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Abstract

A long standing goal within mobile robotics has been the ability to successfully navigate a previ-
ously unknown environment. This problem area, known as SLAM (Simultaneous Localisation and
Mapping), requires a robot to build a map of its surroundings, while also localising itself within
the same map. Traditional SLAM techniques have taken the approach of processing a scene as
thousands of individual points. A novel approach called SLAM++ instead processes the scene as
a composition of everyday objects, this improves the accuracy of the SLAM algorithm and also
provides the robot with useful semantic knowledge of its surroundings. To accomplish this the
objects have to be “learned” in a time-consuming offline process (≈ 10 hours per object model).

This project aims to develop a system with a much faster ability to learn and detect objects in
a real-world setting. It contributes a rapid three-stage prototype pipeline for mobile robots using
RGB-Depth data from a consumer-grade 3D camera, such as the Microsoft Kinect. Stage one is
an annotation tool integrated into a state-of-the-art SLAM system (KinectFusion), which enables
a user to produce the required training data live from a Kinect device, in as little as one-click
per video sequence. Stage two is an accelerated GPU implementation for training a Hough forest,
capable of producing an object detector in 90 seconds on a GeForce GTX 780. On a test set which
consists of three chair classes, this rapidly trained ‘Fast Forest’ exhibits an average precision of
61.5% for a single class, and 30.9% when scaled to the full multi-class dataset. Finally, stage three
provides an object detection system which uses dense prediction on live data from a Kinect device
to detect and localise the ‘learned’ object. Every stage of this pipeline has used the parallelism of
a GPU to accelerate performance.
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1 Introduction

1.1 Motivation

The ability to process visual data into refined semantic and geometric knowledge is relatively
straightforward for humans, yet remains extremely difficult to achieve even with today’s most
powerful computers. The challenge, however, is matched by the potential benefits of a robust
solution, with a vast range of applications in fields as diverse as medicine, security, manufacturing,
entertainment, exploration, and very directly, mobile robotics.

One of the key goals of mobile robotics is the ability to successfully navigate a previously
unknown environment. This problem area, known as SLAM (Simultaneous Localisation and Map-
ping), requires a robot to build a map of its surroundings, while at the same time localising itself
with respect to that map [42]. SLAM is an essential component in tasks ranging from domestic
appliances and factory robots, to search and rescue and space exploration.

Traditional approaches to SLAM use many thousands of individual points captured from a
camera or laser range finder [21]. In order to accurately determine the location of the robot with
respect to the map, the SLAM algorithm needs to iteratively process the entire map representation
in terms of these points. To perform this computationally expensive process in real-time, presents
significant challenges [16], often requiring approximations to be made, resulting in less accurate
estimates.

A novel approach called SLAM++ [48] takes an object-orientated view to mapping. This reduces
the map’s representation cost and introduces strong prior knowledge, in the form of a single rigid
transformation (or pose) for the entire object, instead of tens of thousands of separate points which
in reality are rigidly connected. This not only improves the accuracy of the SLAM algorithm itself,
but also provides the robot with a useful semantic representation of the objects in its environment. If
this representation is sufficiently accurate, the robot can then interact with objects in a meaningful
manner, paving the way for the kind of domestic robots long imagined in science fiction, but which
have yet to be made a reality. The SLAM++ system has already achieved real-time operating
performance (See Figure 1.1), however to accomplish this the objects have to be “learned” in a
time-consuming offline process, which takes approximately ten hours per object model.

(a) SLAM++ efficiently tracks and maps a cluttered
3D scene in real-time directly at the object level.

(b) Live RGB and depth images (top), with synthet-
ically rendered objects and high quality scene predic-
tion (bottom).

Figure 1.1: The SLAM++ system operating in real-time. Source [48]

A future goal of this system is the capacity to perform unsupervised real-time object learning
and recognition. One way to approach this task is to separate it into two smaller sub-tasks. The
first sub-task is to segment the 3D scene into ‘probable objects’. This could be made possible
by automatic segmentation algorithms, such as by reference to floor and wall planes in an indoor
environment [29] or by a more generalised clustering algorithm [18]. Another approach would be
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to focus on active manipulation and exploration, in the same way infants are known to explore
objects from their first year [31]. As will be discussed, the result of this segmentation process
has been imitated by building an annotation tool integrated into a state-of-the art SLAM pipeline
(KinectFusion [32]), while the project’s primary objective is the second sub-task.

The second sub-task is to quickly learn a segmented object, in a robust manner, so that it can
be recognised and located within a new context. The learning process should be fast enough to be
useful when presented with real-time data, and capable of functioning on only the data available to
a mobile robot. It should also be capable of learning and recognising the multitude of classes that
may be encountered. The processing power required for this rapid learning has been enabled by
recent advances in General-Purpose computing on Graphics Processing Units (GPGPUs), which
will form the basis for acceleration efforts.

1.2 Objectives

The core objective is to develop a system capable of rapidly and robustly learning to recognise an
object from real-world RGB-D data, for use in a mobile robot. This objective can be split into a
number of components:

Training data collection
Data collection requires the development of software capable of capturing and annotating
training data similar to the “real world” view available from a mobile robot. The focus of
the project is on the learning system itself, therefore this data annotation phase will allow
user input to stand-in for other unsupervised object algorithms. This modularity also allows
the two phases to be separately investigated. The amount of user input is to be kept to a
minimum, and the user experience should be as intuitive and frustration-free as possible.

Optimised training of a Hough forest
The learning system of choice will be a Hough forest for reasons outlined in Section 2. The
central aim of the project is to minimise the amount of time it takes to produce a functioning
Hough forest [22], by leveraging the power of GPGPUs. Included in this is the requirement
of thorough benchmarking to ensure optimisation efforts result in real-world performance
improvements.

Live object detection system
Live object detection has a dual purpose; it will ensure that the trained random forest is
capable of operating in a real-time system, and will also allow the accuracy of the forest to
be measured. There are a large number of parameters that can be tuned when training a
random forest, and each of these parameters can affect both the training time and accuracy. A
detection system allows for experimentation with these parameters to find a balance between
the two competing objectives.

1.3 Contributions

This project contributes a functioning rapid object learning and detection pipeline, by building on
Waldvogel’s CURFIL library [62], and the KinectFusion system [32,39]. The pipeline is capable of
combining raw RGB-D video with user input into a ground truth training dataset, and then can
use this data to generate a functioning Hough forest in less than two minutes. It also provides a
live object detection system, which uses dense prediction on full resolution RGB-D video from a
Kinect device to detect and localise the ‘learned’ object. Every stage of this pipeline has used a
GPU to accelerate performance.

Previous related work by Badami et al. [3] is also capable of accurate 6 Degrees of Freedom
(DOF) object detection using a Hough forest. In this work three contributions have been made
with the explicit objective of use in a live setting with mobile robots. First, the requirement of
a controlled turn table environment to collect the ground truth data has been done away with,
instead using the KinectFusion system and minimal user input - potentially just a single click on
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the centre of an object for an entire video sequence. Second, the accelerated GPU implementation
for training a Hough forest (a potential avenue of research proposed by Badami et al. [3]) opens up
the possibility for learning new objects in the field and quickly putting them to use. Third is the
creation of a ‘Fast Forest’ architecture, capable of being trained in 90 seconds on a GeForce GTX
780, with an average precision of 61.5% on a single class, and 30.9% on our multi-class dataset.

1.4 Report Outline

Chapter 2: Presents some background on training and using Hough forests for object detection.
It also looks at previous work that has been done to parallelise training on a GPU.

Chapter 3: Outlines the rationale behind developing bespoke software to capture training data.
It also describes the evolution of that software over time, and its basic functionality.

Chapter 4: Gives background detail on the most salient features of the CURFIL library, which
formed the basis for the GPU Hough forest implementation. The additions and modification made
to this library are described, as well as optimisation efforts to tune it for best performance.

Chapter 5: This chapter presents the object detection system. A description of the leaf node
representation is given, followed by the object detection algorithm, and the orientation and class
retrieval system. Optimisation efforts to achieve real-time object detection from a live Kinect de-
vice are outlined.

Chapter 6: Presents a brief description of the training and testing dataset, which was collected
using the software developed in Chapter 3. These datasets were used to measure the performance
of the Hough forest implementation.

Chapter 7: The Hough forest is systematically tested on the collected dataset using a wide range
of available training parameters. The capacity for the system to operate as a multi-class forest is
also evaluated.

Chapter 8: An overall discussion of the results of the analysis in the previous chapter, and an
outline of the some of the specific modifications and improvements that could be investigated in
the current system. The chapter concludes by exploring the broader possibilities of future research.
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2 Background and Related Work

2.1 Random Forests

Random forests have been used extensively in numerous applications, and proven to be fast and
robust visual processing systems [47]. Lepetit et al. [36] showed some of the early promise of
random forests. Having previously used a K-mean plus nearest neighbour classifier for key point
recognition, they successfully migrated to random forests as the classification technique of choice
because “it is both fast enough for real-time performance and more robust.” Shotton et al. [51] also
used random forests in conjunction with the Microsoft Kinect system to recognise human poses in
a system which was capable of running at 200 frames per second on consumer hardware.

Originally introduced by Amit and Geman [1], and later extended by Breiman [5], random
decision trees act as base predictors in an ensemble method of learning known as a random forest,
which utilises a collection of these trees grown independently. A decision tree is a special type
of graph consisting of nodes and edges organised hierarchically [10]. Nodes are divided into split
nodes, which house a function and a threshold to be applied to the incoming data, and leaf nodes,
which store the final prediction values such as a histogram of most likely classes, or spatial hough
voting distributions (See Figure 2.1).

The random forest consists of a number of these trees, trained independently, and averages
their output to achieve a final combined result. The most commonly used random forests imple-
mentations are divided into two well-defined phases, a training phase and a test phase [10]. In the
training phase, random forests use a technique known as bagging [6], to reduce the possibility of
overfitting, by training a decision tree on a randomly selected subset of the training data. This
process has the added advantage of speeding up training time, as only a smaller subset is processed
for each tree.

θ1 < τ1

θ2 < τ2

true

θ3 < τ3

θ4 < τ4

false

Figure 2.1: A schematic of a random decision tree. Each split node contains a feature function
θ (such as intensity difference of two neighbouring patches) and a threshold τ to be applied to
incoming data. The leaf nodes contain the distribution (such as object classification) that arrived
at them during training. This is then used to classify new test data passed down the tree.

2.2 Hough Forests

Hough forests have proven a successful approach to object localisation [3, 22, 35]. The basis for
the Hough forest comes from early work by Duda and Harthas [17] in which they developed a
framework (based on a patent by Hough [30]) for detecting lines within digital pictures using a
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“Generalized Hough Transform.” Leibe et al. [35] drew on this idea to develop a method for
detecting and localising any arbitrary object using highly flexible learned representations of the
object shape. This representation known as an Implicit Shape Model (ISM) builds up a codebook
of the appearance of local features of the object, and their location with respect to the object
centre. When a new image is presented, evidence from these features accumulates in a probabilistic
Hough voting procedure to infer the most likely location of the object centre.

Gall and Lempitsky [22] extended this idea into the Hough forest. They replaced the generative
codebook with a random forest which was successfully used to efficiently map an image patch
directly to its corresponding Hough vote. At test time, patches of the image are passed through
the forest and maxima in the votes are sought to detect the object. The ability for random forests
to cope with noisy input also allowed a bounding box approach to be taken for training data [22],
rather than pixel perfect segmentation required by earlier Hough-based methods [35].

More recent work by Badami et al. [3] applied Hough forests to RGB-D data. They managed
to both model the probability distribution over class labels and cast votes for the pose of an object
within a full 6 DOF, with a high degree of accuracy on a benchmark dataset [34]. The availability
of depth data alleviated problems with an object’s scaled appearance at different distances, seen in
earlier works [35], and the results of their experiments showed significant improvement over colour
information alone [3]. Their implementation is CPU based [4], and they noted that for scalability
to larger datasets, a GPU implementation would be required.

2.3 Training a Hough Forest

A decision tree is grown using a greedy algorithm which continues splitting nodes starting with
the root node until a stopping criterion is reached. Often this stopping criterion is that either all
nodes have reached the maximum allowed depth value or splitting them will not produce improved
results (for example because all training instances at the node already belong to only one class).
The basic algorithm, as described in [61], proceeds as follows:

1. Select a leaf node (via a depth-first or breadth-first search) that is not yet pure.

2. Select the best test that minimizes the data entropy by:

2.1. Random feature candidate generation.

2.2. Feature response calculation.

2.3. Threshold selection.

2.4. Energy model (or offset uncertainty) calculation.

3. Split the leaf node into left and right nodes according to the selected test.

4. Continue from step 1 until the stopping criterion has been reached.

The four sub-parts of step 2 form the core of the training procedure, and is where the majority of
the computational expense lies [61]. Each part is described in more detail below.

