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Abstract

This project looks to find a solution to the task of automatically locating
different parts of a foetus in-utero from cinematic MRI scans using Machine
Learning techniques. The solution has a large computer vision component
which processes the scan and removes unwanted information. Areas which
correspond to foetal body parts are located using Optical Flow and cluster-
ing, after which Machine Learning is used to decide what part of the foetus
these areas belong to.

In addition, tools to track a manually defined feature, suppress maternal
movement present in a scan, and to extract just the foetal tissue from the
scan with different body parts identified have also been produced.

Results are promising suggesting the system produced could form the
foundation of further research and help improve our understanding of foetal
development. The work done may also prove to have an impact on other
areas of medical image analysis, as techniques developed are potentially
transferable to other applications. In particular, the work done to suppress
the periodic maternal movement present in scans could be used in other
areas of imaging where the presence of breathing or heartbeat is an issue.
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Chapter 1

Introduction

1.1 Motivation

Prenatal diagnosis is a rapidly changing field. Ensuring the well-being of
our children is one of the most fundamental desires across the entire animal
kingdom. There were approximately 4 million births in the US in 2011, of
which roughly 3% will have been born with a major structural or genetic
birth defect, a major contributor to infant mortality [1, 2]. As technology
advances, more and more information becomes available to parents about
their unborn child throughout pregnancy. From the gender of the baby, all
the way to the entire sequencing of a foetus’ DNA [3], information which
could potentially indicate a range of possible abnormalities. Whatever the
ethical implications of knowing this information, it is undoubtedly true that
the health and well-being of both the mother and the foetus should be
of paramount importance if this information is to be acquired. There are
currently many ways to perform prenatal screening and diagnosis (See Sec-
tion 2 for a review of the most common techniques), ranging from totally
non-invasive, to highly invasive procedures, some of which carry significant
risks to both the foetus and the mother, including spontaneous miscarriage.

Amongst the most recent advances in the field of medical diagnostics
is the introduction of in-utero MRI techniques (See Section 2 for technical
details). These new techniques allow us to capture and view high quality
images of inside a womb. This is an invaluable addition to the field of
prenatal diagnostics and research, because it means that for the first time,
clear 3D volumetric or 2D moving images of a foetus can be viewed and
analysed. Temporal sequences are an especially useful tool for prenatal
diagnostics, as there is evidence that the kind and extent of foetal movements
can be used to assess the healthiness of a foetus [4].

The aim of this project is to provide a tool which, using images taken
from a temporally resolved MRI scan, can detect different foetal movements
and identify what part of the foetus they belong to. Tools derived from
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this information could then be used by a physician to help identify, diag-
nose and treat any foetal abnormalities, potentially reducing the number of
foetuses and mothers who put at risk by undertaking invasive procedures.
Additionally, such a tool could be used to research the early development of
humans by giving us a greater understanding of foetal behavior throughout
pregnancy.

1.2 Objectives

Effective real-time MRI scanning is a very new technique, it is therefore
unknown exactly what information is and is not possible to derive from
these scans, and how easy it is to extract this information. As a result, it
is hard to define exactly what can be achieved over the course of a project
such as this. We therefore decided at the start of the project to divide it
into a number of separate objectives. We fully expected these to change
over time as the project developed and as we get more information about
what it is realistic to achieve. Below are the initial objectives along with the
some of the techniques we expected might have been used to reach that goal.
Descriptions of the italicised techniques can be found in Chapter 2, along
with the motivation for the objectives of this project. Detailed descriptions
on how we worked to achieve these goals can be found in the Chapter 3.

1.2.1 Main objective

The main objective of this project has been to perform an in depth investi-
gation into the applicability of machine learning to classify foetal movement
derived from real-time MRI scans with a view of ultimately designing and
developing a tool which can be used to automatically identify types of foetal
movement. Such a tool has applications in a wide variety of research areas,
which could potential lead to an improvement in diagnostic practices and a
better understanding of human development.

Techniques: Optical Flow 2.3.1, Motion Histograms 2.3.2, Machine Learn-
ing 2.4

1.2.2 Side objectives

Feature Tracker

To create a tool and corresponding user interface to allow a user to select a
feature (such as a foetus’ foot) and then to automatically track the move-
ment of the feature over the course of the scan. Such a tool could be used
to automatically measure the forces of these movements, which will help us
better understand foetal development.

Techniques: Optical Flow 2.3.1
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Maternal movement filter

To create a tool which will remove maternal movement (such as breathing)
from an input scan, so that the only movements present are that of the
foetus. Removing maternal movement will make foetal movement clearer,
thereby allowing more accurate motion estimates to be calculated.

Techniques: Fourier Transform 2.5.1

1.2.3 Bonus objective

Once the main objective is achieved, it becomes possible investigate the
possibility of not only extracting and classifying foetal features, but also of
using this information to discriminate between scans containing healthy and
unhealthy foetuses.

Techniques: Optical Flow 2.3.1, Motion Histograms 2.3.2, Machine Learn-
ing 2.4
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Chapter 2

Related Work

2.1 Prenatal Diagnostics

The face of prenatal diagnostics has changed rapidly over the last century.
The first reported prenatal diagnosis of a foetal defect came in 1916 when,
20 years after its invention, an X-Ray machine was used to examine the
development of a 7 month old foetus when physical examination had proved
to be inconclusive [5]. Despite this, prenatal screening and diagnostics did
not become common practice until the mid 1960s, when expectant moth-
ers undertaking high risk pregnancies were offered the chance to undergo
Amniocentesis, an invasive procedure which carried a risk of spontaneous
miscarriage [5][6]. Since the 1960s, the number of prenatal diagnostic tech-
niques has increased enormously, providing doctors a wide range of options
for all types of pregnancies. Below is a brief description of some of the most
common techniques.

2.1.1 Amniocentesis and Chorionic Villus Sampling

This procedure is generally offered to mothers undertaking a high risk preg-
nancy, typically this means those over a certain age, or with a history of
complicated pregnancies. In general, it is offered when the risks associated
with performing the procedure are outweighed by the risk of not performing
the procedure [6].

Both Amniocentesis and Chorionic Villus Sampling (CVS) are invasive
procedures which involve using a needle to extract either amniotic fluid, in
the case of Amniocentesis, or cells from the placenta, in the case of CVS.
The risks involved with CVS are slightly higher, with a risk of miscarriage
being 1-2%, as opposed to 1% from Amniocentesis. However CVS can be
performed much earlier, usually from 10 weeks, as opposed to 15 weeks for
Amniocentesis [6].

Even if the benefits outweigh the risks, it can be a hard decision for the
mother to take such risks. Non-invasive procedures tend to carry little to
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no risk, and are therefore preferred. However, it is currently not possible to
get some diagnostic information using non-invasive methods. If cinematic
MRI scans hold diagnostic information which could be used to reduce the
number of Amniocentesis and CVS procedures, then it would be invaluable
for physicians.

2.1.2 Ultrasound

This is by far the most common and routine prenatal procedure. Where the
facilities are available, almost every mother will undergo at least one ultra-
sound during the pregnancy, often at both 3 months and 6 months. The first
is usually just to confirm the pregnancy and to determine the due date. The
second scan is to check on the health of the baby, by looking for structural
abnormalities [6]. Despite its advantages over ultrasound techniques (see
the section on MRI for more details), it is unlikely that cinematic MRI will
replace ultrasound for these routine examinations in the near future. This
is partly because the technology is not very prevalent, but also because an
ultrasound scan is currently much cheaper and more convenient, requiring
comparatively less training and equipment. In fact, an ordinary MRI scan
costs roughly 5 times as much as an ultrasound [7][8]. However foetal MRI is
a valuable tool for further investigation, should an ultrasound scan suggest
abnormalities. Volumetric sequences are already used for this purpose, but
cinematic sequences will provide even more information.

2.1.3 Cell-free Foetal DNA

This is a relatively new technology that involves examining the foetal DNA
which is naturally present in the mother’s bloodstream. A huge amount of
information can be reconstructed from this DNA, providing the ability to
test for a large number of genetic disorders, as well to be able to gather
other information about the foetus from a very early age (10 weeks) [9].

It is a practice full of ethical issues due to its ability to ascertain foetal
characteristics at such an early stage of the pregnancy. In fact, this technique
can determine the sex of a child as early as 5 weeks into the pregnancy [10].
This is of particular importance in countries where there is a preference for
one sex over the other. In fact, the Indian government has banned prenatal
sex determination to control the practice of terminating pregnancies which
are thought to be of the wrong sex [11].

Despite the ethical complications, it remains a very effective form of risk
free prenatal diagnosis. However there are many potential abnormalities
which cannot be identified by examining the foetal DNA. Drugs, infections
and other environmental stimuli can all effect the development of a foetus
in ways which cannot be identified by DNA analysis, but can be seen using
foetal MRI.
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2.1.4 Ethics

As touched upon perviously, the field of prenatal diagnostics is fraught with
ethical controversy. It is a sensitive subject for many due to its association
with miscarriage and termination. It can be a highly difficult decision for
families to make for the mother to undergo an invasive diagnostic procedure
due the risks involved. Professional counselling is often available to offer
advice to those who may be at risk of passing on an inherited condition to
their child, including recommendations of prenatal tests, and an analysis of
the risks to both the foetus and mother carried by such procedures [6].

As well as the immediate health risks, there is also the question of what
course of action is taken given the information derived from testing, and the
impact that this will have on both the foetus and the family. Undoubtedly
the most ethically complex situation occurs when a prenatal test suggests a
serious foetal abnormality, and the mother is offered the option of aborting
the pregnancy. Different countries have different laws regarding termination,
however in the situations when the mother is given the option, it can be a
very stressful choice. Studies have shown that mothers who undergo termi-
nation in the second or third trimester are at risk of psychological disorders
including post traumatic stress disorder, with a reported 16.7% suffering
from some form of affective or anxiety disorder after 14 months [12].

A person’s Religious belief can also influence their opinion on prenatal
diagnosis, with many religions directly addressing the issue. A complete
analysis of these opinions is beyond the scope of this report, however, as an
example, the Catholic position is that: “... [Prenatal diagnosis] is permissi-
ble...if the methods employed safeguard the life and integrity of the embryo
and the mother, without subjecting them to disproportionate risks. But this
diagnosis is gravely opposed to the moral law when it is done with the thought
of possibly inducing an abortion depending upon the results....” [13].

However it is hard to argue that prenatal diagnostics does not carry a
lot of benefits. Consider the situation when, say, an infection is identified
through a diagnostic procedure. This infection can now be treated with
antibiotics, potentially curing the foetus of a disease which could have had
serious implications.

2.2 Foetal MRI

Magnetic Resonance Imaging (MRI) is a diagnostic imaging technique
used to visualise the anatomy of a body. It has uses across the entire spec-
trum of diagnostics. The process involves exposing the subject to a strong
oscillating magnetic field, which causes hydrogen atoms present in water
molecules in the tissues to become excited. When the field is off, and hydro-
gen atom relaxes, it emits a small burst of electromagnetic radiation in the
form of a radio wave which is picked up by sensors. The time delay between
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the field switching off and relaxation will be different in different tissues,
therefore providing a means to differentiate between different parts of the
anatomy. If additional contrast is required to get a more precise image, a
contrast agent can be given to the patient, which effects the relaxation delay.
All of this information can then be reconstructed to produce an image like
the one seen in Figure 2.1. For purposes of comparison, Figure 2.2 shows an
image taken using ultrasound. There is little difference in detail and clarity
between to two, however, the ultrasound has a much smaller field of view.
This means that more developed foetuses cannot be fully captured using
ultrasound. It is also important to note that there is no significant evidence
of harm or injury to the foetus from exposure to the magnetic field used in
MRI [14].

Figure 2.1: An example of an MRI scan showing a foetus. A single frame
from a cinematic MRI scan.
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Figure 2.2: An example of an ultrasound scan. Source Dr. Wolfgang Mo-
roder

2.2.1 Cinematic MRI

Cinematic MRIs build on conventional MRIs by taking snapshots at a high
rate. The exact processes involved in achieving this requires an understand-
ing of the physics involved which is beyond the scope of this report, however
the results are very impressive with temporal resolutions as low as 2ms (50
frames-per-second) [15]. Unfortunately, this high frame rate comes with
trade offs regarding the image size and quality. The scans used in this
project are therefore taken at three frames per second. Figure 2.3 shows an
example 5 seconds from one of the scans.

Some features to note from these images:

• There is maternal movement (breathing, heartbeat and digestive move-
ments) which moves the foetus around through the frames. This can
be seen most clearly by looking at the width of the right hand wall of
the uterus, which moves between frames as the mother breaths.

