRk is used for creating the structure r. It uses the maps
registeredProcesses, activeActionLabels and passiveActionLabels that
were generated in the function addToProcessStructure and the process name
(for example P ) as the key to instantiate the three fields of the structure r

structure as shown in Figure 3.8.
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for i = 1: numOfProcesses
r(i).definitions
= registeredProcesses( processKeyset{1,i} );
r(i).activeLabels
= setActionLabels(activeActionLabels ,processKeyset{1,i});
r(i).passiveLabels
= setActionLabels(passiveActionLabels ,processKeyset{1,i});

end

Figure 3.8: Populating fields of structure Rk

3.2.1.3 Parsing PEPA cooperation

The function registerCoop parses input for a PEPA cooperation (synchronisation)
between two processes. A cooperation, as shown in Figure 3.3, is the second
input to the API function RCATscript. The cooperation string is parsed using
regular expressions as in Figure 3.9. registerCoop returns the action labels
the two processes are cooperating over in a cell array called coopLabels, which
is used in calculating reversed rates and checking RCAT conditions. For input
as in Figure 3.3, coopLabels will equal {a }.

matches = regexp( coopDescription ,
‘([A-Z][0 -9]*)\(([^\)]+)\) (with .+\s*)+ over \{(.*) \}’,
‘tokens ’ );

Figure 3.9: Code for parsing PEPA Cooperation string using regular
expressions

3.2.2 Calculating Reversed Rates

Reversed rates of passive actions are calculated using the formula 2.8 stated in
the generic algorithm (Section 2.6.2.3). The formula requires that the steady
state probabilities πk are known for each k = 1, 2 in Rk and requires ria, the
specified forward rate of action type a going out of state i (for the relevant
k = 1, 2 in Rk) to be known. Thus the reversed rate calculation is divided into
the undermentioned subsections.

3.2.2.1 Calculating steady state probability

The RCAT application was primarily designed to run on systems composed
of M/M/1 queues, which have known equilibrium probability distributions
and are given by the formula 2.4 stated in Section 2.3.2. The steady state
distribution formula uses the utilisation ρ of an M/M/1 queue which is defined
as

ρi =
λ

µ
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where λ is the aggregate arrival rate at node i and µ is the service rate of
node i. Since it is assumed for all k = 1, 2, Rk is a M/M/1 queue, ρk =
arrival rate of Rk/ service rate of Rk.

Calculating total arrival and service rates for Rk

The arrival rate (since Rk is M/M/1) is equal to the sum of all rates for
transitions from state i to i + 1 while the service rate is sum of all rates for
transitions coming into state i, so from i + 1 to i. The function used to find
arrival and service rates ∀k in Rk is getAggregateArrivalAndServiceRates.
The calculation involves iterating through all the definitions of a process and
determining the the direction of the transition in each definition(see Figure
3.8). Function isTransitioningForwards determines if a process transition
is going out or coming into state i using process descriptors transitionFromState
and transitionToState. The arrival rate and service rate is the forwardSum and
backwardSum respectively in Figure 3.10.

for definition = process.definitions
if isTransitioningForwards( definition )

forwardSum = forwardSum + definition(‘actionRate ’);
else

backwardSum = backwardSum + definition(‘actionRate ’);
end

end

Figure 3.10: Code for calculating arrival rate and service rate for each process

Function sspdMM1 calculates the steady state probability of an M/M/1 queue
given an arrival and service rate.

syms r x;
rho = ( arrivalRate / serviceRate );
formula = ‘(1 - r) * r^x’;
temp = subs( formula , x, state );
sspd = subs( temp , r, rho );

Figure 3.11: Code for SSPD calculation of M/M/1 queue

The formula shown in Figure 3.11 is the formula for the equilibrium probability
distribution (see 2.4) of a M/M/1 queue. The MATLAB function subs performs
a symbolic variable substitution in a given mathematical expression, which in
this case is the SSPD formula. On calculating ρ (rho) with arrival and service
rate (both symbolic variables) and performing symbolic substitution in the
formula for steady state probability, we get πk for each k = 1, 2.
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3.2.2.2 Calculating specified forward rate

Function getStatesAndRateForAction calculates ria, the specified forward
rate of action type a going out of state i in the process where a is the active
action. Thus the function iterates over process definitions of P as action a
belongs to the set of activeLabels in P and returns the rate.

3.2.2.3 Calculating reversed rates

Function calculateReversedRate uses the formula 2.8 stated in the generic
algorithm (Section 2.6.2.3) to calculate reversed rates for all passive synchronising
actions. The code in Figure 3.12 corresponds to this, where the forwardRate is
the specified forward rate of a given active action, iStateSSPD and jStateSSPD

is the steady state probability at state i and j respectively for some process P .
As all three are MATLAB symbolic variables, the function simplify reduces
the formula which is a mathematical expression of the form πk(i)ria/ πk(j).

formula = (forwardRate * iStateSSPD) / jStateSSPD;
reversedRate = simplify(formula);

Figure 3.12: Code for reversed rate calculation

3.2.2.4 Storing reversed rates

As a final step in reversed rate calculation, we need to store the reversed
rate for each action a that belongs to the set of cooperating actions, that
is ∀a ∈ coopLabels. The function storeReversedRates performs the task
of storing reversed rates in a map called reversedRates with each action in
coopLabels as the key. The map of reversed rates becomes significant while
replacing the passive actions (xa) with the relevant reversed rates in Rk and
checks they are the same at each instance if there are multiple instances of the
same action.

3.2.3 Replacing Passive Actions with Reversed Rates

In the structure Rk, all passive actions are represented in the form x_a where
a is some passive action. These rates have to be replaced by the calculated
reversed rates for all actions in the set of cooperating actions, that is ∀a ∈
coopLabels. We substitute symbolic solutions for each rate variable xa in Rk

in the function setPassiveActionRate which matches the passive action rate
with the right reversed rate and substitutes it in Rk.
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1 if isequal( definition( ‘actionName ’ ), actionLabel )
2 oldActionRate = definition( ‘actionRate ’ );
3 definition( ‘actionRate ’ ) = reversedRates( actionLabel );
4 newActionRate = definition( ‘actionRate ’ );
5 end

Figure 3.13: Code for substituting passive action rates

MATLAB is a pass by value language, thus when a function (modifying a
structure field) returns, the caller function’s copy of the structure is replaced
by the functions copy such that only the modified field is replaced. This also
means that MATLAB uses ‘copy-on-write’, that is, variables are only copied
if you modify them. This feature is used in function setPassiveActionRate

where assigning reversed rate (on Line 3 of Figure 3.13) to variable definition,
its value changes in the original structure Rk.

3.2.4 Checking RCAT Conditions

The RCAT theorem has three conditions which need to be met for product form
solution to exist for any system model. They are stated in Theorem 2.6.1. We
have checked all three conditions in this implementation of RCAT. If any of the
three conditions are violated, the program will exit with an exception error.

3.2.4.1 Checking First Condition

RCAT first condition states that

First Condition: Every passive action type in PP (L) or PQ(L) is always
enabled in P or Q respectively.

The condition is to ensure that all passive actions a are enabled in every
state of the passive process for a. While constructing the structure Rk, we
store the passive actions or the set PP (L), where P is some process, in the
field passiveLabels of structure r. The function checkFirstRcatCondition

iterates through all passiveLabels for all Rk, k = 1, 2 and ensures that all
passive actions are enabled. The function checkActionIsEnabled checks if
action is enabled in all states of a process transition graph for all descriptors
of Rk.

It is assumed that the state space of any process is from 0 to ∞. This
assumption is made to perform the condition checks on the whole state space
of a process, but the assumptions are intuitively reasonable as (mostly for this
implementation) the input is networks formed of M/M/1 queues. Despite this
assumption, it will be relatively straightforward to extend the function due to
decoupling of concerns. Furthermore, even in a closed network the number in a
queue is unbounded since it depends on the (given) initial network population
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N . N would only ever be needed to calculate the normalising constant which
is out of scope of this project.

1 if ~isequal( definition( ‘domain ’ ), stateSpace )
2 if allChecksAreOK( definition , allDefs )
3 isEnabled = true;
4 end
5 else
6 isEnabled = true;
7 end

Figure 3.14: Code for Checking First Condition

Function checkActionIsEnabled (code snippet in Figure 3.14) compares the
domain of the passive process which has the passive transition with the state
space of all processes in Rk. As mentioned before the state space is assumed
to be [0,∞]. If the domain equals the state space, then it is trivial that the
action is enabled throughout the process transition graph. If not, function
allChecksAreOK evaluates the domain of the process further. This helper
function considers two cases:

1. when there is a passive transition going from n → n+ 1

If a process has a transition n → n+1 where n is the current state, then for an
action to always be enabled, the process description needs a domain of [0,∞]
(that is equal to state space). If not, the first condition will be violated.