Random feature candidate generation

A set of features is sampled at random from the available feature space. The most common fea-
tures used with RGB-D data are the difference between intensity values on pairs of pixels [51], or
pixel patches [55], surrounding the test pixel. For a given pixel q, feature generation will randomly
choose an offset for each of the neighbouring pairs, the image channel to be used, and potentially
the size of the rectangle to average at each offset.
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Feature response calculation

In this step the feature responses are calculated for each of the randomly sampled features. Depth
normalisation of features which has been shown to be highly beneficial for classification and locali-
sation [3,55,61]. For given a pixel q with depth d(q), the selected pair of neighbouring pixels with
offsets oi and oj and image channels φi and φj , the feature response θ(q) can be calculated as:

θ(q) = φi(q +
oi
d(q)

)− φj(q +
oj
d(q)

)

As discussed in Section 4, the basis for the GPU implementation of a Hough forest is the CURFIL
library, a result of Benedikt Waldvogel’s thesis “Accelerating Random Forests on CPUs and GPUs
for Object-Class Image Segmentation.” Figure 2.2 illustrates depth invariant features, as depicted
within that thesis [61].

Figure 2.2: An illustration of depth invariant features at three different pixel locations in the
CURFIL library. The offset locations oi and region extents wi, hi are normalized with the depth
d(q) of the query pixel q. Source [61] Figure 3.3

Threshold selection

To create a binary question from the scalar feature response outlined above, a threshold, τ , must be
selected. One method is to sample the feature response from some sensible distribution. Criminisi
et al. [10] however suggest a more efficient alternative, to divide the feature responses into bins
determined by a number of potential thresholds, and apply each of these bins in a linear sweep when
calculating the information gain below. Although selected thresholds can be arbitrarily chosen in
advance, a more refined alternative involves an initial pass of the data. In this initial pass, a subset
of the responses from the data is sampled to allow a useful distribution of thresholds to be selected.

Best split calculation

For classification the energy model is used to select the candidate features and thresholds which
provides the “best split.” The basic concepts behind the training objective function are entropy
and information gain. The information gain associated with a candidate split is defined as the
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reduction in uncertainty achieved by splitting the training data arriving at the node into mutliple
child subsets [10]. For a subset of data S, which can be split into two subsets SL and SR with an
entropy measure H, the information gain I is commonly defined as:

I = H(S)−
∑

i∈{R,L}

| Si |
| S |

H(Si), (1)

where the entropy measure H can vary. For classification problems, the aim for training is to
split the data in such a way as to maximise the probability of different classes arriving at separate
nodes. For discrete probability distributions the Shannon entropy can be used [10], with p(c) being
the empirical distribution extracted from training points in the data S, and C being the set of all
possible classes,

H(S) =
∑
c∈C
−p(c) · ln(p(c)). (2)

The Hough forest is used for both classification and regression, the energy model only works
towards the first of these objectives. To assist with the second objective, it is also useful to minimise
the offset uncertainty [22]. For a set S with two subsets SL and SR containing offset vectors v to
the object centre, the total offset uncertainty, O, is defined as O = D(SL) +D(SR) where,

D(S) =
∑

v∈{S}

∥∥∥∥∥∥v − 1

|S|
∑

v′∈{S}

v′

∥∥∥∥∥∥
2

. (3)

To combine these two disparate objectives, the original approach of Gall and Lempitsky [22]
is to randomly pick one of the tests for each node. This interleaves nodes that decrease class
uncertainty with nodes that decrease offset uncertainty, and results in leaf nodes which optimise
both. In general, the objectives are chosen with equal probability unless the node is relatively pure
(e.g. > 95% of one class), in which case the node is chosen to minimize the offset uncertainty.
Okada [41] suggested an alternative method, starting with the root node as purely classification,
and as the purity of a node reaches a given threshold switching to a purely regression objective.

Fanelli et al. [20] compared this kind of approach to the interleaved approach, above, as well as
to a third approach which uses node depth d, and a steepness parameter λ to weight the regression

objective according to the function 1.0 − e−
d
λ . However the results of their experiments showed

similar accuracy for all three methods. In this project the original interleaving approach has been
maintained. Section 7 details results of experimentation with varying the likelihood of choosing
one of these objectives at any given node.

2.4 Object Detection

In testing, an unseen data point v (such as a pixel in a new RGB-D image) passes from the root
node of each trained tree, to leaf nodes, following the binary test functions chosen in training.
These functions of the form θ < τ compares the feature response θ with a threshold τ to generate
a binary decision. If the result is true then the data point proceeds to the left child, otherwise it
goes right, as depicted in Figure 2.1. The leaf node contains the numbers of each class that reached
that node in training (for estimating the object class), and a representation of the offset vectors
(for estimating the object location).

The spatial distribution of offset vectors can be represented in a number of forms. One method
is to model it as a Parzen window with a Gaussian kernel [22]. As discussed in more detail in
Section 5.1, a fast and simple 3D spatial histogram approach is adopted in this project, with leaf
nodes storing accumulated discretised voting vectors.

Each of the reached leaf nodes for the sampled pixel from the test image have their votes
collected within a 3D Hough space. Maxima within these votes can then be sought either by a
mean shift clustering algorithm or by smoothing the voting space with a Gaussian filter before
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searching in a greedy manner [3,22,23]. In this project a mean clustering approach is adopted, and
discussed in more detail in Section 5.2. For a traditional classification forest the outputs of each of
the trees is aggregated using an average. For Hough voting a similar approach is taken, by simply
allowing all of the trees to accumulate their votes within the Hough space.

2.5 Multi-Class Considerations

Significant research into Hough forests has focused largely on single class detection systems [3,22].
However, allowing multiple classes to be detected within a single forest comes with a number of
advantages. For mobile robots it provides the flexibility to rapidly train a forest on relatively
unprocessed data with a mixture of classes, and it also grants the ability to share similar features
among classes, resulting in decreased memory requirements at test time [23]. These benefits often
come at the cost of reduced accuracy, however two key modifications for training multi-class Hough
forests have been developed by Razavi et al. [45] which aims to mitigate this accuracy degradation.
The effect of these modifications was analysed in their research via a feature appearance sharing
matrix and object taxonomy [45], illustrated in Figure 2.3.

Figure 2.3: Sharing matrix and object taxonomy obtained in [45] for the VOC’06 dataset, when
using the modified multi-class training criteria given in Equations 4 and 7. Source [45], Figure 4(a)

The first modification, is a relaxation of Equation 3, to limit minimisation of offset uncertainty
to within classes, instead of within the entire set of samples. The effect of this is beneficial for
multi-class forests, because it allows objects of quite different shapes but with similar features to
‘stick together’. For example, it would be useful for a car and a bus to share the feature of a wheel,
however if the offset between a bus wheel and a car wheel to their centre is required to be the same,
as in Equation 3, they will naturally be separated. A relaxation of this rule to Equation 4 assists
in keeping these taxonomies together while separating the components of each class, where C is
the set of classes, and Sc is the set of vectors relating to a given class, c.

D(S) =
∑
c∈{C}

∑
v∈{Sc}

∥∥∥∥∥∥v − 1

|Sc|
∑

v′∈{Sc}

v′

∥∥∥∥∥∥
2

. (4)

As shall be discussed, the test dataset consists of three classes of chairs. The shapes and offsets
of these chairs are similar, and their taxonomy tree is very flat, rendering much of the advantage
of this relaxation redundant. The additional computational expense and memory requirements of
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keeping separate offset uncertainties could not be justified, however for future work when exploring
a larger more diverse dataset, this relaxation could prove much more beneficial.

The second modification provides an explicit weighting specific to the background class, cbg, to
ensure that it is well separated from the rest of the object classes, co,

Hbg = −p(co) · ln(p(co))− p(cbg) · ln(p(cbg)), (5)

before further separating out the positive classes themselves,

Ho =
∑

c∈C,c6=cbg

−p(c) · ln(p(c)), (6)

and then weighting these two with a mixing coefficient λ, which [45] set to ‖C‖.

Ho(S) = Ho + λHbg. (7)

This modification requires relatively little additional computation, and could be applicable to our
evaluation dataset. It ensures all chair varieties are well separated from the background, before
finding fine-grain features more suited to separating out different types of chair.

For detection, Razavi et al. [45] also used the generated taxonomy tree in Figure 2.3 to limit
the cast votes within a 4D voting space. Unfortunately, their system required approximately 35s
for detecting a single positive class in one image, which is approximately two orders of magnitude
below real-time performance. In this project, a simplified approach is adopted, in which Hough
votes are first cast into a unified 3D Hough space. Maxima within the space are sought, and then
a second pass is performed to extract probable classes (and orientations) by inspecting the nodes
that contributed towards the maxima.

2.6 Parallelised Random Forest Training on a GPU

General-purpose computing on Graphics Processing Units

In recent years, fundamental limitations in the manufacturing process of integrated circuits have
pushed CPU manufacturers towards multi-core processors [49]. Increasing the number of processors
operating in parallel, instead of the speed of an individual processor is a technique taken to great
lengths within GPUs. GPUs lack the flexibility of CPUs, but excel in performing computation-
ally expensive tasks on large quantities of data by parallel processing in hundreds of independent
threads, achieving a significant enhancement in floating point operations per second, and memory
throughput (Figure 2.4). This is accomplished by devoting much more space to arithmetic logic
units at the expense of more advanced control features (Figure 2.5).

The GPU is purpose built to operate on image data, such as that being processed by a random
forest. Historically, this came at the cost of an extraordinarily convoluted process of using the stan-
dard graphics APIs such as OpenGL and DirectX in an attempt to perform arbitrary computations.
More recently, two general frameworks have been developed to greatly simplify General-purpose
computing on Graphics Processing Units, the open source OpenCL standard and Nvidia’s propri-
etary CUDA framework. This project uses the latter primarily because the starting point for the
Hough forest implementation is the excellent CUDA Random Forests for Image Labeling (CURFIL)
library [62], which (as the name would suggest) has been written in CUDA.

For optimisation efforts care must be given to the different types of memory available. CUDA
devices use five different memory spaces, each with strengths and weaknesses. Figure 2.6 shows a
simple schematic of the three major memory types within the hierarchy. A short description of the
characteristics of each type of memory is given below:

Global memory may be accessed by any thread regardless of its block or grid. It is the largest
available memory space, with 3GB in the GeForce GTX 780 used for this project, but also the
slowest to access. The access performance can be improved with coalesced loads and stores when
a group of concurrently running threads (known as a warp) access sequential memory locations.
Global memory is persistent between kernel calls, and is allocated and freed manually.
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(a) Comparison of theoretical GFLOP/s (b) Comparison of memory throughput in GB/s

Figure 2.4: The relative performance of GPU and CPU architectures. Source [13]

(a) The structure of a typical Central Processing Unit. (b) The structure of a Graphical Processing Unit.

Figure 2.5: The GPU Devotes More Transistors to Data Processing. Source [13]

Texture memory is similar to global memory, except that it is read-only and cached in a way
optimized for 2D spatial locality. A texture fetch costs one device memory read only on a cache
miss; otherwise, it just costs one read from the texture cache [13].

Constant memory is again read-only memory which is cached, meaning a read only costs a
memory read on a cache miss [13]. A total of 64 KB of constant memory exists on a device. The
constant cache works best when threads access only a few distinct locations. If all threads of a
warp access the same location, then constant memory can be as fast as a register access. However,
accesses to different addresses by threads are serialized, causing the cost to scale linearly with the
number of unique addresses read.

Shared memory is available to any thread within a given block, and is best viewed as a shared
‘scratch pad’ for those threads. It is stored on chip and provides much higher bandwidth and lower
latency than global memory [13] as long as there are no bank conflicts between the threads. A bank
conflict occurs when multiple locations within a single ‘bank’ of memory are accessed at once and
must be serialised. For devices of compute capability 1.x 32-bit words are assigned to successive
banks, with 16 banks. For compute capability 2.x and 3.x, devices have 32 banks, with 3.x also
having the option of 64-bit word addressing.
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Local memory is available to only a single thread. It is not persistent, and is used to store
variables that cannot fit into the threads registers. Local memory actually is stored in the global
memory space, and is therefore just as slow as a normal global memory access, unless it has been
cached.

Figure 2.6: An illustration of the hierarchy of memory within an Nvidia GPU from the CUDA
programming guide. Modified from Source [13]

Previous Work Parallelising Random Forests

Although potentially fast to both train and test, many results for random forests focus almost
exclusively on the test time performance of the system [36, 51]. However for large datasets, when
experimenting with forest parameters, or for time critical applications, training time plays a signif-
icant role. It has often been noted [10,50,61] that random forests have the advantageous capability
of being highly parallelisable. With the advent of high power GPGPUs and associated languages
such as CUDA, implementing the computationally expensive process of training a random forest
on a GPU becomes the natural choice to improve performance.

Before the ready availability of CUDA-like languages, Sharp [50] successfully implemented both
training and testing of random forests on a GPU using Microsoft’s Direct3D and the High Level
Shader Language (HLSL). In the object recognition task, [50] demonstrated the GPU produced pre-
dictions identical to that of a CPU but 100x faster. The improvement in training time performance
was less substantial but still significant, with an 8x acceleration.