• The foetus can display a wide variety of movements. For example, one
can see the frames start with a kick of the foetus’ left leg, after which
it tucks its head in.

• Limbs cannot be clearly seen at all times. The left leg is very clear in
the first few frames, but then fades.
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• There can be large spatial differences between frames. Since each
frame covers 1/3s, there can be big differences between successive
frames. This can be seen most clearly during fast movement such
as the kick at the start.

Figure 2.3: 15 frames from a cinematic MRI scan corresponding to 5 seconds
of foetal movement. Frames cropped to highlight movement.
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Cinematic MRI scans are not always clear however, for example in Fig-
ure 2.4. The head of the foetus appears to be obscured by shadow. This is
a result of magnetic susceptibility artefacts due to local magnetic field inho-
mogeneities introduced by quick foetal movements. The magnetized areas
used to measure the density at a particular location are moved outside of
the plane of view.

Figure 2.4: First frame from an unclear scan. Note the shadows appearing
to obscure the foetus’ head.

2.2.2 Current Application of Foetal Cine MRI

Given the novelty of foetal cinematic MRI sequences and the fact that it
is currently not yet very prevalent in hospitals, there has not been a great
deal of research into the area. Currently, the technique has been used pri-
marily in cardiology, to provide detailed views of a moving heart [16]. As of
yet, there has been very little research into its use for prenatal diagnostics.
The biggest advance in the application of cinematic MRI sequences in the
area of foetal development has been the capturing of a birth [17], which,
whilst fascinating, is not relevant to this project. Instead, foetal movement
is usually viewed using ultrasound techniques. However the quality of im-
ages created using ultrasound tend to be poor and hard to extract anything
but the most basic movements from, especially at later stages of foetal de-
velopment. Cinematic MRI provides an excellent opportunity to view and
analyse movements which would previously have been very hard to detect.
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In [18] Nowlan et al. discuss the importance of foetal movement to the de-
velopment of healthy skeletons, demonstrated in chick embryos by Hosseini
et al. [19]. Being able to accurately identify the types and extent of move-
ment of a foetus in-utero will allow us to measure and better understand the
forces exerted on the foetal skeleton. This in turn will help us understand
the role of muscular contractions in the development of a healthy foetus. A
tool which can automate this process will therefore contribute significantly
to this area of research.

2.3 Computer Vision Background

2.3.1 Optical Flow

Optical Flow is a technique used to extract movement from an image se-
quence. An optical flow field can be created by comparing successive frames
and calculating estimates for motion between them. Each motion estimate
will take the form of a vector, which describes the displacement between an
object’s location in the first and the second image. Optical flow fields can be
either dense (Figure 2.5) or sparse (Figure 2.6). A dense field will include
motion estimates for each pixel in the image, whereas a sparse field will
only include motion estimates for certain pixels corresponding to detectable
features in the image. Dense fields have the advantage of being guaranteed
to cover all of the motion which is present in an image sequence. The disad-
vantages are that, by covering all the motion, dense fields are guaranteed to
pick up spurious movements caused by noise, and are likely to take longer to
calculate than sparse fields. Sparse fields tend to be preferred when tracking
a small area through a sequence as opposed to looking at global motion.

Figure 2.5: An example of a dense optical flow field. Arrows in the right
hand image correspond to the estimated movement of the pixels in the left
hand image. The field has recognised the three moving vehicles, and provides
an estimate of their velocity. [20]
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Figure 2.6: This sparse optical flow field has been created by finding match-
ing features between two frames and thus finding their displacement [21].

There are a lot of different techniques to calculate the optical flow of
an image. However two popular techniques which are included in Matlab’s
Computer Vision System toolbox [22] form the initial basis of the investi-
gation. These are the Horn-Schunck Method [23] and the Lucas-Kanade
Method [24].

2.3.2 Motion Histograms

A motion histogram is a method which allows us to aggregate the informa-
tion from the changes of individual pixels in such a way as to provide a more
high level interpretation of the movement in a scene. It is an effective way of
producing a signature describing a movement, which can let us differentiate
between different actions by providing a summary of all the movement in a
scene.

A Histogram of Optical Flow (HOOF) is a motion histogram created
using optical flow information. It will have a number of bins corresponding
to a segment of 360◦. For example, each bin in a motion histogram with
8 bins will correspond to 45◦. Bin 1 will correspond to 0◦ − 45◦, bin 2 to
45◦ − 90◦ and so on. Each frame in the sequence is then analysed using
optical flow, with each vector voting for a bin in the motion histogram, with
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votes weighted by magnitude.
The basic structure outlined above is not necessarily always the most

useful for a particular application. For example, one may want a measure
which is invariant to whether something is moving left or right. In this case,
it would be better to use histograms with bins divided as in Figure 2.7. In
another case it might be important for the measure to be scale invariant, so
that an action which happens far away produces the same histogram as one
which is closer in the scene. This can be done by normalising the histogram
so that all the bins sum to 1. Both of these techniques are used by Rizwan
Chaudhry et al. in [25].

Figure 2.7: An example of a 4 bin motion histogram set up which is hori-
zontally invariant [25].

An alternative approach is to first create a Motion History Image (MHI),
and get the movement information from the gradient at each point in the
image, a technique used by James Davis in [26]. An MHI is an image
generated by repeated differencing of the silhouette of the object you wish
to track. Each frame is compared with the next and the difference between
the silhouettes is calculated. These differences are then layered on top of
each other to create the MHI (Figure 2.8). The intensity with which each
frame difference is added is proportional to its position in the sequence. This
means that areas corresponding to movements which happened towards the
start of the sequence will be darker than those towards the end. In this way,
the silhouette can be thought to have been smeared through time. As a
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result of this, the gradient of the motion histogram at a particular point will
correspond to the speed and direction of movement through that location.
These gradients can be calculated by convolving with gradient masks, and
the resulting directions and magnitudes can be used to populate a motion
histogram.

Figure 2.8: Generation of MHI for raising arms movement. a) Sample silhou-
ette of the person with their arms raised near the end of the movement. b) A
difference of silhouettes early in the sequence. c) A difference of silhouettes
later in the sequence. d) Resulting MHI of layered silhouette differences
normalized for display [26].

This technique may not be applicable in this project due to the low frame
rate of the cinematic MRI scans. This will cause the MHI to be choppy, and
therefore hard to extract meaningful gradient information from. Another
challenge when using an MHI approach is that it must be possible to segment
the image so as to have a silhouette of the moving object. This could be
hard to do accurately and reliably in the cinematic MRI scans.

The general idea is that every action which can happen in a scene will
produce a different motion histogram. This will allow us to differentiate
between different types of foetal movement.
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It is important that movements are segmented into basic atomic move-
ments. For example, if you have a long sequence including a lot of move-
ments, the information from the first movements will be overwritten by later
movements. This can be done by segmenting an sequence based upon when
an object moves back in the direction it came from. For example, an se-
quence containing an object moving left then right again will be segmented
into a left movement and a right movement.

A single motion histogram lets us see what directions objects in the
scene appear to be moving in. While useful, this would not be enough to
differentiate between, say, a foetus moving its leg up or moving its hand up.
In order to get this extra information, we can create a number of motion
histograms, each created using information from a different part of the image
(Figure 2.9) [25]. This will tell us information such as that there is a lot of
upward motion in the left hand side of the image. If we know the foetus’
orientation, it may be possible to work out if it corresponds to a leg or hand
movement.
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Figure 2.9: Overlapping windows for generating motion histograms. The
dark areas represent areas which are included in that window’s histogram;
white areas are ignored. The first window (top window) covers the en-
tire motion region within the MHI. The windows below cover progressively
smaller regions of the motion [25].

2.4 Machine Learning Background

Machine Learning is an exceptionally broad term which covers a huge num-
ber of techniques and applications. What exactly constitutes machine learn-
ing is difficult to define, however Tom Mitchell, an American computer sci-
entist who is widely regarded as one of the most important contributors to
the field of machine learning, gives the following definition:

“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.” [27]

Most of the information in this section has been taken from Tom Mitchell’s
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book, Machine Learning [27], with additional information from Imperial
College London Department of Computing course notes [28, 29, 30, 31].

Machine learning algorithms can mostly be categorised as belonging to
one of two broad families, supervised and unsupervised.

Supervised learning algorithms are those which learn from sets of what
are known as labelled examples. A labelled example is a piece of data which
we know what it describes. For example, the a labelled example could be a
description of a tree (width, height, bark colour...) along with a label which
tells us what type of tree it is. The supervised learning algorithm will learn
from many of these labelled examples, and then aim to classify previously
unseen inputs. In other words, it will aim to decide what kind of tree a
particular input describes, using what it has learnt about different types of
trees from the training data.

Unsupervised learning, on the other hand, works with unlabelled exam-
ples. The aim here is to look for patterns and structure in the input data.
For example, it could perform clustering to suggest how many distinct types
of tree are present in a set of data. This is closely linked to the field of data
mining.

2.4.1 Supervised Learning Algorithms

Naive Bayes

Naive Bayes classifiers use Bayes’ theorem (Equation 2.1) to create a prob-
abilistic model from training data in order to classify an novel case. Naive
Bayes classifiers make the strong assumption that features are independent.
That is to say, that in the case when we are classifying trees using height,
bark colour and leaf size as descriptive features, each feature contributes
independently to the probability a tree is of a particular type, despite the
values of the other features.

P (D|S) =
P (D)P (S|D)

P (S)
(2.1)

The probability of a tree being of a particular type (T ), known as the
posterior probability can therefore be expressed as,
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P (T |Θ) = αP (T )p(h|T )p(c|T )p(s|T ) (2.2)

Where,

• Θ is a set of observations {height = h, barkcolour = c, leafsize = s}

• P (T ) is the proportion of all the training examples which are classified
as T . Known as the prior probability.

• The value of p(x|T ) can be found by calculating the proportion of
training examples classified as T which have a value of x for that
particular feature.

Note it is necessary to quantise continuous features. For example if
0 ≤ height < 100, it can be quantised into 4 discrete values, {0 ≤ height <
25, 25 ≤ height < 50, 50 ≤ height < 75, 75 ≤ height < 100}. In reality
it may be better to quantise into a unequal sections, depending on the
properties of the feature.

Support Vector Machine

A Support Vector Machines (SVM) are primarily binary classifiers. This
means they can take training examples corresponding to two different labels.
It can then take an input and classify it as one of the two labels. It does this
by determining what is called the maximum margin hyperplane separating
the two classes of training examples. This is a hyperplane which completely
separates the two sets of training examples, whilst maximising the distance
between the plane and the closest points. It can then check which side of
this hyperplane a novel input lies on, and therefore what to classify it as.
The problems with SVMs come when the data is not linearly separable,
as can be see in Figure 2.10. However, if the examples are mapped into
a higher dimensional space, it does become possible to separate them, see
Figure 2.11. In fact, a technique called the Kernel trick can allow us to treat
the data as being in a high dimensional space, yet still let us perform the
necessary calculations in a low dimensional space. This makes it possible to
find a separating hyperplane in cases in when it was previously impossible.
There are extensions to SVMs which allow them to be used for multi-class
classification, and a more noise resistant version which allows a number of
points to lie on the incorrect side of the hyperplane.
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Figure 2.10: A set of 1 dimensional data where a separating hyperplane
cannot be found. If we treat red and blue dots as examples of different
classes, we cannot find a hyperplane which separates the two colours.
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Figure 2.11: By mapping the examples into a higher dimensional space, it is
possible to find a hyperplane (green line) which separates the two colours.

K-Nearest-Neighbour

K-Nearest-Neighbour (KNN) algorithms store labelled training examples
and then classify future inputs by finding which stored examples most closely
resemble it. The similarity between two examples can be calculated in a
number of ways, however it commonly uses the euclidean distance between
the two examples. The system will look to find the k most similar entries
to the input, and typically classify it according to the most common label
among those k entries. See Figure 2.12. If the labels are continuous, the
label given to the input could be an average (perhaps weighted by similar-
ity) of the k labels. The choice of k can have a significant impact on the
performance of the classifier. It is common to evaluate the classifier over a
range of k values, and choose the value which gave the best performance.
It is important to use cross validation during this procedure (see the Sec-
tion 2.6 for further details of cross validation). KNN works best in low
dimensional cases and when each dimension is known to be relevant (see
Section 2.4.2). High dimensions or irrelevant features will lead to poor simi-
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larity measures. Preprocessing data by performing dimensionality reduction
before using KNN will tend to improve the performance of the classifier.

Figure 2.12: A simple K-Nearest-Neighbour representation. Red and blue
dots represent different classes of trained examples. The green dot represents
an input we would like to classify. If the value of k is 1, then the input would
be classified as blue as its most similar entry is blue, shown by the dashed
circle. If the value of k is 4, the input would be classified as red, as the most
common label among the 4 most similar entries is red, shown by the solid
circle. This demonstrates the importance of the value of k.

