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Abstract

The World Wide Web now reaches billions of users worldwide. It is used to run a wide
range of applications for which security and privacy are essential. Web security is difficult.
Even when a web developer follows all best security practices when developing and hosting
his application, this is not always enough: he must still rely on his users to use a secure
web browser when accessing his application. Whilst all web developers must assume that
their users’ browsers implement standard security features that have existed for many
years, many of today’s web applications also make use of modern security features that
are also important.

The web browser world is incredibly diverse. Given any browser, it is difficult to determine
precisely which browser security features it correctly implements. We explore a novel
approach to browser security testing by automatically assessing the security of a browser
with a web application. The resulting application, BrowserAudit, is able to test the
security features of a browser by carefully combining the server- and client-side of the
application. This means that we can assess the security of a browser by visiting a webpage.
We face two key challenges in this project. Firstly, given a browser security feature, we
must determine how best to test its implementation. We must then find a method to
automatically test the feature in a way that works in all major browsers, with no input
or interaction required from the user.

Our web application is able to automatically assess the security of most browsers with
good accuracy. As a proof of its usefulness, BrowserAudit identifies two security bugs in
the latest version of Mozilla Firefox. Looking towards the future, we propose many addi-
tional security features that BrowserAudit could test, as well as discussing the possibility
of open sourcing the application to invite other developers to build upon our existing
test coverage.
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1 Introduction

1.1 Motivation

The World Wide Web began as an exclusive system, used by just a handful of technically-
minded individuals to share simple webpages about themselves and their work with other
users around the world. Just a little over twenty years later, the Web now represents
a medium reaching billions of casual users worldwide. The Web’s rate of growth was
phenomenal; it has evolved into a widely-used platform not just for simple static content,
but for a wide range of complex interactive applications.

The Web originally consisted entirely of static content: simple pages of hypertext that
could link between each other. We then started producing these pages on demand,
customising the contents of the page for each individual user. With a 1995 release of
the Netscape Navigator browser came JavaScript [28], a client-side scripting language
that is used extensively today to add even more interactivity to webpages. We have
XMLHttpRequest, an API allowing asynchronous HTTP communications between client-
side JavaScript and the server without the need to load a new webpage. The introduction
of this API into JavaScript resulted in a new wave of responsive web applications – called
“Web 2.0” at the time – further contributing to the growth of the Web.

With the Web’s growth came an increased need for security. The platform is currently
being used to run more and more applications in which security and privacy are essential.
Such applications include online banking, cloud storage of documents and photos, and
private communications such as email clients and instant messaging. In the last two years,
cryptocurrencies such as Bitcoin have gained popularity, with plenty of web applications
arising to facilitate the storage and spending of these digital funds. When the Web was
first proposed, no one could have predicted just how big it would become, and hence
not as much consideration was paid towards security as would be if the entire system
were to be redesigned from scratch today. Whilst lots can be done on the server-side of
a website to ensure its security, web application developers must also rely on the web
browsers used by their visitors to access their websites to correctly implement various
standard security features. Without these security features, the Web as we use it today
could not be considered secure.

Many web browser features are implemented first and standardised afterwards. Experi-
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mental implementations are rolled out first; keen web developers then begin using these
features immediately, at which point other browser vendors may choose to copy the fea-
ture and write their own implementation. Eventually, if the feature becomes popular
enough, it may be standardised formally by a body such as the World Wide Web Con-
sortium (W3C). By this point, however, it is often already the case that there is a lack
of standardisation across browsers. The fact that many browser features begin as ex-
perimental implementations can also lead to undesirable designs that can’t be changed.
This pattern perhaps began as early as 1994, when Netscape’s first implementation of
web cookies led to a scenario in which there was no accurate or official account of cookie
behaviour in any modern browsers [41]. The four-page proposal of a single Netscape
engineer [30] quickly became the de facto standard for cookies, and laid the heavy found-
ations for how we use cookies today. Many developers have written about problems in
the design of the cookie system we use today, and a “Cookies 2.0” specification was even
proposed [26], but the current system is far too widely adopted for it to be changed
now. More recently, a browser security feature known as the Content Security Policy
was born in experimental implementations. As such, in order to achieve maximum com-
patibility across all browsers, a developer must now use three different HTTP headers to
achieve the same thing: Content-Security-Policy, X-Content-Security-Policy, and
X-WebKit-CSP. All of this is a side-effect of the Web’s rate of growth, and can make it
very difficult to keep track of and standardise browser security.

The web browser world is highly diverse: there exist many different browsers, of which
there are multiple versions covering a myriad of operating systems and hardware plat-
forms. The big five are Mozilla Firefox (which evolved from the Netscape Navigator
browser mentioned above), Google Chrome, Internet Explorer, Safari, and Opera. There
are many derivatives of these, however, based on the underlying engines such as WebKit
and Chromium. There are also many applications in the wild that embed customised
browsers, for example Valve’s popular Steam gaming client uses the Chromium Embed-
ded Framework to render web content [11]. Some ATMs have been seen in the wild
using Internet Explorer 6! An incredibly old version of the browser which wouldn’t be
considered secure by many today, yet is seemingly responsible for handling cash transac-
tions. Each browser vendor is responsible for ensuring the security of their product across
all such platforms but, at present, there is no good way to confirm whether or not a given
browser has a complete set of standard security features correctly implemented.

There are still browsers in use today that do not implement the security features that
we would expect a modern-day browser to implement. According to current Google Play
Store statistics, 20.0% of devices running the Android platform use Android 2.3 Ginger-
bread [12]. This is unsettling, since Gingerbread’s default browser fails to implement
many standard security features such as the HttpOnly cookie flag and Strict Transport
Security [19]. The lack of an HttpOnly cookie implementation is especially hard to be-
lieve, since it is a security feature that has been implemented in all major browsers for
many years [22].

2



1 Introduction

1.1.1 Objectives

The goal of this project is to create a web application, accessible primarily as a webpage,
that tests the security features of the browser used to access the page. The security tests
will run automatically, requiring minimal interaction from the user. The application will
produce a comprehensive report for the user of those features that are implemented cor-
rectly, and those that are not and therefore contain vulnerabilities. There are a number
of beneficiaries who could make use of this application, namely browser developers, se-
curity researchers, penetration testers, and even security-conscious users. Provided that
the application front-end isn’t overwhelmingly technical, our application could also be
used by more typical web users to educate them on browser security and the importance
of keeping their browser(s) up to date.

We plan to achieve this by having the server-side of our application make use of as many
browser security features as possible. The client-side of our application will then be used
to ensure that these features are correctly implemented and report any issues to the user.
This is an interesting problem because, for each security feature, we must come up with
a means of testing it. In addition to this, we must implement the tests so that they run
automatically with no input required from the user. All of this must be achieved whilst
ensuring that our implementation works in as many different web browsers as possible.

1.2 Contributions

We have produced a web application, BrowserAudit, that automatically tests the imple-
mentations of various security features in the browser used to access it. BrowserAudit
automatically executes over 300 tests. We chose to implement a selection of tests that
covers both the most important browser security concepts (features that should be imple-
mented in any browser) and modern security features that are not yet implemented by
all of today’s major browsers. We have designed the user interface of our application so
that it can educate web developers and security-conscious web users about the security
features we test. We provide textual descriptions of each security feature, and hope that
by showing each individual test result, a user will be able to gain a better understanding
of each security feature.

BrowserAudit has been developed in a way that allows new tests to be added in a simple
and modular manner. We consider the possibility of releasing the source code to the
public shortly, inviting like-minded developers to build upon our current codebase to test
even more browser security features.

We have been able to evaluate the usefulness of our project already, since it identifies
two security bugs in the latest version of Mozilla Firefox, a popular browser with 20.4%

3
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usage share for desktop browsers as of January 2014 [35]! We reported the bugs to the
Firefox development team, who promptly accepted them as valid bugs.

Our application is online today and can be accessed at https://browseraudit.com/.

1.3 Report Structure

The remainder of this report is separated into six chapters:

• Background (page 5) — we cover the technical background necessary to explain how
our browser tests work, by first discussing the basics of HTTP and then describing
various browser security features in detail. We also discuss related work discovered
during our background research for the project;

• Design (page 37) — we discuss the implementation languages chosen and the key
libraries used. We showcase our front-end website design with screenshots. We also
describe our server-side system architecture;

• Implementation (page 50) — general implementation topics. We discuss how our
custom web server is implemented and important common code that is relevant to
each of our browser tests;

• Browser Tests (page 61) — we explain how we are able to automatically test the
browser security features described in the Background chapter, and problems en-
countered along the way. This involves describing the implementations of the tests,
supplemented with code listings and diagrams where appropriate;

• Evaluation (page 106) — we evaluate the success of our project. This includes
discussing limitations of BrowserAudit in its current state, as well as assessing the
project through primarily qualitative metrics;

• Conclusions (page 117) — closing thoughts. The majority of this chapter is the
Future Work section, in which we propose various improvements that could be
made to the project in the future.

4
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2 Background

In this chapter we first describe the basics of the Web, focusing primarily on the hypertext
transfer protocol. We also use this background chapter to describe in detail the security
features that BrowserAudit will test. This is necessary in order to understand how we
test the features later on in Chapter 5. In Section 2.3 we discuss related work discovered
during our background research for the project.

2.1 Web Basics

In this section we describe the basics of how the Web works. This is important in order
for us to be able to describe how various browser security features work in Section 2.2,
and how we test them in Chapter 5.

Although many people refer to the Web and the Internet synonymously, this is not correct.
The Web is just one of many applications running on the Internet. Other common
examples of Internet applications include email and DNS (domain name system).

2.1.1 Hypertext Transfer Protocol

The Web uses the hypertext transfer protocol (HTTP) for requests and responses. HTTP
is an application protocol at level 7 of the OSI networking model. It presumes an under-
lying and reliable transport layer protocol, and is most commonly used with TCP. The
Web typically uses HTTP on port 80 for unencrypted requests and port 443 for secure
(HTTPS) requests which are discussed in more detail in Section 2.1.2.

HTTP is a request/response protocol with a client and a server. In the case of the
Web, a web browser is the client and makes requests to a web server. The server replies
to these requests with responses. For example, a browser might send a request for a
specific webpage http://example.com/index.html. The server’s response will include
the contents of the document as well as other information about the request. An example
of how this request might look is shown in Listing 1.
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1 GET /index.html HTTP/1.1

2 Host: example.com

3 Accept: */*

1 HTTP/1.1 200 OK

2 Server: nginx/1.4.6 (Ubuntu)

3 Date: Sun, 01 Jun 2014 13:31:56 GMT

4 Content-Type: text/html

5 Content-Length: 164

6 Last-Modified: Sun, 01 Jun 2014 13:31:34 GMT

7 Connection: keep-alive

8 Vary: Accept-Encoding

9 ETag: "538b2b36-a4"

10 Accept-Ranges: bytes

11

12 <!DOCTYPE html>
13 <html lang="en">

14 <head>

15 <meta charset="utf-8" />

16 <title>Test Page</title>

17 </head>

18 <body>

19 <h1>Hello, world!</h1>

20 </body>

21 </html>

Listing 1: An example HTTP request and response for an HTML webpage

In line 1 of the request we can see that the client is making a GET request for /index.html.
It also states that it is using version 1.1 of the HTTP protocol. Here, GET is known as
a request method (sometimes also known as HTTP verbs). GET is the most common of
these methods, and requests a representation of the specified resource. The other two
most common methods are HEAD and POST. HEAD requests a response identical to the one
that would be returned after a GET request, but without the response body. This means
that the server will return only the response headers, i.e. lines 1–10 in Listing 1. The
POST method is used to request that the server stores some data enclosed in the request’s
body. For example, when one submits a registration form on a website, the form data
will likely be transmitted in a POST request. The three verbs discussed so far are the only
methods defined in the HTTP 1.0 specification [5]. HTTP 1.1 saw the introduction of
many new methods, including an OPTIONS method to request the methods supported by
the server for a given URL [15].

6
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Request Headers

The remainder of the HTTP request (lines 2–3 in Listing 1) consists of request headers.
We can see the Host header which specifies the domain name (and possibly port) of
the server. This header exists so that one server can serve multiple domains, and is
mandatory since HTTP 1.1. This is the only mandatory request header. There are many
other request headers; some of the more common are:

• Accept – acceptable MIME content types (e.g. text/plain);

• Accept-Encoding – acceptable encodings, used for data compression (e.g. gzip,

deflate);

• Accept-Language – acceptable content languages (e.g. en-gb);

• Cookie – a cookie stored by the browser that is relevant to the request (we discuss
cookies on page 8);

• Origin – the origin of a request, used in cross-origin resource sharing (see Sec-
tion 2.2.3);

• Referer – the address of the webpage that linked to the resource being requested.
The name of this header was originally a misspelling of ‘referrer’;

• User-Agent – the user agent string, which can be used by the server to identify
the browser being used to make the request.

Response Headers

In lines 2–10 of the HTTP response in Listing 1, we can see examples of HTTP response
headers. These tell the client more information about the response. Some of the more
common request headers are:

• Cache-Control – tells all caching mechanisms between the server and client (in-
cluding the client) whether they may cache the object and for how long, measured
in seconds (e.g. max-age=300);

• Content-Language – the (human) language of the content;

• Content-Type – the MIME content type of the response;

7
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• Set-Cookie – sets an HTTP cookie for the browser to store.

Uniform Resource Locators

A uniform resource locator (URL) identifies a specific resource on a remote server. Com-
monly referred to as a web address, it is usually displayed prominently in a web browser’s
user interface. The URL syntax is detailed in RFC 3986 [6]; there are many optional
elements, but a good working example is as follows:

scheme://host:port/path?query_string#fragment

The schemes, otherwise referred to as protocols, used most commonly by web applications
are http: and https:. Other examples of schemes are ftp: and file:, and pseudo-
URLs that begin with data: and javascript:.

The host is most commonly a domain name (e.g. example.com) but can also be a literal
IPv4 or IPv6 address. If not otherwise specified, the port defaults to the port associated
with the scheme (80 for http: and 443 for https:).

The path is used to specify the resource being accessed. The query string parameters
contain optional data to be passed to the software running on the server. The fragment
identifier, also optional, specifies an exact location within the document. In HTML
documents, these fragment IDs are often combined with anchor tags to allow hyperlinks
to specific sections within a document.

The most important elements of a URL as far as we are concerned are the scheme, host
and port. We will see later on that, together as a tuple, they form a concept known as
an origin used in many browser security concepts.

Cookies

Cookies are pieces of data stored on a user’s computer by webpages they visit. When
a browser requests a webpage from a server, it sends any cookies it has for that page
with the request. Cookies are often used to store session information (for example, so
that a user stays logged in-between browsing sessions), configuration settings (such as a
preferred language), and sometimes even data for tracking a user’s browsing habits.

A browser sends a cookie with its request using the Cookie header, whilst a server informs
a client to save or overwrite a cookie with the Set-Cookie header. Below is an example
Set-Cookie header that might be sent by a server:
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Set-Cookie: foo=bar; Path=/; Domain=example.com;

Expires=Tue, 01 Jul 2014 16:39:25 UTC

This sets the value of the foo cookie to be bar. In theory, multiple cookies can be
set in a single Set-Cookie header. In practice, however, most browsers only support a
single cookie per header. The browser will then send the cookie back with subsequent
requests for the same application (as defined by the Domain and Path attributes – see
Section 2.2.1) with a Cookie header like below:

Cookie: foo=bar

Unlike the Set-Cookie header, most browsers support the sending of multiple cookies in
a single Cookie header, separated by semicolons.

The Expires attribute tells the browser the exact time when it should delete the cookie.
Alternatively, although not as commonly used, the Max-Age attribute may be used to
specify when the cookie should expire as a number of seconds in the future from when
the browser receives the cookie. If no expiry time is set using either method, the cookie
is termed a session cookie and is to be deleted when the browser is closed.

A cookie can be overwritten by sending a new Set-Cookie header, as long as the Domain
and Path attributes are identical. To delete a cookie, a new Set-Cookie response header
for a cookie with that name may be sent specifying an expiry date in the past. Again, it
is important to ensure that the Domain and Path attributes are the same as the original
cookie. To understand why, consider the case where the server sets two cookies with the
same name:

Set-Cookie: foo=bar; Path=/; Domain=example.com

Set-Cookie: foo=baz; Path=/account; Domain=example.com

When sending a request to http://example.com/account, the browser now has two
different cookies foo=bar and foo=baz that are relevant to the request according to the
Domain and Path attributes. Which should it send with a Cookie header in the request?
The answer is that a browser will send both cookies to the server, although there is no
convention for the order in which a browser should send the conflicting cookies. The
consequence of this is that the server will have no means of resolving the conflict – all it
knows is the two values of the cookie, since the browser does not send any information
about the age of the cookies in the Cookie header. Additional metadata to solve this
problem is proposed in RFC 2965 [26] (the “Cookies 2.0” specification referred to in our
introduction), but the standard did not become widely adopted.

There are two further cookie attributes, HttpOnly and Secure. These are discussed as
browser security features in Section 2.2.4.
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2.1.2 HTTP Secure

In HTTP as we have seen it so far, everything is transmitted over the wire in plaintext—
both requests and responses, including any cookies and the documents themselves. Whilst
this may not have been a concern in the early days of the Web, it holds many security
and privacy consequences today. Wiretapping is a common threat, which could be used
not only to spy on a user but also to steal his session cookies or other sensitive data.
Man-in-the-middle attacks, in which an attacker pretends to be the intended web server
and modifies a victim’s requests/responses on the fly, are also incredibly easy to pull off
as long as everything is transmitted in plaintext.

The solution to this is HTTP Secure (HTTPS). Proposed in RFC 2818, it suggests the
idea of running HTTP over transport layer security [31]. Transport layer security, often
referred to as TLS or SSL, is a cryptographic protocol for secure communications over the
Internet. It had already been developed many years before the HTTPS RFC. With TLS,
public key cryptography is used to both encrypt and authenticate the communication
between two endpoints. HTTP can be run on top of this without the need for any
changes to be made. With HTTPS, the problems of both wiretapping and man-in-the-
middle attacks are solved. Any attacker viewing a victim’s data over the wire cannot
read the HTTP requests and responses due to the encryption1. A man-in-the-middle
attack is not possible either since a web browser is able to authenticate the identity of
the server with which it is communicating.

The authentication works using X.509 certificates which associate a public key with an
identity. In the case of HTTPS, the certificates associate a public key with one or more
domain names. These certificates are issued and cryptographically signed by certificate
authorities (CAs). In order for this to work, browsers are shipped with a large set of
public keys for the CAs that the browser vendors trust. The browser vendors trust these
CAs to verify that a public key belongs to a particular website. When establishing a new
HTTPS connection, the browser receives the certificate from the server. This certificate
will have been signed by a CA – a signature that cannot be produced without their
private key. The browser verifies the signature by following the trust chain to one of
the CA public keys hardcoded in the browser. As well as checking that the certificate
is trusted, the browser also checks that it is valid for the website being visited. It does
this by checking that the site’s domain matches one of the domains in the certificate.
Finally, the browser verifies that the certificate has not been included on any public
revocation lists (which might be the case if, for example, a private key had been lost or
compromised). If all of these tests pass, the browser can then begin sending encrypted
communications to the server knowing that only the intended recipient will be able to
decrypt them.

1Whilst the HTTP communication is encrypted, a wiretapping attacker may still be able to learn the
websites being viewed by his victim. This is because the DNS protocol used to resolve a domain
name to an IP address is not usually encrypted
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Session Keys and Perfect Forward Secrecy

TLS uses the long-term public and private keys to exchange a short-term session key
that is used to encrypt the data for the rest of the session. This session key is used in
symmetric cryptography, since this is less resource-intensive than asymmetric (public key)
cryptography. An important property here is perfect forward secrecy (PFS). Perfect
forward secrecy means that if a long-term private key were to become compromised in the
future, the short-term session key used in a previous HTTPS session cannot be derived
because of this. Usage of PFS has increased recently but is far from widespread – support
for it is still lacking in two of the five major browsers [13].

Self-Signed Certificates

It is possible for a website to sign its own SSL certificate, claiming that its public key
belongs to its domain. Since the browser will not trust the website as a certificate
authority, this will lead to a warning in most web browsers. This is because the identity
of the server cannot be identified by the browser. An example warning in Mozilla Firefox
is shown in Figure 2.1.

Figure 2.1: A warning in Firefox caused by a self-signed SSL certificate

The warnings can usually be ignored by the user, except in the case of HTTP Strict
Transport Security, a relatively young security feature which we visit in Section 2.2.5.
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2.2 Browser Security Features

In this section we cover the technical background of many browser security features that
exist to secure the Web. Some of these are absolute must-have features that should be
implemented in any browser, whereas others are modern features that have appeared in
some but not all browsers in recent years. This technical background is necessary to
understand how BrowserAudit automatically tests these features in Chapter 5.

2.2.1 Same-Origin Policy

A big aspect of browser security is content isolation: the browser promises to isolate
documents based on where they came from. The concept of the same-origin policy is
arguably the most important idea in web browser security. The idea is a simple one:
two webpages served by the same origin should be able to interact mostly unconstrained,
whereas two webpages served by different origins should not be able to interfere with one
another at all. We define an origin as a (scheme, host, port) tuple [3], with the major
exception that Internet Explorer ignores the port when comparing origins. Table 2.1
gives example results of origin comparisons to the URL http://login.example.com/a/

page.html.

URL Outcome Reason

http://login.example.com/b/other.html Success
http://login.example.com/a/dir/another.html Success
https://login.example.com/secure.html Failure Scheme mismatch
http://login.example.com:81/a/contact.html Failure Port mismatch
http://payments.example.com/a/contact.html Failure Host mismatch

Table 2.1: Example origin comparisons when comparing to http://login.example.com/

a/page.html

Without the same-origin policy, a user’s session with an honest website could be interfered
with as a result of the user visiting a dishonest website. This is exactly what the same-
origin policy was designed to prevent, by isolating the content of each individual webpage
open in a browser. Note that there is no single same-origin policy; the term instead
refers to a set of related browser security policies, some of which we discuss below. The
same-origin policy should definitely be implemented in all browsers, since it is such an
important web security feature.
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DOM Access

The Document Object Model (DOM) is an API for HTML and XML documents. It is a
structured representation of a document that allows a developer to modify its content or
appearance. The DOM is most commonly used in JavaScript, accessed by the document

object. There are many DOM methods and properties that can be accessed. As a trivial
example, the JavaScript in Listing 2 shows how the DOM can be used to modify the src

attribute of an image myImage on a webpage.

1 var image = document.getElementById("myImage");

2 image.src = "newPicture.png";

Listing 2: Using the DOM to modify an image’s src attribute

It should be clear that no website loaded in a browser should be able to access or modify
the DOM of another. The same-origin policy for DOM access ensures that this is the
case. The origins of the original document and the accessed object are compared. If they
are equal then the browser allows access with no further checks. One might expect that
if they don’t match then access is immediately denied, however there is one further step
in the decision-making process thanks to the document.domain property.

document.domain allows two cooperating webpages to lift the same-origin policy restric-
tions, provided both webpages agree to do so. For example, if a page at http://example.
com contains a frame with content from http://login.example.com, the same-origin
policy would ordinarily block either page from accessing the DOM of the other due to
the mismatching hostnames. However if they both set their document.domain property
to example.com, the same-origin policy restrictions will be lifted by the browser and
access will be allowed.

The use of the document.domain property as described above is not without its own
restrictions. The most important rule is that, when a page sets the value, the new
value must be a right-hand, fully-qualified fragment of its current hostname [40]. This
means that a page at http://login.secure.example.com may set its document.domain
property to secure.example.com or example.com but not staff.secure.example.com
or ample.com. The other rule is that both webpages must set the property to the same
value in order for DOM access between them to be granted – it is not sufficient for a page
at http://login.example.com to set its document.domain property to example.com in
order to access the DOM of a page at http://example.com. For this to work, the page at
http://example.com must also explicitly set its domain property to example.com. The
technical explanation for this is that the port number of each page is kept separately by
the browser. When the document.domain property is written to, this causes the port to
be overwritten with null [33]. This means that setting the property on one page but not
the other will result in one document having port null and the other its original value
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(e.g. 80). The origins will then still mismatch, despite both documents appearing to have
the same host. When both pages set their document.domain property, each page will
have port null and so access will be allowed provided the domains and schemes are the
same.

If the origins of two webpages do not match, and they don’t define the same (legal)
document.domain property, then DOM access between them should be denied by the
browser.

XMLHttpRequest

XMLHttpRequest, as mentioned in our Introduction chapter, is an API whose introduction
into JavaScript was responsible for the appearance of a new wave of responsive web
applications referred to by the industry as “Web 2.0”. The API allows a developer to
easily retrieve data from a URL without the need for a full page reload. This means that
a small section of a webpage can be updated on the fly with no interruption to the user.
Better still, this can be done asynchronously, so that the XMLHttpRequest calls are not
blocking. This is known as AJAX, asynchronous JavaScript and XML, and is employed
in many of today’s most popular web applications. In fact, we make heavy use of AJAX
in BrowserAudit! It is necessary for our client-side testing scripts to retrieve data from
the server-side.

The same-origin policy applies to XMLHttpRequest in a very similar manner to the DOM.
That is to say, a client-side script may only make HTTP requests by XMLHttpRequest
for documents with the same origin that it came from. There are two key differences
when comparing the same-origin policy for XMLHttpRequest to the one for the DOM:

• the document.domain property has no effect on origin checks for XMLHttpRequest
targets, meaning it is not possible for cooperating websites to agree for there to be
cross-domain requests between them in this way;

• Internet Explorer takes the port number into account when comparing origins for
XMLHttpRequest targets.

In Section 2.2.3 we look at cross-origin resource sharing, a security mechanism that allows
cross-domain requests using XMLHttpRequest.
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Cookies

There are many aspects to cookie security, however for now we will only discuss how the
same-origin policy applies to cookies. It does so through one fairly simple concept: scope.
The scope of a cookie defines which cookies a browser will send with each request that
it makes, to ensure that it only sends cookies that should be relevant to the receiving
server. We wouldn’t want our browser to send our online banking authentication cookie
to a website hosting free Flash games, for example!

The scope of a cookie comprises of two attributes: Domain and Path. These are set by
the server in the Set-Cookie header. If not set, they default to the domain and path of
the requested object that is being returned with the Set-Cookie header [2].