2. when there is a passive transition going from n → n− 1

1 if isequal( domain (1), 1 )
2 if isSymbolicEqual( transitionTostate , eval(‘n-1’) )
3 if hasInvisibleTransition( allDefs , definition )

Figure 3.15: Code for Checking First Condition

If a process has a transition n → n−1 where n is the current state, the process
description will have a domain of [1,∞] because of condition string n > 0
(checked in Line 1 of Figure 3.15). For an action to be enabled, an additional
‘invisible’ transition is required going from n → n where n = 0. Function
hasInvisibleTransition checks for invisible transitions. If all conditions
are satisfied, the function notifies the user that the First condition has been
satisfied (as in Figure 3.16).
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>> RCATscript(x2 , y2)
First condition of RCAT is satisfied.

Second condition of RCAT is satisfied.

Figure 3.16: Snippet of output of program RCATscript

3.2.4.2 Checking Second Condition

RCAT second condition states that

Second Condition: Every reversed action of an active action type in AP (L)
or AQ(L) is always enabled in P or Q respectively.

This condition checks if there is an incoming active action a in every state of
the active process for a, ∀a ∈ coopLabels. The rationale is very similar to the
first condition. The function checkSecondRcatCondition iterates through all
activeLabels for all Rk, k = 1, 2 and using checkForIncomingTransitions
function checks to see if there is an incoming active action a in every state of
the active process for a. On further analysing, it is apparent that incoming
transitions refer to transitions going from state n → n − 1. This assures that
every state n will have an incoming transition for the state space which is
assumed to be [0,∞] for all processes in Rk (since we are primarily dealing
with MM1 queues). The domain for these transitions is calculated as [1, Inf ]
and is checked in the function as shown in Figure 3.17 (line 1).

if isequal( domain (1), 1 ) && isequal( domain (2), Inf )
if isSymbolicEqual( transitionTostate , eval(‘n-1’) ) &&
isSymbolicEqual( transitionFromState , eval(‘n’) )

isEnabled = true;
end

Figure 3.17: Code for checking incoming transitions

The function isSymbolicEqual(Figure 3.18) checks if the states from and to
are equal to n and n − 1. Finally if all conditions are satisfied, the function
notifies the user that the second condition has been satisfied (as in Figure
3.16).

3.2.4.3 Checking Third Condition

RCAT third condition states that
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Third Condition: Every occurrence of a reversed action of an active action
type in AP (L) or AQ(L) has the same rate in P or Q respectively.

This condition checks that the total reversed rate of all incoming active actions
a in state k of the active process is equal to a constant r̄a independent of state
k. It is known that for M/M/1 queues, the equilibrium state probabilities
are state independent. Thus the reversed rate is same for all the states the
transition corresponds to as the ratio of π(n+ 1)/π(n) (used in rate equation
2.8) is constant.

We then need to check if there are multiple transitions with the same action
name in the description of the active process, calculate their reversed rates
and ensure they are equal. Thus if active process P has multiple transitions
for action type a, their reversed rates will be calculated and checked to see
if they are equal. The function checkThirdRcatCondition iterates over all
activeLabels for all active processes and checks if action a has multiple transitions,
∀a ∈ coopLabels & a ∈ activeLabels. Then its reversed rates are calculated
and are checked for equality with function isSymbolicEqual. The function
checks to see if the difference (Line 2, Figure 3.18) between two symbolic
variables is zero, proving they are equal.

1 function ret = isSymbolicEqual( s1, s2 )
2 ret = ( simplify( s1 - s2 ) == 0 );
3 end

Figure 3.18: Code to checking symbolic equivalence

Finally if all requirements are satisfied, the function notifies the user of satisfying
the third condition and concludes RCAT condition checking.

3.2.5 Generating a Product Form Result

All Rk (k ≥ 2) agents to RCAT are M/M/1 queues with ρk = arrival rate of Rk

service rate of Rk
.

Hence the unnormalised equilibrium probability for state ik in the process Rk

is (ρk)
ik . From this we can derive the product form result using the Jackson’s

theorem :

π(m1, . . . , mN ) ∝
N
∏

i=1

ρikk

The RCAT implementation prints a system of rate equations as output by
retrieving them from structure Rk as a part of the implementation stage
‘Replacing Passive Actions with Reversed Rates’. This system of rate equations
is solved and their values are replaced in ρk to generate the aforementioned
product form result. Thus for instance if we derive the rate equation - ‘xa = λ’,
we replace the value of unknown action rate xa of action a with λ and use the
new value while generating the product form result. We can use MATLAB
functions solve to evaluate solutions to a system of rate equations.
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For example, the equations in Figure 3.19 need to be evaluated as they have
unknowns in their solutions (lines 2-3). The MATLAB library function solve

finds a solution for both x_a1 and x_a2 as shown in lines 9 - 15. Before using
the function solve, all variables must be declared symbolic using function syms

as shown in Figure 3.19 on line 7. Thus evaluating rate equations, displayed
by the software, is left to the user as it is a straightforward process.

1 > RCATscript(x2 , y2)
2 Printing passive action rates...
3 Reversed rate for passive action a1:
4 x_a1 = p21*( lambda2 + x_a2)
5 Reversed rate for passive action a2:
6 x_a2 = p12*( lambda1 + x_a1)
7

8 > syms x_a1 x_a2 p21 lambda2 p12 lambda1
9

10 > solve(‘x_a1 = p21*( lambda2 + x_a2)’,
11 ‘x_a2 = p12*( lambda1 + x_a1)’ )
12 ans = x_a1: [1x1 sym]
13 x_a2: [1x1 sym]
14

15 > x_a1 = -(p21*(lambda2 + lambda1*p12))/(p12*p21 - 1)
16

17 > x_a2 = -(lambda1*p12 + lambda2*p12*p21)/(p12*p21 - 1)

Figure 3.19: Solving system of rate equations

In some cases, the rate equations are non-linear. To solve non-linear system
of equations, we can use MATLAB Library function fsolve. It checks if the
equations converge to a single value and has the option of running multiple
iterations with guessed values. Another alternative is to use ‘fixed point
iteration’, but this has not been implemented as a part of this project.

3.3 Testing and Verification

Testing and verification of program logic and output are important aspects
of the implementation process as they help in ensuring a robust and correct
program. The program logic was unit tested using MATLAB unit test library
xUnit. The implementation of different parts of the program logic is in different
files making it quite easy to be unit tested. All tests follow a similar format
where we compare the results of the function being tested with the expected
values. xUnit provides functions to test exceptions and equality.
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1 assertEqual( reversedRates.length (), 1);
2

3 assertTrue( isequal( reversedRates( ‘a’ ), lambda ) );
4

5 assertExceptionThrown(@() storeReversedRates(coopLabels ,r),
6 ‘RCATscript: InvalidComputationStoreReversedRates ’ );

Figure 3.20: Code snippet for a Test

Figure 3.20 is a code snippet from a test ‘testStoreReversedRates’ which
tests if reversed rates are calculated and stored correctly. xUnit provides
a function assertExceptionThrown to test if the program throws the right
exception on being given erroneous input (as shown on lines 5-6 in Figure
3.20). This function is very useful for testing program validations. Please refer
to Appendix for additional test cases and instructions to run the unit tests.

Program output is verified by running RCAT on various system models, taken
from research papers and provided by the supervisor, and comparing the
solutions against the given solutions. The implementation has a command line
interface which has been tested by the user. User testing by primarily myself
and my supervisor has helped correct any erroneous or unexpected behaviour
by the program.

This concludes the implementation of RCAT. The next chapter details the
implementation of running RCAT on multiple compound agents and Stochastic
Petri Nets.
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Chapter 4

Implementation of MARCAT
and RCAT for SPNs and PITs

This chapter covers the implementation of MARCAT, an extension of RCAT
and the design and implementation of RCAT for Stochastic Petri Nets (SPNs).
It also delineates Propagation of Instantaneous Transitions (PITs) and provides
an implementation design for running RCAT on PITs.

4.1 Multiple Agents RCAT

The Reversed Compound Agent Theorem (RCAT) is used to derive the reversed
process of a cooperation between two agents. RCAT can be generalised to a
cooperation of multiple agents. This generalised theorem is referred to as the
MARCAT or Multiple Agents RCAT. The theorem is detailed in paper [9].