Recent work by Waldvogel [61] focused on a highly optimised CUDA implementation of a
random forest for RGB-D label classification, which managed to accelerate training time by a
factor of 28 on the NYU Depth v2 dataset [57]. A significant source of the acceleration efforts
by Waldvogel [61] came from a detailed breakdown of the relative speeds and caching abilities
within the memory of a modern GPU. Storing training images within texture memory reduced
runtime by 35%. This speed-up was achieved by maximising usage of the texture cache (a resource
of only 6-8kB in size) by sorting feature candidates and increasing the probability of a cache hit.
This project combines many of the above techniques developed for use in classification forests, and
extends their principles to accelerate Hough forest training with a GPU.
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3 Capturing Training Data

Training a random forest in a supervised fashion first requires the collection of suitable ground
truth data. This chapter outlines the potential avenues available for acquiring an RGB-D dataset
containing enough spatial and object segmentation data to train a Hough forest. To minimise the
time required to learn a previously unseen object, and also to imitate the type of data available
from a mobile robot, the decision was made to develop a tool to annotate the required ground truth
data directly from the Kinect. The contribution in this chapter is an addition to the KinectFusion
system [32], capable of annotating and storing Kinect data in a format compatible with the GPU
Hough forest implementation.

The KinectFusion system allows a user to generate a detailed 3D reconstruction of an indoor
scene, in real-time using a GPU, by freely moving a standard Kinect device within the scene. An
annotation tool has been developed which uses data provided from KinectFusion to allow a user
to interactively specify multiple bounding boxes around different object instances and classes to be
learned. The tool then outputs, in real-time, all of the required data for training a Hough forest to
learn the annotated objects.

3.1 Available Data Sources

Three potential sources of RGB-D training data were explored; publicly available datasets with
both ground truth object masks and appropriate pose data, artificial training dataset generated
from synthetic or scanned 3D models, or a self captured dataset along with the required software
to annotate it. A discussion of the merits of each is given below.

The first option, a publicly available dataset, has the advantage of comparability with other
approaches, as well as speed of procurement. There exist a number of widely used RGB-D datasets,
however many of them lack a desired component. The NYU Depth Dataset [57], provides ground
truth segmentation masks for different object classes, however it does not provide a consistently
oriented bounding box, or object centre for each of the objects in each frame necessary for Hough
voting. On the other hand, the RGB-D SLAM Dataset and Benchmark [54] and the smaller RGB-
D Object Tracking Dataset [56] have accurate tracking for SLAM systems, but do not provide
segmentation masks for various object classes.

(a) A colour image from the RGD-B Object Dataset (b) The ground truth object mask

Figure 3.1: An example of the data in the RGB-D Dataset. Source [34]

The RGB-D Object Dataset [34], does provide the data masks (see Figure 3.1 for an example),
and enough localisation information to create a 3D Hough forest system, and this has in fact already
been done for a CPU based system [3]. However, the project’s broader aim would be hampered
if focus is given solely to training the forest itself, ignoring the training data collection stage. If
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a new object is to be learned, a slow and painstaking training data collection phase would negate
many of the benefits of faster training.

The second alternative, of using artificial data, has a number of additional advantages over the
approach above. It allows for perfectly accurate pose tracking and object segmentation, and also
allows for the generation of large quantities of training data from various poses of likely scenarios
without slow manual positioning, or annotation. A dataset with these features has recently been
released by Handa et al. [27], which also provides the full open source pipeline to potentially
generate further test data.

Incorporating artificially generated datasets of this kind is an area of future work which could
greatly enhance the accuracy and flexibility of training and testing the object detection system.
However, the time and effort required to generate artificial training data of a real world object, is
significant and the third, more straightforward approach has been adopted for simplicity. It also
supports a key goal of the project by providing a dataset of similar quality to that available from
a mobile robot.

The adopted approach was thus to develop a system to collect and provide appropriate ground
truth data directly from within a SLAM (KinectFusion [32]) pipeline. This has the advantage of
allowing live RGB-D video of a real life object to quickly be converted into a training dataset.
It also had the advantage of allowing various ‘in the wild’ scenarios to be quickly put together
and tested for the purposes of evaluation (See Sections 6 and 7 below). The development of the
annotation tool is outlined below.

3.2 Python Prototype

To generate an initial training set from raw RGB-D images with all of the required annotations a
prototype tool has been developed in Python using the basic Tkinter library [58]. This script is
designed to be as simple as possible and have only the minimum functionality required. A user
specifies the class type (designated by an integer) and a folder (containing the RGB-D images to
be annotated) at the command line, and a basic GUI appears in which to annotate the individual
training frames.

Figure 3.2: The initial Python based prototype annotation tool. Raw Image Source [57]
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For each image, the user selects a rectangular bounding box around the object, denoting the
pixels contained within to be of the specified class. Pixels outside the bounding box are considered
to be background by default. Shift-clicking positions a set of axis at the 3D location of the click,
by reading the depth value from the accompanying depth image. The user can then fine tune
the position and orientation of the axis before proceeding to the next image. A screenshot of the
annotation process being performed on the NYU Depth Dataset V2 [57] can be seen in Figure 3.2.
The length of each axis is set to 0.5m, to give a sense of scale when positioning.

The end-result of this tagging process is written to a JSON file containing the class, object
identifier, bounding box, and object pose. The object identifier is necessary because the same
image could have multiple instances of the same class type tagged on successive runs. In the
interest of simplicity, only a single class type can be annotated for each batch, however an image
may be processed multiple times, with the output appending itself as a new entry to the array
in the JSON file each time. The object pose is stored in a 4 × 4 transformation matrix from the
camera pose to the object centre pose. An example output file can be seen in Listing 3.1.

Listing 3.1: The original ground truth JSON output from the Python annotation tool

1 [

2 {
3 "object_transform": [

4 [-0.57956, -0.07195, -0.81174, 0.35989],

5 [ 0.35009, 0.87750, -0.32775, -0.18820],

6 [ 0.73588, -0.47414, -0.48337, 1.88300],

7 [ 0.00000, 0.00000, 0.00000, 1.00000]

8 ],

9 "bbox": {"y1": 330,"x2": 560,"x1": 315,"y2": 15},
10 "id": 1,

11 "class": 3

12 },
13 ]

This simple setup makes it possible to generate a small training set, providing all of the required
information to train a Hough forest. To process this information, a JSON parser has been added
to the CURFIL library [61], which converts the ground truth data into a format compatible with
the existing implementation.

Although useful, the prototype annotation tool has two severe limitations. Firstly, for RGB-
D video, each successive frame has to be manually annotated with both a bounding box and a
pose axis; a labour intensive process, which could never be useful in a real-time system. Secondly,
the simplistic rectangular bounding box failed to use any of the depth data available to provide
an accurate segmentation of object from the background, and also fails to deal correctly with
occlusions.

3.3 KinectFusion

The next version of the annotation tool is based on the KinectFusion system [32,39]. KinectFusion
allows a user to generate a detailed 3D reconstruction of an indoor scene, in real-time using a
GPU, by freely moving a standard Kinect device within the scene. Depth data from the Kinect
is used to continuously track the 6 DOF camera position using iterative closest point (ICP), and
successive frames are fused together into a single volumetric surface representation [15]. The vertices
are integrated into voxels using a Truncated Signed Distance Function, which specifies a relative
distance to the actual surface (positive in front, negative behind, and zero at the surface itself).

Raycasting is used, not only to render the scene for users, but also to generate high quality data
for the ICP camera tracking algorithm. Raycasting the signed distance function into the estimated
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frame provides a dense surface prediction against which the live depth map is aligned [39]. This
allows issues of drift to be mitigated and reduce ICP errors. An overview of the pipeline can be
seen in Figure 3.3.

The KinectFusion system provides all of the information required for a real-time, interactive,
and user friendly ground truth annotation tool. Appendix A provides a detailed user guide for the
tool. Here the current implementation and future directions for the tool will be discussed.

Figure 3.3: The pipeline of the KinectFusion system. Source [32]

3.4 Object Pose Information

The feature needed to add object annotation capability to the KinectFusion is a single user ini-
tialised 3D object bounding box. This bounding box, alongside the camera pose estimate allows
for the relative transformation from the camera pose to the object pose, OTC , to be calculated in
every subsequent video frame, with the simple equation,

OTC = (TC)−1 ×TO,

where TO is the initial bounding box pose, and TC is the camera pose transformation from its
original position. The user may edit the location, orientation, and also the scale in real-time (See
Figure 3.4 for an example of a positioned bounding box). At present the Hough forest does not use
this scale information, it is only used for resizing the bounding box visualisation in the annotation
tool. The predicted bounding boxes depicted in Section 5.3 are pre-measured and statically sized.
However, scale information is stored as part of the final ground truth JSON, and could be associated
to a particular class in a future version.

For memory efficiency the transformation matrix is split into three components for a total of 10
floats; a translation vector, a quaternion, and a scale vector. The translation vector OtC is easily
separated from the transformation matrix OTC = [ORSC ,

O tC ]. Both the rotational and scalar
components are contained within the ORSC matrix. As pure rotations are always orthogonal, the
scale component, OSC , can be extracted by transposing the original, OSC = ORST

C × ORSC , and
the pure rotation can then be extracted using the inverse of the scale component,

ORC = ORSC × (OSC)−1.
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Figure 3.4: KinectFusion with the interactive menu and user positioned 3D bounding box

3.5 Ground Truth Segmentation

The KinectFusion system stores a 3D volumetric representation of the scene. This representation
provides the capacity to render a pixel-wise ground truth segmentation mask, using the defined
bounding box. An additional raycasting algorithm is used to render this mask. Every face of the
bounding box forms part of a planar half space test, if the dot product of the plane and the hit
position is greater than or equal to zero then that point is rendered with a colour associated to the
object type (See Listing 3.2). Figure 3.5 shows an example of the rendered ground truth image.
Any number of objects and classes can be selected for a given video (See Appendix A for a full
guide).

Listing 3.2: The core ground truth segmentation kernel

1__device__ bool inBoundingBox(const float4& hit, ClassType& type, ObjectType& id) {

2for(size_t objectId = 0; objectId < numObjects; ++objectId) {

3// First transform the point into the Bounding Box coordinate system.

4float4 localHit = matrixData()[objectId * sizeof(Matrix4)] * hit;

5// Then perform half space checks on the 6 planes of a unit cube.

6if(dot(topPlane, localHit) < 0) continue;

7if(dot(bottomPlane, localHit) < 0) continue;

8if(dot(nearPlane, localHit) < 0) continue;

9if(dot(farPlane, localHit) < 0) continue;

10if(dot(leftPlane, localHit) < 0) continue;

11if(dot(rightPlane, localHit) < 0) continue;

12// If this line is reached, the hit is within the bounding cuboid.

13type = classData()[objectId * sizeof(ClassType)];

14id = objectId;

15return true;

16}

17return false;

18}

Multiple instances of a single class may be in any given frame, therefore the segmentation mask is
output as the object identifier, in a 16-bit PNG image file. This object identifier is linked to a class
type and object pose in the accompanying JSON file. An example JSON is given in Listing 3.3.
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Listing 3.3: The final ground truth JSON output from the KinectFusion annotation tool

1 [{
2 "object_transform": [-0.0185307,0.071515,1.27029,

3 0.0470628,-0.679116,-0.163071,0.714139,

4 0.654244,0.895703,0.620389],

5 "id": 1,

6 "class": 2

7 }]

For speed and simplicity the open source single-file lodepng library [37] is used to write all of
the PNG files (both RGB and Depth, and the ground truth segmentation mask). The default
PNG compression used by the library proved too slow for real-time interactive annotation. With
speed rather than storage efficiency being the primary aim for the dataset, this compression has
been turned off. For a test set of 100 random 640 × 480 PNG images, the average size per image
increased from 387Kb compressed, to 818Kb uncompressed. On a 2.13 GHz Intel Xeon E5606,
the average time for processing and writing an image decreased from 127.0ms to 47.2ms, allowing
real-time interactivity at approximately 20 frames per second. After the training data is captured
and written, the Hough forest training procedure may begin.

(a) A colour image from Kinect Device. (b) The KinectFusion model, with a bounding box.

(c) The rendered ground truth object mask.

Figure 3.5: The stages leading to a pixel level ground truth segmentation mask.
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4 Hough Forest Training on the GPU

The following chapter describes in detail the development of a GPU accelerated RGB-D Hough
forest. The basis for this implementation is the CURFIL library [62], which provides the core
components required for rapid training of an image classification forest on a GPU. To build a
Hough forest from this library required significant modifications:

1. The core modification is the addition of the second objective for split nodes, to also minimise
the offset uncertainty of Hough votes. Efforts were made to ensure this computationally
expensive procedure would not cause a significant slow down during training.

2. To improve accuracy of the multi-class forest, the modified information gain calculation de-
scribed by Razavi et al. [45] has been added, to better separate the background class from
object classes.

3. The existing JSON implementation has been replaced with the rapidjson library. This was
necessary because of the much larger leaf nodes required by a Hough forest, which resulted
in extremely slow forest reading/writing.

Two additional contributions have also been made, with the aim of improving accuracy of the forest
without increasing training time.

