
Imperial College London

Department of Computing

An Integrated London Journey
Planner

Author:
Zhanzhan He

Supervisors:
Dr. Alessandra Russo

Dr. Luke Dickens

June 18, 2013
Submitted in part fulfillment of the requirements for the degree of Master

of Engineering in Computing of Imperial College London



Abstract

Cycle hire schemes are an increasingly popular new mode of public
transport. However, current journey planners, while able to calculate
routes with respect to bus and train timetables either have no sup-
port for cycle hire or do not consider the availability of bikes or docks
along the routes they find. While users can check how many bikes
and docks are available at each docking station online before starting
their journey, there is no way of knowing whether these bikes or docks
will still be available by the time they reach their docking station.
Additionally, current journey planners are unable to find routes that
include cycle hire as part of a journey that includes taking a bus or
train, relegating cycle hire to a second class mode of public transport.

We present a method of predicting future bike and dock availability by
learning the distributions of the bike pickup and dropoff rates using a
Poisson mixture model and show that it can make better predictions
than previous models using a single Poisson distribution. We have in-
tegrated this prediction model into a full London journey planner for
desktop and mobile devices which can find routes that include both
cycling and the tube, while also considering other user preferences
such as ascent averseness and road quietness.
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1 Introduction

Bicycle sharing schemes are a new mode of public transport with demon-
strated social and environmental benefits. Londons Barclays Cycle Hire
scheme has been growing in the number of journeys and is set to expand
to cover more of London in 2013. See section 2 for more details.

Current London journey planning software incorporate a mixture of trans-
port modes to help the user reach their destination. Popular planners such as
Google maps [10] and Transport for London [22] are capable of incorporating
Londons timetabled modes of public transport such as bus, train and under-
ground alongside walking, driving and cycling. They are able to consider the
state of the public transport network and find alternative routes if necessary.

Some journey planners are further able to take user preferences into ac-
count, especially those geared towards a specific mode of transport. For
example optitrans [15] allows the user to select the specific modes of pub-
lic transport they’re willing to take and set the maximum distance they’re
willing to walk. CycleStreets [6] allows a choice between a fast route and a
quiet route and provides advanced feedback such as calories burned, number
of traffic lights en route and an elevation profile.

Journey planners that incorporate cycling however, tend to assume that
the user owns a bike. Relatively few journey planners incorporate the Bar-
clays Cycle Hire scheme as a mode of transport. TFL’s Cycle Journey Plan-
ner [3] is a popular planner capable of this but has a number of drawbacks:

1. No other modes of transport (except walking to docking stations) can
be incorporated into the route. This does not fit in with the cycle
hire scheme’s ethos as a solution to the last mile problem discussed in
Section 2.2

2. The application does not integrate checking availability of bikes and
empty spaces. The user must go to another web page and check the
availability of bikes and empty spaces separately for each station along
the route.

3. Some time is likely to elapse between the user planning the journey and
the user arriving at the docking stations along the route. Even if they
check the availability before the journey, by the time the user reaches
their docking station, all the available bikes may have been picked up.

5



If they are able to pick up a bike, there may be no empty spaces left
at the location they’re meant to drop it off.

The last point is of particular interest as the cyclist suffers considerable
inconvenience when they are unable to pick up or drop off a bike at a station.
As described by Kaleta[30], there are some provisions to help the user when
these circumstances occur:

• If there are no bicycles at the docking station, the passenger can use the
docking stations map to locate other docking stations nearby. There is
no guarantee there will be a bicycle available at those stations.

• If the docking station is full, the passenger can get up to 15 minutes
extra time to cycle to another station before extra charges for late
bicycle return start to apply. As above, there is no guarantee that
there will be a parking space at the nearby stations.

The provisions are often insufficient. Delays in dropping off a bike are
particularly problematic because of the potential financial penalty involved.
Even if the user finds an alternative place to drop off their bike they will have
to walk additional distance to their destination in a potentially unfamiliar
area. As a consequence, they are likely to perceive both the journey planner
software and the cycle hire scheme as unreliable. Popular mobile applications
such as Cycle Hire Widget show the availability of bikes and empty spaces
at nearby docking stations but this leaves the user to improvise part of the
journey themselves.

To integrate Barclays Cycle Hire more comprehensively into a journey
planner, we need to be able to predict whether bikes will be available at the
time the user is due to reach their docking station to pick up or drop off
their bike and direct the user to a docking station where there are likely to
be bikes or free docks available. While it’s not clear how to write a robust
algorithm to do this directly, we have access to six months of Barclays Cycle
Hire journey records (Section 2.4) which we use to learn an algorithm to
predict the distribution of bike pickup and dropoff rates at each docking
station throughout the day. Given we have observed n bikes at time t we can
then sample the rate distributions to make a prediction of how many bikes
will be available at time s. We build on the ideas and code presented by
Kaleta [30] by presenting a Poisson mixture model capable of representing
the rate distributions more accurately in a way that is statistically significant.
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1.1 Contributions

1. A derivation of algorithms to learn the parameters of a regression model
and a mixture model which are cable of more accurately representing
the pickup and dropoff rates at each docking station (Chapter 6).

2. A statistical analysis of the data which challenges Kaleta’s assumption
of a constant pickup or dropoff rate within a small enough time interval
and substantiates the applicability of our mixture model (Chapter 5).

3. A complete journey planner with our new prediction model integrated.
We introduce new user preferences, an ascent averseness preference
and an expected changeover time (Chapter 7). We demonstrate that it
produces plausible routes with respect to user preferences in practice
(Chapter 10).

4. New features that make the journey planner more informative, includ-
ing the ability to generate route elevation profiles, the ability to check
a docking station status by clicking a map marker and the marking of
tube changeovers on the map (Chapter 8).

5. A mobile optimized version of the journey planner (Chapter 9) which
we demonstrate works across across multiple platforms (Chapter 10).
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2 Background

2.1 Terminology

• Docking station refers to the Barclays Cycle Hire terminals across Lon-
don from which bicycles can be picked up or dropped off.

• Pickup refers to removing an available and functional bicycle from its
docking station

• Dropoff refers to parking a bicycle at an available dock at a docking
station

• Transfer refers to entering, exiting or switching between lines at a Tube
station

• Rollout refers to the calculation of a possible future number of bikes at a
docking station by sampling the probability distributions that describe
the pickup and dropoff rates.

2.2 Bicycle Sharing Schemes

Bicycle sharing schemes allow users to access a shared fleet of bicycles. As
of March 2011, there were 135 bicycle sharing schemes in 160 cities across
Europe, Asia, North and South America operating over 235,000 shared bi-
cycles [33]. While bicycle sharing schemes are not new, having been first
introduced in Europe in 1965, they are virtually emission-free compared to
personal vehicle use [33] and are increasingly viewed as a way to curb the
negative social and environmental impacts of global motorization. Notably,
cycle hire schemes provide an environmentally friendly solution to the ’last
mile’ problem, bridging the short distance between public transport stations
and the home or workplace, which may otherwise be too far to walk [32].

However, many current popular journey planners such as Google maps[10],
cyclestreets.net [6] and optitrans [15] do not incorporate the Barclays Cycle
Hire scheme. Those that do, such as Transport for London’s Cycle Journey
Planner [3] either assume bike ownership or are not able to mix Barclays
Cycle Hire with other modes of public transport. This presents a signifi-
cant barrier to bike sharing being a fully integrated part of London’s public
transport system.
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2.2.1 Barclays Cycle Hire

The Barclays Cycle Hire scheme has become a popular mode of public trans-
port in London, with a total of 18 million hires made as of December 2012.
This popularity is expected to increase as the scheme expands to the south
of the Thames in late 2013, with an extra 300,000 hires expected to be made
each month [20].

2.3 Sample stations for analysis and evaluation

We chose a sample of 20 London Barclays Cycle Hire stations to use to
evaluate our machine learning model and router, as well as to use in our
statistical analysis. We chose a mix of stations based on how busy they were
(observed from the plots generated by the analytics module), including some
busy stations like Waterloo Station 3 as well as relatively quiet stations like
The Green Bridge, Mile End.

Figure 1: Sample stations across London for the evaluation of our machine learn-
ing models and router
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Figure 2: Example use of the Barclays Cycle Hire statistics, a visualization of
London’s Barclays Cycle Hire journeys by Jo Wood [23]

2.4 Available Data

2.4.1 Barclays Cycle Hire Statistics

Transport for London provide a variety of data from the London transport
network for free through the developers area of their website [21]. Of partic-
ular interest are the Barclays Cycle Hire statistics, which contain the details
of every cycle journey including the start time, finish time, start station and
finish station. This data spans the 6 months between 1 February 2012 - 21
July 2012. From this we can extract the number of bike pickups and dropoffs
at each station for every day in the date range.

In the work done by Kaleta [30] the cycle journey statistics for the first six
months of operation of the Barclays Cycle Hire scheme were used. This did
not include journey information for docking stations that started operation
during or after these six months. Additionally the usage pattern of the
Cycle Hire Scheme is likely to have evolved over the first six months as the
public got used to the scheme, but this should have stabilized by the time
the 2012 statistics were recorded. While it may have been useful have the
first six months of data as training data for our machine learning models,
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Figure 3: TFL Barclays Cycle Hire map, which shows bike availability using the
live data feeds [1]

unfortunately these data are no longer available and the more recent six
months of statistics should yield more representative results.

2.4.2 Barclays Cycle Hire Live Feeds

TFL provide live bicycle availability data for all the operational Barclays
Cycle Hire docking stations in London, updated approximately every three
minutes. This includes the number of available bikes, not including bikes
that are locked or faulty and the number of available docking points.

2.4.3 London Underground Data

We continue with the same London Underground data used by Kaleta [30]
from the same sources [14][7] [8]. This contains the name, latitude and lon-
gitude of every London Underground station, the lines that connect each
station to the next and the travel times between them. These travel times
are not very accurate, but are good enough for a proof of concept Journey
Planner and can still easily be swapped for a better dataset.

We have augmented the database this to include adjustable transfer times
between lines, as discussed in Section 7.3.1.
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2.4.4 Greater London Data

We continued with the OpenStreetMap data used by Kaleta [30]. This is
available in OSM XML .osm format and contains the latitude and longitudes
of nodes for features of interest (e.g. junctions) and edges for the connections
between them. Each edge contains information on:

• source and target nodes for the edge

• edge length

• the edge geometry, a list of (latitude, longitude) points which form the
edge (edges are not necessarily straight lines)

• car accessibility

• bicycle accessibility

• foot accessibility

2.4.5 SRTM Height Data

The Shuttle Radar Topography Mission (SRTM) is an international project
led by the National Geospatial-Intelligence Agency (NGA) and NASA. A
radar system flew aboard Space Shuttle Endeavour for an 11 day mission in
February 2000, obtaining elevation data for most of the world [17].

We were able to augment the OpenStreetMap Greater London data with
SRTM elevation data using Osmosis [16], a command line application for
processing OSM data. We used an SRTM plugin [19] for Osmosis which is
able to interpolate the SRTM data to obtain node elevations for each OSM
node.

2.4.6 Geocoding

• Geocoding is the process of finding geographical co-ordinates (e.g. lat-
itude, longitude) given an address.

• Reverse Geocoding is the process of finding an address given geograph-
ical co-ordinates.

It is possible to augment OpenStreetMap data with raw address data and
try to solve this problem ourselves, but fast, proven solutions are already
available for free, such as the Google Maps API [9] and Nominatim [13].
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Figure 4: Shaded Relief map of North America generated using the SRTM
dataset [18]

2.5 Probability Distributions

2.5.1 Binomial Distribution

Bernoulli Trial An experiment with two possible outcomes, ”success” and
”failure” which has probability p of success.

Combination A way of selecting several objects from a larger group of
objects, ignoring the order in which the objects are chosen.

k-combination A subset containing k distinct elements of a set S. The
number of k-combinations of a set with N elements is the binomial coefficient(

N

k

)
=

N !

k!(N − k)!
(1)

The binomial distribution is a discrete probability distribution with prob-
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ability mass function

P (k|N, p) =

(
N

k

)
pk(1− p)N−k (2)

It represents the probability of getting k ”success” outcomes in a sequence
of N Bernoulli trials with p probability of ”success”.