Decision Tree

A decision tree uses information theory to generate a tree comprising of
nodes corresponding to the features of the training examples, and edges
from the nodes corresponding to the values which that feature can take.
Note that if a feature is continuous, it must first be quantised, for example
if 0 ≤ x < 100, the feature can be quantised into 4 discrete values, {0 ≤ x <
25, 25 ≤ x < 50, 50 ≤ x < 75, 75 ≤ x < 100}.

The tree is built from the root node to the leaves. The root node is
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selected by using a measure of how much information any given feature tells
us about the data. One algorithm called the ID3 algorithm, uses a measure
called the information gain defined in Equation 2.3. The data is then split
into two or more sub sets corresponding to the different values the chosen
attribute can take. The attribute with the highest information gain is chosen
as the next node in the tree, and the process is repeated on the remaining
subsets.

IG(A) = H(S)−
∑
t∈T

p(t)H(t) (2.3)

Where,

• A is the feature which we are using to split the data set

• H(S) is the entropy of set S using Equation 2.4

• T are the subsets of S created by splitting the data using A

• p(t) = |t|
|S|

• H(t) is the entropy of subset t using Equation 2.4

H(S) = −
∑
x∈X

p(x) log2 p(x) (2.4)

Where,

• S is the current data set we wish to split

• X is the set of labels present in S

• p(t) = |x|
|S|
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The tree can then be post processed to improve performance. For ex-
ample, generality can be improved by trimming long branches. Novel cases
can then be classified by working through the decision tree like a flow chart.

2.4.2 Dimensionality Reduction

However, it doesn’t matter how clever your algorithm is if you don’t train
it on the right information. In many situations, the choice of features which
comprise the data the classifier has been trained on is much more important
than the choice of algorithm itself. Consider the tree classifier from before.
A good selection of features might be height, trunk width, bark colour and
leaf size. These are all features which can be used to differentiate one type
of tree from another. However, if your features are time of year, weather
and if I was wearing a hat when I saw it, then even the most sophisticated
algorithm won’t be able to correctly differentiate between different types of
tree, because the information it has been trained on is completely irrelevant.

The main challenge often faced when creating classifiers is not what
algorithm will be best, but how to extract the most relevant and informative
features from the data. We will be attempting to extract the most relevant
information possible, and then choose an algorithm which will suite the type
and dimensionality of the data gathered.

Dimensionality is an important characteristic which must be considered.
Different algorithms perform better with examples of different dimensional-
ity. It is often the case that the examples which are used to train a classifier
contain features which are of varying relevance. For example, the colour of
a tree’s bark may be a much more important feature than the width of the
trunk when determining the type of a tree. It may therefore be desirable to
ignore features which are not especially relevant, or combine two less relevant
features into one more relevant feature, in order to reduce the dimensional-
ity of the data to a value which works well for a particular algorithm. There
are several techniques to achieve this.

Principle Component Analysis

Principle Component Analysis (PCA) involves calculating a new basis through
which to represent the available data. The dimensionality of this new basis
is equal or less than the dimensionality of the original data. The compo-
nents which make up the new basis are chosen to reflect the directions of
the most variance in the data. The components are orthogonal. The first
principle component will points along the direction of most variance, the
second will then point along the direction of most variance, orthogonal of
the first (so as not to contain the same information) and so on. This can be
seen more clearly in Figure 2.13 Therefore, to reduce an n dimensional data
set to an n′ < n dimensional set, you need only select the first n′ principle
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components.

Figure 2.13: A scatter plot showing a multivariate Gaussian distribution.
The arrows correspond to the directions of the principle components. The
larger arrow points in the direction of greatest variance and so describes
the first principle component. The smaller arrow corresponds to the second
principle component.

The process of calculating the principle components of a data set is quite
straightforward. First we must calculate the covariance matrix of the data.
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Σ = E[(X− E[X])(X− E[X])T ]

Where E(x) is the expected value of x.
The basis described by the eigenvectors of this covariance matrix will

then correspond to the directions of most variance. The corresponding
eigenvalues will describe the variance along each eigenvector. Therefore,
the eigenvector corresponding to the highest eigenvalue, point along the di-
rection of most variance - the first principle component. Therefore, to choose
an n′-dimensional basis to represent the data, we simply select the n′ largest
eigenvalues, and form the basis using the corresponding eigenvectors. In fact,
the eigenvalues directly represent the proportion of the information which is
contained along the corresponding eigenvectors. We therefore know exactly
how much information we are losing from dropping particular components.

PCA can be an extremely useful tool. A 65536 feature dataset describing
human faces can be reduced to 25 dimensions, whilst still retaining 56% of
the information [32]. One feature of PCA it is important to note it that
each dimension must be of the same units, otherwise comparing variances is
irrelevant. PCA also relies heavily on the data being Gaussian.

2.5 Signal Processing Background

2.5.1 Fourier Transform

A Fourier transform is a mathematical method which converts a signal into
a frequency domain from, for example, a spatial or temporal domain, and
vice versa. Fourier transforms have a huger number of practical uses across
mathematics. Two uses in particular might prove useful in this project.

Firstly, Fourier transforms can be used when searching for a particular
object or pattern in an image. An image of the feature you are searching
for can be transformed into the frequency domain, and a signature can be
derived from the results. This signature can be scale and/or rotationally
invariant, depending on the what features of the transformed image are
used to to create the signature [33].

Applying a Fourier transform to a temporal signal can be used to analyse
what frequencies are present in the signal. For example, components of
the signal which change slowly will correspond to low frequencies, whereas
those which change quickly will correspond to high frequencies. It is a
common technique in signal processing to use a Fourier transform to filter
out noise from a signal. The signal is transformed into the frequency domain,
unwanted frequencies can then be identified and filtered out, and the signal
can be reconstructed.
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2.6 Evaluation Techniques

Being able to evaluate the performance of a system is arguably just as impor-
tant as the implementation, for both individual components and the system
as a whole. It is important to know how to judge the success of a project.
The following sections discuss some methodologies which will prove useful
when evaluating the contributions of this project.

Classifiers

There are a wide range of measurements which are traditionally used to
evaluate a classifier (Table 2.2). These measurements can be derived from
a confusion matrix, which tells us the number of True Positives (TP), False
Positives (TP), False Negatives (FN) and True Negatives (TN) which are
present in the classification. How these values are calculated is summarized
in Table 2.1. A combination of these measures provide a quantitative way
of evaluating the performance of any classifier.

Predicted
Positive Negative

Known
Positive TP FN
Negative FP TN

Table 2.1: Structure of a confusion matrix

Measure Formula Meaning

Precision TP
TP+FP The percentage of examples which

are predicted to be positive that are
known to be positive

Sensitivity TP
TP+FN The percentage of examples which

are known to be positive that are
predicted to be positive

Specificity TN
TN+FP The percentage of examples which

are known to be negative that are
predicted to be negative

Accuracy TP+TN
TP+TN+FP+FN The percentage of examples which

are predicted correctly

Table 2.2: Summary of classifier evaluation measures

Another technique which is particularly useful if the amount of available
data is low is known as cross validation. This involves randomly splitting
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the data into n equal partitions, then for each partition (N), you evaluate
the classifier by training on all the data which isn’t in N, and testing its
performance on N. This stops the performance measurements from being
biased by over-fitting, which occurs when the model fits too tightly to the
training data, thus losing the ability to classify novel examples accurately.

Cross validation can also be used in the training process. Learning algo-
rithms often have a number of parameters which must be set (the value of
k in K-Nearest-Neighbour (Section 2.4.1) for example). These parameters
can have a huge impact on the performance of the resulting classifier. One
way of selecting these parameters is to create a number of classifiers with
different parameters. Each classifier can then be evaluated using cross val-
idation and their performance compared. The parameters which create the
classifier which performs best, can then be chosen when training the final
classifier.

Filtering

A simple and subjective method of evaluating the performance of a move-
ment filter would be to survey a number of people and ask them to give a
numerical score within a certain range, describing how well they think the
movement has been filtered from the scan.

Another measure of how effective a movement filter is would be to calcu-
late an average image of a filtered and unfiltered scan by simply averaging
the pixel intensities for each pixel over the duration of the video. The more
movement present in a video, the more blurred an averaged image will be.
The images from the filtered and unfiltered scans can then be compared
subjectively, with significantly less blurring in a filtered image being indica-
tive of effective filtering. This is a qualitative measure and therefore is quite
subjective. Whilst it can be used during the development stage to get a
rough idea of how well different algorithms are performing, a quantitative
procedure would also be useful.

One quantitative procedure would be to calculate the Mean Squared
Error of pixel intensities between consecutive frames. This will give a mea-
surement of how much a video changes between frames. A lot of change
between frames would mean there is a lot of movement in the scene, there-
fore a lower MSE between the frames of a filtered video would be indicative
of an effective filtering algorithm.

MSE(It, It−1) =
1

M ×N
∑
M×N

(It(m,n)− It−1(m,n))2

Where M and N are the width and height of a frame respectively.
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Techniques taken from [34].

Possible measurements

• Comparisons of mean image (subjective)

• Opinion survey score (subjective)

• Mean squared deviation (objective)
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Chapter 3

Method

.

3.1 Overview

The approach taken in this project to the problem of segmentation and
classification can be thought of as a pipeline. A raw cinematic MRI scan
is input, and undergoes a series of processing steps, resulting in segmented
foetal movements which form the output. Figure 3.1 illustrates the process-
ing stages, after which is a brief description of each stage.
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Figure 3.1: Illustration of the stages of the pipeline which make up the
system developed in this project.

Figure 3.1.A - Raw Data Processing

The first stage of the pipeline involves performing some image enhancement
on each individual frame of the scan so as to improve the performance of
the subsequence stages.
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Figure 3.1.B - Maternal Movement Suppression

At this stage it is beneficial to try and remove as much maternal movement
from the scans as possible, primarily breathing. This is done by analysing the
scan using a Fourier Transform to identify the frequency of the breathing.
Movement at this frequency is then filtered out. This results in a scan
with significantly less visible periodic movement, but a certain degree of
’ghosting’.

Figure 3.1.C - Crop

The next stage is to try and crop the scan down to, ideally, just the uterus.
The benefits of this is to firstly reduce the computational load of the later
stages by having them work in a smaller area, and secondly to eliminate as
much of the maternal tissue as possible, in order to prevent it from being
mistaken for foetal movement.
This is a two stage process. The first involves locating the areas which
exhibit a lot high frequency movements, which is an indicator of foetal
movement. A series of morphological operations then attempts to locate
the area with the highest probability of containing the foetus. The second
stage involves running a foreground detection algorithm in this area, which
again works by attempting to locate areas of movement. A further series of
morphological operations locate the final estimate for the foetal area. The
more foetal movement exhibited by the scan, the more accurate the crop-
ping algorithm tends to be. Scans with little or no foetal movement are left
relatively uncropped, ones with lots of foetal movement are cropped very
well.

Figure 3.1.D - Motion Detection

At this point it is possible to discard scans with no significant foetal move-
ment. This is done by divining the scan into short sections and creating
an average image corresponding to the frames in these sections. In cases
where there is little or no foetal movement, these images are likely to be
very similar in each section, despite maternal movement. If there is foetal
movement, some of the images will be significantly different to the others.
Comparing all images with each other and summing the total differences,
we can reach an accurate measure of the amount of foetal movement in a
scan. This method has an accuracy of 81%.

Figure 3.1.E - Movement Signatures

This next step involves segmenting the scan into periods of significant foetal
movement. By calculating optical flow fields for each frame, it is possible to
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locate periods which contain a higher than average amount of movement.
These are likely to correspond to periods of foetal movement.

Figure 3.1.F - Identification of Body Parts

This process is performed on each of the movement signatures identified in
the previous stage. It uses the observation that areas which move at the same
time and in the same direction are likely to correspond to the same part of
the foetus. By using K-means clustering it is possible to extract these areas
and therefore identify separate features. Areas which are often identified by
this process include: the head, the leg, the upper back, the lower back and
the arms. Occasionally, left over maternal tissue is identified. The scan can
then be cropped around these areas resulting in a large collection of short
movements of individual parts of the foetus.

Figure 3.1.G - Classify Features

The final stage has the aim of classifying each of the features identified
by the previous stage as one of: Head, body, leg, arm or maternal. This
is a lengthy process which starts by dividing the features once more into
periods of movement a few frames long. Signatures are then derived from
each of these. These signatures are designed to extract the most relevant
information from the features in order to be able to discriminate between
the different classes, reflecting their shape, texture and how they move.