1. A post-training process has been implemented, which augments the data stored at leaf nodes
by quickly passes additional training data down the tree after split tests have already been
decided. This is both fast, and could help to alleviate overfitting.

2. To avoid re-training a tree with multiple maximum depths, a modification has been made
which allows the maximum depth to be specified at test time, to retrospectively tune the
optimum depth [11].

Finally, the combined results of optimisation efforts for the offset uncertainty calculation were
compared against a näıve CPU implementation, and showed a 133× improvement.

4.1 The CURFIL Library

The CUDA Random Forests for Image Labeling (CURFIL) Library is an open source implementa-
tion that accelerates random forest training and prediction for labelling RGB-D images through use
of a GPU [62]. CURFIL is the result of Waldvogel’s [61] detailed analysis on GPU optimisations for
training a random forest to perform pixel-wise classification, and it forms the core implementation
for the Hough forest object detector. Presented here is a brief description of the important features
implemented within the library. For a more complete description of the library and the extensive
optimisation efforts made, please refer to the original thesis [61].

Training of trees proceeds in a breadth-first manner, according to Algorithm 1. Breadth-first is
both conducive for parallelism, and provides the freedom to generate a single set of random features
once per tree level, thereby improving efficiency.

As proposed by Stückler et al. [55], two types of RGB-D image feature responses are used,
depth and colour. The feature response is calculated as the difference of two region averages that
are offset around the query pixel. Images are integrated to allow for this averaging to be calculated
efficiently with four memory accesses and three arithmetic operations (See Figure 4.1). Depth is
always compared against depth, but any of the colour channels may be compared against any other.
The colour channels can be either in raw RGB, or converted to CIELab space.

As discussed in Section 2.3, the offsets and region size use depth normalisation. As RGB-D
cameras often do not guarantee depth data for every pixel, a second depth image channel is used
to store valid depth values for a given region. A depth filling scheme proposed by Stückler is also
available, which uses neighbouring pixels to efficiently reconstruct missing depth values.
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Algorithm 1 Breadth-first training of a random decision tree. Source [61]

Require: D training instances
Require: F number of feature candidates to generate
Require: P number of feature parameters
Require: T number of candidate thresholds to generate
Require: stopping criterion (eg. maximal depth)
1: D ← randomly sampled subset of D (D ⊂ D)
2: Nroot ← create root node
3: C ← {(Nroot, D)} . initialize candidate nodes
4: while C 6= ∅ do
5: C ′ ← ∅ . initialize new set of candidate nodes
6: for all (N,D) ∈ C do
7: (Dleft, Dright)← EvaluateBestSplit(D)
8: if stopping criterion does not hold for (N,Dleft) then
9: Nleft ← create left child for node N

10: C ′ ← C ′ ∪ {(Nleft, Dleft)} . add left child to candidates

11: if stopping criterion does not hold for (N,Dright) then
12: Nright ← create right child for node N
13: C ′ ← C ′ ∪ {(Nright, Dright)} . add right child to candidates

14: C ← C ′ . continue with new set of nodes

The feature parameters are randomly generated using the CUDA library CURAND. There are
11 feature parameters in total (such as region offsets, depth or colour, channel choice), and these
are stored in an F × 11 matrix, where F is the number of candidate features. Threshold candi-
dates are then obtained by sampling feature responses of training instances, as done in the Tuwo
implementation [40]. For every feature the threshold candidates, T , are stored in an F ×T matrix.

Figure 4.1: An illustration of the integration method used by the CURFIL library. Each pixel is
the sum of all the pixels to its above left, therefore the region sum = d− c− b+ a. Source [61]

For the feature response calculation, training images are stored in texture memory. Samples
from training images D are stored with their corresponding image identifier, depth, and x and y
offsets in a D × 4 matrix. Features are sorted by type (colour or depth), channels, and offsets
to increase the hit rate of the texture cache and the L2 cache by assisting sequential accesses in
spatially nearby regions, and speed up the response calculation, which is stored in a D×F matrix.

To calculate the best score, counters for each class, feature, and threshold are stored in a 4D
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matrix of size C×T ×F ×2, with C being the number of classes, and the fourth dimension required
for storing the right-left split. The algorithm keeps the samples in the innermost loop to maximise
the use of shared memory (See Algorithm 2) and then subsequently performs a sum reduction step
to avoid atomic operations. This is an approach followed in the offset uncertainty algorithm and
discussed in more detail in Section 4.2.

Algorithm 2 Histogram aggregation on GPU. Source [61]

Require: F ∈ RD×F feature responses for D samples and F features
Require: T ∈ RF×T random threshold candidates for each feature
Require: C ∈ {1..C}D class for each sample
1: H← 0F,T,C,2 . initialise histogram counters
2: for all f ∈ 1..F do
3: for all τ ∈ Tf do
4: for all d ∈ 1..D do
5: c← Cd . class c of sample d
6: if Fd,f ≤ τ then
7: Hf,τ,c,0 ← Hf,τ,c,0 + 1 . increment left histogram counter
8: else
9: Hf,τ,c,1 ← Hf,τ,c,1 + 1 . increment right histogram counter

The score kernel is then implemented in a straightforward method. Each thread calculates
the information gain for a given threshold and feature, by reading the counter matrix from global
memory, calculating the impurity score according to Equation 1 & 2, and the writing the result
back to global memory.

4.2 Implementing the Offset Uncertainty

The additional best split objective of offset uncertainty, is the main modification required to the
GPU training implementation. This calculation is the most computationally expensive training
step, and so care is needed to ensure the GPU is used efficiently. Algorithm 3 describes the
basic two stage offset uncertainty calculation, as defined in Equation 3. First the mean offsets for
right and left split samples are calculated for a given feature and threshold. This is then used to
calculate the total squared Euclidean distance from the mean for both right and left subsets. After
Algorithm 3 the best split can be trivially computed by selecting the feature f and threshold τ
with the smallest offset uncertainty in the 2D uncertainty matrix U .

Unfortunately an additional layer of complexity is required on top of this algorithm, resulting
in the final lengthier Algorithm 4. The large number of samples |D| used when training a forest of
any considerable size can far exceed the available memory in the GPU. This requires samples to be
processed in batches of a more manageable size. For the histogram aggregation seen in Algorithm
2 this does not present any difficulty, as the batches can simply be allowed to accumulate in H.
For Algorithm 3 however, the global mean of all batches must first be calculated, and then for
every batch the squared difference must be taken for each sample. This two pass system would be
computationally expensive and require each sample to be transferred to the GPU twice, slowing
the training process down dramatically.

A modification exists, that allows the same offset uncertainty result to be calculated, while
processing each batch only once, and then combining it into a running total. The basis for the
improvement is an equation derived by Chan et al. [8] to combine the variance of two samples of

arbitrary size in a single pass. Given two samples, {xi}ji=1 and {xi}j+ki=j+1, the totals, T and square
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Algorithm 3 Offset uncertainty calculation on the GPU

Require: F ∈ RD×F feature responses for D samples and F features
Require: T ∈ RF×T random threshold candidates for each feature
Require: O ∈ RD

c,c 6=bg contains offsets, on, from each positive sample
1: U← 0F,T
2: for all f ∈ 1..F do
3: for all τ ∈ Tf do
4: sleft ← 0n+1 . initialize the left and right totals to a zero vector
5: sright ← 0n+1

6: for all d ∈ 1..D do
7: if exists Od then . ensure this is a positive sample with an offset
8: o← Od

9: if Fd,f ≤ τ then
10: sleft ← sleft + [o, 1]
11: else
12: sright ← sright + [o, 1]

13: sleft ← sleft1..n/ sleftn+1 . normalise with respect to the final counter value . . .

14: sright ← sright1..n / srightn+1 . . . . to arrive at the mean offset vector for this split
15: for all d ∈ 1..D do
16: if exists Od then
17: o← Od

18: if Fd,f ≤ τ then
19: Uf,τ ← Uf,τ +

∥∥o− sleft
∥∥
2

20: else
21: Uf,τ ← Uf,τ +

∥∥o− sright
∥∥
2

differences, S, of the samples set, can readily be calculated;

T1,j =

j∑
i=1

Tj+1,j+k =

j+k∑
i=j+1

(8)

S1,j =

j∑
i=1

(xi −
1

j
T1,j)

2 Sj+1,j+k =

j+k∑
i=j+1

(xi −
1

k
Tj+1,j+k)

2. (9)

It is then possible to combine these processed statistics into a single summed square difference of
the entire population with the following equations,

T1,j+k = T1,j + Tj+1,j+k (10)

S1,j+k = S1,j + Sj+1,j+k +
j

k(j + k)

(
k

j
T1,j − Tj+1,j+k

)2

(11)

These equations are suitable for single dimensional data, and require the storage of counters
(m, n), totals (T1,m+n, Tm+1,m+n), and the summed square differences (S1,m+n, Sm+1,m+n). When
aggregating n-dimensional vectors, the counters can be shared, and the squared Euclidean distance
from the mean can be combined for all dimensions, leaving only the totals which must be maintained
separately. For b batches, N values must be stored, where N = (n + 2) × b. As aggregation is
required for both the right and left split nodes, the original matrix UF,T must be enlarged to
UF,T,2,N .

Initially, it was planned for all of the sample batch results from Equation 8 to be stored in a
single matrix, and aggregated in a single parallel reduction step. However, the large number of
batches made storage of even the reduced statistics unfeasible, and also profiling suggested the
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Algorithm 4 Modified offset uncertainty calculation for the GPU

Require: F ∈ RD×F feature responses for D samples and F features
Require: T ∈ RF×T random threshold candidates for each feature
Require: O ∈ RD

c,c 6=bg contains offsets, on, from each positive sample
Require: n the number of dimensions contained in the offsets
1: Utotal ← 0F,T,2,N
2: for all B ∈ D do . take the first range B, from the complete set of samples D
3: Utmp ← 0F,T,2,N
4: for all f ∈ 1..F do
5: for all τ ∈ Tf do
6: sleft ← 0n+1 . initialize the left and right totals to a zero vector
7: sright ← 0n+1

8: for all b ∈ Bstart..Bend do
9: if exists Ob then . ensure this is a positive sample with an offset

10: o← Ob

11: if Fb,f ≤ τ then
12: sleft ← sleft + [o, 1]
13: else
14: sright ← sright + [o, 1]

15: sleft ← sleft1..n/ sleftn+1 . normalise with respect to the final counter value

16: sright ← sright1..n / srightn+1

17: for all b ∈ Bstart..Bend do . store required information in the temporary matrix
18: if exists Ob then
19: o← Ob

20: if Fb,f ≤ τ then
21: Utmp

f,τ,0,0 ← Uf,τ,0,0 + 1

22: Utmp
f,τ,0,1 ← Uf,τ,0,1 +

∥∥o− sleft
∥∥
2

23: Utmp
f,τ,0,2..n ← Uf,τ,0,2..n + o

24: else
25: Utmp

f,τ,1,0 ← Uf,τ,1,0 + 1

26: Utmp
f,τ,1,1 ← Uf,τ,1,1 +

∥∥o− sright
∥∥
2

27: Utmp
f,τ,1,2..n ← Uf,τ,1,2..n + o

28: for all split ∈ {0, 1} do . combine matrix statistics into the total matrix
29: j ← Utotal

f,τ,split,0

30: k ← Utmp
f,τ,split,0

31: Utotal
f,τ,split,0 ← Utotal

f,τ,split,0 + Utmp
f,τ,split,0

32: Utotal
f,τ,split,1 ← Utotal

f,τ,split,1 + Utmp
f,τ,split,1 + j

k(j+k)

∥∥∥kjUtotal
f,τ,split,2..n −Utmp

f,τ,split,2..n

∥∥∥
2

33: Utotal
f,τ,split,2..n ← Utotal

f,τ,split,2..n + Utmp
f,τ,split,2..n

combine step takes much less time than the square difference calculation or the feature response
calculation (See Figure 4.2). Therefore a batch size of 2 is used, with each batch collecting statistics
into one half of the U matrix and then having it immediately merged into the running total statistics
in the other half.

4.3 Multi-Class Modifications

Information Gain Score

For using the forest to detect multiple classes, it is also to ensure a strong separation of the
background from positive samples, before separating the classes themselves. A optional weighted
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Figure 4.2: The number of samples vs the time taken to complete each stage, for 5,000 features,
20 thresholds, and a batch size of 2.

information gain score as described in Equation 7 has been implemented within CURFIL’s original
score kernel. The modification required only two small changes to the existing kernel, firstly to keep
count of the total number of background instances and positive samples, and secondly to calculate
the background separation score and combine it with the λ coefficient. The annotation tool reserves
class 0 and object identifier 0 for the background, rendering this change straightforward.

Relaxed Offset Uncertainty

The offset uncertainty Algorithms 3 and 4 focus on the original single-class optimisation of Equa-
tion 3. The multi-class ‘relaxed’ offset uncertainty, given in Equation 4, would require a fifth
dimension to also accommodate the offset uncertainty for each class C. This would be both more
computationally expensive and result in significant additional memory requirements. With a focus
on rapid training, and for the evaluation dataset presented here, with similar sized classes, this
feature has not been implemented. However, for future versions and more varied datasets, it may
result in improved accuracy worth the additional training time.

