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Abstract

Matrix multiplication is a fundamental linear algebra routine ubiquitous in all areas

of science and engineering. Highly optimised BLAS libraries (cuBLAS and clBLAS

on GPUs) are the most popular choices for an implementation of the General Matrix

Multiply (GEMM) in software. However, performance of library GEMM is poor for

small matrix sizes. In this thesis we consider a block-by-panel type of matrix multiplica-

tion, where the block matrix is typically small (e.g. dimensions of 96 × 64), motivated

by an application in PyFR– the most recent implementation of Flux Reconstruction

schemes for high-order fluid flow simulations on unstructured meshes. We show how

prior knowledge of the operator matrix can be exploited to generate highly performant

kernel code, which outperforms the cuBLAS and clBLAS GEMM implementations. We

present GiMMiK– a generator of bespoke matrix multiplication kernels for the CUDA

and OpenCL platforms. GiMMiK generates code by fully unrolling the matrix-vector

product. The generated kernels embed values of the operator matrix directly in the code

to benefit from the use of the constant cache and compiler optimisations. Further, we

reduce the number of floating-point operations by removing multiplications by zeros. We

are able to achieve speedups for individual PyFR matrices of up to 9.98 (12.20) times

on the Tesla K40c and 63.30 (13.07) times on the GTX 780 Ti in double (single) preci-

sion. Using GiMMiK as the matrix multiplication kernel provider allows us to achieve

a speedup of up to 1.72 (2.14) for an example simulation of an unsteady flow over a

cylinder executed with PyFR in double (single) precision on the Tesla K40c.

A general paper “GiMMiK- Generating Bespoke Matrix Multiplication Kernels for

Various Hardware Accelerators; Applications in High-Order Computational Fluid Dy-

namics” by Bartosz D. Wozniak, Freddie D. Witherden, Peter E. Vincent and Paul H.

J. Kelly has been prepared for submission to the Computer Physics Communications

journal, based on the findings in this report. It is available upon request.
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Chapter 1

Introduction

Matrix multiplication is ubiquitous in all spheres of science and engineering, hence the

need for efficient and performant implementations of such operations in software. A lot

of effort has been put into building and optimising Basic Linear Algebra Subprograms

(BLAS) libraries. General Matrix Multiplication (GEMM) subroutine of level-3 BLAS is

among the most popular choices for an implementation of the matrix product. However,

GEMM is very generic and usually performs best with large problem sizes [6, 11, 7, 12].

In situations where the matrices are known a priori, a faster implementations can be

achieved. In this thesis we are interested in developing a highly performant matrix

product routine for a block-by-panel (see Figure 1.1) type of matrix multiplication, where

the operator matrix is typically small (e.g. 96 × 64 elements). This is motivated by

an application in Flux Reconstruction [9] schemes for high-order fluid flow simulations

on unstructured grids. However, we believe that the usefulness of our research goes

beyond the area of Computational Fluid Dynamics (CFD) and can impact other fields

of engineering as well.

In this thesis we present GiMMiK– a generator of matrix multiplication kernels. GiM-

MiK analyses a given operator matrix and generates optimised and highly performant

CUDA and OpenCL kernel code that can run across a variety of hardware accelerators.

C A B

Figure 1.1: Diagram representing block-by-panel type of matrix multiplication. In this type of matrix
product the operator matrix is typically small and square, while the operand and output matrices are
fat.

1
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1.1 Context

Within the area of Computational Fluid Dynamics (CFD) there is a growing need for

efficient and accurate high-order schemes for numerical simulations. High-order methods

can potentially deliver better accuracy at a similar computational cost to low-order

methods. Unfortunately, existing high-order methods are less robust and harder to

implement than their low-order counterparts, which prevents their adaptation in industry

and to a lesser extent in academia.

In 2007 Huynh [9] presented the Flux Reconstruction (FR) approach, a unifying

mathematical framework allowing an efficient development of high-order schemes. The

details of this approach are described in Section 2.1. Huynh showed how well-known

high-order schemes such as Discontinuous Galerkin (DG) methods and Spectral Differ-

ence (SD) methods can be cast within the Flux Reconstruction framework. In 2009

Huynh [10] showed how FR can be applied to diffusion problems. Most importantly,

the FR framework allows for development of new schemes with favourable properties.

Their main advantages over traditional high-order schemes are improved robustness, ac-

curacy, stability and simplicity of implementation. Further work by Vincent et al. [20]

and Castonguay et al. [3] resulted in a new class of energy-stable schemes for solv-

ing conservation laws problems for quadrilateral, hexahedral and triangular element

meshes. Williams et al. [22] have extended the schemes to tetrahedral elements. Cas-

tonguay et al. [4] in 2011 were the first to present a high-order compressible viscous

flow solver for mixed unstructured grids based on the Flux Reconstruction approach,

designed to run on clusters of GPUs.

The most recent development in the area of Flux Reconstruction is PyFR, an open-

source framework for solving advection-diffusion type problems on streaming architec-

tures [23]. The very nature of Flux Reconstruction methods allows to cast many of

the computation steps into matrix-matrix multiplication operations as described in Sec-

tion 2.2. For this reason a GPU implementation of these schemes is very attractive, as

the devices exhibit inherently high floating-point performance and memory bandwidth,

suitable for the arithmetically intensive linear algebra operations. There is a number of

highly optimised BLAS libraries, which can be employed to compute the required matrix

products. NVIDIA cuBLAS GEMM [14] or the OpenCL clBLAS GEMM [1] are the ob-

vious candidates for the GPU platform. However, already in 2011 Castonguay et al. [4]

identified the need for bespoke matrix multiplication kernels to achieve high performance

of their solver. The problem with available, highly optimised BLAS libraries is not their

sub-optimal implementation but rather their general nature. Experimental data sug-

gests that BLAS GEMM performs especially well and achieves near peak performance

for large, square matrices [6, 7].
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Each time step of the simulation performed by PyFR amounts to a repeated ap-

plication of the same set of five operator matrices to the data, combined with some

element-local transformations [23]. The exact characteristics of these matrices depend

on many numerical method choices i.e. the shape and dimensionality of the mesh ele-

ments, the desired order of accuracy and the type of equations used to solve the problem.

Casting the computation steps to matrix multiplication operations enables us to navi-

gate all the numerical scheme choices freely, without incurring any performance penalty

due to an unoptimised implementation of the solver.

The parameters of the numerical schemes dictate the size of the operator matrices,

which is typically small. For hexahedral meshes it ranges from (4×8) to (96×64) and up

to (1029× 343) for the first, third and sixth order of accuracy correspondingly. The full

specification of the characteristics of the matrices used by the PyFR solver across 1–6

orders of accuracy is available in Appendix A and further discussed in Section 2.3. The

operator matrices stay constant for the duration of the simulation and are also known in

advance, which opens up an opportunity to analyse them and generate bespoke, highly

specialised kernels for each matrix to improve over the performance of state-of-the-art

BLAS libraries.

1.2 Objectives

The aim of this project is to investigate the performance improvement achievable through

the use of bespoke matrix multiplication kernels over the state-of-the-art BLAS GEMM

implementations for a block-by-panel type of matrix multiplication characteristic to

PyFR. We pick CUDA and OpenCL as the development platforms of choice and will

evaluate the performance of our optimisations on two modern industry-grade GPUs:

Tesla K40c form NVIDIA and FirePro W9100 from AMD and also on a consumer-grade

NVIDIA GeForce GTX 780 Ti to further explore the applicability of our optimisations

on commodity hardware.

In Chapter 4 we describe the methodology used to generate our bespoke multiplica-

tion kernels and the various software optimisations we have attempted. We have taken

a systematic approach to evaluate each of the proposed optimisations in order to incor-

porate the successful ones into GiMMiK. The studied techniques involve loop unrolling,

sparsity elimination, and common sub-expression elimination. We have also investigated

the relative advantages and drawbacks of using different types of available memory to

store the operator matrix. We aim to present a comprehensive set of evidence for the

success or failure of the proposed optimisations obtained through benchmarking of our

kernels on a well-diversified suite of matrices with different sizes and sparsity patterns.

Chapter 5 presents the empirical analysis of GiMMiK’s kernels and gives the final
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assessment of the performance improvements our kernels are able to realise over cuBLAS

and clBLAS GEMM for individual matrices. As the last step we demonstrate the use-

fulness of our proposed solution by plugging our kernels into PyFR and investigating

the final performance improvement the solver is able to achieve during an example com-

pressible fluid flow simulation on an unstructured mesh.

1.3 Contributions

The following list summarizes the contributions of this thesis:

• We show how, with a prior knowledge of the operator matrix, we are able to gener-

ate matrix multiplication kernel code, which performs better than state-of-the-art

cuBLAS and clBLAS GEMM. We achieve speedups of up to 9.98 (12.20) times

on the Tesla K40c and 63.30 (13.07) times on the GTX 780 Ti in double (single)

precision for individual PyFR matrices in the block-by-panel type of product.

• We present GiMMiK– an open-source Python library for generating matrix mul-

tiplication kernels for CUDA and OpenCL platforms available for download at

https://github.com/bartwozniak/GiMMiK.

• We propose a series of software optimisation techniques, which we speculate can

bring performance improvements when applied to our CUDA and OpenCL kernels

and incorporate the successful ones into GiMMiK. In a systematic way each op-

timisation is exhaustively evaluated on a well-diversified set of operator matrices

extracted from the PyFR solver. The benchmark spans a range of matrix sizes

and sparsity patterns.

• By incorporating GiMMiK into PyFR we are able to grant significant perfor-

mance improvements of up to 1.72 (2.14) in double (single) precision on a single

Tesla K40c, which allows us to reduce the computational time of an exemplary

compressible unsteady flow simulation from a matter of weeks to a matter of days.

Through this performance improvement we can further influence the numerical

method choices and allow for better quality results.

A general paper “GiMMiK - Generating Bespoke Matrix Multiplication Kernels for

Various Hardware Accelerators; Applications in High-Order Computational Fluid Dy-

namics” by Bartosz D. Wozniak, Freddie D. Witherden, Peter E. Vincent and Paul H.

J. Kelly has been prepared for submission to the Computer Physics Communications

journal, based on the findings in this report. It is available upon request. We believe

that the methodology applied in this study can give a valuable insight into efficient

implementations of small-scale linear algebra kernels on GPUs.

https://github.com/bartwozniak/GiMMiK


Chapter 2

Background

In this chapter we summarize the basic principles behind the Flux Reconstruction ap-

proach to high-order fluid flow simulations implemented by PyFR, which is the moti-

vating subject of our investigation. In Section 2.2 we show how operations performed in

the FR schemes can be cast into matrix multiplication problems. Later, in Section 2.3

we characterise the operator matrices used in PyFR and explain how they vary with

the numerical method choices made for each simulation. At the end of this chapter, we

give an introduction to General Purpose Computing on GPUs and explain the basics of

CUDA and OpenCL programming models (Section 2.4). Lastly, we describe the three

state-of-the-art BLAS libraries, which are predominantly used on the GPU platform and

will serve as the benchmark for our investigation.

2.1 Flux Reconstruction

The following subsections will describe the basic steps underlying the Flux Reconstruc-

tion approach and demonstrate how it can be applied to one and multi dimensional

domains as described by Castonguay et al. [4].

2.1.1 Flux Reconstruction Approach in 1D

For the purpose of 1D domains let us consider the following 1D scalar conservation law

equation within an arbitrary domain Ω:

∂u

∂t
+
∂f

∂x
= 0 (2.1)

where x is a spatial coordinate, t is time, u = u(x, t) is a conserved scalar quantity

and f = f(u, ∂u∂x) is the flux in the x direction. Now consider partitioning Ω into N

5
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non-overlapping elements Ωn

Ω =

N⋃
n=1

Ωn. (2.2)

Within each element Ωn we will represent the exact solution u by a function uδn = uδn(x, t)

which is a degree p polynomial within the element and zero outside. Similarly, we will

represent the exact flux f by a function f δn = f δn(x, t) which is a degree p+ 1 polynomial

within the element and zero outside. Thus, the total approximate solution uδ and flux

f δ over the domain Ω can be written as

uδ =

N∑
n=1

uδn ≈ u, f δ =

N∑
n=1

f δn ≈ f. (2.3)

To simplify the implementation, it is advantageous to cast each Ωn to a standard element

ΩS = {ξ| − 1 ≤ ξ ≤ 1} via an invertible mapping Θn(ξ).

x = Θn(ξ) =

(
1− ξ

2

)
xn +

(
1 + ξ

2

)
xn+1 (2.4)

This mapping allows us to solve the following transformed equation within the standard

element
∂ûδ

∂t
+
∂f̂ δ

∂ξ
= 0 (2.5)

where

ûδ = ûδ(ξ, t) = Jnu
δ
n(Θn(ξ), t), f̂ δ = f̂ δ(ξ, t) = f δn(Θn(ξ), t)

and Jn = (xn+1 − xn)/2.

The Flux Reconstruction approach can be applied to equation (2.5) and consists of

seven stages. The first stage defines a set of p + 1 solution points within the standard

element ΩS and specifies the form of the approximate solution ûδ as a polynomial of

degree p of the form

ûδ =

p+1∑
i=1

ûδi li (2.6)

where li is the 1D Lagrange polynomial associated with the ith solution point and ûδi
represent the value of ûδ at the solution point ξi.

In the second stage a common interface solution at the two ends of an element are

calculated. To do this we calculate the approximate solution at the boundaries using

equation (2.6). The common interface solution denoted ûδI can be computed using values

form both sides of the interface. The exact methodology for calculating the interface

solutions depends on the nature of the equations that are being solved.

The third stage involves the construction of a corrected solution gradient q̂δ, which
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approximates the solution gradient within the element. In order to define q̂δ we start by

considering correction functions gL(ξ) and gR(ξ), which in some sense approximate zero

within ΩS and satisfy the following

gL(−1) = 1, gL(1) = 0,

gR(−1) = 0, gL(1) = 1,

gL(ξ) = gR(−ξ).

The corrected gradient q̂δ is defined as

q̂δ =
∂ûδ

∂ξ
+ (ûδIL − ûδL)

∂gL
∂ξ

+ (ûδIR − ûδR)
∂gR
∂ξ

(2.7)

where ûδIL and ûδIR are the transformed common solutions at the left and right interfaces

obtained in the previous step and ûδL = ûδ(−1) and ûδR = ûδ(1) are the values of the

approximate solution at the left and right interfaces obtained from equation (2.6). The

exact form of gL and gR will not be considered in the thesis.

The fourth stage is concerned with the definition of the approximate transformed

discontinuous flux within element ΩS denoted f̂ δD. It is defined at the solution points

described in the first stage and can be computed as

f̂ δD =

p+1∑
i=1

f̂ δDi li (2.8)

where the coefficient f̂ δDi is the value of the transformed flux at the solution point ξi

evaluated from the approximate solution ûδ and the corrected gradient q̂δ.

The fifth stage involves calculating the numerical interface fluxes at either end of the

standard element ΩS . To do so we must first obtain the approximate solution and the

corrected gradient at these points within each element using equations (2.6) and (2.7).

The exact way of computing the common interface fluxes using values from both sides

of the interface again depends on the nature of the equations that are being solved.

In the sixth step, correction flux f̂ δC is added to the discontinuous flux f̂ δD. We

require the summation to be equal to the interface flux found in the previous stage. For

this we define correction functions hL(ξ) and hR(ξ) analogous to those from stage three.

Likewise, they need to satisfy

hL(−1) = 1, hL(1) = 0,

hR(−1) = 0, hL(1) = 1,
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hL(ξ) = hR(−ξ).

The correction flux can now be defined as

f̂ δC = (f̂ δIL − f̂ δDL )hL + (f̂ δIR − f̂ δDR )hR, (2.9)

where f̂ δDL = f̂ δD(−1) and f̂ δDR = f̂ δD(1). The approximate total transformed flux f̂ δ

can be constructed as follows

f̂ δ = f̂ δD + f̂ δC = f̂ δD + (f̂ δIL − f̂ δDL )hL + (f̂ δIR − f̂ δDR )hR. (2.10)

The last stage involves calculating divergence of f̂ δ at the solution points using the

expression

∂f̂ δ

∂ξ
(ξi) =

p+1∑
j=1

f̂ δDj
∂lj
∂ξ

(ξi) + (f̂ δIL − f̂ δDL )
∂hL
∂ξ

(ξi) + (f̂ δIR − f̂ δDR )
∂hR
∂ξ

(ξi), (2.11)

which can be used to approximate the evolution of ûδ in time by using a suitable temporal

discretionary of
dûδi
dt

= −∂f̂
δ

∂ξ
(ξi). (2.12)

2.1.2 Flux Reconstruction Approach in 2D

This section will describe how Flux Reconstruction can be applied to quadrilateral ele-

ments as it was first detailed by Vincent et al. [20]. The extension to hexahedral elements

is straightforward. For the purpose of demonstrating the Flux Reconstruction approach

to 2D quadrilateral elements let us consider the 2D scalar conservation law

∂u

∂t
+∇xy · f = 0, (2.13)

with an arbitrary domain Ω, where f = (f, g), f = f(u,∇u) is the flux in the x direction

and g = g(u,∇u) is the flux in the y direction. Again, we partition the domain into N

non-overlapping quadrilateral elements Ωn such that

Ω =
N⋃
n=1

Ωn. (2.14)

Similarly to the 1D case we will transform the element into a standard element with a

mapping (
x

y

)
=

K∑
i=1

Mi(ξ, η)

(
xi

yi

)
, (2.15)
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where K is the number of points used to define the shape of the physical element,

(xi, yi) are the coordinates of the points and Mi(ξ, η) are the shape functions. After this

transformation the evolution of uδn within Ωn can be solved using

∂ûδ

∂t
+∇ξη · f̂ δ = 0, (2.16)

where

ûδ = Jnu
δ
n(Θn(ξ, η), t), (2.17)

f̂ δ = (f̂ δ, ĝδ) =

(
∂y

∂η
f δn −

∂x

∂η
gδn,

∂y

∂ξ
f δn −

∂x

∂ξ
gδn

)
(2.18)

and Jn, ∂x∂ξ , ∂x∂η , ∂y∂ξ and ∂y
∂η depend on the shape of element n and can be evaluated using

equation (2.15).

Next, for quadrilateral elements, (p + 1)2 solution points are defined within the

standard element and (p+1) flux points on each edge (total of 4(p+1)). The approximate

solution can be written as

ûδ =

p+1∑
i=1
j=1

ûδi,jli(ξ)lj(η), (2.19)

where li(ξ) and lj(η) are the 1D Lagrange polynomials associated with the 1D solution

point at (ξi, ηi).

The corrected gradient q̂δ = (q̂δξ , q̂
δ
η) consists of a component in each direction ξ and

η and is obtained using the 1D correction functions (gL, gR) and (gB, gT ) as

q̂δξ(ξi, ηj) =
∂ûδ

∂ξ
(ξi, ηj) + (ûδIL − ûδL)

∂gL
∂ξ

(ξi) + (ûδIR − ûδR)
∂gR
∂ξ

(ξi)

q̂δη(ξi, ηj) =
∂ûδ

∂η
(ξi, ηj) + (ûδIB − ûδB)

∂gB
∂η

(ηj) + (ûδIT − ûδT )
∂gT
∂η

(ηj),

(2.20)

where ûδIR , ûδIL , ûδIT and ûδIB are the transformed common interface values of the approxi-

mate solution at the flux points located along the lines ξ = ξi and η = ηj . The values of

the solution at the flux points within each element (ûδL, ûδR, ûδB and ûδT ) are computed

using equation (2.19). The corrected gradient in the entire element is then constructed

as

q̂δ =

p+1∑
i=1
j=1

q̂δi,jli(ξ)lj(η). (2.21)

Values for discontinuous flux at the solution points (f̂ δDi,j ) can be found directly from

the approximate solution ûδ and the corrected gradient q̂δ and hence we obtain the
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formula for discontinuous flux

f̂ δD(ξ, η) =

p+1∑
i=1
j=1

f̂ δDi,j li(ξ)lj(η). (2.22)

The divergence of the discontinuous flux is thus

∇ξη · f̂ δD(ξ, η) =
∂f̂ δD

∂ξ
+
∂ĝδD

∂η

=

p+1∑
i=1
j=1

f̂ δDi,j
∂li(ξ)

∂ξ
lj(η) +

p+1∑
i=1
j=1

f̂ δDi,j li(ξ)
∂lj(η)

∂η
.

(2.23)

The divergence of the transformed correction flux ∇ξη · f̂ δC = ∂f̂δC

∂ξ + ∂ĝδC

∂η at the

solution point (ξi, ηj) is computed with the 1D methodology in each direction as

∂f̂ δC

∂ξ
(ξi, ηj) = (f̂ δIL − f̂ δDL )

∂hL
∂ξ

(ξi) + (f̂ δIR − f̂ δDR )
∂hR
∂ξ

(ξi)

∂ĝδC

∂η
(ξi, ηj) = (ĝδIB − ĝδDB )

∂hB
∂η

(ηj) + (ĝδIT − ĝδDT )
∂hT
∂η

(ηj),

(2.24)

where f̂ δIL , f̂ δIR , ĝδIB and ĝδIT are the transformed common interface fluxes computed at

the flux points located along lines ξ = ξi and η = ηj . The transformed discontinues

fluxes at the flux points within each element (f̂ δDL , f̂ δDR , ĝδDB and ĝδDT ) are computed

using equation (2.22).

Analogous to the 1D case, the total transformed flux is found as a sum of a discon-

tinuous component f̂ δD and a correction component f̂ δC ,

f̂ δ = f̂ δD + f̂ δC . (2.25)

Using equations (2.25), (2.23) and (2.24) we can progress the solution in time with

dûδi,j
dt

= −

(
∂f̂ δ

∂ξ
(ξi, ηj) +

∂ĝδ

∂η
(ξi, ηj)

)
. (2.26)

For brevity, the case of triangular elements will not be discussed in this thesis, but

can be found in [3].
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2.2 Matrix Representation of FR Schemes

The aim of this section is to illustrate how Flux Reconstruction schemes can be cast to

a form allowing for an efficient implementation on GPUs using matrix multiplications.

For a more detailed explanation see [4, 23]. For this purpose let us use the compressible

Navier-Stokes equations as an example. Consider the matrix [Ûs] of dimensions Ns × 5

(where Ns is the number of solution points per element and 5 is the number of Navier-

Stokes equations), which stores the approximate solution at the solution points.

[Ûs] =


ρ̂δ1 ρ̂uδ1 ρ̂vδ1 ρ̂wδ1 ρ̂eδ1

ρ̂δ2 ρ̂uδ2 ρ̂vδ2 ρ̂wδ2 ρ̂eδ2
...

...
...

...
...

ρ̂δNs ρ̂uδNs ρ̂vδNs ρ̂wδNs ρ̂eδNs

 (2.27)

Further, consider the matrix [Ûf ] of dimensions Nf × 5 (where Nf is the number of flux

points per cell) that stores the approximate solution at the flux points.

[Ûf ] =


ρ̂δ1 ρ̂uδ1 ρ̂vδ1 ρ̂wδ1 ρ̂eδ1

ρ̂δ2 ρ̂uδ2 ρ̂vδ2 ρ̂wδ2 ρ̂eδ2
...

...
...

...
...

ρ̂δNf ρ̂uδNf ρ̂vδNf ρ̂wδNf ρ̂eδNf

 (2.28)

The first step in the Flux Reconstruction schema is to compute the discontinuous ap-

proximate solution ûδ at the flux points from the solution points. We can do this in the

following operation

[ÛDf ] = M0[Ûs], (2.29)

where M0 is of dimension Nf ×Ns and depends on the type of elements used and is the

same for all elements of the same type. To find the values of the common solution at

the cell interfaces we need to loop over all the flux point pairs and compute the value

ûδI . Allow [Û If ] to denote the transformed common interface solution for all elements.

Now, to compute the corrected gradient q̂δ we yet need to find the discontinuous

solution gradient ∇̂ûδ. Consider defining a matrix [Q̂Ds ] of dimension (3Ns)× 5 to store

the discontinuous gradient at the solution points, which can be obtained from

[Q̂Ds ] = M4[Ûs], (2.30)

where M4 is of dimension (3Ns) ×Ns and again depends on the type of elements used

and is the same for all elements of the same type. After the transformed common

approximation value ([Û If ]) has been calculated for each flux point pair, the corrected
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gradient can be computed for the solution points using the following equation

[Q̂s] = M6

(
[Û If ]− [ÛDf ]

)
+ [Q̂Ds ], (2.31)

where matrix M6 is of dimension 3Ns ×Nf .

Next, we want to compute the transformed discontinuous flux f̂ δD at the solution

points. This operation depends on the approximate solution ûδ and the corrected gra-

dient q̂δ, which were computed in the previous steps. It is computed independently for

each point in the mesh and the results are stored in a matrix denoted by [F̂Ds ]. The

discontinuous flux is then used to compute the divergence using

[(divF̂ )Ds ] = M1[F̂
D
s ], (2.32)

where M1 is of dimension Ns × (3Ns).

In order to evaluate the common interface flux we require the discontinuous solution

and the corrected gradient at the flux points within each element. The corrected gradient

at the flux points can be computed with the M0 matrix as follows

[Q̂f ] = M5[Q̂s] where M5 =

M0 0 0

0 M0 0

0 0 M0

 . (2.33)

To find the common values of the interface flux we need to loop over all the flux point

pairs. The result is stored in matrix [F̂ If ].

To compute the correction flux f̂ δC we need to find the discontinuous flux at the flux

points denoted by the matrix [F̂Df ], which can be obtained from

[F̂Df ] = M2[F̂
D
s ], (2.34)

where M2 is of dimension Nf × 3Ns.

In the penultimate step, before the solution is progressed in time, the divergence of

the total approximate flux is computed using the following formula

[(divF̂ )s] = M3

(
[F̂ If ]− [F̂Df ]

)
+ [(divF̂ )Ds ], (2.35)

where M3 is of dimension Nf ×Ns.

Witherden et al. [23] in their paper on PyFR show that these steps can be easily ex-

tended and applies to any number of dimensions and other element types. Further, they

demonstrate how some of the matrix operations can be reordered and grouped together

to achieve better performance in their implementation. Consider equation (2.31), which
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can be rewritten using equations (2.29) and (2.30) in the following way

[Q̂s] = M6

(
[Û If ]−M0[Ûs]

)
+M4[Ûs], (2.36)

and simplified to

[Q̂s] = M6[Û
I
f ] + (M4 −M6M0) [Ûs]. (2.37)

This results in a new matrix M460 = M4 − M6M0, which can be computed before

the simulation and reduces the number of arithmetic operations required to produce

the desired solution. Similarly, equation (2.35) can be rewritten using equations (2.32)

and (2.34) in the following way

[(divF̂ )s] = M3

(
[F̂ If ]−M2[F̂

D
s ]
)

+M1[F̂
D
s ], (2.38)

and simplified to

[(divF̂ )s] = M3[F̂
I
f ] + (M1 −M3M2) [F̂Ds ]. (2.39)

This again results in a new matrix M132 = M1−M3M2, which can be found prior to the

computation and hence reduce the number of required arithmetic operations. Labelling

of the operator matrices M0 - M6 is the naming convention used in PyFR and will be

used throughout the rest of this thesis.

2.3 Characteristics of Operator Matrices in FR

Consider matrix multiplication of the form:

C ← αAB + βC,

where A is the operator matrix, B is the data and C is the output. The operator

matrices described in Section 2.2 all exhibit a similar set of characteristics. Their size

depends on the exact equations that are being solved, the type of the elements they are

evaluated on and the degree of accuracy (number of solution or flux points within each

element). For quadrilateral and hexahedral elements the operator matrices are sparse

due to the tensor product formulation on the solution points within each element, while

for triangular and tetrahedral elements they are dense. Furthermore, these operator

matrices are known a priori and remain constant for the duration of the computation.

They are typically small and square, the size ranges from 6× 3 to 1029× 343 across 1–6

orders of accuracy. From a practical point of view, the most relevant matrices are those

for the third order of accuracy with dimensions 96 × 64. The width of the B matrix

depends on the number of elements in the mesh. In this investigation we have used B
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of 50, 000 elements wide for all benchmarking runs. This is representative of a small,

non-trivial fluid flow simulation. Therefore, the entire multiplication takes the form of

a block-by-panel operation.

2.4 General-Purpose Computing on GPUs

In the early days of General-Purpose Computing on Graphics Processing Units (GPGPU)

it was impossible to write efficient, compute-bound matrix multiplication routines due

to the lack of developed memory hierarchy on the devices. This changed with the

introduction of NVIDIA Compute Unified Data Architecture (CUDA) in 2007, which

along other changes brought a fully fledged memory hierarchy introduced to the GPUs.

Further, around the same time NVIDIA released their Tesla series products targeted

specifically at High Performance Computing (HPC), offering very high single and dou-

ble precision floating-point performance. Shortly after, in 2008 ATI/AMD released their

series of GPUs implementing the non-proprietary OpenCL standard also targeting the

HPC sector [2].

GPUs are specialized in compute-intensive, highly parallel computation, as opposed

to more general purpose CPUs. They are particularly well suited for stream processing,

where the same kernel function can be executed independently on many different data

elements in parallel. High arithmetic intensity of GPU computations and high degree

of parallelism make it possible to hide memory latency with computation rather than

a hierarchy of caches. There are many parameters associated with GPU programming,

which need to be carefully chosen to ensure that there is always some computation

available to be scheduled on the GPU processing units, while fetching data from memory.

The following subsections gives an introduction to the two dominant general-purpose

GPU computing platforms: CUDA and OpenCL.

2.4.1 CUDA Programming Model

Compute Unified Data Architecture (CUDA) is a proprietary technology available only

on NVIDIA GPUs. It comes with a programming environment which uses C with a

minimal set of extensions as a high-level implementation language allowing developers

to access CUDA resources. More detail on the language can be found in the CUDA C

Programming Guide [15]. CUDA GPUs are characterised by their Compute Capability.

The GPUs used for the purpose of my investigation (Tesla K40c and GTX 780 Ti) are

of Compute Capability 3.5.
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Kernels, Blocks and Threads

CUDA developers implement kernels – C functions which are executed N times by N

different CUDA threads. For convenience, CUDA threads are grouped together into

one-, two- or three-dimensional structures called blocks. Blocks, similarly to threads, are

organised into a one-, two- or three-dimensional structure called the grid. Each thread

within a block can be identified using the thread index. The block index and the block

dimension are also accessible to each thread and can be used to compute a global index

of each thread within the grid. The number of blocks in the grid is usually dictated by

the size of the problem a programmer tries to solve. The number of threads in a block

is limited by the amount of resources requested by the kernel.

The number of blocks in the grid and threads in the block used to execute a given ker-

nel is called the execution configuration. Carefully selecting values for these parameters

can have a large effect on the overall performance of the code.

Platform Model

The CUDA Platform Model is depicted in Figure 2.1. NVIDIA GPUs are built from an

array of multithreaded Streaming Multiprocessors (SMs). Each SM consists of a large

number of CUDA cores (192 on the Kepler architecture). When a kernel is launched,

each block is allocated to a single SM and remains there for its lifetime. Blocks execute

concurrently and each SM executes a large number of threads at the same time. Instruc-

tions are pipelined to leverage instruction-level parallelism within a single thread. The

mapping between the execution model and the platform model is depicted in Figure 2.2.

Threads execute in groups of 32 called warps. Multiple warps can execute in parallel

on a single SM. All threads in a warp start at the same program address and execute

the same instructions, but maintain individual program counters and their execution

paths can diverge. This is known as the Single Instruction, Multiple Threads (SIMT)

paradigm. In the case when threads diverge, all execution paths are serialised until

they converge again. It is very beneficial for performance reasons to avoid divergence by

writing code with the minimum number of branching instructions.

The execution context (program counters, registers, etc.) for each warp is stored

on-chip for the lifetime of the warp, which allows for warp scheduling to happen at no

cost. The number of warps resident on the multiprocessor is limited by the number of

registers and shared memory requested by the kernel.

Devices with Compute Capability 3.x have a dedicated L1 cache for each multipro-

cessor as well as an L2 cache shared between all SMs. Additionally, each multiprocessor

has a read-only data cache of 48KB to speed up reads from device memory. Devices

with Compute Capability 3.5 can access it directly, while devices with lower Compute
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Host

...