Using a number of manually pre-labelled scans as training data, a K-
Nearest-Neighbour (2.4.1) classifier can be used to classify the features as
being representative of a particular part of a foetus. However, this clas-
sification alone is not enough, resulting in only a 47.8% accuracy, but it
can give us an idea of roughly where the individual parts of the foetus are.
By repeatedly fixing the location of a certain part, and reclassifying, it is
possible to achieve a higher level of accuracy in the majority of scans.

Additional tools

While not necessary for the main system, two additional tools which could
aid future work with cinematic MRI foetal scans were developed. Firstly, a
feature tracker using optical flow, which allows the user to select a point at
the start of the scan, and for it to be tracked throughout. As well as this a
method of visualising the segmentation of the foetus was created. Using the
results of classification, and various computer vision techniques we were able
to identify and colour code different parts of the foetus. These tools provide
a proof of concept and demonstrate the practical uses for the achievements
of this project.
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3.2 Data Analysis

At the start of this project, a number of data sets containing cinematic MRI
scans were made available. A number were selected as representative scans
to work with when developing and evaluating the individual components of
the system during development. However, in order to evaluate the system
as a whole, it is important to use as much data as is available. We therefore
manually viewed each scan to assess its use. Despite being a very time
consuming process, it was necessary in order to fully assess the system.
Figures 3.1 and 3.2 show a full breakdown of the data set. Some files were
formatted in such a way as to contain a number of separate scans in sequence,
in these cases, each scan was assessed and counted separately.

Assessment Quantity Explanation

Incompatible 16 The file contained 4-dimensional data or was
otherwise corrupted.

Still 33 There was no / very little discernible foetal
movement.

Short 58 The scan was too short to be considered useful.
Typically containing fewer than 100 frames.

Twins 17 The scan contained twins. Figure 3.3

Unclear 64 The scan was unclear, due to significant shadows
or other artefacts, or depth of scan. Figure 3.4

Non-temporal 54 The data contained in the scan included no tem-
poral component.

Acceptable 56 The scans which did not fall into the other cat-
egories.

Total 347 The total number of scans in the data set.

Table 3.1: Summary of classifier evaluation measures
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Figure 3.2: The composition of the data set.

Figure 3.3: First frame from a scan containing twins.
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Figure 3.4: First frame from an unclear scan. Note the shadows obscuring
the foetus’ head.

Due to the methods employed in the system, the decision was made to
leave out the short scans and those containing twins. Twins would confuse
the segmentation process, and short scans rarely contained enough informa-
tion to perform segmentation. Incompatible and non-temporal scans were
also discarded. As can be seen, only 26% of the dataset was considered
usable from this point forward. This suggest a serious limitation to the
system, and therefore requires some explanation.

Firstly, it is important to keep in mind that the aim of this project is to
perform segmentation on a scan, so as to aid in the analysis of the individual
foetal movements. Non-temporal, incompatible and unclear scans are clearly
going to be useless in this regard, hence they can be safely discarded without
reflecting poorly on the performance of the system. However the need to
exclude short scans and those containing twins is one of the more significant
limitations of the system, which will be discussed in Chapter 6

3.3 Raw Data Processing

As soon as the scan is loaded, it will undergo two operations designed to
enhance the clarity of each frame.

The first step is to sharpen the image. This is done by subtracting a
blurred version of the scan from itself, see Equation 3.1. This is repeated 3
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times, the results of which can be seen in Figure 3.5.
Variable definitions:

• S = The scan being processed.

• S(x, y, n) = The intensity of the pixel at location (x, y) at frame n in
scan S.

• W = The width of the scan S.

• H = The height of the scan S.

• N = The number of frames in S.

• f ∈ S = An H by W frame from S.

∀f ∈ S, ∀f ′ ∈ S′ : f ′ = f − (f ∗ g) (3.1)

Where g is an m-by-m averaging function defined as:

∀x, y : g(x, y) = 1/m2 (3.2)

The second step is to adjust the grey levels and increase the contrast of
the image such that 1% of the image is saturated at the highest and lowest
intensities, in this case, black and white. The effect this has on the image
can be seen in Figure 3.6.
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Figure 3.5: Results of repeated applications of sharpening, shown left-right,
top-bottom. The first image being the raw unprocessed scan.

Figure 3.6: Results of enhancing contrast. The unprocessed image on the
left, and adjusted image on the right.

39



3.4 Maternal Movement Suppression

Since most of the maternal movement is down to breathing, it is very peri-
odic. Reasonably promising results have therefore been found using Fourier
transforms to filter out maternal movement from the scans. If we consider
the value of each pixel in every frame as a time series, we can visualise
(Figure 3.7) and examine its properties. Contained somewhere in this time
series is the effect of the maternal movement. It can be seen that there
does appear to be a relatively constant oscillation. If we take the Fourier
transform using Equation 3.3 of this time series we get Figure 3.8).

F (x, y, k) =
N−1∑
n=0

S(x, y, n)e−i2πk
n
N (3.3)

Figure 3.7: The intensity value of a single pixel taken over the course of a
300 frame scan.

Figure 3.8: The result of a Fourier transform on the time series in Figure 3.7.
Only frequencies greater than 0 have been plotted as the power of the 0
frequency is extremely high. Including the 0 frequency would make the
properties of the rest of the graph unclear.
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However, if we take the Fourier transform of a large number of pixels
and average them, we get a clearer picture of what is happening. Figure 3.9
shows this calculated using a 10-by-10 grid of pixels using Equation 3.4.

M(k) =

∑n
x=1

∑n
y=1 F (xWn , yHn , k)

n2
(3.4)

Where F (x, y, k) is found using Equation 3.3 and n is the size of the grid.

Figure 3.9: The result of averaging the Fourier transform taken from a 10x10
grid of pixels covering a frame. The 0th frequency has not been included, as
the power is very high, which makes the properties of the rest of the graph
unclear.

There are two clear peaks, with frequencies of approximately 45 and 90.
Given the scan was taken at 3 frames per second, these frequencies match
up well to the frequency of breathing (just over 2 seconds per breath), and
a harmonic of this. This harmonic will be because the breathing isn’t ex-
actly sinusoidal. Every scan analysed in this way shows similar results. We
can now filter out these two frequencies using Equation 3.5 (Figure 3.10)
and apply an inverse Fourier transform (Equation 3.7) to rebuild the video.
The peaks can be identified reasonably accurately by finding the peaks of
a smoothed data series. The width of these peaks can be determined by
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searching either side until the data flattens out. Filtering is done by multi-
plying by one minus a Gaussian window.

F ′(x, y, k) = F (x, y, k)×G(p1, w1, k)×G(p2, w2, k) (3.5)

G(p, w, k) =

1− e−0.5(
k−p
w
2

)2

if (p− w
2 ) < k < (p+ w

2 )

1 otherwise
(3.6)

Where F (x, y, k) is the Fourier transform of the pixel at location (x, y), p
is the locations of the peaks located, w is the widths of these peaks and
F ′(x, y, k) is the result of reducing the values around the peak frequencies
to 0.

S′(x, y, n) =
1

n

N−1∑
k=0

F ′(x, y, k)ei2πn
k
N (3.7)

Where S′(x, y, n) is the new intensity value of the pixel located at position
(x, y) at frame n and F ′(x, y, k) is found using Equation 3.5.

Figure 3.10: The result of filtering the the average Fourier transform in
Figure 3.9. The 0th frequency has not been included, as the power is very
high, which makes the properties of the rest of the graph unclear.
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3.5 Crop

The cropping stage has two distinct parts. The first part tries to narrow
down the area to a rectangle which roughly contains the uterus. The second
stage narrows this area down to an arbitrary shape which attempts to match
as closely as possible to the uterus. Whilst automatically cropping a scan
may not necessarily help with the extraction of any useful information for the
purposes of feature tracking or machine learning, it will help when it comes
to the computational speed and memory requirements of such operations,
as well as reduce the chance maternal tissue will be mistaken for the foetus.

Having used Fourier transforms to good effect to remove maternal breath-
ing, it was possible to reuse the Fourier transform information already calcu-
lated to aid in cropping. By looking for areas of high frequency movement,
it is possible to find an area which is likely to contain the foetus. This is
because locations which exhibit high frequency movement generally corre-
spond to the location of the foetus. By finding the pixels which contain high
frequencies we can get a good idea as to where the foetus is. Figure 3.11
shows these areas.

Figure 3.11: An image showing which areas exhibit high frequency move-
ment, an indicator of foetal movement.

The area around the foetus is included in this area, however there are
often other areas which also exhibit this kind of movement. By using the
heuristic that the foetus tends to be away from the edges of the scan, we can
reduce the search area further. Finally, a series of morphological operations
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are performed to give us an estimation of the foetal area (Figure 3.12). The
final result of this stage of cropping can be seen in Figure 3.13.

Figure 3.12: The result of a series of morphological operations on Fig-
ure 3.11.
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Figure 3.13: An example of the first stage of a successful cropping process.

The next stage aims to crop tighter around the uterus using foreground
detection. This attempts to learn the background of a scene, and subtract
it, to leave only the foreground. Whilst this method does not perform well
enough to give us a complete segmentation for every frame, it does allow us
to locate areas which are classified as foreground in a significant number of
frames, and are therefore likely to belong to the foetus. Figure 3.14 shows
an initial estimation for the location of the foetus. A series of morphological
operations similar to those used in the previous cropping stage, give us a
more robust estimate, which will form the mask to crop the scan around.
The results of this can be seen in Figure 3.15.
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Figure 3.14: An initial estimation for the location of the foetus using fore-
ground detection.

Figure 3.15: Cropping as a result of a series of morphological operations on
Figure 3.14.
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In most cases, this provides a reasonably good cropping. However, cer-
tain scans, particularly those with long periods of little to no movement, are
sometimes cropped too zealously, resulting in a cropping around particular
foetal features, see Figure 3.16.

Figure 3.16: A poor initial estimation for the location of the foetus.

To overcome this issue, a function primarily used later in the pipeline is
utilised, which attempts to segment the scan into periods of foetal activity,
see section 3.7 for details on this algorithm. Creating a mask for each period
of activity, and subsequently combining them allows us to eliminate the
effects of long periods of foetal idleness and increase the probabilities of an
accurate cropping.

Scans which do not exhibit enough movement to be cropped satisfactorily
using these methods are left uncropped. This is detected by having too little
high frequency movement to reach an initial estimate of the location of the
foetus.

3.6 Motion Detection

Detecting the presence of foetal movement is a surprisingly difficult task.
Even with an optical flow field for every frame, it is difficult to decide what
corresponds to foetal movement and what is a result of maternal movement.
The maternal breathing we attempted to suppress previously is not the only
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maternal movement present in scans. There is occasionally additional move-
ment detected as a result of movement in the mother’s organs, or small shifts
in the mother’s position. The method used to try and identify the presence
of foetal movement is to divide the scan into short periods and create an
image by averaging the frames in each period. An example set of these im-
ages taken from a scan with foetal movement is shown in Figure 3.17, with
an example set from a scan without foetal movement shown in Figure 3.18.

Figure 3.17: A set of images created by averaging short sections of a scan
which exhibits movement.
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Figure 3.18: A set of images created by averaging short sections of a scan
which does not exhibit movement.

As can be seen, in the case of the scan with no foetal movement, there is
very little difference between each image, even though there is still maternal
movement. Whereas, in the scan with foetal movement, there are noticeable
differences between images. By identifying the presence of these differences,
it is possible to decide if the scan contains foetal movement or not.

The technique used to identify these differences is to compare each image
with every other image and calculate the total mean squared differences
between the grey-scale intensity values between each pair of images. By
taking the average of these differences and comparing them to a threshold
found using trial and error, we can classify the scan as containing significant
foetal movement or not - Equation 3.8

has movement(S) =

{
True if movement(S) > t where q = sqd(S)

False otherwise

(3.8)
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(3.9)
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Where n is the number of periods to divide the scan into.

3.7 Movement Signatures

The aim of this stage is to segment the scan into a number of shorter sections
containing periods of foetal movement, called movement signatures. An
observation from viewing a large number of scans is that foetal movement
tends to be characterised by bursts of high activity, between periods of little
or no activity. These periods can therefore be found by looking for unusually
high bursts of movement. The first step to achieve this is to calculate a
dense optical flow field at each frame, see section 2.3.1. It is then possible
to work out how much movement there is between each frame by summing
the magnitudes of all the vectors in the optical flow field. By plotting the
amount of movement present in each frame over time, smoothing out local
fluctuations using a moving average, and then zeroing every point beneath
the mean, we arrive at a number of distinct periods. Another moving average
connects nearby sections to each other, before the start and end point of each
period is extracted and used to segment the scan.