To implement MARCAT, we extended the current implementation of RCAT.
Due to the scalable design of the software, extending the implementation was
a straightforward process.

4.1.1 Parsing User Input

The API for this implementation has been maintained as the RCATscript, a
function with two inputs - a list of PEPA process descriptions and the names
cooperating processes. This is detailed in section 3.2.1 of this report. Since the
first input is a list of process descriptions, this list has been simply extended to
include k > 2 number of agents. No changes have been made to the syntax of
specifying an agent as input. Processes are parsed to generate the structure Rk

in the function registerProcess. Since the function parses the process string
and stores it in a map of processes ordered by process name, no extensions
were required to ensure it worked for multiple processes. As shown in Figure
4.1, we iterate over the processes Pk given as input and register them using
the registerProcess function.
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for i = 1:length( processList )
process = processList(i);
registerProcess( registeredProcesses , activeActionLabels ,...
passiveActionLabels , process{1} );

Figure 4.1: Code to register multiple agents

Creating Rk

Rk, as in the aforementioned implementation of RCAT, is a structure consisting
of k PEPA processes where k ≥ 2. It is modelled as a MATLAB struct with
fields as mentioned in section 3.2.1.2. To accommodate multiple agents the
function createRk was extended to iterate over all the processes in the map of
registered processes as opposed to having a fixed size of 2. This is shown in
Figure 4.2.

for i = 1: numOfProcesses
r(i).definitions = registeredProcesses(processKeyset{1,i})

Figure 4.2: Code for creating Rk

Parsing PEPA cooperation

Since MARCAT is the cooperation of multiple agents, the second input to
RCATscript has been changed to include the multiple agents. This does not
affect the aforementioned method of running the RCAT solver or specifying
cooperation between two agents. We specify cooperation !"

L
Pk, k ≥ 2 as

shown in Figure 4.3. It specifies a cooperation string between three processes
P1, P2 and P3. Keyword ‘with’ is used as the cooperation symbol. The actions
which processes cooperate over are stated in parentheses.

‘P1(0) with P2(0) with P3(0) over {a1 , a2, a3}’

Figure 4.3: Cooperation String for Three agents

To parse the cooperation string, function registerCoop had to be extended.
Parsing the cooperation string is achieved using regular expressions as shown
in Figure 4.4. String ‘([A-Z][0-9]*)\ (([^\)]+)\)’ matches a single occurrence
of process P1(0). Regular expression ‘(with .+\s*)+’ will match multiple
occurrences of a string beginning with the keyword ‘with’. This is then parsed
to divide the string into the names of the processes and the list of cooperating
action labels in the same way as mentioned in section 3.2.1.3.
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matches = regexp( coopDescription , ...
‘([A-Z][0-9]*) \(([^\)]+)\) (with .+\s*)+ over \{(.*)\}’,
‘tokens’ );

Figure 4.4: Code for Parsing Cooperation String

The implementation for calculating reversed rates and checking RCAT conditions
is the same as mentioned in the previous chapter. We can use the rate equations
generated to construct the product form result using the same method as
detailed in section 3.2.5.

4.2 Generating Product-Form Solutions for Stochastic
Petri Nets

Stochastic Petri Nets (SPNs), as mentioned in the section 2.6.3, are different
from Stochastic Process Algebra like PEPA and thus cannot be directly input
into the RCAT solver. We generate product-form solutions for SPNs by applying
MARCAT on a model consisting of several SPN building blocks. For a practical
example, please refer to the background.

4.2.1 Formalising Stochastic Petri Nets

Our first concern while implementing this extension was designing a formalism
for SPN building blocks. Due to the graph like structure of SPNs, it is difficult
to formalise them using a Markovian Process Algebra like PEPA. So a new
formalism was designed which treats a subset of SPNs as a connection of
building blocks.

4.2.1.1 Formalising building blocks

A building block as defined in Definition 2.6.8 is an SPN S with set of
transitions T and set of N places P where T can be broken into set TI of
input transitions and set TO of output transitions. So we defined a building
block as a MATLAB struct as shown in Figure 4.5 with three properties:

1. places: This is a set of N places of a building block stored as a cell array
of strings.

2. inputs: This is the set TI of input transitions, that is stored as a map
with the transition name as the key and the transition firing rate as the
value.

3. outputs: This is the set TO of output transitions, that is stored as a map
with the transition name as the key and the transition firing rate as the
value.
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Figure 4.6: Example of a building block

1x1 struct array with fields:
places: {‘P1’ ‘P2 ’ ‘P3 ’}
inputs: [3x1 containers.Map]
outputs: [3x1 containers.Map]

Figure 4.5: Building Block formalism as a MATLAB struct

4.2.1.2 Specifying Building blocks as input

On determining a way for formalising the building block, we then dealt with
converting a structural building block into a programmable input and parsing it
to construct the building block struct. This is best explained using an example.
Let us take the simple building block of Figure 4.6.

It has three places {P1, P2, P3} with input transitions {T12, T23, T3} and output
transitions {T ′

12, T
′
23, T

′
3}. Let the rates of the three input transitions be

{λ12,∞,λ3} and the rates of output transitions be {µ12, µ23, µ3}. Rate ∞
denotes that the firing of an output transition of some building block corresponds
to the firing of the transition with rate ∞. The user specifies this information
as input to the program RCATscriptForSPN as the string shown in Figure 4.7.

‘{P1, P2 , P3}, {i_t12 , i_t23 , i_t3},
{lambda12 , infinity , lambda3},
{o_t12 , o_t23 , o_t3}, {mu12 , mu23 , mu3}’

Figure 4.7: Building Block as input by user

It is important to note that all input transitions are prefixed by ‘i’ while all
output transitions are prefixed by ‘o’. This helps the program ensure that
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Figure 4.8: Example of a SPN with two building blocks

every input transition has a corresponding output transition, as it is one of
the mandatory conditions for an SPN to be a building block. The string is
always arranged in the order as shown in the Figure 4.7, starting with places
followed by input transitions, input transition rates, output transitions and
output transition rates.

4.2.1.3 Specifying Building Block connections

Since an SPN is specified as a model composed with several connected building
blocks, the user inputs the several building blocks as a list to the program
RCATscriptForSPN. The user also has to input a routing probability matrix
giving the connections between the different building blocks and their routing
probabilities. The Figure 4.8 gives an example of a simple SPN composed of
two building blocks. The dotted lines show the passive composition between
the two building blocks. So the firing of transitions T ′

12 and T ′
23 from one

building block (BB1) corresponds with input transition T45 of the other building
block (BB2). Similarly, output transition T ′

5 from BB2 corresponds with input
transition T23 of BB1.

The passive cooperations between the building blocks are specified as shown
in Figure 4.9.
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‘{o_t12 = 1, o_t23 = 1 to i_t45} ; {o_t5 = 1 to i_t23}’

Figure 4.9: User input specifying passive compositions between BBs

Each connection is stated by the user in parentheses {...} separated by a
semi-colon as shown in Figure 4.9. Connection ‘o_t12 = 1, o_t23 = 1 to

i_t45’ states that output transitions t12 and t23 correspond to input transition
t45 with routing probability equal to 1. This routing probability is used while
calculating rate equations. The routing probability becomes significant while
looking at the behaviour of the BB. It the routing probability were p then the
output transition has a chance of synchronising with its corresponding input
transition with probability p.

4.2.1.4 Running RCAT for SPNs

1 listOfBBs = {
2 ‘{P1, P2 , P3}, {i_t12 , i_t23 , i_t3},
3 {lambda12 , infinity , lambda3},
4 {o_t12 , o_t23 , o_t3}, {mu12 , mu23 , mu3}’,
5 ‘{P4, P5}, {i_t4 , i_t45 , i_t5},
6 {lambda4 , infinity , lambda5},
7 {o_t4 , o_t45 , o_t5}, {mu4 , mu45 , mu5}’}
8

9 connectionString =
10 ‘{o_t12 = 1, o_t23 = 1 to i_t45} ; {o_t5 = 1 to i_t23}’
11

12 RCATscriptForSPN( listOfBBs , connectionString )

Figure 4.10: Running RCAT on a SPN with two building blocks

Figure 4.10 shows how the input is specified for a SPN model (of Figure 4.8)
using lists of building blocks and their connections (lines 1-10 in Figure 4.10).
This is then run using the API function RCATscriptForSPN which takes the
list of building blocks and their connections as the two arguments as shown
in line 12 of Figure 4.10. It might be worth noting that the M/M/1 queue is
simply a BB with one place. Thus the application of RCAT to SPNs is a true
generalisation.

