
TLSFilter: An Application-Level Firewall for Transport Layer

Security

Final Report

Mat Phillips

mp2509@doc.ic.ac.uk

June 16, 2014

Abstract

The proliferation of misconfigured and vulnerable SSL/TLS implementations has led to a situation

where a substantial proportion of encrypted traffic can no longer be considered secure. The 2013/14

publication of government signals intelligence capabilities and security vendor coercion underline

the realistic potential for current and future vulnerabilities to be exploited on a mass scale.

This report documents the creation and assessment of an application-level firewall that ensures

all TLS connections meet a minimum level of security, irrespective of the underlying TLS software

implementations. As security is enforced at the network layer, it can be used to secure an entire

network of IP devices including embedded systems and network appliances that often suffer from a

lack of, or infrequent, security updates.

The firewall combines techniques for mitigating a variety of TLS architectural weaknesses, in-

cluding man-in-the-middle attacks, as well as providing a general-purpose platform for future ex-

tension. Firewall rules can be grouped into profiles and applied on the basis of IP address, allowing

the fulfilment of varied use cases. By using TCP reassembly logic from the Linux kernel and by

performing deep packet inspection on all network traffic, it is immune to a class of fragmentation

and obfuscation-based techniques used to evade traditional network filtering software.

The analysis shows that use of the firewall results in a quantifiable net security gain for all nine

scenarios tested under a modified Schneier attack tree model. The additional latency introduced is in

the negligible order of tens of milliseconds; single-connection throughput performance is reduced by

0.8%; and concurrent throughput is reduced by 25% at 200 concurrent connections. The analysis of

approximately 460,000 websites led to the creation of a default configuration that improves security

at the expense of reducing reachability by 5.5%.

Acknowledgements

I would like to thank my supervisor, Dr. Jeremy Bradley, for his boundless enthusiasm, his will-

ingness to supervise this project and for guiding me in the right direction on numerous occasions.

Thanks also to Ralph Oppliger for writing SSL and TLS: Theory and Practice, which saved me

from hours of RFC torture and Nitin Nihalani for checking my unexpected performance results and

independently verifying the sanity of my methodology.

