
Rapid Evaluation of Permutation Entropy

for Financial Volatility Analysis

– A Novel Hash Function using

Feature-Bias Divergence

Jun Ren Lim
Department of Computer Science

Imperial College London

19th June 2014



Abstract

In the wake of the flash crash on 6 May 2010, there is a surge of interest in
volatility analysis of financial time series, with the purpose of pre-empting
future flash crashes. If this can be achieved to some degree, more informed
decisions could be made by regulators to mitigate the resultant market tur-
bulence and keep hold of investor confidence. The existing techniques for
time series analysis range from machine learning to genetic algorithms. How-
ever, they fall short in capturing the pattern trends of time series. The use
of Permutation Entropy (PE), a measure for arbitrary time series based
on analysis of permutation patterns, is proposed. Typically used in the
biomedical field, PE’s simplicity and potential for fast calculation are vital
advantages in analysing today’s high-frequency data.

The optimization of the speed of permutation hashing is crucial to the
fast calculation of PE. In the context of hashing a large sequence of per-
mutations, the number of hash collisions has a major influence on hashing
speed. Therefore, this paper devises an original hashing algorithm special-
ized in minimizing collisions when hashing permutations. This novel hash
function dissects the subtle relationships between permutation patterns and
contrives to hash different permutations into distinct slots. Preliminary test-
ing demonstrates its promise to be a good permutation hash function. Fur-
thermore, GPU acceleration of hashing permutation patterns is performed
through parallel programming with CUDA.
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Chapter 1

Introduction

The analysis of financial time series is growing in importance to the economic
world. Financial time series involve data of a sequence of prices of certain
financial assets over a particular period of time. Most financial time series
processes are non-stationary and time-dependent. Price sequences are in
high frequency and especially volatile in the stock market, giving much room
for technical analysis, which is the investigation of past price movements
to predict future prices. This paper is based on the proposal of the use
of Permutation Entropy in financial time series prediction. Permutation
Entropy is founded upon the theoretical basis of technical analysis that
(1) price is an explicit manifestation of all concealed mechanisms, (2) price
movements are not random, and (3) history repeats itself.

In particular, rapid evaluation of Permutation Entropy is inextricably
linked to optimization of the hashing of permutations. This paper primar-
ily focuses on the proposal, implementation and performance evalu-
ation of a novel hash function to optimize the hashing of a large sequence
of permutations based on a given financial data series.

1.1 Motivation

In the wake of the flash crash on 6 May 2010, there is a surge of interest in
attempting to grasp the relationships between the sudden extreme volatility
and the price movements just before the onset of the crisis. If similar future
flash crashes can be pre-empted to some degree of accuracy, more informed
decisions could be made by regulators to mitigate the resultant turbulence
in the financial market and keep hold of investor confidence.

Financial volatility analysis is certainly not new. There are several well-
documented volatility-based linear and non-linear forecasting models in fin-
ancial theory, such as AutoRegressive Moving Average (ARMA) (Box and
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Jenkins, 1970) and ARMA-GARCH (Engle, 1982) models. However, there
is a fundamental flaw in volatility analysis applied to price movement pre-
diction, which is the failure to take into account the exact patterns of price
sequences – a rapidly increasing sequence of upward price movement yields
no difference in interpretation to a rapidly decreasing price sequence! Pat-
tern recognition techniques are definitely better poised to address this flaw.

The existing techniques for time series pattern analysis include machine
learning implementations[1] and genetic algorithms[2]. Data mining meth-
odologies, which aim to unveil concealed patterns and consequently ex-
amine relationships among these patterns, have been used in time serial
databases[3]. Financial time series exhibit sophisticated patterns such as
trends and volatility clustering that vanish and resurface almost regularly.
However, most of the time series analysis techniques discussed above possess
limitations in capturing such pattern trends of non-stationary time series[4].
Also, most of them do not perform well in the presence of noisy data in
real-world time series.

A key consideration for choosing a good technique for time series pattern
analysis is the issue of speed. The high-frequency torrent of stock market
data dictates that computational speed is of utmost importance, so as to
ensure a fast response time between receiving data and execution of pattern
analysis.

1.2 The Idea: Using Permutation Entropy

In a recent paper, Bandt and Pompe[5] proposed Permutation Entropy (PE)
as a natural complexity measure for arbitrary time series which may be
stationary or non-stationary, deterministic or stochastic, regular or noisy.
Their method is based on a comparison of neighbouring values, and funda-
mentally involves calculation of a PE index given a pattern of order (i.e.
size) N . The advantages of this method are its simplicity, robustness, in-
variance with respect to non-linear monotonous transformations, and most
importantly potential for overwhelmingly fast calculation, which is vital in
analysing today’s high-frequency stock market data.

1.3 Objectives

Today’s existing approaches to volatility analysis of financial time series bear
the fundamental weakness of being unable to capture and distinguish observ-
able price patterns, while most of the current pattern-recognition machine-
learning methods including Hidden Markov Model and Artificial Neural Net-
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work are smart guesswork that are not convincingly founded upon a clear
fundamental mathematical principle in pattern analysis.

Founded on the concept of Permutation Entropy (PE), this paper’s ob-
jectives include the proposal and implementation, and performance
evaluation of a novel hash function specific to dealing with an input of
a large sequence of permutations resulting from any given time series. This
hash function aims to even out hash collisions as much as possible, which,
if achieved, will contribute vastly to speed of hashing and consequently in-
crease responsiveness to real-world high-frequency price movements.

1.4 Challenges

As we seek to calculate PE indices for increasingly large N (where N is the
order of a permutation pattern π), we face the following challenges in speed
and memory:

1. Hashing
Since we need to keep count of the number of occurrences of every
permutation for a given large data sequence, an implementation of
a hash table, with permutations as keys, is necessary. However, as
N increases linearly, the number of possible permutations increases
factorially to N !. This means that the range of possible keys can easily
reach an extreme value when N is sufficiently large. If this happens,
a one-to-one mapping between key and hash table index is infeasible
in terms of memory usage. A smart, customized hash function that
strikes a good balance between speed and memory is needed.

2. Big Number Manipulation
When N is large (say N > 12), N ! enters the “big number” zone.
Therefore the abovementioned customized hash function could involve
big number manipulation, which is another speed-memory optimiza-
tion conundrum.

This paper seeks a detailed solution to the first challenge of hash-
ing, while any discussion addressing the second challenge of big number
manipulation will be peripheral at most.
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1.5 Contributions

Based on our objectives to propose, implement and accelerate a novel per-
mutation hash function, our contributions are as follow:

1. We propose an original hashing algorithm specialized in minimizing
collisions when hashing permutations. We detail the entire rationaliz-
ation process in coming up with this algorithm, along the way provid-
ing theoretical justification of the algorithm’s capability to avoid col-
lisions. We name this novel hashing algorithm the FBD hash. The
construction of the FBD hash is expounded in Chapter 3.

2. We detail the implementation of the FBD hashing algorithm. As there
is a loop in the algorithm’s final step, we provide a vigorous, non-
trivial proof of termination of that loop. Due to the loop being the
algorithm’s bottleneck, we perform termination time analysis on the
loop by constructing and proving a probability bound on the loop’s
survival through i iterations. These can be found in the first main
section of Chapter 4.

3. We evaluate the performance of the FBD hash against traditional in-
teger hash functions. For the hash performance evaluation, we use 3
hash performance metrics; among these, 1 is a well-established metric
and is hence used as the primary metric, while the other 2 are original
hash performance metrics. We analyse the test results and articulate
what the results suggest with regard to (1) the promise shown by the
FBD hash and (2) the credibilities of the 2 self-proposed hash per-
formance metrics. Finally, we discuss the limitations of the metrics
used. These can be found in the second main section of Chapter 4.

4. We explore the options of hardware acceleration of the FBD hash.
We explain the infeasibility of the option of hashing in FPGA, and
discuss the pros and cons of performing hashing in CPU and GPU.
We outline the key features of our CUDA C implementation of (1) our
FBD hashing algorithm, (2) multithreaded hash insertions, and finally
(3) the computation of the PE. We then evaluate the speed-up that our
GPU implementation offers as compared to a CPU implementation.
These can be found in Chapter 5.
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Chapter 2

Background

2.1 Permutation Entropy

A system whose evolution is observable throughout a certain period begs a
burning question – how much information can be deduced about the internal
workings of the underlying system? The information content of a system is
generally quantified using a probability distribution function (PDF) P that
is defined by a time series M(t) [7].

2.1.1 Limitations of classical entropy measures

The Shannon entropy is a classical measure of information content. Given
any arbitrary discrete probability distribution P = {pi : i = 1, , F}, with F
degrees of freedom, Shannon’s logarithmic information measure is expressed
as[6]:

S[P ] = −
M∑
i=1

pi log pi

This is a quantification of the uncertainty borne by the physical process
characterized by P . For example, if S[P ] = Smin = 0, we can be 100% sure
which of the possible outcomes i with probability pi will occur.

However, this traditional entropy calculation is not without significant
limitations:

1. Failure to capture chronological relationships
Shannon’s entropy fails to capture chronological relationships between
values of the time series[8]. For example, if two time series are defined
as M1 = {0, 0, 1, 1} and M2 = {0, 1, 0, 1}, we automatically have
S[P (M1)] = S[P (M2)]. This shows that order relations are not pre-
served.
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2. The prerequisite of fundamental knowledge
Fundamental knowledge about the system is a prerequisite for the em-
ployment of classical entropy measures. For instance, in using quanti-
fiers based on Information Theory, a probability distribution defined
by the time series under analysis has to be known[7]. Even though
there exists many established methods to construct a suitable PDF,
such as frequency counting, Fourier analysis or wavelet transform, they
are not derived from the dynamical properties of the system. This is
contrary to the principle of Technical Analysis that maintains that
explicit observations are capable of manifesting all underlying inform-
ation. Hence a more general and system-independent PDF is desired.

3. Classical entropy measures do not perform well with non-linear chaotic
regimes.

2.1.2 Permutation Entropy by Bandt and Pompe

The abovementioned drawbacks are absent in the method of Permutation
Entropy introduced by Bandt and Pompe[5], which captures time causality
by comparing adjacent values relatively in a time series. Firstly, no prior
knowledge is required. Secondly, there is no notion of magnitudes – order
relations are sought after instead. Through the comparison of neighbouring
values, a permutation entropy that quantifies order relations is calculated.

2.1.3 Permutation Entropy Formulation

The method of Permutation Entropy is as follows: at each time s of a given
time series M = {mt : t = 1, ..., T}, a sequence comprising the N subsequent
values is constructed:

s 7−→ (ms,ms+1, ...,ms+(N−2),ms+(N−1))

N is called the order, and determines how much information is contained
in each sequence. To this vector, an ordinal pattern is associated, defined
as the permutation π = (r0r1...rN−1) of (01...N − 1) which fulfils

ms+r0 ≤ ms+r1 ≤ ... ≤ ms+rN−2 ≤ ms+rN−1

This means that the values of each sequence are sorted in an ascending
order, and a permutation pattern π is created with the offset of the permuted
values. As an example, M = 4, 2, 5, 1, 6, 7. When N = 3, the sequence
of values corresponding to s = 1 is (4, 2, 5). Then the sequence is sorted
in ascending order, giving (2, 4, 5) and hence yielding the corresponding
permutation pattern π = (102). For s = 2, the sequence of values is (2, 5, 1),
yielding the permutation (120).
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The basis of employing permutation entropy as a tool for pattern analysis
is the expectation that there is a skewed probability distribution of pattern
occurrences, and discovery of this distribution will open up doors to learning
how the underlying system works. This leads to the extreme but very real
idea of forbidden patterns, which refer to the patterns that do not appear at
all in the time series.

If there are forbidden patterns, why? Assuming that the time series is
long enough (to render invalid the trivial justification that the time series
is too short to reasonably expect all patterns to emerge), the inescapable
proposition is that the time series is not random. With this in mind, take
a look at the logistic map, popularized in a 1976 paper by biologist Robert
May:

xt+1 = αxt(1− xt) ∀x ∈ [0, 1]

The plot below illustrates the results of the logistic map with the parameter
α = 4[7].

Figure 2.1: Plot of x1 (red) and x2 (green) for all possible x0 (black)

The order of these curves graphically represents the corresponding per-
mutation pattern. It can be observed that 5 different permutations are gen-
erated by this map, identified by the 5 regions enclosed by vertical dashed
lines, while the number of possible permutations are 3! = 6. It is striking to
note that the permutation π = (210) is forbidden by the own dynamics of
the system.
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Henceforth the purpose of this example surfaces: we learn that investig-
ating information regarding the presence or absence of certain permutation
patterns of a time series can give us an insight of the dynamics of the under-
lying system. Or to be more general, the essence of permutation entropy lies
in investigating the frequencies of occurrences of each permutation pattern.