4.2.2 Parsing user input

4.2.2.1 Parsing Building Block String

We started with writing a parser for converting the user input of the list of
building blocks into a MATLAB struct to match the formalism outlined in
section 4.2.1.1. This is achieved in the function createBbStruct which takes
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the list of building block strings as input and returns a struct (as shown in
Figure 4.5) as output. We use regular expressions for the majority of the
parsing in the function parseBB.

1 match = regexp( bbString , ...
2 ‘{(.+)}, {(.+)}, {(.+)}, {(.+)}, {(.+)}’, ‘tokens ’ );
3 matches = match {1};
4

5 places = regexp( matches{1}, ‘\s*,\s*’, ‘split’ );
6

7 inputKeyset = regexp( matches{2}, ‘\s*,\s*’, ‘split’ );
8 rateStrings = regexp( matches{3}, ‘\s*,\s*’, ‘split’ );
9

10 i_rates = relabelPassiveRates( inputKeyset , rateStrings );
11 inputValues = convertToSymbolicRates( i_rates );
12

13 inputs = containers.Map( inputKeyset , inputValues );

Figure 4.11: Parsing building block String

Figure 4.11 gives a code snippet for parsing a building block string. Lines
1-2 take a building block string of the form ‘{P1, P2, P3}, {i_t12, i_t23,
i_t3}, {lambda12, infinity, lambda3}, {o_t12, o_t23, o_t3}, {mu12, mu23,
mu3}’ and divide it into five different sections; from these sections we derive
information about the places and transitions of the building block. MATLAB
function regexp on lines 1-2 is used to match any text in parentheses using
regular expression ‘{(.+)}′. It is important to note that the building block
must be specified as stated in section 4.2.1.3 else the parsing will fail.

On dividing the string into different sections, we then go on to extract values
for the set of building block places in line 5. Here the MATLAB function
regexp splits string ‘P1, P2, P3 ’ into three substrings ‘P1’, ‘P2’, ‘P3’. Lines
7-8 perform the same type of split on the set of input transition names and
input transition rates.

Transition rates which are passive are relabelled to a symbolic variable ‘x’
postfixed with the transition name of that passive rate. This is performed
in the function relabelPassiveRates as shown on line 10 in Figure 4.11.
Input transition rates need to be converted into MATLAB symbolic expressions
which is achieved by the function convertToSymbolicRates, which used the
function stringToMatlabExpr (a helper function used for converting strings
to MATLAB symbolic expressions).

We finally generate inputs, a field of the building block struct, as a map of
the transition names as keys and their rates as values (as shown on line 14 of
Figure 4.11). The strings of output transitions and rates are parsed similarly
to create outputs, the last field of the building block struct shown in Figure
4.5.
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4.2.2.2 Parsing Building Block connections

On constructing a building block struct, the next step is to parse the building
block connection string. This is performed by function parseConnections

which takes a connections string as input and returns a map of connections as
output. The map of connections has the destination as the key and the list
of inputs as values. For instance, for connection ‘o_t5 = 1 to i_t23’, the key
will be i_t23 and the value will be the tuple (o_t5,1). Figure 4.12 is a code
snippet of the parseConnections function.

1 match = regexp( connectionString , ‘\s*;\s*’, ‘split’ );
2

3 for i = 1:length( match )
4 matches = regexp( match{i}, ‘{(.+) to (.+)}’, ‘tokens’ );
5 ...

Figure 4.12: Parsing building block connections

Parsing is done using regular expression; line 1 in Figure 4.12 shows how the
string of connections is split into individual sub-strings of connections each of
which are then parsed using a loop. The regular expression ‘{(.+) to (.+)}′

retrieves text from either side of ‘to’. Thus we separate the key and value pairs
for our map of connections.

In the function parseInputs, each input value of type ‘o_t5 = 1 ’ is parsed
and is separated into transition name string ‘o_t5’ and MATLAB symbolic
expression ‘1’. The function returns a list of such input transitions names and
probability tuples, which is then allocated as the value to its corresponding
key in the connection map. Again since we are using regular expressions, the
connections string has to be specified as mentioned in section 4.2.1 else the
program will terminate because of a parsing error.

4.2.3 Generating Rate Equations

To decide if a composition of building blocks has a product-form, we need to
find the unknown (i.e. passive) rates to the input transitions. This is done by
setting each unknown rate is to the reversed rate of the corresponding output
transition. The system of equations thus generated are the rate equations
desired.

This calculation is performed in the function calculatePassiveRatesForBBs

where for each unknown rate, we derive a rate equation by using the function
getRateEquations. Figure 4.13 is a code snippet of getRateEquations.
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1 for i = 1:length( connectorList )
2 map = connectorList{i};
3 label = map.keys;
4 passiveActionRate = passiveActionRate + ...
5 getReversedRateForBB(bbStruct , label {1}) * map(label {1});
6 ...

Figure 4.13: Generating rate equations

To find the passive rate of the input transition we use the connections map
generated while parsing. The connections map has the name of the input
transition with unknown rate as the key and a list of ‘connectors’ as the value.
This list is input to the getRateEquations function. Each connection is stored
as a map with the corresponding output transition name as the key and its
routing probability as the value. We retrieve this key in line 3 of Figure 4.13.
and find the reversed rate of the corresponding output transition using function
getReversedRateForBB. We then multiply this with the routing probability -
map( label{1} ) - as shown in line 5 of Figure 4.13.

A code snippet of function getReversedRateForBB is shown in Figure 4.14. To
find the reversed rate of a transition we use the building block corollary 2.6.2
stated in section 2.6.3.2 - ‘The reversed rate of transition Ty’ is λy, i.e. the rate
of the corresponding input transition’. The corresponding input transition is
identified by using regular expressions and prefixing the transition name with
‘i’ as described in line 1 and 3 of Figure 4.14. Thus an output transition of
the form ‘o_t23’ gives an input transition label ‘i_t23’. The rate of this input
transition is calculated by iterating over the building block struct in function
getActionRateForSPNs.

1 matches = regexp( actionLabel , ‘\s*_\s*’, ‘split’ );
2 assert( strcmp( matches(1), ‘o’ ) )
3 inputActionLabel = strcat( ‘i’, ‘_’, matches{2} );
4 revRate = getActionRateForSPNs(inputActionLabel , bbStruct);

Figure 4.14: Finding reversed rate of corresponding output transition

As a final step in generating rate equations, we print the generated equations
on standard output which can be solved easily by the user using standard
MATLAB tools.

4.2.4 Checking Building Block conditions

For an arbitrary building block to have a product form, conditions detailed in
Theorem 2.6.3 need to be satisfied. These conditions are generated and checked
in function checkBBconditions. The process of validating the conditions is
divided into two parts:
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1. If the number of input and output transitions (i.e. size(TI) and size(TO))
is less than or equal to the number of places in the building block, we
know the conditions are unconditionally satisfied. This follows directly
from the nature of the system of equations generated by the conditions
detailed in Theorem 2.6.3. Code for this check is shown in Figure 4.15.
We loop over all the building blocks the SPN is composed of and also
ensure their input and output transitions are equal as shown in line 1-3.

2. If the number of input and output transitions exceeds the number of
places in the building block, then we generate the additional conditions
required from Theorem 2.6.3. The Function furtherConditionCheck

generates and displays the conditions to be satisfied. It is important to
note that these conditions need to be solved along with the rate equations
and if they are compatible then a product form solution will exist.

1 for i = 1:length( bbStruct )
2 assert( length(bbStruct(i).outputs) ==
3 length(bbStruct(i).inputs) );
4 if ~( length(bbStruct(i).places) >=
5 length(bbStruct(i).inputs) )
6 furtherConditionCheck( bbStruct(i) )
7 ...

Figure 4.15: Check Building Block Conditions

4.2.5 Generating Product Form Solution

A system of rate equations has been derived for a given SPN using the method
in section 4.2.3, where each unknown rate is set to the reversed rate of the
corresponding output transition. Theorem 2.6.3 gives conditions for a BB
to have a product form which are derived by the aforementioned method
in section 4.2.4. To find a product form for the given SPN, the system of
equations is solved and if a solution exists then it is checked for compatibility
with the product-form conditions of each BB. If compatible, the SPN has a
product-form.