Contents

1 Introduction 5

1.1 Project Objectives . 6

2 Background 7

2.1 SSL/TLS Protocol Introduction . 7

2.1.1 Authenticity . 7

2.1.2 Confidentiality . 8

2.1.3 Integrity . 10

2.1.4 SSL/TLS Connection Handshake . 10

2.2 SSL/TLS Version History . 11

2.2.1 TLS Extensions . 15

2.3 Miscellaneous TLS Features . 15

2.3.1 Ephemeral Keys . 15

2.3.2 Null Algorithms . 16

2.3.3 Elliptic Curve Cipher Suites . 16

2.4 Threats . 17

2.4.1 Authentication Issues . 17

2.4.2 Cryptographic Vulnerabilities . 19

2.4.3 SSL/TLS-Specific Vulnerabilities . 23

2.4.4 Side Channel Attacks . 26

2.4.5 Notable Implementation Bugs . 28

2.5 Similar Existing Works . 29

2.5.1 Bro . 29

2.5.2 Libnids . 29

2.5.3 Blue Coat SSL Visibility . 30

3 TLSFilter Feature Set 31

3.1 TLS Record Layer Features . 31

3.2 TLS Handshake Protocol Features . 32

1

3.2.1 Cipher Suite-Based Rules . 32

3.2.2 Certificate-Based Rules . 35

3.2.3 Key Exchange-Based Rules . 37

3.2.4 ECC Named Curves . 37

3.2.5 IP Subnet Profiles . 37

3.3 Application Programming Interface . 38

3.3.1 OpenSSL Heartbleed Mitigation . 38

3.3.2 Configuration Context-Free Grammar . 40

3.3.3 Vulnerability Mitigation Table . 40

4 Design and Architecture 42

4.1 System Overview . 42

4.1.1 Operating System Integration . 42

4.1.2 Fragmentation . 43

4.1.3 Fragmentation Alternative . 43

4.1.4 Processing Pipeline . 44

4.1.5 Initialisation & Tear-Down . 44

4.2 Usability Concerns . 46

4.2.1 Hard versus Soft Failure . 46

5 Implementation and Testing 47

5.1 Language Choice . 47

5.1.1 Library Choices . 48

5.2 Code Portability . 49

5.3 Data Structures and Algorithms Choices . 50

5.3.1 Wire-Format Structs . 50

5.3.2 TLS Flows . 51

5.3.3 Constant-time Lookups . 51

5.3.4 Configuration . 52

5.4 Low-Level Testing . 52

5.4.1 Runtime Debugging . 52

5.4.2 Diagnostic Logging . 53

5.4.3 Kernel Module Debugging . 53

5.5 High-Level Testing . 53

5.5.1 Testing SSL/TLS Connections . 53

5.6 Source Code . 54

5.6.1 Overall Structure . 54

5.6.2 Use of Preprocessor Tricks . 54

5.7 Build . 55

2

5.7.1 Compiler Flags . 57

6 Evaluation 58

6.1 Security Analysis . 58

6.1.1 Schneier Attack Tree . 58

6.1.2 Adversary Profiles . 61

6.1.3 Attack Tree Instances . 61

6.1.4 Limitations of Analysis . 62

6.2 Impact on Reachability . 64

6.2.1 Modelling HTTPS Traffic . 65

6.2.2 Results . 65

6.2.3 Proposed Default Global Configuration . 66

6.2.4 Limitations of Analysis . 68

6.3 Performance Testing . 69

6.3.1 Throughput . 70

6.3.2 Latency / Concurrency . 70

6.3.3 Limitations of Analysis . 74

6.4 Summary of Strengths . 75

6.5 Summary of Weaknesses . 75

7 Conclusion 77

7.1 Future Extensions . 78

Appendices 83

A TLSFilter Configuration 83

A.1 Context-Free Grammar . 83

B Attack Tree Calculations 84

B.1 Notation . 84

B.2 Lavabit Estimated Probabilities . 86

B.3 First Look Media Estimated Probabilities . 87

B.4 ESET Estimated Probabilities . 88

3

List of Figures

2.1 Stream cipher operation . 9

2.2 Encryption under Cipher Block Chaining (CBC) mode 9

2.3 Encryption under counter (CTR) mode . 10

2.4 Message sequence chart for a TLSv1.2 handshake . 12

2.5 Man-in-the-middle attack . 18

2.6 Anatomy of a stream cipher ‘bit-flipping’ attack . 21

2.7 A verifiably random methodology for generating standardised elliptic curves 22

2.8 A verifiably pseudorandom methodology for generating standardised elliptic curves . 22

3.1 Summary of TLS weaknesses and appropriate TLSFilter rules 41

4.1 Overview of TLSFilter IP datagram processing . 45

4.2 A comparison of application-layer behaviour as a result of the spoof-rst option . . 46

5.1 Purposes of important source code files . 54

5.2 Contents of param ec named curve.h . 56

5.3 Two string helpers from parameters.c that redefine the ENUM macro 56

6.1 Schneier attack tree with the goal to read the contents of an encrypted TLS connection 59

6.2 Schneier attack tree with the goal to read the contents of an encrypted TLS connec-

tion, under the protection of TLSFilter . 60

6.3 Frequency distribution comparison of TLS latency 71

6.4 Frequency distribution comparison of TLS latency, between 0 and 400ms 72

6.5 Frequency distributions of TLS latency including ‘branched’ TLSFilter version . . . 73

6.6 Frequency distributions of TLS latency including ‘branched’ TLSFilter version, be-

tween 0 and 400ms . 74

B.1 Attack tree node key . 85

4

Chapter 1

Introduction

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) have become the standard protocols

for securing information exchange over untrusted networks and we have become increasingly reliant

on them as a greater proportion of our communication occurs over the internet. The latest version

of TLS is highly extensible, and was built under the presumption that it would become the secure

basis upon which future—more application-specific—protocols are built.

As our reliance on these protocols increases, so too do discoveries of significant vulnerabilities

in implementations and weaknesses in configurations of TLS libraries. Though software updates

are often quickly released to correct these vulnerabilities, many publicly-reachable TLS endpoints

remain vulnerable. The discovery of two serious implementation vulnerabilities, Heartbleed (Sec-

tion 2.4.5) and ChangeCipherSpec injection (Section 2.4.5), in mid-2014 evidences the scale and

importance of this problem.

In addition, the capabilities of adversaries have, until recently, been underestimated, making

existing threat models less relevant and the software designed around them less suited to the current

environment. Public knowledge of global, well-resourced attackers such as the UK’s GCHQ and

the US National Security Agency as well as the complicity of software vendors to adopt defective

security standards underlines the importance of problems with TLS and the realistic potential for

existing (and future) weaknesses to be exploited.