Figures 3.19, 3.20, and 3.21 illustrate the full process on three separate
scans.
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(a) Time series showing the sum of the magnitudes of all the movement located in each
frame of a scan.

(b) The result of locally averaging the time series to reduce noise.

(c) The result of zeroing every point less than the mean in order to find periods of unusually
high movement.

(d) The result of applying another local averaging, connecting nearby segments.

Figure 3.19: An illustration of the full process of segmenting a scan into
foetal movements.
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(a) Time series showing the sum of the magnitudes of all the movement located in each
frame of a scan.

(b) The result of locally averaging the time series to reduce noise.

(c) The result of zeroing every point less than the mean in order to find periods of unusually
high movement.

(d) The result of applying another local averaging, connecting nearby segments.

Figure 3.20: An illustration of the full process of segmenting a scan into
foetal movements.
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(a) Time series showing the sum of the magnitudes of all the movement located in each
frame of a scan.

(b) The result of locally averaging the time series to reduce noise.

(c) The result of zeroing every point less than the mean in order to find periods of unusually
high movement.

(d) The result of applying another local averaging, connecting nearby segments.

Figure 3.21: An illustration of the full process of segmenting a scan into
foetal movements.

3.8 Identification of Body Parts

This stage involves spatially segmenting the previously extracted movement
signatures into the individual parts of the foetus. The ideal outcome from
this stage would be identify the locations of the head, abdomen, legs and
arms of the foetus. This is, however, an extremely challenging proposition.
We therefore just look for parts of the scan which could be part of the foetus.
These sections, which we will call features, will later be classified in order to
decide exactly what part of the foetus they belong to. For now, therefore,
it is sufficient to identify areas which are likely to be part of the same part
of the foetus, and we shall leave the job of deciding what part of the foetus
this is for a later stage.

A clustering approach was due to the observation that areas which con-
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sistently move at the same time, in the same direction and are close to each
other are likely to form part of the same foetal body part. K-means (simi-
lar to K-Nearest-Neighbour, see Section 2.4.1) was chosen as the clustering
algorithm, as the units along most dimensions are the same. The x and y
position of each location is also included, which is multiplied by a factor
which can be tuned in order to alter the effect of locality on the clustering.

A value of 4 was chosen for K to reflect the fact that, ideally, we would
like the image to be clustered into head, body, arm and leg. It is rare to be
able to see both arms or both legs at the same time in a scan, so we don’t
want separate clusters for each arm and leg. The algorithm is run on each
movement signature, with each pixel as a data point, and the direction of
the optical flow field at that point in each frame as the attributes, along with
their x and y location. Since each period of movement tended to be between
10 and 100 frames long, this meant the problem is in 12-102 dimensions,
and proves perfectly manageable.

Figure 3.22 shows the areas exacted using this technique. Once the
general location of a feature is found through clustering, that area undergoes
the second part of the cropping stage described in section 3.5. This will
remove other, non moving, parts of the foetus which may be in the vicinity
of the extracted area leaving just the feature. The effect of this can be see in
Figure 3.23. Keep in mind that these are only the first frames of a period of
movement, therefore the cropping must cover the whole range of positions
the foetus takes in that period. Common features which are successfully
identified using this method are the head, the upper back/neck, the lower
back, the leg and the arm.
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Figure 3.22: The results of clustering, identifying the rough locations of the
head, body, legs and arms.

Figure 3.23: The results of cropping the locations in Figure 3.22 to cover
the areas which contain movement. Note how maternal tissue is still present
in the leg and arm images, and how the centre of the body is not included.
These are both side effects of cropping to areas of movement. The intensity
of the centre of the body is too uniform for movement to be detected, whereas
the intensity of some the maternal tissue is very inconsistent, so movement
is identified much more easily.
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3.9 Initial Classifications

As alluded to in the previous section, the remaining stages must classify
each of the extracted features according to the foetal body part they cover.
A machine learning (see section 2.4) approach was chosen to solve this prob-
lem. The idea being that with enough examples of features taken from a
large number of different foetuses, it will be possible to train a classifier
to distinguish between them. However, in order for any machine learning
system to learn to distinguish between different examples, it must be first
trained on a number of labelled examples. This training data must come
from manually labelling a large number of extracted features as being an ex-
ample of either a head, leg, arm or body. In addition to these 4 categories, it
was decided to also use label for maternal tissue. The reason for this is that
some scans can still contain a large amount of maternal tissue which can,
on occasion, be extracted as a feature. Since this will also be the case with
future scans we wish to segment without manual labelling, it is important
to accommodate these features, despite them being of little use to identify.

As one final piece of preprocessing, we segment the individual features
into shorter movements using the same algorithm as used previously in Sec-
tion 3.7. The reason for this was to try and get all the features to have a
similar length. The movement profile of a 100 frame long series of kicks will
look quite different to a shorter movement covering only a few frames. This
gives us a much better chance of being able to classify features correctly.

Manually labelling features is an extremely labour intensive task, with
nearly 3000 features extracted. The training data was chosen to include all
the available scans for which movement was successfully detected to give
the classifier as many examples as possible in order to help it discriminate
between future examples.

It is now that we must consider what measurements we are going to use
in order to give us the best chance of discriminating between different body
parts. This is not a simple problem, extracting the most descriptive infor-
mation, in a format which can easily be compared across different features.
After experimenting with a number of different signatures and checking their
ability to classify correctly, 4 different signatures were chosen, with the aim
of combining the results from using each to classify a feature. Using multiple
classifiers and aggregating the results is a common practice and proved very
effective in this case. In particular, it was noticeable that certain signatures
were better at discriminating between different body parts than others. The
signatures used are summarised below. Examples of features, any interme-
diary steps, and signatures generated can be seen in Appendix 7.1.

• Movement Weighted Histogram of Oriented Gradients
Histogram of Oriented Gradients (HoG) is a common technique used
to generate a signature based on the edges of an image. Edge direc-
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tions are calculated by applying a filter to the image. A histogram is
then produced with a certain number of bins each corresponding to
a range of angles. Each edge then votes for a bin in the histogram
corresponding to its direction. This histogram can then be used as a
signature to discriminate between different classes of image.

A modified version of this technique was used by weighting the con-
tribution of each edge by the amount of movement observed at that
edge. This has the effect of making edges corresponding to objects
which move more have a greater impact on the histogram. A nor-
malised histogram with 16 bins was chosen, and a certain degree of
rotation invariance was added by aligning the direction corresponding
to an angle of 0 degrees to the most highly represented edge direction.

• Texture Information
Another signature found to be effective was a combination of measures
relating to the texture of the feature. Each of:

– Entropy

– Contrast

– Correlation

– Energy

– Homogeneity

proved to be a useful measure to discriminate between classes. By nor-
malising the ranges and combining the 5 measures into a single vector,
signature could be created which showed considerable discriminatory
power.

Motion Histogram
The third signature chosen was an overlapping motion histogram, as
described towards the end of section 2.3.2. The only alteration made
was to make the signature rotation invariant by aligning the 0 degree
direction to the most common direction present in the histogram.

• Fourier Descriptor of Movement Information
The final signature used attempts to discriminate using the pattern
of movement in the feature by taking the magnitudes of the Fourier
transform of the sum of the optical flow vector field for each frame.
The values in radial sections of half of the image produced, each cor-
responding to 45 degrees, are then summed in order to form 8 parts of
a signature. Only half the image needs to be used since the 2d Fourier
Transform has two orders of rotational symmetry.

A K-Nearest-Neighbour Classifier (see 2.4.1) was ultimately chosen as
the classifier used. Although other classifiers were tested, none had an accu-
racy significantly higher than KNN, and, very importantly, KNN allows us
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to calculate not only the most likely class a feature may belong to, but also
calculate a probability that a feature is of a particular class. This is done
by looking at what proportion of the K closest matches belong to each class,
and allocating a probability accordingly. This gives us much more flexibility,
and the ability to refine and improve upon the initial classifications. A value
of 10 was chosen for K by performing cross validation on the entire data set
for values of K between 1 and 20 and choosing the value which gave the
greatest accuracy.

The final probability distribution for each feature at the end of this
stage is therefore a normalised sum of the probabilities calculated by the 4
classifiers.

3.10 Refine Classifications

So far, we have only used the signatures derived from the features as the
means for classification. However we also have the additional information
of the spacial location the feature was extracted from. Provided the foetus
does not significantly change location over the course of a scan, which was
never observed in any of the scans in the entire data set, we are able to
use this information to improve upon our initial classifications. Since we
are using a K-nearest-neighbour classifier, we can use the distribution of the
labels of the closest examples as an approximation to the probability that
that feature is a certain body part, see Figure(3.24).

Figure 3.24: Left hand image shows a feature extracted from the scan shown
in Figure 3.25. The chart on the right hand side shows the belief we have
about that feature corresponding to a head, body, arm, leg or maternal
tissue. As can be seen, the feature has been correctly identified as being
most likely to correspond to a body.

This means we can create a number of heatmaps showing our belief that
a particular location contains a particular body part, as seen in Figure 3.26,
with the first frame of the scan shown for reference in Figure 3.25.
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Figure 3.25: The first frame of the scan we are attempting to segment and
classify. Note the location of the head, body, arm, leg and maternal tissue
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(a) Head (b) Body

(c) Arm (d) Leg

(e) Maternal (f) Key

Figure 3.26: A series of heat maps indicating the probability that a certain
location in the scan corresponds to a particular body part once maternal
tissue has been removed.

Since there can be multiple locations with maternal movement, we first
try and remove these areas. The first step is to find the locations which
are more likely to be areas of maternal movement than any body part.
We then look for features which occupy these areas and reclassify them as
maternal tissue. This is done by looking at the area covered by each feature
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in turn, and seeing if there is significant intersection with the locations we
now believe to correspond to maternal tissue. If so, we reclassify the feature
as maternal tissue, disregarding how it might have been initially classified.
This process can be improved further by altering the thresholds used to
indicate significant intersection to reflect our prior belief about the feature.
For example, if a feature had an initial probability of being maternal tissue
of 0.1, then it requires a greater degree of intersection with the area of
suspected maternal tissue than a feature with an initial probability of 0.8.

We now assume we have correctly classified all the features corresponding
to maternal tissue. This lets us remove all examples of maternal tissue from
the training data, reclassify the remaining features, and generate new heat
maps, seen in Figure 3.27.
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(a) Head (b) Body

(c) Arm (d) Leg

(e) Key

Figure 3.27: A series of heat maps indicating the probability that a certain
location in the scan corresponds to a particular body part once maternal
tissue has been removed.

As can be seen, the location of the head can be quite accurately found.
We can therefore use the information that the head probably occupies this
location throughout most of the scan and to reclassify the features which
also occupy that area as heads.

We can continue this process, removing all examples of heads from the
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training data and reclassifying the remaining features, giving us a new set
of heatmaps, seen in Figure 3.28.

(a) Body (b) Arm

(c) Leg (d) Key

Figure 3.28: A series of heat maps indicating the probability that a certain
location in the scan corresponds to a particular body part once maternal
tissue has been removed.

Repeating this process for bodies we get Figure 3.29 showing our be-
liefs about the location of legs and arms. Using this we can reclassify the
remaining scans.
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(a) Arm (b) Leg

(c) Key

Figure 3.29: A series of heat maps indicating the probability that a certain
location in the scan corresponds to a particular body part once maternal
tissue has been removed.

3.11 Visualise Classifications

Having achieved the main objective of the project, we looked ahead to the
uses of this tool. One potential use would be to fully segment a scan so
as to crop to each individual body part in every frame. Using the classi-
fications, it is possible to locate and extract the areas of each body part.
A prototype system was designed and produced providing a proof of con-
cept. A single frame from a scan having undergone this process can be
seen in Figure 3.30. Figure 3.31 shows a frame without colour coded clas-
sifications. The full videos can be viewed at youtu.be/uBh4ngNJSvc and
youtu.be/AiYaRIfWNNs respectively.
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Figure 3.30: Single frame form a scan having had the location of the head
(blue), body (green) and limbs(red) extracted.
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Figure 3.31: Single frame form a scan having undergone segmentation.

A fully functioning system which can accurately perform this process on
any scan would provide huge benefits to a number of interesting research
topics. For example, a system which can consistently and accurately ex-
tract the limbs from a scan would allow significantly easier localisation and
tracking of key points, such as joints. Another exciting potential applica-
tion would be the ability to extract 3d models of the foetus. The scans
used in this project are just one slice of a 4 dimensional volumetric scan. If
this process was applied to each layer of a 4d scan, a model of the foetus
could be produced. This would open up research into feotal movement in 3
dimensions.