The Domain parameter may be used to broaden the scope of a cookie. It can be set to
any fully-qualified right-hand segment of the current hostname, up to one level below the
TLD2. This means that a page at payments.secure.example.com may tell the browser
send a cookie to *.secure.example.com or *.example.com, but not to www.payments.

secure.example.com (since this is more specific than the cookie origin) or *.com (since
this is too broad). To set a cookie to be sent to *.example.com, the Domain parameter
can be set to .example.com or example.com (in practice, the former will now be rewritten
to be the latter by the browser). This has the interesting consequence that it is not
possible to scope a domain to a specific domain only. The only way to achieve this is
to not set the Domain parameter at all, but even this does not function as expected in
Internet Explorer.

The Path parameter is used to restrict the scope of a cookie. It specifies a path prefix,
telling the browser to send the cookie only with requests matching that path. The paths
are matched from the left, so a cookie with a path of /user will be sent with requests to
both /user/status and /user/account.

Note that the scheme and port are not relevant in cookie scope like they are in the same-
origin policies for the DOM and XMLHttpRequest. Only the hostname and path affect a
cookie’s scope.

2.2.2 Content Security Policy

A cross-site scripting (XSS) attack is one in which an attacker injects malicious client-
side script into a webpage. This can have devastating effects, for example an attacker
may be able to access cookies containing session tokens or other sensitive information

2A top-level domain (TLD) is a domain at the highest level in the hierarchical DNS system, for example
.com and .net are TLDs
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to do with the webpage being viewed. He may also modify the HTML contents of the
page, perhaps tricking the user into clicking a malicious link or otherwise acting on false
information planted by the attacker. The Content Security Policy is a relatively new
mechanism that can be used to mitigate XSS attacks.

The Content Security Policy (CSP) was introduced because it is otherwise impossible
for a browser to tell the difference between benign client-side script that’s part of a
web application, and client-side script that has somehow been maliciously injected by
an attacker. For example, many popular websites choose to load common JavaScript
libraries from content delivery networks (CDNs) such as ajax.googleapis.com. This is
fine, since the developers trust the Google CDN, but as far as a browser is concerned
ajax.googleapis.com is just as trustworthy a script source as evil.attacker.com! XSS
attack mitigation is difficult when a browser is willing to download and run scripts from
any source.

The CSP aims to solve this problem with the concept of source whitelists. Through the
introduction of a new HTTP response header, a web application developer can explicitly
specify the sources from which scripts and other resources for his webpages may be
loaded. This header is Content-Security-Policy and is employed by many of today’s
most popular websites. When the header is set, a compliant browser will only load
resources from the sources specified in the header. If the page tries to load a resource
from some other source, it will not be loaded and a security exception will be thrown.
This provides defence in depth, heavily reducing the damage an attacker could do in an
XSS attack.

The policy applies not just to scripts but to many different kinds of resources such
as images, stylesheets, media (<audio> and <video> tags), frames, fonts and objects
(<object>, <embed> and <applet> tags). The allowed sources for each of these resource
types may be different, allowing a web developer to be as specific as possible about
where different resources may come from. The policy also allows a default source to be
set, which is used as fallback whenever the source for a particular resource type has not
been explicitly specified. A common usage pattern is therefore to set the default source to
'none' (stating that no resources may be loaded from anywhere) and then set individual
allowed sources for each resource type used on the page. This exercises the principle of
least privilege nicely, ensuring that only the required resources can be loaded.

The Content-Security-Policy header value is made up of one or more directives sep-
arated by semicolons. Some of the more common directives are default-src (which
specifies the default policy for all resource types), script-src, style-src and img-src.
Most directives contain a list of allowed sources for a resource type known as a source
list.
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Source Lists

Each source list can contain multiple source values separated by a space, except in the
two special cases * and 'none' which should be the only value. Some example source
values are:

• * – wildcard, allows any source;

• http://*.example.com – allows loading from any subdomain of example.com and
example.com itself using the http: scheme;

• https://payments.example.com – allows loading from payments.example.com us-
ing the https: scheme.

If no port number is specified, it defaults to the port associated with the specified scheme.
When no scheme is specified, it is assumed to be the same scheme as the one used to
access the document that is being protected. The CSP permits that a browser may follow
redirects before checking the origin of a resource.

There are also four keywords that can be used in a source list:

• 'self' – allows loading from the same origin (scheme, host, port) as the page being
served;

• 'none' – prevents loading from any source;

• 'unsafe-inline' – allows the use of unsafe inline resources, such as <script> and
<style> tags and style/onload HTML attributes;

• 'unsafe-eval' – allows the use of eval() and other methods for executing strings
of code.

The 'unsafe-inline' and 'unsafe-eval' keywords can open up a webpage to XSS
vulnerabilities, and so they must be explicitly allowed by a developer. Wherever possible,
these options should be avoided in favour of defining styles, scripts and event handlers in
.css and .js files which should be included in the document and allowed by the Content
Security Policy in the normal way.
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Content-Security-Policy-Report-Only and report-uri

The report-uri directive specifies a URL to which a browser should send a report about
any policy violation. This report is a JSON object containing useful information such
as the document URL, the blocked URL and the CSP directive that was violated. The
report is sent to the server with a POST request. This is useful for webmasters to learn
about attempted attacks, or to learn about an error in their Content-Security-Policy
header that is wrongly blocking a resource from being loaded. Note, however, that many
anti-tracking browser extensions will block the report request from being sent.

There is also a completely different HTTP response header, Content-Security-Policy-
Report-Only, that allows servers to experiment with the CSP by monitoring (rather
than enforcing) a policy. This can be useful to test and fine-tune a policy before rolling
it out on a large website and potentially blocking innocent resources from being loaded,
causing interruptions to users.

Example: GitHub

1 Content-Security-Policy: default-src

2 *;

3 script-src

4 'self'

5 https://github.global.ssl.fastly.net

6 https://ssl.google-analytics.com

7 https://collector-cdn.github.com

8 https://embed.github.com

9 https://raw.github.com;

10 style-src

11 'self'

12 'unsafe-inline'

13 https://github.global.ssl.fastly.net;

14 object-src

15 https://github.global.ssl.fastly.net

Listing 3: GitHub’s usage of the Content Security Policy

Listing 3 shows GitHub’s Content-Security-Policy response header, which has been
separated onto multiple lines for readability purposes only. Note that the CSP is being
used not just to whitelist JavaScript sources, but also stylesheets (style-src) and plugins
(object-src). Whenever a page served with this header tries to load a script, stylesheet
or plugin from a source not in the whitelist, a compliant browser will throw an error.
Other resource types can be loaded from anywhere due to the wildcard value used in the
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default-src directive. We can also see how keywords in source lists can be combined
with other keywords and allowed sources.

Browser Support

As with many web features, the Content Security Policy was introduced in multiple
browsers before it became standardised. Earlier experimental implementations in Moz-
illa Firefox and Google Chrome used header names X-Content-Security-Policy and
X-WebKit-CSP respectively instead of the now-standardised Content-Security-Policy

header which the latest versions of each browser use today. Internet Explorer versions 10
and 11 (the only versions of IE to support the CSP) still use the X-Content-Security-

Policy header rather than the new standardised header [9]. This has the consequence
that, despite CSP now being standardised, a website must serve its pages with all three
CSP headers in order to achieve maximum compatibility with old and new browsers.

Content Security Policy 1.1

The standardised Content Security Policy described in this section refers to the Content
Security Policy 1.0 Candidate Recommendation [36]. There also exists a working draft
for a Content Security Policy 1.1 [4] which promises some interesting new features such
as whitelisting specific inline script blocks via either nonces or hashes, and the ability to
inject the policy through <meta /> HTML tags as opposed to specifying it in an HTTP
response header.

2.2.3 Cross-Origin Resource Sharing

When discussing the same-origin policy for XMLHttpRequest, we saw that there is no
way for two cooperating websites to allow cross-domain requests between them. This
is because the document.domain property isn’t used in same-origin policy checks for
XMLHttpRequest and therefore can’t be used to lift the browser’s security restrictions
like we saw for DOM access. There is a modern solution, however, known as cross-origin
resource sharing (CORS).

CORS is an extension to the XMLHttpRequest API that allows a website to carry out
cross-origin communications. This means that client-side JavaScript can send an XML-
HttpRequest to a URL on a domain (or scheme or port) other than the one from which it
originated – something that is not otherwise possible due to the same-origin policy, which
has frustrated web developers for quite some time. As of January 2014, CORS has been
formally specified by the W3C [39], however the implementations in the browsers that
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implement CORS today differ from the specification. CORS is supported in Chrome 3+,
Firefox 3.5+, Opera 12+, Safari 4+ and Internet Explorer 10+ [10]. The differences between
the implementations and the specification are highlighted below.

Cross-origin resource sharing allows a request to be made to a server at a different origin
only if the server receiving the request explicitly allows it. That is, the server states
whether or not the origin of the requesting document is allowed to make a cross-origin
request to that URL. To achieve this, CORS defines a mechanism that allows the browser
and server to know just enough about each other so that they can determine whether
or not to allow the cross-origin request. This is primarily achieved by two key headers:
an Origin header sent by the browser with the request, and an Access-Control-Allow-

Origin header sent in the server’s response. There are other CORS-related headers that
we also discuss below.

When a webpage attempts to load a cross-origin document through the XMLHttpRequest
API, a browser implementing CORS first decides whether the request is simple or non-
simple. A simple request is defined as one that meets the following criteria:

• HTTP method matches (case-sensitive) one of:

– GET

– HEAD

– POST

• HTTP headers match (case-insensitive):

– Accept

– Accept-Language

– Content-Language

– Last-Event-ID

– Content-Type, where the value is one of:

∗ application/x-www-form-urlencoded

∗ multipart/form-data

∗ text/plain
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A request is said to be non-simple if it does not meet the above criteria. This distinction
is important because it defines how the request should be handled by the browser. Note,
however, that the browsers implementing CORS today do not precisely follow the spe-
cification above. They instead ignore the above recommended whitelist of headers and
treat any requests with user-defined header values as non-simple requests. In addition
to this, the implementation in WebKit-based browsers (e.g. Safari) treats any requests
containing a payload as non-simple [42].

Simple Requests

A simple request is sent to the server immediately. The request is sent with an Origin

header containing the origin of the calling script. The retrieved data is only revealed to
the caller if the server’s response contains an acceptable Access-Control-Allow-Origin
header. This header specifies an origin that is allowed to access the content. If this header
is not set, or its value does not match the origin of the calling script, then the browser
must not pass the retrieved data onto script that made the request. The header may
only contain a single origin value; this may seem problematic if a URL is to be accessed
cross-origin from multiple different origins, which is why the Origin header is sent by
the browser. The server can look at the Origin header and dynamically decide which
Access-Control-Allow-Origin header to send to allow the request if the origin is to
be permitted. A wildcard value (*) is also valid, although rarely used in practice due to
the security implications of allowing a document to be accessed with XMLHttpRequest
by any origin.

Non-Simple Requests

Unlike simple requests, a non-simple request is not immediately sent to the server. A
“preflight” request is instead sent to the destination server in order to confirm that it is
CORS-compliant and happy to receive non-standard traffic from that particular caller.
This preflight request is sent with the OPTIONS HTTP method with headers containing an
outline of the parameters of the underlying XMLHttpRequest call. The most important
information is sent in three headers:

• Origin – the origin of the calling script, just like is sent with a simple request
(e.g. https://browseraudit.com);

• Access-Control-Request-Method – the HTTP method of the non-simple request
the caller is trying to make (e.g. PUT);
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• Access-Control-Request-Headers – a list of any non-simple headers3 that are in-
cluded in the caller’s request, separated by commas (e.g. X-My-Header,X-Another-
Header).

The two-step handshake is considered successful by the browser only if these three para-
meters are properly acknowledged in the server’s response to the preflight request. The
server acknowledges the parameters with the corresponding headers Access-Control-

Allow-Origin, Access-Control-Allow-Method and, when relevant, Access-Control-
Allow-Headers. The first two of these headers must be present – a response with no
CORS headers is an error and so the non-simple request should not be made by the
browser. Likewise, the handshake has failed if the headers are present but the values
do not correspond to those sent by the browser in the preflight request. As with a
simple request, the Access-Control-Allow-Origin header may only contain a single
origin that is allowed to make the request – this must either be the wildcard value or
match the origin of the calling script sent by the browser in the Origin header. The
Access-Control-Allow-Method header may contain a list of allowed HTTP methods.
This list is comma-separated, and the browser must check that the method of the non-
simple request is contained within the list of allowed methods. The server sends a list
of methods since this will be useful in caching, as we will see shortly. Similarly, and
for the same reason, the Access-Control-Allow-Headers header contains a list of all
non-simple headers supported by the server. The browser must check that the headers (if
any) it sent in the Access-Control-Request-Headers header are a subset of the headers
the server says it supports. For example, in response to the preflight headers on page 21,
the server might allow the request by replying with:

• Access-Control-Allow-Origin: https://browseraudit.com

• Access-Control-Allow-Method: GET, POST, PUT, DELETE

• Access-Control-Allow-Headers: X-My-Header, X-Another-Header

Following a successful handshake, the browser will send the actual non-simple request to
the server. The request is still sent with the Origin header, and the server will respond
with Access-Control-Allow-Origin just as with a simple request. The browser will
check the origin one last time before passing the retrieved data onto the caller. Figure 2.2
shows an overview of a successful non-simple CORS request.

3A request header is a non-simple header if it is does not match the list of headers on page 20
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... Caller... Browser.. Server....

Non-simple XMLHttpRequest

...

Preflight request

......

Actual request

......

Retrieved data

Figure 2.2: A high-level overview of a successful non-simple request with CORS

Caching

The result of a preflight check may be cached by the browser for performance reasons,
since every non-simple request using CORS would otherwise require two HTTP requests.
The server can specify the maximum age of this cache with the Access-Control-Max-Age
response header, after which the browser must send a new preflight request. This explains
why, in the server’s response to a preflight request, the Access-Control-Allow-Method

and Access-Control-Request-Headers headers contain lists of allowed values rather
than just repeating the values sent by the browser. Using lists makes the preflight
responses as generic as possible so that a single cached response will apply to multiple
different requests made by the browser. This avoids the need for another preflight request
until the cache expires.

Requests with Credentials

By default, cookies are not included with CORS requests. The Boolean withCredentials

property of an XMLHttpRequest can be used to enable cookies. For this to work, the
server’s response must include the header Access-Control-Allow-Credentials: true.
The browser should reject any request, and not pass its data back to the caller, if
withCredentials is set to true but the server’s response does not contain the correct
header. When the server is responding to a credentialed request, it must specify an origin
in the Access-Control-Allow-Origin header and cannot use the wildcard value [21].

Once credentials are enabled, the browser will send any cookies it has for the remote
domain with the CORS request. The response from the server can also set cookies for
the remote domain. Note that the same-origin policy still applies to the cookies – the
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JavaScript making the CORS request should not be able to view the cookies belonging
to the remote domain just because they will be included in the request and returned with
the response.

Access-Control-Expose-Headers

The Access-Control-Expose-Headers header can be set by the server to specify addi-
tional response headers to which the XMLHttpRequest object should have access. The
XMLHttpRequest object has a getResponseHeader() method that can be used by the
caller to access a given response header from the CORS response. By default, this method
can only be used to access the simple response headers4. In order to enable the caller to
read other headers, the server must use the Access-Control-Expose-Headers header.

Rationale for the Split

It is reasonable to question the rationale for separating CORS requests into simple and
non-simple requests and handling each type differently. One might wonder why not all
requests are treated the same. There is no comment on this in the Design Decision FAQ
section of the CORS specification. We found two different explanations for this whilst
researching the background on Cross-Origin Resource Sharing.

In his book The Tangled Web, Michal Zalewski states that the reason for the split comes
down to a trick used in the past by some websites [42]. Before CORS, it was not possible
for an attacker to insert custom request headers into a cross-origin XMLHttpRequest.
Websites could therefore use the presence of some custom request header as proof that
the request originated from the same origin as the destination. With the introduction of
CORS, this no longer held true. It was originally the plan for almost all CORS requests
to be passed straight to the server (like simple requests are today), but the specification
had to be revised due to the problems caused by websites that used custom headers as
a proof of XMLHttpRequest origin. The problem was fixed by the introduction of the
two-step handshake.

The HTML5 Rocks tutorial on CORS states that “simple requests are characterised as
such because they can already be made from a browser without using CORS” [20]. The
author argues that an attacker could create simple CORS requests through other scripting
methods if he was able to inject his own client-side script. For example, a POST request
could be made by creating a form and then submitting it.

4The simple response headers are Cache-Control, Content-Language, Content-Type, Expires, Last-
Modified and Pragma
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Internet Explorer’s Competitor: XDomainRequest

CORS as we have described it (i.e. an extension to XMLHttpRequest) is supported today
in Internet Explorer versions 10 and 11. Prior to this, in versions 8 and 9, Microsoft
implemented only a counterproposal to CORS. This counterproposal is XDomainRequest,
an API similar to XMLHttpRequest but with some key differences when compared to the
CORS specification. Cross-origin requests with XDomainRequest are much simpler than
those with CORS: no custom HTTP headers or methods can be used, and there is no
support for credentials. Microsoft’s proposal never became popular – the W3C backed the
CORS specification and so there was no motivation for any other browsers to implement
XDomainRequest.

2.2.4 Cookies

When discussing the basics of HTTP cookies in Section 2.1.1, we mentioned two cookie
attributes HttpOnly and Secure that are browser security features. These are both flags
rather than attributes – they have no values. The presence of each merely defines a
behaviour that the browser should follow when handling the cookie.

HttpOnly

The HttpOnly flag instructs the browser to reveal that cookie only through an HTTP API.
That is, the cookie may be transmitted to a server with an HTTP(S) request, but should
not be made available to client-side scripts. This means that HttpOnly cookies cannot
be read in JavaScript through the document.cookie property like normal cookies can be.
The security benefit of this is that, even if a cross-site scripting vulnerability is exploited,
the cookie cannot be stolen. Just like the Content Security Policy, the HttpOnly cookie
flag provides defence in depth.

HttpOnly cookies are supported by all major browsers. The only notable exception is
Android 2.3’s stock browser.

Secure

When a cookie has the Secure attribute set, a compliant browser will include the cookie
in an HTTP request only if the request is transmitted over a secure channel, i.e. is an
HTTPS request. This keeps the cookie confidential; an attacker would not be able to read
it even if he were able to intercept the connection between the victim and the destination
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server. In contrast, if the cookies were transmitted in plaintext HTTP requests and the
attacker was observing the connection between the victim and the server, the attacker
would be able to steal the cookies. This is what the Secure flag was designed to prevent,
protecting sensitive cookies by ensuring they are only ever transmitted over a secure
transport.

The Secure flag is supported by all major browsers.

2.2.5 HTTP Strict Transport Security

When discussing the motivations for HTTP Secure in Section 2.1.2, we briefly mentioned
man-in-the-middle (MITM) attacks. These attacks take place when an attacker is able
to intercept the traffic between a victim’s browser and the server. When successfully
exploited, a MITM attack can cause a lot of damage. For example, over an unencrypted
connection, the attacker is able to view the requests and responses (including cookies
and any private data in the server responses). He can also modify the communications,
for example he may modify the server’s response to inject some of his own content or
malicious JavaScript code.

All of these attacks are only possible when the client/server communication is neither
encrypted nor authenticated. Over a secure (HTTPS) connection, both requests and
responses are encrypted and authenticated. This means that the attacker cannot read
any plaintext data like he could earlier, nor can he modify any requests or responses.
Assuming that the target server’s private key has not been compromised, the only case
in which a MITM attack can be successful over HTTPS is if the client (browser) does
not check the security certificate used. In this case, the attacker can generate his own
(invalid) security certificate, pretending to be the server, and pass this to the victim’s
browser. This should result in a warning in all web browsers.

HTTP Strict Transport Security (HSTS) is a security mechanism that allows a server
to instruct browsers to communicate with it only over a secure (HTTPS) connection for
that domain. It exists mainly to defend against man-in-the-middle attacks as described
above. The server sends this instruction with a Strict-Transport-Security response
header, as defined in RFC 6797 [18]. The header is required to include a max-age directive,
specifying the number of seconds for which the browser should follow the HSTS policy.
There is also an optional includeSubDomains directive, specifying that the HSTS policy
should apply to subdomains of the current host as well as the host itself. Example HSTS
headers might be:

• Strict-Transport-Security: max-age=300

• Strict-Transport-Security: max-age=3600; includeSubDomains
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When HSTS is enabled on a domain, the browser must rewrite any plain HTTP requests
to that domain to use HTTPS. This includes both URLs entered in the navigation bar
by the user and elements loaded by a webpage.

HSTS also instructs the browser to terminate any secure transport attempts upon any
and all secure transport errors and warnings. This means that if there is any problem
at all with the secure transport, the browser should terminate the request. This applies
also to websites using self-signed certificates or certificates whose CA is not embedded in
the browser or operating system. Once HSTS is enabled in these scenarios, the browser
should refuse to communicate with the server. This applies even if the user has manually
whitelisted the certificate in his browser. In other words, when a browser would normally
display a bypassable warning regarding secure transport to the user, under HSTS it must
instead immediately terminate the request.

The Strict-Transport-Security header should only be sent in a response sent over
HTTPS. If a browser receives the header in a response sent over plain HTTP, it should
be ignored.

2.2.6 Clickjacking and X-Frame-Options

Clickjacking, also known as UI redressing, is a type of attack in which a user is tricked
into clicking on something other than what he believes he is clicking on. The attacker
is “hijacking” clicks intended for one application and instead routing them to some other
page. Clickjacking can be seen as an instance of the confused deputy problem. It is a
very serious attack, since it can be used to take advantage of the fact that a typical web
user is often logged into his personal user account on many web applications at any given
time. If an attacker is able to hijack a user’s clicks, the attacker could trick the innocent
user into carrying out a privileged action on his account on a website.

One real-world example of clickjacking is an attack in 2009 that tricked Twitter users
into sending a tweet without realising [37, 34]. The attack took the form of a textual link
that said “don’t click”. When logged-in Twitter users clicked the link, they inadvertently
sent out a tweet that reposted the link for other people to click on. This attack worked
by placing a transparent frame on top of the textual link. In this instance, the attack
was fairly harmless, but could be perhaps extended into tricking users into “following”
another account on Twitter. This is something that many individuals and companies are
interested in doing (and can pay for as a service!) to boost their social media presence.

Pictured in Figure 2.3 is a more serious real-world example of clickjacking. It is a proof-
of-concept attack for online retailer Amazon that was recently disclosed [16]. The at-
tack shows that a user could easily be tricked into purchasing any product on Amazon,
provided he is logged in and has one-click purchasing enabled. As with the Twitter
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Figure 2.3: A proof-of-concept clickjacking exploit on Amazon

clickjacking attack, it works by cleverly positioning a transparent frame containing an
Amazon product page, tricking the user into clicking the “Buy Now” button. The exploit
has since been fixed by Amazon, using the browser security feature we are about to
describe.

Clickjacking is very much a browser vulnerability, and is one that is difficult to prevent.
X-Frame-Options is a server-side technique that aims to prevent clickjacking. It is sup-
ported in all modern browsers, namely Internet Explorer 8+, Firefox 3.6.9+, Opera 10.5+,
Safari 4+ and Chrome 4.1+. Its implementation in current browsers is documented in
RFC 7034 [32].

X-Frame-Options is an HTTP response header that specifies whether or not the docu-
ment being served is allowed to be rendered in a <frame>, <iframe> or <object>. More
specifically, the header specifies an origin that is allowed to render the document in a
frame. The header must have exactly one of three values:

• DENY

• SAMEORIGIN

• ALLOW-FROM src

DENY states that a browser must not display the content in any frame. SAMEORIGIN

states that a browser must not display the content in a frame from a page of different
origin than the content itself. ALLOW-FROM states that a browser must not display the
content in a frame from a page of different origin to the specified source. Only one
origin may be stated in the ALLOW-FROM value; there is no wildcard value. Some example
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X-Frame-Options headers are as follows:

• X-Frame-Options: DENY

• X-Frame-Options: SAMEORIGIN

• X-Frame-Options: ALLOW-FROM https://test.browseraudit.com/

Not all browsers supporting the X-Frame-Options header support the ALLOW-FROM value
type. It is also important to note that today’s browsers implement differing behaviour
when it comes to nested frames. Consider the case where a page A loads a page B
inside a frame, which in turn loads a page C inside a frame. Page C is served with
an X-Frame-Options header restricting the origin that is allowed to contain it within a
frame. In this scenario, some browsers will compare the origin of page C to page A (the
top-level browsing context) whereas other browsers will compare the origin of page C to
page B. This limits the number of different cases we can test, which we describe in more
detail when discussing the implementation of our tests for this feature in Section 5.6.1.

When an X-Frame-Options policy is violated, i.e. an origin mismatch occurs when fram-
ing a document that is served with the X-Frame-Options header, different browsers
exhibit different behaviour. Some browsers will present the user a message that allows
him to open the document in a new window, so that it becomes clear that it is a separ-
ate document and there is no clickjacking threat. Other browsers are less forgiving and
simply render an empty document.

X-Frame-Options must be sent as an HTTP header field and should be explicitly ignored
by browsers when declared with a meta http-equiv tag.

2.3 Related Work

In this section we discuss related work found during the initial research for this project.
There are some projects that have similarities to ours, but none of them tries to achieve
what we believe to have achieved: a comprehensive report of the user’s browser security,
produced purely by accessing a single webpage with minimal interaction required from
the user. We consider the offerings of some of the related work, and what we learned
from them with respect to our project.
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2.3.1 Browserscope

Perhaps the most similar work to our project is Browserscope5. Describing itself as
a “community-driven project for profiling web browsers”, the project homepage detects
which browser you are using before inviting you to run their tests on your browser. These
tests cover a wide range of browser features such as network performance, CSS selectors
supported and, most interestingly, security. Once the tests are complete, the browser
version tested and its results are added to the project’s database. These results are then
aggregated and made publicly available, making it easy to keep track of functionality
across all browsers that have been tested. Browserscope aims to be a useful tool for web
developers, allowing them to determine which modern browser features are widespread
enough that they are safe to use in a popular web application. Figure 2.4 shows a
summary of their test results for today’s most popular browsers.