My objective is to produce software that mitigates numerous technical threats to TLS, bearing

in mind the realities of existing software deployments and the likelihood of new attacks executed

by these well-resourced adversaries. Moreover, it is my objective to build software that provides a

measurable increase in security and interoperates with, rather than replaces, current systems.

I claim to have realised this objective through the creation of TLSFilter: a stateful, application-

level firewall that blocks TLS connections that do not meet a minimum standard of security. My

intention is that the core rule set can be updated in line with the discovery and publication of new

weaknesses, allowing the protection of entire networks of client and server software without having

5

to wait for the creation and manual roll-out of security updates.

TLSFilter can be configured to block specific vulnerabilities including Heartbleed (Section 2.4.5)

and ChangeCipherSpec injection (Section 2.4.5). Furthermore, its logic can be extended to an

arbitrary level of complexity through the plugin API and, combined with the granular application

of rule sets over IP addresses, TLSFilter allows the specification of any level of security.

My evaluation (Chapter 6) seeks to assess the usefulness of TLSFilter in terms of the trade-off

between security and network reachability through analysis of the TLS configurations of the most

popular 460,000 websites. This section also quantitatively analyses the gain in security using a

modification of the Schneier attack tree modelling formalism and includes an assessment of the

performance in terms of throughput, latency and concurrency.

1.1 Project Objectives

The broad objectives of my project are:

• To prevent insecure TLS connections, both inbound and outbound, network-wide

• To permit the specification of disparate security policies on the basis of destination IP address

or network

• To facilitate the rapid response to widespread TLS vulnerabilities

• To provide a general-purpose TLS firewall engine that can be easily extended

• To mitigate packet fragmentation and protocol obfuscation evasion techniques

6

Chapter 2

Background

This chapter contains an overview of the goals of SSL/TLS, details of the underlying protocol

messages, background on the cryptography required and specifics of the most important threats

to the protocol. To be accessible to the lay reader very little prior knowledge is assumed so those

who are already fully aware of the topics discussed may wish to skip many of the sections in this

chapter.

2.1 SSL/TLS Protocol Introduction

Secure Sockets Layer (SSL) and, its successor, Transport Layer Security (TLS) are suites of protocols

used to secure transport-layer communication. (Often both suites are referred to as SSL or TLS,

since TLS is simply an extension of SSL.) TLS aims to provide three main properties—authenticity,

confidentiality and integrity—and does so through both symmetric and public key cryptography.

2.1.1 Authenticity

Authentication is the process that verifies that clients and servers are who they purport to be. In

TLS, authentication takes place outside of the scope of the protocol and relies on external public

key infrastructure (PKI).

Prior to the configuration of a TLS server, an X.509 certificate containing identity information

and public key(s) must be generated [1]. This certificate must then be digitally signed by a certificate

authority (CA) who is a third party trusted to validate the details of certificates. The resulting

signed certificate can then be sent to clients as part of the protocol handshake, where the client will

independently verify that the certificate has been signed by a CA they trust.

The reverse process for client authentication is also supported by TLS. See Section 2.1.4 for

details of this functionality in greater depth.

7

2.1.2 Confidentiality

Confidentiality is a property of a system that ensures message content is only readable by the

intended recipients. In TLS, this is implemented using symmetric cryptography—for example, using

the Rijndael cipher that is the basis of the Advanced Encryption Standard (AES)—in conjunction

with a key (or secret) known only by the client and server.

Key Agreement

In the majority of applications a client and server will not possess a pre-shared key (PSK), so a

key exchange algorithm must be used to share a key across an untrusted communications channel.

Currently, the key exchange algorithms supported by TLS use public-key cryptography based upon

the integer factorization problem (e.g., Rivest-Shamir-Adleman (RSA)) and the discrete logarithm

problem (e.g., Diffie-Hellman).

The RSA cryptosystem can be used to securely exchange a key from a client Alice to a server

Bob. Alice randomly generates a key, encrypts it under the public key in Bob’s certificate, sends

this over the untrusted communications infrastructure to Bob, who decrypts the message with his

private key.

Diffie-Hellman requires Alice and Bob agree to a public value g and large public prime number p.