As mentioned in section 3.2.5, MATLAB functions solve and simplify can
be used to evaluate solutions to the system of rate equations and conditions
generated. The process of evaluating the rate equations remains the same
as section 3.2.5. On finding a solution, the product form results of all the
participating BBs is combined to give one result. So for a SPN with N places
the product form result will be:

π(m1, . . . , mN ) ∝
N
∏

i=1

ρmi
i

where ρi is recalculated substituting the unknowns with solutions to the system
of rate equations.
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4.3 Chains of interactions between queues

This section provides a background on finding product form solutions for chains
of interactions between queues. ‘Product-forms in multi-way synchronisations’
[14] is a paper which provides the detailed theory about the concepts and
algorithm discussed here. Due to time constrains, an implementation of generating
product forms for chains of interactions could not be achieved, but we include a
high level analysis of how it can be done by extending the current implementation
of RCAT.

4.3.1 Background

The paper [14] talks about chains of interactions between queues; for example,
negative customers can move a customer from a non-empty queue to another
queue chosen probabilistically thus triggering two (or more) queues (or constituent
processes) to change their states simultaneously, causing chains of instantaneous
state changes. The paper explains how such synchronisations can be modelled
as the Propagation of Instantaneous Transitions (PITs) [14] to specify the
composed models as successive pairwise synchronisations and thus derive product
forms by an iterative application of RCAT.

4.3.1.1 PEPA formalism and generating rate equations

The paper [14] introduces a new PEPA construction for representing PITs as
follows:

P = (a → b,,).Q (4.1)

The equation denotes a passive action with type a that takes process P to Q
and instantaneously synchronises to active on type b.

Deriving rate equations for the instantaneously synchronising types is difficult
and thus an algorithm has been established in the paper [14] to perform rate
equation generation with ease. The Algorithm is recursive in nature and
considers each synchronising type a, removes its synchronisation from the
model by replacing it by type τ in the passive component with the corresponding
reversed rate. It simultaneously generates the rate equations corresponding to
xa. It returns the set of rate equations for all cooperating passive actions on
termination.

4.3.2 Design and analysis for implementation

In our approach to implement RCAT for PITs, we divided the task into two
parts - Parsing the PEPA descriptions and deriving rate equations. While we
have not been able to implement this extension, the ideas for designing the
implementation have been documented in the following sections. Due to the
complexity, the design view will be clearer by using an example [14]. Let us
take a G-network with a negative customer trigger as shown in Figure 4.16.
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Figure 4.16: G-network with a negative customer trigger

In this network, we have queues P and Q having exponential service times with
parameters µ1 and µ2 respectively and external positive arrivals to process P
with rate λ. PITs are started in P with a negative customer trigger with rate
β which propagates to Q and so on until either queue is empty on arrival of
the PIT.

4.3.2.1 Parsing user input

The G-network from Figure 4.16 is represented in PEPA using the formalism
4.1 for representing PITs as follows:

Pn = (τ,λ).Pn+1 (n ≥ 0)

Pn = (a+12, µ1).Pn−1 (n > 0)

Pn = (a−12,β).Pn−1 (n > 0)

Pn = (a−21 → a−12,,).Pn−1 (n > 0)

P0 = (a−21,,).P0

Qn = (a+12,,).Qn+1 (n ≥ 0)

Qn = (τ, µ2).Qn−1 (n > 0)

Qn = (a−12 → a−21,,).Qn−1 (n > 0)

Q0 = (a−12,,).Q0

P0
!"

a
+
12,a

−
12,a

−
21
Q0

From the PEPA description we can see that the only addition to the current
PEPA in the MATLAB parser would be parsing expressions of the type 4.1. We
can extend the current parser to store action types a−21 → a−12 with their rates as
symbolic variables similar to any other action type. As the algorithm requires
the PITs to be distinguished from normal action types, we aim to create a map
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of all action types a → b where a is the key and b is the value. We add an
extra field to our process structure Rk to store these actions separately making
iterating over them easy.

Actions of type 4.1 always have a passive action rate specified as input as
‘infinity’. Our current PEPA parser performs relabelling of such rates to avoid
confusion while deriving rate equations. To relabel rates of PITs we use the
same implementation but instead of relabelling the rate of action type a → b to
xa→b we relabel it as xa. This can easily be done by using regular expressions
on action types a → b.

4.3.2.2 Deriving rate equations

On parsing the PEPA input and generating process structure Rk as a MATLAB
struct, we implement the algorithm given in the paper [14] to derive rate
equations. The algorithm has an empty set of rate equations initially. It
starts by iteration over cooplabels, i.e. synchronising actions, and derives rate
equations for each using the rate equation 2.8. The algorithm needs to be
implemented as a separate MATLAB function and needs to be used instead of
the current reversed rate calculator to derive rate equations. The complexity
of the algorithm lies in the activity substitution which it performs at each step
for all action types. We can use the map of PIT action types generated in the
parsing stage to aid with the activity substitution.

This concludes the design and implementation of the project. In the next
chapter, we evaluate the usefulness and correctness of the implemented RCAT,
MARCAT and RCAT for Stochastic Petri Nets.
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Chapter 5

Evaluation

In this chapter, the implementation of RCAT is tested over several queuing
networks and Stochastic Petri Nets and their results are verified using research
papers and by hand.

5.1 Tandem Queues

An example of a simple queuing network is a network with two queues (nodes)
in tandem (Figure 5.1) with Poisson arrivals to queue one at the rate λ.
Customers proceed immediately to queue 2 and depart the system on leaving
queue 2. Both queues have exponential service times with parameters µ1 and
µ2 respectively.

This network can be described in PEPA as follows and in as MATLAB code
in 3.2.

Pn = (e,λ).Pn+1 (n ≥ 0)

Pn = (a, µ1).Pn−1 (n > 0)

Qn = (a,,).Qn+1 (n ≥ 0)

Qn = (d, µ2).Qn−1 (n > 0)

P0 !"
a
Q0

Running RCATscript on this queuing network we get reversed rates as shown
in Figure 5.2. From the cooperation, it is clear that the three RCAT conditions

Figure 5.1: Tandem Queue with two Queues
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are satisfied on this network. The program checks this and displays a message
for satisfying all conditions.

1 Reversed rate for passive action a: x_a = lambda

Figure 5.2: Passive rates in Rk in Two node Tandem Queuing network

Paper [3] confirms the correctness of the solution generated.

5.2 Feedback Queues

We now consider an example of a generally connected pair of queues with
feedback from the paper [3]. The network has two queues, with λ1 and λ2

as respective external arrivals and µ1 and µ2 as respective service rates. The
network has routing probability p12 from queue 1 to queue 2 and p21 from queue
2 to queue 1. Customers leave the network with probabilities 1−p12 and 1−p21
as shown in Figure 5.3.

Figure 5.3: General Tandem-2 Network

The network is represented in MATLAB code as given in Figure 5.4 where the
last line denotes the cooperation between the two queues.

P(n) = (e1, lambda1).P(n+1) for n >= 0
P(n) = (a1, infinity).P(n+1) for n >= 0
P(n) = (d1, (1-p12)*mu1).P(n-1) for n > 0
P(n) = (a2, p12*mu1).P(n-1) for n > 0
Q(n) = (e2, lambda2).Q(n+1) for n >= 0
Q(n) = (a2, infinity).Q(n+1) for n >= 0
Q(n) = (d2, (1-p21)*mu2).Q(n-1) for n > 0
Q(n) = (a1, p21*mu2).Q(n-1) for n > 0

P(0) with Q(0) over {a1 , a2}

Figure 5.4: MATLAB Code for General Tandem-2 Network
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On parsing the input, the program produces the structure Rk, where R1 (or
process P ) is shown in Figure 5.5.

>> r(1)
definitions:
{[5x1 containers.Map] [5x1 containers.Map]
[5x1 containers.Map] [5x1 containers.Map]}
activeLabels: {’a2’ ’d1’ ’e1’}
passiveLabels: {’a1’}

Figure 5.5: R1 for General Tandem-2 Network

As input in Figure 5.4, the process P has four definitions, three active actions
- {a2, d1, e1} and one passive action - {a1}. Each description of the process is
stored as a map with process descriptors as keys. Running the reversed rate
calculation, we get solutions as shown in Figure 5.6.

Reversed rate for passive action a1:
x_a1 = p21*(lambda2 + x_a2)

Reversed rate for passive action a2:
x_a2 = p12*(lambda1 + x_a1)

Figure 5.6: Passive rates for General Tandem-2 Network

Comparing the rates with the ones in the paper [3], we verify that they are as
expected. As with the first example, we know that all the three conditions of
RCAT are satisfied and this is verified by the program.