4.4 Post-Training Data

The performance of Totally Randomised Trees [24], where a single feature and threshold are chosen
at random, suggests that the information stored within the leaf nodes may have a more significant
impact on the accuracy of the tree, than the choice of the split node function. Storing large
quantities of data at the leaf nodes comes with a corresponding increase in training time, an effect
most apparent when the number of sampled training images increases past the GPU cache size.
This has led to the development of a post-training step, in which new samples are passed down an
already trained tree to gain an improved distribution at the leaf nodes. This is not only fast, but
has the benefit of alleviating overfitting, as the trees structure is no longer being tailored to the
input data. This “post-training” step has been performed entirely on the CPU, as it is bound by
reading and processing training images rather than the tree traversal algorithm.

To avoid re-training a tree for exploring multiple values of maximum depth, as in Section 7.2,
the suggestion by Shotton et al. in [11] has been followed on “Retrospective Tuning of Maximum
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Tree Depth”. This modification to CURFIL allows the tree depth to be specified at test time, but
requires that every node, not just leaf nodes, store the aggregated information of the samples that
arrive to them. The post-training tree traversal procedure can also easily accommodate training
at every depth with a simple recursive functions, shown in Listing 4.1.

Listing 4.1: Post-training functions to increase sample size

1/* Traverse a tree while adding the sample to the node statistics */

2void postTrainTraverse(const Sample& sample, float4& offset, float4& quat) {

3if (isLeaf() || trainAllDepths) {

4this->addOffset(offset);

5this->addQuaternion(quat);

6this->histogram[sample.getLabel()]++;

7if(isLeaf())

8return;

9}

10if (split(instance) == LEFT)

11left->postTrainTraverse(sample, offset, quat);

12else

13right->postTrainTraverse(sample, offset, quat);

14}

4.5 Optimisation Efforts and Benchmarking

Efficient Squared Difference Sum Reduction

To calculate the offset uncertainty as quickly as possible, the use of low latency high bandwidth
shared memory is essential. Individual threads are used to accumulate three-dimensional offset
vectors from training samples in global memory, using a sequential coalesced memory pattern.
Each thread is given access to their own designated shared memory block with room for 8 floating
point numbers. This block stored the x, y, and z offset component totals, as well as a count of
vectors, for both the right and left splits, as shown in Listing 4.2. By ensuring that each thread has
access to a unique block in memory, the use of atomics is not required, thus avoiding serialisation.

Listing 4.2: Each thread stores the accumulated result of its samples in the shared memory block

1// Each thread accesses a sample in sequential order to ensure coalesced loading

2for (int sample = threadIdx.x; sample < numSamples; sample += blockDim.x) {

3float xOffset = xSample[sample];

4float yOffset = ySample[sample];

5float zOffset = zSample[sample];

6// Branching statements are avoided by using the threshold function as an offset

7int right = static_cast<int>(!(featureResponse <= threshold));

8sharedMem[threadIdx.x * 8 + right * 4 + 0] += xOffset;

9sharedMem[threadIdx.x * 8 + right * 4 + 1] += yOffset;

10sharedMem[threadIdx.x * 8 + right * 4 + 2] += zOffset;

11sharedMem[threadIdx.x * 8 + right * 4 + 3] += 1.0;

12featureResponse += blockDim.x;

13}

This shared memory then requires a reduction step to calculate the total mean of the batch for
both the right and left node. The initial näıve reduction step shown in Listing 4.3 works up the
thread block in powers of two, taking even threads and adding to their memory block the thread
above it. This process is repeated until thread 0 stores the accumulated sum reduction of all the
counter and total offsets within the left and right nodes. After each reduction the syncthreads()
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command is used to make sure all threads have completed the reduction before moving on.

Listing 4.3: The original näıve sum reduction kernel

1// For every thread within repeatedly lower halfs of shared memory

2for (unsigned int sumIdx=1; sumIdx < blockDim.x; sumIdx *= 2) {

3if (threadIdx.x % (2 * sumIdx) == 0) {

4for(unsigned int storageIdx = 0; storageIdx < 8; storageIdx++) {

5sharedMem[threadIdx.x * 8 + storageIdx] +=

6sharedMem[(threadIdx.x + sumIdx) * 8 + storageIdx];

7}

8}

9__syncthreads();

10}

An improved reduction algorithm has been implemented [28]. First the shared memory, which
is eight times larger than the number of threads is compressed into two memory blocks equal in size
to a single thread block, using all available threads. It then avoids divergent branching and use of
the modulo operator as shown above, instead using strided sequential access in a decreasing power
of two pattern, to speed up the remainder of the reduction process. This reduction is shown in the
kernel in Listing 4.4. This change reduces the time taken to process 1,000 samples from 22.7ms to
20.0ms, a 11.1% reduction in the square difference kernel calculation time.

Listing 4.4: The optimised sum reduction kernel

1// Compress sequential shared blocks into the lowest of the 8 thread blocks

2// using all of the available threads simultaneously

3for (unsigned int sumIdx = 7; sumIdx > 1; sumIdx--) {

4sharedMem[threadIdx.x] +=

5sharedMem[threadIdx.x + blockDim.x * sumIdx];

6}

7// Reduce the shared memory into the first thread only, with strided access

8for (unsigned int sumIdx = blockDim.x; sumIdx >= 8; sumIdx >>= 1) {

9if (threadIdx.x < sumIdx) {

10sharedMem[threadIdx.x] += sharedMem[(threadIdx.x + sumIdx)];

11}

12__syncthreads();

13}

Tuning the Block Size

The number of threads per block as part of the square difference calculation can be tuned, and
corresponds to the number of samples in a batch which are processed simultaneously. For the
reduction step, it is required to be a power of two. The number of threads was experimented on
up to the maximum of 1,024, and it was found through benchmarking that 128 threads resulted in
the fastest calculation (See Figure 4.3).

Benchmarking against a CPU Implementation

A single threaded CPU version of Algorithm 3 has been implemented for two reasons. First, it
provides a method of ensuring the result of the more complex GPU based Algorithm 4 is identical
to the basic algorithm. Second it also provides a benchmark to measure the speed-up attained
for moving to a “one-pass and combine” approach on a GPU. This comparison does not strictly
assess the advantages of the GPU over a CPU, as the CPU implementation has neither been multi-
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Figure 4.3: Thread block size comparison of total samples processed vs time taken to calculate the
offset uncertainty for 5,000 features, 20 thresholds, and a batch size of 2.

threaded nor optimised in any significant way. Instead it aims to give an approximate measure
of the total speed-up attained as a result of a combination of all of the above work on the offset
uncertainty calculation, from an initial näıve C++ implementation. The result (Figure 4.4) showed
that the GPU implementation witnessed a performance increase of on average 133×, when training
a 20-level tree, with 500 features.
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tion. Samples vs square difference calculation time, for 500 features and 20 thresholds.
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Rapid exporting

In the original CURFIL library, the trained trees are exported in a JSON format using boost’s
Property Tree [7] library and compressed using gzip. The Property Tree library provides a generic
data structure to store nested trees of values, however it is not optimised for use with the JSON
format, instead aiming for generality. For storage of random trees with only histogram data at the
leaf nodes, this lack of optimisation presents no difficulty, as thousands of samples boiled down into
a single statistic for each class.

A Hough forest however, often requires leaf node storage which is orders of magnitude larger
than a class histogram (See Section 5.1 for a detailed discussed of the leaf representation). The
pressure on Boost’s unoptimised Property Tree library resulted in an excessively long export time.
A number of open source JSON C++ libraries exist; rapidjson, jsoncpp, YAJL to name a few.
Rapidjson [43] was eventually selected, because of its simplicity and focus on high performance,
which is apparent in a number of benchmarking experiments [2, 44] (See Table 4.1). The change
to rapidjson resulted in a dramatic decrease in export time. For a tree of 20 levels and 135,000
samples, export time decreased from 18 minutes to 232 ms.

Table 4.1: Time in ms to parse a 672Kb test document, using an Intel Core i7 CPU 920 2.67Ghz,
GCC 4.5.3 in Cygwin. Source [44]

Time Taken for Operation (ms) rapidjson YAJL JsonCPP

Parsing Document Object Model 796 6,316 6,705
Stringify Document Object Model 1,289 14,040 24,757
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5 Object Detection on the GPU

To ensure that the trained random forest is capable operating in a real-time system, and also to
allow for rapid evaluation on a test set, object detection has also been accelerated with a GPU. To
accomplish this, the following contributions have been made:

1. An efficient discretised cubic representation of offset votes has been developed and stored in
GPU memory as part of a two-dimensional layered texture. Alongside this, orientation votes
in the form of quaternions have been compressed and also stored for retrieving the object
rotation.

2. A Hough voting procedure has been developed, building on the tree traversal algorithm
already available in CURFIL. This allows each tree to vote into a unified three-dimensional
Hough space, which is then normalised.

3. A rapid mean shift clustering algorithm has been designed for a GPU, which uses efficient
parallelised flat cubic kernels. This processes the raw Hough space information, and retrieves
the most likely object centres, within a given threshold criteria.

4. Finally a second pass is performed on the most likely object centres, and information from the
nodes which voted towards them is used to estimate the class and orientation of the object.

To achieve reasonable frame rates live from a Kinect device, forest parameters have been tuned,
alongside other optimisation efforts. These modifications are also outlined below.

5.1 Leaf Representation

List of Vectors

There are a number of possible choices for modeling the spatial distributions of offsets at the
leaf nodes. For example, a Parzen estimate with a Gaussian kernel has been used to reconstruct
the distribution from the samples [22]. For the prototype implementation, the simplest possible
representation was chosen to create a functioning system; a list of 3D offset vectors where stored
at each node [3]. This maintains an exact representation of the distribution at the leaf nodes in
continuous space, at the cost of practical memory limitations.

The CURIL library stores tree data in a column of two-dimensional layered textures. A single
two-dimensional layered texture is limited to a size of 8, 192×8, 192 in compute capability 1.x, and
16, 384× 16, 384 in compute capability 2.x,3.x, and 5.0. For this project, a GeForce GTX 780 with
compute capability 3.5 is used, providing a maximum texture width is 16,384. To store additional
data beyond this, another complete column of layers must be used.

The tree data is structured with tree nodes in successive rows in breadth-first order. Each row
of a split node stores the left child node ID, split function threshold, feature parameters, while
each row of a leaf node stores the aggregated histograms. Including an integer denoting the size
of the list, this allows for 5,458 three-dimensional offsets to be stored with a two-class histogram
(ignoring any requirements for storing orientation votes). For 5,000 samples per image, and 300
images, 1.5m offsets must be stored in a tree. If equally divided within a perfectly balanced tree
of depth 10 (i.e. 1,024 leaf nodes), only 1,465 offsets should be required at any given node. In
practice, however, trees are not perfectly balanced, and offsets within them come in large groups.
When a list of vectors larger than the available space arrives, it is simply lost in the representation.

An additional problem with this list format is prediction time. The representation’s final use
is to vote into Hough space. For a list of individual vectors, each vector must individually be
processed and accumulated into Hough space, causing a significant slowdown. A better system
would allow for these statistics to be accumulated in a more manageable form as part of training,
and then used as groups of similarly placed vectors.

38



Figure 5.1: A schematic of the original CURFIL tree storage structure. Source [61]

Discretised Voting Cubes

The improved current representation of leaf votes discretises a cubic volume around the pixel into
a grid of smaller 3D cubes. The size of the volume is set to 1m× 1m× 1m and the number of bins
along each side is set to 8. In total each leaf node requires 512 counters to be stored to represent its
surrounding cube in a linear fashion. This alleviates the two problems mentioned above, allowing
any number of sample offset vectors to be stored, and also providing a few aggregate weighted
vectors instead of many individual ones.

1m

1m

1m

Offset vector bin

Query pixel

Figure 5.2: A visualisation of the voting space surrounding a pixel. For illustration purposes, a five
bin division, with spaces between bins is shown.

This solution comes with a number of drawbacks. The first is that the limitation on the number of
vectors that may be stored, has been replaced with a limitation on which vectors may be stored.
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Any votes that fall outside of the cubic volume are ignored. For objects on the same scale as a chair
this could actually be an advantage, removing outliers and giving weight only to pixels relatively
close to the object centre. Shotton et al. [52] for example explicitly set a threshold to remove votes
beyond a certain range. However, since all objects must share the same volume size, an object
on a scale larger than 1m may not form an accurate distribution of votes, losing useful feature
information as ‘out-of-bounds.’

The idea of enlarging the volume to accommodate larger objects raises a second problem, that
of resolution. The discrete representation use here contains bins with a side length of 12.5cm, which
means that indoor objects on the scale of a coffee mug will all be placed within the single central
bin of their Hough Space. This not only gives a very poor estimate of the actual distribution of
votes, but also wastes prediction time reading numerous empty bins.