Alice chooses a secret value x and sends gx mod p to Bob; Bob chooses a secret value y and sends

gy mod p to Alice. Alice and Bob both multiply the values received with the values they sent,

and this is the shared key value. This works because (gx mod p)(gy mod p) = gxy mod p = gyx

mod p = (gy mod p)(gx mod p). Diffie-Hellman is broadly considered to be a better choice than

RSA because both parties contribute entropy to the key.

Symmetric Ciphers

Prior to the most recent version, the two classes of symmetric ciphers available in TLS were block

ciphers and stream ciphers.

Stream ciphers are the simpler of the two, and allow the encryption of arbitrary-length plaintexts.

Stream ciphers work by deterministically generating a pseudorandom stream of data from a key,

which is known as a keystream and is combined with the plaintext to yield the ciphertext. Generally

stream ciphers use the exclusive-or operator to perform this function, as shown in Figure 2.1. This

method of encrypting data is generally considered to be computationally efficient, so mandatory

support for stream ciphers such as RC4 has been required by every version of the TLS protocol.

Block ciphers operate on fixed-size blocks of data and consequently plaintext must be padded

to fill a multiple of the block size. In TLS, block ciphers are used in cipher block chaining (CBC)

mode, where the nth plaintext block is XORed with the ciphertext of the n−1th block before being

encrypted under the block cipher with the key (Figure 2.2). This means an initialisation vector

(IV) is required to encrypt the first block and the encryption under this mode is not parallelisable,

8

Figure 2.1: Stream cipher operation

Figure 2.2: Encryption under Cipher Block Chaining (CBC) mode

so block ciphers in CBC are considered less efficient than stream ciphers.

TLS v1.2 adds support for Authenticated Encryption with Associated Data (AEAD)[2] ciphers

by introducing cipher suites containing block ciphers in Galois/Counter Mode (GCM). In general

AEAD modes allow the encryption and authentication of plaintext data (PDATA) to be a single

process, rather than more traditional approaches where a distinct authentication process is executed

after (or before) encryption. It also allows for additional data (ADATA) to be authenticated but

not encrypted.

GCM uses a modified form of encryption in counter (CTR) mode[3]. CTR mode uses a block

cipher (like Rijndael/AES) as a stream cipher (like RC4); the keystream is generated by encrypting

a block consisting of a nonce appended with a counter that is initialised to zero. Exclusive-or is

then used to combine the plaintext with this encrypted block, as in Figure 2.3. To generate more

keystream, the counter field is simply incremented and the process is otherwise identical. Useful

features of this mode of operation is that the decryption function is identical to the encryption

function (and parallelisable), and that no padding of plaintext is required (unlike CBC).

9

Figure 2.3: Encryption under counter (CTR) mode

The output of GCM is referred to as a tag, which is authenticated and may contain only plaintext

(used to produce a MAC), only ciphertext, or both. Tags produced are initially equal to the block

length of the cipher used (to a minimum of 128 bits), though can be truncated without issue. Tags

are produced by encrypting the result of the GHASH function defined in GCM’s specification[4],

which uses a modified CTR mode.

2.1.3 Integrity

Message integrity ensures that modifications to messages by third parties can be detected. This is

implemented using message authentication codes (MACs) derived from cryptographic hash func-

tions, where the contents of a message is hashed and signed by the sender to verify that the message

has not been altered in transit.

In recent versions of TLS, strong hash functions—i.e., those where collisions are computationally

difficult to find—are used in conjunction with a keyed-hash message authentication code (HMAC),

to simultaneously provide message integrity and authentication.

As TLS aims to be a future-proof protocol, the sets of algorithms that implement the crypto-

graphic primitives mentioned above (known as cipher suites) are fully configurable and are stan-

dardised by the Internet Assigned Numbers Authority (IANA).

2.1.4 SSL/TLS Connection Handshake

Figure 2.4 shows the anatomy of the handshake for the TLS v1.2 protocol [2], where optional

messages are shown with dashed arrows. The handshake protocol works as follows:

1. ClientHello - this message initiates a connection from the client and contains the highest

SSL/TLS version supported, a session ID, a list of cipher suites and compression methods.

As of TLS v1.2, the contents of this message may include a list of TLS feature set extensions

supported by the client.

10

2. ServerHello - the server responds with a similar message, specifying the cipher suite chosen

for communication, and may list the subset of the TLS extensions it supports.