2.5.2 Poisson Distribution

Figure 5: Plot of Poisson pmf for multiple values of k [4]

The Poisson distribution is a discrete probability distribution with a prob-
ability mass function which describes the probability of some number of
events occurring within a fixed time interval. It is parameterized by the
rate λ which can be thought of as the number of events expected to occur
within that interval. It is the limiting case of the binomial distribution as
N → ∞. The probability of k events occurring in a time interval where λ
event occurrences are expected is given by probability mass function:

P (k|λ) =
λke−λ

k!
(3)

For a discrete random variable X which follows a Poisson distribution the
following holds:

λ = E(X) = var(X) (4)
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2.5.3 Gaussian Distribution

Figure 6: Plot of Gaussian pdf for multiple values of µ and σ2 [5]

The Gaussian or normal distribution is a continuous probability distribu-
tion with probability density function:

1

(2πσ2)
1
2

exp(− 1

2σ2(x− µ)2
) (5)

for a single variable x, where µ is the mean and σ2 is the variance of x. In
the multi variable case, the distribution takes the form:

1

(2π)
D
2

1

|Σ| 12
exp(−1

2
(x− µ)TΣ−1(x− µ))) (6)

where x is the vector of variables, µ is the D-dimensional vector of means
and Σ is a D x D covariance matrix. The Gaussian distribution is used as a
building block in many types of models. The sum of multiple random vari-
ables of any distribution, which is itself a random variable has a distribution
that becomes closer to the Gaussian distribution as the number of terms in
the sum increases (Central Limit Theorem) [25].

2.5.4 von Mises Distribution

Gaussian distributions may not be appropriate for models involving periodic
variables. A example of a periodic variable in our journey planner would be

15



Figure 7: Plot of von Mises distribution for different m and θ0 [25]

the number of bikes at a docking station over 24 hour periods. If we try to fit
a Gaussian model to periodic data (see Section 2.7.1), the goodness of the fit
will depend on the choice of origin for the data, which is arbitrary. The von
Mises distribution is a periodic generalization of the Gaussian distribution
which satisfies the following properties [25]:

p(θ) ≥ 0 (7)∫ 2π

0

p(θ)dθ = 1 (8)

p(θ + 2π) = p(θ) (9)

The distribution is given by:

p(θ|θ0,m) =
1

2πI0(m)
exp(mcos(θ − θ0)) (10)

where θ is an angle, θ0 is the mean and m is analogous to the inverse variance
of the Gaussian distribution.

2.6 Density Estimation

Density estimation aims to create a model of a probability distribution of a
random variable given observations of that random variable. Kaleta’s [30]
model split each day into time intervals. Within each time interval, he used
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density estimation to model the density of the bike pickups and dropoffs.
He treated pickups and dropoffs as coming from a Poisson distribution used
maximum likelihood estimation over the TFL statistics to estimate the pick-
up/dropoff rate. We would like to experiment with more different models
and also check whether the pickups and dropoffs within each interval really
follow a poisson distribution.

2.6.1 Gaussian mixture models and expectation maximization

When we examine the cycle statistics data the frequency of pickups/dropoffs
in an interval contains more than one peak for some docking stations. In
these cases the density cannot be accurately modelled by a single Poisson or
Gaussian distribution as these distributions have only one peak.

In this situation it may be appropriate to use a mixture model. A mixture
model is a linear combination of more basic distributions. We could use a
combination of Gaussians, which we can combine into a complex model if
we can effectively adjust their means and covariances as shown in Figure 8.
This is also a way of accounting for latent or hidden variables, which are not
directly observed but can be inferred.

Figure 8: A Gaussian mixture model showing the three scaled Gaussian compo-
nents in blue and the sum in red [25]

A Gaussian mixture model can be expressed as:

p(x) =
K∑
k=1

πkG(x|µk,Σk) (11)

Each Gaussian in the model has its own mean and covariance and the
scaling factors πk are known as mixing coefficients where K is the number of
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Gaussians in the mixture. The πk, µk and Σk are parameters to the mixture
model which could be set using the expectation maximization algorithm [25]:

1. Choose initial values for the parameters πk, µk and Σk.

2. Evaluate the responsibilities with the current parameters (πk, µk and
Σk) using the equation:

γ(znk) =
πkG(xn|µk,Σk)∑K
j=1 πjG(xn|µj,Σj)

(12)

3. Update the parameters using the calculated responsibilities

µknew =
1

Nk

N∑
n=1

γ(znk)xn (13)

σknew =
1

Nk

N∑
n=1

γ(znk)(xn − µknew)(xn − µknew)T (14)

πknew =
Nk

N
(15)

4. If parameters or the log likelihood has converged, stop. Otherwise
return to step 2.

2.6.2 Model Comparison

Kaleta’s [30] model only requires a single parameter, which may not neces-
sarily fit the data as well as a complex model, but is unlikely to overfit. We
need some method of comparing the models we come up with with the old
one. One way to do this is using the bayes factor which can compare models
with different numbers of parameters. Given training data set D and models
M1 and M2 the bayes factor is defined by:

p(D|M1)

p(D|M2)
(16)

where p(D|M1) is the likelihood of the data given model i. If the ratio is
greater than 1 M1 is favoured, otherwise there is more evidence for M2
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2.7 Regression

Regression [25] aims to predict the value of one or more target variables
continuous target variables t given some input vector x ∈ RD. Regression is
a supervised learning problem where we have training data which consists of
N observations of input vectors xn with their corresponding target values tn.
The simplest approach is to create a function y(x) which predicts the value
of t for a given input vector x. We aim to model a predictive distribution
p(t|x) which reflects our uncertainty about the value of t for all x and use it
to make predict t for any value of x.

We have the statistics of every cycle journey (See section 2.4) from which
we can extract the number of bikes picked up or dropped off at every station
over time. We can then use the number of pickups or dropoffs as a target
value, and time as our input and use a regression model to predict the number
of pickups or dropoffs for any time interval of a day.

2.7.1 Linear Regression

This a basic model that uses some linear combination of the input vector to
predict the target values:

y(x,w) = w0 + w1x1 + ...+ wDxD

= wTx (17)

This fits some straight line through the data. To find the best fitting line
we can define or derive a cost function and find the weights w that minimizes
the value of some cost or error function using gradient descent. We can also
form a likelihood model and find the w the likelihood of the model with
respect to the training data.

2.7.2 Basis Functions

Real world data, such as bike dropoffs over time often cannot easily have
a straight line fit through it. We can instead use a linear combination of
non-linear functions of the inputs:

y(x,w) = w0 +
M−1∑
j=1

wjφj(x) (18)
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Where M is the number of parameters in the model. The φj are basis
functions and we can define φ0 = 1 to get a more convenient form:

y(x,w) =
M−1∑
j=0

wjφj

= wTφ(x) (19)

Examples of basis functions we could use are polynomials, sigmoids and
Gaussians.

2.7.3 Gradient Descent

To find the a weight vector w which will yield a reasonable prediction, we can
define a cost function and try to minimize the value of the cost function over
the training data. An example is the sum of squares error function, which
is derived by treating the data as having come from a ’noisy sampling’ of a
function of the inputs. For all our N observations of pairs of corresponding
inputs x and target values t we sum the squared difference between our
prediction and the actual observation:

E(w) =
1

2

N∑
n=1

(y(xn,w)− tn)2 (20)

We can initialize w to some arbitrary value and optimize it with respect
to the chosen cost function using gradient descent. The gradient is obtained
by taking derivative of the cost function with respect to w. Gradient descent
takes a step along the negative gradient at each iteration until w converges:

wi+1 = wi + η∇E(wi) (21)

η is the learning rate which helps control the size of the step taken on each
iteration. Provided η > 0, the algorithm will converge, but it may fail to find
the optimum w as it can get stuck in a local minimum. Deriving a closed
form solution using (Section 2.7.4. However sometimes it’s very difficult or
not possible to derive a closed form solution, and gradient descent can be
faster for large datasets.
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2.7.4 Maximum Likelihood Estimation

The least squares error function discussed in section 2.7.3 is derived by form-
ing a likelihood model for the target values given the inputs. For example we
can treat our observed data as being sampled from a function y(x,w) with
noise added:

t = y(x,w) + ε (22)

If we treat the noise as Gaussian with precision β, we can derive a likeli-
hood function:

p(t|x,w, β) = G(t|y(x,w), β−1) (23)

We can try and maximize the likelihood function over all the data. This
quantity is a product of likelihoods. As log is a monotonic increasing function,
we usually maximize the log likelihood instead. A closed form for solution
for the maximum likelihood w that maximizes the likelihood of the model
can be found by differentiating the likelihood function, setting the derivative
equal to 0 and solving for w. If we do this we get the normal equation:

wml = (ΦTΦ)−1ΦT (24)

Where Φ is the design matrix, of size N ×M where N is the number of
observations and M is the number of basis functions and Φnj = φj(xn).

In our journey planner there is good evidence that the number of bike
pickups or dropoffs follow a Poisson distribution within small time inter-
vals during the day. We could assume Gaussian noise and use the normal
equation directly to fit some linear combination of basis functions to the
data. Alternatively, we can form a likelihood model that treats the arrivals
as having come from a noisy sampling of a Poisson distribution instead of
a Gaussian and derive a closed form solution using maximum likelihood in-
stead. Kaleta [30] found a closed formed solution using maximum likelihood
to estimate the rate of a Poisson distribution in his prediction model.

2.7.5 Overfitting

More complex models have more parameters and can more accurately de-
scribe the underlying function that the training data was noisily sampled
from. However, if the model is too complex it can overfit the data as shown
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in Figure 9. A high order polynomial runs through every point in the train-
ing data and the value of the cost function will be 0. However, it is a poor
representation of the function the data were sampled from. As a consequence
it will generalize poorly and give poor predictions for inputs that are not in
the training data set.

Figure 9: Illustration of overfitting. A noisy sampling of the green function
generated the data points (in blue). The red function is plot of a model created
using polynomial basis functions of order M [25]

.

2.7.6 Logistic Regression

Logistic regression is used for classification, by mapping the value predicted
by linear model into the interval [0, 1] using the logistic sigmoid function
defined by:

σ(a) =
1

1 + e−a
(25)

If we have 2 classes C1, C2 in our data we can express the probability of
C1 as:

p(C1|φ(x)) = σ(wTφ(x)) (26)

One way to predict bike availability is to treat it as having 2 classes, a bike
being available and no bike being available. We could form a linear model
for the number of bikes over time, and use this linear model with logistic
regression to get a probability of a bike being available.
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2.8 Lagrange Multiplier

Using a Lagrange Multiplier [12] is a way to find local maxima and min-
ima of a function f(x, y, z) subject to some equality constraint, for example
g(x, y, z) = c. If f and g both have continuous first partial derivatives, we
introduce the Lagrange multiplier λlagrange and consider the function:

Λ(x, y, z, λlagrange) = f(x, y, z) + λlagrange(g(x, y, z)− c) (27)

We can then take partial derivatives with respect to x, y or z and setting
them to zero finds us the maxima and minima in terms of λlagrange which we
can eliminate. We use this in our derivation of an expectation maximization
algorithm for our Poisson mixture model discussed in Section 6.2.
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3 Literature

3.1 An Integrated London Journey Planner

Kaleta [30] built a journey planner integrating walking, the Barclays Cycle
Hire scheme and London Underground. Kaleta split each day into fixed time
intervals and used the Poisson distribution to model the pickup and dropoff
rate within each interval.

This assumes that the arrivals and departures within each time interval
follow a Poisson distribution, and that the rate of that distribution does not
change in the 15 minute intervals. Also, in a given time interval, it assumes
that all arrivals occur first, followed by all the departures and does not take
into account the different possible orderings of arrivals and departures within
an interval.

One strength of approach is that it uses a model with only one parameter
for each time interval. This reduces the problems of the Curse of Dimension-
ality and overfitting.

3.1.1 Learning the rate parameters

To predict whether bikes will be present, the day is split into 15 minute time
intervals. The pickup and dropoff rate within each interval is assumed to
follow a Poisson distribution. The maximum likelihood estimator for the
rate parameter of a Poisson distribution turns out to be the sample mean of
the observations of the number of events in a fixed time interval. We can
calculate this separately for the pickups and dropoffs at each station using
the Barclays Cycle Hire statistics. We can use these rates to predict the
availability of bikes in the future.

3.1.2 Predicting future bicycle availability

When a prediction for the availability of bikes at time s is requested at time
t, the number of bikes n available at time t is known. For each time interval
between t and s, the Poisson distribution is sampled to estimate the number
of pickups and dropoffs in that interval. For each interval between t and s we
add the sampled number of pickups to and subtract the number of dropoffs
from the number of bikes at the start of the interval (which is n at timet).
The result represents a possible future state of the docking station which we
call a rollout.
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To make a prediction, Kaleta computes 1000 rollouts and divides the
number of rollouts for which a bike was available at the end by 1000 to get
the probability of a bike (Algorithm 1) being available. The same principle
is applied to calculate the probability of an empty space being available at a
docking station.

Algorithm 1 Kaleta’s sampling of the Poisson distribution to predict bicycle
availability

3.1.3 Cycle journey planning

In Kaleta’s journey planner, the user sets inputs their risk averseness, a value
between 0 and 1 where 1 is the most risk averse, along with the time they
want to start their journey.