Figure 2.4: Browserscope’s summary of the current top browsers

The most relevant aspect of Browserscope to our project is the security tests: Browser-
scope currently runs 17 browser security tests as part of its testing. These tests run
automatically in the browser in a similar fashion to how our tests will run. The Browser-
scope security tests provided us with some good initial test ideas for BrowserAudit. All
of their security tests cover standard security features of a browser, which one would

5
http://www.browserscope.org/
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hope are correctly implemented in each of today’s major browsers. The list of security
features covered by Browserscope is far from exclusive, however: there are many more
standard security features that we should also be able to test.

When the Browserscope tests are run, the output is simply a list of which tests passed
and which tests failed. There is no indication of why each test passed or failed, and no
real technical explanation of which browser security feature the test is trying to break.
This is perfectly fine for a browser profiling project, however in our project we want
to provide a much more thorough and technical breakdown of each test result. Which
security feature does the test cover? How is it being tested? What is the expected result?
What was the actual result? For browser developers and security researchers, all of this
information will be essential.

2.3.2 How’s My SSL?

How’s My SSL? 6 is a young project that tells the user how secure their TLS client7

(probably a web browser) is. It is so young, in fact, that it was launched after the initial
research for our project began.

The How’s My SSL? application works by running a TLS server that has been modified
so that the client-server handshake is exposed to the web application, allowing it to
inspect the cipher suites that the client tells the server it can support. The site then
performs a security assessment on the TLS client and reports the results in a very clear
manner, with “Learn More” links for more technical background. This layout works well,
and we took ideas from this for BrowserAudit. We also realised that we could potentially
make use of How’s My SSL? within our project, since the security of a browser as a TLS
client is very relevant to the security of the browser itself. A JSON API is provided,
whose response includes all of the information on the verdict on the TLS client’s security.
These results could be presented to the user alongside the results of our own tests.

2.3.3 Panopticlick

Panopticlick8 is an experiment run by the Electronic Frontier Foundation to investigate
how unique – and therefore trackable – modern web browsers are, by fingerprinting
the version and configuration information that a browser transmits to websites with its
requests. Some of the information fingerprinted by Panopticlick does not come directly

6
https://www.howsmyssl.com/

7TLS stands for Transport Layer Security. It is the most commonly used protocol for encrypting data
across the Internet, and is used by the HTTPS protocol to load webpages securely. We covered this
in more detail in Section 2.1.2

8
https://panopticlick.eff.org/
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Figure 2.5: How’s My SSL? ’s verdict on Firefox 27.0. This is an improvement on the
Bad rating given to Firefox 26, which was a result of two issues: lack of
TLS 1.2 support, and support for the possibly-insecure SSL_RSA_FIPS_WITH_

3DES_EDE_CBC_SHA cipher suite

from browser requests, but is instead readily available thanks to the presence of JavaScript
and browser plugins such as Adobe Flash Player.

Visitors click the “Test Me” button and are then provided with their uniqueness score. For
example, running in Firefox 27.0 on a slightly customised Ubuntu 12.04 installation:

Your browser fingerprint appears to be unique among the 3,846,235 tested so far.

Currently, we estimate that your browser has a fingerprint that conveys at least
21.88 bits of identifying information.

Below the uniqueness score is a breakdown of all of the measurements used to obtain
the result. These measurements include the user agent string, HTTP Accept headers,
browser plugin details, screen size and colour depth, and system fonts. The data are
then anonymously stored in the project database to make future uniqueness scores more
accurate, and to allow for analysis of the data. A paper was published in 2010 reporting
the statistical results of the experiment. When a browser was chosen at random, it was
expected that at best only one in 286,777 browsers would share its fingerprint [14]. This
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level of uniqueness offers interesting visitor tracking opportunities to those who could
gain something from it. For example, advertising companies could track users around
the Web, targeting advertisements at them based on their online footprint.

As with How’s My SSL?, the most interesting aspect of Panopticlick from our project’s
perspective is the user experience. It is very simple for the user to run Panopticlick ’s
test on their browser – a single click is all that’s required. We believe that this click is
important too, since it explains to the user what is about to happen before their tests
are actually executed. Once the testing is complete, a very simple uniqueness summary
is provided, with the technical information lower down on the page. This means that
the test results appeal to a wide audience – a more typical web user can visit the page
to receive a rough assessment on how easily he can be tracked, while a more advanced
user can also study the exact information his browser is transmitting to each website he
visits. He may then modify his browser settings in order to make himself less trackable
around the Web.

2.3.4 BrowserSpy

BrowserSpy9 describes itself as “the place where you can see just how much information
your browser reveals about you and your system”. BrowserSpy currently offers 75 tests
that can be run individually – there is no option to run all tests automatically since the
output of each test is rather verbose. Each of the tests aims to show the user how much
information can be retrieved from their browser just as a result of visiting a single test
page. Just like Panopticlick, some of these tests are based on the information the browser
sends to the server with its requests, whereas others are more complicated and make use
of client-side scripting. Another comparison to Panopticlick is that BrowserSpy ’s main
focus is privacy, as opposed to security which is our main focus. That said, some of
BrowserSpy ’s tests are security-based, however they are not presented in this manner.
For example, Table 2.2 shows an example output of BrowserSpy ’s cookies test. We can
see that some of this output is indeed related to browser security, namely the HttpOnly
cookie attribute that we described in Section 2.2.4. Note that the browserspy_server_

httponly cookie set by the server-side cannot be read by the JavaScript client-side: this is
correct behaviour, as highlighted by the “Can JavaScript read HttpOnly Cookies?” result.
Another security-related test offered by BrowserSpy tries to exploit CSS to determine
the user’s browsing history.

BrowserSpy has a similar architecture to our project in that it runs tests (some of which
are testing security features) on a users browser. The client- and server-side of the
application work together to run the tests, in the same way that we will have our server-
side utilising as many browser security features as possible such that the client-side can

9
http://browserspy.dk/
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Test Result

Cookies enabled? Yes
JavaScript cookies supported? Yes
Server cookies supported? Yes
HttpOnly cookies supported? Yes
Can JavaScript read HttpOnly cookies? No – which is correct
Meta tag cookies supported? Yes
Number of cookies? 3
Current cookies popunder=yes; popundr=yes;

setover18=1

Current cookies by server-side browserspy_server_httponly=test

Max no. of JavaScript cookies per server 100
Max size per cookie 4,000 bytes

Table 2.2: An example output of BrowserSpy ’s cookies test

then test their implementations. In BrowserSpy, the server-side is written in PHP, whilst
the client-side is mostly JavaScript but also makes use of VBScript, Java and Flash when
available.

The level of detail provided in the BrowserSpy test outputs is an improvement on Browser-
scope however, for the purposes of our project, we still believe that it will be useful to
also provide implementation details of each test for a more technical audience. We also
learned from BrowserSpy that it is frustrating having to run one test at a time, and
so we will prefer an interface similar to those of Panopticlick and How’s My SSL? for
BrowserAudit.

2.3.5 Qualys SSL Labs

Qualys is a provider of cloud security. They also have a non-commercial research website,
SSL Labs10, that they describe as a “collection of documents, tools and thoughts related
to SSL”. One of these tools is very popular in the web development world and used by
many webmasters to test a server’s SSL configuration. This involves checking the cipher
suites it supports and the certificate it presents. Simply enabling SSL on a server and
presenting a valid certificate is not enough for maximum security. Many default SSL
configurations will score poorly in the SSL Labs server test, and so many webmasters use
it to fine-tune their TLS configuration. In October 2013, an SSL client test was added
to the SSL Labs website. This is of more interest to us, since browsers behave as an
SSL/TLS client whenever they load a page over HTTPS. These tests, loaded on a single
page, automatically assess the user’s browser as a TLS client.

10
https://www.ssllabs.com/
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Figure 2.6: A section of example output from the SSL Labs client test

The SSL Labs client test is similar to the How’s My SSL? project that we have seen
already, although the output is perhaps more useful. The side-effect of this is that the
SSL Labs test output is also much more complicated. The output very much appears to
be targeted at highly technical users only – there is very little text describing what each
test is doing. In fact, the only real indicator at all is the headings at the top of each
batch of tests. Figure 2.6 shows a screenshot of some example output from the SSL Labs
client test. We can see a breakdown of the TLS capabilities of our browser (Firefox 29.0).
Other than the green text in two rows indicating a good result, a non-expert user might
have difficulties understanding what the results mean.

Looking towards how this project relates to BrowserAudit, we learned that technical
output is very helpful but should perhaps be supplemented with a clearer summary (as
we saw in How’s My SSL? ) for users who may not know much about the inner details of
the browser features being tested.

2.3.6 CanIUse Test Suite

CanIUse11 is a website referenced often in this report when discussing browser support
for various security features. It offers compatibility data for a wide variety of browser
features beyond security, such as support for HTML5 and CSS3 features. For each
feature, it displays a table detailing support for the feature in both desktop and mobile
browsers. This table highlights the versions (both current, past and future) of each
browser in which the feature became supported or is planned to be supported in the

11
http://caniuse.com/
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future. CanIUse sometimes also has notes on quirks in the implementation of a feature
in a particular browser.

A lesser-known public feature of CanIUse is their test suite12. This is the test suite that
they use when testing support for various web technologies to display in their browser
support tables. The tests for all features are executed on page load, but it is also possible
to click a link for each feature to test only that feature. There are four different types of
test:

• auto – automated JavaScript tests;

• visual – requires visual comparison to confirm;

• visual-square – also requires visual confirmation from the user; test must create
a green square;

• interactive – requires interaction to confirm support.

Having these different types of test makes perfect sense. The automated JavaScript
tests are preferred when possible, but many of the tests require some sort of human
confirmation since they are testing things like CSS3 page style features. In some, it is
just a case of looking for a green square, whilst others require a comparison to an image
provided of the expected output. We stated in our Introduction chapter that we aim to
automatically test browser security features with BrowserAudit, and we have so far been
able to avoid any kind of visual confirmation being required from the user when writing
our own tests. It is interesting to note, however, that the visual confirmation works well
on the CanIUse test page, should we encounter a situation in the future in which we
believe a security test is important but the feature cannot be automatically tested.

Content Security Policy Test

There are not many security tests in the CanIUse test suite, however there is one that
we found to be especially interesting: Content Security Policy. This is a single test that
tests a browser’s support for the Content Security Policy (CSP). This is a feature that
BrowserAudit tests today. Interestingly, the CanIUse test for CSP support requires a
visual confirmation, whilst we have been able to test it automatically in JavaScript. The
CSP is also a very detailed security feature (see Section 2.2.2) that requires multiple tests
to cover, rather than a single test as in the CanIUse suite. The use of just a single test
in the CanIUse suite is understandable, since it is intended only to test support for the
feature and not its implementation.

12
http://tests.caniuse.com/
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In this chapter we discuss the design of our application. This includes our chosen im-
plementation languages and key libraries used. We showcase BrowserAudit’s front-end
website design with screenshots, and also describe our server-side system architecture.

BrowserAudit consists of both a client-side application and a server-side application. The
client-side runs in the user’s browser whilst the server-side runs on a web server. The
two parts of our application work together in order to run our security tests on the
user’s browser. Put simply, the server-side of the application exercises browser security
features and the client-side application then tests that these features are implemented as
expected.

Our application is very modular, i.e. browser security tests can be added and removed
independently of each other. This means that the application lends itself nicely to an
incremental software development workflow – we can write, test and introduce each of
our security tests one at a time. The key benefit of this is that the application is always in
a demonstrable state, since the introduction of a new test should never break an already-
existing test (at this stage this is true; perhaps in some future work it will make sense
for BrowserAudit tests to be dependent on and “include” others). The development cycle
should be as simple as deciding on the next test to implement, writing it, testing it, and
introducing it to the webpage that so that it is run alongside the other tests when the
user accesses our web application. As we look towards design decisions, we must take the
modular nature of the project into account and ensure that our program design allows
for an incremental workflow as described.

3.1 Client-Side

The client-side of our application is written in JavaScript, the only client-side script-
ing language that is fully supported across all of today’s browsers. It is responsible for
running the tests and reporting the results to the user. A typical test involves mak-
ing multiple requests to the server-side application (often through AJAX, although also
through other methods such as loading an image) and checking the responses against the
expected responses.



3.1 Client-Side

Rather than using any large frameworks or syntactic sugar, we instead write our tests
in raw JavaScript supplemented only by jQuery to simplify DOM manipulation and
AJAX requests. We are considering plans to open source the project, inviting other
developers to contribute to our testing codebase by adding their own tests covering
new security features. Should we end up doing this, we would not want to limit the
number of developers who might be able to contribute to BrowserAudit by using an
implementation framework that many developers won’t be familiar with. Many modern
client-side applications nowadays make use of CoffeeScript, a language that compiles
down to JavaScript. It has much nicer syntax than plain JavaScript, borrowing syntactic
sugar from languages such as Ruby, Python and Haskell. We opted not to use this
because not all JavaScript developers will be comfortable with Coffeescript, and it is
important that we don’t limit the number of potential contributors to our project.

3.1.1 Mocha

Whilst considering the application design for BrowserAudit, there was a clear duality
between our project and unit testing – the software testing method whereby the smallest
possible units of code are tested individually to ensure they are fit for use. For example,
when unit testing a Java application with a framework such as JUnit, one writes his
tests in separate source files and runs them either on the command line or, more likely,
instructs his IDE to run them all for him and report back on the test results. This is
very similar to the usage pattern we wish to achieve: we want the user to visit our page,
which will then run our tests and report back on the results.

Keeping in mind the desire for a design allowing tests to be as modular as possible, we
looked into JavaScript unit testing frameworks. If we could find an appropriate client-side
JavaScript unit testing framework, this would be able to handle the automatic running
of tests and reporting of results, allowing us to focus on the implementation of the
tests themselves. After researching the various options (many of which were for server-
side JavaScript only, targeting the increasingly-popular node.js platform) we settled on
Mocha1, which describes itself as a “feature-rich JavaScript test framework running on
node.js and the browser, making asynchronous testing simple and fun”. Mocha allows us
to run unit tests in the browser. The asynchronous property is also highly important to
us, since many our tests will involve making asynchronous requests to the server-side of
our application.

Listing 4 shows the JavaScript client-side of a proof-of-concept browser security test we
wrote to decide whether Mocha is fit for our needs. It tests that the browser correctly
implements HttpOnly cookies (see Section 2.2.4). The simplicity of this test demonstrates
the power of the JavaScript testing library; the test was easy to write and is simple to

1
http://visionmedia.github.io/mocha/
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1 $.get("/del_httponly_cookie", function() {

2 expect($.cookie("httpOnlyCookie")).to.be.undefined;

3 $.get("/set_httponly_cookie", function() {

4 expect($.cookie("httpOnlyCookie")).to.be.undefined;

5 done();

6 });

7 });

Listing 4: The client-side of a proof-of-concept HttpOnly cookie test

understand. Firstly, a call is made to a server-side page to clear any leftover cookie value
from a previous test run. After this, we expect its value to be undefined. We then make
a call to a server-side page which sets the cookie. Since we’re trying to access the cookie
from JavaScript, we still expect it to be undefined. If this isn’t the case, then the browser
has failed the test since it has allowed our script to read the value of an HttpOnly cookie.
The call to done() informs Mocha that the asynchronous test is now complete. We are
making use of jQuery here to simplify the requests made to the server and the reading
of cookies from JavaScript.

Mocha allows us to use any assertion library when writing tests. We are using Chai2

with the Expect interface, allowing us to write assertions of the form expect(foo).to.

equal("bar").

Figure 3.1: A screenshot of Mocha’s default test output

Of course, Mocha was not designed for our purposes. It is designed for use by developers
to debug their code behind the scenes, not for use by an end-user in a front-end applic-
ation. As such, Mocha’s default output – displayed in Figure 3.1 – is not fit for our
purposes. Some aspects of it are good, for example the way in which it lists the test

2
http://chaijs.com/
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outputs (neatly organised into categories) with tick and cross symbols. Some aspects
of it are not appropriate, such as the way in which it flags test runs that take too long
to run. This isn’t useful in our case since our asynchronous requests to the server-side
can take variable amounts of time. We will need to modify Mocha’s output styling to
make it fit for our needs, taking into account what we learned from the related work in
our background research. Fortunately Mocha makes this relatively simple, by allowing
developers to write their own result “reporters”. When writing a reporter, there are call-
backs for events such as the completion of a test that can be used to update a graphical
in-browser display.

3.1.2 Website Design

An important aspect to the project is the design of the website itself. After all, this is
how our project will be accessed and used. When designing the website we wanted the
design to be appropriate for as wide an audience as possible. This means that the basics
should be very accessible, such as the number of tests that passed and our overall verdict
on the user’s browser. We don’t want a not-so-technical user to be overfaced by anything
technical – they should still be able to use our site comfortably. A highly technical user,
however, such as a security researcher or even a browser developer, should be able to
access the exact reasons for any test failures: expected results and actual results. For an
in-between user, who is technical but not a browser security expert, we should provide
some level of technical information about what each category of browser tests is doing.
By doing this, BrowserAudit is able to interactively educate users on the importance of
browser security by explaining to them the tests that we run on their browsers.

Taking all of this into account, we have produced a design that we believe is suitable
for the widest audience possible. It is based heavily around components of Twitter’s
front-end framework Bootstrap3 which makes it easy to produce a layout that works
consistently across all browsers. Bootstrap also allowed us to produce a design that did
not require us to spend too much time writing and testing our own CSS stylesheets and
JavaScript. Bootstrap webpages are responsive by default, meaning that they work well
even on narrow screens such as mobile devices. This is important to us since browsers on
mobile devices can be some of the most infrequently updated and insecure! We will now
discuss the main components of our design that we believe contribute towards a positive
user experience.

3
http://getbootstrap.com/
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Landing Page

When a user visits our website, the tests do not run automatically. This would be
confusing for a user if it was his first visit to our site, and could result in him quickly
navigating away. Instead, a brief landing page is displayed. This is an idea that we took
from the EFF’s Panopticlick – discussed in Section 2.3.3 – that we think works well. We
give the user a quick summary about what is about to happen, and allow him to click a
button to start the tests. It is his decision to run our browser security tests; they are not
started automatically. Figure 3.2 shows the main call to action on our landing page.

Figure 3.2: The call-to-action on our landing page displayed before the tests are run

Test Outcomes: Okay, Warning, Critical

Rather than having the outcome of our security tests being a binary pass or fail, we
instead have three possible test outcomes: okay, warning and critical. Our reasoning for
this is that some of our tests are testing young browser security features, the absence of
which does not necessarily mean that a user should update or replace his browser. We
would not want to confuse a user by flagging his browser as insecure for failing such a test.
On the other hand, some of our tests are testing features (e.g. the same-origin policy)
that absolutely every browser should correctly implement, and so the failure of such a
test should result in a more severe warning. Our solution to this is the three possible
test outcomes. If a Mocha test passes, it is displayed as okay. If a test fails, it will be
displayed as either a warning or critical depending on the test.
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Test Summary Box

The main component on the page that actually runs the tests is the summary box dis-
played at the top of the page. This summary updates in real time as tests complete. An
example of how the summary box can look part-way through the execution of our tests
is shown in Figure 3.3. There are multiple elements to this that we believe offer a good
user experience.

Figure 3.3: The test summary box part-way through the execution of our tests

The most noticeable elements in the summary box are the three boxes containing the
current result counts. These very clearly display to the user the number of tests so far
that are okay, how many have warnings, and how many are critical. These result counts
are augmented by the progress bar above them, which also updates in real time. The
progress bar clearly indicates to the user that the tests are still running (since it updates
so often) and also gives an accurate indication of how many more tests are still to be
run. In addition to this, the progress bar is composed of three colours displaying what
proportion of tests so far have each test outcome (okay, warning, critical). This gives a
good graphical representation of how the user’s browser is fairing as far as our tests are
concerned. This output can be easily understood by any user, whatever their technical
background.

When all tests are complete, the background of the test summary box changes from grey
to be the colour matching BrowserAudit’s verdict on the user’s browser. This verdict is
the worst result encountered during all tests. If all tests are okay, the summary box will
turn green. If there are warnings but no critical results, it will be yellow. Otherwise,
there are critical failures and so the summary box will turn red.
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Show/Hide Details

Below the summary box, also pictured in Figure 3.3, is a button labelled “Show/Hide
Details”. This can be pressed by more advanced users to learn details about the tests
being executed and their results. This is especially interesting if the status box above
it is showing any warnings or failures. Figure 3.4 shows how the box displayed after
pressing the button may look once all panels have been collapsed. Each of the panels
(one for each major test category) is expandable, and any categories with warnings or
critical results will be expanded by default. The Content Security Policy category has
been manually collapsed (by clicking the category title) in this screenshot.

Figure 3.4: The box displayed after “Show Details” is pressed, with all panels collapsed

We can see that there is a panel for each major test category. The background colours of
the panel headings reflect the status of the panel, i.e. the colour representing the worst
result encountered in the category, in a similar fashion to the main summary box on
completion as described already. These background colours are updated live, should a
user choose to view the additional details whilst tests are still running. An animated “in
progress” icon, not pictured, is displayed alongside the category (if any) whose tests are
still in progress. To the right-hand side of the Content Security Policy bar we can also
see a numerical “badge” indicating the number of critical tests. A similar badge is also
displayed in yellow for any warnings that have occurred.

Expanding a Category Panel

Figure 3.5 shows a screenshot of an expanded category panel. We can see how the
category has a paragraph of text explaining what the category of tests is doing. This
explanation is targeted at a technical user who may not be well versed in browser se-
curity. We can also see an example of a subcategory, “HttpOnly Flag”. Each of these
subcategories may also have description text, as shown in this case.
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Figure 3.5: An expanded category panel

The screenshot in Figure 3.5 also shows how each individual test result is displayed. We
can see a table with rows of alternating background colours, making it easy to read results
across. Tick and cross icons are shown, clearly indicating an okay result and a critical
result. In the event of a warning result (not shown), a yellow warning sign is displayed. In
the event of a critical test (and also a warning result), we can see the technical explanation
displayed below the test title. In this particular test, we can see that an HttpOnly cookie
set by the server can wrongly be accessed by JavaScript. The error message makes it
clear that the test was expecting the cookie’s value to be undefined, but it was actually
“619”. This level of detail is intended to be useful for advanced BrowserAudit users such
as browser developers and security researchers.

JavaScript Disabled Message

In the case where a user has JavaScript disabled in his browser, we use a <noscript> tag
to display a message explaining that he should enable it in order to run our tests. In this
message, we acknowledge that having JavaScript disabled by default is indeed a security
benefit. We also point out, however, that it is infeasible to automatically test browser
security features without it. Some of our tests could in theory work by requesting that
the user respond to several stimuli on a page, clicking buttons such as “yes, I see the
green box”, but this would result in a completely different user experience to what we
aim to achieve. There are also some tests that are completely impossible to have without
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JavaScript, such as testing that an HttpOnly cookie created by JavaScript is immediately
thrown away and never sent to a server.

3.2 Server-Side

In this section we describe the design decisions made for the server-side of BrowserAudit.
The server-side must handle all of the requests made by the client-side. We first discuss
our choice of implementation language, and in Section 3.2.2 we describe our system
architecture.

3.2.1 Go

The server-side of our application is written in Go. Otherwise known as golang, Go is
a relatively young programming language that has gained significant traction in recent
years. It was initially developed at Google in 2007 and open-sourced in 2009 [25]. Go is
used in many confidential Google projects, and is also used in backends at many tech-
nology companies including BBC Worldwide [1], GitHub [29], Heroku [24], Tumblr [27]
and Soundcloud [7].

The three most commonly cited reasons for using Go are its concurrency primitives,
ease of deployment, and performance. Only one of these is especially relevant to us:
performance. Go is fast. This is important for BrowserAudit because a single user
running our browser tests results in hundreds of requests spread over a minute or two. In
order to comfortably support multiple concurrent users, we require an implementation
language that offers good performance. The other two reasons, concurrency primitives
and ease of deployment, are not as relevant to our project. We are not making use of Go’s
currency primitives ourselves, although it is worth noting that the net/http package that
we use makes extensive use of golang’s currency features, allowing it to efficiently handle
multiple concurrent HTTP requests. Ease of deployment may become important to us
in terms of scalability, discussed further below.

We also chose Go because of its simplicity. We do not require a web framework that
ships with hundreds of files and its own custom build system. Our server-side can and
should be very simple. As we will see shortly, its only tasks are session management and
serving different HTTP response headers that activate various browser security features.
Any additional features could result in unnecessary overhead. Go lets us write our own
custom web server from the ground up, resulting in a minimalistic server-side codebase
that is easy for another developer to understand. Go is also statically-typed; this means
that very few runtime errors occur, since most mistakes are caught at compile-time.
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3.2.2 System Architecture

Our web application is currently running on a single Linode4 cloud server. The server has
2GB of RAM, 2 CPU cores and 48GB of storage, which is plenty for our needs. We chose
to host the application on an external server rather than a departmental “DoC Private
Cloud” server due to the restrictions imposed by the department on the Cloudstack
servers. For example, the standard web ports of 80 and 443 are not publicly accessible
on a Cloudstack server – they are only accessible from within the Imperial network.
Another reason for wanting to host the application externally is that we hope to continue
maintaining the application beyond the timescale of this undergraduate project.

The server runs Ubuntu 14.04 LTS. We chose to use Ubuntu because we have lots of
experience with it already (especially running it as a web server) and because its official
repositories contain all of the packages we need.

Figure 3.6: Nginx as a reverse proxy in front of our Go web server

Our web application makes use of two web servers: a public-facing Nginx web server
running on ports 80 and 443, and a local golang web server running on port 8080. The
Nginx server is running as a reverse proxy in front of the golang web server. The golang
web server is not publicly accessible; all outside requests made to our application are
to the Nginx server. Figure 3.6 shows a diagram of our system architecture. When the
Nginx server receives an HTTP request, it makes a simple decision:

• if the request is for a URL beginning with /static/, Nginx serves the static file
itself from the static/ directory in the project codebase;

• otherwise, it passes the request to the golang web server running on port 8080 and
returns its response.

There are numerous advantages to this approach. For example, Nginx handles SSL
4
https://www.linode.com/
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termination, caching and gzip compression out of the box. It also keeps access and error
logs and offers handy features such as URL rewriting. By allowing Nginx to do all of the
heavy lifting, we can keep our golang web server very simple: it is responsible only for
serving dynamic requests that depend on the user’s session. This means that all of the
code behind our golang web server is specific to our application, and no time has been
spent reinventing the wheel to do the work that we can ask Nginx can do for us. This
approach also has security benefits: our golang application can run as a non-privileged
user since it only needs to bind to port 8080 and not the privileged ports 80 and 443.
Nginx is responsible for binding the privileged ports – its master process is run as root,
but the worker processes (those that handle HTTP requests) run as the non-privileged
user www-data.