Compute Unit

CUDA Streaming

Multiprocessor

Compute Device

CUDA-Enabled GPU

Processing Element

CUDA Core

Figure 2.1: CUDA (labelled in green) and OpenCL (labelled in black) platform models. Reproduced
from [17].

Capability access it through a texture unit (the cache is hence referred to as the texture

cache). The multiprocessors have also a read-only constant cache that is shared by all

functional units.

Memory Hierarchy

Global memory resides in device memory and is visible to every thread. It is accessed

via 32-, 64-, or 128-byte memory transactions. When a warp of threads reads or writes

global memory, the accesses are coalesced into a number of transactions depending on

the size of words accessed and the scatter of memory addresses. The less transactions

are issued the higher the bandwidth utilisation. Therefore, it is important to maximise

coalescing by following the most optimal access patterns and using data types of sizes

meeting the alignment requirements. The best performance is achieved when a warp

collectively reads consecutive memory locations aligned at a 128-byte boundary. On

devices of Compute Capability 3.x global memory reads are not cached in the L1 cache.

In addition, global memory can be also cached in a designated read-only data cache.

Local memory is private to each thread and is typically used when register spilling

is necessary or when variables are too large to fit in the register space (e.g. arrays).

Local memory resides in the device memory and has the same high latency and low

bandwidth as global memory. On devices of compute capability 2.x and higher, local

memory accesses are always cached in the L1 and L2 level caches. Further, local memory

undergoes the same alignment requirements as global memory.

Shared memory has a much lower latency than global memory, because it is located

on-chip. It is visible to each thread within a given block. To achieve high bandwidth,
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shared memory has been divided into equally-sized memory banks, which can be accessed

simultaneously by a number of threads. Thus, the most optimal memory access pattern

for a warp is when each thread accesses data from a different bank. Otherwise, a bank

conflict occurs and the accesses have to be serialised. A special case occurs when all

threads in a warp access the same data element, which can be broadcast and accesses

do not need to be serialized. There are two addressing modes for the shared memory

(64-bit and 32-bit), which allow successive words of 64- or 32-bits to map to successive

banks. Shared memory is equivalent to a user-managed cache.

Constant memory is read-only, resides in the device memory and is cached in the

constant cache. It can be accessed by all threads.

Texture memory is also read-only, resides in the device memory and is cached in the

texture cache. The texture cache is optimised for 2D spatial locality. It can be accessed

by all threads.

2.4.2 OpenCL Programming Model

Open Computing Language (OpenCL) [17] is a framework providing developers a lan-

guage based on C99 to implement kernels and execute them across heterogeneous systems

of CPUs, GPUs, FPGAs and other hardware accelerators. OpenCL is a unified plat-

form for parallel programming on devices such as high-performance servers, personal

computers or even mobile phones.

Kernels, Work-Groups and Work-Items

Alike the CUDA platform, OpenCL developers partition their problem into coarse grain

sub-problems and implement kernels to solve them. Submitting a kernel for execution

on an OpenCL device defines an index space s.t. one kernel instance, known as the

work-item, is executed for each point in this space. Work-items are aggregated into

work-groups, which correspond to CUDA blocks. Work-items in a given work-group

execute concurrently on the processing elements of a single compute unit. Similarly to

CUDA, the index space can be 1-, 2-, or 3-dimensional, and work-items can be identified

by either their global ID or the combination of a work-group ID and their local ID within

the group.

The developer specifies the number of work-items required for the given computation.

OpenCL allows the programmer to further define the division of work-items into work-

groups (the explicit model – useful when work-items need to share Local Memory) or

leave this decision to the OpenCL implementation (the implicit model).
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Platform Model

The OpenCL Platform Model (largely similar to the CUDA one as depicted in Figure 2.1)

consists of the host, which executes the host program according to its native model and

submits commands (memory transfers, synchronisation barriers or kernel launches) to

the OpenCL devices it is connected to. Each of the compute devices can contain mul-

tiple compute units, which execute a single stream of instructions as Single Instruction,

Multiple Data (SIMD) units. Further, each compute units can have multiple processing

elements, which can execute as Single Program, Multiple Data (SPMD) units main-

taining their own program counter (equivalent to CUDA SIMT). The host maintains a

command-queue to coordinate execution of kernels on the devices. The mapping of the

execution model onto the platform model is shown in Figure 2.2.

Work-Item

CUDA Thread

Processing Element

CUDA Core

Work-Group

CUDA Block

Compute Unit

CUDA Streaming

Multiprocessor

Kernel execution instance

CUDA Grid

Compute Device

CUDA-Enabled GPU

Figure 2.2: Mapping the kernel execution model onto the platform model. CUDA labelled in green and
OpenCL labelled in black. Reproduced from [24].

OpenCL is designed for heterogeneous computing and hence does not put any re-

quirements on how the model is implemented. For the purposes of our investigation it

is worth taking a look at the AMD Hawaii architecture (corresponding to the tested

FirePro W9100). The Hawaii devices have 4 Shader Engines of 11 compute units each.

Each compute unit consists of 64 shaders (corresponding to the processing elements).
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Each compute unit has its dedicated on-chip L1 cache and all 4 Shader Engines share

an L2 cache [5], which is largely similar to what CUDA offers as well.

Memory Hierarchy

Global Memory is available to all work-items across all work-groups and corresponds to

CUDA global memory. Depending on the capabilities of the device the accesses to this

memory may be cached.

Constant Memory remains constant through the kernel execution and can only be

allocated by the host. It corresponds to CUDA constant memory and similarly can be

accessed by all work-items.

Local Memory is private to each work-group. Depending on the device it might

be implemented as dedicated regions of memory or be mapped onto sections of global

memory. It corresponds to the CUDA shared memory.

Private Memory is the OpenCL equivalent of CUDA local memory and is private to

each work-item.

2.4.3 Basic Performance Optimisation Strategies for GPGPU

Maximising Resource Utilisation. It is important to select the execution param-

eters in such a way to enable allocation of a large number of CUDA blocks (work-

groups) simultaneously on the device. This includes partitioning the workload into

enough chunks and splitting each into an appropriate number of threads (work-items) to

keep the resources requirements of each block as small as possible. The SMs (compute

units) rely on thread-level parallelism to maximise utilisation of their functional units,

therefore it is crucial that the scheduler always has a warp ready to execute. The most

common reason why a warp is not ready to execute is when its operands need to be

fetched from memory and are not yet available. It can also be limited by dependencies

between instructions (one thread waiting for another thread to write some data). By

ensuring that a large number of blocks can reside simultaneously on each compute unit,

we explicitly facilitate latency hiding through providing a large pool of warps ready

for execution. Number of registers and the amount of shared memory (local memory)

used by each thread (work-item) can also limit the number of warps that can reside

simultaneously on a multiprocessor.

Maximising Memory Throughput. The techniques for optimising memory through-

put rely on an efficient use of shared memory (local memory in OpenCL), L1/L2 caches,

texture cache and constant cache as well as minimising the number of reads from device

memory. Further, to fully utilise the available memory bandwidth one needs to coalesce
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and align all accesses to device memory in order to issue the smallest possible number of

memory transactions and reduce the overhead of instruction replays. For CUDA devices

with Compute Capability 2.x and higher the same on-chip memory is used for both the

shared memory and L1 cache. The proportion of memory dedicated to each space can

be configured for each kernel call.

Maximising Instruction Throughput. Instructions throughput can be increased by

minimising threads divergence within warps, reducing the number of instructions and

by trading precision for speed by using single rather than double precision arithmetic or

intrinsic functions (less accurate but faster versions of standard arithmetic functions).

In this thesis we intend to investigate both cases of single and double precision, but are

not in a position to make an argument whether precision of a fluid flow simulation can

be traded off for speed.

2.5 cuBLAS, clBLAS and cuSPARSE

The most recent release of PyFR targets the CUDA and OpenCL platforms and defaults

to the use of cuBLAS and clBLAS GEMM for matrix multiplication operations when

executing on GPUs. These libraries are widely considered to be the best available GPU

BLAS alternatives and hence are the subject of this investigation.

cuBLAS is the highly optimised NVIDIA’s dense BLAS library [14], which is the

most popular choice for CUDA GPUs. Regretfully, cuBLAS is not open-source and the

implementation details are hidden from the developers. However, through profiling one

can develop an intuition about the basic techniques used by cuBLAS to provide a fast

GEMM implementation. As expected, we notice a high utilisation of shared memory by

cuBLAS, which suggests the routine employs some form of tiling to perform the matrix

product.

clBLAS is the popular OpenCL dense BLAS implementation [1], which can run across

a variety of hardware accelerators. It is open-source and therefore provides the developers

with complete information regarding the implementation of the matrix multiplication

routine. clBLAS is particular interesting as it can tune its performance to a particular

system. The auto-tuning utility comes packaged with the library and works by executing

different variants of the GEMM routine in the search for the one that performs best on

the given system. In our investigation we have tuned the clBLAS library prior to running

the benchmarking suite for all devices.
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cuSPARSE is the NVIDIA’s sparse version of the BLAS library for CUDA [16]. It

is designed to provide the best performance for GEMM in the cases where the matrices

are largely sparse. It requires the matrices to be stored in a compressed format such

as Compressed Sparse Row (CSR) or Coordinate List (COO), but this does not pose

a significant overhead as the matrices in our problem remain constant for the duration

of the simulation. One might think that cuSPARSE should be preferred over cuBLAS

as the provider of matrix multiplication kernels in PyFR for simulations running on

hexahedral and quadrilateral meshes (these element types correspond to sparse operator

matrices). However, Georgiou [7] found that the use of cuSPARSE for the case of small

matrices alike these used in PyFR delivers worse performance than the dense cuBLAS

GEMM. For this reason we will not consider cuSPARSE in this investigation.





Chapter 3

Related Work

General Matrix Multiplication is a well-studied problem and many techniques exist that

deliver near peak performance for the typical use cases. We give an overview of these

techniques in Section 3.1. It is far less common for someone to challenge the implemen-

tation of BLAS libraries in order to deliver higher performance GEMM routines. Our

investigation is motivated by a particular application in PyFR, which means that the

operator matrices and the type of the matrix product have certain characteristics (size,

sparsity, etc.) that are known in advance and can be exploited in order to outperform

the state-of-the-art GEMM implementations. Sections 3.1 and 3.2 present some of the

most fundamental optimisation techniques underlying the implementation of modern

high-performance BLAS libraries on various platforms. Section 3.3 outlines an approach

taken in the development of the SD++ solver (the first solver for Flux Reconstruction

schemes), where the authors develop bespoke matrix multiplication kernels to grant

performance improvements to their application. Section 3.4 summarizes an approach

to implementing high-performance, small-scale BLAS by generating code for fixed-size

linear algebra expressions, where the matrices in question are also know in advance. Sec-

tion 3.5 gives examples of other work in the field of linear algebra on the GPU platform,

which suggest a series of techniques for achieving high performance matrix multiplica-

tion kernels. The methodology used in our investigation will be further discussed in

Chapter 4 and the evaluation of our findings in Chapter 5.

3.1 Anatomy of High-Performance Matrix Multiplication

A large amount of work on General Matrix Multiplication (GEMM) routines has been

based on the findings of Goto and van de Geijn [8] from 2008. Although their paper is

the most applicable to CPUs, it gives some invaluable insights into how matrix product

can be efficiently engineered on any platform. The authors illustrate a layered approach

23
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C A B

Figure 3.1: The diagram illustrates two (out of six) ways suggested by Goto, how general matrix multi-
plication can be successively decomposed. The two ways shown in this diagram use block-by-panel type
of matrix product at the last level of decomposition. Reproduced from [8].

to implementing GEMM, capable of optimally amortizing the additional cost of moving

data between different levels of memory hierarchy. They show how the implementation of

matrix multiplication can be decomposed into multiplications with submatrices (known

as blocking). The computation is cast into multiple calls to the inner-kernels, which

perform the multiplication of blocks. The authors identify six inner-kernels that are

considered for building blocks for high-performance GEMM, one of which is the block-

by-panel type of matrix product. Figure 3.1 illustrates a decomposition of GEMM in two

(out of total six) ways suggested by Goto, which utilise block-by-panel matrix product

kernels at their lowest levels. The idea presented in Goto’s paper is that if the lowest

level kernels can attain high performance, then so will the main case of GEMM. Further,

other linear algebra operations can often be cast in terms of these special shape matrix

multiplication inner-kernels.

In the aforementioned paper the authors explain how the size of the matrices used

in the inner-kernels should be chosen to allow for high utilisation of the memory caches.

Packing of submatrices into contiguous memory is shown to improve the utilisation of

the TLB and serves as a mean for bringing the entries of the matrices into the memory

cache. Unfortunatly, these optimisations are of little relevence to the GPU platform

as the GPUs do not use virtual memory and the L2 cache is so highly contested by

thousands of parallel threads that it is difficult to predict its perfromance. However,

the GPUs shared memory (known as local memory for OpenCL) can be used as an

explicitly managed cache. Further, tiling for register reuse is also considered in the

paper and demonstrated to bring performance gains to the kernels.

The paper by Goto and van de Geijn identifies a series of key factors for achieving

high-performance GEMM implementation on any platform and stresses the importance

of the six inner-kernels building blocks of GEMM in the implementation of various other

routines such as level-3 BLAS.
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3.2 Automatically Tuned Linear Algebra Software

Hand-optimised BLAS libraries are expensive and time consuming to produce, hence

they only exist where there is a large enough market to justify the costs. To build a

high-performance BLAS library a programmer needs to know all the details about the

memory hierarchy, cache sizes, functional units, registers, etc. of the targeted platform.

Unfortunately, some vendors do not expose these details, making it much harder to write

high-performance code.

Clint Whaley and Jack Dongarra in 1998 suggested a solution to this problem – the

Automatically Tuned Linear Algebra Software (ATLAS) [21]. The authors suggest to

use code generation coupled with timing routines to perform a search for the optimal

implementation of GEMM on a given hardware platform. The methodology for building

GEMM is similar to the one given by Goto in [4] and described in Section 3.1. Whaley

suggests that GEMM routine can be implemented out of smaller inner-kernels, which

need to be optimised for a given platform. ATLAS performs the generation of inner-

kernels during the library installation process (auto-tuning). The process times execution

of a number of different kernels to find the one that performs best in the given scenario.

As discussed in Section 2.5, clBLAS comes with an auto-tuning software, which is able

to adjust the library’s performance to the given hardware platform.

According to Whaley, code generation needs to account for numerous parameters

such as the blocking factors, loop unrolling depths, software pipelining strategies, loop

ordering, register allocations and instruction scheduling. Further, it needs to be aware

of the hardware characteristics in order to guide its search through the parameter

space. The hardware specification can be given by users or approximated through micro-

benchmarking.

The authors identify a set of problems associated with this approach. Firstly, it is

impractical for the auto-tuning facility to exhaustively test all kernels in the parameter

space, hence the most optimal solution may not always be found and depends on the

information the installer has about the hardware characteristics. Also, they stress the

problem with executing GEMM on very small problem sizes, where the naive 3-loop

implementation can outperform the ‘optimised’ code. Lastly, the authors discuss the

strategies for generating the cleanup code to take care of data falling outside of the

tiling boundaries. The size of the tiles is known during code generation, hence it is

possible to generate cleanup code for all possible shapes of the tiles with dimensions

smaller than the blocking size. However, this approach does not scale well and would

produce large binaries. The proposed solution compromises between the generation of a

number of optimised routines for assumed shapes of the tiles and a complementing set

of generic routines accepting general tile parameters, but exhibiting worse performance.
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3.3 SD++ Solver

Castonguay et al. in their paper [4] describe the development of a GPU-enabled com-

pressible viscous flow solver, which utilises the Flux Reconstruction approach. The

authors found that custom kernels for matrix multiplications gave 40% performance in-

crease compared to the cuBLAS GEMM library. The proposed solution made use of

the texture memory (cached on chip) and shared memory to benefit from data reuse.

According to Castonguay the win over cuBLAS can be attributed to the three following

factors:

• The usage of custom kernels allowed to reduce the total number of fetches from

the global memory. The kernels could have been modified to perform multiple

algebraic transformations on the entries of B and C without the need to launch

any separate kernels. This, however, did not maintain the GEMM interface.

• Since the size of operator matrices is small and they remain constant throughout

the computation, they could have been loaded into the texture memory granting

a very fast access time.

• Due to heavy data reuse, elements of B were loaded into shared memory prior to

each multiplication. Shared memory is significantly faster than global memory and

can act as a fast user-managed cache.

The proposed algorithm worked in the following way. The B matrix was naturally

partitioned along its width into cells. Each block of threads was assigned at least one

cell. Each thread within a block was responsible for computing an entire row of the

output matrix C. As claimed by the authors, this approach, as opposed to an intuitive

thread per element of C, increased the register pressure but decreased the number of

fetches of A from global memory and also allowed for higher degree of instruction level

parallelism.

Two different methods were adopted to perform the multiplication depending on

whether the operator matrix was dense or sparse. As an optimisation in the dense case,

matrix A was stored in the texture memory in column-major form. This ensured that

all threads within a warp accessed sequential locations of the texture memory. In the

sparse case, ELLPACK format was used to pack the operator matrices into contiguous

memory and allowed to reduce the number of floating-point operations perform by the

kernels by eliminating the zero entries.

Castonguay did not investigate the possibility to increase the performance of their

kernels through hierarchical tiling. We believe, that tiling the matrix product could

allow to reduce the number of registers required by each kernel and hence increase the
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occupancy, as the demand for resources would drop. This optimisation has the potential

to decrease the register pressure while simultaneously keeping the number of memory

fetches the same and maintaining the same degree of instruction level parallelism.

3.4 Basic Linear Algebra Compiler

Spampinato and Püschel [19] have identified the need for high-performance, small-scale

basic linear algebra computation, which is currently unattainable with the available

state-of-the-art vendor BLAS libraries, which perform best with large problem sizes.

The authors present the Basic Linear Algebra Compiler (LGen), which takes as input a

fixed-size linear algebra expression and outputs a highly optimised C function. The code

generation consists of three steps. First, a DSL description of the problem is input and

a tiling decision (possibly hierarchical) is made based on the sizes of the matrices. The

input gets translated into a second DSL, which contains the tiling decisions and makes

the access patterns explicit. In step two loop-level optimisations are performed. These

optimisations do not require any sophisticated analysis since they utilise the mathe-

matical representation of the computation. Loop-level optimisations employed in LGen

include loop merging and exchange. The second DSL representation is next translated

into a C intermediate representation (C-IR). In the third stage code-level optimisations

such as loop unrolling and translation into SSA form are performed. Lastly, the C-IR

code is unparsed into C. The performance results obtained using the generated code are

fed back to the generator, which uses auto-tuning to refine its initial tiling decisions and

perhaps produce even faster code. The performance of the code produced by LGen for

small matrices is competitive and often better than the performance of other available

libraries.

Knowing the size and structure of the matrices in question prior to the computa-

tion step directly corresponds to the problem addressed in this thesis. The authors of

LGen suggest that exploring the structure of the matrices can have a significant effect on

performance, but leave this claim without any empirical evidence. Further, the optimisa-

tions employed in LGem are largely designed for the CPU platform and hence cannot be

directly ported onto the GPUs. Nevertheless, the authors present a number of insights,

which can prove invaluable when building a matrix multiplication kernel generator for

our purposes.

For the purposes of the FR schemes and PyFR it is particularly desirable to optimise

the sole matrix-matrix multiplication routine, rather than a combination of linear algebra

expressions. Nevertheless, as already identified by Castonguay [4], there is scope to

combine the applications of the matrix product with some of the point-local operations

performed by PyFR during each time step of a simulation. While this might expose an
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opportunity for numerous software optimisations to be applied and bring performance

improvements to the solver, it can have an unwanted effect of largely reducing the clarity

of the implementation.

3.5 Other Work

In 2010 Nath et al. [12] identified the necessary factors for improving performance of

cuBLAS GEMM routine once the Fermi architecture has been introduced. We recognise

that our study is being performed on a newer Kepler architecture, which differs signif-

icantly to the one considered by Nath, hence their suggested implementation may not

be faster than the up-to-date version of cuBLAS. Nevertheless, the points made by the

authors remain valuable and relevant. Nath suggests that since registers are much faster

than shared memory it might be beneficial to tile for them and hence increase the reuse

of data that already resides in the fastest available memory. This might be even more so

on the newer architecture with a largely increased number of registers available to each

thread. The authors also recognise the benefits of using texture memory to store entries

of the operator matrix.

Despite solving a different problem, Jhurani et al. [11] also recognise the issue with

reaching peak performance using cuBLAS GEMM when multiplying small matrices,

due to the reduced reuse of elements once they have been copied form global memory

into shared memory. This insight further reinforces the idea that in the case of small

operator matrices, the tiling choices are the most crucial and can have a large impact on

performance. It is critical to maximise data reused once it is copied into registers. In this

investigation we will explore software optimisations techniques, which should realise this

objective. This insight further suggests that selecting an appropriate tiling scheme with

multiple levels of blocking, can prove invaluable in developing a fast, high-performance

matrix multiplication routine for small matrices.
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Methodology

Due to a vast domain of numerical method choices available for each PyFR simulation,

which dictate the characteristics of the used operator matrices (see Section 2.3), we

require the matrix multiplication kernels to be auto-generated rather than written and

optimised by hand. To accomplish this we have developed GiMMiK– an open-source

Python library, capable of generating matrix multiplication kernel code for CUDA and

OpenCL.

As part of the preliminary analysis we have considered a series of software optimi-

sations, which we speculated would bring performance improvements to our kernels and

enable us to improve over the performance of cuBLAS and clBLAS. These optimisations

include:

• using the constant memory to store the operator matrix,

• reducing common sub-expressions,

• sparsity elimination, and

• avoidance of the cleanup code.

We have taken a systematic approach to evaluate each of the proposed optimisations in

order to find the successful ones and incorporate them into GiMMiK. By design, each of

our kernels computes an entire matrix-vector product. Loop unrolling serves as a basis

for all of the applied optimisations.

We note that the desired matrix product is of the form

C ← αAB + βC

and values of α and β need to be handled with care. Generating kernels with embedded

values of the operator matrix allows us to pre-multiply them with α to reduce the required

29
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number of floating-point operations. A special case occurs when β = 0, where we do not

need to load entries of the output matrix at all. For this reason, each of the experiments

mentioned in this thesis is run twice to investigate the effects of our optimisations in

both cases when β = 0 and β 6= 0.

In Section 4.2 we propose and experimentally evaluate the four aforementioned ways

in which we believe our kernels can outperform BLAS GEMM. Subsequently, we pick the

successful optimisations and incorporate them into GiMMiK as described in Section 4.3.

Section 4.1 describes the experimental setup used to benchmark our kernels.

4.1 Benchmarking Infrastructure

We have developed a C++/Python benchmarking infrastructure in order to evaluate the

performance of our bespoke kernels and compare it with cuBLAS and clBLAS GEMM

implementations. The set of matrices used for benchmarking were extracted form the

PyFR solver for quadrilateral, hexahedral, triangular and tetrahedral meshes across 1–6

orders of accuracy. The full specification of the matrices is available in Appendix A. The

memory layout, the operator matrices and the problem size were setup to mirror those

in PyFR. All matrices used in benchmarking are stored in a row-major order and are

padded to ensure coalesced and aligned memory accesses by all threads. The operand

and output matrices were selected to be 50, 000 elements wide to provide a representative

problem size.

Throughout the simulation, PyFR keeps the operand matrix in device memory at all

times. It is copied onto the device only at the beginning of the simulation, hence, the cost

of memory transfers from the host to the device can be neglected for the purpose of our

investigation. Further, the time required to generate and compile our bespoke kernels

can also be neglected as it is significantly smaller than the time required to complete

any meaningful fluid flow simulation.

The timing of the kernels is done in a standard way using CUDA and OpenCL

profiling events. Every reported value in this investigation is an average of 30 kernel

executions and is reproducible within 2%. The average was taken to reduce the random

error in our observations. 30 un-timed runs were executed before each timing run to

eliminate bias due to idle under-clocking of the GPUs. The benchmarks were executed

on the NVIDIA Tesla K40c and GeForce GTX 780 Ti, which both share the same

Kepler (compute capability 3.5) architecture, and the AMD FirePro W9100. The full

specification of the devices, including the versions of the OpenCL and CUDA runtime

is given in Table 4.1. To provide a comprehensive suite of results, each benchmarking

run was executed in single and double precision with β = 0 and β 6= 0.
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Tesla K40c GTX 780 Ti FirePro W9100
Architecture Kepler Kepler Hawaii
Compute Capability 3.5 3.5 N/A
ECC ON N/A N/A
Peak Memory Bandwidth 288 GB/s 336 GB/s 320 GB/s
Peak Double-Precision 1.43 TFLOPs 210 GFLOPs 2.62 TFLOPs
Peak Single-Precision 4.29 TFLOPs 5.04 TFLOPs 5.24 TFLOPs
CUDA Version 6.0 6.0 N/A
OpenCL Version 2.0 2.0 2.0

Table 4.1: Specification of the experimental hardware.

4.2 Optimisations Assessment

The aim of this section is to systematically evaluate four ways in which we believe our

kernels can outperform cuBLAS and clBLAS GEMM in a block-by-panel type of matrix

multiplication. For each of these optimisations we have designed an experiment to test

whether it can grant the speculated performance benefit. The generated kernels were

benchmarked using the infrastructure described in Section 4.1, with the exception that

data was only gathered for the CUDA platform on NVIDIA GPUs. Unfortunately,

NVIDIA has discontinued support for profiling OpenCL kernels on CUDA GPUs in the

latest versions of the toolkit. After the evaluation of the experimental results we are

able to select the successful optimisations and incorporate them into our final solution

– GiMMiK.

4.2.1 Value Embedding

Hypothesis We speculate that encoding values of the operator matrix directly in the

kernel code, as opposed to loading them from memory, will result in a performance

improvement of our kernels. It is expected to reduce the required number of accesses to

global memory and expose the opportunity for the compiler to efficiently reuse values

of the operator matrix by retaining them in registers (i.e. eliminate the latency due

to memory access entirely). Further, embedding values in the code is realized through

storing them in the constant memory. This is advantageous as the compiler has explicit

knowledge about the usage pattern of those values and can find an optimal memory

storage layout to minimize bank conflicts and best utilise the constant cache. With this

approach, for the case of small matrices, the entries of the column of the operand matrix

required by each thread are also likely to remain in registers and be reused efficiently

while computing the entire column of the output matrix.
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Experiment To verify our assumption we generate and benchmark two types of ker-

nels. The first type reads the operator matrix from global memory. On the Kepler

architecture global memory loads are not cached in the L1 cache making the read-only

data cache the only suitable way of caching data. This cache is known as the texture

cache on older architectures and has to be explicitly managed by the programmer. The

CUDA compiler (nvcc) will convert all loads into loads cached in the read-only data

cache whenever it can. Hence, to better control experimental variables, we use it ex-

plicitly. The second kernel has values embedded in the code and relies on the constant

memory and the constant cache to bring them efficiently into registers.

Discussion Experimental results show that for a majority of benchmark matrices we

achieve a significant speedup due to embedding values directly into the kernel code.

The cases where the reported execution time of the non-embedding kernels are smaller

are mostly within the 2% reproducibility margin and hence considered insignificant.

Figure 4.1 illustrates the relative performance of these two types of kernels in double

precision for β = 0. The complementing set of graphs for single precision and β 6= 0

is available in Figure C.1. Raw experimental data for this experiment is available in

Appendix B.
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Figure 4.1: Comparison of kernels embedding values the operator matrix in the code and those accessing
it through the texture unit for double precision and β = 0. Positive and neutral effects of value embedding
on the set of benchmark matrices are indicated as green.

Unfortunately, NVIDIA does not provide any details on the specification of the con-

stant cache, hence the explanation of these results can be at best speculative. The

experimental data suggests that the constant cache offers better performance and local-

ity for the type of memory accesses we require. This is most likely realized through the
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compiler, which is able to pick the most optimal memory storage layout for the constants

in order to avoid memory bank conflicts and fully utilise the constant cache. Profiling

reveals that whenever we achieve a particularly large speedup through embedding val-

ues in the code, the non-embedding kernels attain a low hit rate in the read-only data

cache. This might be due to a particularly unfavourable sparsity pattern, which causes

the data to be frequently evicted from the cache. To neutralise the effects of the par-

ticular sparsity patterns on the performance of the cache, we could attempt to pack the

operator matrix into a contiguous chunk of memory, as suggested by Goto [8]. However,

the experimental data for purely dense matrices shows that even when the matrix is

stored in a contiguous block of memory the performance of the constant memory/cache

is superior to the performance of the read-only data cache.

4.2.2 Common Sub-Expression Elimination

Hypothesis Due to the mathematical formulation of the solution points in various

element types, values along the rows of the operator matrix occasionally repeat. This

exposes the opportunity for us to reduce common sub-expressions and save on the num-

ber of floating-point operations required to compute the matrix product. This can be

achieved by summing up elements of the operand matrix corresponding to the repeated

values prior to multiplication by the common term. This is illustrated by the following

example:

cij = · · ·+ a× bxj + · · ·+ a× byj + . . .

= · · ·+ a× (bxj + byj) + . . .

which shows how one multiplication by a common term can be eliminated. The reduction

of common sub-expression can bring further performance gains to our kernels.

Experiment To examine whether common sub-expression reduction is beneficial we

benchmark two types of kernels, which embed all values from the operator matrix directly

in the code and eliminate all multiplications by zeros. Only the second kernel reduces

common sub-expressions by summing up entries of B prior to the multiplication by the

value from A.

Discussion Experimental data revealed that common sub-expression elimination did

not bring the expected effect of improving performance of our kernels. The majority of

the kernels carrying out the elimination performs worse or within the 2% reproducibility

margin of those that do not. Figure 4.2 illustrates the relative performance of these two

types of kernels in double precision for β = 0. The complementing set of graphs for
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single precision and β 6= 0 is available in Figure C.2. Raw experimental data for this

experiment is available in Appendix B.
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Figure 4.2: Comparison of kernels eliminating common sub-expressions from the operator matrix and
those performing no such optimisation for double precision and β = 0. Positive effects of common
sub-expression elimination on the set of benchmark matrices are indicated as green.

When explicitly eliminating floating-point multiplications from the kernel by combin-

ing common sub-terms together we trade-off the possibility for the compiler to efficiently

reuse elements of the operand matrix. To illustrate this, consider the following operator

matrix and an arbitrary constant a:

A =


. . . . . . . . . . .

0 a 0 a

. . . . . . . . . . .

a a 0 0

. . . . . . . . . . .


When eliminating common sub-expressions we would generate the following two sub-

terms when computing the col column of the output:

subterm_10 = b[1 * bstride + col] + b[3 * bstride + col]

subterm_20 = b[0 * bstride + col] + b[1 * bstride + col]

The two sums have a common term b[1 * bstride + col], which will be loaded from

memory twice, unless it is found in the cache or the compiler kept it in a register when

the second sum is computed. Profiling has revealed that reduction of common sub-

expressions increased the memory traffic and the number of global memory load and
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store instructions executed by our kernels. This suggests that the compiler does not

change the order in which these sums are computed to increase the likelihood of hitting

in the cache and neither does it retain sub-expressions in registers for later reuse. Further,

we note an increased number of subterms generated for kernels with reduced common

sub-expressions, which increases the register pressure and causes the kernels to demand

more resources from the GPU. This, again, has a negative impact on performance and

further explains why this optimisation is not a successful one.

However, Figures 4.2 and C.2 show that on the GTX 780 Ti a significantly larger

fraction of the kernels benefit from common sub-expression elimination. This is the

case as the card offers higher memory bandwidth than the Tesla K40c, hence it is more

forgiving of the extra memory loads this optimisation generates. Further, in the case of

double precision, the performance cap placed on the floating-point rate means that any

reduction of the number of executed arithmetic operations has a potential to bring large

performance gains.

4.2.3 Sparsity Elimination

Hypothesis Thanks to full unrolling we can eliminate all sparsity from the opera-

tor matrix by considering only the non-zero entries for the multiplication. In PyFR,

quadrilateral and hexahedral element meshes correspond to matrices with large sparsity

factors due to the tensor-product formulation of the solution points. We hypothesise that

while BLAS GEMM is typically limited by the floating-point performance of the device,

decreasing the number of required arithmetic operations (combined with an efficient

memory access pattern) can decrease the running time of our kernels.