3. SupplementalData optional - if the client supports an appropriate TLS extension, the server

may send arbitrary application-specific data.

4. Certificate optional - the server may send an X.509 identity certificate to the client.

5. ServerKeyExchange optional - if the cipher suite specifies a key exchange algorithm that

requires server interaction, such as Diffie-Hellman, the server sends the data in this message.

6. CertificateRequest optional - if the server requires mutual authentication, this message is

sent to request an X.509 certificate from the client.

7. ServerHelloDone - this message signals the end of the server’s half of the handshake.

8. SupplementalData optional - the client may then send arbitrary data to the server for

application-specific purposes.

9. Certificate optional - if a CertificateRequest was received, the client will send an X.509

identity certificate to the server.

10. ClientKeyExchange - the client will either initiate (in the case of RSA) or complete (in the

case of Diffie-Hellman) a key exchange with this message.

11. CertificateVerify optional - the client will verify that the server possesses the private key

associated with the public key from its X.509 certificate.

12. ChangeCipherSpec - this message signals that all further messages from the client to the

server will be encrypted under the shared secret.

13. Finished - this message contains a hash of all previous messages received, to ensure that the

handshake was not manipulated by a third party.

14. Subsequent ChangeCipherSpec and Finished messages are then sent from the server to the

client. If the plaintext of the Finished messages match the locally-generated hashes, the

handshake is complete and encrypted application data can be exchanged.

2.2 SSL/TLS Version History

..

1995

.

2000

.

2005

.

2010

. SS
L
v1

. SS
L
v2

. SS
L
v3

. T
LS

v1
.0

. T
LS

v1
.1

. T
LS

v1
.2

11

Client Server

ClientHello

ServerHello

SupplementalData

Certificate

ServerKeyExchange

CertificateRequest

ServerHelloDone

SupplementalData

Certificate

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

msc

Figure 2.4: Message sequence chart for a TLSv1.2 handshake

12

SSL v1

The first version of SSL was created by Netscape and was not released as a public protocol.

Initially, it did not feature message sequence numbers nor were efforts made to ensure message

integrity, so it was vulnerable to message-replay attacks and undetectable message modification.

Message sequence numbers were later added and cyclic redundancy checksumming (CRC) used in

a failed attempt to mitigate these weaknesses.

SSL v2

Version two of the SSL protocol was the first version to be published as a draft internet standard.

It was built on top of Netscape’s SSL v1, published in 1995 and patented but released into the

public domain soon after.

The cryptographic hash function MD5 replaced CRC for message integrity, as MD5 was consid-

ered to be collision-resistant at the time. In addition, certificate support was added to the protocol

handshake for client and server authentication, but certificates were required to be signed directly

by a root certificate authority to be valid.

Various weaknesses mean that SSL v2 is no longer in use.

SSL v3

SSL v3 is the version with the most significant protocol changes from its predecessor, and is the

most widely-adopted version[8]. Despite being released in 1996[7], it is still in use today and remains

the oldest version of the protocol supported by modern SSL/TLS implementations.

Message authentication code generation was modified to use both MD5 and SHA1 hash algo-

rithms simultaneously[7], to mitigate concerns that collision weaknesses discovered in MD5 could

compromise security. It was also hoped that relying on two different hashing functions would

mean that SSL continued to provide message integrity in the event that serious vulnerabilities were

discovered in either algorithm.

Authentication in this version no longer required certificates to be signed directly by a root CA,

and introduced support for intermediate CAs. These are certification authorities whom a root CA

has entrusted with the ability to sign certificates that carry the same validity as a certificate signed

directly by the root CA. A certificate is accepted by a client if there exists an arbitrary-length chain

of trust from a root CA, via zero or more intermediate CAs, to the server’s certificate.

SSL v3 also mandated the use of different keys for encryption and authentication to reduce

the potential impact of vulnerable cipher and MAC algorithm combinations[7]. For example, if

an SSL connection uses a common key for confidentiality under AES-CBC and message integrity

under AES-CBC-MAC, then a vulnerability in the MAC algorithm that leads to the retrieval of

key material could also break the confidentiality of the message. In TLS v1.2, an exception to this

13

practice was made for Galois/Counter mode (GCM)[2], which intrinsically supports the secure use

of a single key for encryption and authentication.

Compression support was tentatively added to the protocol to reduce the increase in handshake

overhead that these changes brought[7]. However, supported compression algorithms were not

defined until later revisions of the protocol.