Scalability Considerations

We mentioned on page 45 that Go’s ease of deployment may become useful in the future
in terms of scalability. This is because a Go program compiles to a single statically-
linked binary. There is no dependency chain and no need to worry about shared lib-
raries. At present, our dual-core Linux machine is adequate for the amount of load
that the BrowserAudit application puts on the server. We have tested this by running
BrowserAudit in multiple different browsers on multiple computers simultaneously; the
runtimes were always acceptable and system load never reached unacceptable levels. If
the application were to become popular then a single dual-core machine would not be
adequate and we would need to expand our architecture. We have considered this already
so that we do not face any scaling problems in the future.

The simplest way in which our application can scale is by upgrading the server to one
with more computational resources. Due to their concurrent natures, both Nginx and
our golang server (using the GOMAXPROCS environment variable) can make use of as many
CPU cores as are available. This means that performance and request throughput can
be improved simply by upgrading the server on which the application runs. This is not
true scalability, however, and has an upper bound – we must instead consider how we
can scale our application by running it across multiple servers. Nginx can very easily
be configured as a load balancer, using multiple upstreams to serve requests. These
upstreams could be multiple servers running our golang web server. Due to Go’s ease of
deployment, it would be very easy to deploy golang web server instances as necessary. In
order to maintain session persistence, we would use Nginx’s ip_hash directive to ensure
that all requests from the same IP reached the same golang server. We could alternatively
modify the golang processes to use a centralised session store.
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3.2.3 Supervisor

We use the Supervisor daemon supervisord5 to autostart and manage the golang server
process. This is much simpler than writing rc.d scripts manually and is also easier to
maintain. Supervisor also ensures that the process will be restarted in the event of a
crash – something that cannot be achieved with rc.d scripts and would otherwise need
to be written into the Go program itself.

Supervisor automatically starts the golang web server on boot, restarts it on failure, and
redirects the server’s stderr and stdout to log files. These logs are automatically rotated
to preserve disk space. supervisord comes with its own init.d script to ensure that it
starts when our Ubuntu server boots (and therefore that it starts our golang process).

3.3 Testing

It is not easy to test the implementations of our tests. A test with a small bug in it
could still show as a pass in the browser, which is likely the result we are expecting
and so the problem may never be detected. There are no easily-accessible browsers that
intentionally contain security flaws so that we can test the negative cases. We considered
modifying some of the open-source browsers to disable or break their security features in
order to ensure that our tests fail when expected, but this proved to be too much work
for the timescale of this project and is an idea that could perhaps be further explored in
the future.

In many cases we instead test the negative cases of tests whilst implementing them, by
temporarily changing something on the server-side. One example where this was possible
is the HttpOnly cookie test that checks that an HttpOnly cookie set by the server is not
accessible by JavaScript (see Section 5.4.1). The server normally sets a cookie with the
HttpOnly flag set, but we can temporarily change this to be a cookie without the flag set
and check that the test then fails in all browsers (JavaScript will be able to access the
cookie when the flag is not set, but the test expects that it will not be able to). We are
able to test many of our tests using methods similar to this, but we acknowledge that
this is not a sustainable testing method.

Where possible, we test the negative cases by finding browsers that we know should fail
our tests. Using sites like Browserscope and CanIUse (both of which were discussed
in Section 2.3), we can obtain data about which browsers implement a certain security
feature. We can choose browsers that don’t implement a feature and then ensure that
the BrowserAudit tests for that feature fail in those browsers. Likewise, we can do the

5
http://supervisord.org/
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opposite of this to test the positive cases, i.e. the tests that we expect to pass. We can
select all browsers that reportedly implement a given security feature and then ensure
that the relevant BrowserAudit tests pass in those browsers. Generally speaking, this
allows us to test our BrowserAudit tests with a reasonable level of accuracy, although
it is important to pay attention to any known quirks in the browser implementations
of each feature that we test. We must also not rule out the possibility of a browser’s
implementation of a feature being buggy!

3.3.1 Selenium WebDriver

Selenium WebDriver6 is a tool designed to automatically verify that web applications be-
have as expected. As a proof of concept, an example in the documentation automatically
uses Mozilla Firefox to run a Google search. It waits 10 seconds for Google’s JavaScript
dynamic search result generation to complete and then returns the page’s title. Selenium
WebDriver tests are written in Java, so assertions (or even JUnit) can be used to state
what the expected page title is and throw errors if the actual title does not match.

We should be able to use this in the future to automatically test BrowserAudit on
browsers whose expected security test results we already know. Automatically running
Selenium tests after a major change to our project would provide a sanity test that
the functionality of our application is still correct. WebDriver hooks into many ma-
jor web browsers: Mozilla Firefox, Internet Explorer, Google Chrome, Opera, iOS, and
Android.

6
http://docs.seleniumhq.org/projects/webdriver/
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In this chapter we discuss general implementation topics such as our web server setup and
Go packages we use. We explain improvements we have made to Mocha – the client-side
testing suite – to make it suitable for our needs. We also describe some common code that
applies to all of BrowserAudit’s security tests. The discussion of the implementations of
the tests themselves, and how we have been able to automatically test browser security
features, is saved for Chapter 5.

4.1 Nginx server

Our project makes use of four key domains: browseraudit.com, test.browseraudit.
com, browseraudit.org and test.browseraudit.org. These are necessary in order to
ensure a good coverage of various security features that involve cross-origin testing. We
have a single SSL certificate that is valid for the four domains1. Nginx is 0 for handling
all of these domains. As such, we define multiple servers in our Nginx configuration file.
The overall server configuration is as minimal as possible – each URL is only available
on the domains and schemes that are required.

Listing 5 shows an example server section from our Nginx configuration file. We have
multiple of these so that we can serve a different subset of URLs for each domain, keeping
the setup as minimal as possible. listen specifies the port to listen on (recall that 80
and 443 are the web ports for http: and https: respectively). The listen statement
on line 3 tells the server to also listen on our server’s IPv6 address. server_name specifies
the domain name for the server. SSL is turned on since this particular server is running
on port 443. All other SSL configuration options (such as the paths to the private key
and certificate) are placed in a more global http context so that we don’t have to repeat
them in each server. Since we have a single SSL certificate covering all of our domains,
all of these configuration options are the same for every server running on port 443.

The location directives specify the routing system described in Section 3.2.2 – static
files are served directly by Nginx, whilst dynamic requests are passed to the golang server

1The certificate is also valid for www.browseraudit.com, which currently redirects to the BrowserAudit
homepage. www.browseraudit.org also exists and redirects to the project homepage, although this
is not covered by our SSL certificate
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running on port 8080 using the proxy_pass directive. Note that Nginx uses the longest
matching route, so the directive for /static/ supersedes the one for /. We add a custom
X-Scheme header to requests for /set_protocol so that the golang web server knows
the scheme (http: or https:) used in the original request; Nginx does not pass this by
default, but it is needed in the golang server for the HTTP Strict Transport Security tests
(see Section 5.6.2). We intercept any proxy errors with the proxy_intercept_errors so
that, in the case of a 404 Not Found error in a request to the Go server, we can catch
this and instead redirect to the project homepage. We do this in case a user mistypes a
URL, since the default golang HTTP server’s 404 error is not especially user-friendly.

1 server {

2 listen 443;

3 listen [::]:443;

4

5 server_name browseraudit.com;

6

7 ssl on;

8

9 location / {

10 proxy_pass http://127.0.0.1:8080;

11 proxy_intercept_errors on;

12 error_page 404 = @homepage;

13 }

14

15 location = /robots.txt {

16 alias /path/to/browser-audit/robots.txt;

17 }

18

19 location = /set_protocol {

20 proxy_pass http://127.0.0.1:8080;

21 proxy_set_header X-Scheme $scheme;

22 proxy_intercept_errors on;

23 error_page 404 = @homepage;

24 }

25

26 location /static/ {

27 alias /path/to/browser-audit/static/;

28 }

29

30 location @homepage {

31 rewrite .* https://browseraudit.com/ permanent;

32 }

33 }

Listing 5: An example server section from our Nginx configuration
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4.2 Go server

As described in Section 3.2, our application uses a custom web server written in Google’s
golang. This web server is responsible for handling any dynamic requests – those that
depend on the user’s session and are not just static files such as JavaScript and images.

4.2.1 Gorilla Web Toolkit

We use the popular Gorilla web toolkit2 on top of golang’s net/http package. It is
important to note that this is not a framework but a toolkit – Gorilla is lightweight
and implements the standard interfaces such that it can be used in conjunction with the
built-in Go HTTP server in net/http.

We use two packages from the Gorilla toolkit: gorilla/mux for URL routing, and
gorilla/sessions for session management.

URL Router

We use Gorilla’s gorilla/mux package, which is a powerful URL router and dispatcher.
This makes it simple for us to determine to which handler function a request should be
passed. The mux package also allows us to extract variables from paths, which can then
be accessed from within the handler functions.

1 r := mux.NewRouter()

2

3 r.HandleFunc("/csp/{id:[0-9]+}", CSPHandler)

4 r.HandleFunc("/csp/pass/{id:[0-9]+}", CSPPassHandler)

5 r.HandleFunc("/csp/fail/{id:[0-9]+}", CSPFailHandler)

6 r.HandleFunc("/csp/result/{id:[0-9]+}", CSPResultHandler)

7

8 http.Handle("/", r)

Listing 6: Using gorilla/mux to route and dispatch requests

Listing 6 shows an example of how we use gorilla/mux from the Gorilla web toolkit to
easily dispatch URLs for our Content Security Policy tests. We can see that it is easy
to match URLs and pass them to the relevant handler functions, which compute and
serve the responses. We also make use of path variables – the CSP test ID is extracted
from the URLs where it can be easily accessed inside the handler function. Regular
expressions are used to specify that the ID must consist of one or more digits. If no

2
http://www.gorillatoolkit.org/
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matching route is found, a 404 error is returned which will be intercepted by Nginx. The
call to http.Handle() on line 9 is a call to Go’s native HTTP library – it has nothing
to do with Gorilla.

Sessions

Our application uses sessions to keep track of some test results and other test-related
data for each user whilst their tests are in progress. We originally hoped that this would
not be necessary, but it soon became apparent that sessions were indeed needed. One
reason for this is that, in many of our security tests, it is the server that makes the
decision as to whether or not the browser passed the test, not the script running in the
browser. In many of these cases, the client-side of our application running in the browser
must send an additional request asking the server what the rest result was, so that it
can be displayed to the user. In order for this to work, the server must remember some
of each user’s test results for the duration of their visit to our website. Where possible,
this additional “what was the test result?” request is avoided and the result is sent back
to the client-side with an earlier request. However this is not always possible due to
the same-origin policy, hence the requirement for sessions. In other cases, it is still the
client-side that decides on the test result, but sessions are required so that the client-side
can find out information from the server about an earlier request it made, such as which
cookies it sent.

We use Gorilla’s sessions package to store our session data. More specifically, we use a
FilesystemStore which stores the session data on the server filesystem. We store the
session data in our filesystem rather than inside the session cookie itself due to concerns
with the maximum cookie size supported by some browsers. Our session stores the results
of hundreds of our browser tests, and so we want to avoid any potential problems with
overly large cookies. Note that the gorilla/sessions package encrypts cookies, so the
cookie value becomes much larger than the data stored in it.

4.2.2 Caching and the DontCache Function

In many of our Go handler functions (the functions that handle an HTTP request and
generate a response) there is a call to a function DontCache(), usually at the top of the
handler. This is a function that we have written ourselves, displayed in Listing 7. Its
role is to ensure that an HTTP response is not cached, either by the receiving browser
or any caching mechanisms in between the server and browser. The function takes one
argument, a pointer to the ResponseWriter for the response, and sets the three headers
necessary to disable caching.
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1 func DontCache(w *http.ResponseWriter) {

2 (*w).Header().Set("Cache-Control", "no-cache, no-store, must-revalidate") // HTTP 1.1
3 (*w).Header().Set("Pragma", "no-cache") // HTTP 1.0
4 (*w).Header().Set("Expires", "0") // Proxies
5 }

Listing 7: Our DontCache() Go function that ensures a response is not cached

The use of the DontCache() function is very important due to a pattern commonly-used
in our browser tests. There are many cases in which a request is first made to store a
default result on the server, and then a second request may be sent to overwrite this
result, depending on whether or not the browser correctly implements a given security
feature. If a user runs our tests multiple times in short succession, and this second
result was cached and therefore did not reach our server, our application would report
an incorrect test result. We ensure that this cannot happen by calling DontCache() in
the necessary handler functions.

4.3 Mocha

Recall that Mocha is the in-browser JavaScript testing framework that we use to simplify
our implementation. It provides us with a means of automatically running “unit tests”
and reporting the results to the user. In this section we discuss code we have written
related to Mocha that is not specific to any particular browser test. We also discuss some
design patterns used when writing our Mocha tests.

4.3.1 Tests

Our tests are executed by the page at https://browseraudit.com/test. This is served
from test.html in the project codebase. It is important to note that our test page is
loaded over HTTPS, not plain HTTP. We do this because it makes the implementations
of the majority our security tests simpler. There are also the obvious security and privacy
benefits from loading as much of our application as possible over secure transport. That
said, loading the test page over HTTPS also partially limits our testing scope. This is
discussed as a limitation in Section 6.2.2. Our Mocha JavaScript tests are written in
/static/js/test/*.js files. Having a test directory is recommended as a best practice
in the Mocha user guide. Since these are static files, we store them in our static/

directory, meaning that Nginx will serve them directly without the requests ever reaching
our golang web server.

Tests can be categorised using the describe() function. Multiple describe()s can be
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placed inside each other, resulting in hierarchical categories in Mocha’s output. Tests
are written with the it() function.

1 describe("HTTP Response Headers", function() {

2 describe("Strict-Transport-Security", function() {

3 it("HSTS should expire after max-age", function(done) {

4 // ...
5 done();

6 });

7 });

8 });

Listing 8: Writing a test inside categories with Mocha

Listing 8 shows an example of how Mocha tests might be categorised in our case. We have
a section for HTTP Strict Transport Security (HSTS), which sits underneath an HTTP
Response Headers category. Inside the HSTS category, we have a single test. At the
bottom of this test, done() is called, indicating that the asynchronous test is complete.
For a synchronous test, the done argument can be removed from the anonymous function
passed to it(). This means that it then does not need to be called upon completion of
the test.

The test in Listing 8 does not do anything – it will always pass. This is because we have
not written any assertions. Since we are using Chai with the Expect interface, we write
our assertions with the expect() function. A test will fail if any of its assertions fail. In
fact, a test will cease to execute as soon as an assertion fails. For this reason, our tests
only contain a single call to expect(). In a case where a test might otherwise test multiple
things (with multiple expect() calls), we instead split this into multiple individual tests,
each with only a single assertion. This increases our test coverage, making sure that as
much as possible is tested.

Callbacks vs. Timeouts

When writing the Mocha JavaScript tests, we try to use callbacks over timeouts wherever
possible. This is because we want to avoid a situation in which we have to estimate the
maximum amount of time it will take for the browser to load, for example, an <object>

tag on a page. We want to avoid this because it would result in an implementation using
a timeout, which must be for a predefined amount of time. Situations could arise in
which the timeout is exceeded (for example, due to a user’s slow connection or high load
on our server), in which case a test may erroneously report an incorrect result.

Callbacks are the natural way to program in JavaScript. In many cases, we use jQuery’s
.on("load", function() {...}) to register a callback to execute code after an element
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has been loaded3. This works for any element associated with a URL, notably images
and frames, which are loaded dynamically many times in our codebase. In most cases
we can use callbacks to avoid any need for manually-defined timeouts, ensuring that our
tests always work as expected.

There are, however, cases in which we have been unable to find a callback solution. Many
of these cases occur in the Content Security Policy tests, discussed in more detail with
the implementation in Section 5.2 and in our evaluation in Section 6.2.1. One example
case can be described as follows:

• the test page loads a frame from frame.html;

• frame.html loads an <object> element from data.swf;

• the test page wants to execute JavaScript code after the object has been loaded;

• however, a load callback on the frame triggers before the loading of the object.

Our solution for this at the moment is to set a timeout on the test page to execute 300ms
after the loading of the frame. This is far from ideal; the timeout value will almost
certainly need to be increased in the future in order to cater for slow collections. This
has the major disadvantage that many browsers will be forced to wait even if the object
was quickly loaded. Despite all of this, there is still the risk that the object hasn’t been
loaded at all even after a lengthier timeout! This is why callbacks are preferred wherever
possible.

Callback behaviour in cases like the example above are not consistent across all browsers.
Some can be fixed by modifying the Content-Type header served with the object being
loaded from the page inside the frame. Unless we are certain that the callback solution
works, we currently use a timeout. This is something that we hope to avoid in the
future.

4.3.2 BrowserAudit Reporter

We have written our own Mocha “reporter” to display the BrowserAudit security test
results in the browser. Reporters are Mocha’s mechanism for modifying the style of
its output without needing to modify any of the source code related to Mocha’s core
functionality. There are many terminal-based Mocha reporters for use with server-side

3jQuery’s simpler .load() syntax for the same purpose has been deprecated, to avoid ambiguity to
do with its method signature. The deprecated syntax is still used in many places in this report to
improve the readability of code listings
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(node.js) JavaScript, although we found very few in-browser Mocha reporters. It was
necessary to write our own reporter in order to style the Mocha output to match our
design that we discussed in Section 3.1.2. Our design is very different to the default
Mocha in-browser design, so it was not feasible to simply use the default reporter with
modified CSS classes. Our reporter is defined in static/js/BrowserAudit.js. We tell
Mocha to use this reporter rather than the default by setting reporter: BrowserAudit

in the options object that we pass.

Mocha reporters are constructed with an argument runner. This can be used to register
event callbacks, which we make heavy use of in our reporter. For example, one can define
a callback for whenever a test ends using runner.on("test end", function(test)

{...}). The test argument here is a full JavaScript object representing a test, with
properties such as test.title, test.state (e.g. “passed”) and test.err which provides
lots of important information regarding a test failure. Below is a complete list of the
Mocha callbacks that we make use of in our reporter:

• “suite” – called at the start of a test suite, i.e. at the start of a category defined
with describe();

• “suite end” – called at the end of a test suite/category;

• “fail” – called on a test failure;

• “test end” – called when any test completes.

Thanks to these callbacks, the reporter implementation consists primarily of code to
manipulate the DOM. We must create many DOM elements in order to display the test
results. Below is a brief description of the DOM manipulation that occurs during each
of the above callbacks:

• “suite” – if this is a root-level category, create a coloured panel representing the
category of tests. If the category has a textual description, append this to the top
of the panel. If this is a second-level category, add a heading (and description, if it
exists) underneath its parent panel and a table for the test results to be stored in;

• “suite end” – if this is a root-level category, remove the loading icon that was
displayed in the panel heading;

• “fail” – no DOM manipulation, this is all handled by the “test end” handler;

• “test end” – append the test result to the relevant results table. Update the result
counts and progress bar at the top of the page. If a warning or failure, update
the panel heading warn/fail counts and background colour if necessary. If this is
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the last test, update the background colour of the results box at the top to be the
green, yellow or red depending on the worst test result encountered.

Mocha also has an “end” callback designed to be called once all tests (and suites) are
finished. We discovered that this does not work as it should in Internet Explorer, so we
instead detect the “end” event by counting the number of tests completed and comparing
it to the total number of tests (runner.total) on each “test end” event.

We use jQuery to simplify the DOM manipulation. In order to keep track of the category
hierarchy (i.e. parent and child categories of tests) we use a stack, represented as an
array in JavaScript. We push categories onto the stack on the “suite” event and pop
them off on a “suite end” event. We also make use of the peek operation when adding a
test result or second-level test category to the DOM. In order to find the DOM element
to which these new elements should be appended, we locate it on top of the stack. Due
to bugs in Internet Explorer and Safari when storing references to DOM elements on a
stack, the stack actually stores string IDs of the elements they represent. These can be
converted back to element references easily using document.getElementById("myId")

(or jQuery’s $("#myId") in our case, to keep the code style consistent with the rest of
the file).

Alerts

Mocha only supports a test result of pass or fail, however our design incorporates two
different test failure states: warning and critical, meaning that there are three possible
test outcomes overall.

We could have forked the Mocha project and modified it to produce our own version that
supports two different kinds of failure. We decided that this was unnecessary; maintaining
a fork would mean that we would have to merge any future Mocha updates into our own
repository to benefit from them. A better solution would be one that requires no change
to the Mocha codebase. We achieved this by introducing a standard whereby any test
whose title begins with the string <warn> should result in a warning on failure, as opposed
to being flagged as a critical failure. This is implemented entirely in our custom reporter,
and so will not be affected by any future Mocha updates. We simply check for the special
string when a test ends, record whether or not a failure should be flagged as a warning
or critical, and remove the string from the test title before it is displayed to the user.
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Category Descriptions

Much like the alert failure status, Mocha has no support for displaying textual descrip-
tions of a test suite beyond a title. Recall that our design allows for multiple paragraphs
of text describing a block of tests. Following similar logic to that alerts, we did not
want to have to modify the Mocha codebase to add support for this. We have instead
implemented a standard in which a test category title can be of the form name<|>desc

where name and desc are the category name and description respectively. The reporter
detects this and displays the test category accordingly. The description is assumed to
be HTML. For convenience, we have written a function browserAuditCategory() that
acts as a wrapper around Mocha’s describe() function. This function is displayed in
Listing 9.

1 function browserAuditCategory(name, desc, f) {

2 if (desc === "")

3 describe(name, f);

4 else

5 describe(name+"<|>"+desc, f);

6 }

Listing 9: Simplifying our category description system with a wrapper to describe()

The function takes the category’s name and HTML description as separate arguments.
The description can be left blank if desired. The benefit of this function is that it keeps
the test files clean of the implementation details of our technique to separate the category
name and descriptions in a single string.

4.3.3 afterEach Frame Removal

afterEach() is a Mocha feature that allows us to provide a JavaScript function to be run
after every test, or after each test in a specific category of tests. We can make multiple
calls to afterEach(). If called in the global scope, the callback function will be executed
after every single Mocha test (regardless of whether it passes or fails). Alternatively, we
can place it inside a call to describe() (the function used to start a new category of
tests), which means that the callback will only be executed after each test in that given
category. We use afterEach() in both ways – we make use of it in the global scope as
described below, and in a category-specific scope in our HTTP Strict Transport Security
tests (see Section 5.6.2).

We use afterEach() to run a function after each and every BrowserAudit test. This
callback uses the DOM to remove any frames created by the test. The JavaScript code
achieving this is shown in Listing 10. The majority of our tests create at least one
<iframe> element, which are no longer needed as soon as the test result is reported. We
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1 afterEach(function() {

2 $("iframe").remove();

3 });

Listing 10: Using afterEach() to remove all <iframe> elements after each test completes

remove them so that the DOM doesn’t grow unnecessarily large. Before we did this, we
noticed that performance of our application decreased as time elapsed: the time taken to
execute each test appeared to increase as a result of the excessive number of frames that
had been appended to the <body> element. Removing the frames after each test resulted
in a noticeable performance increase.

4.3.4 Stack Issues

When using Mocha with a relatively large test suite as in our case, there are problems
relating to its internal stack in Internet Explorer (even in the latest version) and older
versions of Safari. Mocha keeps a stack because it uses recursion when running categories
of tests. There is an open issue on the project’s repository for this stack problem, which
has existed since July 20124. Nobody seems to understand quite what the problem is;
we spent some time of our own trying to diagnose and fix it, but were unsuccessful and
soon decided that our time would be better spent elsewhere. A workaround is suggested
in the issue’s comments, which we make use of. It uses Mocha’s afterEach() function
to set a callback that uses setTimeout() to cleverly cut the deep stack trace after each
test. This appears to solve the problem in both Internet Explorer and Safari.

4
https://github.com/visionmedia/mocha/issues/502
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In this chapter we discuss how it is possible for us to test the browser security features
currently assessed by BrowserAudit. This is interesting because we must first determine
how to test each feature, and then how we can do so automatically. We describe any
pitfalls encountered along the way (often to do with quirks in certain browsers), and also
explain the JavaScript implementations of the tests.

We test all of the browser security features covered as part of our background in Sec-
tion 2.2. We carefully selected these for multiple reasons: we believe we have a good
selection of both must-have security features and modern security features whose imple-
mentations are young and not necessarily widespread across all modern browsers. The
tests for the must-have features (e.g. the same-origin policy) are both interesting and
important because the features should be implemented in any browser. The tests for
modern security features (e.g. HTTP Strict Transport Security) are interesting because
browser implementations of these are more likely to contain bugs, since they have not
existed for anywhere near as long. There will also be browsers that don’t implement these
features, which will be highlighted by a high number of failed BrowserAudit tests.

5.1 Same-Origin Policy

The technical background for these tests is covered in Section 2.2.1. Our same-origin
policy (SOP) tests currently cover the SOP for DOM access, the XMLHttpRequest API,
and cookies.

5.1.1 DOM Access

In all document object model (DOM) tests, we are testing whether one page can access
the DOM of another. In each test we create parent and child frames, where the child is an
<iframe> inside the parent. The parent frame is a hidden <iframe> element appended
to the main testing page. In each test, one frame (either the parent or the child) tries
to access the document.location.protocol property of the other. This is one of many
DOM properties to which access should be restricted by the same-origin policy [17].
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Recall that, except in the case of valid document.domain values, DOM access should be
denied by the browser whenever the origins of the two pages are different. Since Internet
Explorer doesn’t compare ports when checking origins, we should only test origins that
differ by scheme or host. There is a further complication, however: due to mixed content
rules, a page loaded over HTTPS cannot contain a frame loaded over HTTP. This will
be blocked by the browser, and so this unfortunately further limits the number of cases
we can test. Since our main test page is loaded over HTTPS, we are unable to test
any cases involving a frame loaded over HTTP. We can now only test the same-origin
policy for DOM access where differing hosts are used to cause an origin mismatch. The
four hosts we use are browseraudit.com, test.browseraudit.com, browseraudit.org
and test.browseraudit.org. We test all possible permutations of these without setting
document.domain values, ensuring that the SOP always blocks the access whenever the
hosts are different.