5.3 G-Networks

G-Networks as detailed in section 2.5.3, are queuing networks with negative
customers. A G-network node has two customers - positive which behave
as standard customers in an M/M/1 queue, and negative which are Poisson
arrivals that remove, or kill, customers in the queue when it is not empty.

Consider a G-network with two nodes (see Figure 5.7), with respective positive/
negative external arrival rates λ1,λ2/ Λ1,Λ2 (corresponding to λ and Λ in
Figure 5.8), with respective service rates µ1, µ2 and with respective positive /
negative routing probabilities p12, p21 / (1 − p12), (1 − p21). This network is
represented in MATLAB code as given in Figure 5.8 where the last line denotes
the cooperation between the two queues.

Since the two queues in the G-network are M/M/1 queues, every node i in
isolation has a steady state probability of local state n of π(n) = (1 − ρi)ρni
where ρi =

λi+
∑

k xki

µi+Λi+
∑

k x′
ki

and λi+
∑

k xki and µi+Λi+
∑

k x
′
ki is the arrival rate
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Figure 5.7: A G-Queue j within a network

and service rate at node i respectively. Since the nodes are M/M/1 queues,
we can just run the reversed rate calculation of the implemented RCATscript
which generates solutions given in Figure 5.9.

Reversed rate for passive action a21:
x_a21 = (mu2*p21*( lambda2 + x_a12))/
(bigLambda2 + mu2 + 2*x_b12)

Reversed rate for passive action b21:
x_b21 = -(mu2*( lambda2 + x_a12)*(p21 - 1))/
(bigLambda2 + mu2 + 2*x_b12)

Reversed rate for passive action a12:
x_a12 = (mu1*p12*( lambda1 + x_a21))/
(bigLambda1 + mu1 + 2*x_b21)

Reversed rate for passive action b12:
x_b12 = -(mu1*( lambda1 + x_a21)*(p12 - 1))/
(bigLambda1 + mu1 + 2*x_b21)

Figure 5.9: Passive rates for a Two Node G-Network

The correctness of the steady state probability calculation and reversed rate
calculation is established on comparing the results with the same example in
paper [4]. The reversed rates as calculated in the paper are given below for
reference.

xakj =
pkjµk(λk +

∑

j xajk)

µk + Λk +
∑

j xbjk

xbkj =
(1− pkj)µk(λk +

∑

j xajk)

µk + Λk +
∑

j xbjk
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1 P(n) = (e1, lambda1).P(n+1) for n >= 0
2 P(n) = (f1, bigLambda1).P(n-1) for n > 0
3 P(n) = (a21 , infinity).P(n+1) for n >= 0
4 P(n) = (b21 , infinity).P(n-1) for n > 0
5 P(n) = (b21 , infinity).P(n) for n = 0
6 P(n) = (a12 , p12*mu1).P(n-1) for n > 0
7 P(n) = (b12 , (1-p12)*mu1).P(n-1) for n > 0
8

9 Q(n) = (e2, lambda2).Q(n+1) for n >= 0
10 Q(n) = (f2, bigLambda2).Q(n-1) for n > 0
11 Q(n) = (a12 , infinity).Q(n+1) for n >= 0
12 Q(n) = (b12 , infinity).Q(n-1) for n > 0
13 Q(n) = (b12 , infinity).Q(n) for n = 0
14 Q(n) = (a21 , p21*mu2).Q(n-1) for n > 0
15 Q(n) = (b21 , (1-p21)*mu2).Q(n-1) for n > 0
16

17 P(0) with Q(0) over {a12 , a21 , b12 , b21}

Figure 5.8: MATLAB Code for a Two Node G-Network

where xaij and xbij are the passive action rates corresponding to positive and
negative internal arrivals respectively, aij and bij.

To ensure that the RCAT first condition holds in this network, we add invisible
transitions (line 5 and 12 in Figure 5.8) to ensure negative arrivals have no effect
on an empty queue. If we were to run the RCATscript omitting lines 5 and 12
from the PEPA description in Figure 5.8, we would get a condition violation
error shown in Figure 5.10.

Error using checkFirstRcatCondition (line 10)
RCAT First Condition is violated.
If you think this is an error ,
then check the pepa description and try again.

Error in RCATscript (line 31)
checkFirstRcatCondition( r, stateSpace );

Figure 5.10: RCAT condition Violation for a Two Node G-Network

Thus we can see that the first two RCAT conditions are satisfied from the
PEPA description. Since the passive actions in the reversed process do not
have multiple transitions, we conclude that the third condition of RCAT holds
for this network. As with previous examples, all the three conditions of RCAT
are satisfied by the program and notified to the user.
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5.4 Three Node Jackson Network

This example is taken from paper [11]. Consider a three queue Jackson network,
with external arrival rates λ1,λ2,λ3 and service rates µ1, µ2, µ3 respectively,
routing probability pij from queue i to queue j, i, j ∈ {1, 2, 3} and where
customers leave the network from node i with probability 1−

∑

j $=i pij . This
network is represented in MATLAB code as given in Figure 5.11 where the last
two lines denote the cooperation between the two queues. The three queues
given as input are P1, P2, P3.

P1(n) = (e1, lambda1).P1(n+1) for n >= 0
P1(n) = (a21 , infinity).P1(n+1) for n >= 0
P1(n) = (a31 , infinity).P1(n+1) for n >= 0
P1(n) = (d1, (1-(p12+p13))*mu1).P1(n-1) for n > 0
P1(n) = (a12 , p12*mu1).P1(n-1) for n > 0
P1(n) = (a13 , p13*mu1).P1(n-1) for n > 0

P2(n) = (e2, lambda2).P2(n+1) for n >= 0
P2(n) = (a12 , infinity).P2(n+1) for n >= 0
P2(n) = (a32 , infinity).P2(n+1) for n >= 0
P2(n) = (d2, (1-(p21+p23))*mu2).P2(n-1) for n > 0
P2(n) = (a21 , p21*mu2).P2(n-1) for n > 0
P2(n) = (a23 , p23*mu2).P2(n-1) for n > 0

P3(n) = (e3, lambda3).P3(n+1) for n >= 0
P3(n) = (a13 , infinity).P3(n+1) for n >= 0
P3(n) = (a23 , infinity).P3(n+1) for n >= 0
P3(n) = (d3, (1-(p31+p32))*mu3).P3(n-1) for n > 0
P3(n) = (a31 , p31*mu3).P3(n-1) for n > 0
P3(n) = (a32 , p32*mu3).P3(n-1) for n > 0

P1(0) with P2(0) with P3(0) over
{a21 , a31 , a12 , a32 , a13 , a23}

Figure 5.11: MATLAB Code for Three Node Jackson Network

The process for running RCAT on a system model for k > 2 (that is for multiple
agents) is the same as running RCAT on only two compound agents. We
represent the multiple processes cooperating with keyword ‘with’ and represent
the actions the processes are cooperating on in parentheses (see last two lines
of Figure 5.11).

On parsing the input, the program produces the structure Rk with three nodes
as shown in Figure 5.12.
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r = 1x3 struct array with fields:
definitions
activeLabels
passiveLabels

Figure 5.12: Rk for Three Node Jackson Network

Running the reversed rate calculation, we get solutions as shown in Figure 5.13

Reversed rate for passive action a21: x_a21 =
p21*(lambda2 + x_a12 + x_a32)

Reversed rate for passive action a31: x_a31 =
p31*(lambda3 + x_a13 + x_a23)

Reversed rate for passive action a12: x_a12 =
p12*(lambda1 + x_a21 + x_a31)

Reversed rate for passive action a32: x_a32 =
p32*(lambda3 + x_a13 + x_a23)

Reversed rate for passive action a13: x_a13 =
p13*(lambda1 + x_a21 + x_a31)

Reversed rate for passive action a23: x_a23 =
p23*(lambda2 + x_a12 + x_a32)

Figure 5.13: Passive rates for Three Node Jackson Network

Comparing the rates with the ones in the paper [11], we verify that they are
as expected. As with all the previous examples, we know that all the three
conditions of RCAT are satisfied and this is verified by the program.

5.5 Stochastic Petri Nets

All examples of Stochastic Petri nets (SPNs) used for testing are taken from
the paper [13]. The results in that paper have been derived by hand. We look
at two SPNs for evaluation, one with two BBs and one with three BBs; thus
showing that the implementation can find a product form for an SPN with
several BBs.

5.5.1 Simple SPN composed of two building blocks

Figure 4.8 gives an example of a simple SPN with two building blocks (BBs)
with dotted lines showing synchronising transitions. It is specified as input
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in MATLAB as shown in Figure 4.10. On running RCATscriptForSPN on the
SPN, a BB structure is created as expected with two BBs as shown in Figure
5.14.