To calculate a complete cycle route with respect to the user’s risk averse-
ness, Kaleta’s journey planner searches for the nearest docking stations to
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the start and end points of the journey. It then uses the A* algorithm to find
a cycling route between the docking stations, a walking route from the start
point to the start docking station and a walking route from the end docking
station to the end point. If the probability of a bike being available is less
than the user’s risk averseness, the route is rejected and the search is tried
again from the next nearest docking stations to the start and end points.

3.1.4 Mixed route calculation

Kaleta calculates a route that mixes cycling and walking with respect to
the time allowed by the user for the journey, input as a user preference. To
compute routes with a cycling and tube portion, Kaleta began by calculating
a tube route. The tube route is assumed to be the fastest possible route
between any two points. If the overall time taken by the tube route is less
than the time allowed by the user, the routing algorithm tries to create a
slower route by taking stations off each end of the tube route (getting on the
tube later or off it earlier). The extra distance is made up by cycling. The
longest route that falls within the time allowed by the user is given to the
user as the preferred mixed route.

3.2 Testing for a Poisson distribution

Kaleta [30] treated the number of pickups and dropoffs within a 15 minute
interval of the day as following a Poisson distribution. We would like to
verify statistically that this is indeed the case. Two hypothesis tests de-
scribed by Brown [27] could provide evidence that the data follows a Poisson
distribution.

3.2.1 Likelihood ratio test applied to a Poisson distribution

The likelihood ratio test ’s null hypothesis is that all the observed data points
came from the same Poisson distribution, and its alternative hypothesis is
that each data point comes from some Poisson distribution with λ > 0. This
can show that the data doesn’t come from a Poisson distribution if the null
hypothesis is rejected. However if the null hypothesis is accepted, we can
only say there is not enough evidence to prove the data doesn’t follow a
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Poisson distribution. The test statistic is:

TLR = 2
n∑
i=1

Xiln

(
Xi

X̄

)
(28)

It is distributed as a Chi-squared variable with n− 1 degrees of freedom, so
we reject the null hypothesis when TLR > χ2

n−1;1−α.

3.2.2 Conditional Chi-squared test applied to a Poisson distribu-
tion

The Conditional Chi-squared test ’s null hypothesis states that the data came
from a uniform multinomial distribution, whereas its alternative hypothesis is
that the data came from a Poisson distribution. This shows there is evidence
to support the data coming from a Poisson distribution as opposed to a
uniform distribution if the null hypothesis is rejected. The test statistic is:

TCC =
(
∑
Xi − X̄)2

X̄
(29)

It is also distributed as a Chi-squared variable with n−1 degrees of freedom.
We reject the null hypothesis if TCC > χ2

n−1;1−α. Neither test can prove
beyond doubt that the data follows a Poisson distribution but can provide
us with good evidence to believe whether it is or not.

3.2.3 Inter event arrival times

Another approach described by Neiman and Loewenstein [31] is based on the
fact that the time between events follows an exponential distribution if the
number of events in an interval follows a Poisson distribution. They check
how well the inter event times fits an exponential distribution as well as how
well they fit a straight line on a logarithmic scale.

3.3 Poisson mixture models

Church and Gale [28] describe how Poisson mixtures can be applied to esti-
mate the probability distributions of words in text. Gaussian mixture mod-
els as discussed in section 2.6.1 provide a continuous probability distribution,
but the frequency of bike pickups or dropoffs are discrete. A Poisson mixture
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model might be more appropriate. Expectation maximization can be gen-
eralized to work with Poisson distributions. This could account for hidden
variables such as day of week, weather and holidays that might affect the
number of bikes picked up or dropped off in our prediction model.

3.4 Call Centre Literature

Most of the cost in running a call centre comes from paying the agents to
answer calls. Queueing networks are commonly used to predict the perfor-
mance of telephone call centres in advance so the agents can be allocated
to provide the best service for the lowest cost. Queueing network models
depend on knowing the arrival rate of calls. As arrival rates are unlikely to
stay the same over a whole day, common practice is to split a day into time
intervals, treating arrivals as following a Poisson distribution with a constant
rate in each interval. The literature on predicting call arrival rates attempts
to improve on this common model, which is of particular interest to us as
this Poisson distribution based model is familiar from Kaleta’s [30] project.
The call arrival data they learn their models from is the same in principle as
TFL’s historical cycle journey statistics (See Section 2.4).

3.4.1 Statistical Analysis of a Telephone Call Center: A Queueing-
Science Perspective

Brown et al. [26] treat call arrival rate as an inhomogeneous Poisson pro-
cess. The calls are grouped into types and a hypothesis test is formulated
to check whether the historical data on arrivals of each type of call really
fit an inhomogeneous Poisson process. They fit a smoothing spline to the
daily arrival rate data. The advantage of this approach is that it provides a
continuous estimate for the arrival rate. This allows us to make the interval
size adaptive. At points in the day where the arrival rate is changing a lot,
smaller intervals can be used so that the rate changes less within each inter-
val. However, splines require many parameters to fit, which requires more
data to avoid overfitting and our data is likely to be insufficient.

28



3.4.2 Managing Uncertainty in Call Centres using Poisson Mix-
tures

Jongbloed and Koole [29] note that the assumption that the call arrival rate
remains constant in a small time interval is incorrect. Some uncertainty in
the arrival rate can be explained by weekly variations and changes, but this
cannot explain all the variability. It is possible to try and account for more
variables, but this complicates the analysis and may not be useful in prac-
tice. An example is weather, which could be accounted for but can only
be predicted a week in advance whereas agent rosters may need to be pub-
lished further in advance. Instead of assuming a single Poisson distribution
with a fixed rate within each time interval, a Poisson mixture model is used.
This helps to account for hidden parameters and the overdispersion in the
data caused by the change in rate within that interval. Again though, it
is not clear whether the improvement in fit is worth the increase in Model
complexity, especially in situations like ours where data is scarce.
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4 Software architecture

We continued with the same technologies used by Kaleta and built our jour-
ney planner on top of his journey planner implementation. One of the major
challenges we faced in this project was understanding the substantial exist-
ing codebase. We introduced a set of end-to-end tests of the router, which
calculate 13 routes of varying length in London and check them for sanity.
This allowed us to refactor existing code and introduce new features with
confidence that we weren’t breaking the existing routing engine.

Figure 10: Simplified architecture of the existing system

.

The existing system used the SQLAlchemy object relational mapping to
query with the database. A database access layer was built on top of it to
select the relevant data and map it from SQLAlchemy objects into python
data structures. The route calculation was built on top of the database access
layer, with abstractions for the edge cost models and the bike availability
prediction models used for routing (Figure 10).

Displaying the map and marking the routes was done on the client side
in Javascript, which makes an AJAX request to the server with the user’s
preferences gathered from the user interface.

We added what new database schema and data selection functions we
needed to the database access layer, but our primary modifications were
to the route calculation, the edge cost and bike availability modules. We
also added a new client webpage for the mobile application which largely
shared the same code for marking routes on the map as the main webpage
(routeHandler.js).
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Figure 11: Adding the mobile client

.
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5 Analysis of the Barclays Cycle Hire statis-

tics

5.1 Plotting Module

We created a simple analytics module able to generate plots over the Bar-
clays Cycle Hire statistics. This was made with a web based interface so
anyone could generate and view plots over the Barclays Cycle Hire data. See
Appendix E to see how it is used. These plots helped us familiarize ourselves
with the shape of the data and inspired our on Machine Learning models.

5.1.1 Mean number of events

We made it possible for users to generate plots of the mean number of pickups
or dropoffs at any station over a single day or a week. Kaleta’s [30] Machine
Learning model relied on the assumption that the pickups and dropoffs within
a 15 minute interval followed a Poisson distribution with a constant rate λ.
Kaleta’s evaluation had already noted that this wasn’t necessarily true for
every 15 minute time interval at every station.

Plotting the mean numbers of pickups and dropoffs over all the days of
data, we saw some patterns emerge. Many stations have a pronounced peak
in the number of dropoffs and number of pickups at a particular time of day.
For some stations, such as Vauxhall Bridge, Pimlico and Waterloo Station
3, the number of pickups peak in the morning and the number of dropoffs
peaks in the evening, as shown in Figure 12 and 13.

The stations that follow this usage pattern include the major transport
hubs such as Waterloo Station and Belgrove Street, King’s Cross. This pro-
vides evidence that Barclays Cycle Hire is being used as a solution to bridge
the ’last mile’ (Section 2.2) in their commute to and from work.
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Figure 12: Waterloo Station 3 mean dropoffs over all the days of data

.

Figure 13: Waterloo Station 3 mean pickups over all the days of data

.
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5.1.2 Frequency Density of events in a given interval

For a given time interval, specified by the user we plotted the frequency
density with which different numbers of events occurred.

As the interval size is increased, we observed the overdispersion described
by Jongbloed and Koole [29]. However even in a 15 minute interval, as used
by Kaleta, the number of pickups and dropoffs often did not look like it
followed a Poisson distribution.

5.2 Testing for a Poisson Distribution

The shape of the frequency density data in Section 5.1.2 and the results of our
regression model described in Section 6 gave us reason to doubt that it was
reasonable to assume that the pickup and dropoff rate in a 15 minute time
interval would follow a Poisson distribution. We did the likelihood ratio test
and the conditional chi-squared test described in section 3.2 on the Barclay
Cycle Hire Statistics. We used 15 minute time intervals over the 20 sample
stations discussed in section 2.3. We chose 3 times of day to do the tests and
chose a 1% significance level:

• Morning 8am-9am

• Evening 5pm-6pm

• Afternoon 2pm-3pm

These are the times of day that are interesting to us from looking at the
daily trends in pickup and dropoff rate. The morning and afternoon periods
are the ones which tend to have a high pickup and dropoff rate and where
there is likely to be a change in rate even within a 15 minute interval. The
afternoon period is less busy for most stations and is more likely to have a
constant rate within each time interval.

For 59.6% of the dropoff likelihood ratio tests and 58.8% of the pickup
likelihood ratio tests, we rejected the null hypothesis that the data is from a
single Poisson distribution with rate λ. Additionally, for 28.8% of the dropoff
chi-squared tests and 25% of the pickup chi-squared tests we accepted the
null hypothesis that the data came from a multinomial uniform distribution
rather than a Poisson distribution. From this evidence we decided to drop
the assumption that the data was from a single Poisson distribution and
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formulated the Poisson mixture model described in section 6.2. A complete
listing of the results is available in Appendix A.

5.3 Finding the optimal number of Poissons to use in
the mixture model

We wanted to verify statistically whether a Poisson mixture model would be
an improvement on using a single Poisson distribution to model the number
of pickups and dropoffs within a time interval. A mixture of k Poisson
distributions will always explain the data at least as well as a mixture of
k − 1 Poissons, which is a special case of a mixture of k Poissons. To test
whether the improvement in likelihood between a mixture of j Poissons and
a mixture of j+1 Poissons is statistically significant, we first fit both models
to the data and compute the likelihood of the data being generated by each
model. We then compute the test statistic for the observations within a given
time interval:

TLR = −2ln

(
likelihoodofmixtureofjPoissons

likelihoodofmixtureofj + 1Poissons

)
(30)

which we compare to a chi-squared distribution with 2 degrees of freedom,
as a mixture of j + 1 Poissons has 2 more parameters than a mixture of j
parameters. If the result indicates the difference is significant at the 1% level,
we repeat this for j + 1 and j + 2 Poissons and so on, until we find some
k such that the Poisson mixture with k + 1 parameters is not significantly
more likely than the Poisson mixture with k parameters at the 1% level. k is
then the optimal number of Poissons to use for that time interval. Note that
a mixture of 1 Poisson is the same as Kaleta’s method. We performed this
process for our 20 sample stations using 15 minute time intervals and the
same morning, afternoon and evening time periods discussed in section 5.2.
We found that 54% of the pickup intervals and 55% of the dropoff intervals
could have their pickups and dropoffs explained significantly better by a
mixture of more than 1 Poisson distribution. Furthermore, busy stations like
Belgrove Street, King’s Cross and Waterloo Station 3 had an optimal mixture
of up to 4 Poissons. This fits with the idea that the data is overdispersed
due to the change in rate within an interval, as discussed in section 3.4.2. A
complete listing of the results is available in Appendix B.
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6 Predicting Bicycle Availability

As discussed in Section 3.1, Kaleta [30] built a prediction model for the
availability of bikes by modeling both arrivals and departures of bikes as a
Poisson process with a constant rate within 15 minute intervals. These rates
were learned using the Barclays Cycle Hire statistics which contained details
of every bike journey made in the first six months of the scheme. We aimed
to use the more recent set of Barclays Cycle Hire statistics to build a more
representative model for better predictions.

6.1 Regression

Our first idea to refine Kaleta’s approach was to try linear regression on
the bicycle pickup and dropoff rates across the day. Continuing with the
assumption that the pickup and dropoff rates follow a Poisson distribution
within some small time interval, we wanted to be able to predict the rate
parameter λ for any given time of day. Instead of having fixed 15 minute
intervals, this would allow us to take samples in smaller intervals for times
of day where the rates are changing more quickly.