As well as testing that cross-origin DOM access is ordinarily blocked by the browser,
we also test that the document.domain property can be used to loosen the same-origin
policy restrictions. We test a wide range of both legal and illegal document.domain

values, testing that DOM access is always correctly allowed or blocked as expected. We
do this just for the browseraudit.com and test.browseraudit.com hosts, using the
following four document.domain values:

• (not set)

• browseraudit.com

• test.browseraudit.com

• audit.com

The tests are categorised into four sections:

• parent frame origin https://browseraudit.com

child frame origin https://test.browseraudit.com

child accessing parent

• parent frame origin https://browseraudit.com

child frame origin https://test.browseraudit.com

parent accessing child

• parent frame origin https://test.browseraudit.com

child frame origin https://browseraudit.com

child accessing parent
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• parent frame origin https://test.browseraudit.com

child frame origin https://browseraudit.com

parent accessing child

In each of these four sections, we test a variety of (but not all) combinations of the
document.domain values. We only test the combinations of document.domain parameters
that could lead to interesting results. If we were to test all possible permutations of the
four values used, many combinations would end up testing repeat behaviour that had
already been tested by a previous combination. This results in good coverage of the
same-origin policy for DOM access, once we accept that changing the host is the only
way in which we can mismatch origins.

Templates

Due to the large number of tests, each of which uses a similar pair of parent/child frames,
we make use of templating to dynamically generate the HTML for each frame. This saves
us from having to produce two new HTML files for each additional SOP for DOM test
that follows the pattern of a parent and child frame, where one tries to access the other.
We make use of golang’s html/template package for this. There are four templates in
total, located in the sop/ directory:

1. parent frame, parent accessing child (p2c_parent.html)

2. child frame, parent accessing child (p2c_child.html)

3. parent frame, child accessing parent (c2p_parent.html)

4. child frame, child accessing parent (c2p_child.html)

Templates 1 and 4 are the more interesting, since these are the templates in which the
frame tries to access the DOM of the other. The variables found in the templates are
described below:

• {{.Script}} – HTML, contains a <script> tag setting the document.domain prop-
erty in many cases. For frames that do not set the property at all, this value is
empty;

• {{.Result}} – string (“pass” or “fail”), what the result of the test should be if the
DOM access is allowed;

• {{.TestId}} – integer, a unique ID for the same-origin policy test;
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• {{.ChildSrc}} – URL, used in parent frames to set the source of their child frame.

Parent Accessing Child

Figure 5.1: An example of a SOP for DOM test in which the parent frame tries to access
the DOM of its child

Figure 5.1 shows a high-level diagram of an example test in which a parent frame tries
to access the DOM of its child. The parent is loaded from https://browseraudit.org

whereas the child is loaded from https://test.browseraudit.org. We expect the access
to be blocked since we are not setting any document.domain values in this test and the
hosts are not the same. The first important thing to note is that the test result is saved
on the server and queried later on. This is a pattern used often in our project to avoid the
restrictions of the same-origin policy when automatically testing many features (including
the SOP itself, as in this case). Note also that we are using images to set the results
on the server. This is because there are no same-origin restrictions when loading images,
so we can make a request to the https://browseraudit.com/sop/pass/TEST_ID and
/sop/fail/TEST_ID URLs no matter what the origin of the page making the request.
This is important because our session cookie is set for *.browseraudit.com so these
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requests must be sent to a page on either test.browseraudit.com or browseraudit.com.
A page on one of the .org domains must still be able to update the result stored in the
session, and so we use images to achieve this.

Listing 11 shows the template used to generate the parent frame in a DOM access test
in which the parent frame tries to access the DOM of its child. This is template 1 in the
list on page 63, and is comparable to the code behind the parent frame loaded in step 2
in Figure 5.1.

On line 5 of Listing 11 is the script (if any) to set the document.domain property of the
frame.

On lines 13–15 is the code used to access the child’s document object. This is more
complicated than it perhaps should be due to differences in browser implementations. We
first try to use the contentWindow property. If this is undefined, we use contentDocument
instead. At this point, in some browsers d will be the child’s document property whereas
in others it will be the child’s window. We must therefore check whether the property
d.document exists, and set d to this if it does. We then know that our variable d references
the child’s document property with maximum possible browser support.

The parent then checks on line 17 whether it can access the property d.location.

protocol. This is the child’s document.location.protocol DOM property to which
cross-origin DOM access should be blocked (unless the origins are the same or document.
domain properties are being used to allow it). If access is allowed, we notify the server by
requesting an image from the URL /sop/{{.Result}}/{{.TestId}}. When the server
receives this request, it updates the result for that particular test in the session. If DOM
access is not allowed, we do not need to do anything since a default result has already
been set by the JavaScript on the main test page running all of the tests (step 1 in
Figure 5.1).

We create the child frame with JavaScript on line 11 to ensure that its onload handler
is always called. We can guarantee that this is the case by setting the child’s onload

property before its src attribute. Without doing this, it is possible that the child frame
would be completely loaded by the browser before the onload event was even registered,
and so it would not be executed. This is especially relevant to us since the contents of
the child frame is very small and quick to render (a barebones HTML document, perhaps
with some script to set the document.domain property).

Child Accessing Parent

The tests in which the child frame tries to access its parent frame are much simpler.
There is no need to worry about dynamically creating frames or onload events. The
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1 <!DOCTYPE html>
2 <html lang="en">

3 <head>

4 <meta charset="utf-8" />

5 {{.Script}}

6 </head>

7 <body>

8 <script>

9 // We create the iframe with JavaScript to guarantee that the onload is always
10 // executed
11 var child = document.createElement("iframe");

12 child.onload = function() {

13 var d = (child.contentWindow || child.contentDocument);

14 if (d.document)

15 d = d.document;

16

17 if (d.location.protocol) {

18 var img = document.createElement("img");

19 img.setAttribute("src", "/sop/{{.Result}}/{{.TestId}}");

20 document.body.appendChild(img);

21 }

22 };

23 child.setAttribute("src", {{.ChildSrc}});

24 document.body.appendChild(child);

25 </script>

26 </body>

27 </html>

Listing 11: Parent frame template in a SOP for DOM test in which the parent tries to
access the child’s DOM

template for the parent frame simply sets its document.domain property (if any) and
has an <iframe> tag loading the child frame from {{.ChildSrc}}. In the child frame,
which also sets any document.domain value in the usual way, the DOM of the parent can
be accessed consistently across browsers using the window.parent.document property.
If access is allowed, the child frame notifies the server in the same way as the previous
example: by dynamically loading an image from a special URL.

JavaScript Test Functions

So far we have discussed the templates used to dynamically generate the frames used in
these tests, but not how the variables required for the templates are passed to the server.
This is done by our JavaScript testing code. We have two functions that run the SOP
for DOM tests: parentToChildSopTest() and childToParentSopTest(). Each of these
functions takes the following arguments:

• desc (string) – the textual test description passed to Mocha’s it() function;

66



5 Browser Tests

• shouldBeBlocked (Boolean) – true if and only if we expect the DOM access to be
blocked;

• parentPrefix (string) – the prefix appended to the parent frame’s URL, defining
the origin from which it should be loaded, e.g. https://test.browseraudit.com;

• parentDocumentDomain (string) – the document.domain value (if any) of the parent
frame;

• childPrefix (string) – the prefix appended to the child frame’s URL, defining the
origin from which it should be loaded;

• childDocumentDomain (string) – the document.domain value (if any) of the child
frame.

An example of how one of these functions is called as part of our tests is shown in
Listing 12. The parent frame has origin https://test.browseraudit.com whilst the
child frame has origin https://browseraudit.com. Cross-origin DOM access could be
allowed between these two frames if they each set their document.domain property to
be browseraudit.com, however this is not the case. The parent frame sets its value to
browseraudit.com. The child sets its value to test.browseraudit.com – not only is
this an illegal value, but it also doesn’t match the value set by the other frame. We
therefore expect the DOM access to be blocked, so shouldBeBlocked is set to true.

1 parentToChildSopTest("...textual description...",

2 true, // shouldBeBlocked
3 "https://test.browseraudit.com", // parentPrefix
4 "browseraudit.com", // parentDocumentDomain
5 "https://browseraudit.com", // childPrefix
6 "test.browseraudit.com"); // childDocumentDomain

Listing 12: A same-origin policy for DOM test using one of our two functions

It is hopefully clear that, through the use of our functions parentToChildSopTest()

and childToParentSopTest(), it is very simple to write a new same-origin policy for
DOM test following our pattern. All that needs to be provided are the origins and
document.domain values (if any) of the two frames, what the expected result is, and a
test title for the user. The code in these functions then carries out the following tasks:

1. a unique ID for the test is obtained. These start at 0 and are incremented with
each new test;

2. a request is made to save the default result for the test (pass or fail) in the server’s
session1. This is the result that will be overwritten only if the DOM access is

1We originally had the Go handler for the parent frame (step 3) also setting the default result. This
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allowed;

3. the parent frame is loaded. The source URL of this frame contains all information
needed by the server to dynamically generate both the parent frame and its child;

4. once the parent frame is loaded (which, in turn, means the child frame has been
loaded and the DOM access attempted), the test result is queried from the server.

When one of these tests fails, the message to the user only states that the expected result
was a pass whereas the actual result was a fail. This could perhaps be improved by
instead showing the user the location.protocol obtained by the frame initiating the
DOM access. We would expect this to be undefined in tests where we expect the DOM
access to be blocked, and set otherwise.

5.1.2 XMLHttpRequest

Recall that, in the same-origin policy for the XMLHttpRequest API, the document.

domain property cannot be used to relax the policy’s restrictions. This makes our test
coverage for XMLHttpRequest simpler than it was for DOM access since we are only
testing that cross-origin requests are correctly blocked. The other key difference when
we compared the SOP for DOM and XMLHttpRequest was that Internet Explorer takes
the port number into account when comparing origins for XMLHttpRequest. This is not
the case for DOM access, when only the scheme and host are compared. This means
that we could, in theory, test cross-origin requests with the XMLHttpRequest API where
the origins differ port. At present, however, we only test origins that mismatch due to
differing schemes and hosts.

We have 28 tests for the SOP for XMLHttpRequest. In each test, a frame is loaded
from the source origin. Inside this frame is JavaScript that makes an XMLHttpRequest
to a page at the destination origin. If this request reaches the server, the result for
that test is updated in the session. Otherwise, the test result remains at the default
value already set by our JavaScript test. We have 2 tests in which the XMLHttpRequest
should be allowed (i.e. the origins are identical). The other 26 tests try a variety of
origin mismatches (where the origins differ in scheme, host, or both) and expect the
requests made with the XMLHttpRequest API to be blocked by the browser. We use all
four hosts here: browseraudit.com, test.browseraudit.com, browseraudit.org and
test.browseraudit.org. As in the DOM access tests, our testing scope has been slightly
limited due to mixed content rules. We cannot test any requests from an http: scheme,
since this would require us to be able to load an HTTP frame from an HTTPS frame. We

worked well for tests using browseraudit.com and test.browseraudit.com, but we had to split it
into two requests after we introduced the .org domains. This is because our session cookie is tied to
*.browseraudit.com, yet some parent frames are now loaded from .org domains
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can, however, attempt to make requests from an https: origin to an http: one (which,
of course, should be blocked).

Once again, we make use of templating to generate frames dynamically. For the same-
origin policy for XMLHttpRequest tests, we have a single template (sop/ajax.html) with
just one variable {{.Dest}}. This represents the destination URL to which the XML-
HttpRequest is made. A same-origin policy for XMLHttpRequest test can be executed
with our ajaxSopTest() function, which takes four arguments: desc, shouldBeBlocked,
sourcePrefix and destPrefix. The prefix arguments can be used to set the origins of
the page making the request and the page being requested through the XMLHttpRequest
API.

5.1.3 Cookies

When testing the same-origin policy for cookies, we test cookie scope using the Domain
and Path attributes. As part of this, we test that cookies with illegal Domain attributes
are correctly thrown away by the browser and not sent back to the server with any further
requests.

Domain Scope

In each domain scope test, we first want the server to set a cookie (using the Set-Cookie
header) with a given Domain value from a specific domain. The reason we care about
the domain of the page setting the cookie is because some values will only be legal if
served in responses from certain domains. For example, a page at browseraudit.com

should not be able to set a cookie for domain test.browseraudit.com. We then want
to make a second request, perhaps to a different domain, and detect whether or not the
browser sent the cookie with this request. In some tests we expect the cookie to have
been sent, whereas in others we expect that it isn’t sent due to the same-origin policy.
The basic pattern of a single cookie domain scope test is therefore as follows:

1. client-side JavaScript makes a request to a server-side page on some domain, asking
it to respond with a Set-Cookie header with the requested name, value, Domain
and Path (the path is always / for domain scope tests);

2. the JavaScript test makes a further request to the server, perhaps on a different
domain. This is the request for which we want to know whether or not the browser
sends the cookie set in step 1. The server stores the value of this cookie (if any) in
its session;
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3. in the JavaScript once more we make an AJAX request to server, requesting that
it replies with the cookie (if any) sent in step 2;

4. for tests in which we expect cookie not to have been sent in step 2, we expect the
response from the server to be “none”. Otherwise, we expect the value returned to
be equal to the value we set in step 1.

The cookie names used in each test are unique on every run to ensure that multiple
consecutive runs of our test suite can never interfere with one another. We ensure the
uniqueness of the cookie names by concatenating the current timestamp with the test’s
unique ID. The value of the cookie set in step 1 is also set to the current timestamp, and
this is the value that we expect in step 4 in tests where we do not expect the same-origin
policy to stop the cookie from being sent. The cookies have a short expiry time (1 minute)
to stop the browser from quickly filling up with temporary cookies, especially if our test
suite is run a few times in quick succession.

1 function domainScopeCookieTest(desc, shouldBeUnset, domainSetFrom, cookieDomain,

2 domainAccessedFrom) {

3

4 domainScopeCookieTest.id = domainScopeCookieTest.id || 0;

5

6 var id = domainScopeCookieTest.id++;

7

8 it(desc, function(done) {

9 var timestamp = "" + new Date().getTime();

10 var name = "sopscope"+id+timestamp;

11 var value = timestamp;

12 var domain = cookieDomain;

13 var path = "/";

14 $("<img />", { src: "https://"+domainSetFrom+"/sop/cookie/"+name+"/"+value+"/"+

15 domain+"/"+$.base64.encode(path) })

16 .load(function() {

17 $("<img />", { src: "https://"+domainAccessedFrom+"/sop/save_cookie/"+name })

18 .load(function() {

19 $.get("/sop/get_cookie/"+name, function(c) {

20 if (shouldBeUnset)

21 expect(c).to.equal("none");

22 else

23 expect(c).to.equal(value);

24 done();

25 });

26 });

27 });

28 });

29 }

Listing 13: Testing cookie scope with the Domain parameter
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Listing 13 shows our JavaScript function domainScopeCookieTest() that implements
the pattern described above. The request on line 14 is the request to the server to which
the server will respond with a Set-Cookie header with the name, value, Domain and
Path specified. In line 17, we make a request to the server asking that it saves the value
of the cookie (if any) that is sent with the request. We then retrieve this value from the
server’s session in the request on line 20. Depending on the value of the shouldBeUnset

Boolean argument, we either want this to be “none” or the value we set on line 11.

1 domainScopeCookieTest("...textual description...",

2 false, // shouldBeUnset
3 "browseraudit.com", // domainSetFrom
4 ".browseraudit.com", // cookieDomain
5 "test.browseraudit.com"); // domainAccessedFrom

Listing 14: An example call to domainScopeCookieTest()

We call the domainScopeCookieTest() function once for each of the domain scope tests.
There are 19 tests using this function in total. An example of one of them is shown in
Listing 14. In this particular test we expect that the cookie should be sent to the server,
i.e. the same-origin policy for cookies should not apply. A page on browseraudit.com

sets a cookie with domain .browseraudit.com, which means that it should be sent to
*.browseraudit.com as well as browseraudit.com itself. We test this by checking that
the cookie is sent with a request to test.browseraudit.com.

We make use of the browseraudit.org and test.browseraudit.org domains where
possible. We have tests in which cookies are set by the .org domains and we then
test that they are not sent to either browseraudit.com or test.browseraudit.com.
We are unable to write any tests in which a cookie is received by one of our .org

domains because our session cookie is scoped to *.browseraudit.com. A request to
browseraudit.org requesting that the server remembers a cookie value would result in
the cookie value on the server immediately becoming inaccessible – the server would
respond from browseraudit.org with a brand new session cookie that it tries to set
for domain *.browseraudit.com; this new session cookie is invalid (due to the domain
mismatch) and will be thrown away by the browser.

Illegal Domain Values

Using the same domainScopeCookieTest() function, we also test the behaviour of illegal
Domain attribute values. Examples include trying to set a cookie with Domain test.

browseraudit.com from browseraudit.com and trying to set cookies with Domain .com

(too broad). In all of these cases we expect that the cookies are immediately discarded
by the browser and never sent back to the server.

71



5.2 Content Security Policy

Path Scope

We have two simple tests that test the scope enforced by a cookie’s Path attribute:

• cookie with path /sop/path/ should be sent to /sop/path/save_cookie/*;

• cookie with path /sop/path/ should not be sent to /sop/save_cookie/*.

These tests use the exact same handlers on the server-side for setting a cookie, saving
its value in the session, and retrieving this value from the session, as the domain scope
tests we have seen already. Their JavaScript implementation is also very similar, except
the Domain parameter is now fixed (.browseraudit.com) and the Path parameter is
variable.

5.2 Content Security Policy

The technical background for these tests is covered in Section 2.2.2.

These tests aim to cover the Content Security Policy 1.0 specification [36]. Recall that,
despite the CSP being standardised, a website must serve its pages with three different
CSP headers in order to achieve maximum compatibility with older browsers. Note
however that there is a reasonable possibility that a developer will use only the Content-

Security-Policy header when implementing the CSP, since this is the header described
in the standard. For this reason our CSP security tests use only the Content-Security-

Policy header. A browser that implements the CSP using only an older experimental
header will fail our tests – we will flag this as insecure since the browser does not meet
the CSP standard.

Our tests offer good coverage of the CSP specification. Notable exceptions, for which we
hope to write tests in the future, include:

• the font-src and connect-src directives;

• the sandbox directive;

• the report-uri directive and Content-Security-Policy-Report-Only header;

• origins that differ in scheme or port (we currently only check origins that differ in
host);
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• redirects – many of the CSP directives state that a browser can follow redirects
when enforcing the policy. We do not currently have any tests involving redirects.
It would be interesting to test what happens when an allowed source redirects to
an unallowed source, for example.

Beyond these exceptions we have good coverage of the CSP: we have 126 Content Security
Policy tests in total.

5.2.1 Lack of Templating

One of the more interesting aspects of the implementation of these tests, especially when
compared with many of our other tests, is that we do not make any use of any server-side
templating in our Content Security Policy tests. We opted not to use templates despite
the fact that that all of these tests require HTML files, some of which are similar to each
other.

Our reason for not using templates to generate the HTML files is that the files aren’t quite
different enough for templates to make a big improvement. For each group of HTML
files that are similar, there are usually only a few such files, and each group of similar
files is vastly different to every other group. This will hopefully become clearer when we
discuss the actual implementations below. Whilst templates would reduce the number of
HTML files in the codebase, as a proportion it would not be a significant reduction. We
believe that templating the CSP tests in their current state would result in a much more
complex implementation for little gain, and so it is not worthwhile at this point. This
may not always be the case. For example, if we were to test origin mismatches not just
in host but in scheme and port too, then there would be many more similar HTML files
at which point templating may be a sensible option. Until we reach that point, having
an individual HTML file for each test is what we found to be the best solution. We also
only use the browseraudit.com and test.browseraudit.com domains in these tests. If
we were to expand these to use the browseraudit.org and test.browseraudit.org

domains, then templating would likely become a wise decision.

5.2.2 Detection of Features

There are some cases in which we test that the Content Security Policy correctly blocks
the loading of a resource that a browser may not even attempt to load, either because
the browser doesn’t support a feature or because a plugin is missing. An example of this
is testing which resources we can load with the <object> and <embed> tags (governed
by the the object-src directive) when Adobe Flash Player is not present. This makes
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no sense – we can’t test whether the browser’s CSP implementation allows or blocks
something if it will never even attempt to load it!

Our solution to this is to automatically detect whether or not a browser supports the
relevant feature before running the CSP tests related to it. This means that we only test
the CSP directives relevant to the features supported by a browser. In many cases we
use the Modernizr2 library to achieve this. This provides us with a global Modernizr
object containing Boolean properties indicating support for many features. For example,
before running the media-src tests that use the <audio> tag, we check for HTML5
audio support using Modernizr.audio. Another library that we use for feature detection
is SWFObject3, which is used to detect Adobe Flash Player.

5.2.3 cspTest Function

All Content Security Policy tests use the same function, cspTest(), whose source can be
found in Listing 15. In each test we load a frame from a URL of the form /csp/n, where
n is a test ID. This URL will be served by our golang server with a Content-Security-

Policy header whose value is specified by the policy parameter passed in the URL. We
also provide the Go server with a parameter defaultResult; this is the test result (pass
or fail) that should be reported unless it is overwritten by a request made by the framed
document. The contents of the frame is loaded by the golang server from csp/n.html

and served with the specified Content-Security-Policy header.

Figure 5.2: An example CSP test in which we are testing that an image is correctly
allowed by the policy

2
http://modernizr.com/

3
https://code.google.com/p/swfobject/
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1 function cspTest(desc, id, policy, shouldBeBlocked, opts) {

2 var policyBase64 = $.base64.encode(policy);

3

4 it(desc, function(done) {

5 var defaultResult = (shouldBeBlocked) ? "pass" : "fail";

6 if (typeof opts.timeout === "undefined")

7 $("<iframe>", { src: "/csp/"+id+"?policy="+policyBase64+"&defaultResult="+

8 defaultResult })

9 .css("visibility", "hidden").appendTo("body").load(function() {

10 $.get("/csp/result/"+id, function(result) {

11 expect(result).to.equal("pass");

12 done();

13 });

14 });

15 else

16 $("<iframe>", { src: "/csp/"+id+"?policy="+policyBase64+"&defaultResult="+

17 defaultResult })

18 .css("visibility", "hidden").appendTo("body").load(function() {

19 setTimeout(function() {

20 $.get("/csp/result/"+id, function(result) {

21 expect(result).to.equal("pass");

22 done();

23 });

24 }, opts.timeout);

25 });

26 });

27 }

Listing 15: cspTest() function used for all Content Security Policy tests

The basic pattern of every CSP test as defined by the cspTest() function is illustrated
in Figure 5.2. Each of the files csp/n.html tries to load a resource in a way that can
be governed by the Content Security Policy. We then test whether or not the browser
sends a request to the server to load this resource. Depending on whether or not the
resource loading should have been allowed by the server, we report the result of a pass
or a fail to the user. In these tests there is no further information that we can provide
which would be of interest to the user – the best we can tell him is whether his browser
correctly allowed or blocked the resource as specified by the policy. We use the special
URLs /csp/pass/TEST_ID and /csp/fail/TEST_ID to update the test result stored on
the server-side for that specific test ID. These are the URLs that each csp/n.html file
tries to load. The cspTest() function then requests the result on either line 10 or 20 of
Listing 15 using the golang handler behind the /csp/result/TEST_ID URL.

Timeouts

The opts argument to cspTest() is an options object. At present, we only ever pass this
object with one property: timeout. The timeout option allows us to specify a timeout
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in milliseconds that should be waited before the server is queried for the test result and
the result reported to the user. This is an alternative to the default behaviour, which is
to use a load event on the frame created to determine when to request the test result.
As discussed in Section 4.3.1, we prefer the default behaviour (a load event callback)
over a timeout wherever possible. This is achieved by passing an empty opts object {}.
Unfortunately the timeout could not be avoided in some cases. We discuss these cases
as limitations during our evaluation in Section 6.2.1.

5.2.4 Testing default-src

Our Content Security Policy tests are separated into sections based on the resource type
(e.g. stylesheets and scripts) that we are trying to load. Each of these resource types
is governed by its own CSP directive (style-src and script-src for stylesheets and
scripts respectively). We must not forget the default-src directive, which specifies the
default policy to be applied if no more specific directive is specified for a resource type.
For each CSP test, we therefore test the policy both when specified with the specific
directive for that resource type and when specified with default-src.

For example, when testing the Content Security Policy for a stylesheet loaded from https:

//test.browseraudit.com, we test two cases in which the browser should allow the
loading of the stylesheet with the following Content-Security-Policy header values:

• default-src 'none'; style-src https://test.browseraudit.com

• default-src https://test.browseraudit.com

For a test like the above, we will also test that the stylesheet is correctly blocked when
other directives are set. Using the same example, the negative cases are tested with the
following header values:

• default-src 'none'

• default-src 'self'

• default-src https://test.browseraudit.com; style-src 'none'

• default-src https://test.browseraudit.com; style-src 'self'

The exact headers used depend on the origin of the resource being loaded. The key
observation is that we test both default-src and the relevant specific directive (style-
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src in this case). When testing cases that we expect to be blocked by the resource-
specific directive, we ensure that the default-src directive would otherwise allow the
resource to be loaded. This tests that the browser prefers specific directives over the
default directive.

5.2.5 Stylesheets

We test the loading of stylesheets in two different ways: a <link> tag in the head of an
HTML document, and using CSS’s @import rule from within an inline style block.

<link> tag

These tests load stylesheets in the standard way used by most websites, with a <link

rel="stylesheet" href="..." /> HTML tag in the head of the document. The URL in
the href attribute will be either /csp/pass/TEST_ID or /csp/fail/TEST_ID depending
on whether we expect the CSP to allow or block the loading of the stylesheet.

@import

In these tests we use the @import CSS rule to load the stylesheet. This rule provides a
way of loading a stylesheet from within another stylesheet. Listing 16 shows how this is
done. Note that we place our @import rule inside an inline style block. This means that
we must have 'unsafe-inline' in our CSP directives to ensure that the @import rule is
considered by the browser. We are not testing the behaviour of 'unsafe-inline' here,
only the CSP for stylesheets.

1 <!DOCTYPE html>
2 <html lang="en">

3 <head>

4 <meta charset="utf-8" />

5 <style>

6 @import url("/csp/pass/30");

7 </style>

8 </head>

9 <body>

10 </body>

11 </html>

Listing 16: Loading a stylesheet with @import to test the CSP for stylesheets
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Coverage Improvements

We could improve the coverage of our stylesheet tests by testing the <link /> tag when
placed in the document’s body instead of the head. We could also load the stylesheets
using JavaScript, creating the <link /> tag dynamically and appending it to the head
or body. One further improvement that could be made to the test coverage for the
style-src directive is stylesheet chaining: using @import to load a stylesheet from within
a stylesheet that has already been loaded either with a <link /> tag or an @import.