Experiment To verify the effectiveness of sparsity elimination we compare two types

of kernels, which embed all values from the operator matrix directly in the code. All mul-

tiplications by zeros were eliminated from the second kernel only. Both types of kernels

are benchmarked using the earlier mentioned infrastructure to verify the effectiveness of

the proposed optimisation.

Discussion In the case of sparse matrices, elimination of zero entries allows us to

greatly decrease the number of floating-point operations performed by the kernel. Fig-

ure 4.3 illustrates the effectiveness of sparsity elimination in double precision for β = 0.

The complementing set of graphs for single precision and β 6= 0 is available in Figure C.3.

We note that this optimisation has no effect on dense kernels. Raw experimental data

for this experiment is available in Appendix B.

This optimisation increases the utilisation of the available memory bandwidth and

allows our kernels to execute significantly faster. Profiling has revealed that through the
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Figure 4.3: Comparison of kernels eliminating sparsity from the operator matrix and those performing
all the multiplications by zeros for double precision and β = 0. Positive and neutral effects of sparsity
elimination on the set of benchmark matrices are indicated as green.

removal of unnecessary floating-point operations our kernels become fully bound by the

available memory-bandwidth in both cases of single and double precision. Further, some

of our benchmark matrices contain whole columns of zeros, which effectively means that

the dimensionality of these matrices decreases and entire rows of the operand matrix do

not need to be loaded from memory at all. This not only further decreases the number

of arithmetic operations but also reduces the amount of memory that has to be read by

our kernels. Naturally, fully dense cases of triangular and tetrahedral element matrices

do not benefit from this optimisation. Raw experimental data indicates an existence of

a strong positive correlation between the size and sparsity factor of the matrices and the

speedup achieved through the removal of multiplications by zero.

4.2.4 Cleanup Code

Hypothesis Lastly, we recognise that the tiling scheme used by cuBLAS and clBLAS

might be a limiting factor. GEMM implementations in BLAS libraries often utilise

some form of tiling to efficiently reuse data from the cache, registers or – in the case of

GPUs – shared memory. Poor tiling choices result in the need to execute cleanup code

over the elements of the matrix that fall outside of the tile boundaries (as illustrated in

Figure 4.4). This cleanup code is known to be poorly optimised. For the case of small

operator matrices such as these used in PyFR, the performance penalty due to poor

tiling choices can be particularly significant. Our fully unrolled kernels do not incur any

of these costs.



CHAPTER 4. METHODOLOGY 37

C A B

Figure 4.4: Diagram of a blocked matrix product. The red area represents partial tiles, whose dimensions
are not a multiple of the blocking factor. These partial tiles are multiplied using the cleanup code.

Experiment To examine what effects the cleanup code in cuBLAS has on perfor-

mance, we benchmark fully unrolled kernels with sparsity eliminated and values of the

operator matrix embedded in the code, against the BLAS GEMM and against a naive

3-loop implementation of the matrix product. The naive implementation serves as a

reference to determine the extent to which performance of BLAS is dominated by the

cleanup code.

Discussion Figure 4.5 illustrates the performance of cuBLAS GEMM and the naive

3-loop implementation in double precision for β = 0. The complementing set of graphs

for single precision and β 6= 0 is available in Figure C.4 and all experimental data

for this experiment is available in Appendix B. We see that for a large fraction of the

smaller benchmark matrices the performance of cuBLAS GEMM is often worse than

that of a naive matrix product. The analysis of the experimental data has confirmed our

conjecture that performance of BLAS GEMM is heavily affected by the poorly optimised

cleanup code for cases of small matrices.
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Figure 4.5: Comparison of NVIDIA cuBLAS and the naive 3-loop matrix multiplication kernel for double
precision and β = 0. Cases when cuBLAS performs better are indicated as green.
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Additionally, we observe that our bespoke kernels are able to achieve very impressive

speedups over BLAS for the smallest of the benchmarked matrices (see Chapter 5). This

provides further evidence for the hypothesis that the cleanup due to inefficient tiling in

cuBLAS and clBLAS GEMM for small matrix sizes results in a large overhead and hence

allows our bespoke kernels to perform significantly better.

4.3 GiMMiK

Having performed the experiments described in Section 4.2 we are in a position to gen-

erate highly performant kernels for use in the PyFR solver. We have incorporated the

successful optimisations into GiMMiK. We conclude that to achieve the best perfor-

mance of our kernels we will eliminate sparsity from the operator matrix to reduce the

number of floating-point operations. Through the preliminary analysis we found that

this optimisation was highly beneficial for the matrices with high sparsity factors (cor-

responding to hexahedral and quadrilateral meshes). Further, GiMMiK will embed all

non-zero values directly in the kernel code to benefit from the fast constant cache and

compiler optimisations. This optimisation is expected to increase the performance of

kernels for all element types. Lastly, we avoid the need to execute any cleanup code

through loop unrolling, which shows to be beneficial especially for the smallest matri-

ces (low orders of accuracy) across all element types. GiMMiK’s kernels will not reduce

common sub-expressions as this optimisation was found to have a negative effect on their

performance due to the increased number of memory loads necessary to compute the

subterms and an increased register pressure due to larger number of temporary variables

needed in the code.

GiMMiK was built as a stand-alone Python package with a simple interface (see

Figure 4.6), which can be readily installed and used across a number of systems. It

incorporates all of the successful optimisations discussed in this thesis and turns them

on by default. Common sub-expression elimination can also be applied on demand,

but as discussed previously, is not expected to benefit the performance of our kernels.

Figure 4.7 shows a sample code generated by GiMMiK for the CUDA platform for a

given operator matrix and β = 0.

One of the design goals was to make GiMMiK’s kernels interchangeable with BLAS

GEMM, however, the very nature of some of the applied optimisation meant that we

would not be able to maintain the same interface. GiMMiK includes support for α and

β coefficients as well as allows the matrices to be strided in memory. The only difference

between GiMMiK and BLAS GEMM is that the later allows the A and B matrices to

be optionally transposed inside the routine.

Chapter 5 aims to present a final set of benchmarking results obtained through the



CHAPTER 4. METHODOLOGY 39

1 import gimmik . genera to r as gen
from gimmik . p lat form import Platform

3

. . .
5

# Generate ke rne l
7 ke rne l = gen . generateKerne l ( data ,

alpha =2.0 ,
9 beta =3.0 ,

double=True , # Pre c i s i on
11 reduced=False , # CSE

plat form=Platform .OPENCL) # Platform
13

Figure 4.6: GiMMiK’s interface.

A =

 0.0 0.0 0.59097691
0.63448574 0.0 0.0

0.0 0.71191878 0.95941663


(a) Operator matrix input to GiMMiK.

g l o b a l void
2 gimmik mm( const double ∗ r e s t r i c t b ,

double ∗ r e s t r i c t c ,
4 const i n t width ,

const i n t b s t r ide ,
6 const i n t c s t r i d e )

{
8 i n t index = blockDim . x ∗ blockIdx . x + threadIdx . x ;

i f ( index < width )
10 {

const double ∗ b l o c a l = b + index ;
12 double ∗ c l o c a l = c + index ;

14 const double subterm 0 = b l o c a l [ 2 ∗ b s t r i d e ] ;
const double subterm 1 = b l o c a l [ 0 ∗ b s t r i d e ] ;

16 const double subterm 2 = b l o c a l [ 1 ∗ b s t r i d e ] ;

18 c l o c a l [ 0 ∗ c s t r i d e ] = 0.5909769053580467 ∗ subterm 0 ;
c l o c a l [ 1 ∗ c s t r i d e ] = 0.6344857400767476 ∗ subterm 1 ;

20 c l o c a l [ 2 ∗ c s t r i d e ] = 0.9594166286064713 ∗ subterm 0
+ 0.7119187815275971 ∗ subterm 2 ;

22 }
}

24

(b) Kernel code generated by GiMMiK.

Figure 4.7: Sample kernel code generated by GiMMiK for the CUDA platform for the given operator
matrix and β = 0.
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use of GiMMiK to generate bespoke matrix multiplication kernels for a set of PyFR

matrices. We will present the final speedups our kernels achieve over cuBLAS and

clBLAS. Further, we will critically assess their performance in terms of the percentage

of peak capabilities of the hardware they are able to utilise. Lastly, we will plug GiMMiK

into PyFR to investigate the absolute performance improvements to the solver attainable

through the use of our package as a matrix multiplication kernel provider for fluid flow

simulations.



Chapter 5

Evaluation

At this stage we have systematically evaluated a series of software optimisations and

incorporated the successful ones into GiMMiK. As the next step we use the same experi-

mental setup as described in Section 4.1 to evaluate the final performance of our bespoke

kernels. All details on the benchmarked operator matrices are available in Appendix A.

All experimental results obtained for individual matrices across all element types are

available in Appendix D and are discussed in Section 5.1. Further, in Section 5.2 we

assess the quality of our solution by taking a look at how much of the peak performance

of the device our kernels are able to achieve. As the final step in Section 5.4 we explore

the performance benefits the use of GiMMiK grants to our motivating application in

PyFR and evaluate the limitations of our solution in Section 5.5.

5.1 Kernels Benchmarking

We find that our bespoke CUDA kernels are able to outperform cuBLAS GEMM in

nearly all cases for quadrilateral, hexahedral and triangular element matrices in double

and single precision on both the GTX 780 Ti and Tesla K40c with β = 0 as well as β 6= 0.

These matrices are either sparse or small and dense. In the case of larger tetrahedral

matrices the library implementation proves superior. This is expected as these matrices

are dense and sufficiently large for cuBLAS to perform well. Additionally, in the case

of single precision we find a small number of large hexahedral matrices, where cuBLAS

is slightly more performant than our kernels, as the library GEMM implementation

can fully utilise the inherently higher single precision floating-point performance of the

devices without it being a limiting factor.

Similarly, we find that our OpenCL kernels are able to outperform clBLAS GEMM

in all cases for quadrilateral, hexahedral and triangular element matrices in double and

single precision with β = 0 as well as β 6= 0 on both the GTX 780 Ti and Tesla K40c. We

41
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have only benchmarked our kernels in double precision and β = 0 on the FirePro W9100

and found the a significantly smaller portion of the benchmarked matrices was able to

achieve a speedup over clBLAS GEMM. On the FirePro W9100 some of the larger sparse

matrices and mid-range dense matrices, which showed performance improvements on the

CUDA platform, proved to perform worse than clBLAS.

The top plots in Figures 5.1 to 5.4 illustrate the achieved speedups across a variety of

matrix sizes and sparsity patterns corresponding to the benchmark matrices from PyFR

for 1–6 orders of accuracy and β = 0 on the CUDA platform. The complementing set

of plots for the OpenCL platform and β 6= 0 is available in Appendix E. We conclude

that sparse matrices and particularly small matrices benefit the most from optimisations

employed by GiMMiK. This is expected while GiMMiK reduces the number of floating-

point operations required to compute the product as well as avoids the poorly optimised

cleanup code, which dominates performance of GEMM for small matrices. Further, we

observe cases of matrices with the exact same size and sparsity, that achieve different

speedups. These matrices differ in their width and height, which has an effect on how

well BLAS performs, due to the inefficiencies in the tiling choices it is able to make for

these particular dimensions. It has little effect on performance of our kernels. In the case

of double precision on the GTX 780 Ti we note particularly impressive speedups due to

the artificial cap imposed by NVIDIA on the peak double precision floating-point rate

on the consumer-grade card. Through the use of GiMMiK we are able to significantly

reduce the number of floating-point operations required and hence better utilise the

available resources.

Lastly, we want to compare the relative performance of the CUDA and OpenCL ker-

nels when executed on the same platform (GTX 780 Ti and Tesla K40c). We observe that

in double precision, on both the GTX 780 Ti and Tesla K40c our CUDA kernels generally

perform better than OpenCL kernels for a majority of the benchmark matrices, apart

from cases for larger dense matrices corresponding to higher-orders tetrahedral meshes.

This is, however, within the performance region where cuBLAS and clBLAS operate bet-

ter than our bespoke kernels. In single precision our CUDA kernels perform worse than

OpenCL for the majority of larger dense and sparse matrices, corresponding to tetrahe-

dral and hexahedral meshes respectively. The lack of ability to profile OpenCL kernels

on CUDA devices limits our understanding of the performance differences between these

two platforms. We speculate, that because NVIDIA’s OpenCL implementation is 32-bit

(CUDA is 64-bit) and hence uses less registers to perform address calculations and to

store pointers, it might be able to reduce the register pressure affecting performance of

our kernels for large matrices. Through this observation we develop a general belief that

the CUDA kernels should be favoured on the NVIDIA’s platform.
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Figure 5.1: Plots illustrating the speedup of GiMMiK’s CUDA kernels over cuBLAS, the achieved
percentage of the peak floating-point rate and the achieved percentage of the peak memory bandwidth.
The metric of interest is represented through the size and colour intensity of the data points. Speedups
smaller than 1 are denoted with crosses. These plots are for double precision β = 0 on Tesla K40c.
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Figure 5.2: Plots illustrating the speedup of GiMMiK’s CUDA kernels over cuBLAS, the achieved
percentage of the peak floating-point rate and the achieved percentage of the peak memory bandwidth.
The metric of interest is represented through the size and colour intensity of the data points. Speedups
smaller than 1 are denoted with crosses. These plots are for single precision β = 0 on Tesla K40c.
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Figure 5.3: Plots illustrating the speedup of GiMMiK’s CUDA kernels over cuBLAS, the achieved
percentage of the peak floating-point rate and the achieved percentage of the peak memory bandwidth.
The metric of interest is represented through the size and colour intensity of the data points. Speedups
smaller than 1 are denoted with crosses. These plots are for double precision β = 0 on GTX 780 Ti.
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Figure 5.4: Plots illustrating the speedup of GiMMiK’s CUDA kernels over cuBLAS, the achieved
percentage of the peak floating-point rate and the achieved percentage of the peak memory bandwidth.
The metric of interest is represented through the size and colour intensity of the data points. Speedups
smaller than 1 are denoted with crosses. These plots are for single precision β = 0 on GTX 780 Ti.
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5.2 Quality Assessment

Performance of BLAS libraries is typically bound by the floating-point capabilities of

the hardware [12], because GEMM routines do not exploit any sparsity or redundancy

in the data. To assess the quality of GiMMiK we want to empirically determine the

performance limiting factor for each of the generated kernels. Firstly, we calculate the

ratio of the peak floating-point performance and peak memory bandwidth for each device

using values reported by its vendor. Next, for each kernel on each device we calculate

the ratio of the achieved floating-point rate and memory bandwidth. We compare the

two ratios to determine the limiting factor for the performance of the kernel:

a =
achieved flops

achieved bandwidth
p =

peak flops

peak bandwidth

such that when a < p the kernel is bound by the available memory bandwidth, else by

the floating-point performance of the device.

The achieved floating-point rate is defined in terms of the number of floating-point

operations needed to perform the matrix product and the time taken to execute the

kernel. We use the NVIDIA profiler (nvprof) to count the number of floating-point

operations executed by our kernels. This is more accurate than computing this num-

ber algebraically, due to the reduction of the number of operations resulting from the

compiler optimisations and elimination of sparsity.

The achieved memory bandwidth is computed in terms of the time taken to execute

the matrix product and the total amount of memory needed to be read and written

by the kernel. Similarly to the floating-point rate, the achieved memory bandwidth was

obtained through profiling. We note that the metric reported by the compiler is inclusive

of any traffic to and from local memory.

Profiling of our kernels has revealed that through the applied optimisations all kernels

for sparse matrices (hexahedral and quadrilateral meshes) become bound by the available

memory bandwidth. Small dense kernels do not require enough floating-point operations

to utilise a large percentage of the available floating-point rate and hence are also bound

by the available memory bandwidth. Kernels for larger sized dense matrices, are limited

by the floating-point performance of the device. These results hold in both single and

double precision across all devices on the CUDA platform. Due to the artificially reduced

double precision floating-point rate on the GTX 780 Ti, a larger portion of our dense

kernels turn out to be bound by the available floating-point rate on that device. We

also find a small number of larger matrices, which despite being predominantly sparse,

do not contain enough zeros to overcome the performance cap. Figure 5.5 illustrates

these findings for kernels in double precision and β = 0; complementing figures for

single precision are available in Appendix G. Unfortunately, we were unable to profile
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the OpenCL kernels on CUDA GPUs as NVIDIA discontinued support for OpenCL

profiling in the latests releases of their toolkit. Nevertheless, we expect the results to

conform to the described trends.

The bottom two plots in Figures 5.1 to 5.4 and Appendix E illustrate the achieved

percentage of the peak floating-point rate and memory bandwidth by GiMMiK’s kernels

for various size and sparsity patterns corresponding to the benchmarked PyFR matrices.

By the analysis of these plots we notice that the utilisation of the available memory band-

width dramatically drops for large dense matrices (also for very large sparse matrices)

and results in performance degradation of GiMMiK’s kernels up to the point where they

perform worse than library GEMM. Further, not unexpectedly, dense matrices achieve

higher utilisation of the available floating-point rate than sparse matrices. We observe a

significantly higher percentage utilisation of the double precision floating-point rate on

the GTX 780 Ti due to the artificial cap imposed by NVIDIA on their consumer-grade

hardware.

5.3 Hardware Performance Assessment

Having developed an understanding of the factors limiting the performance of our kernels,

we can now evaluate the performance of the three pieces of hardware we have used for our

investigation. However, comparing the absolute performance of the three devices with

each other would not be very meaningful, as they all have different specifications. One

could normalize the achieved results by the market price of each GPU and its running

cost in order to find what hardware should be used to build a cost-optimal system for a

given application. This investigation, however, is beyond the scope of this thesis.

Nevertheless, it is insightful to compare the case of the consumer-grade and the

industry-grade cards together. Our study shows that the largest speedups are obtained

for the consumer-grade GPU for both cases of dense and sparse matrices. This is ex-

pected for the memory bandwidth bound kernels as the GTX 780 Ti offers higher memory

bandwidth than Tesla K40c. Further, in the dense cases the artificial FLOPS limit in

double precision on the GTX 780 Ti poses a big disadvantage to BLAS GEMM, and

hence results in a much larger speedup achieved by our kernels. In terms of the absolute

performance, GTX 780 Ti executes GiMMiK’s kernels faster than the Tesla K40c in all

cases of sparse matrices in double precision, which are bound by the available memory

bandwidth. Further, the GTX 780 Ti is superior in all cases in single precision due to

the higher hardware specification.
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Figure 5.5: Memory bandwidth bound (blue) and floating-point rate bound (red) double precision, β = 0
kernels for a set of benchmark matrices.
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5.4 Performance Improvements of PyFR

In order to investigate the effects of the applied optimisations on the performance of

PyFR as a whole, we will first take a look at the way the matrix multiplication kernels

are applied to the data at each time step of the simulation (we will only consider the

the CUDA platform in this study). For this purpose we will use the same notation as in

Section 2.2 to refere to the operator matrices. Each of the M132, M3, M460 and M6 is

applied to the data once, while M0 is applied 3 times on a 2D mesh and 4 times on a 3D

mesh. In PyFR all applications ofM0, M132 andM460 use β = 0, while the applications

of M3 and M6 use β = 1. As explained previously in Section 2.3, the operator matrices

exhibit different characteristics for quadrilateral, hexahedral, triangular and tetrahedral

elements, hence, there is a need for a distinct set of kernels for each element type present

in the mesh. We use the experimental data obtained through benchmarking of the

individual matrices to construct a series of stacked plots, from which we can obtain

an expected speedup of each of the matrix multiplication steps executed by PyFR for

each element type. The calculated results and plots for the third order of accuracy are

available in Appendix F. This however, does not translate directly to the final speedup

of a simulation as it does not account for a series of other operations performed by

the solver (e.g. point-local transformations, writing solution files, checking for NaNs,

etc.). The percentage of the time PyFR spends on matrix multiplication increases with

the desired order of accuracy and amounts to approximately 56%, 66% and 81% for

the second, third and fourth order simulations [23]. Hence, we expect to achieve larger

speedups for higher orders of accuracy through the use of GiMMiK.

The aforementioned stacked plots also include theoretical limits under which GEMM

cannot perform – they are defined in terms of the minimum number of floating-point

operations and amount of memory traffic any dense matrix multiplication routine has to

perform. In the case where the operator matrix A has dimensions M×K and the operand

matrix B has dimensions K×N , GEMM needs to perform approximately 2×M×N×K
floating-point operations. It also needs to write M ×N elements of C and read K ×N
elements of B. In the case when β 6= 0 we also need to read C and perform an additional

M × N floating-point multiplications with the β coefficient. We can now combine the

theoretical amount of memory that needs to be moved and the number of floating-point

operations that need to be performed with the peak memory bandwidth and floating-

point rate of each device to compute the theoretical lower bounds on the performance

of any GEMM routine.

By analysing the stacked plots and the data in Table F.1 we see that through the

use of GiMMiK for the sparse cases we are sometimes able to perform the matrix mul-

tiplication step of a PyFR simulation under the theoretical limits of the hardware. We
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observe this phenomenon for a majority of kernels executed in double precision on the

GTX 780 Ti, but also a small number of kernels on the Tesla K40c. This is possible

when the multiplication step is composed of individual operator matrices that contain

whole columns of zeros, which effectively means that the dimensionality of these matrices

decreases and entire rows of the operand matrix do not need to be loaded from memory

at all. It also decreases the amount of floating-point operations required to be executed

by the kernel.

To investigate the effective performance improvement that our bespoke kernels bring

to PyFR we have executed an example real-world simulation of a compressible unsteady

flow over a cylinder. For our purpose we have not dealt with the physical feasibility of

the solution, but solely with the performance of the solver. For full details regarding

the setup of the simulation please refer to the original paper on PyFR [23]. The simu-

lation was executed over an unstructured mesh of 46, 610 hexahedral elements depicted

in Figure 5.6 on the Tesla K40c and GTX 780 Ti GPUs. Achieved speedups of PyFR

for this simulation for 1–6 orders of accuracy and across our two devices on the CUDA

platform are summarized in Table 5.1. Isosurfaces of density captured during this simu-

lation executed using GiMMiK as a matrix multiplication kernel provider for PyFR are

illustrated in Figure 5.7.

Through the use of bespoke matrix multiplication kernels, we are able to grant sig-

nificant performance benefits to PyFR. We note speedups between 1.35 and 1.72 for an

example fluid flow PyFR simulation executed in double precision on a tetrahedral mesh

across 1–6 orders of accuracy on a single Tesla K40c. In practical terms it means that if

one had a simulation which takes 1000 hours to execute in the fourth order of accuracy

on a tetrahedral mesh in double precision, they could expect to execute it in as little

as 580 hours using GiMMiK. Our results have the potential to influence the numerical

method choices made for various types of fluid simulations, while the performance in-

Z XX

Y

Z

Y

Figure 5.6: Cross section in the x–y plane of the unstructured cylinder mesh used to execute the
simulation of an unsteady flow over a cylinder.
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Figure 5.7: Isosurfaces of density captured during a simulation of an unsteady flow over a cylinder
executed with PyFR using GiMMiK as the matrix multiplication kernel provider.

Order
Tesla K40c GTX 780 Ti

single double single double

1 2.14 1.51 2.29 6.99

2 1.66 1.35 1.77 6.94

3 1.50 1.40 1.61 7.14

4 1.69 1.72 1.85 10.38

5 1.66 1.58 1.78 8.95

6 1.54 1.64 1.60 10.11

Table 5.1: Achieved speedups of a PyFR simulation of an unsteady flow over a cylinder across 1–6 orders
of accuracy in single and double precision.

crease, to some extent, can allow for use of higher order meshes and finer time steps.

This would improve the physical properties of the simulation and increase the quality of

the produced solutions. Unfortunately, this is not very straightforward. Increasing the

order of accuracy of a simulation requires other parameters to change as well (e.g. the

granularity of the time step needs to be finer for higher orders of accuracy). In order to

develop a good understanding of how the numerical method choices can be influenced

by the performance increase, we would need to perform a rigorous experimental inves-

tigation accounting for the physical soundness and feasibility of the produced solutions.

This, however, is beyond the scope of this project.
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5.5 Limitations

Figures 5.1 to 5.4 and Appendix E identify a set of GiMMiK’s kernels which do not

benefit from our proposed optimisations and fail to achieve any speedup over cuBLAS

GEMM. These kernels correspond to larger sized dense benchmark matrices in cases of

both single and double precision. Additionally, in single precision we note decreased

performance of our kernels for large sparse matrices. Through profiling we observe

that kernels which fail to achieve a speedup, attempt to utilise a very large (often the

maximum available) number of registers, which decreases their occupancy on the multi-

processors and increases register pressure due to a large number of temporary variables

used. Further, CUDA GPUs employ register scoreboarding to facilitate out-of-order

execution [13], which promotes the usage of a larger number of registers to avoid data

hazards. Increased register pressure can lead to a large amount of register spillage into

memory. In the case of GiMMiK’s kernels for larger matrices this spillage is so severe

that the data cannot be retained in the L1 or even L2 level caches. As a consequence of

this, it needs to be written and read from local memory. This increases memory traffic,

decreases occupancy and as a consequence decreases performance of our kernels. It also

explains why the achieved fraction of the peak memory bandwidth and floating-point

rate of our kernels for large matrices drops. We believe that to overcome this limitation

we can tile the matrix product in such a way to bring the register pressure down and

hence achieve higher occupancy and reduce spillage of registers into local memory.

Figure 5.8 further illustrates the effects of the achieved memory bandwidth and the

amount of data spillage into local memory on the speedups of GiMMiK over cuBLAS. It

shows that the speedups over cuBLAS shrink as the observed useful memory bandwidth

decreases (device memory bandwidth exclusive of traffic due to local memory)1. In the

case of double precision on the GTX 780 Ti we see that the observed useful memory

bandwidth is often lower than in the remaining cases due to the cap placed on the

floating-point rate, which becomes a significant factor affecting the performance of our

kernels. From the plots we see that the the smallest speedups are obtained by kernels

which utilise a smaller percentage of the available memory bandwidth.

1Useful memory bandwidth was calculated using the total device memory bandwidth and local mem-
ory overhead as reported by nvprof.
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(a) Double precision, Tesla K40c, β = 0
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(b) Single precision, Tesla K40c, β = 0
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(c) Double precision, GTX 780 Ti, β = 0
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(d) Single precision, GTX 780 Ti, β = 0

Figure 5.8: Plots of speedup against useful memory bandwidth (exclusive of local memory traffic) ex-
pressed as a percentage of the peak memory bandwidth for kernels generated for the set of benchmark
matrices and β = 0. Speedups less than 1 are denoted red.
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(e) Double precision, Tesla K40c, β 6= 0
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(f) Single precision, Tesla K40c, β 6= 0
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(g) Double precision, GTX 780 Ti, β 6= 0
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(h) Single precision, GTX 780 Ti, β 6= 0

Figure 5.8: Plots of speedup against useful memory bandwidth (exclusive of local memory traffic) ex-
pressed as a percentage of the peak memory bandwidth for kernels generated for the set of benchmark
matrices and β 6= 0. Speedups less than 1 are denoted red.





Chapter 6

Conclusions & Future Work

The aim of this chapter is to give a summary of our findings and address the initial list

of objectives set for this investigation. In Section 6.2 we discuss the scope for further in-

vestigation of the performance improvements GiMMiK can deliver to other applications,

we suggest a series of software optimisations our bespoke kernels could benefit from and

attempt to address the limitations of our solution described in Section 5.5.

6.1 Summary

The aim of this project was to investigate the performance improvement over the state-

of-the-art BLAS GEMM achievable through the use of bespoke matrix multiplication

kernels for a block-by-panel type of matrix multiplication characteristic to PyFR. In

Chapter 2 we provide details about the context of our study and describe the imple-

mentation platform our our choice – CUDA and OpenCL. Subsequently, in Chapter 3

we give an overview of the work that lays foundations to many high-performance im-

plementations of GEMM in software. We also investigate other research in the field of

small-scale linear algebra and draw insights from the described techniques to apply them

in our investigation. In Chapter 4 we detail the methodology used in this study. We

describe the benchmarking infrastructure used and provide a systematic evaluation of a

series of software optimisations in order to find the successful ones and incorporate them

into GiMMiK. Chapter 5 provides an empirical evaluation of the performance GiMMiK’s

kernels are able to achieve for the set of benchmark matrices extracted from the PyFR

solver. Lastly, we plug GiMMiK into PyFR and investigate the performance benefits it

grants for an example fluid flow simulation.

In this thesis we have made the following contributions:

• We have demonstrated that through generation of bespoke matrix multiplication

kernels with a prior knowledge of the operator matrix we are able to outperform
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highly optimised state-of-the-art cuBLAS and clBLAS libraries and grant speedups

of up to 9.98 (12.20) times on the Tesla K40c and 63.30 (13.07) times on the

GTX 780 Ti in double (single) precision for individual PyFR matrices.

• We present a series of software optimisation techniques which allow us to achieve

this result for the block-by-panel type of matrix multiplication. We evaluate each

of the proposed optimisations in a systematic way by benchmarking it across a wide

variety of matrices with different sizes and sparsity patterns in order to assess its

usefulness and success.

• We have presented GiMMiK– an open-source Python library for generating highly

performant matrix multiplication kernel code for the CUDA and OpenCL plat-

forms, which incorporates all of the successful optimisation discussed in this the-

sis. The software is available for download at https://github.com/bartwozniak/

GiMMiK.

• The generated kernels in our proposed solution consist of a fully unrolled matrix

inner product with reduced number of floating-point operations through the re-

moval of sparsity. Further, our kernels embed the operator matrix directly in the

code to benefit from the constant cache and compiler optimisations. This design

allows us to avoid execution of any cleanup code due to inadequate tiling choices

and to efficiently handle values of the α and β coefficients. GiMMiK, by default,

does not attempt to reduce common sub-expressions because this optimisation was

found to grant negative effects on performance.

• We show how, through the use of bespoke matrix multiplication kernels, we are able

to grant significant performance benefits to applications within the area of CFD.

We report speedups up to 1.72 (2.14) for an example fluid flow PyFR simulation

executed on a tetrahedral mesh in double (single) precision on a single Tesla K40c.

These results can influence the numerical method choices made for various types

of fluid simulations, while the performance increase, to some extent, can allow for

use of higher order meshes and finer time steps, improving the physical properties

and increasing the quality of the results of the simulation.

A general paper “GiMMiK - Generating Bespoke Matrix Multiplication Kernels for

Various Hardware Accelerators; Applications in High-Order Computational Fluid Dy-

namics” by Bartosz D. Wozniak, Freddie D. Witherden, Peter E. Vincent and Paul H.

J. Kelly has been prepared for submission to the Computer Physics Communications

journal, based on the findings in this report. It is available upon request. We believe

that numerous other applications, possibly outside of the area of CFD, can also benefit

https://github.com/bartwozniak/GiMMiK
https://github.com/bartwozniak/GiMMiK
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from the use of GiMMiK as the kernel provider for matrix multiplication operations

performed on the CUDA and OpenCL platforms. Further, we are confident that the

methodology applied in this study can give a valuable insight into efficient implementa-

tions of small-scale linear algebra kernels on GPUs.

6.2 Future Work

CPU implementation As the initial steps in our investigation we have considered

the CPU as an implementation platform for our kernels, however, keeping in mind the

particular application of our kernels in Flux Reconstruction schemes, the GPU platform

became the subject of our study. Nevertheless, there also exists scope for performance

improvement over the CPU BLAS libraries such as ATLAS, GOTOBLAS or Intel MKL.

Further, GiMMiK already supports the OpenCL platform and one might be interested

to evaluate its performance across a set of hardware accelerators such as the Intel Xeon

Phi.

Instruction Reordering In Section 5.5 we have already described the problem our

kernels encounter for larger matrix sizes. The dramatically increasing number of registers

requested by our kernels leads to large amounts of memory spillage into local memory and

harms the overall performance. The Kepler architecture statically schedules instructions

within the warp [18]; it is the NVIDIA’s compiler that attempts to find the most efficient

schedule for instructions. From the disassembled cubin files we see that the nvcc compiler

is not capable of efficiently interleaving the arithmetic operations performed by our

kernels with the memory writes and reads. We can reorder instructions explicitly in

the code and reuse temporaries to aid the compiler in allocating a smaller number of

registers. Further, we speculate that an appropriate tiling scheme could prove successful

in reducing the register pressure as well.