TLS v1.0

TLS v1.0 was released in 1999[6] and, despite the change of name from SSL to TLS, does not

represent changes as significant as those from SSL v2 to SSL v3. Accordingly, it is referred to in

the protocol handshake as version “3.1”, and this tradition has continued for subsequent versions

of TLS.

Message authentication is standardised by enforcing the use of a fixed keyed-hash message

authentication code (HMAC) function, dropping support for the previous non-keyed MD5-SHA1

concatenation MAC. HMAC(K,m) is defined to be H((K⊕opad)||H((K⊕ ipad)||m)), where K is

a key, m is the message to be authenticated, H is a cryptographic hash function, opad is the ‘outer

padding’ consisting of 0x5c repeated for one block, ipad is the ‘inner padding’ consisting of 0x36

repeated for one block, and || denotes concatenation.
A single algorithm, specified in the cipher suite chosen by the server in the handshake, is now

used to provide message integrity and authentication[6]. This reduces the reliance on particular

cryptographic hash functions and means that vulnerabilities in algorithms do not necessitate changes

in the protocol specification.

To mitigate traffic analysis whereby an attacker deduces the encrypted payload by its size, the

protocol now permits up to 255 bytes of padding. In SSL v3, padding was only permitted under

CBC mode to extend the plaintext to a multiple of the block size[7], rather than as a security

concern.

Changes were also made to the cipher suites supported. U.S. cryptographic export regulations

were about to be relaxed when the TLS v1.0 specification was being written, so triple-DES (3DES)

replaced DES as the block cipher that required mandatory support and FORTEZZA—a cipher

developed for the U.S. Government’s ill-fated Clipper chip project—was removed[6]. In 2006, elliptic

curve cipher suites were added to the TLS v1.0 specification retroactively[9].

TLS v1.1

TLS v1.1 was released in 2006 and represents minor fixes to issues with TLS v1.0[5].

CBC mode padding attacks were mitigated (Section 2.4.2), and the number of valid SSL alert

message classes was decreased to reduce the information available to an adversary.

Explicit random per-message IVs are used for connections that negotiate a block cipher in CBC

mode. In SSL v3 and TLS v1.0, an explicit initial IV is sent as part of the handshake to be used

for the first message and IVs for subsequent messages are derived implicitly from the ciphertext of

14

the preceding message[7, 6], which allows an adversary to predict IVs. It was later discovered in

2011 that this weakness led to an attack known as BEAST (Section 2.4.3).

TLS v1.1 also modernises cipher suite support; suites containing “export-grade” ciphers—weak

ciphers with short key lengths permitted to be exported under old U.S. regulations—are no longer

allowed to be chosen by a server as part of a TLS v1.1 connection handshake[5].

TLS v1.2

Released in 2008, TLS v1.2[2] is the latest and most secure version of the protocol but has yet to

gain widespread adoption. According to the Trustworthy Internet Movement, as of January 2014,

TLS v1.2 is supported by 25.7% of the top 200,000 most trafficked HTTPS-enabled web sites[8], in

contrast to SSL v3.0 which is supported by 99.5%.

The supported cipher suite list was revised to remove those containing weak ciphers including

DES (a cipher that required mandatory support in previous versions) and IDEA. The 256-bit

variant of the secure hash algorithm (SHA-256) was added to various suites to replace the older,

and weaker, MD5 and SHA1 algorithms[2] .

Support was also added for authenticated encryption with additional data (AEAD) cipher suites,

notably 128 and 256-bit AES in Galois/Counter mode, which is generally considered to be the most

secure cipher suite available. (AES-GCM in particular offers significant performance benefits on

Intel hardware that supports AES-NI or the PCLMULQDQ instruction.)

A client and server can now be configured to use pre-shared keys (PSKs), as opposed to requiring

a Diffie-Hellman or RSA key exchange as part of the connection handshake. This functionality is

intended for situations where public key operations are too computationally expensive, or otherwise

unsuitable.

DEFLATE compression was also added in TLS v1.2, making it the only option to exploit the

protocol support for compression introduced in SSL v3[2], but this led to an attack known as

CRIME (Section 2.4.3).

2.2.1 TLS Extensions

TLS extensions were retroactively added to all versions of TLS, and are intended to add flexibility

to the protocol by broadening its possible use cases. In doing so, the protocol authors hope to

discourage the creation of single-purpose security protocols and their libraries, which the TLS v1.2

RFC claims may risk the introduction of possible new weaknesses[2].