The steps to locate the head and body are very similar, revolving around
a series of morphological operations and edge detection. The general struc-
ture is described in Figure 3.32.
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1: segment = find initial estimate(classifications)
2: mask(1) = segment
3: for all i = 2 to length(scan) do
4: frame = scan(i)
5: segment = mask(i− 1)
6: local mask = grow(segment)
7: segment = shrink(segment)
8: segment = segment ‖ edge(f)
9: segment = segment & local mask

10: segment = bridge(segment)
11: segment = fill(segment)
12: segment = remove spur(segment)
13: segment = morphological opening(segment)
14: mask(i) = segment
15: end for

Figure 3.32: The main stages of the algorithm which attempts to find and
track the head and body.

The idea behind the algorithm is to exploit the generally clear edges
around the foetus. The initial estimate for the location of the body part
is found from the heat maps used to improve classification in Section 3.10.
This provides the estimate for the position in the first frame. The estimate
for each subsequent frame is found by first shrinking the estimate from the
previous frame, and then growing it again to line up with nearby edges.
Figure 3.33 shows this process visually.
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(a) Shrunk location from
previous frame.

(b) Nearby edges added. (c) Close edges connected.

(d) Holes filled. (e) Remaining edges re-
moved.

(f) Mophological opening
smooths edges.

Figure 3.33: An illustration of the full process of segmenting a scan into
foetal movements.

• The first step is to take the segmentation from the previous frame and
shrink it. This will move it away from the edges, and ensures every
part is within the edges of foetus even in the presence of movement.

• The next step is to locate the edges present in the frame around the
area of the current segmentation estimate using a Canny edge detec-
tion algorithm and to add these to the estimate.

• A bridging algorithm is then used to connect nearby unconnected
edges.

• Any holes now present in the segmentation estimate are then filled.

• Any remaining edges are then removed using a spur removing algo-
rithm.

• Finally, morphological opening is performed which removes small ob-
jects and smooths edges.

This process tends to find and match to the edges of the body part within
10 frames, and remain accurate throughout the remainder of the scan. As a
result, the segmentation is poor for the first few frame. This can be solved by
reversing the scan and performing the process again in reverse. By merging
the two segmentations together we can improve on the segmentation in these
early frames.

The algorithm for extracting the limbs is different. Limbs tend to move
in and out of the plane of the scan, and therefore come and go during the
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scan. They also tend to have less clearly defined edges. The approach
described here makes no attempt to differentiate between arms and legs. A
more sophisticated approach could attempt to do this.

The process revolves around segmentation using Otsu’s method [35].
This attempts to segment an image by defining a threshold such so as to
minimise the variance of the intensity values of the pixels greater than this
threshold, and of those less than this threshold and is implemented in the
Matlab function graythresh(I). The main steps of the algorithm are de-
scribed in Figure 3.34.

1: segment = find initial estimate(classifications)
2: mask(1) = segment
3: for all i = 2 to length(scan) do
4: frame = scan(i)
5: segment = mask(i− 1)
6: local mask = grow(segment)
7: threshold = graythresh(frame * local mask)
8: segment = (frame * local mask) < threshold
9: mask(i) = segment

10: end for

Figure 3.34: The main stages of the algorithm which attempts to find and
track the limbs.

The idea here is similar to that of the algorithm for extracting the head
and body.

• The first step is to take the segmentation from the previous frame and
grow it. This ensures that the area still contains the limb if it has
moved. This also has the effect of including areas of background.

• A threshold is found using Otsu’s method looking at only the pixels
covered by the grown estimate. Pixels greater than this threshold
should correspond to background, while those less should correspond
to the limb.

• The new segmentation is therefore found by selecting the pixels less
than this threshold.

3.12 Feature Tracker

In addition to the main objective the project, some work was done on a
feature tracker. The aim was to allow the user to select any point on the
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scan, and for that part of the foetus to be tracked throughout the scan. The
first attempt involved naively integrating the optical flow information, from
one point, taken directly from Matlab’s optical flow class. The result of this
was pretty poor, with quite erratic behavior, possibly due to noise. The
next step, was to take information from a larger window around the point,
and average the resulting vectors. This produced slightly better results, but
still not good enough for anything but the most simple cases. The tracker
tended to lag behind and never truly stayed with the feature during large
movements. Without any form of re-registration, any error in the tracking
will never be recovered from, and will be compounded by future inaccuracies,
leading to poor performance over a long time. A possible solution to this
problem would be to use the optical flow estimations to guide a feature
matching system to try and match sets of features in consecutive frames.
This was only attempted by trying to directly line up edge information
calculated using an edge detection algorithm. This simple approach actually
reduced the accuracy of the feature tracking. If there was more time to
work on this, the next step would be to try the same approach using a more
sophisticated method of feature extraction and matching.

However, it was possible to improve further on the pure optical flow
method. The problem with averaging the vectors from a large window is
that if there are vectors pointing in opposite directions, they will cancel each
other. This means the estimated movement vector will never be correct if
it is being influenced by vectors which are pointing in different directions.
The solution to this problem is to first decide what direction the feature
has moved in, and then average the magnitudes of the vectors pointing in
roughly that direction.

To implement this we must first assign each vector a number of ”votes”.
Vectors towards the center of the window get more votes. This is because of
the fact that the vectors from the pixels near the point we wish to track are
likely to be more important than those near the edges. We then create two
histograms, each with 8 bins. The bins correspond to different directions.
The first histogram has bins corresponding to N, NE, E, SE, S, SW, W,
NW directions. The second has bins corresponding to NNE, NEE, SEE,
SSE, SSW, SWW, NWW, NNW. Each vector is then considered in turn
and votes for one bin in each histogram, according to its direction. The
bin is incremented by the number of votes allocated to that vector. The
bin which has the most votes across the two histograms at the end of this
process will correspond to the rough direction we expect the feature we wish
to track to be moving in. A weighted average (according to the number of
votes each vector was given) of the vectors which point in this direction is
calculated, and forms the estimate we use for the movement of the feature.

The reason two histograms are used is because if the true direction of
motion is roughly between two bins, the votes will be split between the two.
In the best case, this makes our direction choice slightly out, in the worst
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case, this splitting of the votes between two bins causes a third bin to be the
biggest, and therefore chosen. Having two overlapping sets of bins avoids
both of these problems.

Using this new technique, the feature tracker sticks with the feature for
much longer and appears more robust.

As a side note, if we attempt to track a point in a scan which hasn’t
had the maternal movement removed, the feature tracker gets lost almost
instantly. This is down to the large amount of maternal movement overriding
everything else, so the feature tracker only responds to this.

3.13 Implementation Details

All of the work contained in this project has be created using Matlab. A UI,
seen in Figure 3.35, was created to aid development, however the final pro-
cess of classifying a scan is achieved by running a number of scripts. In order
to prevent the need for a scan to be processed from the raw data every time
it is used, various information about it is saved as it progresses through
the pipeline. A version of the scan after maternal movement suppression
is saved, along with the movement signatures and features extracted from
these signatures together with their temporal and spatial locations. The
collection of classification signatures for each scan are also saved on cre-
ation, along with a mask showing the locations of each feature. Finally, a
collection of all the scans are saved together for use as training data. This
final data structure also contains the number of features in each scan, to aid
cross validation, as well as the masks and spatio-temporal locations of each
feature, to allow us to generate the heat maps.

Figure 3.35: A screen-shot of the UI created to aid development

A large number of inbuilt Matlab functions were used throughout this
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project, some of the most key functions are listed below.

• imsharpen from the Image Processing Toolbox, is used to implement
the image sharpening method described in Equation 3.1.

• imadjust again from the Image Processing Toolbox, is used to enhance
the contrast as required in Section 3.3.

• fft is used to calculate the Fourier transform as described in Equa-
tion 3.3

• findpeaks is used to locate peaks in the averaged Fourier transforms
for Equation 3.5.

• ForegroundDetector System object, found in the Computer Vision
System Toolbox is used for foreground detection in Section 3.5.
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Chapter 4

Evaluation and Results

4.1 Raw Data Processing

The aim of these processes is to adjust the scans so as to improve the per-
formance of the later stages in the pipeline, in particular those which use
optical flow information, and edge detection. Therefore, a good measure of
the effectiveness of this stage would be to examine the effect it has on the
results of these operations.

The effect on the optical flow calculation can be seen in Figure 4.1. The
intensity of the image reflects the amount of movement which has been
detected in that area. As can be seen, the image corresponding to the
processed scan has significantly brighter areas of movement. A comparison
of the total amount of movement detected in each scan suggests that the
preprocessing contributed to an increase in detected movement of 69%.
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Figure 4.1: Total amount of movement detected. The scan on the left has
not been preprocessed, wheras the scan on the right has been preprocessed
to improve clarity.

The effect on the edge detection is harder to quantify in an objective way,
however by examining images of the edges detected with and without the
preprocessing steps suggests that more detail is identified in the preprocessed
image. An example can be seen in Figure 4.2. The difference can be seen
most strongly in the hand, where individual fingers are extracted in the
preprocessed image, which are not in the original.
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Figure 4.2: Edges found using a Canny edge detection algorithm. Cropped
around the foetus for clarity. Top image is not preprecessed, bottom im-
age has undergone preprocessing to improve clarity. Note the differences
between the hands (indicated).

Whilst it is not obvious that these effects will have a direct impact on
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the future processes, it is hard to argue that they are going to have a neg-
ative impact. The effect on both the movement and the edges detected
suggest more information is being extracted from a preprocessed scan than
an unprocessed one, and the ability to extract more information and detail
is likely to help when it comes to discriminating between features at a later
stage.

4.2 Maternal Movement Suppression

A visual analysis of the videos side by side show a significant reduction
in maternal breathing, at some points, completely removing it. However,
trying to apply the evaluation techniques mentioned in section 2.6 suggests
there has been no reduction. Despite the clear reduction in movement visible
in the filtered video, to the eye the average frames are identical. A com-
parison of the pixel intensities in the two images shows only the occasional
and negligible difference which can be attributed to arithmetic error in the
Fourier transforms. The reason for this comes from the fact that the average
value of a single sin wave is 0, whatever the frequency. Therefore removing
particular frequencies will not alter the average of the time series. The in-
formation in the frequency domain which corresponds to the average is held
in the 0 frequency. This means that the average frame evaluation technique
will not work when suppressing movement using Fourier transforms in this
way.

As an alternative method, an optical flow field was computed and the
average magnitude of the resulting vectors taken. The less movement there
is, the lower this average should be.

The average movement vector magnitude in an unfiltered scan is 0.0079,
whereas for a filtered scan, this number is 0.0056.

This is not enough to prove that the effects of maternal movement have
been reduced, the loss in movement could have come from other places.
However, combined with the observation that breathing does appear to have
been reduced, and in some cases eliminated in filtered scans, we can safely
say that this process does work, and is therefore a useful stage in the pipeline.

4.3 Crop

The most thorough objective method for evaluating the effectiveness of the
cropping stage would be to manually define a perfect cropping for a number
of scans, and calculate the differences between them and the automatic crop-
ping reached using the method described. Unfortunately, manually defining
a perfect cropping is quite labour intensive. Instead, we can subjectively
approximate this method by examining the automatic cropping of each scan
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and classify them to reflect the quality of the cropping around the foetus.
The results of this analysis can be seen in table 4.1.

The ideal cropping would include the whole foetus and no maternal tis-
sue. As it is more important to avoid losing foetal tissue than to eliminate
all the maternal tissue, morphological operations were chosen which were
more likely to lead to an over estimate of the foetal area than an underes-
timate. With this in mind, the cropping can be considered to have failed
in just 19% of cases - Those with any loss of foetal tissue or when it failed
to crop at all. Of the remaining 81%, the majority can be considered good,
whilst the rest are acceptable.

No crop 2

Significant maternal tissue remaining - Figure 4.3 15

A small amount of maternal tissue remaining - Figure 4.4 28

Loss of a small amount of foetal tissue - Figure 4.5 3

Loss of a significant amount of foetal tissue - Figure 4.6 5

Table 4.1: Table describing the quality of cropped scans produced by the
cropping system.

Figure 4.3: An example cropping with significant maternal tissue remaining.
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Figure 4.4: An example cropping with little maternal tissue remaining.

Figure 4.5: An example cropping with little loss of foetal tissue.
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Figure 4.6: An example cropping with significant loss of foetal tissue.

4.4 Motion Detection

Since all the scans in the data set have been previously classified, evalu-
ating the performance of the motion detection method is simply a matter
of comparing the results to my manual classifications. A summary of this
comparison can be seen in Table 4.2.

Movement No movement

Movement 53 3

No movement 14 19

Table 4.2: A confusion matrix showing the results of classifying scans accord-
ing to whether there is any significant foetal movement. Rows correspond to
the true classification while columns correspond to how they are classified
using the technique described.