Before we formally define Permutation Entropy (PE), we first need to
define the concept of a permutation value v associated with a permutation
pattern D:

Let π ∈ Π be a permutation pattern of some sequence of order N
data (d1, d2, ..., dN ), with Π = the set of all N ! possible permutation
patterns. The permutation value v of π w.r.t. ν is given by

v = ν(π)

where ν can be anya bijective function that maps Π to {1, 2, ..., N !}.

A relaxed definition of ν, where ν takes in an actual sequence
of data values D instead of a permutation π, is allowed and often
used in this paper. For e.g., consider the data sequence D =
(2, 4, 5) that exhibits permutation pattern of (102):

ν(2, 4, 5)︸ ︷︷ ︸
relaxed

= ν(102)︸ ︷︷ ︸
formal

aThe ν function that this paper will use in subsequent chapters is defined later
in Definition 5 in Section 3.1

Definition 1 (Permutation Value).

The Permutation Entropy, PE, is then defined as the Shannon en-
tropy associated to such distribution:
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PE = −
N !∑
v=1

πv log πv

where πv is the frequency associated with the permutation value v
w.r.t. somea ν.

aNote that as long as ν : Π 7→ {1, 2, ..., N !} is bijective, the actual definition
of ν is inconsequential to the calculation of PE.

Definition 2 (Permutation Entropy (PE)).

2.1.4 Current Biomedical Applications

The use of Permutation Entropy has been growing steadily since its incep-
tion, as indicated by the chart[7] below.

Figure 2.2: No. of cites of Bandt and Pompe’s PE in the last decade

2.1.4.1 Reasons for Success

In particular, the use of PE has seen thriving success in the biomedical field.
The unique advantages of PE that make it so relevant to the biomedical scene
are described as follows:

• Both healthy and pathological states (epileptic seizures being a prom-
inent successful example) are associated with stereotyped patterns of
activity – which explains why the usefulness of permutation entropy
can be exploited to a high degree.
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• Being robust to noise, permutation entropy delivers wonderfully in
analysis of biological systems, as biological time series typically contain
a certain degree of randomness.

• The simplicity and extreme computational efficiency of permutation
entropy contribute to its effectiveness in real-time applications for clin-
ical purposes, where little time is allowed for preprocessing and fine-
tuning of parameters.

2.1.4.2 Description of Applications

The use of PE has been markedly successful in epilepsy analysis, among
others[7]. A well-known neurological disorder, epilepsy afflicts one out of a
hundred people worldwide. An epileptic seizure is associated with unusual
and hyper-synchronous brain activity. Moreover, the time of occurrence of
seizures are often unpredictable. PE can be used to predict occurrence times
with satisfactory certainty.

For epilepsy sufferers who do not respond well to anti-epileptic drugs,
neurosurgical resection of epileptogenic brain tissue is an option. To identify
this tissue, doctors implant intracranial electrodes in the patients’ brain to
attempt to identify the location of epileptic activity. In this respect, the
use of PE has shown good promise in accurately recognizing patterns of
epileptic activity. In addition, with the use of PE, spatio-temporal patterns
of various parts of the brain can be characterized, assisting doctors’ in their
endeavours to spot the epileptogenic brain tissue.

2.1.5 Novel Use in Financial Time Series

The previous discussion on the biomedical applications of PE prompts one’s
imagination of its promise in the analysis of financial time series. In financial
time series analysis, price movements are inextricably linked to an aggrega-
tion of hidden economic and psychological factors, there are certainly some
degree of random noise littered throughout, and data are real-time and in
high frequency. These characteristics are precisely those kind of charac-
teristics that enabled biological time series to fully harness the merits of
permutation entropy! Hence in this paper, we explore the exciting idea
of applying permutation entropy to a large, high-frequency financial time
series.

2.2 Hashing

The purpose of building hash tables is to enable quick location of a record
given its search key. This is typically done in O(1) time. A hash function
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is used to map a search key to its index in the hash table. A hash function
should be deterministic – that is, when used to evaluate on two identical
data, the function should produce the exact same value. This characteristic
is imperative to the correctness of the hashing algorithm. However, hash
functions are usually not invertible, meaning it is common for several search
keys to hash to the same value, a condition called hash collision.

The Pigeonhole Principle: if M items are placed in N buckets, and M
is greater than N, at least one bucket contains at least two items. This
proves that no hashing algorithm can hash every key to a unique index if
the possible keys exceeds the array size. Since hashing often involves using
a limited size hash table to contain a broader possibility of search keys,
collisions will occur.

Due to the possibility of collisions, average/worst case search complexity,
which depends on the hash function, number of input keys and table size,
can escalate to undesirable levels. Hence a good hash function to spread
collisions evenly, so as to optimize worst case search complexity, is of utmost
importance, especially when building a non-trivial hash table to store large
amount of keys generated from a non-random distribution.

2.2.1 Well-established Integer Hash Functions

The main aim of this paper is to expound a novel integer hash function
to specifically cater to hashing permutation values of a data stream (in
particular financial data). Traditional integer hash functions would provide
a useful benchmark. Here are some of them:

1. The Remainder Operator
The most straightforward hash function for an integer key is key
mod N , where N is array size.

2. Additive Hash
Sum up all the digits of an integer key and then use the remainder
operator.

3. Bernstein’s Hash
Bernstein’s Hash is illustrated by the code[17] below:

unsigned bern_hash (void *key, int length) {

unsigned char *k = key;

unsigned h = 0;

int i;

for (i = 0; i < length; i++)

h = 33 * h + k[i];

return h;
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}

Bernstein’s hash exemplifies the fact that sometimes a hash function
might have little theoretical grounding but is capable of achieving good
practical performance: the number 33 does better than other logical
constants for no apparent reason!

4. Robert Jenkins’ Integer Hash
Developed by Robert Jenkins, this integer hash function is based on
a sequence of bit shifts, exclusive-ors and additions to hash the input
key. Given just one bit change in the key, this strategic sequence of
transformations can impact bits that are spaced significantly apart in
the hash output. The Robert Jenkins’ integer hash is illustrated by
the code[19] below:

unsigned int hash(unsigned int a)

{

a = (a+0x7ed55d16) + (a<<12);

a = (a^0xc761c23c) ^ (a>>19);

a = (a+0x165667b1) + (a<<5);

a = (a+0xd3a2646c) ^ (a<<9);

a = (a+0xfd7046c5) + (a<<3);

a = (a^0xb55a4f09) ^ (a>>16);

return a;

}

2.2.2 General Hash Strategies

As this paper focuses primarily on introducing a novel hash function, analys-
ing effectiveness of an overall hash strategy in detail is beyond scope. That
said, hash strategies are useful in balancing space-time constraints and could
be used to complement a good hash function, hence the two most popular
hash strategies are briefly touched on below as possible future extensions to
this paper.

1. Cuckoo Hashing
Cuckoo hashing[11] yields constant time complexity for search and
constant amortized time complexity for insertions. Its stand-out char-
acteristic is that it uses more than 1 hash function, hence a key-value
pair can be in more than 1 location. Let F be an ordered list of these
hash functions. When a key-value pair K is inserted, it goes through
F , and the first hash function in F that hashes K without collision will
be used. If no such hash function exists, then the last hash function
f ∈ F will be used to hash K, and this insertion procedure will be re-
peated to re-hash the key that collided with K under f . Termination
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is when no collision happens or when all hash slots are traversed; the
latter event will cause the table to be dynamically resized. Due to the
contrived avoidance of collisions, cuckoo hashing can achieve excellent
space utilisation.

2. 2-choice hashing
2-choice hashing[11] can be considered a simpler version of cuckoo
hashing. It uses exactly two hash functions, which map any key-value
pair K into two different hash slots. If K is to be inserted, both hash
functions will be evaluated and K will be placed in the slot where
a smaller number of keys reside. Hence fewer collisions and greater
space utilization can be achieved. However, searching may require the
traversal of all the key-value pairs contained in two buckets.

2.2.3 Number Theory

The hash function introduced in Chapter 3 uses principles of number theory
extensively. The 3 concepts in computational number theory employed in
the formulation of Chapter 3’s hash function are:

1. Basic linear congruences

2. Calculating inverses modulo a prime via the extended Euclidean
Algorithm

3. Primality testing using the Miller Rabin’s test

2.2.3.1 Basic Linear Congruences

Let m 6= 0 be an integer. Two integers a and b are congruent
modulo m if there is an integer k such that a − b = km, or a ≡ b
mod m.

Definition 3 (Linear Congruence).

For any integers a, b, c, and m 6= 0, the properties of reflexivity,
symmetry and transitivity hold. Furthermore under modulo m,

a+ b ≡ (a mod m) + (b mod m)

a× b ≡ (a mod m)× (b mod m)

Basic Properties (Linear Congruence).
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2.2.3.2 Primes

The following two basic properties of primes are fundamental to the con-
struction of the hash function introduced in Chapter 3.

Let p be a prime.

1. Let a, b, c be any integer that is not a multiple of p. Then
ab 6≡ ac mod m.

2. Let S = {1, 2, 3, ..., p− 1} be the set of all congruences modulo
m excluding 0. Let S′ be the set generated when p is multiplied
by every element in S under modulo m. Then S′ = S.

Basic Properties (Primes).

2.2.3.3 Computing Modular Inverses

Efficient computation of modular inverses of a prime is quintessential to the
implementation of Chapter 3’s hash function. This section outlines a leading
algorithm for computing inverses modulo a prime p.

Let a, p ∈ Z with p prime. We say that z ∈ Z is a multiplicative
inverse of a modulo p if az ≡ 1 mod p.

Definition 4 (Modular Inverse).

There exists a unique multiplicative inverse of a modulo p iff. a 6≡ 0
mod p.

Theorem 1 (Uniqueness of Modular Inverse).

Given a, b ∈ N0, their greatest common divisor d := gcd(a, b) can be
computed by the well-known Euclidean algorithm, which is founded on the
invariance of the gcd when a smaller integer is subtracted from a greater
integer. Continuously iterating this procedure will cause the greater of
the two numbers to decrease progressively, hence there will be eventual
termination[12].
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The extended Euclidean algorithm goes a step further and allows us
to efficiently compute integers s and t such that as + bt = d. Supposed
we are given integers a, b, n, where 0 ≤ a, b < n, and we want to compute a
solution z to the congruence az ≡ b mod m. Here is the extended Euclidean
algorithm in the form of pseudo-code[15] below:

d = gcd(a, n)

if !(b = 0 mod d) then

output "no solution"

else

A = a/d, B = b/d, N = n/d

t = inverse(A) mod N

z = tB mod N

output z

Based on the extended Euclidean algorithm, computing modular inverses
of a prime p can be achieved, by setting b = 1 and N = p. The following
theorem gives a bound on the time complexity of the algorithm.

The extended Euclidean algorithm for calculating a modular inverse
of a prime p runs in O(p2) timea.

aThe proof can be found in Victor Shoup’s A Computational Introduction to
Number Theory and Algebra[15]

Theorem 2 (Time Complexity).

2.2.3.4 The Miller-Rabin Test for Primality

The construction of the hash function (fully expounded in Chapter 3) in-
volves locating a suitable prime p. This is done by using the Miller-Rabin
test, which is a well-known fast test for primality executed in polynomial-
time. Though a number passing the Miller-Rabin test (with a reasonable
number of iterations, say around 20) is not guaranteed 100% to be prime, it
has an extremely high probability of being prime. A bound for the accuracy
of the Miller-Rabin test is given below:

If N multiple independent tests are performed on a composite num-

ber, then the probability that it passes each test is ≤ 1
4

N
.

Theorem 3 (Accuracy of the Miller-Rabin test).

Hence the Miller-Rabin test gives a very good trade-off between speed and
chance – and hence its use is expedient to the hashing algorithm outlined in
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Chapter 3 which could involve the search for very large primes.

Based on the properties of strong pseudoprimes,the algorithm[16] proceeds
as follows: Given an odd integer n, let n = 2rs+1 with s odd. Then choose a
random integer a with 1 ≤ a ≤ n−1. If as ≡ 1 mod n or a2

js ≡ −1 mod n
for some 0 ≤ j ≤ r− 1, then n passes the test. A prime will invariably pass
the test. The test is extremely quick and involves at most (1 +O(1))2 log n
multiplications modulo n.

If we want to find the smallest prime that is > an arbitrary positive integer
x, we can make use of Bertrand’s Postulate to set a definitive range over
which to perform the Miller-Rabin tests.

For every n > 1, there is always at least one prime p such that
n < p < 2n.

Theorem 4 (Bertrand’s Postulate).