Instead of treating the data points as having been generated by a Gaussian
distribution with some mean µ for any given time of day, we treat them as
having come from a Poisson distribution with mean λ. This allows us to find
predict the rate for any input time of day.

6.1.1 Derivation

Treat the target variable t as coming from a Poisson distribution with rate λ
where λ comes from a linear modelwTφ(x). The likelihood of target variable
t given inputs x and weight vector w:

p(t|x,w) = Poi(t|wTφ(x)) (31)

If we have N training observations, the likelihood over all the data (repre-
sented N-dimensional target value vector t and matrix of inputs X) is given
by:

p(t|X,w) =
N∏
n=1

Poi(tn|wTφ(xn)) (32)
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Expanding with using the pmf of the Poisson distribution leads to:

p(t|X,w) =
N∏
n=1

(wTφ(xn))tne−w
Tφ(xn)

tn!
(33)

The likelihood is always conditioned on X so we drop it for convenience.
As ln is a monotonic increasing function, maximising the likelihood is equiv-
alent to maximising the log-likelihood.

ln(p(t|w)) =
N∑
n=1

ln

(
(wTφ(xn))tne−w

Tφ(xn)

tn!

)
(34)

=
N∑
n=1

ln
(

(wTφ(xn))tne−w
Tφ(xn)

)
− ln(tn!) (35)

=
N∑
n=1

tnln(wTφ(xn))− (wTφ(xn))ln(e)− ln(tn!) (36)

=
N∑
n=1

tnln(wTφ(xn))−wTφ(xn)− ln(tn!) (37)

Formula for differentiation with respect to a vector x

∂f

∂x
=

(
∂f

∂x1
, ...,

∂f

∂xn

)
(38)

Differentiate ln(p(t|w)) with respect to w to get the gradient of the log
likelihood. M is the number of basis functions.

∂tnln(wTφ(xn))

∂w
=

(
∂tnln(wTφ(xn))

∂w1

, ...,
∂tnln(wTφ(xn))

∂wm

)
=

(
∂tnln(

∑M
k=1wkφk(xn))

∂w1

, ...,
∂tnln(

∑M
k=1wkφk(xn))

∂wm

)

=

(
tnφ1(x)

wTφ(xn)
, ...,

tnφm(x)

wTφ(xn)

)
=

tnφ(xn)T

wTφ(xn)
(39)
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∂wTφ(xn)

∂w
=

(
∂wTφ(xn)

∂w1

, ...,
∂wTφ(xn)

∂wm

)
=

(
∂
∑M

k=1wkφk(xn)

∂w1

, ...,
∂
∑M

k=1wkφk(xn)

∂wm

)
= (φ1(xn), ..., φm(xn))

= φ(xn)T (40)

∂ln(tn!)

∂w
= 0 (41)

Combining results 38, 39 and 40, we get:

∇ln(p(t|w)) =
N∑
n=1

tnφ(xn)T

wTφ(xn)
− φ(xn)T (42)

6.1.2 Results

This model did not give us the improved predictions we expected, doing worse
than Kaleta’s prediction algorithm (Section 10.1). This led us to challenge
the assumption that the data comes from a Poisson distribution and do the
statistical analysis discussed in section 3.2.

6.2 Poisson mixture model

From our statistical analysis, we saw that for most stations there was good
evidence that the data did not follow a Poisson distribution, so the assump-
tion that all the data was generated by a Poisson distribution with some
mean λ was not reasonable. Jongbloed and Koole [29] note that for call cen-
tre data, the rate of call arrivals changes even within short intervals. This
results in the number of calls within each time interval being overdispersed.
They used a Poisson mixture model to account for this. With further test-
ing, we found that a mixture of more than one Poisson distribution explained
the data better than a single Poisson distribution statistically. We created
a Poisson mixture model and learned its parameters within each 15 minute
interval instead. We present our own derivation of an expectation maximiza-
tion algorithm to find the parameters of a k Poisson mixture model.
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6.2.1 Derivation

Treat the arrivals and departures in a time interval as a mixture of Poisson
distributions in the form:

p(x) =
K∑
k=1

πkPoi(x|λk) (43)

Let z be a K-dimensional binary random variable represented by a one of
k vector where a particular zk is equal to 1 and all other elements are zero.
The mixing coefficients πk specify the marginal distribution over z

p(zk = 1) = πk (44)

Where the following properties hold:

0 ≤ πk ≤ 1 (45)
K∑
k=1

πk = 1 (46)

z is a one of K representation so the distribution over z can be written:

p(z) =
K∏
k=1

(πk)
zk (47)

The conditional value of x for a particular value of z is therefore:

p(x|zk = 1) = Poi(x|λk) (48)

p(x|z) =
K∏
k=1

Poi(x|λk) (49)

We can now calculate the joint distribution:

p(x, z) = p(z)p(x|z) =
K∏
k=1

(πk)
zkPoi(x|λk)zk (50)

And obtain the marginal distribution of x by summing over the possible
z
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p(x) =
∑
z

p(z)p(x|z) =
K∑
k=1

πkPoi(x|λ) (51)

It is then possible to calculate the probability of z given x using Bayes’
Theorem:

p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)∑K
j=1 p(zj = 1)p(x|zj = 1)

(52)

=
πkPoi(x|λk)∑K
j=1 πjPoi(x|λj)

(53)

= γ(zk) (54)

This γ(zk) is referred to as the responsibility that component k of the mixture
takes for explaining x.

Now if we let X be an N × 1 matrix of observations of x the likelihood
function is given by:

p(X|λ,π) =
N∏
n=1

K∑
k=1

πkPoi(x|λk) (55)

ln (p(X|λ,π)) =
N∑
n=1

ln

(
K∑
k=1

πkPoi(x|λk)

)
(56)

This can be differentiated with respect to λk to find a maximum likelihood
expression for λk

∂
∑N

n=1 ln
(∑K

k=1 πkPoi(x|λk)
)

∂λk
=

∂
∑N

n=1 ln
(∑K

k=1 πk
πkλ

xn
k e−λk

xn!

)
∂λk

(57)

Using the chain rule with u =
∑K

k=1 πk
πkλ

xn
k e−λk

xn!
and applying the product
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rule to differentiate u we obtain:

N∑
n=1

1∑K
k=1 πk

πkλ
xn
k e−λk

xn!

∑K
k=1 πk

(
−λxnk e−λk + e−λkxnλ

xn−1
k

)
xn!

(58)

=
N∑
n=1

πk
(
−λxnk e−λk + e−λkxnλ

xn−1
k

)
1
xn!

(∑K
k=1 πkλ

xn
k e

−λk
)
xn!

(59)

=
N∑
n=1

πk
(
−λxnk e−λk + e−λkxnλ

xn−1
k

)∑K
k=1 πkλ

xn
k e

−λk
(60)

We can divide both the top and the bottom by xn! to get a more familiar
form:

N∑
n=1

πk(−λxnk e−λk+e−λkxnλ
xn−1
k )

xn!∑K
k=1 πkλ

xn
k e−λk

xn!

(61)

=
N∑
n=1

πk
(−λxnk e−λk+e−λkxnλ

xn−1
k )

xn!∑K
k=1 πk

λxnk e−λk

xn!

(62)

=
N∑
n=1

πk

(
−λxnk e−λk

xn!
+

e−λkxnλ
xn−1
k

xn!

)
∑K

k=1 πk
λxnk e−λk

xn!

(63)

=
N∑
n=1

πk

(
−λxnk e−λk

xn!
+

λxn−1
k e−λk

(xn−1)!

)
∑K

k=1 πk
λxnk e−λk

xn!

(64)

=
N∑
n=1

πk (−Poi(xn|λk) + Poi(xn − 1|λk))∑K
k=1 πkPoi(xn|λk)

(65)

We can see that the first term inside the sum is the responsibility γ for
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xn

N∑
n=1

πk (−Poi(xn|λk) + Poi(xn − 1|λk))∑K
k=1 πkPoi(xn|λk)

(66)

=
N∑
n=1

− πk (Poi(xn|λk))∑K
k=1 πkPoi(xn|λk)

+
πk (Poi(xn − 1|λk))∑K

k=1 πkPoi(xn|λk)
(67)

=
N∑
n=1

−γ(znk) +
πk (Poi(xn − 1|λk))∑K

k=1 πkPoi(xn|λk)
(68)

Now we can set the first derivative to zero to derive an expression for λk:

0 =
N∑
n=1

πk

(
−λxnk e−λk

xn!
+

λ
xn−1
k e−λk

(xn−1)!

)
∑K

k=1 πk
λxnk e−λk

xn!

(69)

(70)

Multiplying both sides by λk we get:

0 =
N∑
n=1

πk

(
−λkλxnk e−λk

xn!
+

λxnk e−λk

(xn−1)!

)
∑K

k=1 πk
λxnk e−λk

xn!

(71)

0 =
N∑
n=1

πk

(
−λkλxnk e−λk

xn!
+

xnλ
xn
k e−λk

xn(xn−1)!

)
∑K

k=1 πk
λxnk e−λk

xn!

(72)

0 =
N∑
n=1

πk

(
−λkλxnk e−λk

xn!
+

xnλ
xn
k e−λk

xn!

)
∑K

k=1 πk
λxnk e−λk

xn!

(73)

This can again be expressed in terms of the Poisson probability mass
function:

0 =
N∑
n=1

πk (−λkPoi(xn|λk) + xnPoi(xn|λk))∑K
k=1 πkPoi(xn|λk)

(74)
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0 =
N∑
n=1

−λk
πk (Poi(xn|λk))∑K
k=1 πkPoi(xn|λk)

+ xn
πk (Poi(xn|λk))∑K
k=1 πkPoi(xn|λk)

(75)

0 =
N∑
n=1

−λkγ(znk) + xnγ(znk) (76)

Now we denote
∑N

n=1 γ(znk) as Nk

N∑
n=1

λkγ(znk) =
N∑
n=1

xnγ(znk) (77)

λk

N∑
n=1

γ(znk) =
N∑
n=1

xnγ(znk) (78)

λk =
1

Nk

N∑
n=1

xnγ(znk) (79)

Next, we can derive an expression for πk by differentiating with respect
to πk. A Lagrange multiplier is used to take care of the constraint that the
mixing coefficients πk sum to one. We maximise:

ln(p(X|π,λ)) + λlagrange

((
K∑
k=1

πk

)
− 1

)
(80)

To do this we first compute the derivative:

∂

∂πk
ln(p(X|π,λ)) + λlagrange

((
K∑
k=1

πk

)
− 1

)
(81)

Using the chain rule, we get:

N∑
n=1

Poi(xn|λk)∑K
j=1 πjPoi(xn|λk)

+ λlagrange (82)

If we set the derivative to zero, we can solve for λlagrange
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0 =
N∑
n=1

Poi(xn|λk)∑K
j=1 πjPoi(xn|λk)

+ λlagrange (83)

Multiply through by πk to get:

0 =
N∑
n=1

πkPoi(xn|λk)∑K
j=1 πjPoi(xn|λk)

+ πkλlagrange (84)

πkλlagrange = −
N∑
n=1

πkPoi(xn|λk)∑K
j=1 πjPoi(xn|λk)

(85)

πkλlagrange = −
N∑
n=1

γ(znk) (86)

Sum both sides over all k to get:

K∑
k=1

πkλlagrange = −
K∑
k=1

N∑
n=1

πkPoi(xn|λk)∑K
j=1 πjPoi(xn|λk)

(87)

λlagrange

K∑
k=1

πk = −
K∑
k=1

N∑
n=1

γ(znk) (88)

λlagrange

K∑
k=1

πk = −
N∑
n=1

K∑
k=1

γ(znk) (89)

∑K
k=1 πk = 1 by definition of πk. γ(znk) = p(zk = 1|xn) so the sum of this

over all possible states k must be one. We get:

λlagrange = −
N∑
n=1

1 (90)

λlagrange = −N (91)
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We can then eliminate λlagrange:

λlagrangeπk = −
N∑
n=1

γ(znk) (92)

−Nπk = −
N∑
n=1

γ(znk) (93)

πk =
Nk

N
(94)

Now we have the basis for an expectation maximization algorithm to find
the parameters of our Poisson Mixture Model.

1. Initialize the rates λk and mixing coefficients πk and evaluate the log-
likelihood

ln (p(X|λ,π)) =
N∑
n=1

ln

(
K∑
k=1

πkPoi(x|λk)

)

2. E-Step Evaluate the responsibilities using the current parameter val-
ues

γ(zk) =
πkPoi(x|λk)∑K
j=1 πjPoi(x|λj)

3. M-Step Re-estimate the parameters using the current responsibilities

λk =
1

Nk

N∑
n=1

xnγ(znk)

πk =
Nk

N

4. Evaluate the log-likelihood and check if either the log-likelihood or the
parameters have converged
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7 Routing

7.1 Cost function

7.1.1 Exponential cost

Kaleta [30] used the A* search algorithm to find the shortest path in the
graph of London. We need to combine the attributes of each graph edge has
such as length, bike accessibility and ascent, into a single cost. Kaleta defined
the overall cost of C(a, b) traversing an edge from node a to its neighbour b
as a weighted sum of some cost function over each attribute, ci(a, b).