Future Offset Representations

Complex multi-modal distributions, such as a Gaussian Mixture Model (GMM), could help with
both the scale and resolution problems highlighted above [25]. This would come with a significant
increase in the training cost, as each leaf node must have a distribution estimated for it from the
raw vectors. Other representations may result in a faster, more efficient, and flexible description
of spatial voting data, and this constitutes an important area for potential investigation. However
with a focus on real-time detection and rapid training, the static discretised cubic volume approach
has been implemented, despite its limited flexibility.

Orientation Data

To estimate the 6 DOF pose of an object, orientation data must also be stored at the leaf nodes. In
the present system it is stored as a 4D normalised quaternion, representing the rotation from the
camera frame to the object frame. In a similar fashion to the offsets, quaternion data is discretised
into bins. With 4D data, dividing into 11 equally sized sides requires 14,641 floats to be stored.
However, it is possible to compress this data into a 3D space. For every rotation, two quaternions
exist to represent it, q and −q. A positive rotation around an axis is the same as a negative rotation
about a reversed axis. Using this, the real component, qw, can be guaranteed to always be positive,
by negating the entire quaternion if it is not. It is then possible to store only the normalised qx,
qy, and qz components in 3D space, and retrieve the qw from them with reference to Equation 12.

q2
w + q2

x + q2
y + q2

z = 1, (12)

Since each component must be between −1 and 1, it is trivial to divide the sides of a 3D cube
into 11 bins within this range, resulting in an additional 1,331 floats which must be stored at any
given leaf node. This representation neatly circumvents the problem of angular wrap-around, which
causes averages of angles to potentially face the opposite direction. The modal bin is then sought
within the 3D orientation space, and converted back into a 4D quaternion.

Although the system currently implemented functions to a reasonable degree, much future work
can be done to improve this representation. The above compression system has been designed with
speed in mind, with relatively little thought to the even distribution of quantised rotations. A
number of possible methods of encoding 3D unit vectors have been studied, such as projection on
to an octahedral [9]. These could be useful for a 4D quaternion analog, however in the same paper
it is explicitly noted that “the symmetries are much more complex and it does not scale easily or
obviously.”

5.2 First Pass: Detection Algorithm

Now that the representation of the decision trees has been discussed, this section will describe the
first part of the two-stage test phase [3]. The first pass operates in a unified 3D Hough space.
Storing classes separately in both leaf nodes and 3D Hough space results in a significant additional
memory requirement should the number of classes grow. Instead they have been combined into a
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single storage unit at each leaf and these then vote into a single Hough space (See Figure 5.5). It
is hoped that these will then form maxima at object centres even for multi-class forests, and the
class and orientation of the object can be derived from the nodes that voted for that maxima in a
second pass.

A potential area of exploration, is to use the class distribution to give a weighting to the entire
voting space for a leaf node for a given class. This class-weighted voting space could then be
separately aggregated in a 4D Hough space with an additional dimension for each class. This
technique may improve the forest’s ability to distinguish classes, and requires only the information
already stored in the leaf nodes, along with an expanded 4D Hough space.

Voting

For processing a test image, all decision trees are loaded into texture memory in the format outlined
above. Every pixel of the test image is processed by the forest and its votes cast. The CURFIL
library prediction algorithm for traversing a tree has already been optimised for 640× 480 RGB-D
images. Best performance is achieved by using 128 threads to classify an image block-wise with
patches of size 8 × 16 pixels, a system followed here. Every thread processes a pixel for an entire
tree from root to leaf, and as all threads access a tree level simultaneously, spatial locality and
the cache hit rate are maximised. The CURFIL library also avoids branching by expressing the
feature response result as an integer, either 0 for the left child, if θ ≤ τ , or 1 for the right child
otherwise. Each decision tree in the forest processes the image sequentially, the implementation
therefore scales linearly with the number of trees, as well as the maximum depth of the trees and
the number of pixels in the image.

After a leaf node has been reached, the voting space stored within the leaf is converted into
weighted vectors, and accumulated in Hough space. The vectors are also weighted by the depth
of the pixel as in [3], to account for the smaller projected image size of a distant object. Hough
space is discretised in a similar manner to the voting cubes, but modified to represent a frustrum
matching the camera viewing volume. This allows higher x-y resolution close to the camera, and
lower resolution farther out, expanding to fit the visible scene. It also prevents memory being
wasted on space outside of field of vision. The z-axis is limited between a near plane (0.5m) and a
far plane (5m), and discretised into 0.025m bins. In total, a discretised space of 160 × 140 × 180
bins are used, with each bin represented by a single-precision floating point format.

(a) The original colour image (b) The accumulated hough votes in 3D space

Figure 5.3: The accumulated 3D hough votes from a trained Hough forest on a test RGB-D image

Mean Shift Clustering

To detect object centres, a GPU mean shift clustering algorithm is used. The principle behind
mean shift clustering is gradient ascent. A number of (often spherical) windows are initialised
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within the data space. The centroid of points inside the window is calculated and the centre point
of the window is moved to this ‘mean.’ This process is repeated until the windows centre resides at
a maxima and no longer moves. Groups of windows that eventually halt within a certain threshold
can then be combined. Figure 5.4 illustrates this process with a square kernel.

Wn

W0

W1 Wn

W0

W1

Figure 5.4: A 2D visualisation of the mean clustering procedure with square kernels. The win-
dows W are initialised within the vote space and iteratively move towards areas of highest vote
concentration

Many kernel functions exist to weight the points within the window. A Gaussian kernel function
for instance gives exponentially less weight to points far from the centre. For rapid detection and
simplicity, a flat cubic kernel has been implemented in this project. Each kernels is initialised in an
even distribution across the grid of Hough space, and follows the frustum spatial distribution of the
space itself. Each kernel is implemented as a separate block of threads, which move independently
through the Hough space stored in global memory. The number of threads per block is limited to
512 in compute capability 1.x, and 1, 024 in compute capability 2.x,3.x, and 5.0. So to allow for
larger cubic kernels than 8× 8× 8, threads are assigned a two-dimensional (x, y) window, and each
thread then iterates along the z-axis when calculating the mean.

After the mean clustering, a filtering procedure is done. Windows that lie within a certain
minimum distance of each other (0.05m) are combined. The total hough votes within the space is
counted, and the number of votes that lie within each window is normalised. The object centres
above a certain minimum threshold are sorted according to their voting weight, before proceeding
to the second pass.
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5.3 Second Pass: Maxima Information Retrieval

To accomplish both orientation and location voting at once would require at least a 6D voting
space, with each point in 3D Hough space storing the (compressed) 3D orientation space described
in Section 5.1. At the resolution outlined above this would require 2.06× 109 4-byte floating-point
numbers, which is beyond the entire global memory of a GeForce GTX 780. To overcome this
challenge, and also to extract class information in a multi-class Hough forest, a second pass is
performed on the leaf nodes that contributed to the maxima.

In the first pass, a 640 × 480 matrix stores the final leaf nodes reached by each pixel, thereby
avoiding a second tree traversal. In the second pass, for each voting bin within the stored leaf
nodes, it is checked whether the bin lies within one of the detected object clusters, if it does then
the orientation votes stored at the leaf node are weighted by the number of votes within the voting
bin, and accumulated within an orientation space stored for that object. At the same time, the
objects class distribution is also accumulated, again weighted by the number of votes. This is
processed is performed in parallel, again using 128 threads to process leaf nodes in patches of size
8× 16.

After voting, the modal orientation bin is sought within the 3D orientation space, and the class
with the maximum weighted votes is selected. The orientation bin (denoted with x, y, z coordinates
within the space) is then converted back into a quaternion on the CPU with the following equations,
where n is the number of voting bins per dimension:

qx =
x× 2

n
− 1 qy =

y × 2

n
− 1 qz =

z × 2

n
− 1 qw = 1− q2

x − q2
y − q2

y. (13)

Finally a pre-measured bounding box is overlayed on the live image in the predicted location
and with the predicted orientation of the object (See Figure 5.5). Ground truth annotations on
the training set also provides the dimensions of the 3D cuboid in metres, which could in future be
used, alongside the predicted class, to properly size the bounding box.

(a) The original colour image, with a projected bound-
ing box

(b) The accumulated hough votes in 3D space, with a
bounding box

Figure 5.5: A live rendering of the pre-measured projection of the estimated chair bounding box,
on a test RGB-D image

5.4 Profiling Object Detection

To enable live detection, all of the above must be accomplished within approximately 50 ms. The
initial implementation of the pipeline described above required on average 263 ms to process a
frame, when using a forest of 3 trees, of depth 15, and a 100 iteration mean clustering algorithm.
The breakdown shown in Table 5.1 highlights areas where optimisation has been most beneficial.
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Table 5.1: Performance breakdown of the object detection pipeline. Tested with a Kinect device
on a GeForce GTX 780 GPU with a 2.13 GHz Intel Xeon E5606.

Average Time for Operation (ms) Initial Using Raw-RGB Optimised Orientation Voting

Image Preprocessing 139.0 13.2 13.2
Hough Voting (3 trees, 15 levels) 31.1 31.8 32.1
Mean Clustering (100 iterations) 11.7 12.1 10.2
Maxima Information Retrieval 80.9 77.4 6.4
Other 1.2 1.2 1.2

Total Time (ms) 263.9 135.8 63.3
Frames Per Second 3.9 7.4 15.8

Minimising Image Preprocessing

The largest contributor to the slow frame rate was importing the image into a format the tree
could process. For trees trained in CIELab space, the raw image from the kinect must first be
converted from its native RGB. CURFIL uses the image library Vision with Generic Algorithms
[60], which takes approximately 120ms for a 640× 480 image. The CIELab space has been shown
to improve the accuracy of image segmentation in [61]. In the evaluation on the Hough forest test
set (See Section 7.2), results did not demonstrate a dramatic improvement in accuracy for object
localisation, therefore the much more efficient directly trained RGB tree has been selected for use
in live detection. This alone resulted in a 89% increase in the frame rate.

Optimising Orientation Voting

The next largest time sink was the second pass of object detection, when calculating the orientation
and object class. This phase does not require tree traversal, and yet was 40ms slower than the
combine time for hough voting and mean clustering. This surprising bottleneck was eventually
traced to the CUDA atomic operations used for accumulating the orientation votes.

To understand the importance of atomic operations as part of a parallel system, a short example
can be quite instructive. A simple program is designed to increment a given memory location by 2,
using 2 threads. The threads begin running in lock-step as part of a warp, and both read the value
0. They both store this in their register, increment it to 1, and then both write the incremented
value of 1 back to the memory location. Regardless of which thread writes last, a count will
be missed. Atomic operations allow this missed update to be avoided, with the guarantee that
multiple independent threads will safely read and write as if called sequentially, with the caveat
that competing writes must be serialised, and could potentially cause slowdowns [13].

In the detection procedure, it is not known in advance which pixel will be voting where within
Hough space. Atomics are therefore essential to ensure that updates are not lost. A similar require-
ment applies to orientation space, however unlike the Hough space, where updates are dispersed
throughout bins largely at random, the entire set of votes are added into the detected object’s
orientation space. The use of atomics for this operation as in Listing 5.1 required serialisation
between all of the threads and slowed the process down considerably.

Listing 5.1: The basic quaternion voting procedure

1// Copy orientation votes into Quaternion space, weighted by the voteWeight

2for(unsigned int quat = 0; quat < QuatArraySize; ++quat) {

3unsigned int quatWeight = getQuaternionWeight(quat, currentNode, currentTree);

4atomicAdd(&quatSpace[objectId * QuatArraySize + quat], voteWeight * quatWeight);

5}

A small change to this procedure produced significant improvements. Instead of each thread
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starting at the same location, the location is selected by reference to the pixel location, (locy ∗
Imagewidth+locx) modQ3

dim), and each thread is simply required to do a full ‘loop’ of the quaternion
space. This allowed an approximately even distribution across all 1,331 locations to be incremented
simultaneously, and reduced the operating time for this operation from 77ms to 20ms. After
experimentation, it was discovered that the orientation error for a test set stayed consistent at
approximately 65°, even with a decrease in the granularity of the orientation space to 8 × 8 × 8.
This change reduced the average maxima calculation time to 6.4 ms on average as shown in Table
5.1.

Listing 5.2: The improved quaternion voting procedure

1// Chosen starting offset within quaternion space, distributed across pixel location

2unsigned int qOffset = pixelId % QuatArraySize;

3for(unsigned int quaternion = 0; quaternion < QuatArraySize; ++quaternion) {

4unsigned int quatWeight = getQuaternionWeight(qOffset, currentNode, currentTree);

5// Accumulate the quaternionWeight, along with the voteWeight into quatSpace

6atomicAdd(&quatSpace[objectId * QuatArraySize + qOffset], voteWeight * quatWeight);

7// If the next offset is on the edge of quaternion space, loop back to finish

8if(qOffset++ >= QuatArraySize) qOffset = 0;

9}
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6 Dataset Collection

This chapter describes the collection of a dataset using the KinectFusion-based annotation tool
presented in Chapter 3. The collection of this dataset is not only required for measuring the
performance of the Hough forest implementation, but is also in many ways an evaluation itself on
the usability of the tool application. Two datasets were captured and annotated, both of which
contain three classes of chair. The training set consists of 6,073 unoccluded images of single chairs
in two different backgrounds. The test set is composed of 8 video sequences with multiple object
instances and classes, often with partial occlusions. A more complete description of these datasets
is given below.