2.3 Hardware Acceleration of Hashing

This section delineates the main methods that can be possibly used for
accelerating the computation of the hash values of the permutations of a
given time series. Hashing acceleration is imperative if high-frequency tick
data is used, as the demand will then be to compute the hash values of a
large series of permutations in a very short amount of time. The race against
time for hashing a large series of permutations can potentially be boosted
by two cutting-edge technologies – (1) CUDA and/or (2) FPGAs.

2.3.1 Parallelization using CUDA

CUDA (Compute Unified Device Architecture) is a parallel computing plat-
form and programming model created by NVIDIA and implemented by the
GPUs (graphics processing units) that they produce[14].

CUDA enables GPUs to be used for general-purpose processing. In con-
trast to traditional CPUs that specialize in high-speed execution of a single-
threaded application, GPUs have a throughput architecture that is capable
of executing a large number of threads in parallel, though each individual
thread runs at a low speed. CUDA is available in the form of extensions to
many programming languages including C.

The CUDA processing flow is best illustrated with a diagram[13]:
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Figure 2.3: Illustration of the CUDA processing flow

2.3.2 Dataflow Computing

Sequential execution is an inescapable characteristic of traditional computer
architecture, where data are stored in a central memory. The dataflow
approach was first suggested by Karp and Miller. In a dataflow computer,
a program is not represented by a linear instruction, but by a dataflow
graph. Data flows to instructions, causing evaluation to occur as soon as all
operands are available. Data is sent along the arcs of the dataflow graph in
the form of tokens, which are created by computational nodes and placed on
output arcs. They are removed from arcs when they are accessed as input
by other computational nodes. Concurrent execution is a natural result of
the fact that many tokens can be on the dataflow graph at any time[9].

As an example, the computation of the following statements

A := B × C +D/F

G := H × 2 +A

is represented by the dataflow graph in the diagram below[9].
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Figure 2.4: Dataflow Graph

The dataflow graph manifests the concept of a huge computational pipeline,
which streams in input data in a sequential order and streams out out-
put data. Consequently, a throughput rate of one value per cycle can be
achieved. This means that a design running at few hundred megahertz can
outperform a CPU implementation running at a few gigahertz!

2.3.2.1 FPGAs and the Maxeler Platform

Field Programmable Gate Arrays (FPGAs) are hardware chips that may be
configured and programmed to execute combinational and sequential logic.
They comprise an array of programmable logic blocks, each connected by
sets of reconfigurable wires so as to allow signals to be transmitted while
adhering to the user-defined circuit.

Users define custom circuits through hardware descriptive languages (HDL).
The process of writing HDL to implementation in hardware is as follows: the
HDL is first compiled and then converted into a configuration that programs
the logic blocks and routes the signals within the FPGA according to the
HDL’s circuit definition.

The leading platform offering a comprehensive software and hardware ac-
celeration solution based on dataflow computing is the Maxeler Platform
created by Maxeler Technologies. Housing the latest-generation, largest FP-
GAs available, Maxeler’s hardware platforms are specifically designed for
high-performance computing through emphasis on low-latency and high-
throughput. On the other hand, Maxeler’s software solution boasts of the
high-level MaxCompiler programming tool suite, which offers a Java-based
environment for stipulating hardware designs before manufacturing a hard-
ware implementation.
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2.4 Related Work

An FPGA implementation of the concept of permutation entropy has been
done by Ce, Guo. In the process, the calculation of permutation entropy
has been optimized for speed through elimination of the need to sort data
values and some additional slight reformulation of the traditional algorithm.

2.4.1 Ce’s FPGA Implementation of Permutation Entropy

The flowcharts below illustrate the dataflow graph representing Ce’s imple-
mentation of a permutation value calculation1 using FPGAs.

Figure 2.5: Dataflow Graph to calculate permutation value (order N = 4)

Starting from the top left corner of Figure 2.5, the current 4 values
(N = 4) that are under consideration from the sample input data streaming
in from the right is (3, 8, 4, 2). Instead of directly sorting these values to
derive their permutation pattern, the number of values before (i.e. to the
right side of) each digit that are smaller that digit are tabulated. This
effectively exploits the parallelism of dataflow technology, and renders the
calculation of permutation entropy much faster. So take for example the
leftmost number 3 (top left of Figure 2.5): only the number 2 before it is
smaller than it, so the number 1 is produced as a result. Whereas for 8,

1Formal definition for the permutation value function ν used is given in Definition 5 in
Section 3.1
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both 4 and 2 before it are smaller, hence the number 2 is produced in the
dataflow graph corresponding to the input 8.

After this count is produced, it is multiplied by a factorial base, based on
its position. Summing up all 4 results produced from this multiplication step
gives us the permutation pattern. Input values that are more towards the
left have a greater possible maximum count of values smaller and to the right
of themselves, hence a factorial base is needed to generate a unique number
representing the permutation of the 4 input data. This unique number can
be reverse-engineered to find out the order relations among the 4 input data.

Following from this, our next step, which is what this paper primarily
explores, is to come up with a suitably good hashing function to hash all
the calculated permutation pattern values into hash table indices. The hash
table will contain the count of number of occurrences of each permutation,
and increment the corresponding count when a permutation is hashed.
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Chapter 3

A Proposed Hash Function
for Permutation Entropy

The main aim of this chapter is to give a detailed proposal of a original
hash function used for hashing permutation patterns. Before plunging into
its exposition, the first section gives an overview of the hashing situation.

3.1 Hashing Permutations

The permutation value function ν1 used is formally defined2 as follows:

1Introduced in Definition 1 in Section 2.1.3
2This permutation value function is implicitly used in Ce’s FPGA implementation

outlined in Section 2.4.1
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Let π ∈ Π be a permutation pattern of some sequence of data
(d1, d2, ..., dN ) of order N , and Π is the set of all possible permutation
patterns. ν : Π 7→ {1, 2, ..., N !} is defined as

ν(π) =

N∏
i=0

k(N − i)!

where

k = #{dj |j > i, dj < di}

Then the permutation value v of π is given by v = ν(π).

As mentioned earlier in Definition 1 in Section 2.1.3, a relaxed
definition of ν, where ν takes in an actual sequence of data values
D instead of a permutation π, is allowed and often used in this
paper. For e.g., consider the data sequenceD = (2, 4, 5) that exhibits
permutation pattern of (102):

ν(2, 4, 5)︸ ︷︷ ︸
relaxed

= ν(102)︸ ︷︷ ︸
formal

Definition 5 (Permutation Value Function ν).

Following from this, the range of P (d1, ..., dN ) is {0, 1, 2, ..., N ! − 1}, which
can be easily proved by induction. Hence the permutation value of a se-
quence of data of order N takes on N ! possible values. Now we are ready
to illustrate the hashing situation, which is best done with an example.

3.1.1 An Example

Let order N = 4, and ν as defined in Definition 5 in Section 3.1. Assume
we are given the following data stream of values:

...4, 8, 7, 6, 9, 1, 10, 15, 2, 17... (3.1)

Imagine a moving window of size 4 that starts from the left and repeatedly
shifts to the right by 1 data value. With every shift, this window captures a
consecutive sequence of 4 data values, and this sequence’s permutation value
v is calculated using the ν function. The formula for PE in 2 necessitates
the tabulation of the frequencies of all permutation values v.

Henceforth the objective is to keep track of the frequency of every v ob-
served – i.e. once a certain v is observed, its count is incremented in the
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hash table immediately. There are a total of 4! possible permutation values
in this example. In practice, the order N tends to be large, causing the hash
table size to be a fraction of N . So in this example, the table size is set to
8 < 4!.

Using the data stream example in Example 3.1, Figure 3.1 shows a table
of permutation values based on the moving window and their corresponding
arbitrary hash values. The subsequent Figure 3.2 shows how the hash table
looks like after hashing is performed based on Figure 3.1.

Figure 3.1: An example of v and h(v) based on moving window
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Figure 3.2: Hash Table storing counts of every v using linked lists

3.1.1.1 The Insertion Procedure

This section aims to provide the reader more insight on the procedure of
inserting a permutation value in the hash table to either set its count to
zero if it is not already stored in the table, or otherwise increase its count.
Hence insertion of a permutation value v can entail either one of the following
two procedures:

1. Search & Insertion
This happens if v is not already stored in the table. Developing from
Figure 3.2, let’s say v = 7, h(v) = 2 is to be introduced into the hash
table. Then as illustrated by Fig 3.3 below, insertion of v = 7 will
involve the traversal through the list of length 2 in slot 2 to search
for an existing key with v = 7. Since no existing key with v = 7 is
currently stored in slot 2, then a new key-value pair with with v =
7, count = 0 will be inserted to the list.

Figure 3.3: Slot 2: Traversal of list (big green arrows) followed by insertion
of new key. Objects of other slots are not depicted.
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2. Search & Modification
This happens if v is already stored in the table. Developing from the
previous Figure 3.3, let’s say v = 7, h(v) = 2 is to be introduced again
into the hash table. Then as illustrated by Fig 3.4 below, insertion
of v = 7 will involve the traversal through the list of length 3 in slot
2 to search for an existing key with v = 7. Once the key-value pair
with v = 7 is found, modification of the object will be done through
incrementing its count.

Figure 3.4: Traversal of list followed by modification of existing key.

Of course, as this is just a simple linked-list implementation, there are
other ways for search and insertion, such as using a sorted linked-list for eg.
Nevertheless, the main purpose of this section’s discussion is to highlight the
obvious disadvantage of collisions for both of the aforementioned two types
of insertion procedures. In the context of hashing permutations of real-world
time series, the disadvantage due to collisions is very much emphasized by
the “Search and Modification” insertion procedure, and this will be discussed
in greater detail in the next section.

3.2 The Need for A Good Hash Function to Min-
imize Collisions

If order N is large (say 100), the number of possible keys (i.e. permutation
values) = N ! will be excessively big. Consequently due to memory con-
straints, the hash table size T will be some order of magnitude smaller than
N !, and collisions will occur in various table slots.

Firstly, just like any other general hashing situation, high number of col-
lisions implies the occurrence of a great amount of list traversal due to the
“Search & Insertion” procedure outlined above. Therefore hashing speed is
adversely affected if there are many collisions.

Secondly, when hashing permutations of a given large real-world time
series, the same permutation values are likely to be repeated again and
again throughout the time series[4]. Due to the large size of the time series
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and repeated occurrences of the same permutation values, the “Search &
Modification” procedure is expected to happen many times, probably much
more than the “Search & Insertion” procedure. Each execution of the
“Search & Modification” procedure is “unseen” because it does not cause a
new collision, but it’s negative impact on hashing speed is in fact commen-
surate with the the number of collisions.

As a result, in the context of hashing permutations of a real-world time
series, the number of collisions has a manifold adverse impact on hashing
speed due to the large number of occurrences of “Search & Modification”
procedure. Optimal hashing speed is absolutely essential to the evaluation
of the PE of a massive high-frequency time series. Therefore, there is an em-
phatic need for a good hash function that minimizes collisions when hashing
permutations.

3.3 Motivation for the Design of a Specialized Hash
Function

In general, time series are not readily predictable and the values from the
data stream display apparent “randomness”. Therefore, given the more or
less random nature of data as input keys, any generic hash function to hash
permutation values such as the Remainder Operator3 should already per-
form respectably. Nevertheless, there is motivation for developing a better
hash function that is specific to the purpose of hashing permutations4.

3.3.1 Hash Function: Generic vs Dependency-specific

If input keys are seemingly random, i.e. their probability density function
(PDF) follow a uniform or unknown distribution, then any well-established
generic hash function(such as those outlined in Section 2.2.1) could well be
already theoretically ideal. However, if there exists dependencies among
input keys, then a generic hash function may not be ideal. For example, if
we know input keys are integers ending with 7, then a function that hashes
based on the last digit of an integer key would not be very smart!

Another example: for every integer key A to be hashed, there would be
another integer key A′ that is equal to A with digits reversed. Consider the
hash function that multiplies all digits of a key before taking modulo table
size – it would not fare very well because A and A′ would hash to the same
index. A good dependency-specific hash function would take advantage
of the information about the “reverse” relationship between keys and tackle

3Described in Section 2.2.1
4The process of hashing permutations is described in Section 3.1
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this dependency – i.e. by ensuring as much as possible that A and A′ map
to different table indices! The challenge is to invent such a function.

3.3.2 Motivation for a Dependency-specific Hash Function
for PE

Following from the previous section, are there discernible dependencies among
permutations of a data stream? If there are, it would be wise to exploit this
information and incorporate it into a new dependency-specific hash func-
tion, with the objective to even out collisions as much as possible. If this
information is exploited effectively, the dependency-specific hash function
theoretically should outperform generic ones.

3.4 Exploiting the Dependencies

3.4.1 The Dependencies Among Neighbouring Permutation
Patterns

It turns out that there exists subtle dependencies among neighbouring per-
mutation patterns by virtue of the repeated overlapping due to the
moving window5. The definition of the permutation value (Definition 5
in Section 3.1) is central to the appreciation of the these dependencies. To
illustrate, we use an example, where order N = 4.