C(a, b) =

#edgeattributes∑
i=1

wi × ci(a, b) (95)

Kaleta used the cost function:

1− e
−xi
di (96)

where xi is the value of the ith attribute and di is the average value of the ith

attribute across all the edges in the graph. The weights wi are input as user
preferences. This returns a cost between 0 and 1 for each edge and prevents
costs with with high absolute values from overshadowing other costs. An
example is the length verses ascent. Edges in the graph of London have an
average length of 1340m [30], but there is no edge with more than 100m of
ascent.

If we scale them using Kaleta’s cost function, both become values between
0 and 1. This has the nice property that if we weight the costs equally
wlength = wascent, ascent contributes as much to the cost as the length does.

However when we used this algorithm in practice we found unexpected
results. Even when all attributes except for the edge length were given weight
0, this cost function resulted in a longer path than the simplest cost function
c(a, b) = xi for all the paths we tried.

We chose instead to use the simplest cost function c(a, b) = xi and set
wlength = 1. All the other attributes could then be reasoned about in terms
of length by setting sensible allowed ranges for the weight of each attribute,
for example we could allow wascent to be in the range 0-500. If wascent = 100
for example, it would capture the idea that the user would be willing to go
500 metres further to avoid 1 metre of ascent.
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7.2 Ascent Averseness Preference

Using NASA’s SRTM dataset described in Section 2.4.5, we augmented all
the nodes in our graph of London with an SRTM elevation. We were then
able to add an elevation delta to all of the graph’s edges, representing the
amount of ascent required to traverse the edge. This allowed us to add a
new user preference ascent averseness. This capture the idea that the user
might be willing to travel a longer distance to avoid some ascent. Our cost
function becomes:

cost = length + ascent_averseness * elevation_delta

7.3 Transfer Time

We define a transfer as either entering or exiting a tube station or changing
lines at a tube station. We added a new feature to allow the user to enter the
transfer time, the amount of time they would expect transfers to take. Any
tube or mixed route is calculated with respect to this user defined transfer
time. This allows users who are averse to changing lines avoid find a route
that avoids changeovers as much as possible by entering a large transfer time.

7.3.1 Augmented Graph

The existing tube graph consisted of a single node for each tube station. For
each pair of directly connected tube stations there was an edge, with the
following attributes:

• length in metres

• time in minutes

• the lines that directly connect the tube stations

To allow changeover penalties to be applied, we used a new format for the
graph. For each station instead of a single node, we have one node represent-
ing each line’s platform and one node representing the station entrance. We
introduce edges between all of these to form a strongly connected network
of nodes for each station. Each of these edges has a time cost, represent-
ing the time taken to transfer between platforms, or to enter or leave the
station. This time cost is currently set to the user defined transfer time
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for all the edges that connect the different parts of a station. Edges repre-
senting tube journeys connect different stations together by connecting their
platform nodes.

7.4 Mixed route algorithm

Kaleta’s mixed route algorithm assumed that the fastest mixed route would
contain no bike portion (Section 3.1.4). This algorithm calculated the short-
est tube route, and if the user allowed more time than the duration of this
route, the algorithm would try to add a cycling portion to the start or end
of the route. As soon as there is enough cycling to fill up the time allowed,
the search. There are a number of problems with this:

• Having two cycling sections in a tube route is inconvenient and we can
always find a route with one cycling portion that takes just as long

• We found in practice this algorithm was slow and often an unreasonable
route was returned.

• The assumption that taking the tube is always faster a route that
takes both tube and bike isn’t warranted, especially now that the user
is able to set their own expected transfer time, which could result in
the calculated tube journey being a lot longer in duration than the bike
journey.

We present a simplified algorithm (Algorithm 2 which we show works well
in practice in section 10. This evaluates potential mixed routes by adding
bike portions from each station along the tube route to the end point. It
chooses the journey that most closely matches the time the user allows.

48



Algorithm 2 Psuedocode for the mixed route calculation algorithm

function calculateMixedRoutes(startPoint, endPoint,
allowedT ime)

startStation← getNearestTubeStation(startPoint)
endStation← getNearestTubeStation(endPoint)
tubeRoute← getTubeRoute(startStation,endStation)
startPortion← getWalkingRoute(startPoint,startStation)
possibleRoutes← []
for i = 1→ length(tubeRoute) do

tubePortion← tubeRoute[0→ i]
tubeStationPoint← tubeRoute[i].latlng
. Get the fastest cycle hire or walking route to the end point
endPortion← calculateCycleHireRoute(tubeStationPoint,endPoint)
route← concatenate(startPortion,tubePortion,endPoint)
possibleRoutes.append(route)

end for
returngetRouteClosestDuration(possibleRoutes,allowedTime)

end function
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8 Journey Planner

8.1 Docking Station Status Overlay

The ability to display the live docking station statuses alongside any calcu-
lated routes is not currently a feature present in any journey planners known
to us. We added a a layer of markers indicating the positions of all the active
Barclays Cycle Hire docking stations. This layer can be toggled on or off, as
they might otherwise hide important features on the map.

Using the Barclays Cycle Hire live feeds we were able to additionally dis-
play the live status of each docking station upon clicking a marker, including
the docking station name, the number of bikes, the number of docks and the
time of the last status update.

8.2 Elevation Profiles

To go with the new ascent averseness preference, we wanted a way for the
user to see for themselves the ascent and descent in each of the routes and
judge for themselves whether the calculated route is satisfactory. We added
a button to each route which opens a graph of the elevation above sea level
along the entire route. The total ascent along the route is also shown to the
user.

8.3 Tube Route Changeover Display

Kaleta’s journey planner was able to display a simple outline of the tube
routes it calculated, drawing a line between each station along the calculated
tube route. This leaves the user to work out for themselves which lines to
take and where to changeover. We added markers to the map to inform the
user what line they should take at each station.

Additionally, in Kaleta’s journey planner the tube was only used as part
of calculating a mixed route. It was not possible to request the calculation
of a tube route without potentially including a bike portion. We have added
the calculation of a pure tube route to every routing request as it is relatively
fast and provides a useful point of comparison for the mixed routes and bike
routes we calculate.
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Figure 14: A route through Hyde Park marked on the map, along with its
corresponding elevation profile

8.4 Own bike

There are still currently large portions of London with no Barclays Cycle
Hire docking stations, most notably south of the Thames. No sensible routes
involving the Barclays Cycle Hire scheme can be calculated when the start
point or end point is placed in these areas. Some of our routing preferences
can be applied if the user owns a bike, most notably route busyness and ascent
averseness. We added the ability to calculate a bike route assuming bike
ownership while taking road busyness and ascent averseness into account.
Additionally, TFL allow taking a folding bike anywhere on the tube and a
non-folding bike on many lines during less busy times [2]. We added the
ability to calculate mixed routes for a user owned bike to help accommodate
this.
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9 Mobile Application

The existing journey planner web page was not suited to use on a handheld
device. To set the start and finish positions, it is necessary to right click
to bring up a context menu. While a right click can be translated into a
long press of the touch screen, it is much harder to be precise. Much less
of the map is visible on the smaller screen, so a user on the move could
end up wasting their time and data allowance panning the map searching
for their start and finish positions. The user interface for setting the user’s
preferences on the left of the screen is too verbose and takes up too much
horizontal screen space for the application to be used effectively on a mobile
device. We included a subset of the functionality of the full journey planner
for the mobile application to keep the user interface clean and simple to use
on the move.

9.0.1 Geocoding

To solve the problem of not being able to right click, we introduced setting
the journey start and end points by typing in an address. A request is then
sent to Nominatim’s geocoding API, which returns a list of possible locations
matching the address as a JSON array. We present these possible locations
to the user, who selects one of them to set the start or end point.

9.0.2 User’s location

To get the user’s location, we use the HTML5 Geolocation API, which allows
us to access whatever location the device running the browser is capable of
providing, including the GPS location on mobile devices (subject to user
consent). If the user’s location is available we mark it on the map and allow
the user to choose ’My Location’ as the start or end point.
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10 Results and Evaluation

10.1 Machine Learning Models

We first learned the parameters of our regression model. We then plotted the
predictions of our regression model across the day against the mean number
of pickups and dropoffs in small intervals across the day. From inspecting
these plots, the regression appears to fit the data well for stations with a
variety of usage patterns without overfitting.

Figure 15: Predictions of regression model for pickups at South Kensington
station. Mean pickups over the data for small time intervals across the day are
marked in red as a reference
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Figure 16: Predictions of regression model for dropoffs at Vauxhall Bridge, Pim-
lico. Mean dropoffs over the data for small time intervals across the day are marked
in red as a reference
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Figure 17: Predictions of regression model for dropoffs at Belgrove Street, King’s
Cross. Mean dropoffs over the data for small time intervals across the day are
marked in red as a reference
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We have already discussed how we have statistically validated that our
mixture model fits the data better than a single Poisson distribution (Sec-
tion 5.3). We can also similarly examine the fit of our mixture model by
learning its parameters, plotting the probability of all possible numbers of
pickups or dropoffs the mixture can produce and comparing it with the ob-
served frequency density of pickups or dropoffs in the same time interval. We
can see that the probability distribution of a learned Poisson mixture model
for Waterloo Station 3 (Figure 18) closely matches the shape of the observed
frequency densities over all the data (Figure 19).

Figure 18: Probability distribution of Poisson mixture model over numbers of
pickups between 1700 and 1800
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Figure 19: Observed frequency density of pickups at Waterloo Station 3 between
1700 and 1800 across all the days of data

10.1.1 Prediction

Though the model has been shown to fit the data, this does not necessarily
mean we have improved predictions. To test the predictions, we collected
a month of the live feed data discussed in section 2.4.2. We then took a
uniform sample of start times across the day, spread 20 minutes apart. For
each sample start time, we make predictions up to 30 minutes in the fu-
ture. We compare these predictions with the observed number of bikes from
the collected data. We then plotted the root mean square error in the pre-
dicted number of bikes over time. We found for busy stations, like Belgrove
Street and Waterloo Station 3, the 3 Poisson mixture model performed best
especially as the predictions went further into the future.

For less busy stations like Old Quebec Street, all the methods performed
very similarly, which is what we’d expect as the absolute change in the num-
ber of bikes is very small even over 30 minutes.

If we examine the frequency density graph (Figure ??) we see its peaks
(which correspond roughly to the location of the Poisson distributions for
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Figure 20: Root Mean Square error of prediction models for Waterloo Station 3

our mixture model) are far apart. If the data were overdispersed due to a
change in the pickup rate within the time interval, we would expect peaks
that are relatively close together, such as the cluster of peaks we can see
from 0 to 25. However there are two peaks at 135 and 175 which are distant
from the rest. This suggests that there are other hidden variables that cause
more variability in the observed pickups and dropoffs than we’d expect from
overdispersion of the data.

One plausible explanation is the difference between weekday and weekend
usage patterns. Saturdays and Sundays could be the cause of the peaks close
to 0, as we’d expect less usage of the cycle hire scheme for a commuter hub
like Waterloo on those days. The weekdays could be the cause of the non-zero
peaks.

58



Figure 21: Root Mean Square error of prediction models for Belgrove Street,
King’s Cross

Our algorithm works by sampling the mixture model, taking an average
over all the component Poisson distributions. If it is the case that the vari-
ability is explained by overdispersion, this is the best we can do. However
if there are other hidden variables, we could potentially make significantly
better predictions by finding out what the hidden variable is and splitting up
the data based on observations of this variable. For example, if the variabil-
ity is caused by the difference between weekdays and weekends, we can split
the data into weekdays and weekends and learn a separate Mixture Model
for each. Then we can use the appropriate model depending on whether it’s
a weekday or weekend when we get a journey planning request.
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Figure 22: Root Mean Square error of prediction models for Old Quebec Street,
Marlyebone

10.2 Routing

We wanted to be able to demonstrate that the router would sensibly adjust
the route based on the user’s preferences in a number of scenarios.

The figures in this section show only the key preference settings for each
scenario alongside the route returned, marked on the map. For a more com-
plete demonstration of the user interface, see Appendix C

10.3 Scenario 1 - Hill avoidance

We can see from picking any route in London, as we increase the ascent
averseness the sum of ascent over the route decreases.
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To show that this preference is useful, we wanted to be able to demon-
strate that on a route where the shortest route goes over a hill, but would
avoid the hill if ascent averseness was non-zero. This is a feasible case in
which the user would prefer a longer route. This behaviour is demonstrated
at Parliament Hill, one of the highest peaks in London.