6.1 Training Dataset

To test the speed and accuracy of the full object detection pipeline, an evaluation dataset has been
captured. The ubiquity of chairs within an indoor environment, makes them a suitable candidate
for use by a mobile robot SLAM++ system. The evaluation (See Section 7) measured the effect of a
number of parameters when training a single class, and also at how scalable it may be for multiple
classes, voting within the same Hough space. Three different classes of chair, shown in Figure 6.1,
were selected. Class 1 (Figure 6.1a) is used in the single class evaluations, and the other two classes
are used alongside the first when experimenting with a multi-class system. Their similar size and
shape operates well within the confines of the statically sized voting space, and allows the forest
accuracy to be evaluated on different classes with a similar appearance.

(a) Class 1 (b) Class 2 (c) Class 3

Figure 6.1: The three classes of chair used in the evaluation dataset

The training dataset consists of a series of RGB-D videos of the chairs within two different
indoor scenes. Each training video is of a single instance of the unoccluded chair. To provide even
coverage, recording was divided into four quadrants. For each quadrant, a near (1-2m) and far

47



(2-3m) video was captured to provide some variation in scale as well as additional training data.
Distances greater than 3m resulted in tracking problems within the annotation tool, and less reliable
ground truth estimates. The impact of this limitation should be negated by the depth normalisation
of the feature parameters, which allows objects more distant than that seen in training data to still
be recognised.

The videos were first captured in the OpenNI video format using a Kinect device. These videos
were then converted into training images and annotated using the annotation tool described in
Sections 3.4 and 3.5. The final training dataset consisted of 6,073 images, evenly divided between
the three classes.

6.2 Testing Dataset

The test dataset is recorded in a third indoor location, different from either of the two training
environments. It consists of eight separate video sequences. Scenes are designed to be similar to
the kind that might be encountered by a mobile robot in the real world, and feature multiple object
instances at varied orientations, often with partial occlusions and background clutter. The first
two sequences where designed for testing a single class system, and only contain instances of Class
1. The remaining sequences feature a mixture of the three different chair classes. The final test
dataset consists of 472 images, with 122 captured from the first two scenes.

(a) An example from the first scene, featuring multiple
instances of Class 1 and partial occlusions.

(b) An example of a scene with a mixture of different
classes, along with partial occlusions.

Figure 6.2: Examples taken from the evaluation test dataset.

For the testing dataset, the same limitation as for the training dataset applied when annotating a
scene at distances greater than 3m. Unfortunately, this limitation prevented a systematic evaluation
of the accuracy of the Hough forest at different ranges. Further work needs to be done to improve
the effective range of the annotation tool. Alternative means of testing could also be examined,
such as an artificial test dataset which has perfect ground truth estimates at any desired range.
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7 Evaluation

Rapid training has allowed a great number of forest architectures to be tested on the evaluation
dataset. The majority of the evaluation is on a single class object detection system, with Class
1 (Figure 6.1a) being used for this purpose. Evaluating on a single class removes the variability
of multiple object classes voting into the same space, to gain a clearer understanding of the effect
of different parameters on the accuracy of the Hough forest. After this, the capacity to learn and
detect multiple objects is then evaluated. The final result of the evaluation is a multi-class ‘Fast
Forest’ architecture, capable of being trained in 90 seconds, with an average precision of 61.5% on
a single class, and 30.9% on our multi-class dataset.

7.1 Evaluation Methodology

A ‘Standard’ Forest

For most of the following evaluation, the effect of modifying a single parameter at a time is evalu-
ated. It is useful to define a default set of parameters from which to vary a selected parameter, a
‘standard’ forest. The parameters of this forest are set out in Table 7.1.

Table 7.1: Default parameters of the standard Hough forest

Parameter Value

Number of Trees 10
Number of Training Images 300
Number of Features Evaluated 5750
Number of Thresholds 20
Samples Per Image 4500
Max Depth 15
Min Samples Threshold 200
Max Patch Offset Radius 60
Max Patch Size 3
Probability of Uncertainty Offset Objective 50%
Colour Space CIELab

Average Precision

For evaluation, a set detection sphere of radius 30cm around the object centre is used to define
a positive detection of an object. A single object can only be detected once, any subsequent
predictions which lie within the ground truth sphere are ignored; not counting towards the number
of correct predictions or the number of mistakes. As predictions are sorted by weight, this means
the prediction with the highest number of votes within the objects detection sphere is chosen.

To calculate the average precision, the area under a precision-recall curve has been calculated.
Ordinarily, precision-recall curves can achieve recall values of 100% by simply setting the threshold
weight requirement to zero, which will return every possible result, including all of the correct ones.
With mean-shift clustering, it was found that setting the threshold to zero often did not result in a
recall rate approaching 100%, because the available kernels sometimes did not settle in a location
where the ground truth object lay. To remove the variability of the mean clustering detection
algorithm to evaluate the performance of the raw tree votes, an evenly distributed grid is instead
overlayed within Hough space. The total normalised weight of votes within each cube of the grid is
compared to the threshold, which is varied to produce the precision-recall curves. This threshold
is incremented by 0.2% until the recall fell to zero, and the area under the curve is calculated to
give the average precision.
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Average Orientation Error

For the orientation accuracy the angular difference, d, between the ground truth, g and the pre-
diction, q, is calculated as

d = cos−1(2(g · q)2 − 1). (14)

This is then averaged for the test set. Parameter changes had relatively little impact on the
orientation, which stayed in the range between 60-70° in all cases. This considerable error may be
caused by a number of factors, each of which merit further investigation.

Firstly, the coarse-grained simple modal quaternion voting space could be improved with a
more granular space and a second mean clustering algorithm. Some of the average error could
be accounted simply by the error inherent in the discretisation process. Secondly, the ‘absolute’
orientation voting framework used here, where each vote corresponds to an orientation directly
from the camera frame to the object frame, could be a source of inaccuracy. An alternative method
used by Badami et al. [3], calculates a relative orientation from the query pixel’s surface normal to
the object axis. In fact, this was done for a frame of reference defined by each of the offset patches,
and votes cast for every split node, not just at the leaf.

7.2 Single-class Parameter Evaluation

Maximum Depth

The chosen tree depth must be deep enough to allow a nuanced model of the training data to be
captured, while avoiding going so deep as to overfit to the training data [10]. For this project,
training time is of utmost importance, and for the most part, training time scales linearly with
tree depth. It is therefore essential to explore the tradeoff between tree depth (and hence training
time) and accuracy. Figure 7.1 shows the average precision for different depths on the test dataset.
For maximum depths greater than 17 on the standard forest, a decline in accuracy occurs. Much
of the benefit of depth is already apparent in trees as deep as 14-15 levels.
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Figure 7.1: Average precision vs. Maximum Tree Depth
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Offset Uncertainty Analysis

To measure the benefits of implementing the second objective, a sliding scale of probability has
been implemented. At 0% every split node test is aimed at maximising information gain between
classes, at 100% offset uncertainty is always minimised. Figure 7.2 shows example leaf nodes trained
under each of these scenarios. The votes are shown to be much more clustered in Figure 7.2b. The
average precision with varying probabilities of objective can be seen in Figure 7.3. As expected the
offset uncertainty objective appears to improve the accuracy of the forest up to a certain threshold.
Beyond 80% there is a notable decline in accuracy, most likely as a result of background features
being poorly separated from the chair class.
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(a) 0% probability of minimising offset uncertainty.
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(b) 100% probability of minimising offset uncertainty.

Figure 7.2: Two example leaf node voting distributions, trained with different objective measures.
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Figure 7.3: Average precision vs % Offset Uncertainty
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Number of Features and Number of Samples Per Image

Training time scale linearly with both the number of features evaluated and the samples per image.
Surprisingly, there does not appear to be a link between substantial increases in either of these
parameters, and an improvement in precision. The one caveat to this, is that there is a notice-
able reduction in average precision when only a single feature is evaluated - in a manner similar
to extremely randomized forests. However above this minimum threshold, a reasonable average
precision may be attainable with relatively few samples per image and features evaluated. This
possibility is evaluated in Section 7.4.
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(a) Number of Features vs Average Precision.
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(b) Samples Per Image vs Average Precision.

Figure 7.4: The effect of feature count and samples per image do not show a consistent relationship
against average precision except at particularly low levels.
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(a) Number of Features vs Average Training Time.
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(b) Samples Per Image vs Average Training Time.

Figure 7.5: Training time scales linearly with both feature count and samples per image.
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RGB vs CIELab

In live object detection, the conversion of the raw RGB image into the CIELab space for feature
response calculation results in a significant slow-down. The standard forest was evaluated using
each, the RGB forest performed with an average precision of 59.7% vs CIELab’s 62.8% (See Figure
7.6 for the precision-recall curves). To achieve the goal of real-time detection, the loss of 3% average
precision appears warranted.
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Figure 7.6: The precision-recall curves for RGB and CIE colour spaces

Post-training Leaf Augmentation

In post-training new samples are passed down an already trained tree to gain an improved distribu-
tion at the leaf nodes. This is not only fast, but could help alleviate overfitting. Unfortunately, the
evaluated performance of the process is less persuasive (Figure 7.7). No improvement in precision
can be seen, and in all but one of the trained forests average precision declined.
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Figure 7.7: Average precision vs. Number of Additional Training Instances
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7.3 Multi-Class Evaluation

In this project, the computational overhead of additional classes is minimised by training a multi-
class forest which votes into a single unified Hough space. Potential object centres are then effi-
ciently processed to retrieve information such as class and orientation. The full 3-class training
dataset was used to train a Hough forest, which is then evaluated on the test set of 472 images,
which features the mixture of classes, occlusions, and background clutter typical of an indoor en-
vironment. The average precision calculation as described above is maintained in this evaluation.
For the multi-class test, this means that a correctly predicted object centre must also predict the
correct class. Alongside this, a class-prediction Confusion Matrix for the votes within the ground
truth sphere is calculated, to measure the stand-alone accuracy of the maxima information retrieval
method.

Section 4.3 details a modification made to the information gain calculation. The benefits of
this modification, with different λ values was measured, and the results are shown in Figure 7.8.
Unfortunately, the modification appears to marginally reduce both precision and accuracy. This
could due to the similar appearance of our classes, and would be worth investigating on larger
datasets. Despite this, the results for the multi-class test appear generally positive, when consider-
ing the similar appearances of the different classes, with an overall precision of 30%. The average
classification accuracy of 76% appears particularly robust, supporting the efficacy of a two stage
voting process.
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(a) The average precision vs the background informa-
tion gain score parameter, λ.
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Figure 7.8: The multi-class modification decreases performance on the evaluation dataset.

Label-Prediction Class 1 Class 2 Class 3

Class 1 0.58 0.03 0.4
Class 2 0.04 0.79 0.17
Class 3 0.09 0.01 0.9

(a) The ‘Standard forest’ confusion matrix, with an
average accuracy of 76%.

Label-Prediction Class 1 Class 2 Class 3

Class 1 0.55 0.09 0.36
Class 2 0.05 0.79 0.16
Class 3 0.14 0 0.86

(b) The modified forest, with a tuned λ parameter of
3.0, results in slightly worse average accuracy of 73%.

Figure 7.9: The confusion matrices for the standard forest, and with the tuned information gain
modification. Labels are denoted with the y-axis, and predictions along the x-axis.
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7.4 Fast Forest

The above analysis exposed a number of areas which lead to significant training or testing cost,
without exhibiting a significant improvement in performance, such as number of features evaluated
and CIELab colour space. It has also highlighted areas that do improve performance, at least
within the relatively small evaluation dataset presented here, such as depth and proportion of
offset uncertainty nodes. This information has been used to develop a multi-class ‘Fast Forest,’ the
parameters of which are given in Table 7.2.

Table 7.2: Parameters for the Fast Forest

Parameter Value

Number of Trees 3
Number of Training Images 300
Number of Features Evaluated 250
Number of Thresholds 20
Samples Per Image 2000
Max Depth 15
Min Samples Threshold 200
Max Patch Offset Radius 60
Max Patch Size 3
Probability of Uncertainty Offset Objective 80%
Colour Space RGB

This forest was trained in 90.4 seconds on a GeForce GTX 780, and performs with an average pre-
cision of 30.9% on the multi-class dataset (61.5% for single-class). Figure 7.10 shows the precision-
recall curves of both, benchmarked against the standard forest. The average precision is 1.0% better
than the standard forest (29.9%) for the multi-class evaluation, and only 1.3% worse for single-class
evaluation (62.8%). However, the standard forest takes over 19 minutes to train against the fast
forest’s 90 seconds.
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Figure 7.10: Precision-recall curves for the Fast forest and the Standard forest. A significant decline
in precision occurs in the multi-class tests.
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8 Conclusions and Outlook

The semantic vision community is traditionally focused on detection accuracy, with little regard
to computation time, leaving much work to be done on real-time detection systems. This project
aimed to produce a Hough forest for mobile robots that could be rapidly trained on RGB-D data
to localise an object within a new environment. The pipeline has been developed on consumer-
grade hardware, leveraging the parallel power of GPGPUs, along with increasingly popular low-cost
RGB-D devices, such as the Kinect device.