A B

Figure 6.1: Proposed simple split-in-two tiling scheme.
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Register Tiling Through Graph Partitioning We have also suggested the use of

tiling to overcome the problems introduced by reduction of common sub-expressions. As

discussed in Section 3.1 blocking is one of the fundamental techniques used by many

BLAS implementations in order to increase data reuse from the memory caches and

registers. Simple tiling, such as splitting the operand matrix into upper and lower halves

(see Figure 6.1) would reduce the number of subterms in the generated code and hence

decrease the number of registers our kernels require. However, this scheme would not

solve the problem with repeated loads of elements of B and might even reduce the scope

for reduction of common sub-expressions. To aid this, we could use graph partitioning

algorithms (e.g. hypergraph partitioning) to find the most efficient and balanced split of

the entries in the operator matrix across two separate threads. Consider a matrix with

the sparsity pattern depicted in Figure 6.2. An efficient way to tile this product would

be to assign columns 0, 1, 5, 6 to one thread and 2, 3, 4 to another. Such an allocation

would allow us to load each entry of the B operand matrix exactly once, reduce common

sub-expressions and leave each thread with a similar workload in terms of the amount

of memory reads, writes and the number of arithmetic operations the thread needs to

perform.

0 1 2 3 4 5 6

0 × · · · · · ×
1 · × · · · × ·
2 · · × × × · ·
3 · · × × × · ·
4 · × · · · · ×

Figure 6.2: Example sparsity pattern suitable for graph partitioning tiling.

Arithmetic Operations Aggregation We have described in Section 3.3 the ap-

proach Castonguay et al. took in the development of their bespoke kernels for use in

the SD++ solver. They were able to combine multiple arithmetic transformations into

a single kernel to increase data reuse and reduce the required memory traffic. Such

an optimisation is very dependent on the particular application one would like to use

GiMMiK for. In order to further investigate the available performance improvements to

PyFR we could attempt a similar optimisation, but would simultaneously need to weigh

the benefits it brings and the costs due to reduced clarity of the codebase. Further, to

make this optimisation more generic, we could use techniques such as delayed evaluation

to first build up an entire arithmetic transformation and then optimise it and generate

highly performant code. We could look into some of the techniques used by LGen (see

Section 3.4) to realise this proposition.
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In-Place Multiplication The design of our kernels allows for an in-place matrix

multiplication i.e. C ← αAC + βC. A discussion with the authors of PyFR suggested

that this might be useful to reduce the memory usage of the solver, while such operations

are not uncommon and BLAS GEMM cannot perform in-place multiplication. Further,

such type of matrix product can be considered an optimisation for the CPU platform,

as it reduces the cache footprint. To our knowledge, this path of an investigation has

not been considered before and might be an interesting one to explore.

Using GiMMiK to Build GEMM Goto and van de Geijn [8] in their paper illustrate

how block-by-panel matrix multiplication kernels can be used as a building block for a

general matrix product where all of the used matrices are large. We have summarized

this claim in Section 3.1. To use GiMMiK as the inner-kernel of GEMM we would need

to give up its highly specialized nature. In order to maintain the high performance of

our kernels we could embed the sparsity pattern in the kernel, but rely on the read-only

data cache to maintain entries of the operator matrix quickly accessible. In Section 4.2

we have demonstrated that embedding values of the operator matrix directly in the code

and utilising the constant cache to bring them into registers is not the game-changing

optimisation used by our kernels, hence the performance penalty should not be severe.

This would not make our GEMM implementation completely general but suitable for use

in applications repeatedly multiplying operator matrices with the same sparsity pattern.

Commodity Hardware Lastly, we have demonstrated that we are able to achieve

impressive speedups over cuBLAS GEMM on commodity hardware. In order to answer

the question whether consumer-grade GPUs could be used to perform high-order fluid

flow simulations instead of expensive industry-grade cards, we would need to perform

a detailed benchmarking of a number of simulations, taking into account their physical

feasibility and accuracy, and considering the exploitation costs of the hardware.
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Matrix m k zeros
m×k

M0 8 4 0.50

M132 4 8 0.50

M3 4 8 0.50

M460 8 4 0.50

M6 8 8 0.75

(a) Order = 1

Matrix m k zeros
m×k

M0 12 9 0.67

M132 9 18 0.70

M3 9 12 0.67

M460 18 9 0.70

M6 18 12 0.83

(b) Order = 2

Matrix m k zeros
m×k

M0 16 16 0.75

M132 16 32 0.75

M3 16 16 0.75

M460 32 16 0.75

M6 32 16 0.88

(c) Order = 3

Matrix m k zeros
m×k

M0 20 25 0.80

M132 25 50 0.81

M3 25 20 0.80

M460 50 25 0.81

M6 50 20 0.90

(d) Order = 4

Matrix m k zeros
m×k

M0 24 36 0.83

M132 36 72 0.83

M3 36 24 0.83

M460 72 36 0.83

M6 72 24 0.92

(e) Order = 5

Matrix m k zeros
m×k

M0 28 49 0.86

M132 49 98 0.86

M3 49 28 0.86

M460 98 49 0.86

M6 98 28 0.93

(f) Order = 6

Table A.1: Height, width and sparsity factor of quadraliteral matrices obtained using the Gauss-Legendre
method.

Matrix m k zeros
m×k

M0 12 9 0.89

M132 9 18 0.70

M3 9 12 0.67

M460 18 9 0.70

M6 18 12 0.83

(g) Order = 2

Matrix m k zeros
m×k

M0 16 16 0.94

M132 16 32 0.78

M3 16 16 0.75

M460 32 16 0.78

M6 32 16 0.88

(h) Order = 3

Matrix m k zeros
m×k

M0 20 25 0.96

M132 25 50 0.82

M3 25 20 0.80

M460 50 25 0.82

M6 50 20 0.90

(i) Order = 4

Matrix m k zeros
m×k

M0 24 36 0.97

M132 36 72 0.85

M3 36 24 0.83

M460 72 36 0.85

M6 72 24 0.92

(j) Order = 5

Matrix m k zeros
m×k

M0 28 49 0.98

M132 49 98 0.87

M3 49 28 0.86

M460 98 49 0.87

M6 98 28 0.93

(k) Order = 6

Table A.1: Height, width and sparsity factor of quadraliteral matrices obtained using the Gauss-
Legendre-Lobatto method.
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Matrix m k zeros
m×k

M0 24 8 0.75

M132 8 24 0.75

M3 8 24 0.75

M460 24 8 0.75

M6 24 24 0.92

(a) Order = 1

Matrix m k zeros
m×k

M0 54 27 0.89

M132 27 81 0.90

M3 27 54 0.89

M460 81 27 0.90

M6 81 54 0.96

(b) Order = 2

Matrix m k zeros
m×k

M0 96 64 0.94

M132 64 192 0.94

M3 64 96 0.94

M460 192 64 0.94

M6 192 96 0.98

(c) Order = 3

Matrix m k zeros
m×k

M0 150 125 0.96

M132 125 375 0.96

M3 125 150 0.96

M460 375 125 0.96

M6 375 150 0.99

(d) Order = 4

Matrix m k zeros
m×k

M0 216 216 0.97

M132 216 648 0.97

M3 216 216 0.97

M460 648 216 0.97

M6 648 216 0.99

(e) Order = 5

Matrix m k zeros
m×k

M0 294 343 0.98

M132 343 1029 0.98

M3 343 294 0.98

M460 1029 343 0.98

M6 1029 294 0.99

(f) Order = 6

Table A.2: Height, width and sparsity factor of hexahedral matrices obtained using the Gauss-Legendre
method.

Matrix m k zeros
m×k

M0 54 27 0.96

M132 27 81 0.90

M3 27 54 0.89

M460 81 27 0.90

M6 81 54 0.96

(g) Order = 2

Matrix m k zeros
m×k

M0 96 64 0.98

M132 64 192 0.95

M3 64 96 0.94

M460 192 64 0.95

M6 192 96 0.98

(h) Order = 3

Matrix m k zeros
m×k

M0 150 125 0.99

M132 125 375 0.96

M3 125 150 0.96

M460 375 125 0.96

M6 375 150 0.99

(i) Order = 4

Matrix m k zeros
m×k

M0 216 216 0.99

M132 216 648 0.98

M3 216 216 0.97

M460 648 216 0.98

M6 648 216 0.99

(j) Order = 5

Matrix m k zeros
m×k

M0 294 343 0.99

M132 343 1029 0.98

M3 343 294 0.98

M460 1029 343 0.98

M6 1029 294 0.99

(k) Order = 6

Table A.2: Height, width and sparsity factor of hexahedral matrices obtained using the Gauss-Legendre-
Lobatto method.



APPENDIX A. CHARACTERISTICS OF THE OPERATOR MATRICES 70

Matrix m k zeros
m×k

M0 6 3 0.00

M132 3 6 0.33

M3 3 6 0.00

M460 6 3 0.33

M6 6 6 0.33

(a) Order = 1

Matrix m k zeros
m×k

M0 9 6 0.00

M132 6 12 0.11

M3 6 9 0.00

M460 12 6 0.11

M6 12 9 0.33

(b) Order = 2

Matrix m k zeros
m×k

M0 12 10 0.00

M132 10 20 0.04

M3 10 12 0.00

M460 20 10 0.04

M6 20 12 0.33

(c) Order = 3

Matrix m k zeros
m×k

M0 15 15 0.00

M132 15 30 0.04

M3 15 15 0.00

M460 30 15 0.04

M6 30 15 0.33

(d) Order = 4

Matrix m k zeros
m×k

M0 18 21 0.00

M132 21 42 0.02

M3 21 18 0.00

M460 42 21 0.02

M6 42 18 0.33

(e) Order = 5

Matrix m k zeros
m×k

M0 21 28 0.00

M132 28 56 0.02

M3 28 21 0.00

M460 56 28 0.02

M6 56 21 0.33

(f) Order = 6

Table A.3: Height, width and sparsity factor of triangular matrices obtained using the Williams-Shunn
method.

Matrix m k zeros
m×k

M0 12 4 0.00

M132 4 12 0.50

M3 4 12 0.00

M460 12 4 0.50

M6 12 12 0.50

(a) Order = 1

Matrix m k zeros
m×k

M0 24 10 0.00

M132 10 30 0.16

M3 10 24 0.00

M460 30 10 0.16

M6 30 24 0.50

(b) Order = 2

Matrix m k zeros
m×k

M0 40 20 0.00

M132 20 60 0.09

M3 20 40 0.00

M460 60 20 0.09

M6 60 40 0.50

(c) Order = 3

Matrix m k zeros
m×k

M0 60 35 0.00

M132 35 105 0.07

M3 35 60 0.00

M460 105 35 0.07

M6 105 60 0.50

(d) Order = 4

Matrix m k zeros
m×k

M0 84 56 0.00

M132 56 168 0.05

M3 56 84 0.00

M460 168 56 0.05

M6 168 84 0.50

(e) Order = 5

Matrix m k zeros
m×k

M0 112 84 0.00

M132 84 252 0.04

M3 84 112 0.00

M460 252 84 0.04

M6 252 112 0.50

(f) Order = 6

Table A.4: Height, width and sparsity factor of tetrahedral matrices obtained using the Shunn-Ham
method.



Appendix B

Results for Individual

Optimisations

The tables in this appendix give the raw experimental data obtained through bench-

marking a set of kernels as described in Section 4.2. The results for kernels with the

optimisations switched off are identical to GiMMiK’s kernels, and are not duplicated in

the following tables. See Appendix D for the benchmarking results for GiMMiK.
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Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI
O
rd

er
=

1 M0 0.033 0.027 0.031 0.069 0.057 0.049 0.055 0.069
M132 0.035 0.031 0.035 0.061 0.047 0.041 0.047 0.061

M3 0.036 0.031 0.035 0.061 0.047 0.041 0.047 0.061
M460 0.031 0.027 0.031 0.069 0.057 0.049 0.055 0.069

M6 0.043 0.037 0.042 0.115 0.067 0.059 0.068 0.115

O
rd

er
=

2 M0 0.059 0.049 0.055 0.188 0.094 0.081 0.093 0.188
M132 0.080 0.068 0.078 0.289 0.104 0.088 0.103 0.289

M3 0.060 0.051 0.058 0.204 0.082 0.074 0.086 0.204
M460 0.072 0.062 0.071 0.295 0.126 0.107 0.124 0.295

M6 0.077 0.070 0.079 0.376 0.130 0.114 0.133 0.376

O
rd

er
=

3 M0 0.123 0.075 0.085 0.409 0.174 0.117 0.134 0.409
M132 0.220 0.117 0.140 0.746 0.229 0.155 0.197 0.747

M3 0.094 0.075 0.086 0.409 0.134 0.115 0.134 0.409
M460 0.232 0.114 0.132 0.809 0.302 0.190 0.220 0.810

M6 0.126 0.111 0.132 0.809 0.222 0.189 0.219 0.809

O
rd

er
=

4 M0 0.299 0.108 0.126 0.739 0.234 0.160 0.190 0.740
M132 0.683 0.186 0.230 1.845 0.550 0.265 0.418 1.846

M3 0.171 0.106 0.122 0.792 0.233 0.166 0.201 0.792
M460 0.874 0.182 0.211 1.868 0.512 0.315 0.365 1.867

M6 0.183 0.162 0.194 1.538 0.334 0.283 0.344 1.537

O
rd

er
=

5 M0 0.421 0.148 0.170 1.238 0.446 0.228 0.332 1.238
M132 1.314 0.268 0.418 3.604 0.896 0.386 1.108 3.602

M3 0.301 0.144 0.169 1.271 0.328 0.231 0.279 1.271
M460 1.675 0.265 0.301 3.674 1.324 0.512 0.793 3.674

M6 0.248 0.225 0.267 2.530 0.486 0.400 0.490 2.528

O
rd

er
=

6 M0 0.674 0.195 0.223 1.935 0.599 0.283 0.446 1.936
M132 2.460 0.382 0.712 6.781 1.578 0.678 1.849 6.779

M3 0.410 0.186 0.223 2.031 0.432 0.307 0.397 2.032
M460 2.811 0.368 0.431 6.779 2.033 0.701 1.233 6.783

M6 0.350 0.299 0.353 3.994 0.648 0.531 0.715 3.997

(a) Quadrangles, Gauss-Legendre Method

Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI

O
rd

er
=

2 M0 0.052 0.046 0.055 0.188 0.088 0.077 0.093 0.188
M132 0.082 0.068 0.077 0.289 0.103 0.087 0.103 0.289

M3 0.060 0.050 0.058 0.204 0.082 0.074 0.086 0.204
M460 0.072 0.062 0.071 0.295 0.126 0.108 0.125 0.295

M6 0.077 0.070 0.079 0.375 0.130 0.114 0.133 0.376

O
rd

er
=

3 M0 0.074 0.065 0.084 0.409 0.119 0.105 0.133 0.409
M132 0.201 0.119 0.141 0.746 0.221 0.156 0.239 0.747

M3 0.092 0.075 0.086 0.409 0.133 0.115 0.133 0.409
M460 0.200 0.113 0.132 0.809 0.286 0.190 0.219 0.809

M6 0.126 0.110 0.132 0.809 0.221 0.189 0.219 0.810

O
rd

er
=

4 M0 0.094 0.084 0.122 0.739 0.149 0.132 0.190 0.739
M132 0.584 0.188 0.236 1.846 0.512 0.267 0.419 1.844

M3 0.128 0.107 0.123 0.792 0.201 0.170 0.201 0.791
M460 0.738 0.180 0.211 1.867 0.497 0.314 0.365 1.868

M6 0.182 0.161 0.195 1.538 0.334 0.283 0.344 1.538

O
rd

er
=

5 M0 0.116 0.101 0.171 1.238 0.181 0.160 0.334 1.238
M132 1.171 0.278 0.455 3.602 0.853 0.486 1.104 3.603

M3 0.307 0.144 0.169 1.272 0.329 0.231 0.279 1.271
M460 1.485 0.265 0.334 3.674 1.236 0.510 0.793 3.675

M6 0.251 0.225 0.267 2.529 0.483 0.399 0.489 2.529

O
rd

er
=

6 M0 0.137 0.123 0.224 1.935 0.213 0.189 0.445 1.935
M132 2.244 0.378 1.222 6.774 1.478 0.678 1.843 6.781

M3 0.341 0.191 0.224 2.031 0.415 0.345 0.397 2.032
M460 2.349 0.367 0.494 6.782 1.865 0.697 1.234 6.783

M6 0.350 0.297 0.353 3.995 0.648 0.547 0.716 3.995

(b) Quadrangles, Gauss-Legendre-Lobatto Method

Table B.1: Results of experiments conducted to verify hypothesis stated in Section 4.2. TEX corresponds to kernels using the texture cache (Section 4.2.1),
SPA to kernels without sparsity elimnation (Section 4.2.3), CSE to kernels with common sub-expression elimination (Section 4.2.2) and NAI is the naive
3-loop implementation (Section 4.2.4). Results for quadrilateral element matrices in double precision on Tesla K40c. Reported values are averages of 30
runs reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI
O
rd

er
=

1 M0 0.082 0.074 0.086 0.333 0.151 0.134 0.153 0.333
M132 0.090 0.082 0.093 0.292 0.112 0.099 0.117 0.292

M3 0.093 0.081 0.092 0.292 0.112 0.099 0.116 0.292
M460 0.081 0.074 0.083 0.333 0.151 0.134 0.153 0.333

M6 0.128 0.111 0.132 0.851 0.197 0.169 0.209 0.851

O
rd

er
=

2 M0 0.485 0.200 0.226 2.161 0.697 0.376 0.397 2.158
M132 0.477 0.286 0.438 3.095 0.535 0.410 0.955 3.095

M3 0.328 0.201 0.320 2.076 0.441 0.285 0.463 2.076
M460 0.595 0.263 0.306 3.212 0.983 0.532 0.556 3.211

M6 0.361 0.324 0.408 6.166 0.684 0.522 1.102 6.163

O
rd

er
=

3 M0 1.333 0.398 0.516 8.503 1.451 0.962 2.446 8.497
M132 3.772 0.823 5.182 16.51 2.427 0.982 27.40 16.52

M3 0.785 0.417 1.601 8.464 1.018 0.733 2.293 8.464
M460 3.537 0.632 0.963 16.96 3.089 1.795 4.706 16.96

M6 0.824 0.723 1.627 25.26 2.212 1.779 6.293 25.25

O
rd

er
=

4 M0 5.095 0.723 4.080 25.64 3.465 1.617 7.279 25.66
M132 14.04 4.141 29.73 62.89 6.958 3.846 207.12 62.86

M3 2.269 0.691 6.697 25.39 2.118 1.337 16.06 25.41
M460 9.518 1.496 6.231 63.77 7.692 3.682 17.25 63.77

M6 2.390 1.321 4.687 75.53 4.251 3.404 50.41 75.45

O
rd

er
=

5 M0 11.51 4.793 62.28 7.547 5.129 62.24
M132 33.49 11.07 186.13 15.32 9.426 185.99

M3 5.728 1.319 62.28 4.311 2.371 62.26
M460 26.33 5.607 186.56 16.70 9.181 186.61

M6 5.803 2.002 186.53 7.647 5.838 186.61

O
rd

er
=

6 M0 20.81 10.37 134.34 13.43 10.37 134.23
M132 69.47 22.79 468.79 30.61 17.65 468.80

M3 10.57 3.652 134.43 7.264 4.644 134.49
M460 52.36 11.72 469.18 29.72 18.05 468.92

M6 10.81 3.019 402.11 13.32 9.221 402.26

(c) Hexahedra, Gauss-Legendre Method

Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI

O
rd

er
=

2 M0 0.219 0.191 0.228 2.159 0.418 0.322 0.397 2.158
M132 0.509 0.290 0.437 3.097 0.545 0.423 0.955 3.094

M3 0.335 0.201 0.313 2.076 0.442 0.284 0.464 2.075
M460 0.595 0.263 0.306 3.212 0.983 0.533 0.557 3.211

M6 0.361 0.323 0.407 6.165 0.684 0.522 1.103 6.165

O
rd

er
=

3 M0 0.425 0.376 0.520 8.499 1.039 0.665 2.450 8.495
M132 2.817 0.773 6.097 16.51 2.161 0.970 28.27 16.51

M3 0.817 0.420 1.623 8.462 1.022 0.734 2.288 8.464
M460 2.612 0.632 1.830 16.96 2.666 1.777 4.696 16.96

M6 0.807 0.716 1.639 25.27 2.183 1.310 6.290 25.26

O
rd

er
=

4 M0 0.696 0.612 2.287 25.65 1.671 1.063 7.340 25.64
M132 12.92 3.549 30.22 62.85 6.707 3.405 201.55 62.83

M3 2.015 0.674 6.265 25.39 2.031 1.329 16.52 25.40
M460 8.650 1.441 18.54 63.76 7.380 3.690 17.27 63.75

M6 2.391 1.319 4.925 75.50 4.249 3.403 49.98 75.51

O
rd

er
=

5 M0 1.060 0.915 12.60 62.32 2.462 1.996 131.26 62.28
M132 29.71 10.51 186.04 14.54 8.430 186.12

M3 6.023 1.345 62.26 4.242 2.366 62.32
M460 21.23 4.959 186.60 15.13 8.639 186.54

M6 5.148 1.970 186.53 7.431 5.759 186.54

O
rd

er
=

6 M0 2.086 1.273 134.23 3.506 2.749 134.26
M132 59.75 22.09 468.82 28.78 16.54 468.77

M3 8.839 3.235 134.11 6.885 4.302 134.30
M460 47.44 11.18 469.21 28.09 16.74 468.94

M6 10.81 3.040 402.02 13.32 9.235 401.80

(d) Hexahedra, Gauss-Legendre-Lobatto Method

Table B.1: Results of experiments conducted to verify hypothesis stated in Section 4.2. TEX corresponds to kernels using the texture cache (Section 4.2.1),
SPA to kernels without sparsity elimnation (Section 4.2.3), CSE to kernels with common sub-expression elimination (Section 4.2.2) and NAI is the naive
3-loop implementation (Section 4.2.4). Results for hexahedral element matrices in double precision on Tesla K40c. Reported values are averages of 30 runs
reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI
O
rd

er
=

1 M0 0.027 0.020 0.023 0.052 0.044 0.038 0.043 0.052
M132 0.027 0.025 0.027 0.044 0.036 0.032 0.036 0.044

M3 0.029 0.024 0.028 0.044 0.037 0.032 0.036 0.044
M460 0.021 0.023 0.052 0.042 0.038 0.043 0.052

M6 0.037 0.027 0.031 0.083 0.054 0.045 0.051 0.083

O
rd

er
=

2 M0 0.050 0.034 0.039 0.116 0.072 0.060 0.066 0.116
M132 0.061 0.046 0.053 0.144 0.073 0.062 0.069 0.144

M3 0.052 0.037 0.042 0.114 0.066 0.054 0.060 0.114
M460 0.059 0.042 0.047 0.135 0.088 0.072 0.081 0.135

M6 0.069 0.049 0.055 0.188 0.096 0.080 0.091 0.188

O
rd

er
=

3 M0 0.114 0.051 0.057 0.204 0.123 0.084 0.095 0.204
M132 0.273 0.077 0.087 0.342 0.247 0.103 0.114 0.342

M3 0.114 0.053 0.059 0.221 0.115 0.080 0.091 0.221
M460 0.188 0.069 0.078 0.337 0.192 0.121 0.137 0.336

M6 0.158 0.075 0.084 0.394 0.169 0.126 0.144 0.394

O
rd

er
=

4 M0 0.328 0.071 0.081 0.374 0.264 0.112 0.127 0.374
M132 1.181 0.117 0.135 0.680 0.792 0.189 0.186 0.680

M3 0.312 0.071 0.081 0.374 0.255 0.114 0.126 0.374
M460 0.751 0.109 0.123 0.742 0.611 0.182 0.206 0.742

M6 0.330 0.109 0.120 0.742 0.284 0.185 0.205 0.742

O
rd

er
=

5 M0 0.663 0.095 0.109 0.607 0.545 0.144 0.162 0.607
M132 2.710 0.270 0.212 1.327 1.887 0.463 0.360 1.327

M3 0.592 0.094 0.105 0.618 0.442 0.158 0.167 0.618
M460 1.762 0.163 0.187 1.356 1.459 0.268 0.306 1.356

M6 0.970 0.148 0.162 1.193 0.605 0.262 0.281 1.192

O
rd

er
=

6 M0 1.635 0.124 0.143 0.908 1.332 0.181 0.207 0.907
M132 5.514 0.444 0.440 2.195 3.399 0.705 0.860 2.194

M3 1.040 0.122 0.136 0.885 0.739 0.250 0.224 0.885
M460 6.123 0.275 0.324 2.267 4.589 0.408 0.475 2.265

M6 1.555 0.194 0.213 1.759 0.931 0.345 0.384 1.759

(e) Triangles, Williams-Shunn

Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI

O
rd

er
=

1 M0 0.044 0.037 0.042 0.101 0.078 0.067 0.075 0.101
M132 0.047 0.041 0.048 0.085 0.057 0.052 0.058 0.085

M3 0.052 0.043 0.048 0.085 0.058 0.052 0.059 0.085
M460 0.037 0.042 0.101 0.077 0.067 0.075 0.101

M6 0.075 0.056 0.063 0.239 0.102 0.088 0.101 0.239

O
rd

er
=

2 M0 0.174 0.082 0.090 0.402 0.191 0.145 0.159 0.402
M132 0.202 0.102 0.118 0.494 0.212 0.140 0.152 0.494

M3 0.190 0.087 0.099 0.402 0.196 0.126 0.129 0.402
M460 0.214 0.094 0.104 0.518 0.231 0.168 0.190 0.518

M6 0.503 0.130 0.148 1.099 0.378 0.241 0.244 1.100

O
rd

er
=

3 M0 1.420 0.149 0.169 1.207 0.973 0.322 0.289 1.208
M132 2.543 0.249 0.313 1.695 1.658 0.446 0.617 1.694

M3 1.278 0.169 0.183 1.145 0.913 0.349 0.315 1.146
M460 2.079 0.204 0.235 1.804 1.390 0.370 0.404 1.805

M6 3.171 0.264 0.294 3.389 1.704 0.717 0.716 3.390

O
rd

er
=

4 M0 6.345 0.308 0.306 2.991 5.020 0.866 0.669 2.991
M132 12.10 2.188 1.257 5.132 8.917 2.978 1.652 5.132

M3 4.915 0.490 0.433 2.973 2.967 0.719 0.958 2.973
M460 12.76 0.792 0.602 5.273 9.268 0.982 1.207 5.273

M6 8.614 0.458 1.065 8.838 4.707 1.359 2.558 8.838

O
rd

er
=

5 M0 16.00 1.294 1.479 6.532 9.795 1.610 2.018 6.533
M132 44.69 9.915 6.756 12.68 38.12 14.28 12.78 12.68

M3 13.47 2.670 1.541 6.499 8.035 3.133 1.977 6.503
M460 34.43 2.370 2.915 13.02 20.06 4.100 5.186 13.02

M6 21.97 1.747 2.382 19.43 9.748 2.654 5.395 19.39

O
rd

er
=

6 M0 35.52 2.905 2.785 12.94 21.53 4.322 3.665 12.95
M132 120.51 27.30 26.81 28.27 115.74 45.17 50.56 28.28

M3 32.12 6.254 2.880 12.89 23.07 7.535 3.538 12.88
M460 85.79 6.790 7.236 29.07 52.05 9.066 11.19 29.08

M6 42.25 4.012 4.623 38.52 22.77 5.308 10.04 38.53

(f) Tetrahedra, Shunn-Ham

Table B.1: Results of experiments conducted to verify hypothesis stated in Section 4.2. TEX corresponds to kernels using the texture cache (Section 4.2.1),
SPA to kernels without sparsity elimnation (Section 4.2.3), CSE to kernels with common sub-expression elimination (Section 4.2.2) and NAI is the naive
3-loop implementation (Section 4.2.4). Results for triangular and tetrahedral element matrices in double precision on Tesla K40c. Reported values are
averages of 30 runs reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI
O
rd

er
=

1 M0 0.016 0.017 0.050 0.032 0.032 0.050
M132 0.020 0.021 0.044 0.027 0.027 0.044

M3 0.020 0.021 0.044 0.027 0.027 0.044
M460 0.016 0.017 0.050 0.032 0.033 0.050

M6 0.024 0.023 0.083 0.037 0.038 0.083

O
rd

er
=

2 M0 0.028 0.028 0.135 0.050 0.050 0.135
M132 0.041 0.041 0.210 0.057 0.056 0.210

M3 0.031 0.031 0.147 0.045 0.046 0.147
M460 0.036 0.036 0.210 0.065 0.066 0.210

M6 0.040 0.040 0.259 0.069 0.070 0.259

O
rd

er
=

3 M0 0.043 0.043 0.280 0.071 0.075 0.280
M132 0.073 0.072 0.530 0.096 0.099 0.530

M3 0.043 0.043 0.280 0.074 0.072 0.280
M460 0.064 0.064 0.551 0.112 0.115 0.552

M6 0.064 0.064 0.552 0.119 0.114 0.551

O
rd

er
=

4 M0 0.064 0.064 0.528 0.100 0.101 0.527
M132 0.110 0.119 1.215 0.167 0.165 1.211

M3 0.061 0.061 0.563 0.104 0.107 0.563
M460 0.102 0.105 1.327 0.187 0.190 1.326

M6 0.097 0.095 1.071 0.177 0.181 1.071

O
rd

er
=

5 M0 0.087 0.088 0.849 0.133 0.137 0.849
M132 0.157 0.209 2.310 0.300 0.347 2.306

M3 0.082 0.082 0.897 0.143 0.147 0.897
M460 0.147 0.150 2.517 0.287 0.271 2.518

M6 0.127 0.129 1.784 0.246 0.249 1.784

O
rd

er
=

6 M0 0.112 0.115 1.278 0.164 0.185 1.278
M132 0.220 0.330 4.337 0.659 0.524 4.361

M3 0.107 0.109 1.456 0.187 0.193 1.454
M460 0.200 0.222 4.448 0.394 0.457 4.448

M6 0.171 0.169 2.833 0.328 0.332 2.831

(a) Quadrangles, Gauss-Legendre Method

Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI

O
rd

er
=

2 M0 0.026 0.028 0.135 0.048 0.050 0.135
M132 0.041 0.041 0.210 0.055 0.058 0.210

M3 0.031 0.030 0.147 0.046 0.046 0.147
M460 0.036 0.036 0.210 0.065 0.066 0.210

M6 0.040 0.040 0.259 0.069 0.070 0.259

O
rd

er
=

3 M0 0.037 0.043 0.280 0.063 0.071 0.280
M132 0.072 0.072 0.530 0.097 0.099 0.530

M3 0.043 0.043 0.280 0.074 0.071 0.280
M460 0.064 0.065 0.551 0.120 0.123 0.552

M6 0.066 0.064 0.552 0.112 0.114 0.551

O
rd

er
=

4 M0 0.049 0.063 0.527 0.079 0.098 0.527
M132 0.110 0.122 1.210 0.165 0.168 1.209

M3 0.061 0.061 0.563 0.105 0.108 0.563
M460 0.103 0.104 1.327 0.185 0.191 1.327

M6 0.097 0.095 1.071 0.177 0.181 1.071

O
rd

er
=

5 M0 0.059 0.087 0.849 0.094 0.126 0.849
M132 0.157 0.229 2.307 0.296 0.353 2.306

M3 0.083 0.082 0.897 0.142 0.148 0.897
M460 0.148 0.175 2.515 0.287 0.336 2.517

M6 0.132 0.129 1.784 0.246 0.248 1.784

O
rd

er
=

6 M0 0.071 0.114 1.278 0.117 0.165 1.277
M132 0.213 0.630 4.335 0.649 0.692 4.346

M3 0.108 0.108 1.455 0.186 0.193 1.456
M460 0.208 0.251 4.447 0.393 0.634 4.453

M6 0.171 0.169 2.833 0.329 0.332 2.831

(b) Quadrangles, Gauss-Legendre-Lobatto Method

Table B.2: Results of experiments conducted to verify hypothesis stated in Section 4.2. TEX corresponds to kernels using the texture cache (Section 4.2.1),
SPA to kernels without sparsity elimnation (Section 4.2.3), CSE to kernels with common sub-expression elimination (Section 4.2.2) and NAI is the naive
3-loop implementation (Section 4.2.4). Results for quadrilateral element matrices in single precision on Tesla K40c. Reported values are averages of 30 runs
reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI
O
rd