The shortest route passes straight over the hill.
Once ascent averseness is set to a value greater than zero, a route around

the hill is found. From the elevation profile we can see the total ascent is
60.68 metres as opposed to the 76.88 metres of the shortest route. In absolute
terms, the maximum height above sea level is around 110 metres as opposed
to 115 metres.
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Figure 23: Fastest route over Parliament Hill
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Figure 24: Preferred route around Parliament Hill
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10.4 Scenario 2 - Changeover avoidance as transfer
time increases

We wanted to be able to demonstrate that as the user increases the expected
tube transfer time, the number of changeovers on the tube route would de-
crease. We set the start point to South Kensington and the end point to
Liverpool Street.

This is a route through the central London tube network and many possi-
ble London Underground lines could be used to get between the two stations.
First we set the expected transfer time to zero, which means changeovers have
no penalty applied. The resulting route is shown in figure 25. A route with
3 changeovers and using 4 London Underground lines is calculated.

Figure 25: Tube route with preferences and transfer time set to 0

We then set a more realistic expected transfer time, 5 minutes for the same
stations. This found a more sensible route with only a single changeover at
Holborn (Figure 26).

Finally, we set the transfer time to 7 minutes, a feasible changeover time
for busy times of day or a setting for users who are averse to changeovers.
This results in a longer route along the Circle line without any changeovers
at all (Figure 27).
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Figure 26: Tube route with preferences set to 0 and transfer time set to 5 minutes

Figure 27: Tube route with preferences set to 0 and transfer time set to 7 minutes
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10.5 Scenario 3 - Selecting a different docking station
depending on availability

We wanted to show that our journey planner with our Poisson mixture model
integrated could be capable of choosing different starting and ending stations
for a Barclays Cycle Hire journey based on availability. We consider a journey
from around St James’ Park tube station, for a journey to start at the current
time (Mon 18 Feb 8:04am). When we set the availability preference to non-
zero (which means we are averse to the risk of not being able to pickup or
dropoff a bike) we get a different route, shown in Figure 28 to the shortest
route shown in Figure 29 where we drop off our bike at Eaton Square instead
of Eccleston Place.

Figure 28: Safe route found when the availability preference is non zero at 8:04am

If we examine the docking station status at Eaton Square (Figure 30) and
Eccleston Place (Figure 31), this seems to be a sensible decision. There are
no docks available at Eccleston Place, while there are plenty of docks and
bikes at Eaton Square.

If we instead plan to start the journey one hour in the future instead of
immediately we get the same result, shown in Figure ??. However if plan
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Figure 29: Fast route found when availability is not taken into consideration at
8:04am

to start the journey two hours in the future, the router decides that going
through Eccleston Place is safe, shown in Figure 33.

We can examine the pickup and dropoff data for Eccleston Place to de-
termine whether this is a sensible result From figure 34, we can see that after
the one hour interval, we would expect just over one bike to have been picked
up. After two hours the expected change is close to two bikes.

This change of less than two bikes seems like a small change, but it is
enough to explain the change in route given our current sampling algorithm.
As discussed in section 2, our algorithm rolls out many possible futures and
considers only whether or not there are bikes available at the end of each
possible future, not how many are available. For a given rollout as long as
there is at least one bike at the end, that rollout will be considered as evidence
that bikes are available. However it could be argued that it is still risky to
direct the user to go to Eccleston Place if on average only one bike will be
picked up from that station before the user reaches it. We leave finding a
better method to evaluate risks to future work.
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Figure 30: Docking station status at Eaton Square, Belgravia

Figure 31: Docking station status at Eccleston Place, Victoria
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Figure 32: Safe route found when the availability preference is non zero and the
journey is to start one hour in the future
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Figure 33: Safe route found when the availability preference is non zero and the
journey is to start two hours in the future

Figure 34: Mean pickups and dropoffs at Eccleston Place, Victoria in 15 minute
intervals over all the Barclays Cycle Hire statistics
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10.6 Scenario 4 - Mixed routes that adapt to the time
the user allows

We wanted to show that our new trip chaining algorithm would be able to
produce longer journeys as the user allows more time. We consider a route
between South Kensington and Holborn. First we allow 20 minutes journey
time, with expected tube transfer time set to 1 and all other preferences set
to 0. This returns the fastest route our journey planner can find, a 27 minute
route which consists of only the tube and walking, shown in figure 35.

Figure 35: Route between Imperial College and Holborn, allowing 20 minutes
journey time

We then adjusted the journey time to allow 30 minutes (Figure 36) and
32 minutes (Figure 37). This finds longer routes with a larger cycling portion
mixed in.

Finally when we allowed 35 minutes for the journey, the planner returned
a cycling only route (Figure 38).
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Figure 36: Mixed route between Imperial College and Holborn, allowing 30
minutes journey time

We were also able to show our preferences worked well together. If we
consider again the case where we allow 20 minutes journey time. The journey
planner found a 27 minute route, all on the tube. The expected changeover
time that had been specified was one minute. Now if we increase the expected
transfer time to 5 minutes, the tube is no longer as fast as taking a Barclays
Bike directly and the route with cycling is the fastest route (Figure 39).

Consider again the case where we allowed 32 minutes to travel between
South Kensington and Holborn. These preferences resulted in a mixed route
where we get of the tube at Hyde Park Corner and cycle to Holborn (Fig-
ure 37). If we now increase our ascent averseness we get the route shown in
Figure 40, which gets off at Piccadilly Circus instead.

If we look at the elevation profile for the cycling portions of both routes,
the route which takes a bike from Piccadilly Circus (Figure 42) has less ascent
than the route which takes a bike from Hyde Park Corner (Figure 41). The
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Figure 37: Mixed route between Imperial College and Holborn, allowing 32
minutes journey time

cycling portion of his route has 7.36m of ascent as opposed to the 22.43m of
ascent if we take the route from Hyde Park Corner, avoiding approximately
15m of ascent.
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Figure 38: Mixed route between Imperial College and Holborn, allowing 35
minutes journey time
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Figure 39: Mixed route between Imperial College and Holborn, allowing 20
minutes journey time but now with expected transfer time set to 5 minutes
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Figure 40: Mixed route between Imperial College and Holborn, allowing 20
minutes journey time but now with expected transfer time set to 5 minutes

76



Figure 41: Elevation profiles for the cycling portion of the mixed route between
Imperial College and Holborn where we get on a bike at Hyde Park Corner

Figure 42: Elevation profiles for the cycling portion of the mixed route between
Imperial College and Holborn where we get on a bike at Picadilly Circus
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10.7 Mobile application

As discussed in section ??, our mobile web application includes a subset of
the functionality of the desktop application and shares the same code.

Thus for our evaluation of the mobile application, we were mostly con-
cerned about how well the application be rendered across different devices
and platforms. We tested our mobile application on a real android device,
as well as emulators and simulators for Apple and Android devices.

We performed the following tests across the platforms, which cover the
functionality of our the Android application.

1. Setting preferences by opening the preferences tab and adjusting the
sliders

2. Setting the start and end points of the journey using address search
and the user’s current location, if available

3. Searching for a journey and marking the route found on the map

We made adjustments to the mobile version of the application until all
these tasks could be performed on each platform and the website rendered
without problems.

10.7.1 Android devices

We performed the tests on a Samsung Galaxy Europa, a device which falls
into the smallest category of Android screen sizes. We also used the android
emulator to test the application on the standard and tablet screen sizes. We
did not find any issues.

10.7.2 iPhone

For iPhone we used the popular iPhone simulator TestiPhone.com [11].
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Figure 43: Marking start and finish locations, selecting a route to show and
setting preferences on an Android device in the smallest screen size category

Figure 44: Marking start and finish locations, selecting a route to show and
setting preferences on the iPhone
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10.7.3 iPad

For iPad we used the ipadpeek.com [11].

Figure 45: Underground route marked on the iPad in landscape mode
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11 Conclusion and Future Work

Through the course of this investigation, we have:

1. Challenged the assumption made by Kaleta’s prediction model (Chap-
ter 5) that the pickup and dropoff rate within each interval follows a
Poisson distribution and demonstrated that using a mixture of Pois-
son distributions results in predictions with a lower root mean squared
error (Chapter 6).

2. Integrated the mixture model of pickups and dropoffs into a complete
journey planner based on the one built by Kaleta .

3. Added the ability to calculate routes with respect to a user defined
tube transfer time and ascent averseness preference (Chapter 7) and
demonstrated that the journey planner is capable of finding sensible
routes in practice (Chapter 10).

4. Added new features to make the journey planner more informative,
including the docking station status overlay, the route elevation profiles
and the display of tube changeovers on the map (Chapter 8).

5. Improved journey planner usability by developing a handheld optimized
version of the web application capable of running across different hand-
held platforms (Chapter 9).

In the process of devising our machine learning models, we found there
was a statistically significant case for saying that the data did not follow a
Poisson distribution within a 15 minute time interval. At least some of this
this could be explained by the overdispersion of the data due to the change in
rate within each interval, but the distance between peaks in the data suggests
that there are other hidden variables at work.

From looking at the weekly trends in pickups and dropoffs, there seems to
be a case to split the data into weekday and weekend data. We found most
stations have less usage on weekends than weekdays. However, even after the
data is split into weekday and weekend data in relatively small time intervals,
a mixture model still explains the data significantly better statistically than
a single Poisson distribution, which suggest there are still one or more hidden
variables which cause this variability.
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We also found that whatever prediction model we used, for docking sta-
tions with low usage there was very little difference in root mean square error
between them. Future work could focus on improving the prediction error
for the busy time periods at busy stations, which we are most interested in.

During our modifications to the routing, we found that Kaleta’s expo-
nential cost function for combining edge attribute costs didn’t work as well
as a simple weighted sum in practice, but we were able to do without the
benefits of this cost function by reasoning about every attribute in terms an
additional cost in length.

Finally, we found that our sampling method only considers whether a
bike is available at the end of each rollout, not how many are available which
could potentially direct the user to a docking station with only one or two
bikes on average. This could result in the user taking a greater risk than
they might expect considering the way the risk averseness preference is set.
Future work could additionally consider the number of bikes available at the
end of each rollout.

11.1 Investigating the cause of hidden variability

A mixture model explains the data significantly better than a single Poisson
distribution by accounting for the hidden variables, but this is of limited use
in making improved predictions for the reasons discussed in section 10.1. This
could be improved by investigating the data more thoroughly and finding out:

1. Whether there is a common cause of the hidden variability across all
the docking stations, or at least enough docking stations so that we can
significantly improve our predictions

2. The cause of the hidden variability

This could improve our prediction. For example if we looked at weather
records and found that wet days and dry days had significantly different
distributions of bike pickups or dropoffs within each time interval. We could
then partition our data into wet days and dry days and learn the model
parameters of each type of day separately. Then, when the user requests a
route, we could check the current days weather from the BBC’s weather RSS
feeds and choose the model to use accordingly.
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11.2 Improving the search for mixed modes of trans-
port

Finding mixed routes requires searching for multiple cycle routes, from each
stop along the underground to the end point. This means the number of
A* searches grows with the length of the tube route between the start and
end point, which is potentially extremely expensive A* in the worst case can
expand an exponential number of nodes in the length of the solution. These
routes are then sorted to find the one closest to the time the user allows.

Another problem with our mixed route algorithm is that it is inflexible.
There is no way to find a journey that has two tube portions with a bike
portion in between, or to find a journey that involves a walk between tube
stations that are close together but serve different lines, as is the case for
Bank and Monument. This kind of flexibility is even more important if we
are to add more modes of transport. One approach to doing this in the
literature is to use a generalized form of Dijkstra’s algorithm, as described
by Barrett, Jacob and Marathe [24]. Each edge in the graph is augmented
with a label. For example bus edges could be labeled with b, tube edges
with t, cycling edges with c and w for walking. It is then possible to find
the shortest path subject to the constraint that the edge labels along the
path form a valid sentence in a context free grammar that we define. This
easily generalizes to many modes of transport while allowing us to keep the
constraints we need, like having to drop off a cycle hire bike at a docking
station before reaching the destination and is solvable in polynomial time. A
simple grammar for a cycle hire portion of a route could be:

CYCLEHIRE → WALKING CYCLING WALKING
WALKING → w WALKING
WALKING → w
CYCLING → c CYCLING
CYCLING → c

A route with edge labels wwwccwwww would be a valid sentence in this
grammar, while wwwccc would not.

11.3 Memory Usage

The NetworkX library allocates a python dictionary for the attributes of
each edge in the graph. This is not memory efficient - python dictionaries
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are implemented as hash tables which are grown dynamically so that there
are enough empty buckets to avoid key collisions. These dictionaries are the
largest source of memory usage in representing the graphs. We do not need
the flexibility of dictionaries as we know the number of attributes and the
type of each attribute in advance and don’t need to add new attributes at
runtime. The edge attributes could be instead stored efficiently in a class or
python namedtuple. NetworkX doesn’t allow this, but if we were to design
a new routing algorithm from the ground up as discussed in Section 11.2 it
would be feasible to simultaneously write NetworkX out of the application
and either use a different library or our own data structures for the graph.