5.2.6 Scripts

We test the Content Security Policy for scripts (governed by the script-src directive)
in two ways: <script> tags and the Worker and SharedWorker APIs.

<script> tag

The <script> tag is the standard way of loading a JavaScript file. The tag can be placed
in both a HTML document’s head and body. At present, we only test script loading when
the <script> tag is placed in the document’s body.

Worker and SharedWorker

A more interesting way in which we test the CSP for scripts is by using the JavaScript
APIs for Worker and SharedWorker construction. Web workers are JavaScript scripts
that run in the background of a page. They are designed for computationally expensive
tasks that can run in the background in parallel with the page’s main script. The Worker
interface spawns real operating system threads, taking advantage of multi-core systems.

Web workers are not supported across all browsers, and so we detect that the browser
supports them before running the tests. We use Modernizr ’s Modernizr.webworkers

and Modernizr.sharedworkers Boolean properties for this. We originally only used the
Modernizr.webworkers property but later realised that some versions of Safari and older
versions of Firefox implement workers but not shared workers, so we now test for support
as if they are two different features4.

4The key difference between a Worker and a SharedWorker is that a Worker can only be accessed by the
script that created it, whereas a SharedWorker can be accessed by any script from the same origin.
Maybe we could write BrowserAudit tests for this in the future!
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1 <!DOCTYPE html>
2 <html lang="en">

3 <head>

4 <meta charset="utf-8" />

5 <script>

6 new Worker("/csp/pass/46");

7 </script>

8 </head>

9 <body>

10 </body>

11 </html>

Listing 17: Loading a script with a Worker constructor to test the CSP for scripts

Workers are constructed with a path to the JavaScript file from which the script should
be loaded. This is the means of loading a script that we test is protected by the CSP.
Listing 17 shows how we construct a web worker when testing the CSP in this manner.
Note that we are making use of an inline script block, so all web worker tests must use
'unsafe-inline' in their CSP directives.

When implementing the Worker and SharedWorker tests we encountered some interesting
behaviour in older verions of Safari. Upon trying to load the worker from a URL such
as /csp/pass/46, the page would reload. By this we mean the entire test page, not just
the frame that tries to load the worker. This would result in a redirect loop, eventually
causing Safari to give up on loading the page. We discovered that this was due to the
empty response body being served by the server. When we try to load a worker from
a URL with no response body, it causes Safari versions 6 and older to reload the page.
We fixed this by serving a JavaScript file containing "//" for the relevant pass and fail
URLs, i.e. a JavaScript line comment. This stops the redirect issue from occurring.

Coverage Improvements

Where we load a script by constructing a web worker, we could place the JavaScript code
that constructs the worker in a JavaScript file of its own, which would be loaded in a
<script> tag in the normal way. In all cases where we load a script with a <script>

tag, we could place this tag in the document’s head instead of the body. We could also
dynamically create the script tag in JavaScript itself, another method of using JavaScript
to load a script file.
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5.2.7 ‘unsafe-inline’

We have used the 'unsafe-inline' keyword in CSP directives for tests seen so far, but
only as a means of enabling inline <script> and <style> blocks to test the script-src

and style-src directives. We have not yet tested the behaviour of 'unsafe-inline'

itself. BrowserAudit’s 'unsafe-inline' tests cover the four key aspects of the direct-
ive’s behaviour: inline <script> tags, inline <style> tags, inline onload="..." event
handlers, and inline style="..." attributes.

Inline <script> tags

See Listing 18 for an example of how we test whether or not an inline <script> block is
executed. This is done with a simple redirect – if the inline script block is executed then
the JavaScript on line 8 will redirect the frame, making a request to a URL that updates
the test result on the server.

1 <!DOCTYPE html>
2 <html lang="en">

3 <head>

4 <meta charset="utf-8" />

5 </head>

6 <body>

7 <script>

8 window.location = "/csp/pass/3";

9 </script>

10 </body>

11 </html>

Listing 18: Testing the CSP 'unsafe-inline' keyword by detecting whether an inline
<script> block is executed

Inline <style> tags

We test inline <style> tags in a similar way to inline <script> tags. The style block
used by this technique is shown in Listing 19. We use CSS to set the background of the
page body to be an image loaded from the server. If the server receives a request for this
image then we know that the inline style block has been rendered by the browser.
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1 <style>

2 body {

3 background: url("/csp/pass/7");

4 }

5 </style>

Listing 19: Testing the CSP 'unsafe-inline' keyword by detecting whether an inline
<style> block is rendered

Inline onload event handlers

Our inline event handler tests use a JavaScript redirect just like we saw in Listing 18
for testing inline <script> blocks. We attach the onload event to the body of our test-
ing page, so the code looks like <body onload='window.location = "/csp/pass/5"'>.
This allows us to detect whether or not the browser has executed the inline onload

event.

Inline style attributes

We test inline style attributes in a very similar manner. We attach a style attrib-
ute to the document body, which tries to load a background image using the same
method as in Listing 19. An example of the resulting code is <body style='background:

url("/csp/pass/9")'>.

5.2.8 ‘unsafe-eval’

The 'unsafe-eval' keyword tells the browser to allow strings to be executed as code.
The most common method of doing this in JavaScript is through the eval() function,
however there are other methods. In total, we test four methods of evaluating strings
as code: the Function constructor, eval(), setTimeout(), and setInterval(). In all
of these 'unsafe-eval' tests, we use a JavaScript redirect in order to detect whether
or not the browser evaluated the string as code. If the 'unsafe-eval' keyword is not
present then we expect the execution of the code string to be blocked by the browser.

Function constructor

The Function constructor allows a new JavaScript function to be created, where the
function body is given as a string of JavaScript code. For example, one can create a
function add() with var add = new Function("x", "y", "return x + y") which can
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then be called as add(3, 7). Note that "return x + y" is a string which is evaluated
as code.

1 <!DOCTYPE html>
2 <html lang="en">

3 <head>

4 <meta charset="utf-8" />

5 <script>

6 var f = new Function('window.location = "/csp/fail/12"');

7 f();

8 </script>

9 </head>

10 <body>

11 </body>

12 </html>

Listing 20: Testing the CSP 'unsafe-eval' keyword with the Function constructor

Listing 20 shows how we use a redirect in a function created with Function in order
to test 'unsafe-eval'. As with many other CSP tests seen so far, we must also use
'unsafe-inline' to allow the inline script block on lines 5–8.

eval()

We test 'unsafe-eval' with the most traditional method, eval(), using a simple call
eval('window.location = "/csp/pass/13"'). This is placed in an inline script block
and allowed with 'unsafe-inline' just as in Listing 20.

setTimeout() and setInterval()

The setTimeout() and setInterval() JavaScript functions are both methods of schedul-
ing code to be executed at some point in the future. setTimeout() schedules code to be
executed exactly once after some timeout n milliseconds, whereas setInterval() sched-
ules the code to be executed every n milliseconds. The code can be passed as a function
or as a string of code to be evaluated and executed. The latter of these methods involves
evaluation and so is the one in which we are interested.

See Listing 21 for two examples of how we try to evaluate code strings whilst testing
the 'unsafe-eval' CSP keyword. As always, we must also set 'unsafe-inline' in
our Content-Security-Policy headers for these tests to allow the inline script blocks
to be executed. These tests require a timeout – we cannot use a load event on the
frames containing the script blocks in Listing 21. The setTimeout() and setInterval()

functions schedule code to be executed after the frame loads. We must therefore use a
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1 <script>

2 setTimeout('window.location = "/csp/pass/15"', 100);

3 </script>

1 <script>

2 setInterval('window.location = "/csp/fail/18"', 100);

3 </script>

Listing 21: Testing the CSP 'unsafe-eval' keyword with the setTimeout() and
setInterval() functions

timeout in the testing code to check the test result at some point after the 100ms delay
caused by setTimeout() and setInterval(). We currently use a 300ms timeout in our
call to cspTest() for this.

5.2.9 Objects

We test the CSP directive object-src for objects with the <object> and <embed> HTML
tags. We encountered an interesting issue here with Chromium-based browsers such as
Google Chrome. Listing 22 shows an example HTML document used in an object-src

test. Note that as well as trying to load an object from the URL /csp/fail/37 with the
data attribute, we also set the type attribute. We explain this with a comment in the
code on lines 7–9 because it is a strange case. Without the type attribute, Chromium-
based browsers treated the loading of the object as the loading of a frame. Consequently,
the browser looks at the frame-src CSP directive as opposed to object-src. We test
frame-src in a separate set of tests (see Section 5.2.12); we are testing object-src

here, not frame frame-src. We found a way to force Chromium-based browsers to
treat our URL as an object by explicitly setting the type attribute. We set this to
application/x-shockwave-flash, telling the browser that we are loading a Flash object.
With this explicit type definition in place, Chromium browsers now use the object-src

directive as desired. This type definition is also required in similar tests that use the
<embed> tag.

Coverage Improvements

We could improve our coverage of the object-src directive by also testing that the policy
is applied to objects loaded with the <applet> HTML element. This would require some
automatic feature detection, since the <applet> tag is intended for loading a Java applet
and therefore requires a Java runtime and browser plugin.
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1 <!DOCTYPE html>
2 <html lang="en">

3 <head>

4 <meta charset="utf-8" />

5 </head>

6 <body>

7 <!-- Chromium tries to load the page as a frame without the explicit type, and
8 therefore looks at frame-src not object-src. We're trying to test object-
9 src here, so use this type attribute to force it. -->

10 <object data="/csp/fail/37" type="application/x-shockwave-flash"></object>

11 </body>

12 </html>

Listing 22: Testing the object-src CSP directive with the <object> tag

5.2.10 Images

We test the Content Security Policy for images – specified with the img-src directive –
with the <img /> HTML tag. In each test we simply try to load an image in the standard
way. We could improve on this by also trying to load images via CSS and by creating
the <img /> tags in our existing tests dynamically with JavaScript.

5.2.11 Media

The media-src CSP directive restricts the origins from which a protected resource may
load audio and video. We test this using the <audio> and <video> tags introduced
in HTML5. Because these tags are not supported in all browsers, we first check that
the browser supports them using Modernizr ’s Modernizr.audio and Modernizr.video

properties.

We encountered some issues with the media tests in older versions of Safari. The problem
was that the load event on the frame loading the audio/video was not being fired. This
resulted in our tests timing out, since the frame was never being loaded by the browser
as far as the test code was concerned. We did not want to fix this with a timeout, and
instead investigated how we could cause the load event to fire as soon as the audio or
video had been loaded. The first thing we tried was to serve the /csp/pass/TEST_ID and
/csp/fail/TEST_ID responses for the media tests with a Content-Type header specifying
a MIME type for audio or video. This fixed the problem in Safari 6, however it persisted
in Safari 5. The next thing we tried was to serve real audio and video files in the responses
instead of just pretending to with the Content-Type header. We found two small and
openly-licensed .mp3 and .mp4 files to serve on the relevant pass and fail URLs. In order
to illustrate this more clearly, the relevant server-side Go code is shown in Listing 23.
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1 // Page load event is not fired in older versions of Safari unless the audio
2 // and video have good Content-Type and are actually served
3 if 88 <= idInt && idInt <= 97 {

4 http.ServeFile(w, r, "./csp/mpthreetest.mp3")

5 } else if 98 <= idInt && idInt <= 107 {

6 http.ServeFile(w, r, "./csp/small.mp4")

7 }

Listing 23: Serving real audio and video files where necessary in order to fix Safari page
load events

The disadvantage of this approach is that the audio and video responses are now much
larger than they were previously. The MP3 file we use is 196 KB whilst the MP4 video
file is 376 KB. These will not be cached by the browser, either: we send headers to tell the
browser not to cache /csp/pass/TEST_ID and /csp/fail/TEST_ID URLs for the reasons
discussed in Section 4.2.2. If the overhead caused by the audio and video files becomes
a problem in the future, we could perhaps detect whether or not serving the media files
is necessary. In most browsers, it is not necessary to serve them at all. In some, it is
sufficient to serve only the Content-Type header but not the files in the request body.
Safari 5 is the only browser we have found that implements the Content Security Policy
that requires us to serve the media. We could either attempt to detect Safari 5 using the
browser’s user agent string, or instead detect whether or not the frame load event is fired
when we want it to be by doing one or two preflight tests, and determining whether or
not timeouts occur due to the frame load events not firing.

5.2.12 Frames

We test the CSP’s frame-src directive by loading frames both using the <iframe> tag
and the <frame> tag. In the <frame> tests, we use the <frameset> tag instead of <body>
to ensure that the HTML is valid. We could improve on our frame-src tests by also
testing the CSP when frames are created dynamically in JavaScript, and also by testing
what happens when we try to navigate an already-existing frame to a disallowed URL.

5.3 Cross-Origin Resource Sharing

We cover the technical background for these browser tests in Section 2.2.3. There are
60 cross-origin resource sharing (CORS) tests in total, separated into the following four
sections based on the CORS response header to which they relate:

• Access-Control-Allow-Origin;
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• Access-Control-Allow-Methods;

• Access-Control-Allow-Headers;

• Access-Control-Expose-Headers;

There are some gaps in the coverage of these tests compared with the CORS specification.
There are no tests to determine whether the browser correctly separates requests into
simple and non-simple requests based on the HTTP methods and headers present, as
defined in the W3C Recommendation. There are technical limitations in our application
design preventing us from testing this at present. To detect whether or not a request is
treated as simple or non-simple by the browser, we should be able to detect the preflight
request sent by the browser in the case of a non-simple request. Recall that this request
is sent with the OPTIONS HTTP method before the actual request is sent. We cannot
detect this easily with the current application because the browser does not send any
cookies with the preflight request, even if withCredentials is set to true. As such,
we cannot save a flag in the session representing whether or not a preflight request was
received: since no cookies are sent with the preflight request, we cannot associate this
request with the user’s existing session. This problem should be solvable in the future,
perhaps by sending some unique key to the server in the request URL so that the server
can associate the OPTIONS request with a user’s session even in the absence of cookies5.
These limitations also have the side-effect that it would be problematic for us to test
CORS requests involving credentials, and so we do not test these at present. The final
gap in the current test coverage of CORS is that we are unable to test that preflight
requests are cached by the browser according to the Access-Control-Max-Age header.

Before any of these CORS tests are executed, we first detect browser support for CORS
using Modernizr ’s Modernizr.cors Boolean property. All of the CORS requests are
made to https://test.browseraudit.com. These are cross-origin requests since the
page making the requests (the test page) has origin https://browseraudit.com.

5.3.1 Access-Control-Allow-Origin

This category of tests is checking for correct behaviour of the main concept of CORS: a
server can allow XMLHttpRequests to come from a different origin as long as it is specified
by the Access-Control-Allow-Origin header. With each request going to the origin
https://test.browseraudit.com, we check that the request is:

5Note that the problem described here is the same issue that prevented us from testing the report-uri

directive of the Content Security Policy in Section 5.2 – the POST request containing the report is
sent without cookies
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• blocked when no Access-Control-Allow-Origin header is set (i.e. the server has
not enabled CORS);

• allowed with Access-Control-Allow-Origin: https://browseraudit.com (as
this is the origin of the page making the request);

• allowed with Access-Control-Allow-Origin: * (the wildcard value);

• blocked with Access-Control-Allow-Origin:https://test.browseraudit.com

(the origin of the document being requested, and a subdomain of the host mak-
ing the request, but not the same origin as the document making the request);

• blocked with Access-Control-Allow-Origin: https://browseraudit.org (an
origin completely different to the document making the request and the document
being requested).

This covers a wide selection of possible cases, including the wildcard value and differ-
ent types of origin mismatches. These tests are implemented in the JavaScript func-
tions originExpectAllowed() and originExpectBlocked(). Each of these takes two
arguments: the textual test title to be displayed to the user and the value of the
Access-Control-Allow-Origin header to be set by the server. The former function
(shown in Listing 24) is called when the CORS request should be allowed, whereas the
latter is called if the request should be blocked by the browser. jQuery’s $.ajax() func-
tion is used to make the requests; we use the success callback to detect a request that has
been allowed, and the error callback to detect a blocked request. Each request is made
to a URL of the form cors/allow-origin/ALLOWED_ORIGIN where ALLOWED_ORIGIN is
a Base64 encoding of the origins to be allowed by the server. The decoded version of
this value is served by the server in a Access-Control-Allow-Origin header with the
response to the request.

5.3.2 Access-Control-Allow-Methods

These tests ensure that the Access-Control-Allow-Methods response header can be
used by the server to specify non-simple request methods that may be used to access a
resource. This header is used to test requests made by all non-simple HTTP methods
that are supported by XMLHttpRequest. The TRACE, CONNECT and PATCH methods are not
tested since these are not supported as XMLHttpRequest methods by all major browsers.
We do not test the Access-Control-Allow-Methods header with the simple methods
(GET, HEAD and POST) since this does not make sense and the header will be ignored by
the browser, even if the header tries to state that the simple method used is illegal.

The PUT, DELETE and OPTIONS HTTP methods are tested. Since these are non-simple
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1 function originExpectAllowed(desc, allowOrigin) {

2 it(desc, function(done) {

3 $.ajax({

4 url: "https://test.browseraudit.com/cors/allow-origin/"+

5 $.base64.encode(allowOrigin),

6 success: function() {

7 done();

8 },

9 error: function(r, textStatus, errorThrown) {

10 var moreInfo = (errorThrown !== "") ? " "+errorThrown : "";

11 throw "Request "+textStatus+moreInfo;

12 }

13 });

14 });

15 }

Listing 24: The originExpectAllowed() function testing the Access-Control-Allow-

Origin CORS header

methods, the requests should be allowed only if the method is included in a Access-

Control-Allow-Methods header sent by the server. Recall that this header can contain
a comma-separated list of allowed methods. For each method tested, we have five tests.
Using PUT as an example, the test cases are as follows:

• method is allowed with header Access-Control-Allow-Methods: PUT (a single
allowed method that matches the actual request method);

• method is allowed with header Access-Control-Allow-Methods: DELETE, PUT

(a list of allowed methods, one of which is the actual request method);

• method is blocked with header Access-Control-Allow-Methods:DELETE (a single
allowed method that doesn’t match the actual request method);

• method is blocked with header Access-Control-Allow-Methods:DELETE, TRACE

(a list of allowed methods, neither of which is the actual request method);

• method is blocked when no Access-Control-Allow-Methods header is set.

The tests for each method (PUT, DELETE and OPTIONS) follow the pattern above, res-
ulting in 15 tests in this category overall. These tests cover a good range of possible
header values, ensuring that the cross-domain CORS request is always correctly allowed
or blocked as expected. These tests are implemented in the methodExpectAllowed() and
methodExpectBlocked() JavaScript functions. As well as the textual test description,
each function takes as arguments the actual request method requestMethod as well as
the list of allowed methods allowedMethods which will be set in the Access-Control-

Allow-Methods header by the server. As in the origin tests seen already, we use jQuery’s
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success and error AJAX callbacks to detect whether or not a CORS request has been
allowed.

5.3.3 Access-Control-Allow-Headers

These tests are testing the behaviour of the Access-Control-Allow-Headers CORS
response header. This response header can be used by the server to specify the non-
simple request headers it is happy to receive. Throughout these tests, we send re-
quests containing combinations of the custom headers X-My-Header and X-Another-

Header. We test these requests with a wide range of possible Access-Control-Allow-

Headers header values. The tests are implemented in the headersExpectAllowed() and
headersExpectBlocked() functions which accept the test title, actual request headers
and allowed request headers as arguments. Listing 25 shows an example call to the
headersExpectBlocked() function used by one of the tests. We can see that the actual
request headers are passed as a JavaScript object, allowing us to set as many headers as
we want in the single function argument. In this case we expect the request to be blocked
since the CORS request contains two custom headers yet only one of them is allowed by
the Access-Control-Allow-Headers header.

1 headersExpectBlocked("...textual description...",

2 {

3 "X-My-Header": "foo", // actual request headers
4 "X-Another-Header": "bar"

5 },

6 "X-My-Header"); // allowed request header(s)

Listing 25: An example call to headersExpectBlocked() when testing the Access-

Control-Allow-Headers CORS header

The headersExpectAllowed() and headersExpectBlocked() functions work in a similar
way to all other CORS tests discussed so far. Each request is made to a URL of the form
cors/allow-headers/ALLOWED_HEADERS, where the value passed in ALLOWED_HEADERS is
used by the server in the Access-Control-Allow-Headers header. As always, allowed
and blocked cross-origin requests are detected with jQuery’s success and error callbacks
from the $.ajax() function.

5.3.4 Access-Control-Expose-Headers

The final category of CORS tests checks for the correct behaviour of the Access-Control-
Expose-Headers response header. This header can be used by the server to specify the
non-simple response headers that the calling JavaScript may access after receiving a
response from a cross-origin request. The caller can typically access a response header
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using the getResponseHeader() method on an XMLHttpRequest. Since we are using
jQuery to simplify CORS requests, we must first gain access to the XMLHttpRequest
object. This is easily done since it is passed as the third argument to the success callback.
The tests for header exposure are implemented in two functions exposeExpectAllowed()
and exposeExpectBlocked(). Each of these takes three arguments: desc, header and
exposedHeaders. header is the header to which access is attempted; exposedHeaders
is a comma-separated list of exposed headers that will be set by the server in an Access-

Control-Expose-Headers header.

Simple Request Headers

We first test that access to the six simple response headers is granted even in the ab-
sence of an Access-Control-Expose-Headers header from the server. These headers
are Cache-Control, Content-Language, Content-Type, Expires, Last-Modified and
Pragma. Not all of these headers are sent by our Nginx/Go server combination by default,
and so the Go handler behind these requests has been written to always set all six of the
headers. Each of these 6 tests consists of a call to exposeExpectAllowed() since it is
always expected that access to the header will be allowed.

Non-Simple Request Headers

The more interesting Access-Control-Expose-Headers tests are those in which the
caller attempts to access a non-simple response header with the getResponseHeader()

method. The non-simple headers that we attempt to access are Server, Content-Length,
Connection and Date. All of these are headers that are sent by default by our server,
and so they are returned by the handler behind this category of CORS tests. For each
header, we test that access is correctly allowed and blocked in a number of different cases.
Using Server as an example header, we test that:

• the caller can access the Server header with Access-Control-Expose-Headers:

Server (a single header is allowed which matches the header being accessed);

• the caller can access the Server header with Access-Control-Expose-Headers:

Content-Length, Server (two headers are allowed, one of which is the header
being accessed);

• the caller cannot access the Server header with Access-Control-Expose-Headers:

Content-Length (a single header is allowed which does not match the header being
accessed);
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• the caller cannot access the Server header with Access-Control-Expose-Headers:

Content-Length, Connection (two headers are allowed, neither of which matches
the header being accessed);

• the caller cannot access the Server header when no Access-Control-Expose-

Headers header is set by the server.

This pattern applies to all 4 non-simple request headers that are tested, resulting in
20 tests overall. The tests are implemented with a request to cors/exposed-headers/

EXPOSED_HEADERS where EXPOSED_HEADERS is the value passed to the server that will be
returned in a Access-Control-Expose-Headers header.

5.4 Cookies

The technical background for these tests is covered in Section 2.2.4. The tests cover the
HttpOnly and Secure cookie attributes.

5.4.1 HttpOnly Flag

We have three tests related to the HttpOnly cookie flag. The first test is testing for the
correct behaviour of an HttpOnly cookie set by the server – it should be inaccessible by
JavaScript. The latter two tests are testing what happens if we try to create an HttpOnly
cookie in JavaScript. It should be discarded by the browser immediately, which means
that it should be inaccessible by JavaScript and should also not be sent to the server.

Cookie Set by Server

This is a single test that tests the browser’s compliance with the HttpOnly flag when the
cookie is set by the server. Listing 26 shows the source code of the test. The browser
simply requests a page that sets an HttpOnly cookie. It then tries to access this cookie,
and expects its value to be undefined. We are using the jquery.cookie jQuery plugin6

to access cookies in JavaScript, which simplifies the process and avoids us having to parse
document.cookie ourselves.

This test evolved from the proof-of-concept Mocha test shown back in Section 3.1.1. The
key difference is that the proof-of-concept made two HTTP requests: one to clear any

6
https://github.com/carhartl/jquery-cookie
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1 it("cookie should be inaccessible by JavaScript", function(done) {

2 $.get("/httponly_cookie", function() {

3 expect($.cookie("httpOnlyCookie")).to.be.undefined;

4 done();

5 });

6 });

1 const HTTPONLY_COOKIE_NAME = "httpOnlyCookie"

2 const HTTPONLY_COOKIE_SETVAL = "619"

3

4 func HttpOnlyCookieHandler(w http.ResponseWriter, r *http.Request) {

5 DontCache(&w)

6

7 expires := time.Now().Add(5 * time.Minute)

8 cookie := &http.Cookie{Name: HTTPONLY_COOKIE_NAME,

9 Value: HTTPONLY_COOKIE_SETVAL,

10 Path: "/",

11 Expires: expires,

12 HttpOnly: true}

13 http.SetCookie(w, cookie)

14 }

Listing 26: Client- and server-side code of the first HttpOnly cookie test

already-existing cookie value, then the second to set it as we do in Listing 26. The
first request is not needed since the second request would overwrite any existing cookie
anyway (since the name and scope are identical), so the delete request in the original
proof-of-concept test was redundant.

Cookies Set by JavaScript

These are two tests that check the browser’s behaviour when we create an HttpOnly
cookie with JavaScript. The JavaScript source of the tests is displayed in Listing 27.

Each test creates a new cookie in JavaScript using document.cookie. Note that we can’t
use the jquery.cookie plugin to simplify the syntax for creating the cookies; it doesn’t
support creating an HttpOnly cookie, which makes sense because it is not something we
should be able to do! The cookies are created by setting document.cookie to a new
value that sets the cookie. This does not overwrite any existing cookies (e.g. our session
cookie).