1x2 struct array with fields:
places
inputs
outputs

Figure 5.14: Building Block Structure

The program then generates rate equations and product form conditions as
shown in Figure 5.15 lines 1-3 and lines 5-10 respectively. These are verified
by the results in the paper : [13]. Observing BB2 in Figure 4.8 we can see
that, since the number of transitions in greater than the number of places,
BB2 does require additional conditions for a product form solution. This is
indicated by the program on line 5-6.

1 Printing rate equations:
2 Rate equation for i_t23: x_i_t23 = lambda5
3 Rate equation for i_t45: x_i_t45 = lambda12 + x_i_t23
4

5 Product form is subject to following
6 conditions being fulfilled for BB 2:
7 rho4 = lambda4 / mu4
8 rho45 = x_i_t45 / mu45
9 rho45 = rho4 * rho5

10 rho5 = lambda5 / mu5

Figure 5.15: Rate equations and conditions for product form result of SPN in
Figure 4.8

Solving the equations generated in Figure 5.15, a product form result can be
obtained easily.

5.5.2 SPN composed of three building blocks

Figure 5.16 shows a SPN structure and its decomposed BBs. Thus the SPN
considered is composed of three building blocks. We can deduce their connections
based on the places in each BB. All input transitions of all BBs are unknown
(passive); there are five unknown input transition rates. The service rates
(output transition rates) for all three BBs are given as χi ,1 ≤ i ≤ 5.

We specify the building blocks as input in MATLAB as shown in Figure
5.17 and run the program using function RCATscriptForSPN. We deduce the
synchronising transitions by observing the structure of the decomposed BBs
and the SPN structure.
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Figure 5.16: SPN with 3 BBs and decomposition of the SPN into BBs 1–3

listOfBBs ={
‘{P1, P2}, {i_t1 , i_t2 , i_t3}, {infinity ,infinity ,infinity},
{o_t1 , o_t2 , o_t3}, {chi1 , chi2 , chi3}’,

‘{P4, P5}, {i_t5 , i_t6}, {infinity , infinity}, {o_t5 , o_t6},
{chi5 , chi6}’,

‘{P3}, {i_t4}, {infinity}, {o_t4}, {chi4}’ }

connectionString = ‘{o_t1 = 1 to i_t4} ; {o_t3 = 1 to i_t6};
{o_t2 = 1 to i_t5}; {o_t5 = 1 to i_t3}; {o_t6 = 1 to i_t2};
{o_t4 = 1 to i_t1}’

> RCATscriptForSPN( listOfBBs , connectionString )

Figure 5.17: Running RCAT on a SPN in Fig. 5.16

The program then generates rate equations and product form conditions as
shown in Figure 5.18, lines 1-7 and lines 9-14 respectively. These are verified
by the results in the paper : [13]. Observing BB1 in Figure 5.18 we can see
that, since the number of transitions in greater than the number of places,
BB1 does require additional conditions for a product form solution. This is
indicated by the program on line 9-10.
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1 Printing rate equations:
2 Rate equation for i_t1: x_i_t1 = x_i_t4
3 Rate equation for i_t2: x_i_t2 = x_i_t6
4 Rate equation for i_t3: x_i_t3 = x_i_t5
5 Rate equation for i_t4: x_i_t4 = x_i_t1
6 Rate equation for i_t5: x_i_t5 = x_i_t2
7 Rate equation for i_t6: x_i_t6 = x_i_t3
8

9 Product form is subject to following
10 conditions being fulfilled for BB 1:
11 rho1 = x_i_t1 / chi1
12 rho2 = x_i_t2 / chi2
13 rho2 = rho1 * rho3
14 rho3 = x_i_t3 / chi3

Figure 5.18: Rate equations and conditions for product form result of SPN in
Figure 5.16

Solving the equations generated in Figure 5.18, a product form result can be
obtained easily.

5.6 Strengths and Weaknesses

The strengths of the work accomplished in this project include:

• Automation of the RCAT and Multiple Agent RCAT theorem using the
generic algorithm detailed in section 2.6.2.3. Due to the automation,
complex queuing models with multiple synchronising processes can be
analysed using RCAT with ease and their (new) product form solutions
can be generated.

• Automation of product form construction for Stochastic Petri Nets (SPNs).
Due to this automation, complex and large SPNs can be analysed with
ease as opposed to a tedious manual process.

• Parser for agents (processes) specified in PEPA, a type of Stochastic
Process Algebra. Due to the modularised code, the parser can be reused
in applications, where processes are described using the same syntax and
in any extensions to the RCAT.

• Parser for Stochastic Petri Nets (SPNs). A new formalism is introduced
for SPNs and a parser has been implemented for the same.

• An easy command line API for product form construction of both queuing
models and SPNs, which ensures that the user does not require in depth
knowledge of MATLAB.

Although the majority of the project was a success, there are some limitations,
as listed below:
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• The implementation of RCAT and MARCAT in this project accommodates
only networks composed of M/M/1 queues; so the steady state probabilities
calculation automated by this implementation is applicable to only M/M/1
queues which limits the queuing models which the software can be run
over.

• The implementation of RCAT for SPNs assumes the knowledge of all
Building Blocks (BBs) which the given SPN is composed off. This is
a disadvantage, as if the SPN is large and complex then finding BBs
manually can be tedious.

• We had initially planned to provide a Graphical User Interface (GUI) for
the implementation but due to time constraints it was not realised. The
implementation will benefit from a GUI and due to the straightforward
API it can be easily integrated with the current implementation of RCAT.
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Chapter 6

Conclusions

To conclude this report, we summarise our achievements in terms of what
we have learnt and consider if we have met our objectives. The goal of
the project was to automate the construction of product forms in stochastic
models. Using MATLAB, we have built a software system which successfully
implements the generic algorithm for RCAT and MARCAT, thus achieving
automatic construction of rate equations used to derive product forms for
queuing models. We have as a part of the implementation developed a parser
for queuing models defined in PEPA syntax. On correctly parsing the multiple
process descriptions, the software has been able to generate rate equations
for synchronising actions. The solutions of these equations are then used to
calculate the marginal probabilities of process nodes which are then used in
product form construction of queuing models.

Furthermore, we have also automated the rate equation generation (leading
to product form construction) for Stochastic Petri Nets (SPNs) composed of
Building Blocks in product form. A formalism has been provided for BBs
and SPNs and a parser has been implemented for the same. In addition to
generating rate equations, we have also provided the functionality to check
whether the conditions of the BB are in product form. While this implementation
requires the knowledge of all BBs which a given SPN is composed of to be
known, it does provide a scope for adding a functionality where this will not
be necessary. Both the implementations have been tested for a wide variety
of queuing models including G-queues (queues with negative customers) and
relatively large SPNs, as detailed in the Evaluation section. The software
has been made with a hope to provide the first step towards mechanically
analysing complex networks composed of both queuing models and SPNs and
thus leading to the discovery of new product form solutions.

6.1 Future Work

6.1.1 Chains of interactions between queues

As mentioned in section 4.3, a new algorithm has been defined in [14] to
generate a system of rate equations for PITs or Propagation of Instantaneous
Transitions. Chains of instantaneous state changes are caused by models with
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synchronisations defined as propagating instantaneous signals, for example,
negative customers can move a customer from a non-empty queue to another
queue chosen probabilistically thus triggering two queues (or constituent process)
to change their states simultaneously. These chains are modelled as PITs
to specify the composed models as pairwise synchronisations and thus derive
product-forms by an iterative application of RCAT. Section 4.3 details how
the current implementation can be extended to implement this functionality.
As future work, RCAT for PITs will be extremely beneficial as it would extend
the usefulness of the software to find rare product forms in chains of queues.

6.1.2 Automating identifying the BBs of a SPN

As mentioned before, the current implementation of RCAT for SPNs assumes
the knowledge of all BBs which the given SPN is explicitly composed off. SPNs
are typically large and complex which makes manually finding BBs tedious.
An algorithm to automate the process is detailed in the paper [13] and can be
implemented as an extension to the current implementation. The algorithm
can be extended to directly produce programmable input, so the user does not
need to type out verbose BB input and will directly get the generated rate
equations.