Hough forests have previously been tailored for use with RGB-D data. Badami et al. [3] suc-
cessfully and accurately trained a class specific forest to predict the pose of an object within a full
6 DOF on the RGB-D Object Dataset [34]. This project contributes a number of advancements on
previous research. A functioning optimised GPU Hough forest has been developed along with a live
object detection system which uses dense prediction on full resolution RGB-D video. The speed of
this process opens up the possibility for learning new objects in the field, and quickly reaping the
rewards of object recognition.

The accelerated training and testing pipeline has enabled hundreds of different forests to be
systematically trained and evaluated, including a number of experimental training procedures such
as the post-training leaf augmentation and retrospective maximum depth tuning. This large scale
evaluation process has led to one of the key achievements of this project; the development of a
‘Fast Forest,’ which can learn to detect a single object with 61.5% average precision in 90 seconds
on a GeForce GTX 780.

Training and testing the hough forest however, are not the only contributions made. This project
has also removed the requirement of a controlled environment in which to collect the ground truth
data for training such a system, replacing it with a ground truth annotation tool integrated into
a state-of-the art SLAM pipeline (KinectFusion [32]). This tool requires minimal user input and
operates for the duration of a video sequence.

8.1 Areas for Investigation

There still remains much future work be done, some of which has been highlighted in the course
of this report. The following are some key additions that could enhance the future performance of
the current system:

� If the forest proves accurate enough to initialize ICP, a post processing stage could serve to
further refine the predicted position and orientation of the object.

� For live detection, each image is currently processed independently from the previous image.
Better use of temporal information, such as with a Conditional Random Field, or with a
Kalman filter, should result in improved performance.

� At present, only the default colour and depth features implemented in the CURFIL library
are being used for detection. Additional features such a Histogram of Gradients, surfel pairs,
or Sobel filters could be added and evaluated.

� The orientation system, which votes directly on the rotation from camera pose to object pose,
could be replaced with a relative rotation about a frame of reference defined via the query
pixel’s surface normal [3].

� Only a small dataset, with relatively few similar classes have been explored here. Further
experiments could be done with a larger, more varied dataset. For the forest to operate
effectively under these conditions, some of the below modifications may also be required.

� The leaf node offset is static and of a relatively low resolution. Efforts could be made to
evaluate other representations, such as the Gaussian Mixture Model, for use in live detection.
Similarly, the distribution of orientation votes within the compressed quaternion space merits
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further investigation, as well as a comparison to a projective 4D octahedral encoding approach
if possible.

� The relaxed offset uncertainty equation could be implemented to evaluate the level and effec-
tiveness of feature sharing between differently shaped objects. This should allow the system
to cope more effectively with a greater number of object classes.

In addition to the above investigations are some fundamental alterations that may prove nec-
essary to be properly incorporated into a real-time recognition system. The current system still
relies heavily on batched data for accelerated training, however in real world scenarios the random
forest must be capable of being trained incrementally as new images arrive. It must also be robust
to extended periods of learning. Saffari et al. [47] has proposed an algorithm for growing random
forests in an online manner, by combining online bagging and extremely randomized forests. A
feature which may prove essential, if a tree allowed to grow indefinitely, is an ability to ‘forget,’
an adaptive tree structure that would allow pruning of less useful branches [47]. Again, for rapid
training, these procedures will likely require modifications for acceleration on a GPU.

8.2 Future Work

The motivation expressed at the beginning of this report outlined the ideal long term goal of unsu-
pervised real-time object recognition. The focus of this project has been on the object recognition
phase, however the unsupervised first stage is the essential component for development of a fully
autonomous mobile robot, and research in this area still requires a huge amount of work.

Current techniques for unsupervised object discovery predominantly use a combination of geo-
metric segmentation and clustering algorithms. Triebel et al. [59] for example, used a Conditional
Random Field to model the interdependence of segmented object parts to learn repeating objects in
an indoor scene. Active learning is another technique which focuses on allowing the robot to learn
objects by manipulating its surroundings in much the same way an infant learns [31]. The lack of
active manipulation is a key informational asymmetry between a human’s learning experience and
that of a passive object segmentation system.

Some of the most exciting advances in unsupervised learning stem from research into Deep
Neural Networks, which have exhibited unprecedented performance at certain tasks, and may
provide just the support needed for autonomous robotics. A Convolutional Neural Network with
Reinforcement Learning successfully learned to interact with, and complete, a number of Atari
games without any ‘game specific’ modifications to the algorithm. It operated with only the raw
video as input and controls as output [19]. Although still in a simple 2D setting, this ability
to successfully navigate and interact with virtual realities autonomously shows the potential for
this kind of learning algorithms to operate in the real world. Research into this area shows much
promise, but there is still a lot to be done.
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Appendix A

User Guide: Annotation Tool

Command Line Options

This guide will walk through a typical data collection use case for the annotation tool. For details on
installing the software, please see the documentation in the actual code base. To begin annotating
training data directly from the Kinect a single flag (-wtd or alternatively --write-training-data)
is required to the specify the directory where training data will be stored:

$ ./ground_truth -wtd "/path/to/training/directory"

It is recommended to use a new folder for each video, as subsequent annotations to the same folder
will overwrite the old data. To annotate data from a pre-recorded ONI format video, the -if (or
--input-file) flag is used:

$ ./ground_truth -if "/path/to/training/video.oni" -wtd "/path/to/training/directory"

Two additional commonly used flags exist to specify the size of the cubic KinectFusion model in
metres (-ms or --model-size) and the resolution of the model in voxels per dimension (-vs or
--volumetric-size). The default for these parameters is 2m, and 256 respectively. The following
command specifies a 3m volume and 512 voxel resolution:

$ ./ground_truth -wtd "/path/to/training/directory" -ms 3 -vs 512

An exhaustive list can be viewed by running with the -h flag.

GUI Annotation Tool

After running the above command lines, a GUI will appear with a 3D rendering of the input. The
GUI consists of a number of sub-windows (Labeled in Figure A.1), the two important sub-windows
for ground truth annotation are ‘Object Mask’ and ‘Model Render.’ Arrow keys allow a user to
rotate the viewpoint in the Model Render.

Figure A.1: The initial view of the ground truth annotation tool, with sub-windows labeled.
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Right-clicking on the window provides a drop down menu (shown in Figure A.2a), from which
the class type (denoted by an integer) can be incremented and decremented (or by using the + and
- keys). Selecting a new object will produce a cross-hair cursor which allows a bounding box to be
specified by clicking a point located on the ‘Model Render’ sub-window.

(a) The drop down menu. (b) View after selecting an object. (c) View after rotation and scaling.

The most basic annotation is now complete. If the user wishes, training data can immediately
be output by specifying the object as ‘ready’ either by pressing r, or selecting the ‘Object ready’
option from the drop down menu. It is also possible to more precisely position, rotate, and scale the
bounding box, before marking it as ready, as shown in Figure A.2c. Left click drag translates the
bounding box in the x & y-axis, and Ctrl-left click drag translates along the z-axis. Middle

click, and Ctrl-middle click operates in the same way, but for scale. An appropriate cursor
is displayed to inform the user of the current transformation in progress. Rotating an object is
performed with the w,a,s,d keys; a,d for the y-axis, w,s for the x-axis, and Shift-w,Shift-a for
the z-axis.

When marked as ready, the Object Mask window will display a render of the object mask,
corresponding to the view shown in the RGB window (See Figure A.2). Multiple classes can be
annotated by selecting a new class with the + and - keys before creating a new object, and again
marking it as ready. Each class is rendered with a unique colour. Bounding boxes can be edited
after an object has been specified as ready, the o and O keys allow users to cycle through object
bounding boxes and edit them, or delete them with the x key. It should be noted, that training
data is not updated retrospectively, and only future frames will be affected by editing the bounding
box. The training data is now ready for use.

Figure A.2: The GUI view after selecting and readying two objects of different classes.
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Appendix B

User Guide: Hough Forest Training

Training

This guide will walk through training a fast forest. Training is done entirely at the command line,
using the curfil train program. The large number of command line options make it useful to
store them in a simple shell script. Listing B.1 can be copied into a train.sh file and updated
for a users directory structure. The executable path must be updated to point towards the com-
piled curfil train program (see the code base’s README.md file for compilation instructions), the
--folderTraining option is the training directory, or parent directory, given by the -wtd flag to
the annotation tool, and the --outputFolder specifies the directory to save the random tree files,
which follow the naming convention tree-*.json.gz. The updated shell script can then be made
executable and ran with the following commands:

$ chmod u+x train.sh

$ ./train.sh

The output will display the current progress in training the forest. For a more verbosely timed
output, the --profile true flag can be set. The --trainAllDepths true option is important if
the depth is to be varied retrospectively with the live detection software, which will be described
in Appendix C. Running the curfil train program with the --help flag gives a description of
all of the options available, and their purpose. After the command completes, a trained forest will
be saved in the --outputFolder directory. For the curious, the saved JSON can be uncompressed
and viewed with the following commands:

$ gzip -d tree-0.json.gz

$ editor tree-0.json

Listing B.1: An shell script for training the Fast forest

#!/bin/bash

/path/to/curfil/build/src/curfil/curfil_train \

--folderTraining "/path/to/training/directory" \

--outputFolder "/path/to/tree/directory" \

--trees 3 \

--maxTrainingSamples 300 \

--featureCount 250 \

--numThresholds 20 \

--samplesPerImage 2000 \

--maxDepth 15 \

--minSampleCount 200 \

--boxRadius 60 \

--regionSize 3 \

--useCIELab false \

--cacheSizeLimit true \

--maxAdditionalSamples 0 \

--percentageUsageOfDispersion 50 \

--trainAllDepths true \

--randomBucketEachTree true
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Testing

The Live Object Detection software is useful for visualisation, however to aggregate statistics and
evaluate the performance of the trained forest on a test dataset, the curfil predict program can
be used. A predict.sh shell script similar to above can be created using Listing B.2, and removing
the # comments. The test dataset is generated in an identical fashion to the training dataset.

Listing B.2: A shell script for evaluating the Fast forest

#!/bin/bash

/path/to/curfil/build/src/curfil/curfil_predict \

15 \ # The starting depth to begin testing

15 \ # The maximum depth to test up to

"/path/to/testing/directory" \ # The directory containing annotated test data

"/path/to/statistics/directory" \ # The directory to store the resulting statistics

"/path/to/tree/directory/"tree-*.json.gz # The file path to the trained trees

When the evaluation is complete the curfil predict will write out three statistical data files, with
the suffix .data, to the folder /path/to/statistics/directory. These files are:

1. performance.data: For each depth within the range specified for testing, this file will have an
entry giving the average precision, the average orientation error, and the average classification
accuracy on the test set, as shown below.

# Avg_Precision Avg_Accuracy Avg_Orientation_Error(Degrees)

15 0.5982 0.7543 63.34

16 0.6132 0.8123 67.12

2. precision recall.data: This is the breakdown of the Avg Precision statistic given in the
performance.data file. For each depth within the range, this file stores the list of precision
and recall values while modifying the threshold for acceptance. An example of the file format
is given below.

# Recall Precision

15 1.000 0.001

15 0.998 0.012

...

15 0.001 1.000

16 0.998 0.005

16 0.974 0.032

...

3. confusion matrix.data: This gives the breakdown of the Avg Accuracy statistic for each
level as shown in the performance.data file. For each depth, a Confusion Matrix is stored,
showing the performance of class predictions made by the forest on the test set.
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Appendix C

User Guide: Live Object Detection

The live object detection software comes bundled with the annotation tool, as many of the features
required, such as Kinect input, user controls, and OpenGL were already implemented within the
KinectFusion source code. The detection system is relatively simple, with only a few options. To
run the detector live from the Kinect, only the trained Hough forest files need to be specified:

$ ./hough_predictor -ifo "/path/to/tree/directory/"tree-*.json.gz

This will result in the output shown in Figure C.1a, viewed from the Kinect device. To detect
objects in a pre-recorded ONI format file, the -if flag is again specified at the command line, and
it must be placed before the -ifo, as below:

$ ./hough_predictor -if "/path/to/training/video.oni" \

-ifo "/path/to/tree/directory/"tree-*.json.gz

Two other useful options are available. The first is a live visualisation of the Hough Votes before
mean clustering. This can be useful when performance is poor, and it is not known whether the
mean shift clustering algorithm is the cause, or the original votes. Space is used to toggle this view,
which is shown in Figure C.1b. The second option is a verbose readout of the predicted positions,
orientations, and classes in each frame of the video. The v key is used for this purpose. Finally,
the q key is used to exit.

(a) The RGB video with bounding box prediction. (b) A live view of the Hough voting space.

Figure C.1: The display from the live object detection program.
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