11.4 Improving tube journey planning

Currently, we allow the user to enter the expected transfer time, which we
treat as the cost of all transfers in the graph. We could instead have a separate
transfer cost for each possible transfer at each station. We could add some
mechanism to get user feedback on journeys they’ve made and update the
costs of transfers accordingly. It could be possible to have different transfer
costs depending on the time of day.

TFL have released a new real time tube data feed, which was not available
at the beginning of this project which includes a train prediction service with
station and line status. This could be integrated into the routing so that any
time spent waiting for a train could be accounted for.

Our current London Underground data only includes the shortest travel
time between each pair of adjacent stations. We could make more accurate
predictions if we had travel times between stations for each London Under-
ground line, for each time of day.

We could use this real time tube data feed to find expected tube journey
times between adjacent stations for each London Underground line at each
time of day. It is possible to obtain a full tube timetable from TFL by making
a Freedom of Information Act request, which could also help us plan better
routes.

11.5 Online learning

While we have demonstrated that a single Poisson distribution doesn’t ex-
plain the data well, one of the strengths of using it is that it is possible to
update the rate parameter using TFL’s live data feeds. Kaleta [30] does
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this by assuming the ratio between the pickups and all events (pickups and
dropoffs) remains constant and using an iterative average.

It would be useful to evaluate whether this method results in better pre-
dictions. If so, a feasible way of extending this to our mixture model would
be to weight the observed change in the number of pickup events by the re-
sponsibility of each Poisson distribution for generating the data πk, assuming
the responsibilities also remain constant.

11.6 Turn by turn navigation

This would make the journey planner more useful by naming the streets
along which the user needs to travel, as well as naming where each mode
of transport should be taken. This could be done using reverse geocoding,
which is provided by Nominatim.
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Appendices

A Hypothesis test results

Here we present the full listings of the likelihood ratio tests and conditional
chi-squared tests we performed. For each time interval we tested, we present
the P-value calculated for each test and whether the null hypothesis was
rejected or not at the 1% significance level.

Figure 46: Hypothesis test results for pickups in interval 0800-0815

Station Reject Reject

0.058 False 0.023 False
The Green Bridge, Mile End 0.000 True 0.001 True
Waterloo Station 3, Waterloo 0.366 False 0.006 True

0.000 True 0.000 True
0.001 True 0.000 True

Wright's Lane, Kensington 0.001 True 0.002 True
1.000 False 0.006 True

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 0.998 False 0.374 False
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.001 True 0.000 True

1.000 False 0.835 False
0.978 False 0.361 False
0.979 False 0.446 False

Russell Gardens, Holland Park 1.000 False 0.594 False
Green Park Station, West End 0.054 False 0.000 True
Elizabeth Bridge, Victoria 0.003 True 0.011 False
Rochester Row, Westminster 0.000 True 0.000 True

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town

86



Figure 47: Hypothesis test results for pickups in interval 0815-0830

Station Reject Reject

0.557 False 0.000 True
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.640 False 0.028 False

0.000 True 0.000 True
0.000 True 0.000 True

Wright's Lane, Kensington 0.000 True 0.000 True
1.000 False 0.012 False

South Kensington Station, South Kensington 0.000 True 0.001 True
Westfield Ariel Way, White City 1.000 False 0.141 False
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.020 False 0.000 True

1.000 False 0.141 False
0.978 False 0.361 False
0.920 False 0.171 False

Russell Gardens, Holland Park 1.000 False 0.716 False
Green Park Station, West End 0.274 False 0.000 True
Elizabeth Bridge, Victoria 0.113 False 0.186 False
Rochester Row, Westminster 0.000 True 0.000 True

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town

Figure 48: Hypothesis test results for pickups in interval 0830-0845

Station Reject Reject

0.014 False 0.033 False
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.721 False 0.003 True

0.000 True 0.000 True
0.000 True 0.000 True

Wright's Lane, Kensington 0.000 True 0.000 True
1.000 False 0.578 False

South Kensington Station, South Kensington 0.015 False 0.034 False
Westfield Ariel Way, White City 1.000 False 0.001 True
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 1.000 False 0.000 True

0.938 False 0.000 True
0.985 False 0.103 False
0.961 False 0.076 False

Russell Gardens, Holland Park 1.000 False 0.636 False
Green Park Station, West End 0.017 False 0.000 True
Elizabeth Bridge, Victoria 0.015 False 0.003 True
Rochester Row, Westminster 0.000 True 0.000 True

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town
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Figure 49: Hypothesis test results for pickups in interval 0845-0900

Station Reject Reject

0.178 False 0.001 True
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.622 False 0.117 False

0.001 True 0.014 False
0.139 False 0.087 False

Wright's Lane, Kensington 0.000 True 0.000 True
1.000 False 0.702 False

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 1.000 False 0.030 False
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 1.000 False 0.162 False

0.909 False 0.000 True
0.925 False 0.735 False
0.661 False 0.053 False

Russell Gardens, Holland Park 1.000 False 0.735 False
Green Park Station, West End 1.000 False 0.000 True
Elizabeth Bridge, Victoria 0.091 False 0.000 True
Rochester Row, Westminster 0.645 False 0.153 False

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town

Figure 50: Hypothesis test results for pickups in interval 1400-1415

Station Reject Reject

0.267 False 0.031 False
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.000 True 0.000 True

0.000 True 0.000 True
0.002 True 0.002 True

Wright's Lane, Kensington 0.000 True 0.000 True
0.986 False 0.017 False

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 1.000 False 0.048 False
Wormwood Street, Liverpool Street 0.000 True 0.001 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.986 False 0.000 True

0.978 False 0.005 True
0.240 False 0.097 False
0.000 True 0.000 True

Russell Gardens, Holland Park 1.000 False 0.006 True
Green Park Station, West End 0.998 False 0.000 True
Elizabeth Bridge, Victoria 0.063 False 0.021 False
Rochester Row, Westminster 0.480 False 0.040 False

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town
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Figure 51: Hypothesis test results for pickups in interval 1415-1430

Station Reject Reject

0.103 False 0.000 True
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.000 True 0.000 True

0.000 True 0.000 True
0.000 True 0.000 True

Wright's Lane, Kensington 0.000 True 0.000 True
0.929 False 0.004 True

South Kensington Station, South Kensington 0.001 True 0.007 True
Westfield Ariel Way, White City 1.000 False 0.169 False
Wormwood Street, Liverpool Street 0.003 True 0.039 False
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.235 False 0.000 True

0.205 False 0.000 True
0.025 False 0.000 True
0.000 True 0.000 True

Russell Gardens, Holland Park 1.000 False 0.018 False
Green Park Station, West End 0.168 False 0.000 True
Elizabeth Bridge, Victoria 0.001 True 0.000 True
Rochester Row, Westminster 0.499 False 0.174 False

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town

Figure 52: Hypothesis test results for pickups in interval 1430-1445

Station Reject Reject

0.082 False 0.001 True
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.000 True 0.000 True

0.000 True 0.000 True
0.000 True 0.000 True

Wright's Lane, Kensington 0.000 True 0.000 True
0.571 False 0.003 True

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 1.000 False 0.030 False
Wormwood Street, Liverpool Street 0.000 True 0.001 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.948 False 0.000 True

0.233 False 0.000 True
0.324 False 0.063 False
0.000 True 0.000 True

Russell Gardens, Holland Park 1.000 False 0.037 False
Green Park Station, West End 0.000 True 0.000 True
Elizabeth Bridge, Victoria 0.001 True 0.000 True
Rochester Row, Westminster 0.980 False 0.155 False

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town
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Figure 53: Hypothesis test results for pickups in interval 1445-1500

Station Reject Reject

0.421 False 0.017 False
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.000 True 0.000 True

0.000 True 0.000 True
0.019 False 0.011 False

Wright's Lane, Kensington 0.003 True 0.002 True
0.778 False 0.026 False

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 1.000 False 0.000 True
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 1.000 False 0.000 True

0.188 False 0.000 True
0.233 False 0.001 True
0.000 True 0.000 True

Russell Gardens, Holland Park 0.993 False 0.000 True
Green Park Station, West End 0.096 False 0.000 True
Elizabeth Bridge, Victoria 0.001 True 0.000 True
Rochester Row, Westminster 0.897 False 0.352 False

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town

Figure 54: Hypothesis test results for pickups in interval 1700-1715

Station Reject Reject

0.000 True 0.001 True
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.000 True 0.000 True

0.000 True 0.000 True
0.000 True 0.000 True

Wright's Lane, Kensington 0.000 True 0.000 True
0.002 True 0.000 True

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 0.000 True 0.000 True
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.006 True 0.000 True

0.000 True 0.000 True
0.005 True 0.106 False
0.000 True 0.000 True

Russell Gardens, Holland Park 0.093 False 0.003 True
Green Park Station, West End 0.003 True 0.000 True
Elizabeth Bridge, Victoria 0.000 True 0.000 True
Rochester Row, Westminster 0.000 True 0.001 True

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town
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Figure 55: Hypothesis test results for pickups in interval 1715-1730

Station Reject Reject

0.000 True 0.000 True
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.000 True 0.000 True

0.000 True 0.000 True
0.000 True 0.002 True

Wright's Lane, Kensington 0.002 True 0.001 True
0.001 True 0.000 True

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 0.606 False 0.000 True
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.541 False 0.000 True

0.000 True 0.000 True
0.003 True 0.074 False
0.000 True 0.000 True

Russell Gardens, Holland Park 0.166 False 0.110 False
Green Park Station, West End 0.958 False 0.000 True
Elizabeth Bridge, Victoria 0.000 True 0.000 True
Rochester Row, Westminster 0.838 False 0.099 False

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town

Figure 56: Hypothesis test results for pickups in interval 1730-1745

Station Reject Reject

0.000 True 0.001 True
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.000 True 0.000 True

0.000 True 0.000 True
0.002 True 0.002 True

Wright's Lane, Kensington 0.001 True 0.004 True
0.010 True 0.000 True

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 0.458 False 0.000 True
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.301 False 0.000 True

0.000 True 0.000 True
0.000 True 0.001 True
0.000 True 0.000 True

Russell Gardens, Holland Park 0.296 False 0.017 False
Green Park Station, West End 0.004 True 0.000 True
Elizabeth Bridge, Victoria 0.000 True 0.000 True
Rochester Row, Westminster 0.388 False 0.012 False

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town
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Figure 57: Hypothesis test results for pickups in interval 1745-1800

Station Reject Reject

0.045 False 0.272 False
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.000 True 0.000 True

0.000 True 0.000 True
0.000 True 0.000 True

Wright's Lane, Kensington 0.001 True 0.018 False
0.009 True 0.006 True

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 0.218 False 0.000 True
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.001 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 1.000 False 0.093 False

0.000 True 0.000 True
0.000 True 0.000 True
0.000 True 0.000 True

Russell Gardens, Holland Park 0.068 False 0.000 True
Green Park Station, West End 0.201 False 0.000 True
Elizabeth Bridge, Victoria 0.000 True 0.000 True
Rochester Row, Westminster 0.811 False 0.031 False

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town

Figure 58: Hypothesis test results for dropoffs in interval 0800-0815

Station Reject Reject

0.202 False 0.429 False
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.170 False 0.000 True

0.000 True 0.000 True
0.000 True 0.000 True

Wright's Lane, Kensington 0.000 True 0.001 True
0.999 False 0.051 False

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 1.000 False 0.045 False
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.000 True 0.000 True

1.000 False 0.731 False
0.987 False 0.487 False
0.983 False 0.024 False

Russell Gardens, Holland Park 1.000 False 0.572 False
Green Park Station, West End 0.797 False 0.000 True
Elizabeth Bridge, Victoria 0.000 True 0.000 True
Rochester Row, Westminster 0.000 True 0.000 True

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town
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Figure 59: Hypothesis test results for dropoffs in interval 0815-0830

Station Reject Reject

0.699 False 0.304 False
The Green Bridge, Mile End 0.004 True 0.003 True
Waterloo Station 3, Waterloo 0.763 False 0.185 False

0.000 True 0.000 True
0.001 True 0.000 True

Wright's Lane, Kensington 0.044 False 0.139 False
1.000 False 0.771 False

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 0.978 False 0.005 True
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.000 True 0.000 True

1.000 False 0.416 False
0.986 False 0.529 False
0.991 False 0.487 False

Russell Gardens, Holland Park 1.000 False 0.657 False
Green Park Station, West End 0.825 False 0.000 True
Elizabeth Bridge, Victoria 0.015 False 0.153 False
Rochester Row, Westminster 0.000 True 0.000 True