6.1.3 M/M/1

The implementation of RCAT and MARCAT in this project accommodates
only networks composed of M/M/1 queues; so the steady state probabilities
calculation automated by this implementation is applicable to only M/M/1
queues. The implementation would benefit greatly if this restriction were
removed and would thus be able to analyse queuing models which go beyond
M/M/1 queues. As the program logic is loosely coupled, adding this functionality
is possible without drastic changes to current implementation.
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Appendix A

MATLAB Code for Unit Tests

A.1 Unit Test for registering processes

1 f u n c t i on t e s t R e g i s t e r P r o c e s s ( )
2

3 % Se t t i n g up the p r o c e s s f o r t e s t i n g
4 syms lambda n x_a ;
5 r e g i s t e r e d P r o c e s s e s = c on t a i n e r s .Map( ) ;
6 a c t i v eA c t i o n L a b e l s = c on t a i n e r s .Map( ) ;
7 p a s s i v eA c t i o n L a b e l s = c on t a i n e r s .Map( ) ;
8 r e g i s t e r P r o c e s s ( r e g i s t e r e dP r o c e s s e s , a c t i v eA c t i o n L a b e l s , . . .
9 p a s s i v eA c t i o n L a b e l s , ‘P( n ) = ( e , lambda ) .P( n+1) f o r n >= 0 ’ ) ;

10 P = r e g i s t e r e d P r o c e s s e s ( ‘P ’ ) ;
11 % Re t r i e v e p r o c e s s r e g i s t e r e d
12 P = P{1} ;
13

14 % Test i f p r o c e s s d e s c r i p t o r s have been pa r sed c o r r e c t l y
15 a s s e r t E q u a l ( r e g i s t e r e d P r o c e s s e s . l ength ( ) , 1 ) ;
16 a s s e r t E q u a l ( P( ‘ actionName ’ ) , ‘ e ’ ) ;
17 a s s e r t E q u a l ( P( ‘ a c t i onRat e ’ ) , lambda )
18 a s s e r t E q u a l ( P( ‘ t r a n s i t i o nF r omS t a t e ’ ) , ev a l ( ‘ n ’ ) ) ;
19 a s s e r tT ru e ( i s e q u a l ( P( ‘ t r a n s i t i o nToS t a t e ’ ) , n+1 ) ) ;
20

21 % Test the domain f u n c t i o n by g i v i n g i t a c t u a l v a l u e s
22 domain = P( ‘ domain ’ ) ;
23 a s s e r tT ru e ( i s e q u a l ( 0 , domain (1) ) ) ;
24 a s s e r tT ru e ( i s e q u a l ( I n f , domain (2) ) ) ;
25

26 % Add Pa s s i v e p r o c e s s to t e s t f o r p a r s i n g and r e l a b e l l i n g r a t e s
27 r e g i s t e r P r o c e s s ( r e g i s t e r e dP r o c e s s e s , a c t i v eA c t i o n L a b e l s , . . .
28 p a s s i v eA c t i o n L a b e l s , ‘Q(n ) = (a , i n f i n i t y ) .Q(n+1) f o r n >= 0 ’ ) ;
29 a s s e r t E q u a l ( r e g i s t e r e d P r o c e s s e s . l ength ( ) , 2 ) ;
30 Q = r e g i s t e r e d P r o c e s s e s ( ‘Q’ ) ;
31 Q = Q{1} ;
32

33 % Test p a s s i v e r a t e r e l a b e l l i n g
34 a s s e r t E q u a l ( Q( ‘ a c t i onRat e ’ ) , x_a ) ;
35

36 % the i n pu t has one p r o c e s s wi th a c t i v e a c t i o n type and one with
37 % pa s s i v e a c t i o n type . Thus the f o l l . a s s e r t i o n s
38 a s s e r t E q u a l ( a c t i v eA c t i o n L a b e l s . l ength ( ) , 1 ) ;
39 a s s e r t E q u a l ( a c t i v eA c t i o n L a b e l s ( ‘P ’ ) , { P( ‘ actionName ’ ) } ) ;
40 a s s e r t E q u a l ( p a s s i v eA c t i o n L a b e l s . l ength ( ) , 1 ) ;
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41 a s s e r t E q u a l ( p a s s i v eA c t i o n L a b e l s ( ‘Q’ ) , { Q( ‘ actionName ’ ) } ) ;
42

43 % Test i f i n p u t v a l i d a t e s c o r r e c t l y i . e . check e x c e p t i o n s thrown
44 a s se r tExcep t i onTh rown ( @( ) r e g i s t e r P r o c e s s ( . . .
45 r e g i s t e r e dP r o c e s s e s , a c t i v eA c t i o n L a b e l s , . . .
46 p a s s i v eA c t i o n L a b e l s , ‘Q(n ) = a , i n f i n i t y ) Q(n+1) n >= 0 ’ ) , . . .
47 ‘ RCATscr ipt : I n v a l i d I n p u t P a r s e dR e g i s t e r P r o c e s s ’ ) ;
48

49 a s se r tExcep t i onTh rown ( @( ) r e g i s t e r P r o c e s s ( . . .
50 r e g i s t e r e dP r o c e s s e s , a c t i v eA c t i o n L a b e l s , . . .
51 p a s s i v eA c t i o n L a b e l s , ‘ ’ ) , ‘ RCATscr ipt : I n v a l i d I n p u t R e g i s t e r P r o c e s s ’ ) ;
52

53 a s se r tExcep t i onTh rown ( @( ) r e g i s t e r P r o c e s s ( . . .
54 r e g i s t e r e dP r o c e s s e s , a c t i v eA c t i o n L a b e l s , . . .
55 p a s s i v eA c t i o n L a b e l s , ‘Q(n ) = (2 e , i n f i n i t y ) .Q(n+1) f o r n >= 0 ’ ) , . . .
56 ‘ RCATscr ipt : Numer icAct ionLabe l ’ ) ;
57

58 end

This program listing unit tests the part of the implementation to do with
parsing. It checks if a PEPA process is correctly parsed using various assertions.
The comments on the listing (lines starting with ‘%’) provide context to the
assertions. Different parts of the program have been unit tested with a similar
approach.

A.2 Unit test for string to expression generation

1 f u n c t i on t e s tS t r i ngToMat l abExp r ( )
2

3 % Dec la r e v a r i a b l e s symbo l i c f o r t e s t ca se s e t up
4 syms lambda1 mu1 lambda_1 mu_1;
5

6 % Simple ca se
7 a s s e r tT ru e ( i s e q u a l ( mu_1, s t r i ngToMat l abExp r ( ‘mu_1’ ) ) ) ;
8

9 % Non− t r i v i a l cases , examp les added with space s i n exp r
10 % which shou ld be i gn o r ed by the f u n c t i o n
11 a s s e r tT ru e ( i s e q u a l ( ( 1 − lambda1 ) ∗ mu1 , . . .
12 s t r i ngToMat labExp r ( ‘(1− lambda1 ) ∗mu1 ’ ) ) ) ;
13

14 a s s e r tT ru e ( i s e q u a l ( ( 1 − lambda1 ) ∗ mu1 , . . .
15 s t r i ngToMat labExp r ( ‘ ( 1 − lambda1 ) ∗ mu1 ’ ) ) ) ;
16

17 a s s e r tT ru e ( i s e q u a l ( ( 1 − lambda_1 ) ∗ mu_1, . . .
18 s t r i ngToMat labExp r ( ‘(1− lambda_1 ) ∗mu_1’ ) ) ) ;
19

20 % Test i f maths e x p r e s s i o n s a r e e va l u a t e d c o r r e c t l y
21 a s s e r tT ru e ( i s e q u a l (7404 , s t r i ngToMat l abExp r ( ‘ ( 1234) ∗ 6 ’ ) ) ) ;
22

23 % Test i f wrong output i s caught c o r r e c t l y
24 a s se r tExcep t i onTh rown ( @( ) s t r i ngToMat l abExp r ( ‘(1 −)∗mu1 ’ ) ,
25 ‘ RCATscr ipt : I n v a l i d S t r i n gToMa t l abExp r ’ )
26 end

This program listing unit tests the part of the implementation to do with
converting strings to MATLAB symbolic expressions. It is relatively simple
and shows that the program stringToMatlabExpr has been tested over various
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inputs including an erroneous input.

A.3 Running Unit Tests

The instructions below assume that the xUnit Framework has been installed
in MATLAB and is ready to run.

1 % go to the d i r e c t o r y c o n t a i n i n g the t e s t s
2 >> cd t e s t s /
3

4 % The run the underment ioned command
5 >> r u n t e s t s
6

7 % Test output l o ok s as f o l l o w s
8 Test s u i t e : /Use r s / . . . / Code/ t e s t s
9 S t a r t i n g t e s t run with t e s t c a s e s .

10 . . . . . PASSED in 11.191 second s .
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