er
=

1 M0 0.043 0.043 0.236 0.080 0.081 0.236
M132 0.050 0.048 0.208 0.063 0.063 0.208

M3 0.050 0.049 0.208 0.062 0.063 0.208
M460 0.043 0.043 0.236 0.080 0.080 0.236

M6 0.065 0.066 0.601 0.106 0.109 0.601

O
rd

er
=

2 M0 0.115 0.114 1.535 0.199 0.220 1.537
M132 0.161 0.210 1.970 0.360 0.295 1.969

M3 0.117 0.145 1.352 0.209 0.194 1.349
M460 0.147 0.153 2.298 0.280 0.309 2.299

M6 0.189 0.205 4.029 0.353 0.500 4.021

O
rd

er
=

3 M0 0.227 0.265 5.468 0.569 0.625 5.475
M132 0.416 2.369 10.47 0.889 2.374 10.47

M3 0.231 1.448 5.344 0.684 1.492 5.345
M460 0.358 0.482 10.91 1.045 1.153 10.91

M6 0.405 1.305 15.96 1.755 2.090 15.96

O
rd

er
=

4 M0 0.392 2.025 16.29 1.529 2.656 16.28
M132 2.247 11.54 39.94 3.023 13.56 39.94

M3 0.393 4.160 16.15 1.279 4.271 16.14
M460 0.725 3.702 40.45 3.586 4.898 40.46

M6 0.757 2.917 48.00 3.391 4.315 47.99

O
rd

er
=

5 M0 0.636 4.768 39.42 2.605 39.42
M132 7.682 37.37 119.33 7.066 119.34

M3 0.815 9.993 39.42 2.392 39.44
M460 1.963 5.809 118.15 6.928 118.21

M6 1.427 5.789 118.14 6.091 118.16

O
rd

er
=

6 M0 4.220 85.50 5.654 85.51
M132 14.97 301.28 14.47 301.34

M3 1.813 85.39 4.150 85.42
M460 5.597 298.37 12.05 298.25

M6 2.129 255.74 9.105 255.82

(c) Hexahedra, Gauss-Legendre Method

Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI

O
rd

er
=

2 M0 0.111 0.112 1.537 0.195 0.202 1.535
M132 0.158 0.220 1.969 0.355 0.292 1.968

M3 0.118 0.146 1.352 0.211 0.194 1.350
M460 0.149 0.153 2.297 0.301 0.309 2.298

M6 0.188 0.206 4.023 0.353 0.500 4.021

O
rd

er
=

3 M0 0.215 0.255 5.468 0.526 0.588 5.464
M132 0.398 2.806 10.47 0.850 2.806 10.47

M3 0.232 1.451 5.352 0.692 1.488 5.343
M460 0.357 1.728 10.91 1.038 1.288 10.92

M6 0.416 1.307 15.96 1.718 2.058 15.96

O
rd

er
=

4 M0 0.347 1.930 16.29 0.638 2.393 16.29
M132 2.264 13.35 39.93 2.463 12.52 39.94

M3 0.398 4.166 16.15 1.249 4.273 16.15
M460 0.727 5.940 40.45 3.554 6.608 40.45

M6 0.757 2.887 48.02 3.393 4.340 48.01

O
rd

er
=

5 M0 0.519 4.721 39.42 1.162 5.266 39.44
M132 6.023 45.13 119.33 6.043 119.23

M3 0.746 9.988 39.42 2.396 39.42
M460 1.852 17.43 118.21 6.773 118.16

M6 1.302 5.846 118.11 5.627 118.12

O
rd

er
=

6 M0 1.067 14.35 85.53 2.891 85.52
M132 15.56 301.23 13.86 301.36

M3 1.761 85.39 3.721 85.37
M460 5.038 298.26 11.47 298.26

M6 2.067 255.77 9.102 255.84

(d) Hexahedra, Gauss-Legendre-Lobatto Method

Table B.2: Results of experiments conducted to verify hypothesis stated in Section 4.2. TEX corresponds to kernels using the texture cache (Section 4.2.1),
SPA to kernels without sparsity elimnation (Section 4.2.3), CSE to kernels with common sub-expression elimination (Section 4.2.2) and NAI is the naive
3-loop implementation (Section 4.2.4). Results for hexahedral element matrices in single precision on Tesla K40c. Reported values are averages of 30 runs
reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI
O
rd

er
=

1 M0 0.014 0.014 0.037 0.024 0.025 0.037
M132 0.016 0.016 0.032 0.020 0.021 0.032

M3 0.016 0.017 0.032 0.020 0.020 0.032
M460 0.013 0.013 0.037 0.024 0.024 0.037

M6 0.017 0.019 0.059 0.030 0.030 0.059

O
rd

er
=

2 M0 0.020 0.020 0.084 0.038 0.038 0.084
M132 0.028 0.028 0.100 0.038 0.038 0.100

M3 0.023 0.024 0.081 0.034 0.034 0.081
M460 0.024 0.024 0.098 0.046 0.046 0.097

M6 0.027 0.028 0.135 0.050 0.050 0.135

O
rd

er
=

3 M0 0.029 0.029 0.143 0.052 0.052 0.143
M132 0.047 0.046 0.241 0.066 0.066 0.241

M3 0.031 0.032 0.153 0.050 0.050 0.153
M460 0.040 0.040 0.235 0.074 0.074 0.235

M6 0.043 0.043 0.272 0.081 0.077 0.272

O
rd

er
=

4 M0 0.040 0.041 0.261 0.069 0.069 0.261
M132 0.069 0.070 0.485 0.099 0.109 0.485

M3 0.041 0.042 0.260 0.073 0.073 0.260
M460 0.061 0.062 0.513 0.110 0.111 0.512

M6 0.061 0.061 0.512 0.117 0.109 0.512

O
rd

er
=

5 M0 0.057 0.057 0.429 0.095 0.095 0.429
M132 0.105 0.108 0.892 0.185 0.187 0.890

M3 0.054 0.053 0.436 0.097 0.097 0.436
M460 0.087 0.088 0.956 0.175 0.175 0.956

M6 0.083 0.084 0.823 0.158 0.161 0.823

O
rd

er
=

6 M0 0.074 0.075 0.658 0.118 0.118 0.658
M132 0.174 0.162 1.431 0.371 0.372 1.428

M3 0.068 0.068 0.624 0.126 0.126 0.624
M460 0.132 0.132 1.606 0.237 0.238 1.604

M6 0.107 0.105 1.238 0.206 0.212 1.238

(e) Triangles, Williams-Shunn

Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI

O
rd

er
=

1 M0 0.022 0.022 0.073 0.043 0.043 0.073
M132 0.026 0.026 0.061 0.032 0.032 0.061

M3 0.026 0.026 0.061 0.033 0.033 0.061
M460 0.022 0.022 0.073 0.043 0.043 0.073

M6 0.032 0.031 0.166 0.054 0.054 0.166

O
rd

er
=

2 M0 0.046 0.046 0.280 0.091 0.091 0.280
M132 0.062 0.062 0.351 0.084 0.084 0.351

M3 0.052 0.052 0.285 0.071 0.070 0.285
M460 0.053 0.054 0.359 0.101 0.101 0.359

M6 0.074 0.074 0.777 0.138 0.129 0.777

O
rd

er
=

3 M0 0.085 0.083 0.841 0.182 0.182 0.841
M132 0.180 0.161 1.098 0.410 0.419 1.098

M3 0.094 0.096 0.766 0.325 0.325 0.766
M460 0.110 0.114 1.256 0.222 0.223 1.255

M6 0.150 0.150 2.259 0.416 0.315 2.257

O
rd

er
=

4 M0 0.165 0.168 2.068 0.507 0.507 2.066
M132 0.433 0.599 3.306 0.941 0.957 3.302

M3 0.239 0.207 1.920 0.653 0.653 1.921
M460 0.270 0.277 3.662 0.502 0.504 3.662

M6 0.268 0.504 5.707 0.798 0.824 5.722

O
rd

er
=

5 M0 1.084 0.759 4.236 1.625 1.625 4.227
M132 2.602 2.660 8.056 2.827 2.875 8.054

M3 0.817 0.797 4.130 1.280 1.278 4.129
M460 1.307 1.412 8.428 1.847 1.862 8.444

M6 1.632 1.236 12.32 2.595 2.664 12.31

O
rd

er
=

6 M0 2.340 1.459 8.226 2.879 2.882 8.224
M132 9.440 6.062 17.96 10.52 10.47 17.97

M3 2.239 2.640 8.202 2.621 2.624 8.207
M460 6.940 5.695 18.46 6.889 6.901 18.46

M6 3.203 4.136 24.53 4.598 4.656 24.52

(f) Tetrahedra, Shunn-Ham

Table B.2: Results of experiments conducted to verify hypothesis stated in Section 4.2. TEX corresponds to kernels using the texture cache (Section 4.2.1),
SPA to kernels without sparsity elimnation (Section 4.2.3), CSE to kernels with common sub-expression elimination (Section 4.2.2) and NAI is the naive
3-loop implementation (Section 4.2.4). Results for triangular and tetrahedral element matrices in single precision on Tesla K40c. Reported values are
averages of 30 runs reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI
O
rd

er
=

1 M0 0.027 0.024 0.028 0.069 0.038 0.036 0.038 0.060
M132 0.024 0.024 0.027 0.063 0.031 0.031 0.036 0.063

M3 0.024 0.025 0.039 0.063 0.032 0.032 0.036 0.063
M460 0.021 0.021 0.023 0.069 0.037 0.036 0.037 0.068

M6 0.029 0.027 0.035 0.122 0.045 0.044 0.055 0.122

O
rd

er
=

2 M0 0.041 0.036 0.047 0.202 0.062 0.062 0.079 0.202
M132 0.057 0.052 0.080 0.295 0.069 0.067 0.107 0.294

M3 0.042 0.040 0.059 0.206 0.056 0.057 0.078 0.205
M460 0.050 0.046 0.064 0.303 0.085 0.082 0.110 0.302

M6 0.052 0.052 0.071 0.384 0.085 0.086 0.137 0.383

O
rd

er
=

3 M0 0.089 0.058 0.086 0.443 0.124 0.088 0.158 0.443
M132 0.164 0.093 0.217 0.773 0.162 0.124 0.316 0.854

M3 0.067 0.061 0.119 0.401 0.090 0.085 0.158 0.443
M460 0.174 0.086 0.141 0.796 0.218 0.142 0.306 0.878

M6 0.088 0.082 0.103 0.796 0.143 0.137 0.316 0.878

O
rd

er
=

4 M0 0.207 0.086 0.162 0.844 0.169 0.121 0.297 0.740
M132 0.527 0.160 0.523 1.829 0.420 0.225 0.748 1.827

M3 0.140 0.081 0.230 0.755 0.169 0.123 0.293 0.754
M460 0.644 0.148 0.308 1.842 0.364 0.244 0.710 2.096

M6 0.124 0.120 0.170 1.483 0.213 0.207 0.568 1.683

O
rd

er
=

5 M0 0.333 0.115 0.255 1.257 0.332 0.191 0.495 1.294
M132 0.974 0.282 0.944 3.693 0.696 0.357 1.594 3.697

M3 0.215 0.112 0.385 1.445 0.235 0.174 0.480 1.268
M460 1.285 0.255 0.440 3.869 0.981 0.447 1.474 3.756

M6 0.174 0.174 0.213 2.531 0.314 0.285 0.971 2.530

O
rd

er
=

6 M0 0.449 0.153 0.404 1.990 0.443 0.234 0.722 1.989
M132 1.624 0.466 1.798 6.925 1.139 0.696 2.645 6.779

M3 0.325 0.143 0.567 2.010 0.312 0.226 0.684 2.288
M460 2.049 0.419 0.887 6.938 1.512 0.634 2.424 6.934

M6 0.218 0.227 0.300 4.102 0.516 0.382 1.529 3.989

(a) Quadrangles, Gauss-Legendre Method

Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI

O
rd

er
=

2 M0 0.034 0.034 0.040 0.202 0.056 0.057 0.080 0.202
M132 0.056 0.050 0.079 0.294 0.069 0.067 0.107 0.266

M3 0.042 0.039 0.060 0.205 0.056 0.057 0.078 0.186
M460 0.051 0.046 0.066 0.303 0.083 0.082 0.111 0.274

M6 0.052 0.054 0.060 0.384 0.086 0.085 0.138 0.347

O
rd

er
=

3 M0 0.049 0.048 0.073 0.443 0.076 0.078 0.159 0.443
M132 0.147 0.093 0.259 0.772 0.157 0.128 0.336 0.853

M3 0.065 0.060 0.121 0.401 0.089 0.087 0.160 0.443
M460 0.143 0.088 0.186 0.797 0.206 0.140 0.305 0.878

M6 0.085 0.084 0.109 0.796 0.142 0.137 0.306 0.878

O
rd

er
=

4 M0 0.061 0.061 0.141 0.843 0.097 0.096 0.297 0.762
M132 0.469 0.156 0.593 1.882 0.399 0.222 0.737 1.824

M3 0.100 0.084 0.220 0.756 0.133 0.126 0.294 0.755
M460 0.553 0.139 0.445 1.843 0.356 0.239 0.710 1.842

M6 0.124 0.118 0.163 1.484 0.213 0.203 0.564 1.684

O
rd

er
=

5 M0 0.077 0.077 0.240 1.296 0.117 0.116 0.531 1.293
M132 0.904 0.298 1.185 3.699 0.648 0.457 1.668 3.698

M3 0.211 0.111 0.369 1.269 0.238 0.172 0.468 1.268
M460 1.088 0.225 0.870 3.828 0.924 0.432 1.477 3.754

M6 0.173 0.170 0.214 2.532 0.296 0.289 0.930 2.879

O
rd

er
=

6 M0 0.091 0.090 0.394 1.991 0.137 0.138 0.811 1.988
M132 1.628 0.434 2.123 6.786 1.066 0.660 2.839 6.780

M3 0.208 0.138 0.607 2.011 0.299 0.272 0.740 2.285
M460 1.827 0.386 1.524 6.940 1.399 0.615 2.517 6.935

M6 0.218 0.215 0.307 3.991 0.518 0.391 1.347 3.991

(b) Quadrangles, Gauss-Legendre-Lobatto Method

Table B.3: Results of experiments conducted to verify hypothesis stated in Section 4.2. TEX corresponds to kernels using the texture cache (Section 4.2.1),
SPA to kernels without sparsity elimnation (Section 4.2.3), CSE to kernels with common sub-expression elimination (Section 4.2.2) and NAI is the naive
3-loop implementation (Section 4.2.4). Results for quadrilateral element matrices in double precision on GTX 780 Ti. Reported values are averages of 30
runs reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI
O
rd

er
=

1 M0 0.057 0.054 0.067 0.355 0.102 0.099 0.131 0.355
M132 0.059 0.063 0.096 0.328 0.074 0.073 0.125 0.293

M3 0.062 0.062 0.121 0.301 0.074 0.075 0.125 0.292
M460 0.055 0.054 0.064 0.326 0.099 0.099 0.131 0.317

M6 0.085 0.082 0.164 0.888 0.126 0.124 0.341 0.865

O
rd

er
=

2 M0 0.354 0.153 0.372 2.144 0.513 0.300 0.747 2.140
M132 0.353 0.242 1.012 3.134 0.405 0.340 1.294 3.131

M3 0.265 0.151 0.746 2.098 0.335 0.216 0.804 2.127
M460 0.445 0.195 0.583 3.220 0.718 0.417 1.102 3.215

M6 0.250 0.240 0.761 6.317 0.462 0.373 2.301 6.308

O
rd

er
=

3 M0 0.896 0.302 1.187 9.355 0.945 0.816 3.442 8.770
M132 2.348 0.709 5.379 17.15 1.523 0.900 19.55 17.13

M3 0.628 0.351 2.587 8.658 0.699 0.623 3.739 8.617
M460 2.546 0.479 1.510 17.54 2.006 1.552 6.868 17.54

M6 0.573 0.520 2.056 25.80 1.581 1.437 9.896 25.77

O
rd

er
=

4 M0 3.614 0.681 3.725 26.32 2.231 1.260 10.47 26.30
M132 8.575 3.310 23.93 65.18 4.471 2.804 137.76 65.17

M3 1.566 0.520 8.563 26.25 1.425 1.149 14.58 26.26
M460 6.483 1.125 7.068 65.74 5.148 3.045 25.83 65.70

M6 1.640 0.838 5.204 78.55 2.908 2.530 44.05 78.49

O
rd

er
=

5 M0 7.463 3.602 65.00 5.001 3.848 64.91
M132 21.27 8.280 194.54 9.260 6.942 193.64

M3 4.158 1.195 64.99 3.109 2.058 64.89
M460 16.94 4.421 194.93 10.86 7.132 194.72

M6 3.840 1.454 194.80 4.888 4.635 194.66

O
rd

er
=

6 M0 13.17 7.398 140.23 8.586 7.547 140.21
M132 44.40 16.47 490.63 18.82 12.93 490.88

M3 6.520 2.755 140.07 4.832 3.854 139.94
M460 33.67 8.814 489.61 19.28 13.99 489.81

M6 6.412 2.210 420.03 8.436 6.830 420.30

(c) Hexahedra, Gauss-Legendre Method

Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI

O
rd

er
=

2 M0 0.145 0.144 0.231 2.143 0.279 0.232 0.821 2.272
M132 0.370 0.239 1.008 3.159 0.405 0.348 1.422 3.133

M3 0.263 0.151 0.747 2.102 0.335 0.216 0.897 2.098
M460 0.445 0.201 0.586 3.221 0.718 0.417 1.205 3.277

M6 0.247 0.239 0.762 6.320 0.460 0.373 2.558 6.313

O
rd

er
=

3 M0 0.280 0.274 1.112 8.788 0.716 0.492 3.551 8.783
M132 1.937 0.640 6.205 17.15 1.559 0.873 20.05 17.15

M3 0.661 0.350 2.595 8.624 0.783 0.625 3.369 8.622
M460 1.870 0.448 2.904 17.56 1.946 1.510 6.864 17.56

M6 0.576 0.522 2.060 25.81 1.387 0.981 9.957 25.78

O
rd

er
=

4 M0 0.405 0.440 3.259 26.33 1.091 0.780 10.53 26.32
M132 7.708 2.854 25.07 65.24 4.309 2.773 138.89 65.17

M3 1.377 0.493 8.472 26.26 1.379 1.115 14.95 26.24
M460 5.662 1.052 15.23 65.73 4.974 2.960 25.82 65.69

M6 1.639 0.848 5.385 78.52 3.017 2.524 44.08 78.48

O
rd

er
=

5 M0 0.676 0.657 11.14 64.97 1.518 1.393 85.47 64.91
M132 18.71 7.619 194.73 8.817 6.302 194.36

M3 4.015 0.980 65.00 3.042 1.826 64.88
M460 14.99 3.993 194.88 9.903 6.723 194.63

M6 3.488 1.443 194.86 4.938 4.385 194.56

O
rd

er
=

6 M0 1.349 0.911 140.18 2.272 1.944 140.08
M132 37.85 16.12 490.28 17.61 12.15 490.74

M3 5.754 2.446 140.08 4.793 3.296 139.93
M460 30.83 8.355 489.37 18.19 12.81 489.67

M6 6.479 2.227 419.58 8.414 6.824 420.31

(d) Hexahedra, Gauss-Legendre-Lobatto Method

Table B.3: Results of experiments conducted to verify hypothesis stated in Section 4.2. TEX corresponds to kernels using the texture cache (Section 4.2.1),
SPA to kernels without sparsity elimnation (Section 4.2.3), CSE to kernels with common sub-expression elimination (Section 4.2.2) and NAI is the naive
3-loop implementation (Section 4.2.4). Results for hexahedral element matrices in double precision on GTX 780 Ti. Reported values are averages of 30 runs
reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI
O
rd

er
=

1 M0 0.021 0.014 0.027 0.042 0.030 0.025 0.028 0.042
M132 0.019 0.017 0.019 0.034 0.025 0.021 0.025 0.034

M3 0.022 0.018 0.020 0.038 0.027 0.022 0.025 0.038
M460 0.014 0.016 0.047 0.028 0.025 0.028 0.047

M6 0.028 0.022 0.028 0.076 0.036 0.030 0.037 0.075

O
rd

er
=

2 M0 0.043 0.036 0.035 0.113 0.053 0.045 0.050 0.113
M132 0.050 0.043 0.049 0.134 0.062 0.054 0.059 0.134

M3 0.046 0.037 0.038 0.107 0.052 0.047 0.049 0.107
M460 0.049 0.043 0.045 0.141 0.065 0.060 0.063 0.140

M6 0.055 0.044 0.062 0.202 0.068 0.063 0.079 0.202

O
rd

er
=

3 M0 0.097 0.069 0.070 0.218 0.102 0.089 0.089 0.218
M132 0.221 0.109 0.115 0.345 0.196 0.127 0.130 0.346

M3 0.100 0.070 0.072 0.218 0.099 0.087 0.089 0.217
M460 0.158 0.106 0.108 0.360 0.156 0.134 0.136 0.360

M6 0.121 0.085 0.099 0.423 0.132 0.113 0.152 0.423

O
rd

er
=

4 M0 0.272 0.127 0.127 0.394 0.219 0.146 0.145 0.393
M132 0.928 0.237 0.273 0.677 0.629 0.274 0.277 0.657

M3 0.251 0.116 0.127 0.357 0.213 0.139 0.146 0.346
M460 0.601 0.233 0.247 0.712 0.504 0.273 0.280 0.691

M6 0.275 0.155 0.183 0.712 0.243 0.193 0.272 0.691

O
rd

er
=

5 M0 0.544 0.205 0.207 0.649 0.453 0.229 0.241 0.648
M132 2.006 0.541 0.521 1.338 1.394 0.650 0.591 1.335

M3 0.419 0.199 0.205 0.597 0.361 0.226 0.234 0.596
M460 1.254 0.504 0.526 1.358 1.104 0.544 0.561 1.356

M6 0.674 0.261 0.311 1.163 0.498 0.357 0.450 1.129

O
rd

er
=

6 M0 1.142 0.325 0.352 0.900 1.054 0.357 0.357 0.898
M132 3.613 0.953 0.984 2.257 2.519 1.081 1.154 2.258

M3 0.801 0.312 0.317 0.881 0.538 0.374 0.352 0.880
M460 4.222 0.931 0.943 2.288 3.069 0.948 0.982 2.285

M6 1.024 0.419 0.438 1.990 0.659 0.526 0.655 1.964

(e) Triangles, Williams-Shunn

Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI

O
rd

er
=

1 M0 0.034 0.030 0.029 0.089 0.055 0.052 0.051 0.089
M132 0.028 0.032 0.035 0.078 0.041 0.040 0.046 0.078

M3 0.038 0.036 0.037 0.089 0.048 0.046 0.046 0.089
M460 0.027 0.027 0.101 0.051 0.049 0.051 0.101

M6 0.051 0.045 0.057 0.256 0.071 0.067 0.098 0.257

O
rd

er
=

2 M0 0.144 0.097 0.122 0.431 0.181 0.137 0.158 0.430
M132 0.185 0.121 0.166 0.457 0.195 0.144 0.200 0.457

M3 0.177 0.117 0.142 0.371 0.183 0.133 0.152 0.370
M460 0.184 0.114 0.133 0.488 0.195 0.159 0.194 0.487

M6 0.397 0.152 0.237 1.091 0.311 0.222 0.423 1.089

O
rd

er
=

3 M0 1.078 0.413 0.431 1.222 0.746 0.485 0.471 1.348
M132 1.892 0.549 0.707 1.730 1.257 0.627 0.831 1.781

M3 0.956 0.364 0.464 1.167 0.796 0.454 0.499 1.167
M460 1.412 0.532 0.651 2.020 1.049 0.677 0.701 1.776

M6 2.154 0.531 0.717 3.475 1.446 0.813 1.444 3.782

O
rd

er
=

4 M0 4.217 0.981 1.232 3.065 3.763 1.239 1.312 3.060
M132 7.926 2.310 2.108 5.200 5.871 2.853 2.414 5.196

M3 3.313 0.959 1.251 3.013 2.031 1.035 1.398 3.016
M460 8.538 1.887 2.103 5.361 6.368 1.826 2.372 5.360

M6 5.723 1.338 1.767 9.020 3.402 1.602 3.623 9.019

O
rd

er
=

5 M0 10.79 2.268 2.453 6.738 6.776 2.410 2.714 6.737
M132 28.95 7.861 5.936 13.13 24.50 10.92 9.105 13.15

M3 9.083 2.493 2.438 6.660 5.574 3.129 2.702 6.656
M460 23.03 4.802 5.072 13.45 13.54 5.426 6.139 13.46

M6 14.69 2.952 3.866 19.90 7.071 3.630 8.050 19.92

O
rd

er
=

6 M0 23.90 4.454 4.805 13.28 14.46 5.533 5.435 13.29
M132 78.36 20.66 18.94 29.58 73.46 33.41 33.03 29.61

M3 21.46 5.620 4.949 13.24 15.40 7.066 5.642 13.23
M460 57.56 11.30 11.59 29.92 34.84 12.20 13.49 29.89

M6 28.40 6.323 7.637 39.68 15.27 7.268 15.59 39.61

(f) Tetrahedra, Shunn-Ham

Table B.3: Results of experiments conducted to verify hypothesis stated in Section 4.2. TEX corresponds to kernels using the texture cache (Section 4.2.1),
SPA to kernels without sparsity elimnation (Section 4.2.3), CSE to kernels with common sub-expression elimination (Section 4.2.2) and NAI is the naive
3-loop implementation (Section 4.2.4). Results for triangular and tetrahedral element matrices in double precision on GTX 780 Ti. Reported values are
averages of 30 runs reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI
O
rd

er
=

1 M0 0.013 0.011 0.011 0.038 0.023 0.021 0.022 0.038
M132 0.014 0.013 0.014 0.033 0.018 0.018 0.018 0.038

M3 0.014 0.013 0.014 0.037 0.018 0.018 0.018 0.037
M460 0.011 0.012 0.011 0.042 0.022 0.021 0.022 0.042

M6 0.017 0.016 0.015 0.070 0.026 0.025 0.025 0.070

O
rd

er
=

2 M0 0.023 0.020 0.019 0.114 0.036 0.033 0.034 0.114
M132 0.031 0.026 0.027 0.178 0.039 0.037 0.037 0.178

M3 0.022 0.020 0.021 0.125 0.032 0.030 0.031 0.126
M460 0.027 0.024 0.024 0.178 0.048 0.043 0.044 0.178

M6 0.029 0.026 0.026 0.221 0.050 0.045 0.047 0.222

O
rd

er
=

3 M0 0.039 0.028 0.028 0.238 0.059 0.046 0.047 0.239
M132 0.093 0.046 0.048 0.451 0.116 0.063 0.072 0.452

M3 0.033 0.028 0.028 0.238 0.051 0.048 0.047 0.239
M460 0.073 0.042 0.041 0.470 0.112 0.073 0.078 0.470

M6 0.047 0.041 0.042 0.470 0.081 0.078 0.077 0.470

O
rd

er
=

4 M0 0.083 0.041 0.042 0.447 0.118 0.065 0.072 0.447
M132 0.343 0.069 0.076 1.041 0.378 0.112 0.139 1.040

M3 0.053 0.039 0.040 0.480 0.079 0.069 0.069 0.480
M460 0.239 0.065 0.066 1.130 0.261 0.121 0.141 1.130

M6 0.068 0.061 0.060 0.913 0.133 0.116 0.127 0.913

O
rd

er
=

5 M0 0.213 0.055 0.057 0.725 0.258 0.088 0.109 0.725
M132 0.689 0.110 0.140 1.988 0.591 0.392 0.395 1.989

M3 0.094 0.053 0.053 0.764 0.131 0.092 0.107 0.764
M460 0.892 0.095 0.095 2.148 0.727 0.195 0.222 2.149

M6 0.088 0.082 0.083 1.519 0.186 0.156 0.190 1.520

O
rd

er
=

6 M0 0.298 0.071 0.073 1.100 0.331 0.107 0.149 1.099
M132 1.225 0.142 0.231 3.626 0.849 0.455 0.654 3.783

M3 0.173 0.068 0.071 1.124 0.230 0.123 0.158 1.123
M460 1.552 0.128 0.140 3.484 1.118 0.262 0.506 3.409

M6 0.142 0.109 0.107 2.131 0.247 0.221 0.263 2.128

(a) Quadrangles, Gauss-Legendre Method

Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI

O
rd

er
=

2 M0 0.018 0.018 0.019 0.114 0.034 0.032 0.033 0.114
M132 0.031 0.027 0.027 0.178 0.039 0.036 0.037 0.178

M3 0.022 0.020 0.020 0.125 0.032 0.030 0.031 0.125
M460 0.027 0.023 0.024 0.178 0.048 0.043 0.044 0.178

M6 0.030 0.026 0.026 0.221 0.050 0.045 0.047 0.221

O
rd

er
=

3 M0 0.025 0.024 0.028 0.239 0.044 0.042 0.047 0.238
M132 0.088 0.046 0.048 0.451 0.114 0.067 0.072 0.452

M3 0.034 0.028 0.028 0.238 0.051 0.048 0.047 0.238
M460 0.064 0.041 0.042 0.469 0.095 0.079 0.077 0.469

M6 0.043 0.044 0.042 0.470 0.081 0.073 0.077 0.470

O
rd

er
=

4 M0 0.033 0.032 0.041 0.447 0.056 0.052 0.072 0.447
M132 0.315 0.070 0.080 1.041 0.190 0.109 0.138 1.042

M3 0.052 0.039 0.040 0.480 0.078 0.070 0.076 0.480
M460 0.221 0.066 0.067 1.129 0.258 0.120 0.144 1.130

M6 0.068 0.061 0.061 0.913 0.133 0.116 0.116 0.913

O
rd

er
=

5 M0 0.041 0.041 0.057 0.725 0.066 0.062 0.098 0.725
M132 0.583 0.101 0.151 1.989 0.534 0.205 0.382 1.986

M3 0.093 0.053 0.053 0.693 0.132 0.094 0.107 0.693
M460 0.798 0.095 0.112 1.950 0.691 0.191 0.222 1.949

M6 0.086 0.084 0.083 1.377 0.184 0.162 0.190 1.377

O
rd

er
=

6 M0 0.049 0.045 0.073 1.100 0.077 0.079 0.160 1.099
M132 1.118 0.137 0.427 3.785 0.784 0.460 0.641 3.561

M3 0.114 0.068 0.070 1.124 0.157 0.121 0.147 1.123
M460 1.399 0.133 0.161 3.466 1.052 0.262 0.421 3.395

M6 0.141 0.109 0.109 2.129 0.247 0.215 0.274 2.129

(b) Quadrangles, Gauss-Legendre-Lobatto Method

Table B.4: Results of experiments conducted to verify hypothesis stated in Section 4.2. TEX corresponds to kernels using the texture cache (Section 4.2.1),
SPA to kernels without sparsity elimnation (Section 4.2.3), CSE to kernels with common sub-expression elimination (Section 4.2.2) and NAI is the naive
3-loop implementation (Section 4.2.4). Results for quadrilateral element matrices in single precision on GTX 780 Ti. Reported values are averages of 30
runs reproducible within 2% in [ms].