2.3 Miscellaneous TLS Features

2.3.1 Ephemeral Keys

Ephemeral keys are temporary keys that are discarded permanently after session cessation.

15

Forward Secrecy

Forward secrecy is a property of a cryptosystem that uses ephemeral keys to ensure that, if long-

term keying material is compromised, the confidentiality of individual sessions is still maintained.

For TLS, forward secrecy is defined by the establishment a single ephemeral key per session, and

the classes of cipher suites containing key exchange algorithms that support this carry the DHE

(Diffie-Hellman ephemeral) or ECDHE (elliptic curve Diffie-Hellman ephemeral) tags.

This functionality prevents key disclosure laws and server seizure from resulting in the decryption

of previously recorded traffic. TLS configurations supporting forward secrecy increased in popularity

after fears that signals intelligence agencies were recording and storing encrypted traffic for later

analysis, through the BULLRUN and EDGEHILL programmes[31].

Perfect Forward Secrecy

Perfect forward secrecy is a more secure form of forward secrecy where ephemeral keys are generated

per-message, rather than per-session. It is achieved by piggy-backing key exchanges into each

message, a practice known as key material ratcheting, used in protocols including Off-the-Record

Messaging (OTR).

Unfortunately, the TLS specification does not draw a distinction between forward secrecy and

perfect forward secrecy, so the terms are widely used interchangeably to refer to the non-perfect

flavour. Data from the Trustworthy Internet Movement showed that as of January 2014, only 5%

of the the top 200,000 most trafficked HTTPS-enabled web sites used forward secrecy by default[8].

2.3.2 Null Algorithms

The SSL/TLS protocol specifications offer cipher suites with null ciphers, and a test cipher suite1

that offers no security whatsoever. Cipher suites with null ciphers offer no defence against eaves-

dropping, but still prevent message tampering and allow secure key exchange. These cipher suites

should never be enabled for modern practical use of SSL/TLS.

2.3.3 Elliptic Curve Cipher Suites

In RFC 4492, elliptic curve cipher suites were added to all versions of TLS, introducing key exchange

algorithms and client authentication based on elliptic curve cryptography (ECC)[9]. The major

benefit of using ECC is that the security offered per bit is significantly higher than traditional

public-key cryptography, so the relative computational cost is much lower. Table 2.1 details the

estimated key sizes for comparable levels of security.

Groups of elliptic curve parameters, often referred to as “named curves,” are standardised by

several bodies including the National Institute of Science and Technology (NIST) and Brainpool

1TLS NULL WITH NULL NULL

16

Symmetric ECC DH/DSA/RSA

80 163 1024

112 233 2048

128 283 3072

192 409 7680

256 571 15360

Table 2.1: Comparable key sizes (bits) from RFC 4492[9]

(a conglomeration of German-speaking academics and companies). Like cipher suites, the respon-

sibility of maintaining the list of named curves supported by TLS falls to IANA. The majority of

the named curves supported at the time of publication of RFC 4492 were standardised by NIST,

so the majority of TLS communication that uses ECC relies upon a few NIST curves.

2.4 Threats

2.4.1 Authentication Issues

Public Key Infrastructure

Authentication is seen as one of the biggest problems with TLS, due to the reliance on public key

infrastructure and certificate authorities. This issue is both due to technical and organisational

failures.

In HTTPS, client implementations rely on checking that the X.509 subject common name is

the expected domain name. There is no technical barrier to prevent a certificate authority from

validating a certificate for a domain name without the owner’s permission. Once such a certificate

has been created, an adversary can masquerade as the domain and clients will trust the adversary

implicitly.

Additionally, the number of entities operating as certificate authorities entrusted to sign cer-

tificates faithfully and without error is large, and growing. The Electronic Frontier Foundation

found that there are approximately 650 independent CAs with the ability to sign certificates that

would be accepted by modern web browsers[10]. The number of CAs and the ease with which an

adversary could purchase one makes it highly impractical to ensure that forged certificates cannot

be be created.