This gives us an accuracy of 81%. As can be seen from the Table 4.2, the
majority of the inaccuracies come from incorrectly classifying scans contain-
ing no movement as having movement. We could adjust the threshold to
try and improve on this, however that would likely result in a larger number
of scans containing movement being classified as not containing movement.
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The performance in this regard is very good, with a sensitivity to movement
of 95%. Considering the system as a whole, we would rather a scan contain-
ing no movement to be classified as having movement than vice versa. We
don’t want to be filtering out perfectly valid scans, whereas allowing scans
with no movement to progress to the later stages will not cause problems.

4.5 Movement Signatures

To evaluate the performance of this stage, a number of scans were selected
at random and the results examined. We can treat the process as dividing
the scan into examples of movement and no movement, which means we
treat it as a classification problem. For each scan selected, every period it
was divided into was examined and labelled as containing foetal movement
or not. This labelling was then compared with the classification given and
the confusion matrix shown in Table 4.3 could be created.

Movement No movement

Movement 56 5

No movement 16 47

Table 4.3: A confusion matrix showing the results of extracting movement
signatures. Rows correspond to the desired classification while columns
correspond to how they were classified.

These results give us an accuracy of 83%. Periods which contained foetal
movement, but were mistakenly classified as not containing foetal movement
tended to contain very short movements of a single body part, lasting two
frames or less. Periods which did not contain foetal movement which were
classified as containing foetal movement usually contained a global shift in
the mother’s position. These shifts, though short, cause a lot of movement
to be detected, which is mistaken for a longer period of foetal movement.

4.6 Identification of Body Parts

The one major drawback to this approach is that parts of the foetus which
don’t move will not form part of a cluster. However this does not prove to
be a significant omission, since there is usually enough movement to extract
enough features to be able to locate the foetal body parts.

In order to evaluate the performance of this stage, a random subset of
processed periods of movement have been examined along with the features
extracted in order to ascertain what proportion of the foetus has been iden-
tified. It is easy to see what part of the foetus has been identified in each
extracted feature. Since we are aiming to locate the head, body, legs and
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arms, it is a simple task of seeing which of these have been identified in each
period of movement. Table 4.4 shows the results of this analysis.

The results show that approximately 19% of body parts are not identified
through clustering. The majority of these are arms at 32%. The most likely
reason for a body part not to be identified is if there is insufficient movement
to make it stand out from the background. The fact that arms are the most
missed body part is not surprising, as it tends to be arms which exhibit the
least movement.
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Present Identified

Scan Segment Head Leg Arm Body Head Leg Arm Body

1 1 × × × × × × × ×
1 2 × × × × × × × ×
2 1 × × × × × × × ×
2 2 × × × × × × ×
2 3 × × × × × × ×
2 4 × × × × × × × ×
2 5 × × × × ×
2 6 × × × × × × ×
3 1 × × × × × × ×
4 1 × × × × × ×
4 2 × × × ×
5 1 × × × × × × × ×
6 1 × × × × × × ×
6 2 × × × × × × ×
7 1 × × × × × ×
7 2 × × × × × × ×
8 1 × × × × ×
9 1 × × × × × × × ×
9 2 × × × × × × × ×
9 3 × × × × × × ×
9 4 × × × × × × ×
9 5 × × × × × × ×
9 6 × × × × × × × ×
9 7 × × × × × × × ×
9 8 × × × × × × × ×
9 9 × × × × × × × ×
9 10 × × × × × × ×
10 1 × × × ×
10 2 × × × ×
10 3 × × × ×
10 4 × × × ×
10 5 × × ×
10 6 × × × ×

Total 34 28 31 28 34 21 21 22

Percentage 100 75 68 79

Table 4.4: A table showing results of analysis of 10 randomly selected scans.
Columns 3 to 6 indicate what body parts are visible in the scan. Columns
7 to 10 indicate what body parts were identified through clustering.
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4.7 Initial Classifications

Combined results

There are many well established ways to measure the performance of a clas-
sifier, see section 2.6. It is important to remember that, as we are training
on all of the available data, we must also ensure that when testing the per-
formance of the classifier on one of these scans, the features from that scan
are not included in the training data. If not, there will be examples of
the feature we are looking to classify already labeled in the training data,
thereby biasing the results considerably. By using leave-one-out cross vali-
dation, which involves testing performance on each scan in turn, using the
remaining scans as training data, the following results were achieved. Ta-
ble 4.5 shows the aggregated confusion matrix over the whole data set while
Table 4.6 summaries a number of measurement statistics.

The high sensitivity and low specificity for locating heads is as a result
of there being significantly more examples of heads in the data set than
other features. This leads to head being treated as a default classification.
However, these measurements are assuming each feature is assigned its most
likely class as a result of classification. This will not be the case in the later
stages of the pipeline, as each feature retains a certain probability to be of
a particular class. The extremely low sensitivity for the body, arm, leg and
maternal is also a result of this.

Another interesting observation is how there appears to be difficulty
distinguishing between a body and a leg, reflected in both the confusion
matrix and the precision metric. This as a result of the training labellings
given to features, more than a reflection on the quality of the classifier.
Due to the way clustering is performed - by looking for areas with common
movement patterns - it is quite often the case that both the leg and lower
back move at the same time, which causes the feature to cover both the
leg and some of the body. Labeling such features is a challenge, and is
taken on a case by case basis. The decision would be made on what label
to give such features based upon what we would have ultimately liked the
feature to be classified as, which tended to be whichever body part took
up most of the feature. As a result, a number of features which contained
both body and leg were classified as leg, and some were classified as body.
This means that differentiating between features containing legs and bodies
becomes more difficult. Fortunately, this will also not pose a great problem,
since it is likely that the probabilities connected to such scans are high for
both leg and body which, ultimately, is exactly how we would like a feature
containing both head and body to be considered.

Finally, it is worth noting how the precision statistic corresponding to the
classification of arms is significantly higher than in all of the four individual
classifiers. This shows that by calculating a probability using each classifier
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and then combining them, we are able to correctly classify features which
we would otherwise have misclassified.

Head Body Arm Leg Maternal

Head 908 56 13 32 40

Body 269 158 23 55 73

Arm 144 37 78 38 26

Leg 242 74 40 68 57

Maternal 83 69 4 25 163

Table 4.5: A confusion matrix showing the results of classification using all
4 signatures. Rows correspond to known values while columns correspond
to how they are classified.

Sensitivity Specificity Precision

Head 0.87 0.57 0.55

Body 0.27 0.89 0.4

Arm 0.24 0.97 0.49

Leg 0.14 0.93 0.31

Maternal 0.47 0.92 0.45

Table 4.6: A summary of the statistics corresponding to classification using
all 4 signatures.

Whilst an accuracy of just 47.2% is quite low, it is important to remem-
ber that these values have been calculated assuming each feature is classified
as what is seen to be most likely. This figure will be improved upon in the
refinement stage, when we use the probabilistic information to improve the
classifications.

Another method of measuring the performance of a classifier is through
a ROC curve. We consider each classification as a binary classification as
either of a particular class, or not of that class and plot the true positive
rate against the false positive rate as the probability required to be classified
as that class ranges form 0 to 1. The area under the ROC curve (AUC) can
be used as a measure of performance.

ROC curves for the five different classes can be seen in Figure 4.7.
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(a) ROC curve for head classifica-
tion

(b) ROC curve for body classifica-
tion

(c) ROC curve for arm classification (d) ROC curve for leg classification

(e) ROC curve for maternal tissue clas-
sification

Figure 4.7: ROC curves for each class.

The AUC statistics for these curves are:

• Head - 0.81

• Body - 0.64

• Arm - 0.76

• Leg - 0.61

• Maternal tissue - 0.81

• Average - 0.73
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These values reinforce our previous results, showing the classifier per-
forms best when classifying heads and maternal tissue, and worst when
classifying bodies and legs.

An interesting observation from the development of this classifier is how
the classification rate increased as more data was added to the training set.
By training on just a certain percentage of the training data, we are able to
plot a graph of the relationship between the number of training examples
and classification rate, seen in Figure 4.8.

Figure 4.8: Learning curve showing the relationship between the percentage
of training data used to train the classifiers and the accuracy of the resulting
classifications averaged over each scan in the data set.

As expected, the more data in the training set, the better the accuracy
of the resulting classifiers. However it is interesting to note that the per-
formance is still improving up to the point at which all the data is used.
This suggests that if we had more data to train on the accuracy could still
increase.

Individual Signature Results

Evaluating the performance of the individual classifiers allows us to ensure
that each signature provides good discriminatory power to aid classification.
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• Movement Weighted Histogram of Oriented Gradients
Performing initial classification using only this signature gives the re-
sults shown in Table 4.7 and Table 4.8. This corresponds to an ac-
curacy of 35.0%. Performance appears to be best when it comes to
identifying heads. This is perhaps not unexpected, as there are a
larger number of example of heads in the training data than of other
body parts. This also causes head to act as a default class should
a feature be difficult to classify, and is the reason for the low speci-
ficity. There also appears to be difficulty distinguishing between legs
and arms. Given this signature looks at the shape of the feature, it is
again unsurprising that it struggles to discriminate between arms and
legs, which often have a similar shape.

Head Body Arm Leg Maternal

Head 633 145 42 70 159

Body 254 135 29 64 96

Arm 152 48 26 54 43

Leg 228 71 49 74 59

Maternal 143 66 11 15 109

Table 4.7: A confusion matrix showing the results of classification using
the Movement Weighted Histogram of Oriented Gradients signature. Rows
correspond to known values while columns correspond to how they are clas-
sified.

Sensitivity Specificity Precision

Head 0.6 0.55 0.45

Body 0.23 0.85 0.29

Arm 0.08 0.95 0.17

Leg 0.15 0.91 0.27

Maternal 0.32 0.85 0.23

Table 4.8: A summary of the statistics corresponding to classification using
the Movement Weighted Histogram of Oriented Gradients signature.

• Texture Information
Performing initial classification using only this signature gives the re-
sults shown in Table 4.9 and Table 4.10, corresponding to an accuracy
of 44.5%. As can be seen, this signature looks to be very effective
at identifying maternal tissue, and reasonably effective at identifying
heads and arms. Unfortunately, it has poor performances when it
comes to bodies and legs. If fact, there is little evidence to suggest
that it can discriminate between them at all.
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Head Body Arm Leg Maternal

Head 810 126 35 56 22

Body 264 137 51 63 63

Arm 76 52 126 67 2

Leg 195 100 88 75 23

Maternal 65 95 14 28 142

Table 4.9: A confusion matrix showing the results of classification using
the Texture Information signature. Rows correspond to known values while
columns correspond to how they are classified.

Sensitivity Specificity Precision

Head 0.77 0.65 0.57

Body 0.24 0.83 0.27

Arm 0.39 0.92 0.4

Leg 0.16 0.91 0.26

Maternal 0.41 0.95 0.56

Table 4.10: A summary of the statistics corresponding to classification using
the Texture Information signature.

• Motion Histogram
Performing classification using only this signature gives the results
shown in Tables 4.11 and 4.12, giving a 35.0% accuracy. This signature
also suffers when it comes to discriminating between legs and bodies,
as well as with maternal tissue.

Head Body Arm Leg Maternal

Head 620 144 38 108 139

Body 247 106 26 86 113

Arm 122 54 34 42 71

Leg 192 96 19 72 102

Maternal 92 73 9 41 129

Table 4.11: A confusion matrix showing the results of classification using
the Motion Histogram signature. Rows correspond to known values while
columns correspond to how they are classified.
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Sensitivity Specificity Precision

Head 0.59 0.62 0.49

Body 0.18 0.83 0.22

Arm 0.11 0.96 0.27

Leg 0.15 0.88 0.21

Maternal 0.38 0.83 0.23

Table 4.12: A summary of the statistics corresponding to classification using
the Motion Histogram signature.

• Fourier Descriptor of Movement Information

Performing classification using only this signature gives the results
shown in Table 4.13 and Table 4.14. This gives us an accuracy of
39.8%. As can be seen from the precision statistics, the classifier also
appears to work well when it comes to identifying heads and maternal
tissue, but less well when discriminating between the other classes.

Head Body Arm Leg Maternal

Head 757 111 69 79 33

Body 235 181 40 64 58

Arm 206 53 34 22 8

Leg 256 100 19 67 39

Maternal 90 76 9 52 117

Table 4.13: A confusion matrix showing the results of classification using the
Fourier Descriptor of Movement Information signature. Rows correspond to
known values while columns correspond to how they are classified.