A
P
P
E
N
D
IX

B
.
R
E
S
U
L
T
S
F
O
R

IN
D
IV

ID
U
A
L
O
P
T
IM

IS
A
T
IO

N
S

82

Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI
O
rd

er
=

1 M0 0.032 0.028 0.028 0.202 0.059 0.053 0.058 0.203
M132 0.033 0.032 0.033 0.176 0.039 0.040 0.048 0.176

M3 0.033 0.032 0.033 0.176 0.042 0.040 0.043 0.176
M460 0.028 0.028 0.028 0.202 0.057 0.052 0.053 0.202

M6 0.045 0.042 0.042 0.512 0.072 0.069 0.080 0.512

O
rd

er
=

2 M0 0.181 0.076 0.073 1.152 0.247 0.131 0.154 1.306
M132 0.250 0.100 0.143 1.501 0.324 0.248 0.336 1.694

M3 0.106 0.073 0.094 1.159 0.154 0.140 0.179 1.133
M460 0.261 0.093 0.098 1.941 0.352 0.181 0.222 1.905

M6 0.136 0.122 0.130 3.102 0.332 0.237 0.437 3.383

O
rd

er
=

3 M0 0.691 0.146 0.159 4.350 0.848 0.387 0.522 4.191
M132 1.211 0.355 1.479 8.064 1.087 0.610 2.433 7.972

M3 0.409 0.148 0.988 4.118 0.628 0.475 0.711 4.185
M460 1.916 0.227 0.319 8.422 1.664 0.719 1.548 8.368

M6 0.490 0.256 0.883 12.38 1.378 1.218 2.321 12.43

O
rd

er
=

4 M0 2.074 0.245 1.377 12.53 1.423 0.955 3.666 12.53
M132 4.855 1.468 7.293 30.48 3.240 1.797 59.15 30.47

M3 0.948 0.251 2.599 12.29 1.056 0.889 3.671 12.29
M460 5.236 0.449 2.486 31.10 3.733 2.501 8.829 31.09

M6 1.168 0.484 1.993 36.50 2.506 2.158 10.28 36.70

O
rd

er
=

5 M0 5.237 0.398 3.141 30.17 3.476 1.656 8.347 30.16
M132 13.22 6.706 23.47 89.84 6.948 4.774 315.66 90.08

M3 2.250 0.490 6.354 30.16 2.177 1.537 8.384 30.20
M460 15.87 1.342 3.938 89.97 8.864 4.807 24.79 89.90

M6 2.356 0.936 3.804 90.15 4.546 3.886 89.88

O
rd

er
=

6 M0 2.913 9.303 65.07 5.999 3.702 65.02
M132 13.42 60.03 227.08 8.981 226.90

M3 1.210 14.03 65.15 2.758 65.11
M460 3.797 15.30 226.67 7.549 226.74

M6 1.404 6.977 194.24 5.782 194.10

(c) Hexahedra, Gauss-Legendre Method

Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI

O
rd

er
=

2 M0 0.074 0.071 0.072 1.306 0.140 0.128 0.160 1.307
M132 0.219 0.110 0.148 1.691 0.308 0.242 0.356 1.695

M3 0.107 0.074 0.095 1.160 0.155 0.141 0.184 1.134
M460 0.261 0.094 0.098 1.955 0.353 0.199 0.220 1.903

M6 0.137 0.121 0.129 3.313 0.332 0.237 0.449 3.378

O
rd

er
=

3 M0 0.144 0.134 0.162 4.182 0.366 0.359 0.560 4.359
M132 1.057 0.281 1.901 7.964 1.006 0.584 2.600 7.980

M3 0.402 0.145 0.913 4.238 0.631 0.486 0.807 4.136
M460 1.673 0.227 1.094 8.358 1.577 0.713 1.089 8.404

M6 0.427 0.253 0.817 12.37 1.367 1.190 2.359 12.39

O
rd

er
=

4 M0 0.298 0.217 1.316 12.53 0.979 0.428 3.629 12.55
M132 4.625 1.520 8.420 30.39 3.280 1.683 57.89 30.47

M3 0.801 0.251 2.595 12.29 1.022 0.865 3.523 12.30
M460 5.062 0.457 3.864 31.12 3.604 2.478 8.830 31.13

M6 1.169 0.482 1.962 36.53 2.561 2.157 10.33 36.50

O
rd

er
=

5 M0 0.468 0.324 3.247 30.18 1.321 0.722 8.355 30.15
M132 11.97 5.998 28.43 90.08 6.607 4.050 328.64 90.05

M3 2.270 0.436 6.357 30.18 2.175 1.494 8.383 30.22
M460 12.51 1.259 10.92 89.93 6.981 4.333 24.68 89.98

M6 1.954 0.938 3.961 90.35 4.148 3.862 24.67 90.28

O
rd

er
=

6 M0 1.112 0.701 9.141 65.21 2.047 1.999 64.98
M132 13.35 69.10 227.04 13.27 8.579 226.96

M3 1.172 14.32 65.24 3.289 2.600 65.15
M460 3.275 31.66 226.80 13.58 7.236 226.42

M6 1.350 6.788 194.11 6.603 5.785 194.09

(d) Hexahedra, Gauss-Legendre-Lobatto Method

Table B.4: Results of experiments conducted to verify hypothesis stated in Section 4.2. TEX corresponds to kernels using the texture cache (Section 4.2.1),
SPA to kernels without sparsity elimnation (Section 4.2.3), CSE to kernels with common sub-expression elimination (Section 4.2.2) and NAI is the naive
3-loop implementation (Section 4.2.4). Results for hexahedral element matrices in single precision on GTX 780 Ti. Reported values are averages of 30 runs
reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI
O
rd

er
=

1 M0 0.012 0.008 0.009 0.028 0.018 0.017 0.028 0.028
M132 0.011 0.010 0.011 0.024 0.014 0.013 0.014 0.024

M3 0.012 0.011 0.011 0.027 0.015 0.013 0.014 0.027
M460 0.009 0.009 0.011 0.031 0.016 0.017 0.017 0.031

M6 0.015 0.012 0.012 0.050 0.021 0.020 0.020 0.050

O
rd

er
=

2 M0 0.023 0.013 0.014 0.072 0.029 0.025 0.025 0.072
M132 0.027 0.019 0.019 0.085 0.031 0.025 0.025 0.086

M3 0.022 0.015 0.015 0.069 0.029 0.022 0.023 0.069
M460 0.029 0.016 0.017 0.083 0.036 0.030 0.030 0.084

M6 0.033 0.018 0.019 0.114 0.040 0.033 0.034 0.114

O
rd

er
=

3 M0 0.052 0.019 0.020 0.122 0.053 0.034 0.034 0.122
M132 0.146 0.030 0.030 0.205 0.124 0.043 0.043 0.205

M3 0.052 0.020 0.021 0.131 0.049 0.032 0.032 0.131
M460 0.082 0.027 0.027 0.201 0.079 0.048 0.048 0.201

M6 0.066 0.028 0.028 0.232 0.069 0.054 0.050 0.232

O
rd

er
=

4 M0 0.109 0.027 0.027 0.221 0.089 0.045 0.045 0.221
M132 0.373 0.044 0.045 0.413 0.255 0.065 0.067 0.413

M3 0.098 0.027 0.027 0.221 0.085 0.048 0.045 0.221
M460 0.238 0.040 0.041 0.437 0.169 0.072 0.076 0.437

M6 0.144 0.039 0.040 0.436 0.130 0.077 0.072 0.436

O
rd

er
=

5 M0 0.344 0.037 0.040 0.365 0.244 0.063 0.062 0.365
M132 1.542 0.069 0.070 0.763 0.903 0.127 0.113 0.764

M3 0.306 0.035 0.034 0.371 0.165 0.065 0.070 0.371
M460 0.876 0.057 0.058 0.811 0.537 0.116 0.115 0.812

M6 0.312 0.053 0.054 0.699 0.200 0.104 0.110 0.700

O
rd

er
=

6 M0 0.588 0.046 0.048 0.560 0.357 0.079 0.078 0.560
M132 2.761 0.112 0.108 1.233 1.555 0.255 0.189 1.229

M3 0.450 0.079 0.044 0.531 0.350 0.084 0.085 0.530
M460 1.739 0.082 0.088 1.368 1.068 0.162 0.164 1.368

M6 0.668 0.064 0.068 1.052 0.353 0.138 0.150 1.052

(e) Triangles, Williams-Shunn

Matrix
β = 0 β 6= 0

TEX CSE SPA NAI TEX CSE SPA NAI

O
rd

er
=

1 M0 0.018 0.015 0.015 0.062 0.032 0.028 0.040 0.062
M132 0.017 0.017 0.017 0.051 0.021 0.021 0.022 0.051

M3 0.020 0.017 0.017 0.051 0.023 0.022 0.022 0.051
M460 0.015 0.015 0.014 0.062 0.028 0.028 0.029 0.062

M6 0.028 0.021 0.021 0.141 0.039 0.035 0.036 0.141

O
rd

er
=

2 M0 0.076 0.030 0.030 0.240 0.080 0.061 0.055 0.240
M132 0.106 0.039 0.041 0.298 0.112 0.054 0.055 0.299

M3 0.098 0.034 0.035 0.243 0.102 0.047 0.048 0.242
M460 0.091 0.037 0.035 0.308 0.098 0.065 0.066 0.308

M6 0.166 0.047 0.049 0.663 0.141 0.091 0.094 0.663

O
rd

er
=

3 M0 0.665 0.056 0.054 0.715 0.478 0.124 0.109 0.715
M132 1.393 0.120 0.102 0.944 0.795 0.281 0.155 0.944

M3 0.802 0.061 0.062 0.655 0.536 0.223 0.093 0.655
M460 1.026 0.074 0.073 1.070 0.660 0.151 0.159 1.070

M6 0.928 0.094 0.099 1.934 0.544 0.292 0.201 1.936

O
rd

er
=

4 M0 3.241 0.110 0.110 1.762 1.206 0.358 0.189 1.763
M132 4.764 0.296 0.405 2.857 3.084 0.660 0.520 2.740

M3 2.285 0.151 0.135 1.649 1.477 0.451 0.343 1.561
M460 6.409 0.185 0.186 2.976 3.667 0.348 0.315 2.856

M6 4.619 0.216 0.353 4.368 2.901 0.648 1.025 4.686

O
rd

er
=

5 M0 8.102 0.754 0.520 3.236 4.821 1.144 0.704 3.296
M132 20.85 1.746 1.805 6.241 15.01 1.949 2.080 6.139

M3 6.143 0.501 0.534 3.151 3.880 0.891 0.602 3.357
M460 16.99 0.893 0.962 6.552 8.504 1.345 1.301 6.475

M6 11.60 1.116 0.841 9.404 5.097 1.822 1.617 9.404

O
rd

er
=

6 M0 16.45 1.589 0.994 6.595 9.225 1.811 1.249 6.368
M132 74.86 6.169 3.945 13.68 84.84 6.600 4.463 13.76

M3 14.34 1.381 1.659 6.381 7.738 1.822 1.941 6.319
M460 39.84 4.383 3.993 14.11 20.92 4.323 2.894 14.11

M6 22.74 1.989 2.820 18.88 9.825 3.097 2.988 18.90

(f) Tetrahedra, Shunn-Ham

Table B.4: Results of experiments conducted to verify hypothesis stated in Section 4.2. TEX corresponds to kernels using the texture cache (Section 4.2.1),
SPA to kernels without sparsity elimnation (Section 4.2.3), CSE to kernels with common sub-expression elimination (Section 4.2.2) and NAI is the naive
3-loop implementation (Section 4.2.4). Results for triangular and tetrahedral element matrices in single precision on GTX 780 Ti. Reported values are
averages of 30 runs reproducible within 2% in [ms].
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(a) GTX 780 Ti, single precision, β = 0
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(b) Tesla K40c, double precision, β 6= 0
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(c) GTX 780 Ti, double precision, β 6= 0
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(d) GTX 780 Ti, β 6= 0

Figure C.1: Comparison of kernels embedding values the operator matrix in the code and those accessing
it through the texture unit. Positive and neutral effects of value embedding on the set of benchmark
matrices are indicated as green.
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(a) Tesla K40c, single precision, β = 0
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(b) GTX 780 Ti, single precision, β = 0
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(d) GTX 780 Ti, double precision, β 6= 0
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(e) Tesla K40c, single precision, β 6= 0

0

0.2

0.4

0.6

0.8

1

100 1000 10000100000

S
p

a
rs

it
y

Size

(f) GTX 780 Ti, single precision, β 6= 0

Figure C.2: Comparison of kernels eliminating common sub-expressions from the operator matrix and
those performing no such optimisation. Positive effects of common sub-expression elimination on the set
of benchmark matrices are indicated as green.
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Figure C.3: Comparison of kernels eliminating sparsity from the operator matrix and those performing all
the multiplications by zeros. Positive and neutral effects of sparsity elimination on the set of benchmark
matrices are indicated as green.
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Figure C.4: Comparison of NVIDIA cuBLAS and the naive 3-loop matrix multiplication kernel. Cases
when cuBLAS performs better are indicated as green.
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Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

1 M0 0.073 0.027 0.064 0.031 0.105 0.047 0.100 0.055
M132 0.084 0.030 0.093 0.035 0.105 0.040 0.118 0.047

M3 0.084 0.031 0.093 0.035 0.105 0.040 0.119 0.046
M460 0.073 0.026 0.066 0.031 0.105 0.047 0.100 0.056

M6 0.089 0.036 0.102 0.042 0.119 0.057 0.137 0.066

O
rd

er
=

2 M0 0.123 0.047 0.181 0.053 0.154 0.078 0.218 0.093
M132 0.161 0.066 0.237 0.071 0.191 0.085 0.292 0.100

M3 0.123 0.049 0.169 0.056 0.152 0.072 0.201 0.084
M460 0.215 0.060 0.217 0.068 0.240 0.104 0.262 0.125

M6 0.218 0.068 0.166 0.074 0.245 0.110 0.209 0.134

O
rd

er
=

3 M0 0.127 0.073 0.207 0.082 0.171 0.113 0.256 0.132
M132 0.304 0.115 0.380 0.123 0.321 0.152 0.428 0.184

M3 0.127 0.073 0.209 0.082 0.171 0.111 0.256 0.133
M460 0.226 0.109 0.236 0.121 0.266 0.184 0.318 0.221

M6 0.226 0.108 0.236 0.120 0.267 0.182 0.320 0.221

O
rd

er
=

4 M0 0.300 0.106 0.455 0.117 0.321 0.155 0.496 0.190
M132 0.432 0.180 0.651 0.190 0.456 0.259 0.728 0.294

M3 0.262 0.103 0.280 0.113 0.289 0.161 0.336 0.194
M460 0.310 0.176 0.936 0.209 0.384 0.304 1.058 0.376

M6 0.270 0.157 0.531 0.180 0.356 0.273 0.632 0.330

O
rd

er
=

5 M0 0.346 0.144 0.425 0.155 0.369 0.221 0.471 0.244
M132 0.527 0.272 1.550 0.285 0.579 0.373 1.684 0.568

M3 0.269 0.139 0.547 0.151 0.319 0.224 0.658 0.264
M460 0.680 0.255 1.276 0.290 0.799 0.497 1.483 0.545

M6 0.522 0.218 0.877 0.247 0.664 0.386 1.077 0.461

O
rd

er
=

6 M0 0.432 0.189 0.862 0.194 0.459 0.275 0.927 0.310
M132 0.689 0.361 2.360 0.386 0.753 0.663 2.475 0.790

M3 0.311 0.181 0.713 0.214 0.383 0.296 0.810 0.377
M460 0.855 0.356 3.133 0.391 0.997 0.681 3.444 0.766

M6 0.607 0.288 1.396 0.388 0.760 0.513 1.601 0.677

(a) Quadrangles, Gauss-Legendre Method

Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

2 M0 0.123 0.045 0.182 0.054 0.154 0.074 0.219 0.087
M132 0.161 0.065 0.237 0.071 0.191 0.085 0.293 0.100

M3 0.123 0.049 0.167 0.056 0.152 0.072 0.202 0.085
M460 0.215 0.060 0.218 0.068 0.240 0.104 0.263 0.125

M6 0.218 0.068 0.167 0.074 0.245 0.110 0.209 0.133

O
rd

er
=

3 M0 0.127 0.063 0.207 0.070 0.171 0.101 0.254 0.122
M132 0.305 0.116 0.378 0.125 0.321 0.153 0.428 0.184

M3 0.127 0.072 0.208 0.082 0.171 0.111 0.257 0.132
M460 0.226 0.110 0.235 0.121 0.266 0.184 0.318 0.220

M6 0.226 0.110 0.236 0.120 0.266 0.182 0.318 0.220

O
rd

er
=

4 M0 0.300 0.081 0.453 0.090 0.320 0.128 0.495 0.155
M132 0.431 0.180 0.655 0.190 0.455 0.259 0.730 0.295

M3 0.262 0.104 0.282 0.113 0.290 0.160 0.336 0.193
M460 0.311 0.174 0.936 0.208 0.385 0.304 1.059 0.376

M6 0.270 0.156 0.529 0.180 0.356 0.273 0.630 0.330

O
rd

er
=

5 M0 0.346 0.098 0.425 0.110 0.368 0.154 0.473 0.187
M132 0.527 0.258 1.554 0.284 0.580 0.372 1.680 0.561

M3 0.269 0.139 0.546 0.161 0.319 0.224 0.659 0.264
M460 0.680 0.255 1.280 0.292 0.798 0.495 1.486 0.544

M6 0.522 0.218 0.878 0.246 0.663 0.386 1.078 0.461

O
rd

er
=

6 M0 0.431 0.120 0.872 0.131 0.459 0.182 0.922 0.220
M132 0.689 0.359 2.364 0.388 0.755 0.656 2.488 0.780

M3 0.311 0.185 0.714 0.214 0.383 0.305 0.810 0.377
M460 0.855 0.355 3.134 0.392 0.996 0.677 3.449 0.764

M6 0.606 0.287 1.394 0.388 0.760 0.529 1.604 0.676

(b) Quadrangles, Gauss-Legendre-Lobatto Method

Table D.1: Benchmarking results for GiMMiK CUDA (GCU) and OpenCL (GCL) kernels, cuBLAS (CU) and clBLAS(CL) for quadrilateral element matrices
in double precision on Tesla K40c. Reported values are averages of 30 runs reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

1 M0 0.177 0.071 0.122 0.081 0.212 0.129 0.186 0.155
M132 0.259 0.079 0.249 0.083 0.269 0.096 0.284 0.110

M3 0.259 0.078 0.247 0.084 0.269 0.096 0.283 0.110
M460 0.177 0.070 0.122 0.081 0.212 0.128 0.183 0.155

M6 0.265 0.108 0.294 0.122 0.293 0.164 0.345 0.198

O
rd

er
=

2 M0 0.314 0.194 0.939 0.213 0.399 0.365 1.066 0.406
M132 0.605 0.283 1.397 0.282 0.627 0.399 1.463 0.481

M3 0.434 0.197 0.700 0.205 0.462 0.274 0.809 0.316
M460 0.598 0.255 1.419 0.291 0.733 0.516 1.616 0.570

M6 0.853 0.312 2.043 0.367 0.988 0.504 2.254 0.656

O
rd

er
=

3 M0 1.186 0.996 4.826 1.134 1.314 1.111 5.066 1.529
M132 0.657 0.379 2.434 0.423 0.755 0.719 2.630 0.873

M3 1.524 0.610 4.828 0.768 1.869 1.752 5.377 1.978
M460 2.018 0.698 7.181 0.882 2.305 1.729 7.775 2.008

M6 2.530 0.590 10.47 0.715 2.740 1.031 10.99 1.612

O
rd

er
=

4 M0 2.537 0.700 10.49 0.902 2.729 1.572 10.98 1.878
M132 4.174 3.175 24.83 4.032 4.462 3.139 25.62 4.352

M3 1.864 0.652 7.575 0.895 2.130 1.332 7.956 1.728
M460 4.980 1.442 25.30 1.883 5.405 3.586 26.53 4.087

M6 5.778 1.276 22.31 1.873 6.189 3.307 23.37 3.940

O
rd

er
=

5 M0 5.184 4.669 18.39 3.810 5.453 4.985 19.06 5.144
M132 14.25 7.575 55.09 9.381 14.49 8.035 56.16 9.893

M3 5.200 1.283 18.39 1.714 5.453 2.410 19.06 3.056
M460 14.08 5.431 55.13 5.662 14.73 8.935 57.40 9.965

M6 14.06 1.934 55.11 3.478 14.68 5.674 57.34 6.852

O
rd

er
=

6 M0 9.923 8.061 54.38 10.08 10.25 10.08 56.23 9.845
M132 33.35 16.27 185.53 18.54 33.88 15.60 189.87 18.57

M3 10.27 2.745 39.51 2.731 10.66 4.047 40.72 4.855
M460 33.68 11.34 183.97 12.16 34.67 17.58 190.04 19.12

M6 29.17 2.922 118.41 5.531 30.18 8.963 122.30 10.87

(c) Hexahedra, Gauss-Legendre Method

Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

2 M0 0.314 0.184 0.939 0.206 0.400 0.311 1.064 0.400
M132 0.605 0.273 1.409 0.282 0.628 0.393 1.465 0.482

M3 0.435 0.199 0.702 0.205 0.462 0.274 0.809 0.316
M460 0.598 0.255 1.417 0.292 0.730 0.517 1.616 0.588

M6 0.853 0.312 2.041 0.366 0.989 0.504 2.258 0.657

O
rd

er
=

3 M0 0.948 0.363 2.427 0.419 1.103 0.646 2.702 0.757
M132 1.185 0.924 4.826 1.103 1.335 1.096 5.065 1.517

M3 0.656 0.383 2.419 0.423 0.752 0.720 2.621 0.873
M460 1.531 0.609 4.826 0.780 1.856 1.730 5.373 1.963

M6 2.020 0.699 7.180 0.881 2.303 1.725 7.784 2.010

O
rd

er
=

4 M0 0.949 0.385 2.430 0.423 1.103 0.938 2.700 1.072
M132 4.172 3.032 24.85 3.839 4.439 2.957 25.62 4.162

M3 1.864 0.653 7.556 0.900 2.138 1.337 7.973 1.731
M460 4.972 1.382 25.28 1.938 5.416 3.591 26.52 4.100

M6 5.769 1.274 22.29 1.866 6.186 3.304 23.37 3.953

O
rd

er
=

5 M0 5.195 0.883 18.38 1.173 5.442 1.939 19.03 2.512
M132 14.26 6.884 55.10 9.224 14.45 7.258 56.19 9.490

M3 5.187 1.283 18.38 1.706 5.452 2.418 19.06 3.062
M460 14.08 4.80 55.16 5.324 14.74 8.393 57.35 9.532

M6 14.05 1.94 55.12 3.477 14.69 5.679 57.38 6.858

O
rd

er
=

6 M0 9.920 1.231 54.39 2.006 10.24 2.674 56.26 3.786
M132 33.36 15.34 185.69 17.56 33.87 14.32 189.87 18.09

M3 10.29 2.973 39.52 2.813 10.66 4.195 40.67 4.885
M460 33.68 10.83 183.98 11.47 34.67 16.25 189.94 18.14

M6 29.18 2.938 118.52 5.751 30.21 8.973 122.24 10.98

(d) Hexahedra, Gauss-Legendre-Lobatto Method

Table D.1: Benchmarking results for GiMMiK CUDA (GCU) and OpenCL (GCL) kernels, cuBLAS (CU) and clBLAS(CL) for hexahedral element matrices
in double precision on Tesla K40c. Reported values are averages of 30 runs reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

1 M0 0.069 0.020 0.077 0.024 0.097 0.036 0.105 0.042
M132 0.076 0.023 0.065 0.028 0.097 0.031 0.074 0.037

M3 0.076 0.024 0.067 0.027 0.097 0.031 0.074 0.036
M460 0.068 0.020 0.079 0.023 0.097 0.036 0.105 0.042

M6 0.080 0.027 0.114 0.031 0.107 0.044 0.173 0.051

O
rd

er
=

2 M0 0.081 0.033 0.124 0.040 0.114 0.057 0.174 0.065
M132 0.122 0.045 0.154 0.049 0.147 0.060 0.195 0.068

M3 0.121 0.036 0.158 0.041 0.146 0.052 0.220 0.059
M460 0.082 0.041 0.116 0.046 0.120 0.070 0.154 0.081

M6 0.123 0.048 0.183 0.053 0.154 0.078 0.218 0.090

O
rd

er
=

3 M0 0.123 0.050 0.156 0.057 0.155 0.081 0.195 0.091
M132 0.162 0.075 0.257 0.079 0.193 0.098 0.297 0.113

M3 0.123 0.050 0.174 0.058 0.153 0.078 0.223 0.090
M460 0.217 0.067 0.161 0.076 0.244 0.117 0.213 0.140

M6 0.218 0.073 0.163 0.081 0.247 0.122 0.210 0.145

O
rd

er
=

4 M0 0.126 0.069 0.284 0.079 0.166 0.108 0.358 0.127
M132 0.304 0.114 0.387 0.128 0.318 0.157 0.468 0.185

M3 0.126 0.069 0.285 0.078 0.166 0.108 0.355 0.127
M460 0.225 0.105 0.301 0.113 0.262 0.176 0.387 0.211

M6 0.224 0.105 0.303 0.114 0.261 0.174 0.386 0.210

O
rd

er
=

5 M0 0.262 0.092 0.401 0.104 0.284 0.139 0.446 0.162
M132 0.388 0.181 0.505 0.199 0.408 0.305 0.553 0.281

M3 0.256 0.090 0.248 0.102 0.282 0.143 0.302 0.169
M460 0.268 0.159 0.767 0.175 0.329 0.260 0.902 0.304

M6 0.265 0.142 0.512 0.153 0.324 0.245 0.664 0.288

O
rd

er
=

6 M0 0.304 0.121 0.343 0.135 0.328 0.176 0.376 0.222
M132 0.437 0.290 0.702 0.304 0.466 0.452 0.773 0.443

M3 0.265 0.116 0.412 0.127 0.296 0.191 0.470 0.219
M460 0.317 0.271 0.700 0.265 0.407 0.404 0.835 0.501

M6 0.274 0.188 0.808 0.206 0.379 0.337 0.922 0.375

(e) Triangles, Williams-Shunn

Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

1 M0 0.074 0.036 0.071 0.041 0.113 0.064 0.112 0.075
M132 0.118 0.040 0.127 0.045 0.138 0.050 0.155 0.057

M3 0.118 0.041 0.127 0.046 0.138 0.051 0.155 0.058
M460 0.074 0.036 0.073 0.042 0.113 0.064 0.113 0.075

M6 0.124 0.054 0.153 0.064 0.156 0.084 0.195 0.101

O
rd

er
=

2 M0 0.217 0.078 0.163 0.086 0.248 0.136 0.222 0.163
M132 0.301 0.100 0.367 0.106 0.314 0.126 0.434 0.147

M3 0.261 0.085 0.297 0.092 0.273 0.110 0.333 0.124
M460 0.219 0.092 0.189 0.101 0.256 0.163 0.295 0.196

M6 0.267 0.126 0.346 0.138 0.302 0.200 0.421 0.256

O
rd

er
=

3 M0 0.265 0.143 0.481 0.156 0.322 0.247 0.598 0.285
M132 0.476 0.286 0.686 0.306 0.501 0.495 0.726 0.520

M3 0.349 0.155 0.465 0.175 0.371 0.267 0.511 0.258
M460 0.274 0.199 0.538 0.218 0.389 0.344 0.690 0.398

M6 0.363 0.249 1.020 0.265 0.460 0.493 1.176 0.530

O
rd

er
=

4 M0 0.360 0.261 1.220 0.282 0.451 0.566 1.346 0.539
M132 0.730 1.056 2.866 0.984 0.769 1.316 3.075 1.297

M3 0.482 0.365 1.340 0.389 0.525 0.812 1.402 0.831
M460 0.690 0.851 2.335 0.800 0.839 0.991 2.622 0.894

M6 0.947 0.673 2.969 0.545 1.112 0.933 3.147 1.572

O
rd

er
=

5 M0 0.860 1.260 2.054 1.172 0.999 1.707 2.266 1.689
M132 1.045 6.020 3.986 5.511 1.177 9.872 4.123 9.168

M3 0.611 1.315 2.009 1.235 0.693 1.669 2.137 1.606
M460 1.393 2.480 4.070 2.304 1.715 4.287 4.527 4.090

M6 1.900 1.883 6.038 1.748 2.122 2.953 6.520 2.942

O
rd

er
=

6 M0 1.197 2.370 4.080 2.180 1.344 3.097 4.405 3.009
M132 2.926 22.48 9.055 20.08 3.097 40.34 9.327 37.18

M3 1.439 2.450 4.065 2.263 1.543 2.987 4.277 2.876
M460 2.498 6.591 8.375 5.878 2.825 9.276 9.082 8.805

M6 2.998 3.764 11.11 5.530 3.345 5.590 11.85 5.361

(f) Tetrahedra, Shunn-Ham Method

Table D.1: Benchmarking results for GiMMiK CUDA (GCU) and OpenCL (GCL) kernels, cuBLAS (CU) and clBLAS(CL) for triangular and tetrahedral
element matrices in double precision on Tesla K40c. Reported values are averages of 30 runs reproducible within 2% in [ms].