Figure 3.5: Moving 4-window of permutations in a data stream

Consider the permutation of data sequence D derived from the window
corresponding to the central 4 consecutive data values in green. Does D
share some information with R1? R2? Or R3?

Since permutation values represent information about the relative order-
ing of the individual data points, D and R1 do share some information due
to the overlap of their windows. The windows of D and R1 overlap in a

5The notion of the moving window is explained in Section 3.1.1
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size-3 window containing the digits (9, 3, 1) that are highlighted in purple in
Figure 3.5. Similarly, the windows of D and R2 overlap in (3, 1).

3.4.2 Materializing these Dependencies

This overlapping information has to be materialized into actual figures to
pass into our dependency-specific hash function. This can be done by con-
sidering the relative ordering of the numbers in overlapping window and
deriving their permutation value. For example, the permutation value of
(9, 3, 1) which D and R1 overlaps on can be derived by using Definition 5 in
Section 3.1:

ν(9, 3, 1) = (#data to the right of and < 9)× 2!

+ (#data to the right of and < 3)× 1!

= 2× 2! + 1× 1!

= 5

Now considering the overlapping data (3, 1) between D and R2, we have
ν(3, 1) = 1. Then considering the left-aligned data values of D’s window
(D’s window consists of the data 6, 9, 3, 1 in green), we have ν(6, 9) = 0 and
ν(6, 9, 3) = 3. Of course, there is a need to calculate the actual permutation
value of D as well, and we have ν(6, 9, 3, 1) = 17. Then D can be represented
as a sequence of permutation values Pseq(D)6:

Pseq(D) = (ν(6, 9), ν(6, 9, 3), ν(6, 9, 3, 1), ν(9, 3, 1), ν(3, 1))

= (0, 3, 17, 5, 1)

where the central number in Pseq(D) represents D’s own permutation value,
while numbers towards the left of Pseq(D) represents the permutation values
of the left sub-windows of D, and numbers towards the right of Pseq(D)
represents the permutation values of the right sub-windows of D.

This representation of D contains vital information about permutation
values of its left and right sub-windows. Our dependency-specific hash func-
tion would require all these information for hashing the permutation pattern
of D; this is in contrast to a generic hash function using just ν(6, 9, 3, 1) to
hash D’s permutation pattern. How our dependency-specific hash function
uses these information would be made clear as this chapter goes on.

6Defined formally in Definition 7 in Section 3.4.4.1
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Using the same method, R1 is represented as (x, ν(9, 3, 1), ...) = (x, 5, ...)
and R2 is represented as (ν(3, 1), ...) = (1, ...), where x is some value incon-
sequential to current discussion. Notice that the right values of Pseq(D),
i.e. 5 and 1, occur as one of the left values of R1 and R2.

3.4.3 Assigning Weights To Features

3.4.3.1 The Idea

Consider permutation values as features in current context. For any D′,
the idea is to devise a dependency-specific hash function that, as much as
possible, places ν(D′) in an array index that has “greater right-value
features” and “less left-value features”.

So for example, the hash function should place ν(D) in a hash table
slot that has “great 5-feature”, “great 1-feature”, but “little 0-feature” and
“little 3-feature”. Similarly, the hash function should place ν(R1) in a slot
with “little 5-feature” and ν(R2) in a slot with “little 1-feature”. In this
way, R1 and R2 are forced to avoid hashing to the same slot as D with a
high probability!

The key to ensuring that this idea works well lies in the method of as-
signment of weights to every possible feature w.r.t. hash table index. But
what is the best way of assigning the weights?

3.4.3.2 Ideal Assignment of Weights

The situation now can be understood as: given two arbitrary sets of features
A,B, the objective is to choose a hash table index Î that, among all table
indices, favours the features in A over the features in B the most. In other
words, if we define the score of a table index I w.r.t. sets A,B to be

S(I) =
∑
f∈A

w(I, f)−
∑
f∈B

w(I, f),

where f denotes feature and w(I, f) refers to the weight assigned to f w.r.t.
index I, then the objective is to find an Î such that S(Î) is the maximum
over all S(I).

The intuition is that for this idea to work well, S(I) should yield different
values for all I, so that the Î would be clearly better than the rest. Further-
more, since both A and B can indeed be any set of features, it follows that
for this idea to work as well as possible, the requirement is that S(I) should
yield different values for all I w.r.t. any two sets of features.
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This ideal requirement thoughtfully translates to: each possible permuta-
tion value/feature should ideally be assigned different weights for different
hash table indices, and each hash table index should have an equal dis-
tribution of weights w.r.t. all possible permutation values/features. An
example of an ideal assignment of weights is given below for order N =
3 and hash table size = 3:

Table 3.1: Ideal assignment of weights for N = table size = 3

In Table 3.1 above, the number of possible permutation values = 3! = 6.
The numbers in bold represent the weight assigned to a permutation value
at a particular hash table index. Table 3.1 is ideal because each column is
a different permutation of weights.

3.4.3.3 Introducing the Feature-Bias Divergence

Let w(I, v), w : (N,N0) 7→ N0 be the weight function assigned to permuta-
tion value v at hash table index I. Using the earlier example illustrated
by Figure 3.5, the requirement for ν(D) to be hashed to an index that
has “great 5-feature”, “great 1-feature”, but “little 0-feature” and “little
3-feature” should cause D to be hashed to I such that

FBD(Î , D) = sup
I∈{1,2,3}

FBD(I,D) (3.2)

where FBD(I,D) is the Feature-Bias Divergence of I w.r.t. D defined
in the context of this example as

FBD(I,D) = w(I, 5) + w(I, 1)− w(I, 0)− w(I, 3) (3.3)

For any permutation value v, FBD(I,D) provides information about

1. how biased the hash table index I is towards v if the term w(I, v) has
a positive coefficient in Equation 3.3, and
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2. how biased the array index I is against P if the coefficient of the term
w(I,P) is negative.

If coefficient of w(I, v) equals 0 then no bias is reflected.

3.4.3.4 A proposed w(I, v) function

There exists one glaring challenge in the solving the maximisation problem
i.e. Equation 3.2 – it seems that there does not exist any simple formulation
of w(I, v)! Even if w(I, v) is well-defined, the calculation of w(I, v) and then
the subsequent solving of Equation 3.2 might well be too complex and slow.

The idea is do a trade-off between ideality and simplicity. This paper
proposes a simple definition for w(I, v), which can

1. achieve an assignment of weights that is near ideality, and

2. allow Equation 3.2 to be solved easily and quickly.

The proposed definition is as follows:

Let the hash table size be p−1, where p is a prime. Let 1 ≤ I ≤ p−1
represent a hash table index and v represent a permutation value.
The w(I, v) function is defined as

w(I, v) ≡ I × (v + 1) mod p

where
0 ≤ w(I, v) ≤ p− 1

Definition 6 (w(I, v)).

How the above-defined w(I, v) function works is best illustrated with an
example. Let order N = 4, hash table size = 4 (then 4 + 1 = 5 is prime).
Then we have w(I, v) ≡ I × (v+ 1) mod 5. This yields the table of weights
below:
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Table 3.2: Table of weights for N = table size = 4, w(I, v) as defined above

The columns corresponding to the first 4 columns all have different per-
mutations of 1 to 4. In general, when

1. hash table size = p− 1 where p is prime,

2. table indices range from 1 to p− 1, and

3. w(I, v) is as defined in Definition 6,

then it can be mathematically proven, using Properties 1 and 2 from Sec-
tion 2.2.3.2, that

1. the first p − 1 columns in the corresponding table of weights all bear
different permutations from 1 to p− 1,

2. the rows corresponding to the first p−1 columns in the corresponding
table of weights all bear different permutations from 1 to p− 1, and

3. the permutations that the first p − 1 columns bear are repeated con-
tinually in subsequent columns, i.e. column X’s permutation is the
same as column Y ’s permutation iff X ≡ Y mod p. This ensures
an equal distribution of repeated permutations belonging to columns,
which is desirable because balance is attained.

These 3 features of the table of weights ensure that the assignment of
weights is close to ideal, with the only limitations being that there exists a
few columns with all weights equal (namely those columns with v+ 1 being
a multiple of p) and that a column’s permutation is repeated.

Any subsequent reference to w(I, v) in this paper would follow
the definition prescribed in Definition 6.
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3.4.4 The Final Hashing Algorithm – An Outline

This section proposes an outline of an algorithmic formulation of a final hash
function that incorporates all the ideas expounded so far in this chapter.

Let N denote the order, and D be a sequence of N data values d1, ..., dN
whose permutation is to be hashed. Consider the input key to be D. The
output of the hashing algorithm is a hash table index Î, where count of ν(D)
is to be incremented. Before outlining the steps for choosing this Î, a formal
definition of Feature-Bias Divergence, a concept central to the algorithm, is
given below.

3.4.4.1 Formal Definition of Feature-Bias Divergence

Firstly, a definition of the Pseq function is needed. The Pseq function
has been defined informally in an example in Section 3.4.4.1. Its formal
definition is as follows:

D’s representation as a sequence of permutation values Pseq(D) is
defined formally as

Pseq(D) = (l1, ..., lN−2, ν(D), rN−2, ..., r1)

where

li = ν(d1, ..., di),

rj = ν(dj , ..., d1),

1 ≤ i, j ≤ N − 2

Definition 7 (Representation of D: Pseq(D)).

The Feature-Bias Divergence function (FBD) has been introduced briefly
in Section 3.4.3.3. The following gives a formal definition:
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The Feature-Bias Divergence FBD of a hash-table index I w.r.t.
D is defined as

FBD(I,D) =

j=D−2∑
j=1

w(I, rj)−
i=D−2∑
i=1

w(I, li)

where li and rj are as defined above in Definition 7.

Definition 8 (Feature-Bias Divergence).

3.4.4.2 The algorithm to choose Î

1 Determine a suitable prime p. The exact process of selecting such a p
is delineated in Chapter 4 Section 4.1.1.

2 Set hash table size as p− 1.

3 Determine Pseq(D).

4 Find Î such that FBD(Î , D) is a good approximation of sup
I∈{1,2,3...,p−1}

FBD(I,D).

How? We know

FBD(Î , D) ∼ sup
I∈{1,2,3...,p−1}

FBD(I,D)

= sup
I∈{1,2,3...,p−1}

j=D−2∑
j=1

w(I, rj)−
i=D−2∑
i=1

w(I, li)



≡ sup
I∈{1,2,3...,p−1}

I ×
j=D−2∑
j=1

rj − lj︸ ︷︷ ︸
z

 mod p

≡ p− 1 mod p

Hence,

4.1 If z = 0, there is no way to determine an Î such that FBD(Î , D) ∼
sup

I∈{1,2,3...,p−1}
FBD(I,D). In this case, just arbitrarily set Î us-

ing the Remainder Operator hash, i.e., Î ≡ ν(D) mod p − 1.
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Otherwise, find Î1 such that Î1 ≡ (p− 1)/z mod p. 7

4.2 Evaluate FBD(Î1, D).

4.3 If FBD(Î1, D) ≥ 0, set Î = Î1 and terminate. Otherwise, con-
tinue to find Î2 such that Î2 ≡ (p− 2)/z mod p.

4.4 If FBD(Î2, D) ≥ 0, set Î = Î2 and terminate. Otherwise, con-
tinue the process until Î is set.

In practice, the number of iterations required to determine Î is small
and contributes negligibly to hashing time. Proof of this is found in
Section 4.1.4 on termination analysis.

3.4.5 Determinism

As stipulated in Section 2.2, a hash function has to be deterministic, i.e. two
equal keys should invariably hash to the same value. The proof that the pro-
posed hash function is deterministic is a pretty trivial one and demonstrated
below.

Proof of Determinism: Since the hash function depends on all the inform-
ation in Pseq(D) (and not just ν(D)) to produce a hash value, the onus is
to prove that Pseq(D) is uniquely determined by its permutation pattern.
Consider two data sequences A and B of order N that exhibit the same per-
mutation pattern π. Then any subsequence A′ of A and its corresponding
subsequence B′ of B will exhibit the same order relations and therefore the
same permutation pattern π′. It follows that Pseq(A) = Pseq(B).

3.4.6 The FBD Hash

The proposed hash function shall be named the FBD hash .

7Here “/” would require the use of the modular inverse function which has been defined
in Definition 4 in Section 2.2.3.3. By Theorem 1 in the same section, we know a unique
Î1 ≡ (p − 1)/z mod p exists if z 6= 0. The exact method to compute modular inverses
w.r.t. p is given in Chapter 4 Section 4.1.2.
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Chapter 4

Implementation &
Performance Evaluation of
the FBD Hash

The first part of this chapter gives a broad overview of the implementation of
the hashing algorithm proposed in Chapter 3 (in particular Section 3.4.4.2).
The second part of this chapter covers the performance evaluation of the
FBD hash, which includes discussions on the test data and benchmarks,
proposal of performance metrics, analysis of results, as well as limitations of
the test.