Sensitivity Specificity Precision

Head 0.72 0.54 0.49

Body 0.31 0.85 0.35

Arm 0.11 0.94 0.2

Leg 0.14 0.91 0.24

Maternal 0.34 0.94 0.46

Table 4.14: A summary of the statistics corresponding to classification using
the Fourier Descriptor of Movement Information signature.

89



4.8 Refine Classifications

Performance of this refinement stage can be measured in the same way
as for the initial classification. Table 4.15 shows the aggregated confusion
matrix over the whole data set, whilst Table 4.16 summaries a number of
measurement statistics.

Head Body Arm Leg Maternal

Head 894 61 21 59 24

Body 224 180 29 93 54

Arm 90 85 90 55 3

Leg 139 176 21 108 42

Maternal 42 109 8 29 156

Table 4.15: A confusion matrix showing the results of classification after
refinement. Rows correspond to known values while columns correspond to
how they are classified.

Sensitivity Specificity Precision

Head 0.84 0.71 0.64

Body 0.31 0.81 0.29

Arm 0.28 0.97 0.53

Leg 0.22 0.9 0.31

Maternal 0.45 0.95 0.56

Table 4.16: A summary of the statistics corresponding to classification after
refinement.

An accuracy of 48.5% suggests there has been very little improvement on
the initial classification. Comparisons of results indicate that there may be
small improvements in the classification of particular features, most notably
legs, however the overall accuracy has hardly increased. As this is quite a
small increase, despite a seemingly sound process, it is important to look
beyond these statistics. In order to find out why the improvement is so
small, a more in depth analysis of the results has been performed, looking
at performances on individual scans. In particular, comparing the results
of initial classification of the scan to the performance of the refinement
process. Table 4.17 displays the performance for each of the scans in the
data set, recording the accuracy of the initial classification, which stages of
the refinement process were successful, and the accuracy after refinement.
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Located

Scan Initial Accuracy Head Body Arm Leg Final Accuracy

1 0.94 × × × × 1

2 0.8 × × × × 0.88

3 0.36 0

4 0.31 0.19

5 0.22 × × × 0.59

6 0.52 × 0.57

7 0.52 × 0.24

8 0.74 0.74

9 0.31 × 0.27

10 0.68 × × × × 0.82

11 0.66 × × × 0.81

12 0.34 × 0.34

13 0.25 0.16

14 0.77 × × 0.79

15 0.82 × 0.74

16 0.79 × 0.70

17 0.52 × × × 0.71

18 0.3 × × 0.44

19 0.2 × 0.29

20 0.37 × 0.34

21 0.18 0.25

22 0.42 × × 0.51

23 0.83 0.75

24 0.31 0.31

25 0.3 0.14

26 0.64 × 0.64

27 0.25 × 0.28

28 0.16 × 0.25

29 0.52 × × × × 0.63

30 0.68 × × 0.84

31 0.3 0.23

32 0.4 0.3

33 0.31 × 0.35

34 0.33 × 0.33

35 0.37 × × 0.63

36 0.6 × 0.66

37 0.51 × 0.69

38 0.59 × × 0.5

39 0.63 × 0.46

Continued on next page
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Table 4.17 – continued from previous page

Located

Scan Initial Accuracy Head Body Arm Leg Final Accuracy

40 0.5 × × × 0.68

41 0.2 0.08

42 0.53 × 0.49

43 0.73 × × × 0.90

44 0.76 × × × 0.76

45 0.52 × 0.36

46 0.57 0.52

47 0.38 × 0.38

48 0.53 × 0.53

49 0.29 × 0.43

50 0.44 × 0.48

51 0.14 0.16

52 0.48 × 0.44

53 0.47 0.11

Table 4.17: A table showing results of more in depth analysis of the refine-
ment process, recording the initial accuracy, what body parts were correctly
located during the refinement process, and the post refinement accuracy.
Note that scans 8, 23 and 46 are scans where cropping failed, and so contain
mostly maternal tissue.

There are a number of observations we can make and conclusions we can
draw from this information.

Firstly, as would be expected, the final accuracy depends a lot on both
the initial accuracy, and the performance of the refinement process. The ac-
curacy of scans in which three or four body parts were correctly located in-
variably improves through refinement, whilst the accuracy of scans in which
no body parts were located nearly always reduced through refinement.

In fact, as long as the head is correctly located, the accuracy rarely gets
worse, and only ever by a small amount. A closer examination of the scans
in which the head is not correctly located will therefore provide a better
understanding as to under what conditions the refinement fails. Scans 8,
23 and 46 retain a reasonably good accuracy due to the fact that they are
mostly made up of maternal tissue. The average initial accuracy of the
the remaining 15 scans is just 26%. It is a lot to ask for the refinement
process to be successful when the initial classifications are so inaccurate.
The fault therefore lies in the initial classification stage. An improvement
here, perhaps as a result of more training data, or improved signatures,
could have a large impact on the final accuracies.

The only scans which have a high initial accuracy and a significantly
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reduced final accuracy are 7 and 53. In the case of scan 7, the the lower
body of the foetus appears to have some of the characteristics of a head, see
Figure 4.9. This leads to the head being mis-located, and hence the rest of
the features are also misclassified.

Figure 4.9: The first frame from scan 7. Note how the lower back / leg look
similar to the head.

Scan 53 includes a lot of maternal tissue, but very little of it moves, so
is not extracted as a feature. This means that the area which contains the
foetus occupies a small part of the scan. One of the assumptions made when
trying to locate the location of a body part from a heat map is that it is likely
to be of a particular size relative to the scan. This assumption is correct in
the vast majority of scans, and is necessary to produce an accurate estimate
of the location, however in this case, it leads to the estimated location of
the head to cover most of the foetus.

These cases go to show how difficult it is to design a system which will
work well in all cases, and that often it is necessary to reduce the performance
on a minority of cases, in order to increase it for the majority.

A potential source of inaccuracy remaining in the cases where refinement
appears to be successful is from the labellings of the features. It is possi-
ble to argue for many features that they could be labelled differently, see
Figure 4.10. In fact, it is likely that a fully successful refinement process,
where each body part is correctly located, proves to be more accurate than
the labels manually assigned to each feature.
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Figure 4.10: An extracted feature. Should this be labelled as an arm, leg,
or head?
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Chapter 5

Uses Cases and Future Work

Since cinematic MRI is such a new technology, there are a huge number of
areas still to explore. The tool that has been created in this project can be
the starting point for many different areas of research, a few of which are
summarised below.

3D Segmentation

During this project, the scans used have been covering two dimensions +
time. However, cinematic MRI scanners can record scans in three dimen-
sions + time. Many of the techniques used can be expanded to cover three
dimensions, potentially to the extent that an animated 3 dimensional model
of the foetus can be automatically created. The potential uses of this for
both diagnostic and research purposes would be huge.

Improved Feature Tracking

The feature tracker developed is very primitive, and has a lot of room for
expansion and improvement. The utility of the tracker can be improved by
tracking multiple points and automatically locating points to track. The
actual tracking could be improved by using a feature extraction method to
re-register the tracker and avoid drift over time.

Twins

In order to reach a reasonable classification rate, we had to make the as-
sumption that there was only one foetus in the scan. If these technique were
to be used on a scan containing twins the scan would have to be manually
cropped to just one foetus at a time, else the results would be very poor.
However, modifying the various algorithms with twins in mind would allow
for a system with similar performance to be created.
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Improved Classification Signatures

There is still room for the system developed to be improved. No stage of the
pipeline yielded perfect results, and there is room for improvement in each.
In particular, the signatures used to discriminate between different feature
types could probably be improved. A higher initial classification rate could
significantly improve the performance of the rest of the classification process.
A significantly higher classification rate could reduce the need for further
refinement entirely.

Other Areas of Medical Image Analysis

The techniques developed could, with sufficient alterations, be used in other
areas of medical image analysis. For example, the technique used to reduce
the effects of maternal breathing could well be used to reduce the effects of
heartbeat in cardiac scans.

Automatic Recognition of Abnormal Foetal Move-
ment

There is evidence to suggest that the type and extent of foetal movement can
be used as an indicator of foetal health [4]. The system developed provides a
perfect platform to investigate techniques to identify abnormal movement.
One such method could be to create a timeline of movement throughout
the scan and to use machine learning techniques to see if it is possible to
discriminate between the timelines of scans containing normal and abnormal
movements. This would allow us to see if there are certain combinations of
movements which are indicative of abnormal movement. Another area to
explore would be to look closer at the movement profiles of individual body
parts and compare these between scans of normal and abnormal foetuses.

Still Foetuses

One of the major limitations of the system developed is that it requires a
certain degree of foetal movement in order to segment and classify a scan.
Similar techniques could be developed which attempt to use raw pixel in-
tensity levels and pattens to differentiate between different body parts.
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Chapter 6

Conclusion

In this project, we have shown that it is possible to correctly locate, extract
and identify foetal body parts by using a mixture of traditional computer
vision techniques and machine learning. We have produced a processing
pipeline and, by analysing each stage individually, are able to say with
confidence that it performs to a reasonable standard. As a result, we have
opened up several areas of future research by automating procedures which
would previously have been highly labour intensive. As well as this, we
have shown that it is possible to extract a lot of information from foetal
cinematic MRI scans. The work we have done could form the foundation of
a broad investigation into many different uses of foetal cinematic MRI scans
for both diagnostic purposes, and for better understanding of early human
development.

We have also provided a number of techniques which could have addi-
tional applications across other areas of research. For example, the tech-
niques used to suppress periodic movement and then identify periods of
unusually activity, could perhaps have applications in identifying abnormal
heart rhythms from a video. The use of HoG weighted by optical flow mag-
nitudes to create a signature for a moving object could also have a wide
range of applications in computer vision.

Finally, we have provided proofs of concept for a feature tracking tool
and tool to either fully segment or extract individual body parts from a
scan, which demonstrate some of the potential uses of our system. We were,
however, unable to do any work regarding the bonus objective mentioned in
Section 1.2.3.

6.1 Lessons Learnt

It has become clear to me over the course of this project that there is a
lot of research potential in this area, and I feel I have barely scratched the
surface of what could be a very important resource in the quest to better
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understand human development. Hopefully what I have managed to achieve
and the techniques I have used can aid future work in this area. I have
demonstrated one of the potential uses of my work in the full segmentation
of body parts, however there are many other areas which can be explored
with the aid of this system, see Chapter 5 for some examples.

I would like to have been able to achieve more over the course of this
project, there are so many interesting areas I would have liked to have looked
at had I the time. However, initially I did not appreciate the challenges
involved when working with these cinematic MRI scans and am ultimately
pleased with what I achieved. The hardest challenge has been to deal with
the huge variance between scans - See Figure 6.1. Each stage in the pipeline
must attempt to handle all kinds of scan. Creating systems which generalise
so well to different types of scan, yet are powerful enough to perform their
desired function to the level required has proved to be very challenging and
compromises have had to be made.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: The first frames taken from a random sample of 6 scans. Note the
variation in contrast, position, poise, size and the appearence and amount
of maternal tissue.

Working with Matlab has definitely benefited me greatly over the course
of the project. The large number of in built functions have allowed me
to spend much more of my time investigating, developing and evaluating
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different methods than I would have had if I had to implement all these
functions myself. This means I have been able to progress much further and
cover a large range of areas, despite the challenges involved.

Overall I feel the project has been a success. I have managed to achieve
my initial objective, as well as a number of side objectives. I have produced a
classification system which, whilst not perfect, performs significantly better
than random, and demonstrated that it can be used effectively in practical
situations. There are, however, a number of limitations which should be
discussed.

Firstly, the number of scans from the data set which could be used in
the system is quite low. This is mainly as a result of short scans being
removed. This decision was taken because short scans tended not to exhibit
enough movement to be successfully processed. An improved system may
include special cases for shorter scans, and use different techniques to the
movement based ones used in this system. Scans including twins were also
removed from the data set as some techniques used assume, for example,
that there will only be one head present in the scan. This could be overcome
by manually partitioning the scan prior to processing, or though another
stage of the pipeline which identifies the presence of twins and partitions
accordingly.

The classification stage also had its limitations. There is a high variance
in the performance of the initial classifier, which is made even larger through
the refinement process. This means that while, on average, classification is
relatively successful, in a significant number of cases it fails catastrophi-
cally. Before this tool can be used with confidence, these stages should be
improved.
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Chapter 7

Appendix

7.1 Signature examples

7.1.1 Movement Weighted Histogram of Oriented Gradients

Format: Feature — Edges — Weights — Signature
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7.1.2 Texture Information

Format: Feature — Signature
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7.1.3 Motion Histogram

Format: Feature — Signature
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7.1.4 Fourier Descriptor of Movement Information

Format: Feature — Log of magnitude of Fourier transform — Signature
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