A
P
P
E
N
D
IX

D
.
B
E
N
C
H
M
A
R
K
IN

G
R
E
S
U
L
T
S
F
O
R

G
iM

M
iK

K
E
R
N
E
L
S

95

Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

1 M0 0.169 0.014 0.043 0.018 0.237 0.027 0.052 0.034
M132 0.050 0.017 0.057 0.022 0.090 0.023 0.058 0.029

M3 0.050 0.017 0.054 0.023 0.090 0.023 0.060 0.030
M460 0.169 0.014 0.041 0.019 0.235 0.027 0.052 0.034

M6 0.169 0.019 0.059 0.025 0.240 0.032 0.068 0.042

O
rd

er
=

2 M0 0.169 0.024 0.105 0.030 0.241 0.042 0.124 0.055
M132 0.232 0.035 0.135 0.042 0.291 0.047 0.169 0.060

M3 0.169 0.026 0.082 0.033 0.246 0.039 0.112 0.051
M460 0.171 0.031 0.132 0.039 0.249 0.055 0.172 0.072

M6 0.171 0.034 0.083 0.043 0.250 0.059 0.121 0.078

O
rd

er
=

3 M0 0.172 0.036 0.109 0.047 0.246 0.060 0.127 0.078
M132 0.233 0.061 0.193 0.070 0.293 0.083 0.206 0.111

M3 0.171 0.036 0.110 0.048 0.245 0.060 0.127 0.079
M460 0.173 0.055 0.135 0.071 0.263 0.096 0.166 0.128

M6 0.173 0.055 0.136 0.072 0.263 0.102 0.166 0.128

O
rd

er
=

4 M0 0.232 0.055 0.253 0.065 0.291 0.086 0.283 0.116
M132 0.343 0.095 0.357 0.108 0.387 0.141 0.398 0.174

M3 0.232 0.052 0.134 0.063 0.291 0.089 0.180 0.113
M460 0.235 0.087 0.512 0.103 0.341 0.160 0.569 0.227

M6 0.234 0.082 0.241 0.104 0.338 0.151 0.319 0.190

O
rd

er
=

5 M0 0.286 0.074 0.207 0.086 0.330 0.113 0.226 0.148
M132 0.402 0.135 0.760 0.161 0.465 0.255 0.764 0.277

M3 0.233 0.071 0.283 0.083 0.323 0.121 0.319 0.173
M460 0.564 0.127 0.632 0.153 0.711 0.245 0.688 0.328

M6 0.452 0.109 0.442 0.135 0.611 0.210 0.513 0.305

O
rd

er
=

6 M0 0.343 0.097 0.483 0.110 0.383 0.139 0.515 0.183
M132 0.518 0.187 1.262 0.208 0.583 0.556 1.337 0.405

M3 0.235 0.091 0.319 0.106 0.340 0.159 0.388 0.227
M460 0.677 0.172 1.617 0.265 0.832 0.336 1.787 0.448

M6 0.455 0.146 0.611 0.180 0.661 0.282 0.771 0.407

(a) Quadrangles, Gauss-Legendre Method

Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

2 M0 0.169 0.023 0.104 0.029 0.242 0.041 0.122 0.053
M132 0.232 0.035 0.135 0.042 0.291 0.047 0.167 0.061

M3 0.169 0.026 0.081 0.033 0.244 0.039 0.112 0.051
M460 0.170 0.031 0.132 0.038 0.247 0.056 0.172 0.073

M6 0.171 0.034 0.081 0.043 0.249 0.059 0.124 0.078

O
rd

er
=

3 M0 0.171 0.032 0.110 0.040 0.248 0.054 0.128 0.071
M132 0.233 0.062 0.193 0.069 0.295 0.083 0.205 0.112

M3 0.171 0.036 0.109 0.047 0.246 0.060 0.128 0.078
M460 0.173 0.055 0.136 0.071 0.263 0.102 0.168 0.127

M6 0.173 0.055 0.136 0.071 0.264 0.102 0.165 0.127

O
rd

er
=

4 M0 0.232 0.041 0.254 0.052 0.290 0.067 0.285 0.090
M132 0.342 0.094 0.359 0.107 0.387 0.140 0.398 0.174

M3 0.232 0.052 0.133 0.063 0.291 0.090 0.180 0.113
M460 0.235 0.087 0.504 0.106 0.341 0.158 0.571 0.226

M6 0.234 0.082 0.239 0.104 0.338 0.152 0.318 0.190

O
rd

er
=

5 M0 0.286 0.051 0.206 0.063 0.329 0.081 0.226 0.120
M132 0.402 0.132 0.761 0.159 0.465 0.253 0.764 0.273

M3 0.233 0.071 0.286 0.083 0.323 0.121 0.317 0.172
M460 0.565 0.127 0.630 0.156 0.711 0.245 0.689 0.327

M6 0.452 0.109 0.443 0.136 0.612 0.210 0.514 0.305

O
rd

er
=

6 M0 0.342 0.061 0.476 0.074 0.383 0.100 0.508 0.142
M132 0.518 0.188 1.265 0.209 0.584 0.543 1.337 0.402

M3 0.235 0.091 0.319 0.106 0.340 0.160 0.390 0.228
M460 0.677 0.177 1.617 0.263 0.833 0.334 1.790 0.447

M6 0.455 0.145 0.611 0.179 0.661 0.281 0.771 0.406

(b) Quadrangles, Gauss-Legendre-Lobatto Method

Table D.2: Benchmarking results for GiMMiK CUDA (GCU) and OpenCL (GCL) kernels, cuBLAS (CU) and clBLAS(CL) for quadrilateral element matrices
in single precision on Tesla K40c. Reported values are averages of 30 runs reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

1 M0 0.171 0.037 0.076 0.045 0.249 0.068 0.098 0.089
M132 0.232 0.043 0.132 0.049 0.296 0.052 0.136 0.068

M3 0.232 0.041 0.132 0.048 0.297 0.051 0.137 0.069
M460 0.171 0.036 0.076 0.044 0.251 0.068 0.098 0.089

M6 0.232 0.056 0.145 0.068 0.292 0.091 0.169 0.128

O
rd

er
=

2 M0 0.236 0.098 0.508 0.114 0.347 0.170 0.574 0.244
M132 0.459 0.132 0.760 0.156 0.500 0.310 0.833 0.240

M3 0.343 0.100 0.385 0.117 0.387 0.174 0.458 0.186
M460 0.453 0.126 0.754 0.154 0.610 0.239 0.857 0.343

M6 0.676 0.162 1.090 0.222 0.812 0.302 1.203 0.386

O
rd

er
=

3 M0 0.678 0.194 1.166 0.275 0.809 0.484 1.239 0.520
M132 0.812 0.445 2.339 0.471 0.880 0.930 2.333 0.973

M3 0.464 0.191 1.172 0.230 0.543 0.594 1.204 0.623
M460 1.048 0.305 2.304 0.466 1.456 0.890 2.441 1.024

M6 1.240 0.348 3.403 0.537 1.646 1.489 3.495 1.529

O
rd

er
=

4 M0 1.322 0.337 5.572 0.458 1.798 1.296 5.699 1.523
M132 2.997 1.709 13.12 1.390 3.138 1.868 13.27 2.246

M3 1.372 0.341 3.992 0.467 1.491 1.122 4.179 1.370
M460 2.898 0.616 13.20 0.866 3.747 3.041 13.64 3.448

M6 3.290 0.647 11.70 0.896 4.092 2.879 12.20 3.333

O
rd

er
=

5 M0 2.719 0.542 8.546 0.750 3.256 2.209 8.465 2.286
M132 6.767 9.165 25.54 3.295 7.292 3.756 24.82 4.653

M3 2.713 0.614 8.560 0.750 3.240 1.967 8.461 2.292
M460 7.194 1.676 25.77 1.646 8.577 5.883 25.48 6.086

M6 7.173 1.220 25.76 1.791 8.571 5.175 25.46 5.704

O
rd

er
=

6 M0 5.030 3.578 28.16 2.630 5.796 4.795 28.69 4.323
M132 16.12 18.50 96.34 6.905 16.91 9.459 96.77 9.469

M3 5.427 1.551 20.70 1.291 6.223 3.369 21.27 3.622
M460 15.89 4.738 95.23 5.039 18.18 10.21 96.81 11.83

M6 14.07 1.821 61.72 2.172 16.37 7.719 63.43 9.012

(c) Hexahedra, Gauss-Legendre Method

Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

2 M0 0.236 0.095 0.509 0.115 0.347 0.167 0.573 0.243
M132 0.459 0.138 0.762 0.158 0.501 0.309 0.827 0.240

M3 0.342 0.101 0.387 0.117 0.388 0.175 0.459 0.199
M460 0.453 0.126 0.757 0.182 0.609 0.256 0.856 0.395

M6 0.677 0.161 1.089 0.223 0.812 0.302 1.202 0.386

O
rd

er
=

3 M0 0.678 0.183 1.167 0.284 0.809 0.447 1.238 0.501
M132 0.811 0.401 2.342 0.467 0.880 0.758 2.335 0.959

M3 0.464 0.191 1.175 0.230 0.543 0.597 1.206 0.667
M460 1.053 0.304 2.304 0.473 1.460 0.882 2.441 1.015

M6 1.246 0.354 3.407 0.537 1.647 1.482 3.495 1.436

O
rd

er
=

4 M0 1.336 0.297 5.530 0.431 1.797 0.545 5.715 0.851
M132 2.996 1.724 13.10 1.349 3.123 1.810 13.27 2.227

M3 1.374 0.336 3.988 0.466 1.493 1.126 4.170 1.371
M460 2.896 0.620 13.19 0.875 3.751 3.018 13.63 3.440

M6 3.304 0.648 11.69 0.894 4.087 2.878 12.21 3.339

O
rd

er
=

5 M0 2.704 0.439 8.553 0.649 3.241 0.991 8.481 2.039
M132 6.755 7.950 25.55 3.149 7.296 3.669 24.83 4.574

M3 2.708 0.624 8.556 0.747 3.235 1.969 8.464 2.282
M460 7.203 1.581 25.82 1.554 8.576 5.731 25.47 6.032

M6 7.171 1.219 25.76 1.799 8.563 5.244 25.46 5.695

O
rd

er
=

6 M0 5.039 0.907 28.17 0.915 5.769 2.447 28.66 2.775
M132 16.11 18.24 96.31 6.703 16.91 8.815 97.00 9.718

M3 5.427 1.526 20.73 1.294 6.216 3.394 21.26 3.632
M460 15.87 4.168 95.36 4.558 18.19 9.726 96.78 11.06

M6 14.09 1.775 61.75 2.457 16.35 7.725 63.42 9.097

(d) Hexahedra, Gauss-Legendre-Lobatto Method

Table D.2: Benchmarking results for GiMMiK CUDA (GCU) and OpenCL (GCL) kernels, cuBLAS (CU) and clBLAS(CL) for hexahedral element matrices
in single precision on Tesla K40c. Reported values are averages of 30 runs reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

1 M0 0.046 0.011 0.047 0.015 0.091 0.021 0.085 0.025
M132 0.046 0.013 0.040 0.017 0.075 0.017 0.045 0.021

M3 0.047 0.014 0.041 0.017 0.075 0.017 0.045 0.022
M460 0.046 0.011 0.047 0.016 0.091 0.021 0.085 0.026

M6 0.051 0.015 0.074 0.020 0.096 0.025 0.116 0.032

O
rd

er
=

2 M0 0.169 0.017 0.071 0.022 0.241 0.032 0.102 0.041
M132 0.071 0.024 0.077 0.029 0.114 0.033 0.118 0.042

M3 0.070 0.019 0.110 0.025 0.113 0.029 0.157 0.036
M460 0.169 0.020 0.066 0.026 0.241 0.039 0.081 0.050

M6 0.169 0.024 0.105 0.030 0.245 0.043 0.125 0.054

O
rd

er
=

3 M0 0.169 0.025 0.086 0.032 0.244 0.044 0.105 0.056
M132 0.231 0.039 0.121 0.046 0.294 0.056 0.167 0.067

M3 0.170 0.028 0.087 0.034 0.248 0.042 0.134 0.053
M460 0.171 0.035 0.096 0.042 0.251 0.062 0.125 0.081

M6 0.171 0.037 0.087 0.047 0.251 0.070 0.109 0.084

O
rd

er
=

4 M0 0.171 0.035 0.167 0.046 0.245 0.058 0.228 0.074
M132 0.232 0.060 0.229 0.070 0.293 0.085 0.295 0.111

M3 0.171 0.035 0.167 0.045 0.244 0.058 0.232 0.074
M460 0.173 0.052 0.171 0.064 0.260 0.094 0.233 0.120

M6 0.173 0.052 0.169 0.062 0.259 0.100 0.233 0.120

O
rd

er
=

5 M0 0.232 0.048 0.225 0.059 0.291 0.081 0.250 0.094
M132 0.287 0.087 0.290 0.110 0.329 0.126 0.317 0.162

M3 0.232 0.045 0.142 0.057 0.287 0.077 0.174 0.097
M460 0.234 0.075 0.421 0.089 0.330 0.149 0.501 0.170

M6 0.233 0.071 0.288 0.083 0.328 0.136 0.373 0.162

O
rd

er
=

6 M0 0.233 0.064 0.157 0.077 0.292 0.101 0.187 0.135
M132 0.343 0.156 0.364 0.174 0.385 0.201 0.378 0.292

M3 0.232 0.058 0.232 0.071 0.290 0.109 0.263 0.124
M460 0.236 0.113 0.347 0.130 0.350 0.202 0.399 0.281

M6 0.236 0.091 0.436 0.105 0.348 0.178 0.503 0.252

(e) Triangles, Williams-Shunn

Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

1 M0 0.169 0.018 0.046 0.024 0.236 0.037 0.058 0.045
M132 0.067 0.022 0.073 0.027 0.105 0.028 0.076 0.035

M3 0.067 0.022 0.074 0.028 0.105 0.028 0.074 0.036
M460 0.169 0.018 0.044 0.023 0.235 0.036 0.059 0.046

M6 0.170 0.028 0.087 0.036 0.241 0.046 0.096 0.059

O
rd

er
=

2 M0 0.171 0.039 0.095 0.048 0.250 0.072 0.126 0.092
M132 0.232 0.053 0.210 0.062 0.298 0.069 0.262 0.090

M3 0.232 0.044 0.139 0.052 0.297 0.062 0.185 0.081
M460 0.172 0.045 0.119 0.055 0.258 0.086 0.184 0.111

M6 0.233 0.063 0.162 0.076 0.294 0.110 0.230 0.154

O
rd

er
=

3 M0 0.233 0.071 0.252 0.084 0.326 0.141 0.288 0.193
M132 0.345 0.120 0.324 0.149 0.389 0.255 0.334 0.236

M3 0.286 0.082 0.224 0.100 0.329 0.118 0.240 0.156
M460 0.235 0.097 0.280 0.112 0.353 0.196 0.337 0.272

M6 0.291 0.126 0.508 0.144 0.394 0.241 0.554 0.305

O
rd

er
=

4 M0 0.290 0.143 0.654 0.161 0.392 0.235 0.720 0.322
M132 0.517 0.476 1.452 0.390 0.574 0.604 1.591 0.580

M3 0.345 0.176 0.577 0.197 0.414 0.407 0.672 0.360
M460 0.566 0.242 1.236 0.294 0.750 0.440 1.376 0.515

M6 0.681 0.308 1.289 0.277 0.844 0.761 1.442 0.692

O
rd

er
=

5 M0 0.678 0.641 0.969 0.500 0.809 0.839 1.032 0.714
M132 0.757 2.239 1.868 2.112 0.824 2.486 1.853 2.456

M3 0.464 0.671 0.936 0.603 0.534 0.795 0.960 0.668
M460 0.851 1.194 1.941 0.926 1.421 1.650 2.056 1.345

M6 1.064 1.741 2.862 0.858 1.590 1.392 2.935 1.372

O
rd

er
=

6 M0 0.911 1.241 1.941 1.089 1.048 1.479 1.986 1.359
M132 2.083 5.132 4.169 4.778 2.185 5.569 4.107 5.231

M3 1.022 2.248 1.883 2.140 1.142 1.466 1.908 1.345
M460 1.608 5.498 3.972 5.320 2.177 3.368 4.095 3.077

M6 1.789 3.354 5.251 3.099 2.354 2.457 5.319 4.430

(f) Tetrahedra, Shunn-Ham Method

Table D.2: Benchmarking results for GiMMiK CUDA (GCU) and OpenCL (GCL) kernels, cuBLAS (CU) and clBLAS(CL) for triangular and tetrahedral
element matrices in single precision on Tesla K40c. Reported values are averages of 30 runs reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

1 M0 0.120 0.020 0.105 0.024 0.132 0.036 0.116 0.038
M132 0.182 0.024 0.165 0.033 0.192 0.032 0.190 0.037

M3 0.182 0.024 0.174 0.030 0.192 0.032 0.183 0.040
M460 0.120 0.020 0.099 0.024 0.132 0.036 0.123 0.046

M6 0.183 0.027 0.168 0.041 0.195 0.044 0.186 0.053

O
rd

er
=

2 M0 0.317 0.036 0.247 0.044 0.329 0.061 0.272 0.078
M132 0.450 0.051 0.391 0.059 0.460 0.066 0.428 0.081

M3 0.317 0.040 0.242 0.047 0.329 0.057 0.268 0.067
M460 0.646 0.046 0.260 0.058 0.658 0.081 0.289 0.098

M6 0.646 0.051 0.232 0.064 0.656 0.084 0.265 0.108

O
rd

er
=

3 M0 0.318 0.058 0.302 0.069 0.330 0.087 0.328 0.107
M132 1.155 0.095 0.520 0.104 1.164 0.124 0.595 0.165

M3 0.318 0.060 0.274 0.070 0.330 0.085 0.326 0.107
M460 0.649 0.087 0.281 0.096 0.665 0.142 0.347 0.180

M6 0.649 0.082 0.280 0.084 0.664 0.137 0.346 0.171

O
rd

er
=

4 M0 1.154 0.087 0.547 0.099 1.171 0.120 0.513 0.139
M132 1.896 0.145 0.839 0.168 1.916 0.225 0.866 0.245

M3 0.807 0.075 0.335 0.093 0.911 0.121 0.366 0.139
M460 1.049 0.134 0.950 0.156 1.201 0.242 1.167 0.318

M6 0.809 0.108 0.641 0.120 0.929 0.206 0.778 0.258

O
rd

er
=

5 M0 1.399 0.115 0.565 0.124 1.234 0.170 0.604 0.188
M132 2.410 0.282 2.446 0.321 2.126 0.315 2.219 0.492

M3 0.810 0.098 0.855 0.132 0.808 0.153 0.804 0.191
M460 2.484 0.224 1.663 0.250 2.442 0.400 1.741 0.431

M6 1.547 0.148 1.131 0.165 1.798 0.285 1.206 0.318

O
rd

er
=

6 M0 1.872 0.143 0.860 0.163 1.674 0.210 0.908 0.238
M132 3.202 0.402 3.093 0.450 3.009 0.614 3.116 0.701

M3 1.023 0.127 0.874 0.146 1.055 0.201 1.036 0.308
M460 3.276 0.367 3.347 0.397 3.687 0.574 3.527 0.632

M6 2.276 0.198 1.734 0.230 2.123 0.336 1.808 0.477

(a) Quadrangles, Gauss-Legendre Method

Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

2 M0 0.318 0.034 0.256 0.040 0.329 0.056 0.281 0.066
M132 0.450 0.051 0.401 0.062 0.460 0.066 0.382 0.076

M3 0.317 0.040 0.242 0.052 0.329 0.056 0.243 0.062
M460 0.647 0.046 0.267 0.057 0.658 0.081 0.263 0.093

M6 0.647 0.051 0.234 0.058 0.657 0.084 0.233 0.093

O
rd

er
=

3 M0 0.318 0.048 0.304 0.060 0.330 0.076 0.328 0.093
M132 1.155 0.092 0.518 0.100 1.163 0.122 0.597 0.157

M3 0.318 0.060 0.274 0.067 0.330 0.086 0.326 0.106
M460 0.650 0.085 0.289 0.089 0.666 0.141 0.346 0.179

M6 0.649 0.083 0.281 0.082 0.665 0.137 0.353 0.172

O
rd

er
=

4 M0 1.156 0.061 0.546 0.068 1.170 0.097 0.527 0.110
M132 1.897 0.152 0.843 0.164 1.915 0.220 0.861 0.238

M3 0.897 0.083 0.335 0.086 0.910 0.121 0.357 0.141
M460 1.164 0.139 0.950 0.151 1.201 0.239 1.032 0.281

M6 0.898 0.118 0.640 0.123 0.930 0.203 0.757 0.248

O
rd

er
=

5 M0 1.400 0.075 0.582 0.075 1.402 0.115 0.600 0.128
M132 2.409 0.223 2.171 0.297 2.384 0.297 2.219 0.474

M3 0.813 0.098 0.757 0.113 0.827 0.155 0.802 0.191
M460 2.484 0.203 1.663 0.228 2.510 0.389 1.746 0.417

M6 1.588 0.149 1.131 0.162 1.582 0.254 1.367 0.357

O
rd

er
=

6 M0 1.893 0.091 0.864 0.087 1.913 0.137 0.904 0.148
M132 3.142 0.387 3.094 0.418 3.424 0.604 3.128 0.679

M3 1.048 0.123 0.873 0.135 1.077 0.211 1.035 0.309
M460 3.340 0.339 3.589 0.374 3.439 0.551 3.534 0.612

M6 2.008 0.192 1.735 0.225 2.074 0.348 1.810 0.478

(b) Quadrangles, Gauss-Legendre-Lobatto Method

Table D.3: Benchmarking results for GiMMiK CUDA (GCU) and OpenCL (GCL) kernels, cuBLAS (CU) and clBLAS(CL) for quadrilateral element matrices
in double precision on GTX 780 Ti. Reported values are averages of 30 runs reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

1 M0 0.400 0.054 0.177 0.064 0.410 0.098 0.194 0.120
M132 0.898 0.059 0.431 0.066 0.901 0.073 0.408 0.080

M3 0.898 0.060 0.397 0.066 0.902 0.074 0.406 0.079
M460 0.400 0.053 0.165 0.056 0.410 0.098 0.176 0.109

M6 0.900 0.082 0.407 0.085 0.915 0.124 0.415 0.136

O
rd

er
=

2 M0 1.164 0.143 0.956 0.136 1.062 0.267 1.034 0.292
M132 2.913 0.239 1.388 0.226 2.562 0.308 1.443 0.378

M3 1.901 0.145 0.906 0.149 1.687 0.196 0.946 0.233
M460 2.274 0.195 1.421 0.185 2.249 0.384 1.540 0.408

M6 3.443 0.210 2.969 0.237 3.484 0.332 2.681 0.460

O
rd

er
=

3 M0 4.117 0.266 3.295 0.340 3.812 0.735 2.990 0.828
M132 5.445 0.744 5.745 0.840 5.494 0.887 5.811 1.164

M3 3.184 0.275 2.896 0.345 2.835 0.578 2.953 0.686
M460 5.666 0.418 5.792 0.483 5.777 1.401 5.955 1.547

M6 8.280 0.514 8.624 0.487 8.386 1.302 8.771 1.494

O
rd

er
=

4 M0 10.78 0.590 10.23 0.658 10.84 1.239 10.54 1.455
M132 20.64 2.330 24.10 3.126 20.79 2.398 24.40 3.182

M3 8.608 0.489 9.288 0.688 8.562 1.083 9.382 1.341
M460 21.37 1.101 24.50 1.238 21.52 2.908 25.34 3.219

M6 25.34 0.834 27.70 1.230 25.53 2.516 27.98 2.919

O
rd

er
=

5 M0 23.99 3.604 22.47 2.657 24.13 3.703 22.66 3.730
M132 70.93 5.643 67.15 6.503 71.01 6.130 67.29 7.138

M3 23.99 1.123 22.48 1.222 24.11 1.935 22.66 2.327
M460 65.79 4.448 67.33 4.399 66.05 7.010 67.93 7.647

M6 65.75 1.438 67.29 2.273 66.01 4.295 67.89 5.062

O
rd

er
=

6 M0 47.34 7.421 54.07 5.720 47.46 7.472 55.35 7.087
M132 168.10 12.05 178.86 12.95 168.36 11.85 182.21 13.43

M3 48.77 2.249 49.20 2.190 48.93 3.231 49.34 3.689
M460 160.74 8.777 179.03 9.137 161.18 13.74 183.17 14.55

M6 137.94 2.179 147.41 3.320 138.48 6.780 147.95 8.051

(c) Hexahedra, Gauss-Legendre Method

Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

2 M0 1.163 0.140 0.953 0.137 1.207 0.230 1.091 0.291
M132 2.916 0.202 1.394 0.226 2.938 0.344 1.445 0.379

M3 1.712 0.129 0.904 0.149 1.925 0.219 0.944 0.234
M460 2.048 0.174 1.424 0.182 2.349 0.378 1.543 0.422

M6 3.269 0.209 2.618 0.237 3.377 0.332 2.684 0.460

O
rd

er
=

3 M0 3.867 0.240 2.913 0.276 3.815 0.440 2.991 0.520
M132 5.438 0.668 5.917 0.849 5.498 0.853 5.805 1.130

M3 3.038 0.277 2.896 0.344 2.838 0.580 2.957 0.686
M460 5.753 0.393 5.792 0.452 5.779 1.364 5.951 1.519

M6 8.283 0.513 8.626 0.486 8.459 1.304 8.775 1.493

O
rd

er
=

4 M0 10.75 0.392 10.22 0.417 10.85 0.692 10.55 1.168
M132 20.78 2.474 23.85 2.615 20.80 2.219 24.41 3.016

M3 8.491 0.539 9.292 0.691 8.566 1.087 9.374 1.339
M460 21.35 1.042 24.50 1.361 21.54 2.876 25.32 3.190

M6 25.33 0.939 27.71 1.096 25.55 2.501 27.99 2.927

O
rd

er
=

5 M0 23.95 0.644 22.48 0.737 24.07 1.401 22.67 1.804
M132 70.98 5.155 67.54 6.418 71.02 5.456 67.34 6.824

M3 24.00 1.104 22.46 1.212 24.11 1.942 22.66 2.334
M460 65.80 3.979 67.29 4.187 66.05 6.566 67.90 7.251

M6 65.76 1.440 67.28 2.268 66.06 4.300 67.85 5.055

O
rd

er
=

6 M0 47.29 0.895 54.06 1.447 47.37 1.928 55.34 2.693
M132 168.12 11.34 178.77 12.21 168.35 10.77 182.18 13.07

M3 48.76 2.294 49.19 2.231 48.93 3.319 49.36 3.696
M460 160.70 8.336 178.97 8.448 161.14 12.66 183.15 13.72

M6 137.97 2.192 147.34 3.347 138.45 6.799 147.95 8.088

(d) Hexahedra, Gauss-Legendre-Lobatto Method

Table D.3: Benchmarking results for GiMMiK CUDA (GCU) and OpenCL (GCL) kernels, cuBLAS (CU) and clBLAS(CL) for hexahedral element matrices
in double precision on GTX 780 Ti. Reported values are averages of 30 runs reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

1 M0 0.104 0.016 0.094 0.019 0.118 0.028 0.124 0.030
M132 0.150 0.019 0.069 0.028 0.159 0.025 0.075 0.026

M3 0.150 0.020 0.079 0.025 0.160 0.026 0.083 0.037
M460 0.104 0.015 0.110 0.019 0.118 0.028 0.145 0.033

M6 0.151 0.023 0.201 0.036 0.163 0.035 0.240 0.041

O
rd

er
=

2 M0 0.151 0.035 0.188 0.049 0.163 0.050 0.233 0.059
M132 0.317 0.046 0.255 0.059 0.328 0.057 0.282 0.068

M3 0.317 0.039 0.259 0.053 0.328 0.049 0.303 0.056
M460 0.151 0.043 0.178 0.056 0.164 0.059 0.204 0.071

M6 0.317 0.046 0.249 0.063 0.328 0.065 0.272 0.078

O
rd

er
=

3 M0 0.317 0.070 0.245 0.085 0.328 0.088 0.268 0.103
M132 0.450 0.111 0.383 0.143 0.461 0.125 0.418 0.156

M3 0.317 0.071 0.254 0.094 0.329 0.088 0.286 0.105
M460 0.647 0.107 0.249 0.130 0.656 0.134 0.280 0.161

M6 0.646 0.089 0.235 0.112 0.656 0.115 0.268 0.142

O
rd

er
=

4 M0 0.318 0.128 0.346 0.157 0.330 0.144 0.415 0.174
M132 1.153 0.245 0.561 0.247 1.159 0.269 0.587 0.270

M3 0.318 0.128 0.316 0.140 0.330 0.145 0.362 0.155
M460 0.649 0.233 0.316 0.251 0.663 0.271 0.351 0.278

M6 0.649 0.165 0.318 0.182 0.664 0.197 0.353 0.212

O
rd

er
=

5 M0 0.898 0.203 0.478 0.250 0.909 0.228 0.514 0.272
M132 1.646 0.517 0.730 0.479 1.649 0.566 0.754 0.522

M3 0.897 0.205 0.352 0.222 0.909 0.233 0.382 0.248
M460 0.901 0.504 0.848 0.472 0.923 0.541 0.933 0.549

M6 0.901 0.272 0.772 0.317 0.919 0.322 0.746 0.337

O
rd

er
=

6 M0 1.157 0.351 0.463 0.322 1.167 0.355 0.484 0.362
M132 1.901 0.823 0.870 0.774 1.917 0.889 0.900 0.836

M3 0.809 0.287 0.424 0.331 0.835 0.321 0.457 0.360
M460 1.051 0.843 0.996 0.802 1.109 0.866 0.934 0.926

M6 0.812 0.404 0.937 0.455 0.857 0.465 0.950 0.522

(e) Triangles, Williams-Shunn

Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

1 M0 0.108 0.026 0.097 0.036 0.118 0.045 0.112 0.053
M132 0.286 0.029 0.204 0.039 0.287 0.036 0.230 0.045

M3 0.286 0.034 0.242 0.047 0.287 0.041 0.250 0.059
M460 0.108 0.025 0.105 0.032 0.118 0.044 0.129 0.059

M6 0.317 0.048 0.235 0.065 0.290 0.061 0.264 0.085

O
rd

er
=

2 M0 0.645 0.121 0.250 0.148 0.579 0.138 0.281 0.186
M132 1.153 0.150 0.548 0.159 1.160 0.163 0.584 0.181

M3 0.894 0.141 0.407 0.148 0.900 0.151 0.435 0.168
M460 0.646 0.127 0.240 0.139 0.663 0.172 0.278 0.184

M6 0.900 0.191 0.410 0.202 0.914 0.230 0.442 0.273

O
rd

er
=

3 M0 0.898 0.421 0.658 0.413 0.918 0.469 0.783 0.533
M132 2.157 0.598 0.929 0.572 2.185 0.755 0.971 0.688

M3 1.264 0.408 0.620 0.422 1.406 0.496 0.642 0.459
M460 0.811 0.567 0.666 0.552 0.933 0.631 0.707 0.647

M6 1.270 0.608 1.244 0.575 1.428 0.771 1.332 0.739

O
rd

er
=

4 M0 1.406 1.225 1.200 0.972 1.427 1.299 1.291 1.130
M132 3.596 1.834 3.401 1.742 3.684 2.018 3.556 1.934

M3 1.941 1.073 1.807 1.015 1.974 1.243 1.825 1.190
M460 2.425 1.784 2.375 1.832 2.521 1.923 2.554 1.924

M6 4.101 1.605 3.629 1.481 3.810 1.688 3.669 1.951

O
rd

er
=

5 M0 3.364 2.313 2.890 2.484 3.350 2.636 2.635 2.553
M132 4.764 6.060 5.049 5.538 5.132 8.389 5.108 7.728

M3 2.915 2.456 2.542 2.266 2.592 2.636 2.597 2.548
M460 5.031 4.779 5.086 4.593 5.111 5.689 5.254 5.664

M6 7.551 3.521 7.573 3.386 7.528 4.386 7.730 4.235

O
rd

er
=

6 M0 5.004 4.661 5.083 4.334 5.202 5.302 5.196 5.050
M132 14.16 18.47 11.25 16.19 14.19 30.61 11.39 28.18

M3 6.313 4.682 5.075 4.376 6.320 5.100 5.159 4.893
M460 9.998 11.42 10.15 11.09 10.10 12.76 10.37 12.65

M6 12.70 7.043 13.44 7.419 12.79 8.355 13.70 8.023

(f) Tetrahedra, Shunn-Ham

Table D.3: Benchmarking results for GiMMiK CUDA (GCU) and OpenCL (GCL) kernels, cuBLAS (CU) and clBLAS(CL) for triangular and tetrahedral
element matrices in double precision on GTX 780 Ti. Reported values are averages of 30 runs reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

1 M0 0.143 0.011 0.033 0.014 0.199 0.021 0.048 0.029
M132 0.042 0.013 0.047 0.016 0.075 0.018 0.048 0.027

M3 0.042 0.013 0.049 0.017 0.075 0.018 0.054 0.023
M460 0.143 0.011 0.038 0.015 0.200 0.021 0.044 0.029

M6 0.143 0.015 0.053 0.020 0.203 0.025 0.059 0.032

O
rd

er
=

2 M0 0.144 0.018 0.090 0.025 0.204 0.033 0.110 0.049
M132 0.195 0.027 0.121 0.036 0.244 0.036 0.150 0.050

M3 0.144 0.019 0.071 0.026 0.206 0.030 0.095 0.039
M460 0.145 0.023 0.123 0.029 0.210 0.042 0.153 0.056

M6 0.145 0.026 0.071 0.033 0.209 0.045 0.104 0.066

O
rd

er
=

3 M0 0.146 0.028 0.095 0.037 0.208 0.047 0.118 0.066
M132 0.197 0.046 0.173 0.056 0.249 0.062 0.174 0.088

M3 0.146 0.028 0.102 0.040 0.207 0.046 0.109 0.061
M460 0.147 0.042 0.114 0.053 0.218 0.073 0.146 0.098

M6 0.147 0.041 0.122 0.053 0.217 0.078 0.138 0.098

O
rd

er
=

4 M0 0.196 0.041 0.217 0.049 0.245 0.064 0.249 0.093
M132 0.290 0.069 0.308 0.080 0.327 0.109 0.339 0.141

M3 0.196 0.039 0.115 0.048 0.245 0.069 0.160 0.091
M460 0.198 0.065 0.433 0.079 0.281 0.122 0.485 0.183

M6 0.198 0.062 0.204 0.081 0.279 0.116 0.278 0.148

O
rd

er
=

5 M0 0.242 0.055 0.178 0.064 0.277 0.088 0.200 0.120
M132 0.341 0.101 0.654 0.116 0.392 0.205 0.646 0.222

M3 0.196 0.053 0.241 0.066 0.268 0.093 0.264 0.138
M460 0.478 0.094 0.537 0.111 0.592 0.190 0.580 0.264

M6 0.382 0.081 0.377 0.096 0.509 0.160 0.427 0.246

O
rd

er
=

6 M0 0.290 0.070 0.403 0.082 0.324 0.108 0.437 0.148
M132 0.440 0.141 0.990 0.136 0.492 0.458 1.033 0.297

M3 0.199 0.068 0.246 0.071 0.281 0.121 0.299 0.164
M460 0.572 0.128 1.209 0.131 0.695 0.263 1.339 0.320

M6 0.385 0.109 0.459 0.112 0.547 0.213 0.652 0.292

(a) Quadrangles, Gauss-Legendre Method

Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

2 M0 0.144 0.017 0.094 0.029 0.204 0.031 0.111 0.048
M132 0.195 0.027 0.127 0.033 0.245 0.036 0.142 0.052

M3 0.144 0.019 0.075 0.025 0.207 0.030 0.099 0.039
M460 0.145 0.023 0.115 0.030 0.209 0.043 0.145 0.063

M6 0.145 0.026 0.079 0.033 0.210 0.045 0.106 0.062

O
rd

er
=

3 M0 0.145 0.024 0.102 0.031 0.207 0.041 0.110 0.055
M132 0.197 0.046 0.164 0.052 0.248 0.062 0.174 0.089

M3 0.145 0.028 0.094 0.036 0.207 0.046 0.110 0.061
M460 0.147 0.042 0.112 0.058 0.218 0.079 0.139 0.099

M6 0.147 0.042 0.122 0.052 0.219 0.078 0.137 0.102

O
rd

er
=

4 M0 0.196 0.031 0.224 0.039 0.244 0.053 0.235 0.073
M132 0.290 0.069 0.308 0.080 0.327 0.108 0.342 0.136

M3 0.196 0.039 0.120 0.048 0.245 0.069 0.152 0.091
M460 0.199 0.065 0.429 0.078 0.281 0.121 0.483 0.181

M6 0.198 0.062 0.205 0.081 0.279 0.116 0.278 0.149

O
rd

er
=

5 M0 0.242 0.038 0.177 0.052 0.277 0.061 0.200 0.095
M132 0.340 0.099 0.589 0.106 0.392 0.203 0.588 0.199

M3 0.196 0.053 0.220 0.058 0.268 0.093 0.242 0.125
M460 0.477 0.095 0.490 0.101 0.591 0.190 0.531 0.238

M6 0.382 0.081 0.345 0.089 0.507 0.160 0.389 0.224

O
rd

er
=

6 M0 0.290 0.045 0.406 0.055 0.324 0.077 0.431 0.113
M132 0.440 0.138 0.988 0.136 0.492 0.444 1.039 0.294

M3 0.199 0.068 0.247 0.071 0.282 0.122 0.300 0.164
M460 0.572 0.129 1.209 0.132 0.695 0.262 1.340 0.319

M6 0.385 0.109 0.459 0.116 0.547 0.214 0.583 0.294

(b) Quadrangles, Gauss-Legendre-Lobatto Method

Table D.4: Benchmarking results for GiMMiK CUDA (GCU) and OpenCL (GCL) kernels, cuBLAS (CU) and clBLAS(CL) for quadrilateral element matrices
in single precision on GTX 780 Ti. Reported values are averages of 30 runs reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