4.1 Implementation

Here is a summary of the algorithm behind the FBD hash that is outlined
in Section 3.4.4.2:
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Let N denote the order, and D be a sequence of N data values
d1, ..., dN whose permutation is to be hashed. Then the FBD hashing
algorithm is as follows:

1 Determine a suitable prime p.

2 Set hash table size as p− 1.

3 Determine Pseq(D).a

4 The objective is to find Î such that FBD(Î , D) =
sup

I∈{1,2,3...,p−1}
FBD(I,D). The following procedure determines

Î:

4.1 Set z =

j=D−2∑
j=1

rj − lj and i = 1. If z = 0, set Î such that

Î ≡ ν(D) mod p− 1 and terminate. Otherwise, continue
to Step 4.2.

4.2 Determine Îi such that Îi ≡ (p− i)/z mod p, where z =
j=D−2∑
j=1

rj − lj .

4.3 Evaluate FBD(Îi, D).

4.4 If FBD(Îi, D) ≥ 0, set Î = Îi and terminate. Otherwise,
increment i and start from Step 4.2 again. This process
will terminate, and usually very quickly.

aAs defined in Definition 7 in Section 3.4.4.1.

The FBD Hashing Algorithm.

Details of the steps highlighted in red – including their implementation and
termination – will be discussed in the next sections.

4.1.1 Step 1: Finding the Prime p

The total number of possible permutation values is N !. Simply put, if N
is large, N ! is very large. Ignoring space constraints, a hash table of size
N ! is ideal because every permutation value can be mapped to a hash slot,
resulting in zero collisions and hence optimal insertion speed. However, if N
is large, space-time tradeoff is an important consideration, not to mention
the real possibility of insufficient allocation space for a table of size N !.
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Hence for evaluative purposes, the aim is to set the size of the hash table
to a figure in the region of bkNc!, where k is a fraction between 0 and 1.
In this paper’s implementation, k is set as 0.5. Since hash table size =
p − 1, finding a suitable prime p is done by starting from p = b0.5Nc! and
incrementing p until p is a prime.

Here the Miller-Rabin test expounded in Section 2.2.3.4 is employed every
time the primality of p is to be determined. 20 iterations of the Miller-
Rabin test are performed in a primality test. By Theorem 3, the chance
of a composite number passing the Miller-Rabin test is ≤ 2−40, which is
sufficiently small. Moreover, the Bertrand’s Postulate given in Theorem 4
proves the termination of the algorithm to find p before p = 2× b0.5Nc! is
reached.

4.1.2 Step 2: Determining Pseq

At first sight it might appear that determining Pseq(D) is a computational
bottleneck in terms of hashing speed. This is because determining Pseq(D)
involves repeatedly finding the permutation values of an increasing sequence
up to a length of N , hence – using the fact that complexity of ν(d), where
d has order n, is O(n2) – it seems that the time complexity is O(N3). A
noteworthy point is that these complexity analyses are with regard to CPU
implementation, Ce’s FPGA implementation1 would reduce these complex-
ities notably, namely by a factor of N2. Nevertheless, though a CPU imple-
mentation is used for discussion here, choice of hardware implementation is
irrelevant to the main point that this section aims to bring across.

However, this is a misconception. To hash D, ν(D) must be known, so
hashing time is at least of O(N2) complexity, because #(data to the right
of di and ¡ di) must be tabulated for every i ∈ {1, 2, ..., N}. These tabulated
figures are then conveniently used in the evaluation of ν(d) where d is some
right subsequence of D (in other words, d is a subsequence of D that ends
with dN ). Hence no additional damage in terms of computational time is
done when evaluating the permutation values of the right subsequences of
D.

What about the left subsequences of D? Any left subsequence of D is a
right subsequence of Dl where Dl is some data sequence of order N that over-
laps with D on D’s left. For example, the left subsequence (d1, d2, d3) of D
is a right subsequence of Dl where Dl = (d4−N , d3−N , ..., d−1, d0, d1, d2, d3).
Since the moving window shifts from left to right, the permutation values
of the left subsequences of D would already have been evaluated.

1Described in Section 2.4.1
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Therefore determining Pseq(D) takes O(N2) time, achieving the min-
imum bound of time complexity for hashing D.

4.1.3 Step 4.2: Determining Îi

Step 4.2 states: determine Îi such that Îi ≡ (p − i)/z mod p. Of course,
the unspoken, but obvious, condition here is that 1 ≤ Îi ≤ p − 1 so that Îi
is within the range of possible hash table indices. Consider

Îi ≡ (p− i)/z, 1 ≤ Îi ≤ p− 1

⇔ Îi ≡ (p− i)z−1 mod p

where z−1 is the unique multiplicative inverse of z under modulo p, as defined
in Definition 4, with uniqueness proclaimed in Theorem 1. Hence to determ-
ine Îi, the most critical step is to find the z−1 under modulo p. The fastest
method for finding z−1 is the extended Euclidean algorithm described in Sec-
tion 2.2.3.3. According to Theorem 2, finding z−1 using takes O(p2) time.
Since p has the potential to be very large, this time complexity certainly
cannot be tolerated.

The solution is to do some preprocessing work to construct a complete
table of inverses modulo p, i.e. to construct an array InvTable with indices
ranging from 1 to p−1 such that InvTable[x] stores the inverse of x modulo
p. In addition, a neat trick to halve the computations of the inverses is to
use the extended Euclidean algorithm to evaluate the first half of InvTable,
and then use the identity

(p− y)−1 = p− y−1, 1 ≤ y ≤ p− 1

2

to complete the rest of the table.

4.1.4 Step 4.4: Termination Analysis

This section handles two aspects of termination analysis of the loop com-
prising Steps 4.2 to 4.4, namely proof of termination and a discussion of
termination time.

4.1.4.1 Proof of Termination

The objective is to prove that the loop consisting of Steps 4.2 to 4.4 will
eventually terminate.
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First, define g(x) = (p − x)z−1 mod p such that 1 ≤ x ≤ p − 1. The
following lemma is a crucial part of the termination proof.

Take any x, v s.t. 1 ≤ x ≤ p− 1, 1 ≤ v ≤ N !. Then

w(g(x), v) = p− w(g(p− x), v)

where w is the weight function as defined in Definition 6.

Lemma.

Proof of Lemma: Under modulo p,

w (g(x), v) + w (g(p− x), v)

≡ g(x)× (v + 1) + g(p− x)× (v + 1)

using Definition 6

≡ (p− x)z−1(v + 1) + (p− (p− x)) z−1(v + 1)

≡ − xz−1(v + 1) + xz−1(v + 1)

≡ 0 (1)

Since p − x, z−1 6≡ 0, we have g(x) ≡ (p − x)z−1 6≡ 0. This implies
1 ≤ w (g(x), v) ≤ N . Applying the same reasoning, we also conclude
1 ≤ w (g(x), v) ≤ N . Collectively, these give

1 < w (g(x), v) + w (g(p− x), v) < 2p (2)

Combining both (1) and (2) yields w (g(x), v)+w (g(p− x), v) = p, prov-
ing the lemma. Termination can now be proven using this lemma.

The loop consisting of Steps 4.2 to 4.4 will eventually terminate.

Theorem 5 (Termination).

Proof of Termination: Proving that the loop consisting of Steps 4.2 to
4.4 will eventually terminate is equivalent to proving that for any D,

∃ i s.t. 1 ≤ i ≤ p− 1, FBD (g(i), D) ≥ 0 (3)
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Take any k s.t. 1 ≤ k ≤ p− 1. Then

FBD (g(k), D) =

j=D−2∑
j=1

w (g(k), rj)−
j=D−2∑
j=1

w (g(k), lj) using Definition 8

=

j=D−2∑
j=1

p− w (g(p− k), rj)−
j=D−2∑
j=1

p− w (g(p− k), lj)

= −

j=D−2∑
j=1

w (g(k), rj)−
j=D−2∑
j=1

w (g(k), lj)


= −FBD (g(p− k), D) (4)

(4) tells us that FBD (g(k), D) and −FBD (g(p− k), D) are of differing
signs, thus at least one of them ≥ 0. This effectively proves (3), and we are
done.

4.1.4.2 Termination Time Analysis

The probability that the loop consisting of Steps 4.2 to 4.4 is still

alive (i.e. has not yet terminated) after i iterations is at most 1
2

i
.

Theorem 6 (Probability Bound on Survival of Loop).

Proof of Probability Bound: For any D, Equation (4) implies that there
exists some subset S′ with exactly half the elements in S = {1, 2, ..., p− 1}
such that FBD(s,D) ≥ 0 for all s ∈ S′. Hence the probability that the loop
terminates after the first iteration is exactly 1

2 .

Assume the loop has survived until the jth iteration, j ≥ 1. It follows that
none of the elements in S′ is tested in the first j iterations. Let S′′ ⊂ S be
the set of untested elements such that S′′ ∩ S′ = ∅. Then #S′′ < #S′, and
the probability of the loop surviving the (j + 1)th iteration = #S′′

#(S′∪S′′) <
#S′′

#(S′′∪S′′) = 1
2 , proving the theorem.

This probability bound implies that it is likely for the loop to terminate
very quickly – therefore Step 4 will not have any noticeable adverse impact
in terms of time on the overall hashing algorithm.

4.2 Performance Evaluation

The objectives of this section include presenting a variety of relevant data
types for testing, proposing performance metrics, and providing a general

49



idea of how the FBD hash fares against several benchmarks. This section’s
performance evaluation of the FBD hash is by no means – and has no in-
tention to be – conclusive. That said, this section does provide a blueprint
for how future evaluations of the FBD hash, or in fact any hash function
specific to PE, can be carried out.

4.2.1 Data Types Used

A total of 6 types of data that are suitable for the application of PE are
chosen as inputs for hashing:

1. EEG data of an epilepsy patient from the Bern-Barcelona
Database[20]
These data are used to identify the parts of the patient’s brain that
should be surgically removed in order to treat his seizures. As de-
scribed in Section 2.1.4.2, the use of PE is extremely relevant to this
purpose.

2. High-frequency EEG signals from a rat[21]
Data represent EEG recordings over 5 sec at the frontal cortex of a
male adult rat. Not only is PE adept in characterizing brain pat-
terns derived from EEG data, but its superb computational efficiency
also contributes to its effectiveness in analysing high-frequency clin-
ical data, as little time is allowed for preprocessing and fine-tuning of
parameters. These two advantages account for the selection of this
data set.

3. High-frequency SPDR S&P 500 Tick Data from QuantQuote[22]
Closing prices are used. In the first two chapters of this paper, the
use of PE has been suggested to be very suitable to high-frequency
financial data analysis.

4. High-frequency tick data for forex pair EUR/USD[23]
Closing prices are used.

5. Daily closing prices for Dow Jones[24]
The use of PE also stretches to non high-frequency data, therefore
it would also be interesting to get a glimpse of how hash functions
perform for such data.

6. Randomly generated data
The rationale behind the FBD hash is not restricted to any data type.
Hence a random data set should also be used.
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4.2.2 Proposed Performance Metrics

There are two general themes that govern performance metrics of hash func-
tions – (1) some measure of number of collisions and (2) direct measure of
hashing speed. In this performance evaluation, metrics measuring collisions,
and not hashing speed, are used. The next section explains why.

4.2.2.1 Metrics: Collisions vs Empirical Speed

Though the final implementation of the entire PE calculation procedure is
projected to be based on Ce’s FPGA implementation2, the development
of a good hash function – the primary focus of this paper – is done on
the CPU. The FPGA implementation of calculating sequential permutation
values of a large data stream is much faster than a CPU implementation.
This is because calculating just one permutation value on CPU takes at
least O(NlogN), making the calculation all permutation values of a very
long data series infeasible, especially when we want to test for large N .
Therefore, in the current situation where CPU is used, there is no ready
access to extremely large sets of permutation values of a broad range of
real-world time series.

A real-world time series is very likely to exhibit the pattern-repeating
phenomenon. This means that the same permutation values are likely to
be repeated again and again over time[4]. As explained in Section 3.2, the
number of collisions will have a manifold and drastic negative impact on
hashing speed due to the presence of perpetually repeating patterns of a
given real-world time series. This pattern-repeating phenomena can only
be adequately captured when hashing a very large sequence of calculated
permutation values, which a CPU implementation is incapable of offering,
especially when N is large. Consequently, in the absence of massive se-
quences of permutation values over a wide range of N to work with, hashing
speed as a metric is a limited measure of hash function quality.