In the first test we create an HttpOnly cookie discard in JavaScript and then try to read
its value. We expect it to be undefined – the browser should immediately discard the
cookie since it makes no sense for JavaScript to create an HttpOnly cookie.
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1 it("cookie set by JavaScript should be discarded and inaccessible by JavaScript",

2 function() {

3 document.cookie = "discard=browseraudit; HttpOnly";

4 expect($.cookie("discard")).to.be.undefined;

5 });

6

7 it("cookie set by JavaScript should discarded and not be sent to server",

8 function(done) {

9 document.cookie = "destroyMe=browseraudit; HttpOnly";

10 $.get("/get_destroy_me", function(destroyMe) {

11 expect(destroyMe).to.equal("nil");

12 done();

13 });

14 });

Listing 27: Testing that an HttpOnly cookie set by JavaScript is immediately discarded

The second test is similar, but instead of testing to see if we can read it in JavaScript, we
test to see whether or not the destroyMe cookie is sent to the server. We make a request
to /get_destroy_me, a page served by the golang server which outputs the value (if any)
of the destroyMe cookie sent with the request. We expect this to be “nil”, which is what
the Go server will output if the cookie was not in the request.

5.4.2 Secure Flag

We have four tests that check that the browser correctly implements the Secure cookie
flag. These can be viewed as two pairs of tests; in each pair we are testing that a secure
cookie is sent to the server over HTTPS but not over HTTP. In the first pair of tests, the
secure cookie is set by the server. In the second pair the cookie is set by JavaScript.

Secure Cookie Set by Server Sent Over HTTPS

The first test checks that a cookie set by the server with the Secure flag set is sent to the
server over the https: protocol; its source is displayed in Listing 28. We can see that
this test is slightly more complicated than the “cookie set by server” HttpOnly test that
we have seen already, since it makes two requests to the server.

The first request sets the secure cookie – the JavaScript sends a request to the Go web
server whose response contains a Set-Cookie header that sets a cookie with the Secure
flag. We must then send a second request in order to determine whether or not the
browser will send the cookie over an HTTPS connection (as it should). We make this
second request to a page handled by the golang server that returns the value of the
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1 it("cookie should be sent over HTTPS", function(done) {

2 $.get("/secure_cookie", function() {

3 var secureCookie = $.cookie("secureCookie");

4 $.get("/get_request_secure_cookie", function(data) {

5 expect(data).to.equal(secureCookie);

6 done();

7 });

8 });

9 });

1 func SecureCookieHandler(w http.ResponseWriter, r *http.Request) {

2 DontCache(&w)

3

4 expires := time.Now().Add(5 * time.Minute)

5 cookie := &http.Cookie{Name: SECURE_COOKIE_NAME,

6 Value: SECURE_COOKIE_SETVAL,

7 Path: "/",

8 Expires: expires,

9 Secure: true}

10 http.SetCookie(w, cookie)

11 }

12

13 func GetRequestSecureCookieHandler(w http.ResponseWriter, r *http.Request) {

14 DontCache(&w)

15

16 c, err := r.Cookie(SECURE_COOKIE_NAME)

17 if err == nil {

18 fmt.Fprintf(w, "%s", c.Value)

19 } else {

20 fmt.Fprintf(w, "nil")

21 }

22 }

Listing 28: Testing that a secure cookie is sent over HTTPS

secureCookie cookie sent by the browser, or “nil” if it is not present. In the test we
then assert that the cookie value returned by the server is equal to the value we were
expecting (that is, the cookie value originally set in the first request). If this is not the
case then the browser has failed the test since it did not send the secure cookie received
in the first response with the second request.

Secure Cookie Set by Server Not Sent Over HTTP

This is the one of the more interesting secure cookie tests – testing that a secure cookie
set by the server is not sent over plain HTTP. The client- and server-side for the test can
be seen in Listing 29. Note that this test sends three requests to the server, not two as
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in the previous secure cookie test.

The first request to the server is exactly the same: the client-side makes a request to the
server whose response sets the secure cookie. The second request serves the same purpose
as in the first test: we want to determine whether or not the browser sends the secure
cookie with this request. However, this request must be sent over plain HTTP, which
complicates things. As we already know, we cannot make a cross-origin XMLHttpRequest
due to the same-origin policy. Recall that our test page is loaded over HTTPS, so we
cannot use jQuery’s $.get() function to make a request over plain HTTP to (and receive
the response from) a page that returns the cookie value sent with the AJAX request. We
therefore split this step into two requests:

1. load an image over plain HTTP from a page that records in the server-side session
the value of secureCookie sent with the image request;

2. send an AJAX request over HTTPS to a page that returns the cookie value stored
in the session during the first request.

This implementation allows us to avoid being blocked by the same-origin policy whilst
still correctly testing the browser, and is a pattern we have seen in many of our security
tests discussed so far (not just those to do with cookies).

Note that the case on line 25 of the golang code in Listing 29 should never be hit.
The request to /get_session_secure_cookie should always come after /set_secure_

cookie, and so a cookie value should exist in the session. We ensure that this is the case
in the JavaScript by using a load handler on the image we load. In order for this to work
in all browsers we tested, we had to serve an image in the response for the load callback
to be executed. This happens on line 14 of the Go code in Listing 29, where we serve a
single pixel image.

Secure Cookie Set by JavaScript

We have two further secure cookie tests. The first tests that a secure cookie set by
JavaScript is sent over HTTPS. The second, and more interesting, test is testing that
a secure cookie set by JavaScript is not sent over plain HTTP. The implementation of
these two tests is very similar to the two Secure flag tests seen so far. The only difference
is that these tests set the cookie in JavaScript, and so one fewer request is required in
each.
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1 it("cookie should not be sent over HTTP", function(done) {

2 $.get("/secure_cookie", function() {

3 $("<img />", { src: "http://browseraudit.com/set_secure_cookie" }).load(function() {

4 $.get("/get_session_secure_cookie", function(data) {

5 expect(data).to.equal("nil");

6 done();

7 });

8 });

9 });

10 });

1 func SetSecureCookieHandler(w http.ResponseWriter, r *http.Request) {

2 DontCache(&w)

3

4 session, _ := store.Get(r, "browseraudit")

5

6 c, err := r.Cookie(SECURE_COOKIE_NAME)

7 if err == nil {

8 session.Values[SECURE_COOKIE_NAME] = c.Value

9 } else {

10 session.Values[SECURE_COOKIE_NAME] = "nil"

11 }

12

13 session.Save(r, w)

14 http.ServeFile(w, r, "./static/pixel.png")

15 }

16

17

18 func GetSessionSecureCookieHandler(w http.ResponseWriter, r *http.Request) {

19 DontCache(&w)

20

21 session, _ := store.Get(r, "browseraudit")

22

23 c := session.Values[SECURE_COOKIE_NAME]

24 if c == nil {

25 log.Println("nil secure cookie")

26 }

27

28 fmt.Fprintf(w, "%s", c)

29 }

Listing 29: Testing that a secure cookie is not sent over plain HTTP
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5.5 Request Headers

In this category we test browser security features related to miscellaneous HTTP request
headers that do not fit into any other category. The technical background for these tests
is not discussed in Chapter 2 but instead discussed alongside the implementations.

5.5.1 Referer

This is a single test to check that the Referer request header is not sent with a non-secure
request if the referring page was transferred over a secure protocol. Put simply, if a plain
HTTP request was referred by a document loaded over HTTPS, then the request should
not include the Referer header. This behaviour is defined in RFC 2616, and exists to
prevent the leaking of private information [15].

The HTTP Referer request header (originally a misspelling of referrer) is most commonly
sent when a user clicks a link from one webpage to another. Its purpose is to allow a
web server to learn where a request originated from. For example, many webmasters use
the header to learn about the sources of their web traffic. The header is not only sent
when a user clicks a link to another document, but also whenever a document is loaded
by another document. For example, when an HTML webpage loads an image with an
<img /> tag, the request for the image’s src is sent with a Referer header containing
the URL of the document loading the image. We take advantage of this in our test, since
it is easier for us to programmatically load an image in JavaScript than it is to simulate
a link click.

Since our test page is already loaded over a secure protocol, we can simply load an image
from the golang web server over plain HTTP7. The server records the Referer header (if
any) sent with the image request in the user’s session. The JavaScript then sends a second
request, obtaining the referrer stored in the previous request. This second request is an
AJAX request over HTTPS. We expect the referrer value received to be empty. The two
requests that comprise this test cannot be squashed into one due to same-origin policy
restrictions as seen in many other tests.

7This will result in a warning along the lines of “the connection to this website is not fully secure
because it contains unencrypted elements (such as images)” in most browsers, usually displayed with
a warning icon to the left of the URL bar
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5.6 Response Headers

In this category we test browser security features related to miscellaneous HTTP response
headers that do not fit into any other category.

5.6.1 X-Frame-Options

The technical background for these tests is covered in Section 2.2.6.

This category of tests checks that the browser correctly implements the anti-clickjacking
header X-Frame-Options as documented in RFC 7034 [32]. It is worth noting that
the RFC itself states that “not all browsers implement X-Frame-Options in exactly the
same way, which can lead to unintended results”. This quickly became apparent when
testing this category of tests since, at the time of writing, 2 out of the 8 fail in the latest
version of Chromium. The behaviour of our tests is supported both by the RFC, and
by two other webpages8,9 we found online that carry out some simple X-Frame-Options

testing similar to our tests. It is also important to recall that today’s browsers implement
differing behaviour when it comes to nested frames. Because of this variation we must
load our test frames directly from the page running our tests so that there are no nested
frames. Nested frames lead to mixed behaviour that has not been formally defined, so
we cannot define an expected result. This limits our testing scope – we cannot run any
X-Frame-Options tests that involve nested frames because of this mixed and undefined
behaviour.

At present, we only test X-Frame-Options with the <iframe> element. Current browser
implementations of X-Frame-Options apply to much more than just the <iframe> tag,
covering a wider range of tags that enable HTML content from other domains: <frame>,
<object>, <applet> and <embed> tags. We test whether or not our frame has been
rendered by having an image inside the framed document and detecting whether or not
the request for the image reached the server side. This is a similar pattern to the one
seen in our Content Security Policy tests (see Section 5.2).

All X-Frame-Options tests use the same JavaScript function frameOptionsTest() on the
client-side. This function is displayed in Listing 30. Its four arguments are as follows:

• desc (string) – the textual test description passed to Mocha’s it() function;

• shouldBeBlocked (Boolean) – true if and only if we expect the loading of the
frame to be blocked due to the X-Frame-Options header;

8
http://erlend.oftedal.no/blog/tools/xframeoptions/

9
http://www.enhanceie.com/test/clickjack/
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• sourcePrefix (string) – the prefix appended to the frame’s URL, specifying the
origin from which it should be loaded, e.g. https://test.browseraudit.com;

• frameOptions (string) – the value of the X-Frame-Options header to be sent with
the framed document.

1 function frameOptionsTest(desc, shouldBeBlocked, sourcePrefix, frameOptions) {

2 frameOptionsTest.id = frameOptionsTest.id || 0;

3

4 var id = frameOptionsTest.id++;

5 it(desc, function(done) {

6 var defaultResult = (shouldBeBlocked) ? "pass" : "fail";

7 var frameOptionsBase64 = $.base64.encode(frameOptions);

8

9 $("<iframe>", { src: sourcePrefix+"/frameoptions/"+id+"/"+defaultResult+"/"+

10 frameOptionsBase64 })

11 .css("visibility", "hidden").appendTo("body").load(function() {

12 $.get("/frameoptions/result/"+id, function(result) {

13 expect(result).to.equal("pass");

14 done();

15 });

16 });

17 });

18 }

Listing 30: frameOptionsTest() function used for all X-Frame-Options tests

The frameOptionsTest() function allows us to dynamically create and serve a framed
document from a specified origin with a specified X-Frame-Options header. This means
that each of the 8 tests under this category is written in a single line of JavaScript – a
call to this function. We do not need to add anything on the server-side each time an
X-Frame-Options test is added.

The function executes a test as follows:

• a unique test ID is generated. Test IDs are sequential integers starting at 0;

• a frame is loaded from the server. This request makes use of the sourcePrefix

argument (so that the frame is loaded from the correct origin) and also passes to
the server the test ID, a default result (pass or fail) and a Base64 encoding10 of the
X-Frame-Options header value;

• on the server-side, the default result is stored in the session as the result for the
X-Frame-Options test with the given ID;

10We use Base64 because the source prefix may contain characters with special meaning in a URL, e.g. /,
which would break the route parser on the server-side. Passing the source prefix in the URL encoded
in Base64 easily avoids any such problems, and can be decoded quickly and easily by the Go server
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• the server serves the frame with the given X-Frame-Options header. The content
of this frame is generated dynamically from a template; the frame loads an image
from a URL that, if loaded, will update the result in the session for that test ID to
be the opposite of the default result stored previously;

• once the frame load event is triggered (i.e. it has actually been loaded, or the
browser has blocked it), the client-side queries the server for the result of the test.
The server responds with the result stored in the session for that test ID.

The template from which the frame’s content is generated is shown in Listing 31. The
result and test ID are populated by the golang web server using the data passed in the
frame request by lines 9–10 of frameOptionsTest(). We can see how the loading of an
image is used to detect whether or not the browser has rendered a frame. Depending
on the test, the frame being rendered may result in a test passing or failing, hence the
result is a variable. A call to /frameoptions/pass/4 updates the test result for the
X-Frame-Options test with ID 4 to be a pass, for example. This is the result that is
later queried in the JavaScript once the browser reports that the frame has been loaded.

1 <!DOCTYPE html>
2 <html lang="en">

3 <head>

4 <meta charset="utf-8" />

5 </head>

6 <body>

7 <img src="/frameoptions/{{.Result}}/{{.TestId}}" alt="" />

8 </body>

9 </html>

Listing 31: The template used to generate the frame’s content in an X-Frame-Options

test

As already mentioned, we have 8 tests in this category:

• frame from the same origin with DENY (should be blocked);

• frame from the same origin with SAMEORIGIN (should be allowed);

• frame from the same origin with ALLOW-FROM browseraudit.com (should be al-
lowed);

• frame from the same origin with ALLOW-FROM test.browseraudit.com (should be
blocked);

• frame from the remote origin with DENY (should be blocked);

• frame from the remote origin with SAMEORIGIN (should be blocked);
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• frame from the remote origin with ALLOW-FROM test.browseraudit.com (should
be blocked);

• frame from the remote origin with ALLOW-FROM browseraudit.com (should be al-
lowed).

The “same origin” in the tests above refers to https://browseraudit.com, i.e. the same
origin as the test page that is loading the frames. The “remote origin” is https://test.
browseraudit.com. Since our test page is loaded over HTTPS, we can only load frames
over HTTPS as well due to the mixed-content rules. This means we are unable to test
more origin mismatches that involve different schemes.

5.6.2 Strict-Transport-Security

We have five browser tests related to HTTP Strict Transport Security (HSTS) and the
Strict-Transport-Security header. The technical background for these tests is dis-
cussed in Section 2.2.5.

In each of the HSTS tests, we clear the HSTS state once the test is complete. This
is so that HSTS does not wrongly affect any future tests. We achieve this using one
of Mocha’s nice features: afterEach(). This allows us to register a function to be
called upon completion of each HSTS test by placing a call to afterEach() inside the
HSTS test category’s describe() block. Clearing the HSTS state after each test with
afterEach() is beneficial in two ways. Firstly, it keeps the code tidier by reducing du-
plication. Secondly, and most importantly, it ensures that the HSTS state is cleared
even if a test fails. If we had alternatively tried to clear the HSTS state at the bottom
of each test, before the done() call, this would not have been executed in the event
of a test failure. This is because the execution of a test stops as soon as an assertion
fails. Using afterEach() ensures that HSTS is cleared even in the event of a test fail-
ure. This is crucial, so that the failure of one test does not affect any subsequent tests.
HSTS is cleared by requesting a document from the server that responds with the header
Strict-Transport-Security: max-age=0.

Further Requests Not Sent Over Plain HTTP

This test is testing the key functionality of HSTS by ensuring that, once HSTS has been
enabled by the server, further requests will not be sent over plain HTTP but instead
rewritten to use HTTPS. Most of the source code is displayed in Listing 32; the handler
for /get_protocol, which simply returns the protocol value stored in the session, has
been omitted.
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Recall that requests reaching the golang web server (and thus being processed by the
handlers in Listing 32) are being proxied by our Nginx web server. This has the un-
fortunate side-effect that the requests to the Go web server do not include the full re-
quest URI. For example, a request to http://browseraudit.com/set_protocol looks
to the golang server like a request to /set_protocol. Consequently, the golang server
cannot learn from the HTTP request whether the request was sent over the http: or
https: protocol. To work around this, we configure the Nginx server to add a custom
X-Scheme header when proxying a request for /set_protocol. This is easily done with
a proxy_set_header directive, taking advantage of the $scheme Nginx variable.

Now that this has been explained, the test itself should be fairly easy to follow since it
follows a similar pattern to the tests seen already. The client-side first makes a request to
the server whose response enables HSTS for 10 seconds. We then make a second request
to the server – a plain HTTP request, which we hope will be rewritten to use HTTPS.
This request is to /set_protocol, which records the protocol used to access it in the
session. The browser then sends a third request (using AJAX, so that we can read the
response data) to learn from the server the protocol recorded during the previous request.
We expect this protocol to be “https”; if it is not then the plain HTTP request was not
rewritten by the browser.

Doesn’t Apply to Subdomains with includeSubdomains Omitted

This test ensures that HSTS does not apply to subdomains if the Strict-Transport-

Security header does not contain the includeSubdomains flag. The test works much
like the first HSTS test, except the request to http://browseraudit.com/set_protocol

is instead sent to http://test.browseraudit.com/set_protocol. In the assertion line,
we expect the protocol to equal “http” since the request should not have been rewritten.

Does Apply to Subdomains with includeSubdomains Present

This tests works exactly like the previous test, except the Strict-Transport-Security

header is sent with the includeSubdomains flag. We therefore expect the protocol to
equal “https” as the request to http://test.browseraudit.com/set_protocol should
have been rewritten by the browser.

Ignored if Set Over Plain HTTP

In this test we are checking that the browser ignores a Strict-Transport-Security

header if it is delivered over plain HTTP. We create an image to send a request to
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http://browseraudit.com/set_hsts, as opposed to using an AJAX call to /set_hsts

over HTTPS as in all other HSTS tests. We cannot use AJAX for this because the
request would be blocked due to it being cross-origin. This explains why we serve the
pixel.png image in Listing 32 even though we have only been requesting it so far with
an AJAX request and not looking at the received data: we need our .load() event to
work, and so have to serve the image. We could have used a different handler that does
not serve the image for the tests using AJAX, saving bandwidth, but decided not to as
this would unnecessarily complicate the server-side code.

After the browser has received the Strict-Transport-Security header sent over plain
HTTP, the rest of the test continues as normal and expects the received protocol to be
“http”. The request to /set_protocol should not be rewritten since the HSTS header
sent over plain HTTP should be ignored by the browser.

Expires after max-age

This last test checks that the HSTS state expires after the number of seconds given
by max-age. Its client-side source code is displayed in Listing 33. The first thing to
note is that, in line 2, we reset the Mocha timeout for this test. Since this is a slow
test, Mocha would otherwise terminate the test before its completion. Recall from the
server-side handler for /set_protocol in Listing 32 that HSTS is set to last for 10
seconds. In this test we make a request to /set_protocol, wait for 15 seconds using
JavaScript’s setTimeout(), and then test to see whether our request to a plain HTTP
URL is rewritten by the browser. We expect that it will not be, since the browser’s HSTS
state should have expired, and so we expect the protocol received from the server to be
“http”.
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1 it("browser should not send further requests over plain HTTP", function(done) {

2 $.get("/set_hsts", function() {

3 $("<img />", { src: "http://browseraudit.com/set_protocol" }).load(function() {

4 $.get("/get_protocol", function(protocol) {

5 expect(protocol).to.equal("https");

6 done();

7 });

8 });

9 });

10 });

1 const PROTOCOL_KEY = "protocol"

2

3 func SetHSTSHandler(w http.ResponseWriter, r *http.Request) {

4 DontCache(&w)

5

6 w.Header().Set("Strict-Transport-Security", "max-age=10") // 10 seconds
7 http.ServeFile(w, r, "./static/pixel.png")

8 }

9

10 func SetProtocolHandler(w http.ResponseWriter, r *http.Request) {

11 DontCache(&w)

12

13 session, _ := store.Get(r, "browseraudit")

14

15 if r.Header["X-Scheme"][0] == "http" || r.Header["X-Scheme"][0] == "https" {

16 session.Values[PROTOCOL_KEY] = r.Header["X-Scheme"][0]

17 session.Save(r, w)

18 } else {

19 log.Printf("Unrecognised protocol %s", r.Header["X-Scheme"][0])

20 }

21

22 http.ServeFile(w, r, "./static/pixel.png")

23 }

Listing 32: Testing that plain HTTP requests are rewritten to HTTPS when HSTS is
enabled
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1 it("should expire after max-age", function(done) {

2 this.timeout(16000); // 16 seconds
3

4 $.get("/set_hsts", function() {

5 setTimeout(function() {

6 $("<img />", { src: "http://browseraudit.com/set_protocol" }).load(function() {

7 $.get("/get_protocol", function(protocol) {

8 expect(protocol).to.equal("http");

9 done();

10 });

11 });

12 }, 15000); // 15 seconds (HSTS should last for 10)
13 });

14 });

Listing 33: Testing that HSTS expires after max-age seconds
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Our project is doing very well and has captured the state of the art. There is nothing
else like BrowserAudit publicly available – we have produced a web application capable
of automatically providing a detailed report on a browser’s implementations of a good
selection of security features.

It is very difficult to find security bugs in official releases of browsers. Entire teams are
dedicated to assessing the security of a browser throughout its development, with the
hope that no bugs will exist by the time it is released. Browsers are also built over years
and years, with each version improving on a previous one. Because of this, one would
expect most bugs to have been ironed out over time. Mozilla Firefox has a selection of
unit tests related to browser security that aim to automatically test the same features that
BrowserAudit does, but at the C++ level (Firefox’s implementation language) rather than
with a web application written primarily in JavaScript. We expect that other browsers
also have similar practices, although it is difficult to know for sure with the closed-source
browsers. Bearing all of this in mind, it is important to remember that BrowserAudit
can be used in browsers that are not official releases. For example, it could be used
by a developer who is in the process of developing the next version of a web browser.
BrowserAudit could also be useful for somebody who has made a custom modification
to a browser but wants to ensure that its security features are still intact. Our project is
not just intended for use by end users to assess their browser security – we hope that it
will prove to be very useful to those involved in any form of browser development.

6.1 Mozilla Firefox Bugs

Despite our comments above about it being difficult to find security bugs in official
browser releases, BrowserAudit detects two bugs in the latest (version 29.0) release of
Mozilla Firefox. This proves the usefulness of our application – it automatically identifies
security bugs in one of today’s most popular browsers! Both bugs are in Firefox’s im-
plementation of the Content Security Policy (CSP): four of our CSP tests fail in Firefox.
These bugs also exist in all prior versions of Firefox that implemented the CSP. After
some further investigation to ensure that the problem was definitely Firefox and not our
tests, we reported each of these bugs to Mozilla, and they were both promptly accepted
as valid bugs.
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6.1.1 CSP allows local CSS @import with only ‘unsafe-inline’ set

The Bugzilla report for this bug can be found at https://bugzilla.mozilla.org/show_
bug.cgi?id=1007205.

We found a way to load a CSS stylesheet despite a policy that should block the stylesheet
from being loaded. Consider the HTML in Listing 34 when served with the header
Content-Security-Policy: default-src 'none'; style-src 'unsafe-inline'.

1 <style>

2 @import url("/should_be_blocked.css");

3 </style>

Listing 34: HTML used to load a stylesheet that should be blocked by the CSP

The Content-Security-Policy header first sets a default-src 'none' directive, stat-
ing that no resources may be loaded. We then specify the style-src 'unsafe-inline'

directive, meaning that style rules are allowed inside <style> tags and style="..."

attributes.

In the latest version of Firefox, line 2 from Listing 34 is allowed to load the local
stylesheet /should_be_blocked.css. This is incorrect behaviour. The CSP header is
based around whitelisted sources, and the source /should_be_blocked.css is not whitel-
isted by any of the directives in the header. If, for example, we had specified default-src

'self' or style-src 'unsafe-inline' 'self' then we would expect the stylesheet to
be loaded.

This incorrect behaviour only seems to occur in Firefox when the stylesheet being loaded
is a local one, i.e. from the same origin as the HTML file being served. When we
replace /should_be_blocked.css with a remote stylesheet, it is correctly blocked. This
is verified by other BrowserAudit tests that pass in Firefox.

6.1.2 CSP allows local Worker construction with only ‘unsafe-inline’ set

We reported this bug on Bugzilla at https://bugzilla.mozilla.org/show_bug.cgi?

id=1007634.

The bug is very similar to the CSS import bug, except that this time we are able
to load a JavaScript script that should be blocked by the CSP, using a Worker (or
SharedWorker) constructor. Consider the HTML shown in Listing 35 being served with
Content-Security-Policy: default-src 'none'; script-src 'unsafe-inline'.
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1 <script>

2 var worker = new Worker("/should_be_blocked.js");

3 </script>

Listing 35: HTML used to load a JavaScript file that should be blocked by the CSP

Just like the first Firefox bug, the /should_be_blocked.js script is wrongly loaded by
the browser – there is no directive in the Content-Security-Policy header to allow
it. When we change the script-src directive to 'unsafe-inline' 'self', the script
is correctly loaded and a Worker constructed from it. This behaviour is confirmed by
a different BrowserAudit test that passes in Firefox. As with the first Firefox bug, this
bug appears only to occur when the script being loaded is from the same origin as the
protected document. Remote scripts cannot be loaded in this way, which is confirmed
by other BrowserAudit tests that pass in the affected versions of Firefox.

6.2 Limitations

In this section we discuss the limitations of BrowserAudit in its current state. We offer
potential future improvements and fixes for some of these, but we also believe that some
of the limitations cannot be worked around due to the nature of the application.

6.2.1 Tests Using Timeouts

In Section 4.3.1 we discussed the merits of using JavaScript callback functions in favour of
timeouts whenever possible. Unfortunately, there are some tests for which we have been
unable to find a working cross-browser implementation that does not require a timeout.
This problem typically stems from an onload event not being fired when we require it to
be. Our solution for this at the moment is to wait for a predefined amount of time, and
then assume that the document (and any resources that it loads) have been loaded. The
consequence of this is that our use of timeouts could potentially lead to inaccurate test
results, especially in the case of a slow connection or network latency. On the other hand,
we cannot simply set the timeout to a large value since this would drastically increase
the time taken for all of our tests to execute.