1 M0 0.146 0.028 0.070 0.038 0.211 0.052 0.081 0.068
M132 0.196 0.032 0.121 0.038 0.249 0.040 0.118 0.057

M3 0.196 0.032 0.118 0.038 0.249 0.040 0.126 0.056
M460 0.146 0.027 0.074 0.034 0.211 0.052 0.090 0.070

M6 0.197 0.042 0.134 0.051 0.245 0.070 0.144 0.102

O
rd

er
=

2 M0 0.199 0.073 0.434 0.078 0.286 0.131 0.429 0.196
M132 0.389 0.101 0.624 0.106 0.424 0.250 0.612 0.186

M3 0.290 0.073 0.327 0.086 0.326 0.138 0.392 0.142
M460 0.385 0.094 0.626 0.102 0.507 0.183 0.649 0.268

M6 0.575 0.118 0.882 0.126 0.679 0.239 0.905 0.286

O
rd

er
=

3 M0 0.574 0.142 0.882 0.144 0.675 0.387 0.920 0.443
M132 0.689 0.337 1.771 0.405 0.742 0.763 1.980 0.846

M3 0.394 0.142 0.887 0.146 0.453 0.488 0.915 0.559
M460 0.897 0.226 1.737 0.237 1.237 0.720 1.821 0.750

M6 1.060 0.252 2.566 0.276 1.398 1.226 2.621 1.429

O
rd

er
=

4 M0 1.131 0.239 4.117 0.318 1.506 1.066 4.241 1.124
M132 2.544 1.221 9.755 0.983 2.646 1.397 9.872 1.632

M3 1.061 0.222 3.020 0.331 1.144 0.846 3.147 1.014
M460 2.419 0.426 9.852 0.514 2.823 2.251 10.17 2.539

M6 2.799 0.474 8.877 0.531 3.056 2.130 9.239 2.448

O
rd

er
=

5 M0 2.237 0.359 6.445 0.521 2.430 1.625 6.431 1.701
M132 5.465 6.851 19.22 2.439 5.611 2.805 18.66 3.348

M3 2.312 0.417 6.459 0.508 2.440 1.450 6.366 1.688
M460 5.735 1.339 19.44 1.295 6.585 4.338 19.13 4.559

M6 5.510 0.935 19.44 0.862 6.577 3.820 19.12 4.167

O
rd

er
=

6 M0 4.209 2.846 21.00 2.044 4.466 3.533 21.41 3.140
M132 13.33 13.67 72.01 4.825 13.75 7.002 72.39 6.805

M3 4.202 1.230 15.72 0.870 4.890 2.488 16.09 2.683
M460 12.71 3.744 71.14 3.806 14.21 7.542 72.25 8.727

M6 10.80 1.397 46.89 1.623 12.34 5.727 48.08 6.642

(c) Hexahedra, Gauss-Legendre Method

Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

2 M0 0.199 0.071 0.435 0.088 0.286 0.128 0.485 0.195
M132 0.390 0.102 0.631 0.116 0.424 0.248 0.700 0.188

M3 0.290 0.073 0.330 0.090 0.329 0.139 0.397 0.157
M460 0.385 0.094 0.626 0.101 0.508 0.201 0.692 0.315

M6 0.576 0.118 0.856 0.121 0.681 0.237 0.906 0.278

O
rd

er
=

3 M0 0.574 0.135 0.882 0.137 0.676 0.360 0.923 0.366
M132 0.690 0.296 1.767 0.343 0.742 0.620 1.760 0.711

M3 0.394 0.137 0.887 0.145 0.453 0.491 0.906 0.549
M460 0.890 0.224 1.737 0.240 1.237 0.714 1.820 0.744

M6 1.060 0.252 2.566 0.276 1.398 1.219 2.613 1.199

O
rd

er
=

4 M0 1.133 0.217 4.124 0.226 1.509 0.427 4.251 0.619
M132 2.545 1.328 9.835 0.945 2.654 1.347 9.879 1.609

M3 1.133 0.243 3.020 0.331 1.147 0.849 3.152 1.014
M460 2.451 0.448 9.858 0.514 2.848 2.232 10.16 2.524

M6 2.735 0.426 8.886 0.530 3.058 2.130 9.226 2.449

O
rd

er
=

5 M0 2.309 0.306 6.529 0.417 2.694 0.724 6.355 1.510
M132 5.240 5.936 19.18 2.190 5.625 2.696 18.67 3.250

M3 2.246 0.434 6.461 0.504 2.743 1.485 6.371 1.701
M460 5.559 1.258 19.46 1.221 6.556 4.231 19.13 4.700

M6 5.640 0.936 19.43 0.866 6.424 3.874 19.13 4.163

O
rd

er
=

6 M0 4.100 0.699 20.99 0.581 4.436 1.803 21.38 2.042
M132 13.25 13.47 71.94 4.909 13.83 6.566 72.43 6.991

M3 4.434 1.205 15.73 0.973 4.860 2.508 16.10 2.665
M460 12.63 3.114 71.12 3.550 14.10 7.177 72.23 8.152

M6 10.87 1.345 46.90 1.633 12.37 5.722 48.07 6.718

(d) Hexahedra, Gauss-Legendre-Lobatto Method

Table D.4: Benchmarking results for GiMMiK CUDA (GCU) and OpenCL (GCL) kernels, cuBLAS (CU) and clBLAS(CL) for hexahedral element matrices
in single precision on GTX 780 Ti. Reported values are averages of 30 runs reproducible within 2% in [ms].
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Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

1 M0 0.038 0.009 0.044 0.012 0.076 0.016 0.064 0.018
M132 0.039 0.010 0.037 0.012 0.064 0.013 0.035 0.015

M3 0.039 0.011 0.035 0.014 0.064 0.014 0.041 0.017
M460 0.077 0.009 0.040 0.012 0.076 0.016 0.077 0.020

M6 0.042 0.012 0.074 0.017 0.080 0.020 0.104 0.025

O
rd

er
=

2 M0 0.144 0.014 0.064 0.018 0.202 0.025 0.091 0.038
M132 0.060 0.019 0.072 0.024 0.095 0.025 0.106 0.032

M3 0.060 0.015 0.097 0.020 0.094 0.022 0.142 0.029
M460 0.144 0.016 0.056 0.024 0.202 0.030 0.079 0.038

M6 0.144 0.018 0.090 0.024 0.204 0.033 0.106 0.047

O
rd

er
=

3 M0 0.144 0.019 0.083 0.029 0.206 0.034 0.091 0.043
M132 0.195 0.030 0.103 0.040 0.245 0.043 0.153 0.055

M3 0.144 0.021 0.081 0.030 0.207 0.033 0.120 0.041
M460 0.145 0.026 0.081 0.034 0.209 0.048 0.105 0.066

M6 0.145 0.028 0.075 0.038 0.212 0.054 0.100 0.066

O
rd

er
=

4 M0 0.145 0.026 0.142 0.040 0.207 0.044 0.198 0.057
M132 0.196 0.045 0.202 0.058 0.246 0.066 0.260 0.089

M3 0.145 0.026 0.144 0.035 0.206 0.044 0.203 0.059
M460 0.147 0.039 0.153 0.048 0.216 0.071 0.197 0.093

M6 0.147 0.039 0.145 0.047 0.216 0.078 0.197 0.093

O
rd

er
=

5 M0 0.196 0.037 0.200 0.050 0.245 0.062 0.223 0.074
M132 0.243 0.066 0.248 0.089 0.278 0.097 0.276 0.130

M3 0.195 0.034 0.125 0.050 0.242 0.059 0.156 0.076
M460 0.198 0.056 0.354 0.069 0.273 0.115 0.424 0.130

M6 0.196 0.053 0.251 0.061 0.273 0.106 0.316 0.124

O
rd

er
=

6 M0 0.196 0.048 0.132 0.063 0.244 0.078 0.166 0.110
M132 0.291 0.123 0.311 0.141 0.326 0.159 0.320 0.239

M3 0.196 0.044 0.206 0.058 0.244 0.084 0.234 0.100
M460 0.200 0.106 0.296 0.106 0.288 0.162 0.333 0.229

M6 0.199 0.067 0.368 0.077 0.287 0.140 0.424 0.205

(e) Triangles, Williams-Shunn Method

Matrix
β = 0 β 6= 0

CU GCU CL GCL CU GCU CL GCL

O
rd

er
=

1 M0 0.143 0.016 0.048 0.018 0.199 0.028 0.058 0.036
M132 0.057 0.017 0.063 0.022 0.087 0.021 0.065 0.031

M3 0.057 0.017 0.063 0.025 0.087 0.022 0.065 0.028
M460 0.199 0.016 0.046 0.018 0.198 0.028 0.051 0.037

M6 0.144 0.021 0.080 0.035 0.205 0.036 0.091 0.051

O
rd

er
=

2 M0 0.146 0.030 0.082 0.037 0.212 0.055 0.110 0.072
M132 0.196 0.040 0.194 0.053 0.249 0.053 0.224 0.074

M3 0.196 0.035 0.126 0.042 0.249 0.048 0.162 0.067
M460 0.146 0.035 0.105 0.045 0.215 0.066 0.163 0.089

M6 0.196 0.047 0.140 0.057 0.245 0.085 0.196 0.124

O
rd

er
=

3 M0 0.197 0.053 0.215 0.064 0.272 0.109 0.241 0.157
M132 0.293 0.091 0.275 0.121 0.329 0.206 0.282 0.193

M3 0.243 0.061 0.190 0.080 0.278 0.092 0.205 0.125
M460 0.199 0.072 0.240 0.086 0.290 0.152 0.278 0.221

M6 0.246 0.095 0.433 0.107 0.327 0.191 0.469 0.246

O
rd

er
=

4 M0 0.246 0.110 0.554 0.131 0.325 0.188 0.613 0.264
M132 0.439 0.372 1.152 0.292 0.485 0.490 1.219 0.451

M3 0.292 0.140 0.460 0.160 0.349 0.332 0.579 0.280
M460 0.480 0.192 0.925 0.217 0.624 0.359 1.058 0.381

M6 0.576 0.242 0.989 0.192 0.703 0.621 1.091 0.526

O
rd

er
=

5 M0 0.575 0.524 0.733 0.364 0.677 0.695 0.774 0.533
M132 0.644 1.817 1.392 1.555 0.692 2.022 1.382 1.810

M3 0.394 0.540 0.727 0.434 0.448 0.652 0.723 0.501
M460 0.733 0.965 1.469 0.669 1.166 1.364 1.541 1.001

M6 0.934 1.411 2.163 0.619 1.319 1.156 2.205 1.030

O
rd

er
=

6 M0 0.773 1.001 1.467 0.785 0.879 1.213 1.490 1.008
M132 1.767 3.946 3.137 3.524 1.851 4.098 3.088 3.886

M3 0.868 1.819 1.414 1.561 0.853 1.075 1.430 0.988
M460 1.376 4.313 3.072 4.341 1.833 2.486 3.150 2.447

M6 1.551 2.735 3.962 2.281 1.768 1.816 3.989 3.340

(f) Tetrahedra, Shunn-Ham Method

Table D.4: Benchmarking results for GiMMiK CUDA (GCU) and OpenCL (GCL) kernels, cuBLAS (CU) and clBLAS(CL) for triangular and tetrahedral
element matrices in single precision on GTX 780 Ti. Reported values are averages of 30 runs reproducible within 2% in [ms].
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Matrix
β = 0

CL GCL
O
rd

er
=

1 M0 0.043 0.027
M132 0.038 0.028

M3 0.034 0.028
M460 0.043 0.030

M6 0.050 0.035

O
rd

er
=

2 M0 0.080 0.045
M132 0.077 0.059

M3 0.064 0.046
M460 0.114 0.059

M6 0.099 0.063

O
rd

er
=

3 M0 0.074 0.069
M132 0.111 0.124

M3 0.073 0.067
M460 0.126 0.109

M6 0.127 0.099

O
rd

er
=

4 M0 0.189 0.105
M132 0.263 0.231

M3 0.138 0.098
M460 0.357 0.198

M6 0.261 0.142

O
rd

er
=

5 M0 0.203 0.160
M132 0.526 0.537

M3 0.225 0.130
M460 0.492 0.422

M6 0.370 0.199

O
rd

er
=

6 M0 0.306 0.302
M132 0.914 0.710

M3 0.328 0.176
M460 0.973 0.627

M6 0.567 0.253

(a) Quadrangles, Gauss-Legendre
Method

Matrix
β = 0

CL GCL

O
rd

er
=

2 M0 0.081 0.045
M132 0.075 0.055

M3 0.061 0.045
M460 0.113 0.057

M6 0.097 0.064

O
rd

er
=

3 M0 0.073 0.058
M132 0.113 0.116

M3 0.073 0.068
M460 0.124 0.108

M6 0.123 0.100

O
rd

er
=

4 M0 0.189 0.073
M132 0.263 0.224

M3 0.137 0.096
M460 0.357 0.191

M6 0.264 0.140

O
rd

er
=

5 M0 0.203 0.089
M132 0.527 0.517

M3 0.227 0.133
M460 0.489 0.412

M6 0.373 0.195

O
rd

er
=

6 M0 0.301 0.101
M132 0.902 0.702

M3 0.327 0.175
M460 0.973 0.594

M6 0.567 0.248

(b) Quadrangles, Gauss-Legendre-
Lobatto Method

Matrix
β = 0

CL GCL

O
rd

er
=

1 M0 0.087 0.064
M132 0.085 0.065

M3 0.089 0.065
M460 0.086 0.064

M6 0.155 0.097

O
rd

er
=

2 M0 0.380 0.205
M132 0.444 0.373

M3 0.283 0.186
M460 0.551 0.250

M6 0.797 0.274

O
rd

er
=

3 M0 0.933 0.495
M132 1.727 2.036

M3 0.900 0.474
M460 1.835 2.435

M6 2.620 0.583

O
rd

er
=

4 M0 3.040 4.900
M132 6.858 18.21

M3 2.651 1.685
M460 7.230 14.84

M6 7.860 1.107

O
rd

er
=

5 M0 6.478 14.47
M132 9.312 41.576

M3 6.489 7.403
M460 9.249 38.590

M6 8.900 4.775

O
rd

er
=

6 M0 4.917 23.436
M132 1.163 87.188

M3 3.951 11.913
M460 1.473 70.084

M6 0.528 7.353

(c) Hexahedra, Gauss-Legendre
Method

Matrix
β = 0

CL GCL

O
rd

er
=

2 M0 0.379 0.168
M132 0.448 0.368

M3 0.283 0.186
M460 0.548 0.244

M6 0.801 0.273

O
rd

er
=

3 M0 0.929 0.287
M132 1.701 1.999

M3 0.901 0.476
M460 1.837 1.729

M6 2.619 0.574

O
rd

er
=

4 M0 3.034 0.484
M132 6.853 16.434

M3 2.648 1.598
M460 7.237 12.508

M6 7.997 1.082

O
rd

er
=

5 M0 6.470 0.728
M132 19.320 40.442

M3 6.476 6.981
M460 19.225 32.761

M6 18.900 4.456

O
rd

er
=

6 M0 15.092 1.056
M132 50.840 77.815

M3 13.947 15.039
M460 51.496 63.601

M6 40.606 8.995

(d) Hexahedra, Gauss-Legendre-
Lobatto Method

Table D.5: Benchmarking results for GiMMiK OpenCL (GCL) kernels and clBLAS(CL) for quadrilateral and hexahedral element matrices in double precision
on Tesla K40c. Reported values are averages of 30 runs reproducible within 2% in [ms].
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Matrix
β = 0

CL GCL

O
rd

er
=

1 M0 0.036 0.021
M132 0.034 0.024

M3 0.034 0.022
M460 0.310 0.013

M6 0.042 0.027

O
rd

er
=

2 M0 0.048 0.035
M132 0.066 0.048

M3 0.060 0.041
M460 0.053 0.043

M6 0.080 0.052

O
rd

er
=

3 M0 0.065 0.079
M132 0.081 0.128

M3 0.064 0.072
M460 0.092 0.125

M6 0.102 0.096

O
rd

er
=

4 M0 0.101 0.127
M132 0.113 0.276

M3 0.128 0.101
M460 0.154 0.256

M6 0.153 0.228

O
rd

er
=

5 M0 0.173 0.324
M132 0.227 0.568

M3 0.126 0.213
M460 0.251 0.666

M6 0.191 0.525

O
rd

er
=

6 M0 0.171 0.503
M132 0.293 2.577

M3 0.179 0.319
M460 0.336 4.826

M6 0.413 2.276

(e) Triangles, Williams-Shunn Method

Matrix
β = 0

CL GCL

O
rd

er
=

1 M0 0.046 0.035
M132 0.045 0.035

M3 0.046 0.037
M460 0.039 0.026

M6 0.066 0.052

O
rd

er
=

2 M0 0.095 0.099
M132 0.102 0.207

M3 0.093 0.127
M460 0.102 0.169

M6 0.163 0.227

O
rd

er
=

3 M0 0.203 1.052
M132 0.302 1.006

M3 0.218 0.656
M460 0.273 3.816

M6 0.435 4.121

O
rd

er
=

4 M0 0.454 13.280
M132 0.818 14.955

M3 0.447 7.870
M460 0.759 25.123

M6 1.027 20.207

O
rd

er
=

5 M0 0.832 39.117
M132 1.498 66.123

M3 0.791 22.023
M460 1.503 83.452

M6 2.134 57.742

O
rd

er
=

6 M0 1.364 121.863
M132 3.252 423.069

M3 1.526 59.262
M460 3.096 197.345

M6 4.017 132.365

(f) Tetrahedra, Shunn-Ham Method

Table D.5: Benchmarking results for GiMMiK OpenCL (GCL) kernels and clBLAS(CL) for triangular and tetrahedral element matrices in double precision
on FirePro W9100. Reported values are averages of 30 runs reproducible within 2% in [ms].





Appendix E

Plots of Benchmarking and

Profiling Results for GiMMiK

Kernels

107



APPENDIX E. PLOTS OF BENCHMARKING AND PROFILING RESULTS FOR
GiMMiK KERNELS 108

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000 1e+06

S
p

ar
si

ty

Size

Speedup

1

2

3

4

5

6

7

8

9

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000 1e+06

S
p

ar
si

ty

Size

% FLOPS

0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000 1e+06

S
p

ar
si

ty

Size

% Memory Bandwidth

0

20

40

60

80

100

Figure E.1: Plots illustrating the speedup of GiMMiK’s CUDA kernels over cuBLAS, the achieved
percentage of the peak floating-point rate and the achieved percentage of the peak memory bandwidth.
The metric of interest is represented through the size and colour intensity of the data points. Speedups
smaller than 1 are denoted with crosses. These plots are for double precision, β 6= 0 on Tesla K40c.
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Figure E.2: Plots illustrating the speedup of GiMMiK’s CUDA kernels over cuBLAS, the achieved
percentage of the peak floating-point rate and the achieved percentage of the peak memory bandwidth.
The metric of interest is represented through the size and colour intensity of the data points. Speedups
smaller than 1 are denoted with crosses. These plots are for single precision, β 6= 0 on Tesla K40c.
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Figure E.3: Plots illustrating the speedup of GiMMiK’s CUDA kernels over cuBLAS, the achieved
percentage of the peak floating-point rate and the achieved percentage of the peak memory bandwidth.
The metric of interest is represented through the size and colour intensity of the data points. Speedups
smaller than 1 are denoted with crosses. These plots are for double precision, β 6= 0 on GTX 780 Ti.
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Figure E.4: Plots illustrating the speedup of GiMMiK’s CUDA kernels over cuBLAS, the achieved
percentage of the peak floating-point rate and the achieved percentage of the peak memory bandwidth.
The metric of interest is represented through the size and colour intensity of the data points. Speedups
smaller than 1 are denoted with crosses. These plots are for single precision, β 6= 0 on GTX 780 Ti.
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Figure E.5: Plots illustrating the speedup of GiMMiK’s OpenCL kernels over clBLAS, the achieved
percentage of the peak floating-point rate and the achieved percentage of the peak memory bandwidth.
The metric of interest is represented through the size and colour intensity of the data points. Speedups
smaller than 1 are denoted with crosses. These plots are for double precision, β = 0 on Tesla K40c.
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Figure E.6: Plots illustrating the speedup of GiMMiK’s OpenCL kernels over clBLAS, the achieved
percentage of the peak floating-point rate and the achieved percentage of the peak memory bandwidth.
The metric of interest is represented through the size and colour intensity of the data points. Speedups
smaller than 1 are denoted with crosses. These plots are for single precision, β = 0 on Tesla K40c.
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Figure E.7: Plots illustrating the speedup of GiMMiK’s OpenCL kernels over clBLAS, the achieved
percentage of the peak floating-point rate and the achieved percentage of the peak memory bandwidth.
The metric of interest is represented through the size and colour intensity of the data points. Speedups
smaller than 1 are denoted with crosses. These plots are for double precision, β = 0 on GTX 780 Ti.
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Figure E.8: Plots illustrating the speedup of GiMMiK’s OpenCL kernels over clBLAS, the achieved
percentage of the peak floating-point rate and the achieved percentage of the peak memory bandwidth.
The metric of interest is represented through the size and colour intensity of the data points. Speedups
smaller than 1 are denoted with crosses. These plots are for single precision, β = 0 on GTX 780 Ti.
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Figure E.9: Plots illustrating the speedup of GiMMiK’s OpenCL kernels over clBLAS, the achieved
percentage of the peak floating-point rate and the achieved percentage of the peak memory bandwidth.
The metric of interest is represented through the size and colour intensity of the data points. Speedups
smaller than 1 are denoted with crosses. These plots are for double precision, β 6= 0 on Tesla K40c.
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Figure E.10: Plots illustrating the speedup of GiMMiK’s OpenCL kernels over clBLAS, the achieved
percentage of the peak floating-point rate and the achieved percentage of the peak memory bandwidth.
The metric of interest is represented through the size and colour intensity of the data points. Speedups
smaller than 1 are denoted with crosses. These plots are for single precision, β 6= 0 on Tesla K40c.
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Figure E.11: Plots illustrating the speedup of GiMMiK’s OpenCL kernels over clBLAS, the achieved
percentage of the peak floating-point rate and the achieved percentage of the peak memory bandwidth.
The metric of interest is represented through the size and colour intensity of the data points. Speedups
smaller than 1 are denoted with crosses. These plots are for double precision, β 6= 0 on GTX 780 Ti.
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Figure E.12: Plots illustrating the speedup of GiMMiK’s OpenCL kernels over clBLAS, the achieved
percentage of the peak floating-point rate and the achieved percentage of the peak memory bandwidth.
The metric of interest is represented through the size and colour intensity of the data points. Speedups
smaller than 1 are denoted with crosses. These plots are for single precision, β 6= 0 on GTX 780 Ti.
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Figure E.13: Plots illustrating the speedup of GiMMiK’s OpenCL kernels over clBLAS, the achieved
percentage of the peak floating-point rate and the achieved percentage of the peak memory bandwidth.
The metric of interest is represented through the size and colour intensity of the data points. Speedups
smaller than 1 are denoted with crosses. These plots are for single precision, β = 0 on FirePro W9100.



Appendix F

Speedups of Individual Matrices

Stacked Together to Mimic PyFR

From a practical standpoint of running a PyFR simulation, the most interesting case

make matrices for the third order of accuracy. This order provides a good balance

between the accuracy and the cost of a simulation. For the sake of brevity only stacked

plots for the third order of accuracy are shown in this appendix. The procedure used to

generate this data is described in Section 5.4. Table F.1 gives the results of aggregating

the benchmarking results for individual matrices to mimic the matrix multiplication

steps executed by PyFR.
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Order
Tesla K40c GTX 780 Ti

double single double single
MIN CU GIM MIN CU GIM MIN CU GIM MIN CU GIM

Q
u
a
d
G
L

1 0.12222 1.04084 0.39413 0.06111 2.07011 0.21131 0.12190 1.76332 0.30432 0.05238 1.75416 0.16536
2 0.23333 1.87941 0.73505 0.11667 2.42213 0.37752 0.46286 4.93559 0.56352 0.10000 2.04934 0.28987
3 0.37778 2.11323 1.17074 0.18889 2.45865 0.60493 1.21905 5.66471 0.92738 0.16190 2.07822 0.46263
4 0.55556 4.08358 1.74141 0.27778 3.29805 0.91875 2.61905 15.17051 1.38804 0.23810 2.77941 0.68706
5 0.82918 5.30554 2.42938 0.38333 4.47383 1.26205 4.93714 20.09307 1.97624 0.32857 3.77489 0.94502
6 1.29127 6.57193 3.23086 0.52526 5.27793 1.66864 8.49333 26.50802 2.59411 0.44889 4.44918 1.23705

Q
u
a
d
G
L
L 2 0.23333 1.87852 0.71180 0.11667 2.41813 0.36722 0.46286 4.93944 0.54568 0.10000 2.04885 0.28185

3 0.37778 2.11155 1.08979 0.18889 2.45853 0.56795 1.21905 5.66213 0.82716 0.16190 2.07831 0.43098
4 0.55556 4.09016 1.51782 0.27778 3.29725 0.79472 2.61905 15.30378 1.16253 0.23810 2.78030 0.60205
5 0.82918 5.30703 2.00781 0.38333 4.47612 1.04532 4.93714 19.90382 1.50684 0.32857 3.76898 0.78801
6 1.29127 6.57023 2.62584 0.52526 5.27516 1.35373 8.49333 26.66911 2.10155 0.44889 4.45032 1.01100

H
ex

G
L

1 0.37778 3.82531 1.54707 0.18889 3.73195 0.80525 0.91429 9.52045 1.16760 0.16190 3.17015 0.61017
2 1.17425 7.68053 4.42025 0.53321 5.87925 2.30543 7.63714 28.98212 3.24751 0.45643 4.96746 1.73364
3 5.15580 20.96115 10.21770 1.71860 14.90109 5.93266 35.10857 88.20773 7.29273 1.46286 12.61362 4.54491
4 17.04545 57.94878 18.49778 5.68182 32.84768 11.09661 116.07143 248.34311 13.37428 4.83631 27.32805 8.22743
5 45.67720 131.41853 95.78757 15.22573 69.27776 26.66149 311.04000 610.77370 73.98021 12.96000 56.00637 19.20344
6 105.77832 266.65506 169.60655 35.25944 135.09674 91.57254 720.30000 1,273.75290 149.57296 30.01250 110.62222 71.16811

H
ex

G
L
L

2 1.17425 7.67273 4.25729 0.53321 5.88371 2.25339 7.63714 28.87332 3.16821 0.45643 4.96988 1.70119
3 5.15580 20.94030 9.79230 1.71860 14.90446 5.71507 35.10857 84.36043 6.78652 1.46286 12.61070 4.38448
4 17.04545 57.94878 18.49778 5.68182 32.84768 11.09661 116.07143 248.34311 13.37428 4.83631 27.32805 8.22743
5 45.67720 57.94878 18.49778 15.22573 32.84768 11.09661 311.04000 248.34311 13.37428 12.96000 27.32805 8.22743
6 105.77832 266.64810 59.03600 35.25944 135.19557 48.04014 720.30000 1,272.98200 44.12210 30.01250 108.72125 36.00467

T
ri

W
S

1 0.09167 0.96517 0.29401 0.04583 0.67545 0.16764 0.08143 1.51382 0.24233 0.03929 0.60024 0.13092
2 0.16250 1.23234 0.51344 0.08125 2.11870 0.26760 0.22286 2.48460 0.51847 0.06964 1.79470 0.21324
3 0.25000 1.88676 0.78864 0.12500 2.42358 0.41261 0.53333 4.93532 1.05211 0.10714 2.05383 0.31801
4 0.35417 2.09053 1.12323 0.17708 2.44603 0.58209 1.07143 5.66130 1.97071 0.15179 2.07171 0.44119
5 0.47500 3.62123 1.55895 0.23750 3.22285 0.80526 1.92000 12.45481 3.40634 0.20357 2.71772 0.61769
6 0.61250 4.16601 2.18110 0.30625 3.31062 1.12791 3.17333 15.05984 5.61150 0.26250 2.78907 0.88783

T
et

S
H

1 0.16667 1.15492 0.53302 0.08333 2.10136 0.28015 0.20571 1.94448 0.39264 0.07143 1.83832 0.23002
2 0.37500 3.04855 1.20274 0.18750 2.53801 0.62169 1.08571 9.41494 1.75168 0.16071 2.14690 0.47424
3 0.80672 4.76654 2.96717 0.38889 4.10586 1.43331 4.19048 16.57924 7.48189 0.33333 3.45557 1.08318
4 1.54196 6.30111 6.00279 0.60519 4.95625 3.17512 10.50000 24.45646 17.57326 0.51786 4.18542 2.50998
5 3.61846 12.99464 24.46414 1.20615 9.83790 11.39173 24.64000 50.18688 38.68229 1.02667 8.31631 9.30700
6 7.56587 21.08438 58.98790 2.52196 15.38387 25.72484 51.52000 88.29794 85.28484 2.14667 12.72199 20.16244

Table F.1: Benchmarking results for individual matrices have been combined together to mimic the matrix multiplication steps executed by PyFR. MIN is
the minimum time required by any dense GEMM based on the peak floating-point rate and memory bandwidth of the device. CU is the matrix-multiplication
step performed by cuBLAS GEMM and GIM is the step performed by GiMMiK. Times reported in [ms].
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Figure F.1: Combined time for execution of a single time step in PyFR for quadrilateral elements mesh
for 3rd order of accuracy and the theoretical limits imposed by the devices.
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Figure F.1: Combined time for execution of a single time step in PyFR for quadrilateral elements mesh
for 3rd order of accuracy and the theoretical limits imposed by the devices.
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Figure G.1: Memory bandwidth bound (blue) and floating-point rate bound (red) single precision, β = 0
kernels for a set of benchmark matrices.
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Figure G.1: Memory bandwidth bound (blue) and floating-point rate bound (red) double precision,
β 6= 0 kernels for a set of benchmark matrices.
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Figure G.1: Memory bandwidth bound (blue) and floating-point rate bound (red) single precision, β 6= 0
kernels for a set of benchmark matrices.
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