On the other hand, number of collisions is asserted to have a particularly
dominant impact on hashing speed in the context of hashing permutations
of real-world time series (see Section 3.2 for further elaboration). It follows
that suitable performance metrics that measure collisions instead of hashing
speed should be employed.

4.2.2.2 Proposed Metrics

In this performance evaluation, 3 such carefully chosen/improvised metrics
are used. These metrics quantify collisions; the first metric will be the

2Described in Section 2.5
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primary metric used for evaluation, while the second and third metrics will
only be used as supplementary metrics.

1. Metric from the Red Dragon Book
The following formula, based on the Red Dragon Book[18], will be
used as the primary metric to evaluate hash function quality in this
test:

m−1∑
j=0

bj(bj + 1)/2

(n/2m)(n+ 2m− 1)
− 1

where m is the number of buckets, n is the total number of key-value
pairs, and bj is the number of key-value pairs in the jth bucket. Under
a hash function h, the number of buckets that should be searched

through before locating the correct key is given by the sum of
bj(bj+1)

2 .
n
2m(n + 2m − 1) gives the expected number of visited key-value pairs
for an ideal function that hashes totally randomly. It follows that if
h is ideal, the metric will yield 0. The higher the value of the metric,
the poorer h is.

2. “Applied” Kullback-Leibler Divergence

Also known as relative entropy, or K-L divergence for short, it
is a measure of the distance between two probability distributions
on a random variable. Formally, given two probability distributions
p(x) and q(x) over a discrete random variable X, the K-L divergence
given by D(p||q) is defined as

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)

Definition 9 (Application of the Kullback-Leibler Divergence).

An ideal hash function assumes Simple Uniform Hashing, i.e. it will
evenly distribute items into the slots of a hash table. Moreover, each
item to be hashed has an equal probability of being placed into a slot,
regardless of the other elements being placed. Hence under ideality, the
hash table index X a key is hashed to follows a uniform distribution.

Just like the Red Dragon metric, a value of 0 for this metric implies
ideality, and the greater the metric, the less ideal it is.
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3. Modified Variance
The following formula, using the concept of variance, is proposed by
this paper as a measure of hash function quality based on collisions:

m−1∑
j=0

b2j
(n/m)2m

− 1

where m is the number of buckets, n is the total number of key-value
pairs, and bj is the number of key-value pairs in the jth bucket. Under
a hash function h, the number of buckets that should be searched
through before locating the correct key is proportional to the sum
of b2j . The denominator (n/m)2m gives the number of visited key-
value pairs for an ideal hash function that distributes keys uniformly.
Note that the definition of ideality here is slightly different from the
definition used in the Red Dragon metric!

4.2.2.3 Novelty of Metrics

Why are the last two proposed metrics only intended to be supplemental?
The Red Dragon metric is a well-established, tried and tested metric for hash
function quality. However, the use of the last two metrics for hash function
quality is proposed by this paper. The concept of K-L divergence is a well-
known one, but its application to measuring hash function quality is not yet
documented. The third metric is also an original idea. As a result, the use of
the “Applied” K-L divergence and Modified Variance as hash performance
metrics has a dual purpose: (1) to reinforce the credibility of the Red Dragon
metric, and (2) to test their own suitability as hash performance measures.
If they correlate highly to the established Red Dragon metric, it will lend
support to their future use as hash metrics!

4.2.3 Benchmarks

A total of 5 hash functions will be used for testing. First of all of course is
the FBD hash; the remaining four that are functioning as benchmarks are
namely “The Remainder Operator”, “Additive Hash”, “Bernstein’s Hash”,
and “Robert Jenkins’ Hash Function”, which are all described in Section 2.2.1.

4.2.4 Hypothesis

As the FBD hash is set up such that it specifically arrests the subtle rela-
tionships among adjacent permutation patterns and attempts to a certain
extent to hash them (if distinct) to different slots3, its performance should
be consistently higher than the average benchmark performance.

3The discussion in Section 3.3.1 provides greater elaboration on this.
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4.2.5 Results & Discussion

Due to integer limits, values from 6 to 12 are tested for N = order. All
relevant results are illustrated and discussed in this section.

4.2.5.1 Performance Gauge of the FBD Hash

The charts below present an overview of the performance of the tested hash
functions. Only the primary metric, the Red Dragon metric, is considered
here. “FBD” stands for Feature-Bias Divergence and is used to represent
the FBD hash, while “Remainder”, “Additive”, “Bernstein”, and “Jenkins”
represent each of the benchmark hash functions. Also, the metric scores in
this section refer to the average metric score over the values 6 to 12 for N .

Figure 4.1: Graph of the performance of the hash functions w.r.t.
various tested data
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Figure 4.2: Graph of the performance of the hash functions w.r.t.
various tested data. This graph is essentially the same as Figure 4.1,
except that the metric range is reconfigured to enhance visibility of the
metric scores of FBD and Jenkins.

How should the metric scores be interpreted? The only conclusion that
can be made when looking at the scores is – the lower the metric score, the
better the hash function quality (implying less collisions and better hashing
speed). According to the Red Dragon Book[18], a score of < 0.5 indicate
good performance. It is key to note that there is no clear principle that tells
us how to interpret the magnitude of the disparity between two scores. For
example, it cannot be said that a hash function with a score of 2 hashes a
data series twice as fast as another hash function with score 1.

Looking at Fig 4.1, it is clear that performances of the hash functions are
quite consistent over data types. This suggests that the performance of a
hash function for permutations will not be very much affected by data type,
be it random, high-frequency, financial, or biomedical. We can certainly
deduce from Fig 4.1 that the Additive hash and Bernstein’s hash are wide
off the mark in the context of hashing permutations.
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In Fig 4.2, it can be observed that FBD’s metric score is dominantly
negative. An “ideal” function that hashes randomly will give a score of
0, hence a negative value suggests that FBD hashes even better than ran-
domly. Indeed, the objective of FBD is to forcefully attempt to hash given
permutations into distinct slots, and the negative values could have reflec-
ted this endeavour. Hence this figure certainly suggests good performance
of FBD.

The next charts show how the FBD hash fares against the average bench-
mark hash function:

Figure 4.3: Graph of the performance of the hash functions across
all tested data.
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Figure 4.4: Comparison between FBD’s performance and the
average benchmark performance w.r.t. each of the tested data.
The average benchmark performance is calculated by taking the average of
the performances of the benchmark hash functions.
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Figure 4.5: Comparison between FBD’s performance and the aver-
age benchmark performance across all tested data.
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Fig 4.3 shows a clear illustration of the overall performances of the tested
hash functions. FBD gives the best performance of -0.01, with Jenkins also
performing very well at 0.01. The Remainder hash function with the score
of 0.12 < 0.5 is deemed to have performed decently too. Fig 4.4 supports the
hypothesis that FBD should perform consistently better than the average
benchmark hash function. The performances across all tested data and order
N are summarized by Fig 4.5.

The following table shows how the various hash functions fare under the
“Applied” K-L divergence metric and the Modified Variance metric com-
pared to the Red Dragon metric:

Table 4.1: Table of hash function performances under various met-
rics. The benchmark metric is the Red Dragon metric. For all 3 metrics,
the lower the score, the better the hash function performance.

Notice that each of the 3 metric columns of Table 4.1 contains an in-
creasing sequence of scores. This shows that the performance ranking of the
hash functions is consistent under all 3 metrics! All 3 metrics agree that
FBD ranks first, followed by the Remainder hash, Jenkins, Bernstein, and
lastly Additive. The consistency among all 3 metrics reinforces the cred-
ibility of the Red Dragon metric and the analyses based on it. Also, the
validities of the uses of the “Applied” K-L divergence and Modified Vari-
ance as hash performance metrics are supported based on this evidence. The
following chart provides a graphic illustration of hash performances under
the 3 metrics:
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Figure 4.6: Chart of hash function performances under various met-
rics. The benchmark metric is the Red Dragon metric. For all 3 metrics,
the lower the score, the better the hash function performance.

4.2.5.2 Variation of Hash Performance with N

As N increases, the hash table size increases factorially4. When table size
is large, given the same total number of inserted keys, the distribution of
number of collisions per hash slot is more likely to diverge from the uniform
distribution (as compared to a small hash table). Therefore, it is quite likely
for a hash function that is not well-suited for hashing permutations to dip
drastically in performance as N increases.

We do not want a large value of N to seriously compromise hash perform-
ance. As a result, it is important to get a feel of how FBD, as compared
to other benchmark hashes, performs as N increases from 6 to 12. The
charts below provide an insight of how the performance of the tested hash
functions vary with increasing N. Again, only the primary metric, the Red
Dragon metric, is considered here. Also, in this section, the metric score for
each 6 ≤ N ≤ 12 w.r.t. hash function H indicates the average metric score
under H over all tested data.

4Recall that the hashing algorithm of FBD sets hash table size = p - 1, where p is
smallest prime ¿ b0.5Nc!
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Figure 4.7: Graph of the performances of the hash functions against
increasing N

.

Looking at Fig 4.7, it is clear that the additive and Bernstein’s hashes
exhibit, to some extent, performance dips due to increased N (the higher
the metric score, the worse the performance). On the other hand, the Re-
mainder, Jenkins and FBD hashes exhibit relatively stable performances
over the range of N . This suggests that these three hashes are resilient to
increases in N , with Jenkins and FBD the top two performers among the
trio.

The close-up chart below shows that the performances of Jenkins and FBD
remain rather consistent over 6 ≤ N ≤ 12, with FBD slightly outperforming
Jenkins:
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Figure 4.8: Graph of the performances of FBD and Jenkins against
increasing N . This offers a close-up view of the performances of FBD and
Jenkins against N .

4.2.5.3 Summary

Here is a summary of points that are suggested by the test results:

• The performance of a hash function for permutations is not signific-
antly affected by data type, be it random, high-frequency, financial,
or biomedical.

• The Additive hash and Bernstein’s hash are not suitable for hashing
permutations.

• Overall, FBD outperforms all the benchmark hashes under all 3 per-
formance metrics, with Jenkins a close second. The results also agree
with the hypothesis that FBD should perform consistently better than
the average benchmark hash function.

• According to the Red Dragon metric, FBD hashes even better than
randomly. The objective of FBD is to forcefully attempt to hash given
permutations into distinct slots, and the test results reflected this en-
deavour.

• The Additive hash and Bernstein’s hash experience drastic perform-
ance dips as N increases. On the other hand, the Remainder, Jenkins
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and FBD hashes are resilient to increases in N , with FBD giving the
most consistent performance over 6 ≤ N ≤ 12 followed by Jenkins.

• While the Red Dragon metric is well-established, the “Applied” K-
L divergence and Modified Variance metrics are originally conceived.
Test results demonstrate that the performance rankings of the hash
functions are consistent under all these 3 metrics. This consistency

– reinforces the credibility of the Red Dragon metric and the ana-
lyses based on it, and

– lends support to the validities of the uses of the proposed “Ap-
plied” K-L divergence and Modified Variance as hash perform-
ance metrics.

To round off, as mentioned earlier in this chapter, it is important to
note that this performance evaluation of the FBD hash is by no means, and
has no intention to be, conclusive. That said, this section does provide a
blueprint for how future evaluations of hash function quality specific to PE
can be carried out.

4.2.5.4 Limitations of the Metrics

As already pointed out, though the metrics used provide conclusive compar-
isons of hash performances (a lower metric score implies less collisions and
faster hashing speed), there is no clear principle that tells us how to inter-
pret the size of the disparity between two scores. For example, it cannot be
said that a hash function with a score of 2 hashes a data series twice as fast
as another hash function with score 1.

And there is good reason for this too. As described in Section 3.2, in
the context of hashing permutations of a real-world time series, the pattern-
repeating phenomenon will result in many hash insertions that go through
the “Search & Modification” procedure. These “insertions” do not add new
permutations to the hash table but increment the count of existing permuta-
tions. They collectively take significant time if there are many collisions in
the hash table, yet do not add to the number of collisions. This means that
due to the pattern-repeating phenomenon of a real-world time series, it is
hard to quantify how collisions affect speed.

That said, it is also precisely due to this pattern-repeating phenomenon
that we know for a fact that the number of collisions has a drastic impact on
hashing speed. Therefore, the test results which deem FBD as the best in
terms of collisions certainly suggest that FBD outperforms all other tested
hash functions in terms of speed as well.
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Nevertheless, it will be useful to also benchmark the performance of FBD
in terms of actual speed measures, so that the improvements in speed due
to FBD can be gauged more precisely. As mentioned in Section 4.2.2.1, this
is not done in this chapter due to lack of ready access to extremely large
sets of permutation values of a broad range of real-world time series. Ce
currently has a very fast FPGA implementation to calculate permutation
values of large data series. Collaborating with him can be a possible future
extension to FBD’s performance evaluation.
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Chapter 5

Hardware Acceleration of
the FBD Hash using CUDA

After the entire sequence of permutation values of a given data stream is
computed on FPGA, what’s next? There are basically 3 options to be
considered: (1) continue to compute their hash values in FPGA, (2) transfer
the permutation values to CPU and perform hashing in CPU, or (3) transfer
the permutation values to GPU and perform hashing in GPU. The 3rd option
is inspired from the idea that the parallelization offered by GPU can be
exploited by the large sequence of permutation values to be hashed.