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town

Figure 60: Hypothesis test results for dropoffs in interval 0830-0845

Station Reject Reject

0.316 False 0.000 True
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.712 False 0.115 False

0.000 True 0.000 True
0.000 True 0.000 True

Wright's Lane, Kensington 0.000 True 0.000 True
1.000 False 0.097 False

South Kensington Station, South Kensington 0.000 True 0.001 True
Westfield Ariel Way, White City 1.000 False 0.416 False
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.028 False 0.000 True

1.000 False 0.162 False
0.992 False 0.173 False
0.960 False 0.294 False

Russell Gardens, Holland Park 1.000 False 0.735 False
Green Park Station, West End 0.035 False 0.000 True
Elizabeth Bridge, Victoria 0.083 False 0.178 False
Rochester Row, Westminster 0.000 True 0.000 True

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town
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Figure 61: Hypothesis test results for dropoffs in interval 0845-0900

Station Reject Reject

0.003 True 0.000 True
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.379 False 0.170 False

0.000 True 0.013 False
0.000 True 0.000 True

Wright's Lane, Kensington 0.000 True 0.001 True
0.996 False 0.239 False

South Kensington Station, South Kensington 0.000 True 0.006 True
Westfield Ariel Way, White City 1.000 False 0.174 False
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 1.000 False 0.000 True

0.993 False 0.001 True
0.992 False 0.662 False
0.873 False 0.027 False

Russell Gardens, Holland Park 1.000 False 0.677 False
Green Park Station, West End 0.945 False 0.000 True
Elizabeth Bridge, Victoria 0.060 False 0.034 False
Rochester Row, Westminster 0.000 True 0.000 True

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town

Figure 62: Hypothesis test results for dropoffs in interval 1400-1415

Station Reject Reject

0.176 False 0.000 True
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.000 True 0.000 True

0.000 True 0.004 True
0.045 False 0.004 True

Wright's Lane, Kensington 0.002 True 0.002 True
0.961 False 0.013 False

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 1.000 False 0.697 False
Wormwood Street, Liverpool Street 0.014 False 0.150 False
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 1.000 False 0.031 False

0.733 False 0.014 False
0.228 False 0.025 False
0.000 True 0.000 True

Russell Gardens, Holland Park 1.000 False 0.003 True
Green Park Station, West End 0.997 False 0.000 True
Elizabeth Bridge, Victoria 0.031 False 0.002 True
Rochester Row, Westminster 0.270 False 0.017 False

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town
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Figure 63: Hypothesis test results for dropoffs in interval 1415-1430

Station Reject Reject

0.765 False 0.002 True
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.000 True 0.000 True

0.000 True 0.000 True
0.002 True 0.001 True

Wright's Lane, Kensington 0.000 True 0.000 True
0.999 False 0.030 False

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 0.995 False 0.000 True
Wormwood Street, Liverpool Street 0.001 True 0.033 False
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.093 False 0.000 True

0.986 False 0.000 True
0.527 False 0.065 False
0.000 True 0.000 True

Russell Gardens, Holland Park 1.000 False 0.000 True
Green Park Station, West End 0.945 False 0.000 True
Elizabeth Bridge, Victoria 0.000 True 0.000 True
Rochester Row, Westminster 0.586 False 0.001 True

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town

Figure 64: Hypothesis test results for dropoffs in interval 1430-1445

Station Reject Reject

0.054 False 0.001 True
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.000 True 0.000 True

0.000 True 0.000 True
0.000 True 0.000 True

Wright's Lane, Kensington 0.000 True 0.000 True
0.986 False 0.063 False

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 1.000 False 0.169 False
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.422 False 0.000 True

0.397 False 0.000 True
0.152 False 0.004 True
0.000 True 0.000 True

Russell Gardens, Holland Park 1.000 False 0.026 False
Green Park Station, West End 0.608 False 0.000 True
Elizabeth Bridge, Victoria 0.042 False 0.000 True
Rochester Row, Westminster 0.107 False 0.000 True

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town
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Figure 65: Hypothesis test results for dropoffs in interval 1445-1500

Station Reject Reject

0.262 False 0.003 True
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.000 True 0.000 True

0.000 True 0.000 True
0.000 True 0.000 True

Wright's Lane, Kensington 0.000 True 0.000 True
0.770 False 0.001 True

South Kensington Station, South Kensington 0.000 True 0.004 True
Westfield Ariel Way, White City 1.000 False 0.002 True
Wormwood Street, Liverpool Street 0.000 True 0.001 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.651 False 0.000 True

0.851 False 0.000 True
0.753 False 0.496 False
0.000 True 0.000 True

Russell Gardens, Holland Park 1.000 False 0.071 False
Green Park Station, West End 0.009 True 0.000 True
Elizabeth Bridge, Victoria 0.000 True 0.000 True
Rochester Row, Westminster 0.962 False 0.376 False

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town

Figure 66: Hypothesis test results for dropoffs in interval 1700-1715

Station Reject Reject

0.000 True 0.000 True
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.000 True 0.000 True

0.000 True 0.000 True
0.000 True 0.000 True

Wright's Lane, Kensington 0.003 True 0.004 True
0.003 True 0.000 True

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 1.000 False 0.011 False
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.033 False 0.000 True

0.000 True 0.000 True
0.000 True 0.001 True
0.000 True 0.000 True

Russell Gardens, Holland Park 0.004 True 0.000 True
Green Park Station, West End 0.000 True 0.000 True
Elizabeth Bridge, Victoria 0.000 True 0.000 True
Rochester Row, Westminster 0.372 False 0.196 False

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town
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Figure 67: Hypothesis test results for dropoffs in interval 1715-1730

Station Reject Reject

0.000 True 0.000 True
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.000 True 0.000 True

0.000 True 0.000 True
0.002 True 0.018 False

Wright's Lane, Kensington 0.000 True 0.000 True
0.002 True 0.000 True

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 0.729 False 0.000 True
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.552 False 0.000 True

0.000 True 0.000 True
0.003 True 0.042 False
0.000 True 0.000 True

Russell Gardens, Holland Park 0.395 False 0.029 False
Green Park Station, West End 0.048 False 0.000 True
Elizabeth Bridge, Victoria 0.000 True 0.000 True
Rochester Row, Westminster 0.246 False 0.000 True

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town

Figure 68: Hypothesis test results for dropoffs in interval 1730-1745

Station Reject Reject

0.000 True 0.000 True
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.000 True 0.000 True

0.000 True 0.000 True
0.000 True 0.005 True

Wright's Lane, Kensington 0.000 True 0.001 True
0.009 True 0.007 True

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 0.000 True 0.000 True
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.862 False 0.000 True

0.000 True 0.000 True
0.001 True 0.020 False
0.000 True 0.000 True

Russell Gardens, Holland Park 0.198 False 0.018 False
Green Park Station, West End 0.021 False 0.000 True
Elizabeth Bridge, Victoria 0.000 True 0.000 True
Rochester Row, Westminster 0.078 False 0.000 True

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town
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Figure 69: Hypothesis test results for dropoffs in interval 1745-1800

Station Reject Reject

0.000 True 0.000 True
The Green Bridge, Mile End 0.000 True 0.000 True
Waterloo Station 3, Waterloo 0.000 True 0.000 True

0.000 True 0.000 True
0.000 True 0.000 True

Wright's Lane, Kensington 0.010 False 0.057 False
0.001 True 0.000 True

South Kensington Station, South Kensington 0.000 True 0.000 True
Westfield Ariel Way, White City 0.084 False 0.000 True
Wormwood Street, Liverpool Street 0.000 True 0.000 True
Moor Street, Soho 0.000 True 0.000 True
Jubilee Plaza, Canary Wharf 0.000 True 0.000 True
Monument Street, Monument 0.507 False 0.000 True

0.000 True 0.000 True
0.001 True 0.015 False
0.000 True 0.000 True

Russell Gardens, Holland Park 0.352 False 0.009 True
Green Park Station, West End 0.009 True 0.000 True
Elizabeth Bridge, Victoria 0.000 True 0.000 True
Rochester Row, Westminster 0.312 False 0.009 True

Likelihood 
Ratio P-value

Chi-squared 
P-value

Edgware Road Station, Paddington

Belgrove Street , King's Cross
Old Quebec Street, Marylebone

Nevern Place, Earl's Court

Vauxhall Bridge , Pimlico
Wansey Street, Walworth
Castlehaven Road, Camden Town

Figure 70: Total acceptances and rejections for dropoffs

Interval
Likelihood Ratio Test Chi-squared test

Rejections Acceptances Rejections Acceptances
0800-0815 11 9 13 7
0815-0830 9 11 11 9
0830-0845 9 11 12 8
0845-0900 10 10 12 8
1400-1415 8 12 13 7
1415-1430 11 9 17 3
1430-1445 10 10 17 3
1445-1500 12 8 17 3
1700-1715 17 3 18 2
1715-1730 15 5 17 3
1730-1745 16 4 18 2
1745-1800 15 5 18 2

Total 143.00 97.00 183.00 57.00
Percentage 59.6% 40.4% 76.3% 23.8%
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Figure 71: Total acceptances and rejections for pickups

Interval
Likelihood Ratio Test Chi-squared test

Rejections Acceptances Rejections Acceptances
0800-0815 11 9 13 7
0815-0830 9 11 12 8
0830-0845 8 12 14 6
0845-0900 7 13 10 10
1400-1415 10 10 14 6
1415-1430 11 9 16 4
1430-1445 12 8 16 4
1445-1500 10 10 16 4
1700-1715 18 2 18 2
1715-1730 15 5 17 3
1730-1745 16 4 18 2
1745-1800 14 6 16 4

Total 141.00 99.00 180.00 60.00
Percentage 58.8% 41.3% 75.0% 25.0%
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B Optimal number of Poisson mixtures

For each time interval, we present the maximum number of Poisson distri-
butions k such that when a likelihood ratio test is performed, the mixture of
k Poissons fits the data better than a mixture of k − 1 Poissons at the 1%
significance level.
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Figure 72: Optimal number of Poisson distributions to use to fit the number of
pickups in each interval
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Figure 73: Optimal number of Poisson distributions to use to fit the number of
dropoffs in each interval
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C Web journey planner user guide

Pan the map by clicking and dragging with the mouse. Zoom using the
mouse wheel. This can also be done using the control overlaid on the left
hand side of the map.

Figure 74: Journey planner

First select a start and end position for the journey on the map. This
can be done by right clicking a point and choosing ’Set start’ or ’Set finish’
from the context menu (Figure 75).

The start position will be marked in green and the finish position in red
(Figure 76).

Choose your preferences using the options box on the left. First choose
the time you want to start your journey using the time picker(Figure 77).
All the other preferences have defaults which may be adjusted. When ready,
click ’Calculate Route’.

A box with routes is returned (Figure 78). There are tabs containing
different types of routes:

• Preferred cycling routes These are the cycling routes that most closely
match the preferences you set.
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Figure 75: Setting start and finish positions

• Tube routes These are the tube routes that match your expected tube
changeover time.

• Mixed routes These routes which potentially contain both tube and bike
portions, which match the time you allow for the journey as closely as
possible.

• Faster cycling routes These are faster routes which do not take any of
the preferences you set into consideration.

Click any of the checkboxes to show the corresponding route on the map.
The ’elevation profile’ button will bring up a graph of the height along the
route and give an idea of the ascent and descent involved.
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Figure 76: Setting start and finish positions

Figure 77: Setting preferences
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Figure 78: Found routes
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D Mobile journey planner user guide

The mobile application marks your location on the map (Figure 79, if avail-
able with a red kite marker. The map can be panned by touching and the
screen and dragging.

Figure 79: Main screen of the mobile application

To set the start and finish locations, type an address into the correspond-
ing text box and click ’Check’. A list of matching addresses will pop up.
Touch one to set it as the location. Alternatively, clicking the ’My Loca-
tion’ button will set the location to your current position, if it’s available
(Figure 80).

Click the ’Prefs’ button to toggle the preferences screen and adjust the
preference sliders as desired (Figure 81).

When ready, click ’Go’ to calculate the route. A results box with buttons
for the bike, tube and fast bike routes are shown. Click one to mark it on
the map (Figure 82).
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Figure 80: Marking start and finish locations

Figure 81: Setting preferences
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Figure 82: Setting preferences
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E Plotting module user guide

From the main screen, we can choose whether to plot the pickups and dropoffs
over time or the frequency of events in a given time interval by clicking
the relevant link. We can plot the mean number of pickups or dropoffs
over a single day or whole week for any docking station by choosing the
appropriate drop down menus. Start typing in the ’Station’ text box to get
an autocomplete menu of available docking stations (Figure 83).

Figure 83: Selecting a station to plot

Click ’Plot’ to generate the plot. The result is show in figure 84 The
frequency plots work in a similar way, but give the additional option of
separating the data into weekdays and weekends.
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Figure 84: Selecting a station to plot
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