All of the tests currently using timeouts are Content Security Policy tests whose im-
plementations are discussed in Section 5.2. They can loosely be separated into four
categories, discussed below. There were once many more cases in which load events were
not fired when we desired, especially in Safari. We were able to fix these by modify-
ing the Content-Type response header sent by the server with /csp/pass/TEST_ID and
/csp/fail/TEST_ID responses. For example, if a CSP test loads an image using <img
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src="/csp/pass/42" alt="" />, it might be beneficial to modify the Content-Type

header for that URL to be image/png. In other cases, setting the Content-Type header
was not sufficient. For example, in the CSP audio and video tests, we actually serve
small audio and video files in the pass and fail responses so that the frame load event
fires when we want it to (where the frame is the page loading the audio or video).

Worker and SharedWorker

The CSP tests involving the Worker and SharedWorker APIs use code like shown in
Listing 36 to construct a web worker. In this case, the CSP should allow the worker to
be constructed, i.e. /csp/pass/46 is an allowed script source. The HTML document in
the listing is loaded inside a frame by our testing page. We would like the testing code
to use a load event on this frame, however this does not achieve what we want. We want
the load event to be fired after the browser has made the request to /csp/pass/46 to
construct the worker on line 6. What actually happens is that the load event is fired as
soon as the browser has rendered the HTML, but before it loads the worker. This results
in our test code querying the server for the test result (which will have already been set
to “fail” as the default result) before it has been set to “pass” by the worker construction
on line 6. This results in a test result erroneously being reported as a failure when
the browser has actually behaved correctly as far as the CSP is concerned. The only
problem is the order of the requests – our test code queries the test result before the
worker construction sets the test to have passed.

1 <!DOCTYPE html>
2 <html lang="en">

3 <head>

4 <meta charset="utf-8" />

5 <script>

6 new Worker("/csp/pass/46");

7 </script>

8 </head>

9 <body>

10 </body>

11 </html>

Listing 36: Constructing a worker in a CSP test

The load event behaviour is like this in all browsers we have found that support the
Worker and SharedWorker APIs. The behaviour makes sense since workers are intended
to run asynchronously in the background, in parallel with their main page. The behaviour
is not ideal for us, however, and so we instead use a timeout. The test code that produced
the frame waits an amount of time (currently 300ms) after which we assume that the
worker construction will have been attempted.
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setTimeout() and setInterval()

For the CSP 'unsafe-eval' tests that try to use setTimeout() and setInterval()

to execute a string as code in a similar manner to eval(), using a load event on the
frame is not an option. This is because the JavaScript executed in the framed document
(see Listing 37) sets a timeout itself. The code on the test page that created the frame
must wait until after the setTimeout() timeout fires and the redirect occurs before it
queries the server for the test result. A load event on the frame would fire as soon as the
HTML document had been rendered, not after the timeout. This is also the case with
setInterval(), and is the case in all browsers. Our solution is to set a timeout in the
testing code longer than the 100ms timeout set by setTimeout() and setInterval()

before requesting the test result from the server.

1 setTimeout('window.location = "/csp/pass/15"', 100);

Listing 37: Setting a 100ms timeout with setTimeout()

Object and Embed Tags

This problem appears to be specific to Chromium-based browsers. If we frame an HTML
document that loads another resource with either an <object> or <embed> tag, the
frame’s load event fires before the request to load the object is made by the browser. This
affects 20 of our CSP tests, all of which make use of timeouts as described previously to
avoid the problem.

Inline Event Handlers

In two of our CSP 'unsafe-inline' tests, we use a <body onload='...'> event to test
inline event handlers. This onload event redirects the frame to a URL that sets the test
result on the server. As in the other cases we have seen already, the frame’s load event
will be fired before the inline event that makes the redirect. We use timeouts to work
around this and (hopefully) ensure that we only query the server for the test result after
the inline event and redirect have occurred.

Towards a Solution: postMessage

postMessage is an API that allows messages to be sent between two windows or frames
across domains. This is a secure way of sending messages cross-origin without being
blocked by the same-origin policy. The sender specifies the origins of the recipients
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allowed to receive the message, and the recipient is given the origin of the sender as well
as the message itself.

Rather than relying on load handlers on frames in our CSP tests, we could potentially use
the postMessage API to have the frame send its parent a message, letting it know that
it has tried to load the resource protected by the CSP. The JavaScript test would wait
to receive this message before querying the server for the test result. The postMessage
API is supported in all major browsers, so browser support is not a concern. The main
concern with this idea is that, when a browser blocks a resource from being loaded due
to the CSP, it throws a security exception. This is problematic since it can result in the
browser refusing to execute a script any further. We recently had the idea to use two
separate <script> tags which read and write a global variable to work around this. This
is a possible solution for many of the cases in which we currently use timeouts, which we
hope to experiment with in the future.

6.2.2 Incomplete Test Coverage

In many of our browser security tests we only test cross-origin mismatches where the
two origins differ in host. There are multiple cases in which we neglect to test origins
that differ in scheme or port when we perhaps should, since this leads to incomplete test
coverage of the features for which we have written tests.

We are unaware of any technical limitations that would stop us from testing cross-origin
port mismatches. There are technical limitations when testing origins that differ in
scheme, however, due to mixed content rules. We discussed the restrictions imposed by
mixed content rules in the relevant sections of Chapter 5. Since our test page is loaded
over HTTPS, the test page cannot frame a document loaded over HTTP. This means
that we cannot run many cross-origin tests involving the unencrypted http: scheme. We
can think of two possible solutions to this, which we describe briefly below.

The first solution is to use popup windows: the HTTPS test page can create a popup
window for an HTTP document which can then carry out the test and close itself. This
could lead to a poor user experience, although the popup windows could perhaps be
hidden behind the main test page with the blur() method.

Our second proposed solution is to load two separate test pages, one over HTTP and the
other HTTPS, and aggregate the results into a single results page. The two test pages
could be loaded in parallel, or we could ask the user to run one batch of tests and then
the second. Having a test page loaded over plain HTTP would make it simple for us to
test cross-origin tests involving the http: scheme. We cannot simply run all tests from
a plain HTTP test page, though, since many of the test implementations are much more
trivial due to the test page being loaded over HTTPS (e.g. the HTTP Strict Transport

111



6.3 Browser Support

Security tests). By having two test pages, we could implement a wider range of tests and
run each test on whichever page would result in a simpler implementation.

6.3 Browser Support

Browser support is important for a project such as this. After all, it is likely that older
browsers are those that will contain security bugs or lack certain security features. It is
difficult to write JavaScript web-applications that work reliably across all browsers. When
discussing the implementations of our browser tests in Chapter 5, we often described
various techniques we use to ensure correct cross-browser behaviour. There are two key
aspects to browser support that we look for when testing BrowserAudit in a new browser:
correct core functionality (e.g. the tests run automatically to completion, and the result
counts and progress bar are updated) and the accuracy of the test results displayed.

Given the technical challenges faced throughout this project, we are overall happy with
BrowserAudit’s browser support although there is definitely room for improvement. In
this section we briefly discuss the results of running BrowserAudit in both the latest and
historical versions of some of today’s most popular browsers.

6.3.1 Mozilla Firefox

BrowserAudit runs well in all versions of Mozilla Firefox tested: both older versions
and the latest builds. The tests always run to completion and the results reported are
accurate based on the security features we know that Firefox supports. We tested two
desktop versions of Firefox and also the Android version.

Desktop Version 29.0 (64-bit Linux)

BrowserAudit reports 304 passed tests and 6 failed tests in Firefox 29.0 on Linux. These
results are accurate – the 6 failed tests are the Content Security Policy tests identifying
bugs discovered in the browser, as discussed in Section 6.1.

Desktop Version 26.0 (64-bit Linux)

The BrowserAudit results in Firefox 26.0 on Linux are very similar to those in version 29.0.
The application reports 302 passes and 4 failures. Note that 4 fewer tests are executed
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in the older version. This is because the older version supports the Worker API but not
the SharedWorker API. Our Content Security Policy tests detect this and so do not run
the SharedWorker tests. The other failures are the same as in version 29.0, identifying
the security bugs found by our application.

Android Version 30.0

We tested BrowserAudit in the Android mobile version of Firefox as well as the two
desktop versions. The outcome was mostly positive – the application runs well, reporting
276 passed tests and 14 failed. Whilst most test results seem to be accurate, there are
some problems as highlighted by the relatively high number of failed tests. The Content
Security Policy tests involving the <audio> and <video> HTML5 tags show failed results.
This is not due to a security bug in the browser, but instead a difference in how Firefox
for Android handles audio and video compared to the desktop versions. Most likely for
data optimisation reasons, the browser does not send a request to the server for audio
or video content until after the user presses the “play” button. Our tests rely on the
request for the media content reaching the server without any user interaction, so that
we can test the security policy automatically. In fact, the user cannot even see the audio
or video to click play because it is contained within a hidden frame! We either need to
determine a method of forcing the browser to load the media (perhaps by automatically
playing it), or we could instead choose not to run media tests in mobile browsers.

6.3.2 Internet Explorer

BrowserAudit does not run well in any versions of Internet Explorer other than the
latest version, Internet Explorer 11. Fortunately, Internet Explorer 11 has been the most
popular version of Internet Explorer since January 2014 [38]. We were able to fix many
problems in the older versions (the application originally didn’t run at all!) but some
still exist. BrowserAudit will run in Internet Explorer versions 9+ but with issues. It
fails to run at all in versions 8 and older, largely because the Chai assertion library we
use extensively only supports IE 9+.

Internet Explorer 10 (64-bit Windows)

When accessed in Internet Explorer 10, BrowserAudit runs and reports 232 test passes
and 74 failures. This failure count is high, partially due to errors in the tests rather than
security flaws in the browser. Tests fail in the Content Security Policy, X-Frame-Options
and Strict-Transport-Security categories.
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We expect many Content Security Policy (CSP) tests to fail since Internet Explorer
(even in the latest version) does not implement the policy using the header defined in
the specification. That said, the CSP tests fail in IE 10 due to Mocha timeouts, not our
assertion failures. The X-Frame-Options and Strict-Transport-Security tests also
fail due to timeouts in the same way. These timeouts are occurring due to <iframe>

load events not being fired. This is a problem encountered multiple times throughout
our implementation, for example with the media CSP tests discussed in Section 5.2.11.
In all other browsers, we were able to utilise various response headers to make the load
event be fired when we need it to be. We have been unable to achieve this in IE 10.

Internet Explorer 11 (32-bit Windows)

The load event issues in IE 10 do not exist in Internet Explorer 11. BrowserAudit works
very well in IE 11, reporting 222 passed tests and 64 failures. There are no timeout issues
as in IE 10. The tests that fail are in the Content Security Policy, X-Frame-Options
and Strict-Transport-Security categories. Coincidentally, many of these tests are the
same tests that fail in IE 10. The key difference is that the tests fail properly in IE 11 as
opposed to in IE 10. These features are not implemented in Internet Explorer according
to the specification and so BrowserAudit flags this with its failed tests.

6.3.3 Safari

In many sections of the Browser Tests chapter (Chapter 5) we described a wide range
of tweaks implemented purely to fix the tests in Apple’s Safari browser. Thanks to
these tweaks, BrowserAudit works well in most versions of Safari. The application runs
correctly in all versions tested (5–7), although there are still some timeout issues in
Safari 5.

Desktop Version 6

In version 6 of the desktop version of Safari, BrowserAudit reports 280 passes and 6
failures in total. The application runs well (and very quickly!) and all failures reported
are accurate. 2 of the failures are due to lack of support for the ALLOW-FROM values of
X-Frame-Options, just as we saw in Google Chrome for Android. The other 4 failures
occur because Safari 6 does not support HTTP Strict Transport Security.
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iOS (iPhone and iPad)

We also tested BrowserAudit in the mobile versions of Safari on both an iPhone and an
iPad. It runs in these browsers just as well as in the desktop version of Safari. The
results are exactly the same: 280 passes and 6 failures.

6.3.4 Android Stock Browser

When explaining the motivation behind this project back in Section 1.1, we remarked
that many deployments of the Android stock browser lack various important security
features, yet are still used in practice by so many users today. Unfortunately we do
not have access to an Android 2.3 device (the version referenced in our introduction
that doesn’t even implement HttpOnly cookies) but we have been able to test the stock
browser of two more recent Android versions. The application runs very well in both
versions.

Android 4.2.2

Running on the stock browser of Android 4.2, BrowserAudit reports 203 passed tests
and 64 failed tests. Most of these failures are accurate. 47 of them are due to the
browser failing to implement the Content Security Policy. A further 3 of the failures
are a result of the browser not implementing HTTP Strict Transport Security. The
more interesting failed tests are part of the Cross-Origin Resource Sharing section. Some
tests fail in Android 4.2’s stock browser because the getResponseHeader() method (see
Section 2.2.3) cannot be used to retrieve any non-simple response header, even when
allowed by the server. We are undecided on whether this is a problem in the browser’s
CORS implementation or instead a problem in the XMLHttpRequest implementation.
The getResponseHeader() method works as-expected when accessing simple request
headers (which are not protected by CORS). The remaining failures are not entirely
accurate and are instead due to problems with the tests. The tests for the X-Frame-

Options header fail due to timeouts as in other browsers discussed already. This is down
to the browser not executing load event callbacks when we need it to.

Android 4.4.2 (Google Chrome)

The stock browser in Android 4.4 is a mobile version of Google Chrome. BrowserAudit
runs brilliantly in this, with excellent results. The application reports 284 test passes and
just 2 failures. The only failing tests are due to Chrome not implementing the ALLOW-FROM
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values of the X-Frame-Options header. This is also the case in desktop versions of
Chrome and in other browsers such as Safari. We acknowledged that not all browsers
support this value when discussing the background of the feature in Section 2.2.6.

6.4 User Experience Feedback

We visited the departmental “Project Fair” to harness some feedback on the interface
of our application. Recall that when describing the interface design in Section 3.1.2,
we stressed the importance of our application’s interface being appropriate for a wide
range of users. We hope that BrowserAudit is usable by all kinds of users ranging from
non-technical users to browser developers. The majority of the feedback came from
technical users who are not knowledgeable about web security. We also demonstrated
the application to some more typical web users to ascertain that the application is usable
by (and useful for) a non-technical user.

The feedback we received was overall very positive. The technical users especially found
the project to be useful and interesting. The website design was well-received by all, with
multiple users commenting on the usefulness of the progress bar and “Show/Hide Details”
button. One user commented on how the website looks good on multiple devices, even
those with low screen resolutions. Some of the negative comments received about the
user experience were as follows:

• when expanding or collapsing a category of test results, the entire bar should be
clickable rather than just the title text;

• it is not clear when the tests have completed, especially on small screens;

• one user commented that they thought all web browsers are already secure.

We can act on this feedback in the future to make the website even more accessible than
it already is.
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We have produced a web application that automatically tests the implementations of
many standard browser security features in the browser used to access our website.
BrowserAudit tests a wide range of security features, both those that are crucial and
should be implemented by all browsers, and more recent security features that will only
be implemented by modern browsers but are becoming increasingly important to prevent
new kinds of attacks.

All of our tests run automatically with no input required from the user. This is what
makes BrowserAudit unique compared to other works we have been able to find – there is
no other publicly-accessible web application that automatically tests so many aspects of
a web browser’s security like ours does. BrowserAudit’s interface has been designed with
all kinds of users in mind. An average web user can run BrowserAudit’s tests and gain a
simple assessment on his browser – critical, warnings or okay. A more technical user can
view a detailed breakdown of each test result, and see which security features passed our
tests and which had problems. If he is not quite sure what a browser security feature
is, he can learn about it (and how we test it) thanks to the textual descriptions we have
written for each category of tests. For a highly advanced user, we provide exact details
of why a test has failed, including actual and expected results where possible. This kind
of information should be useful for a browser developer or security researcher.

We were not necessarily expecting to detect any bugs in any modern browser. We instead
thought that the most interesting results would come from running BrowserAudit in older
browsers that are still commonly used. That said, BrowserAudit did expose two new bugs
in the latest version of Mozilla Firefox.

We have intentionally developed BrowserAudit in a way such that new tests can be
written and added in a simple manner. In a way, it can be viewed as the beginning of a
framework for writing browser tests. We explain the importance of this when discussing
possible future work in Section 7.1.



7.1 Future Work

7.1 Future Work

In this section we discuss various improvements that could be made to the BrowserAudit
project in the future. Many of these are things that we would have liked to implement
if more time had been available to work on the project. That said, we plan to continue
working on the project over the coming months, and so we may implement many of the
below items shortly.

7.1.1 Testing More Security Features

We currently test several of the most important browser security features, including the
primary aspects of the same-origin policy which we believe to be the most important
concept in browser security. There are many more security features that we should be
able to automatically test on BrowserAudit. Some of these features fit nicely inside the
test categories that can be seen on the application today, whereas others would lead to
a brand new category of browser tests. The more features BrowserAudit can test, the
better. Some ideas that we have for future BrowserAudit tests are described below.

Same-Origin Policy

In the background for the same-origin policy in Section 2.2.1, we stated that there is
no single same-origin policy but rather a collection of related security mechanisms. We
currently test the same-origin policy for DOM access, XMLHttpRequest and cookies. This
could be expanded on to test the same-origin policies for Flash, Java, Silverlight, and
HTML5 web storage.

postMessage

In Section 6.2.1 we briefly discussed the postMessage API for sending messages between
two different windows across domains without being blocked by the same-origin policy.
We proposed the use of this API as a possible solution for problems in our implementation
in which we are forced to use timeouts where would prefer to avoid them.

postMessage is an API that would be good to test on BrowserAudit. It is used by many
developers to avoid the headaches sometimes inflicted by the same-origin policy. Since
the API allows the sender of a message to specify the origins of the recipients that may
receive the message, there are lots of origin-related tests that we could write for this.
postMessage is also something that is tested by Browserscope, a related project covered
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in Section 2.3.1. Browserscope only tests for support of the API though, rather than
thoroughly testing its implementation from a security viewpoint.

X-Content-Type-Options

X-Frame-Options is a security-related HTTP response header first introduced in Internet
Explorer 8 [23]. It is now also supported by Google Chrome and Safari, whilst the Firefox
team is still debating its implementation [8].

The header has just one valid value: nosniff. It is designed to prevent a browser from
MIME-sniffing a response away from its declared Content-Type. This prevents attacks
based around MIME type confusion. MIME-sniffing is a method used by browsers to
try to work out the a document’s real MIME type by looking at the content itself,
instead of using the document’s Content-Type header. To explain what this means,
Listing 38 shows the example HTTP response given in Microsoft’s initial explanation.
The X-Content-Type-Options header is on line 5. The key behaviour of the header is
explained in the text on line 9: in a browser that supports the header, the response body
will be rendered as plaintext. The browser will display the source HTML in the window
– it will not render it. In a browser that doesn’t support the header (e.g. Mozilla Firefox),
the page will likely be rendered as HTML despite the Content-Type header on line 4
stating that the content type of the document is plaintext (text/plain). We could write
BrowserAudit tests to test the browser’s support for the X-Frame-Options header.

1 HTTP/1.1 200 OK

2 Content-Length: 108

3 Date: Thu, 26 Jun 2008 22:06:28 GMT

4 Content-Type: text/plain

5 X-Content-Type-Options: nosniff

6

7 <html>

8 <body bgcolor="#AA0000">

9 This page renders as HTML source code (text) in IE8.

10 </body>

11 </html>

Listing 38: Microsoft’s example of the X-Content-Type-Options header

Heartbleed as a client

The Heartbleed bug (CVE-2014-0160) is a serious vulnerability recently discovered in
the popular OpenSSL library. The bug existed for over two years before being publicly
disclosed. Most of the online reports about the bug refer to the use of OpenSSL by web
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servers, and how the bug could be exploited to expose private data from the server’s
memory, including sensitive information such as private keys and user passwords.

The bug actually works both ways – client software could also be vulnerable if connecting
to an evil or compromised server. Many refer to this as “reverse heartbleed”. The bug
could be exploited by a server to expose data on the client computer. As we have
seen already, web browsers act as TLS clients when loading webpages over HTTPS.
Any browser built with a vulnerable OpenSSL version could be exploitable, and this is
something that can be tested. Fortunately, none of the major five browsers uses the
OpenSSL library. This might not be the case for all browsers, though, and so we could
test whether the user’s browser is vulnerable to reverse heartbleed when acting as a
TLS client. Automatic testing for reverse heartbleed is not a new idea, and has been
implemented by others already1.

‘How’s My SSL?’ TLS Results

When discussing How’s My SSL? as related work in Section 2.3.2, we suggested that we
could make use of their tests in our project. A JSON API is provided, including all of the
information that we would need to present a BrowserAudit user with the test results from
How’s My SSL? regarding their browser as a TLS client. Since How’s My SSL? is hosted
on a different domain (and therefore a different origin) to BrowserAudit, however, we
cannot make an AJAX request from BrowserAudit for this JSON document. If we wanted
to include their results in BrowserAudit, we would have to run our own copy of How’s My
SSL? (which is open source and conveniently written in Go) on the browseraudit.com

domain. This could be worthwhile, since the results would be very interesting and are
especially relevant to browser security. Alternatively, we could contact the creator of the
site and ask whether he would add a cross-origin resource sharing (CORS) header (see
Section 2.2.3) allowing BrowserAudit to request the JSON API with the XMLHttpRequest
API. This would only work in browsers that implement CORS.

7.1.2 Better Coverage of Features Already Tested

At many points in this report, we have suggested potential future improvements relating
to the test coverage of features for which we already have tests. These improvements
are discussed in each detail as the implementation of each section of tests is discussed,
however a brief list of potential coverage improvements is as follows:

• in many tests involving origin mismatches, we only test origins that differ in host
rather than scheme or port. This is primarily due to technical limitations discussed

1
https://reverseheartbleed.com/
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as a limitation in Section 6.2.2 where we also propose some solutions. We could
explore one of these solutions to improve our test coverage;

• there are some features of the Content Security Policy that we do not test, such as
the font-src and connect-src directives, sandboxing, and the reporting features.
We also don’t test any CSP directives where a resource is loaded from a URL that
redirects;

• recall that a page should not be able to set a cookie’s scope to a top-level do-
main (TLD). For example, subdomain.example.com can set a cookie’s scope to
*.example.com but not to *.com since this is too broad. This leads to an interest-
ing case with country-code TLDs (ccTLDs). For example, waw.pl should be seen
as a TLD, and so it should not be possible to set a cookie’s scope to be this broad.
It should, however, be possible to set a cookie’s Domain parameter to example.pl.
There are many ccTLDs, and this can be problematic for browser developers. If we
were to purchase domains using ccTLDs, we could test browser implementations of
this case.

7.1.3 Improving Browser Support

We found it very difficult to find a single method to automatically test a feature that
works across as many browsers as possible. In Section 6.3 we discussed the current
state of browser support in BrowserAudit, commenting on how there is definitely room
for improvement. We hope that we will be able to improve on the browser support
of already-existing BrowserAudit tests, paying special attention to Internet Explorer
versions 9 and 10 which are not the latest version but still have a reasonable usage
share.

7.1.4 Open Sourcing BrowserAudit

After writing some developer documentation and making some small tweaks, we hope
to open source the BrowserAudit project, probably on GitHub. We will then invite
other developers to expand the BrowserAudit codebase by writing more tests. This will
hopefully demonstrate the advantages of us writing the codebase in a way such that tests
can easily be added in a modular fashion. Other developers will be able to write their
own tests (or improve/fix already-existing tests) and then make a pull request. We would
then review the changes and merge them into the BrowserAudit website, so that their
tests are ran by anyone who accesses BrowserAudit. Through open sourcing the project,
we believe that BrowserAudit has the potential to grow into a popular hub for browser
security testing that developers can both contribute to and benefit from.
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7.1.5 Automatic Testing

When discussing how we test our security tests, we suggested in Section 3.3.1 that we
could use a tool called Selenium WebDriver to automatically test our web application.
After the initial work of learning how to use the tool and writing tests in Java, WebDriver
would allow us to easily and automatically test that BrowserAudit behaves as expected
in a wide range of browsers. In order to write the WebDriver tests, we would first need
to document exactly which tests we expect to have okay, warning and critical statuses in
each browser. This could take some time, but we still believe that this could be worth
experimenting with in the future.

7.1.6 Feature Ideas

Beyond improving BrowserAudit purely by adding and improving browser tests, we also
have some ideas for new features of the web application that could be added in the future.
These ideas are described briefly below.

Ability to run a subset of tests

At present, it is only possible to run our full set of 300+ browser tests. If a user were
only interested in the result of a specific test, or perhaps a category of tests (e.g. Content
Security Policy), he has no choice but to run all of the tests and wait for the test result(s)
he is interested in to be displayed. It is very feasible that a user may want to repeatedly
run only a subset of our tests, for example when investigating a particular test that
fails.

We could implement a solution that allows a user to select a specific subset of tests to run.
We could possibly even make use of Mocha for this, which uses a query string parameter
grep to run only those tests that match the given string. For example, visiting the
URL https://browseraudit.com/test?grep=cookie runs only our tests that match
the string “cookie”. We do not document this feature on BrowserAudit, and it is not
currently substantial enough to restrict the tests as well as a user might want. For
example, setting the string to “Same-Origin Policy” still runs tests outside of the Same-
Origin Policy category.
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A BrowserAudit API

We could extend BrowserAudit to provide an API for web developers. This API would
allow a developer to query our API, providing us with the user agent string of his visitor.
Our API would then respond with information about the BrowserAudit test results for
the visitor’s browser. The web developer could program his application such that it then
deploys the best security setup given the security features he knows that the visitor’s
browser supports thanks to BrowserAudit’s API.

Sharing of test results

It would be useful if a user could share his BrowserAudit test results with somebody
else. Upon test completion we could provide the user with a URL that can be used by
another visitor to view the test results. This shared test results page could also include
information such as the date and time that the tests were ran and details of the browser
used (e.g. Firefox 29.0 on Ubuntu, and any extensions installed) as well as the test results
themselves.

Storing and publishing test results

One nice feature of Browserscope, a related work discussed in Section 2.3.1, is their
summaries of browser results. This is pictured in Figure 2.4 on page 30. Browserscope
detects the browser being used to access their website and updates their database of test
results for that browser once they are complete. This results in an accurate picture of
their test results across all browsers that have been used to access the page. This would
be nice to have on BrowserAudit. In the same way that BrowserScope can be used to gain
a good idea of which browsers implement various features, BrowserAudit could become
a good source of information on browser-wide security implementations.
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