5.1 Infeasibility of Hashing in FPGA

Before we consider the feasibility of performing hash value computations
in FPGA, here are some important background information regarding Ce’s
FPGA-based permutation encoder:

• Hardware platform: Maxeler MAX3 card with a Xilinx Vertix-6
SX475T FPGA

• Performance: Able to produce 6 × 108 permutation numbers per
second

• Resource consumption: LUT – ∼ 20%, BRAM – < 10%, DSP –
< 10%

• Bandwidth consumption: Memory to FPGA – < 30%, FPGA to
CPU – 95%

• Performance bottleneck: Bandwidth from FPGA to CPU

• Performance requirement for hashing: 6 × 108 counting opera-
tions per second
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As can be seen from the information above, the bandwidth consumption
due to transfer of permutation values from FPGA to CPU is extremely high
(95%) and is effectively the performance bottleneck. If computation of hash
values is to be done in FPGA, assuming we do not build the hash table in
FPGA, we have to transfer the hash values along with the encoded permuta-
tion values from FPGA to CPU. This will further increase the FPGA-CPU
bandwidth consumption which is already the performance bottleneck. If we
build the hash table in FPGA, random memory over a large memory space is
needed – for example, when order N = 10, 500 accelerator cards are needed.
Latency of memory makes it impossible to design a fully-pipelined architec-
ture. All in all, it is not a good idea to perform hash value computations
on the permutation values in FPGA.

5.2 Hashing – CPU vs GPU

Since it is decided that hashing should not be done in FPGA, the CPU will
receive only the permutation values from the FPGA. Now the CPU has a
large sequence of permutation values, and has to convert this sequence into
a final PE value. Computation of the FBD hash values of these numerous
permutation values can likely be accelerated by GPU through parallelization.
However, once the computation of the hash values is performed in GPU, the
dilemma arises: should we perform hash table insertions in GPU or transfer
these hash values back to CPU and create the hash table in CPU instead?

This dilemma stems from the fact that multithreaded accesses to a hash
table in GPU require some sort of synchronization mechanism, which might
cause hash table insertions to be slower in GPU than in CPU. Still, trans-
ferring the whole sequence of hash values from GPU back to CPU would
take considerable time too, so perhaps just continuing to perform hash table
insertions followed by computation of the final PE in GPU would be more
desirable.

Bearing these considerations in mind, these are the 2 plausible options to
calculate the final PE from a given large sequence of permutation values:

1. Transfer the permutation values from CPU to GPU, and subsequently
compute the FBD hash values of the permutation values in parallel in
GPU (GPU Stage 1). Create a hash table in GPU, and insert these
permutation values into this hash table based on their computed hash
values (GPU Stage 2). Lastly, unravel the completed hash table and
calculate the PE based on the frequencies of the stored permutation
values (GPU Stage 3).
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2. Perform GPU Stage 1 as in the second option. Then transfer the hash
values from GPU back to CPU and insert the permutation values,
based on these hash values, into a hash table in CPU (CPU Stage 2).
Finally compute the PE in CPU based on the completed hash table
(CPU Stage 3).

To decide between the 2 options, it is key to compare the combined execution
of GPU Stages 2 and 3 against the combined execution of CPU Stages 2 and
3.

5.3 GPU Stage 1: Parallelizing Hash Value Com-
putations

5.3.1 Implementation

Given a large sequence of permutation values, we have to compute the FBD
hash value of every permutation value in the sequence. The core idea behind
GPU Stage 1’s implementation is simple: transfer the permutation values
from CPU to GPU, and then have each thread in GPU perform the FBD
hashing algorithm on a permutation value for all permutation values in the
sequence.

However, the FBD hashing algorithm cannot be carried out exactly as
outlined in Section 4.1. This is because the evaluation of Pseq(D) depends
on the knowledge of D; however, in this case, only ν(D) is known. Therefore
a Modified FBD hashing algorithm, which involves some sort of reverse-
engineering to derive Pseq(D), is performed instead. See diagram below:
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Figure 5.1: Each concurrent thread performs the Modified FBD hash on a
permutation value to produce the resultant FBD hash value.

5.3.1.1 The Modified FBD Hash

Pseq(D) is made up of ν(D), as well as the permutation values of the left
and right subsequences of D. To illustrate, let D be (d1, d2, ..., dN ). Using
Definition 7 in Section 3.4.4.1, we need to evaluate

Pseq(D) = (l1, ..., lN−2, ν(D), rN−2, ..., r1),

where li = ν(d1, ..., di), rj = ν(dj , ..., d1), 1 ≤ i, j ≤ N − 2. The rest of this
section describes how to evaluate ν(rj) and ν(li).

Evaluating ν(rj): By Definition 5 in Section 3.1, we have

ν(D) =
N∏
i=0

k(N − i)!,

where k = #{dj |j > i, dj < di}. Simply put, ν(D) is equal to the number of
smaller (or equal) data values on the right of each data value multiplied by
a factorial base. Calculating ν(rj) for all 1 ≤ j ≤ N − 2 will simply require
converting ν(D) into factorial representation. This can be done by dividing
ν(D) repeatedly by a decreasing sequence of factorials, taking the remainder
as digits and continuing with the integer quotient until this quotient becomes
0. With each division, the remainder gives the permutation value of a right
subsequence.

To illustrate, take for example ν(D) = 500. 500 can be converted into
factorial representation by these successive divisions, giving ν(rj) for all
1 ≤ j ≤ N − 2 along the way:

68



1. 500/5! = 4 with remainder 20 ⇒ ν(r4) = 20

2. 20/4! = 0 with remainder 20 ⇒ ν(r3) = 20

3. 20/3! = 3 with remainder 2 ⇒ ν(r2) = 2

4. 2/2! = 1 with remainder 0 ⇒ ν(r1) = 0

We have derived 500 = 4× 5! + 0× 4! + 3× 3! + 1× 2! + 0× 1! + 0× 0!.
This final factorial representation is unnecessary though, since we already
have obtained the permutation values of all rj in the process.

Evaluating ν(li): Besides evaluating ν(rj), we also have to evaluate ν(li)
for all 1 ≤ i ≤ N − 2 to determine Pseq(D). However, there is no straight-
forward method to directly evaluate ν(li) based on Pseq(D). This is because
unlike right subsequences, permutation values of the left subsequences of D
are not related to the remainders of factorial divisions of ν(D).

Fortunately, there is a simple trick to find ν(li). Notice that any left
subsequence of D is a right subsequence of Dl where Dl is some data se-
quence of order N that overlaps with D on D’s left. For example, the
left subsequence (d1, d2, d3) of D is a right subsequence of Dl where Dl =
(d4−N , d3−N , ..., d−1, d0, d1, d2, d3).

To illustrate, let’s say we are given a sequence of permutation values
(P1, P2, ..., PM ) produced by a moving window from left to right. By eval-
uating the permutation values of the right subsequences corresponding to
every of P1, P2, ..., PM , we would have already evaluated the permutation
values of all left subsequences corresponding to PN , PN+1, ..., PM ! There-
fore, the trick is “not” to find ν(li)!

How about P1, P2, ...PN−1 then? Since M is very large compared to N ,
not hashing P1, ..., PN has a negligible effect on the final PE value; so it is
okay to neglect the first N − 1 given permutation values.

5.3.2 Speed Evaluation

We want to know how much faster it is to perform GPU Stage 1 (which
exploits GPU’s parallelism) than to simply compute the hash values se-
quentially in CPU. To test for the magnitude of acceleration when GPU
Stage 1 is performed instead of the sequential computation of hash values
in CPU, randomly generated input data of sizes 10000, 100000, 1000000,
10000000 are used. These input data are permutation values that are based
on order = 6, which means that the generated permutation values range
from 0 to 6! − 1. Using an Intel Core i7 with an NVIDIA’s GeForce GTX
TITAN Black, these are the results:
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Table 5.1: GPU speedup for different input sizes. The CPU and GPU
take in an array of permutation values, and produce an array of correspond-
ing FBD hash values.

As can be seen from the above table, when size of input is 10 thousand,
the GPU computes the FBD hash values 25x more quickly than the CPU.
When the size of input reaches 10 million, the GPU computes the FBD
hash values 177x more quickly! Table 5.1 suggests that within the range
of 10 thousand to 10 million, the larger the input size, the more fully the
GPU can exploit the parallelization of computation of FBD hash values.
Therefore, the execution of GPU Stage 1 is much faster than the sequential
computation of the FBD hash values in CPU.

5.4 GPU Stage 2: Inserting into a Multithreaded
Hash Table

5.4.1 Implementation

Now we have an entire sequence of permutation values {Pi} and another se-
quence of their corresponding hash values {Hi}. Given these two sequences,
we have to insert these permutation values into a hash table built in GPU.
Each thread will take care of a (Pi, Hi) pair, meaning that it will insert Pi

into the hash table bucket Hi. The global hash table and the permutation
objects that it stores are defined as follows:

struct Permutation {

unsigned int v;

unsigned int count;

Permutation *next;

};

struct HashTable {

unsigned int size;

Permutation **buckets;

Permutation *permutationObjects;

};
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Each Permutation object is recognized uniquely by its permutation
value v, and its count is the number of times its v has been hashed. In
a bucket, each Permutation is connected to another Permutation through
next in the form of a linked list, which terminates at NULL.

The buckets of the HashTable is an array of linked lists of Permutations.
As it is very inefficient to allocate memory when the code is already running
in GPU, sufficient memory for all possible Permutation initializations are
allocated when the code first runs in CPU. The total number of possible
Permutation initializations is equal to the size of the input array of per-
mutation values; this maximum occurs when all given permutation values
are distinct. The relevant code is as follows:

const int noOfPossiblePermutations = 1024; //can be anything

depending on number of given permutation values

void initializeHashTableinGPU(void) {

HashTable d_hashTable;

cudaMalloc((void**)&d_hashTable.permutationObjects,

noOfPossiblePermutations * sizeof(Permutation)) ;

...

}

5.4.1.1 A Locking Mechanism for Hash Table Insertions

If two threads insert into different hash buckets, all is fine. However, the
problem lies if two concurrent threads insert into the same hash bucket. As
explained in Section 3.1.1.1, depending on the state of the hash table, there
are two possible insertion procedures – “Search & Insertion” or “Search &
Modification”. We highlight one example where a race condition could occur
due to writing to the same hash bucket. Let’s say this is the current state
of the first two buckets of the hash table:

Figure 5.2: Example – Current State of Hash Table

Then assume now there are 2 concurrent threads each attempting to add the
permutation value 7 into bucket 2. The expected subsequent state should
be:
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Figure 5.3: Example – Expected State after v = 7 is inserted twice

However, due to lack of synchronization mechanisms between the 2 threads,
simultaneous memory reads and writes may very occur which could cause
the subsequent table state to only capture a single insertion:

Figure 5.4: Example – Race Condition where only 1 insertion is captured

The count of permutation value 7 is erroneously recorded as 1 instead of 2!

It is clear that a lock is required for each hash bucket. In particular, the
atomic functions atomicCAS() and atomicExch() built in CUDA C are used
in our lock implementation. atomicCAS() is an atomic compare-and-swap
function. It accepts three parameters – the first is a memory pointer ptr,
the second and third are values v1 and v2. If the value at ptr is equal to
v1, then v2 will be stored at ptr. atomicCAS() returns the value originally
stored in ptr. With helpful guidance from Kandrot and Sanders’ CUDA by
Example[25], a GPU Lock structure is implemented as follows:

#define LOCKED 1

#define UNLOCKED 0

struct Lock {

int *condition;

Lock(void) {

cudaMalloc((void**)&condition, sizeof(int));

cudaMemset(condition, UNLOCKED, sizeof(int));

}

~Lock(void) {

cudaFree(condition);

}

__device__ void lock(void) {

while(atomicCAS(condition, UNLOCKED, LOCKED) ==

LOCKED);

}
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__device__ void unlock(void) {

atomicExch(condition, UNLOCKED);

}

};

In the function lock(), any thread attempting to acquire that Lock will
wait until its condition is UNLOCKED, after which the thread will atomically
change the Lock’s condition to LOCKED. The function unlock() essentially
resets the Lock’s to UNLOCKED.

An array of Locks of the length of the hash table is needed, with each Lock

responsible for a hash bucket. If there are more than one thread accessing
a bucket at any one time, then these threads will take turns to insert their
permutation values into the bucket through either the “Search & Insertion”
or “Search & Modification” procedure.

5.4.1.2 A Warp Competing for a Lock

When too many threads compete for the same lock concurrently, the CUDA
C program stops. To avoid this situation, we have to first understand a
little about the concept of a warp in the CUDA Architecture. A warp is
a group of 32 threads that execute in lockstep. Such lockstep execution is
dangerous because it is likely to cause the situation where many threads
fight for the same lock at the same time. Kandrot and Sanders’ CUDA by
Example[25] recommends alleviating this situation with a simple software
tweak that steps through each thread in the warp and provides each with
the opportunity, one after another, to acquire the lock. The relevant code
demonstrating this step-through is as follows:

__global__ void insertPermutation(unsigned int *v, unsigned int

*hashValues, HashTable hashTable, Lock *lockList) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index < noOfPossiblePermutations) {

unsigned int pValue = pValues[index];

unsigned int hashValue = hashValues[index];

int modified = 0;

/* Steps through each thread in all warps */

for (int i = 0; i < 32; i++) {

if ((index % 32) == i) {

lockList[hashValue].lock();

... // insert the permutation value

into the hash table

lockList[hashValue].unlock();

}

}

}
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}

5.5 GPU Stage 3: Calculating the PE

5.5.1 Implementation

Recall Definition 2 in Section 2.1.3:

PE = −
N !∑
v=1

πv log πv

where πv is the frequency associated with the permutation value v. The
main idea behind the CUDA implementation is simple enough:

1. Have each thread take charge of a hash bucket by stepping through
every Permutation node in the bucket’s linked list and summing up
−πv log πv in the process. Then each thread will have calculated a
“subPE”.

2. Add up all the threads’ subPE to get final PE value.

The first step is straightforward. For the second step, assuming large
hash table size, there will be numerous threads with subPE values, and
adding them up one by one in GPU is not the wisest choice, especially if
global memory accesses are involved. The following section outlines the
method of using reductions within each block to optimize the speed of sum-
ming up the subPEs.

5.5.1.1 Reductions within Blocks

CUDA C provides an area of shared memory for all threads in the same
block. This area of shared memory is located on the GPU instead of off-chip
DRAM. Therefore, accessing shared memory involves considerably lower
latency. This fact enables all threads in the same block to be able to effi-
ciently communicate when computations across threads are involved. As a
result, it makes good sense to first sum up the subPEs of all threads within
a block using the method of reductions, then add these sums up to derive
our final PE.

For every block, a shared memory buffer is declared. After the threads of
the same block calculate their respective subPEs (each thread calculating
one subPE), they will store their subPEs into the shared memory buffer.
Then a CUDA C function syncthreads() is called. This synchronizes all
threads in the block and ensures that every thread in the block has inserted
its calculated subPE into the shared buffer before continuing to execute the
next instruction.
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Now we can perform reductions on this shared buffer of subPEs to derive
their sum. A reduction refers to the procedure of deriving a smaller set
of values from a larger input set after a series of operations. The most
straightforward way of performing a reduction in this context is to use one
thread to step through the shared memory array of subPEs and iteratively
sum them up. This is not the wisest way because we did not exploit the
GPU’s immense capacity for parallelism. A faster way is to implement
concurrent threads to continuously convert two subPE values into just one
subPE value by adding both up.

For simplicity’s sake, assume the original number of subPEs is a power
of 2. In the first iteration, each concurrent thread transforms a pair of
subPEs into a single subPE using addition. syncthreads() is used here
to ensure all threads in the same block have completed the first iteration.
Consequently, half the number of subPEs are left. After the second iteration,
only a quarter of the original number of subPEs remain. This continues until
all the original subPEs are added up. The diagram below illustrates one such
iteration.

Figure 5.5: One iteration of a reduction

Now each block of threads carries one subPE value; we have to sum up
these to obtain the final PE. The number of blocks is very small compared
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to the original total number of threads. The small number of subPE values
that remain cannot exploit the immense parallelism of the GPU well enough
to compensate for the relatively slower speed of the device (as compared to
CPU). Therefore, the last step is to transfer the last set of subPE values to
the CPU and let the CPU sequentially sum them up to calculate the final
PE.

Notice that the exact number of blocks to work with has not been spe-
cified. Since the number of blocks is the number of subPEs that the CPU
have to sum, it cannot be too large. On the other hand, the number of
blocks must be large enough to fully exploit the parallelism of the GPU.
We adopt Kandrot and Sanders’ CUDA by Example[25] proposal to use 32
blocks in such a situation.

5.6 Final Plan Of Action

As put forth in Section 5.2, there are 2 options for the final plan of action.
These 2 options are:

1. Transfer the permutation values from CPU to GPU, and subsequently
compute the FBD hash values of the permutation values in parallel in
GPU (GPU Stage 1). Create a hash table in GPU, and insert these
permutation values into this hash table based on their computed hash
values (GPU Stage 2). Lastly, unravel the completed hash table and
calculate the PE based on the frequencies of the stored permutation
values (GPU Stage 3).

2. Perform GPU Stage 1 as in the second option. Then transfer the hash
values from GPU back to CPU and insert the permutation values,
based on these hash values, into a hash table in CPU (CPU Stage 2).
Finally compute the PE in CPU based on the completed hash table
(CPU Stage 3).

To decide between these 2 options, we have to compare the combined
execution of GPU Stages 2 and 3 against the combined execution of CPU
Stages 2 and 3. For this comparison, hash table sizes of 103, 104, 105, and
106 are used. Randomly generated sequences of permutation values and
corresponding hash values of length 4 × table size are used for insertions
into the hash tables in GPU and CPU. These are the results:
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Table 5.2: Stages 2 and 3: CPU vs GPU.

As can be seen from the table above, our hypothesis that using locks in
GPU could slow down performance substantially proved to be resoundingly
true. This set of results clearly favour the execution of CPU Stages 2 & 3
over GPU Stages 2 & 3. Therefore, Option 2 is chosen as the final plan of
action. In other words, in its entirety, the final plan of action for hardware
acceleration is:

1. Work out the entire sequence of permutation values of a large
data series in FPGA (implemented by Ce).

2. Transfer the permutation values from FPGA to CPU to GPU,
and subsequently compute the FBD hash values of the per-
mutation values in parallel in GPU (GPU Stage 1).

3. Transfer the hash values from GPU back to CPU and insert
the permutation values, based on these hash values, into a hash
table in CPU (CPU Stage 2).

4. Finally, in CPU, unravel the completed hash table and calcu-
late the PE based on the frequencies of the stored permutation
values (CPU Stage 3).

Hardware Acceleration: Plan of Action.

77



Chapter 6

Conclusion

6.1 Summary of Achievements

The following is a summary of the author’s key achievements in permutation
hashing:

6.1.1 An Original Permutation Hash

This paper devises an original hashing algorithm specialized in minimizing
collisions when hashing permutations. By exploiting the subtle relationships
between neighbouring permutation patterns that exist by virtue of data
overlaps, this novel hash function contrives to hash different permutations
into distinct slots.

The process to exploit these relationships involves the use of number the-
ory concepts to construct an original assignment of weights to every per-
mutation value with respect to each hash table index. These weights are
used to compute the Feature-Bias Divergence (FBD) of a table index I,
which is a novel concept that the hashing algorithm is based on. For this
reason, this original permutation hash is named the FBD hash.

6.1.2 Implementation Details & Performance Evaluation

The FBD hash is implemented using some neat tricks and well-established
algorithms in number theory, such as the extended Euclidean algorithm,
the Miller-Rabin test and Bertrand’s Postulate. As there is a loop in the
algorithm’s final step, a vigorous, non-trivial proof of termination of that
loop is provided. Due to the loop being the algorithm’s bottleneck, termin-
ation time analysis on the loop is performed by constructing and proving a
probability bound on the loop’s survival through i iterations.
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The performance of the FBD hash is evaluated through the use of a vari-
ety of relevant test data types, 4 traditional hash functions functioning as
benchmarks, and 3 hash performance metrics. Each of these metrics gives a
measure of collisions in the hash table. Among these 3 metrics, 1 is found
in literature, while the other 2 are novel hash performance metrics proposed
by the author. Also, a discussion about why metrics measuring collisions
and not empirical hashing speed are used in this context.

Tests are performed over a range of orders and the results are analysed.
From the results, the primary conclusion is that the FBD hash shows prom-
ise to be a good permutation hash function, while the secondary conclusion
is that the 2 original metrics proposed by the author are credible hash per-
formance metrics. Finally, limitations of the metrics used are discussed.

6.1.3 Hardware Acceleration of the FBD Hash using CUDA

After explaining the infeasibility of hashing in FPGA, this paper breaks
down the process from hashing permutations to the final calculation of the
PE into 3 main stages. These 3 stages are (1) calculating the FBD hash
values from a large input sequence of permutation values, (2) inserting the
permutation values into the hash table based on the calculated hash values,
and (3) unravelling the completed hash table to calculate the final PE.

The pros and cons of performing each of these 3 stages in CPU and GPU
are discussed. Subsequently, the GPU implementation of the 3 stages is
described; key features of implementation include modification of the ori-
ginal FBD hashing algorithm, a locking mechanism for hash table insertions,
scheduling a warp, and the use of reductions within blocks of threads in
CUDA architecture.

The amount of hardware acceleration of the FBD hash offered by the
GPU is evaluated by comparing the time taken to complete the 3 stages in
both GPU and CPU. After the speed comparisons, the final plan of action
for hardware acceleration is decided upon.

6.2 Future Work

Though we have achieved our objectives stipulated in Section 1.3, there is
still a great amount of polishing work to be done before the FBD hash can
be convincingly used as a fast and effective permutation hash. Possibilities
for future work include:

• Using a fast implementation of big number manipulation to further
evaluate the FBD hash’s performance. The main objective of the FBD
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hash is to accelerate the hashing of a range of permutations that is
larger than the maximum possible size of the table in memory (hence
collisions are expected). This means that the range of permutation
keys is likely to reach the big number zone (> 64 bits) – this happens
when order N is big enough such that N ! is a big number. However,
due to the lack of ability to handle big numbers, this paper does not
use very large range of permutation keys to evaluate the FBD hash’s
performance. Therefore, the test results in this paper can only give a
good, but not convincing, indication of the FBD hash’s performance.
Implementing a program capable of manipulating big numbers quickly
will go a long way in boosting the vigour of performance evaluation.

• Conducting more comprehensive tests. The primary purpose of the
performance evaluation in Section 4.2 is to provide a blueprint for how
future evaluations of the FBD hash can be carried out; it is nowhere
near comprehensive enough for its results to be absolutely conclus-
ive. Apart from the aforementioned issue of big number manipulation,
more convincing performance evaluation of the FBD hash can be con-
ducted by employing a greater variety of (1) relevant real-world data
series, and (2) traditional hash functions functioning as benchmarks.

• Adopting a good overall hash strategy. So far all attention has been
devoted to coming up with a good permutation hash function, yet ad-
opting a good overall hash strategy can enhance the hash performance
even further. Example of hash strategies are cuckoo hashing and 2-
choice hashing, both of which are described in Section 2.2.2. Other
possibilities include replacing the current simple linked list implement-
ation of a chain with an ordered linked list or a binary search tree. A
hash strategy describes an algorithm for hashing which makes use of
one or more hash functions; it is not a hash function per se. Therefore,
the adoption of a good hash strategy could complement the FBD hash
and make performance even better. There are plenty of well-known
hash strategies, but finding a suitable one for permutation hashing will
require substantial performance tests.

• Collaborating with Ce to derive the permutation values of large real-
world time series using FPGA. There is a lack of access to large se-
quences of permutation values that are based on real-world time series.
Therefore, the permutation values that are used in our hash perform-
ance evaluation do not significantly exhibit the pattern-repeating phe-
nomenon typical of real-world data series. This is the main reason
why hashing speed is not used as a performance metric. Yet actual
hashing speed measures are important in evaluating the performance
of the FBD hash. Hence collaborating with Ce, who currently has a
very fast FPGA implementation for the permutation value computa-
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tions of large data series, can lead to a better performance evaluation
of the FBD hash.

• Improving/Extending our GPU implementation. The current imple-
mentation of computing permutation values from a large data series is
done by Ce in FPGA. The current plan of action is to transfer these
permutation values from FPGA to CPU, then to GPU for hashing.
An alternative is to simply compute these permutation values directly
in GPU. In this way, the parallelism of GPU can be exploited and
more importantly, the overhead cost of the FPGA-CPU-GPU transfer
is eradicated. That said, it is an open question whether this alternat-
ive is faster than the current plan of action; determining the answer
requires future implementation and testing! Another possible exten-
sion to current GPU implementation is the use of multiple GPUs to
make our work even faster.
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