Man-in-the-Middle Attack

After obtaining a forged certificate for a given domain, an active attacker can execute a man-in-

the-middle attack and intercept plaintext traffic. Figure 2.5 shows how this is achieved by the

composition of two SSL/TLS connections. Two sessions are maintained: one between the attacker

17

Client Attacker Server

Initiate handshake 1

Initiate handshake 2

Legitimate certificate

Finish handshake 2

Forged certificate

Finish handshake 1

Encrypted application data

Decrypt then re-encrypt Encrypted application data

msc

Figure 2.5: Man-in-the-middle attack

(masquerading as the server) and the client, and one between the attacker (masquerading as the

client) and the server. Application data sent from the client is decrypted and can be read by the

attacker before being re-encrypted and sent to the server.

In 2011, the Islamic Republic of Iran performed this attack to decrypt traffic between Google’s

Gmail and its citizens[11], evidencing the viability of this practical attack.

Certificate Pinning

Certificate pinning is a defence against man-in-the-middle attacks. It works by modifying clients

to verify that public-key fingerprints in X.509 certificates match known valid values, rather than

checking the subject CN field. With this approach, authentication relies upon the collision-resistance

of the cryptographic hash functions used to generate public key fingerprints, making the role of a

certificate authority redundant.

However, the problem with this defence is using a secure mechanism for communicating the set

18

of valid fingerprint values. Google has enabled certificate pinning in the Chrome web browser for

its HTTPS-enabled services, and to solve this problem bundles valid fingerprint values with their

installation binaries[12].

2.4.2 Cryptographic Vulnerabilities

CBC Padding

In 2002, Serge Vaudenay published a paper documenting security flaws in protocols (including

SSL/TLS) that utilise padding and a block cipher in CBC mode[16]. The documented attack was

shown to induce a side channel (see Section 2.4.4) for TLS v1.0 and below.

The attack relies on the fact that when the client receives a message its payload is decrypted

before validating the MAC. If the padding of the payload is invalid, a protocol alert message is sent

to the sender, otherwise an acknowledgement is sent. So if an adversary can differentiate the two

responses, they can gain knowledge about the plaintext.

A fix was proposed that appended a block containing h(m||p) to the plaintext, where h is a

hash function, m is the message, and p is the padding required to align to a block multiple. This

meant that clients would decrypt then verify the hash before checking the padding. Consequently,

the TLS v1.0 specification was revised to TLS v1.1 to fix this vulnerability[5] and it was proposed

that older versions consider disabling cipher suites operating under CBC mode.

Stream Cipher Keystream Reuse

Stream ciphers that utilise exclusive-or and reuse keys are vulnerable to an attack that may permit

the decryption of message contents. Using the commutativity of exclusive-or, an attacker can deduce

A ⊕ B of two messages A and B that were encrypted under the same keystream values. If either

message is known, the other can be decrypted, and if neither are known frequency analysis may be

used to decrypt message contents.

This attack can be mitigated by using per-message IVs to derive different keystreams from a

static session key. The size of the IV must also be considered in relation to the number of messages

exchanged before re-keying; the 24-bit IV specified in the Wired Equivalent Privacy (WEP) protocol

was too small and thus overflow caused keystream reuse, breaking the security of the protocol.

SSL has used per-message IVs since v3 and random per-message IVs since TLS v1.1, so this

attack is no longer viable. However, a similar attack for SSL v3 and TLS v1.0 was based on the

predictability of IVs (Section 2.4.3).

Stream Cipher Malleability

Malleability is a property of a cryptosystem that allows an attacker to construct a ciphertext, from

observed ciphertexts, that decrypts to a valid plaintext. Figure 2.6 demonstrates a ‘bit-flipping’

19

attack on messages encrypted under a stream cipher that utilises exclusive-or and thus has this

property.

If an attacker can correctly guess a subsection of message, they just need to exclusive-or the

ciphertext with (known subsection) ⊕ (new subsection) to get a another valid ciphertext. A poorly

implemented client may näıvely assume that because the key is only known by itself and the server,

that the server can be the only other entity to generate valid ciphertexts.

This attack can be mitigated by using MACs that use a strong hash function. Message authen-

tication is present from SSL v2 onwards, with improvements in SSL v3 and TLS, so this attack is

no longer viable.

RC4 Keystream Bias

In 2013, AlFardan et al. published a paper titled On the Security of RC4 in TLS and WPA. This

detailed a single-byte statistical bias in the first 256 bytes of RC4’s keystream, which coupled with

enough ciphertexts of a fixed plaintext encrypted under different keys, can lead to the recovery of

up to 220 bytes of TLS plaintext[17]. (An ideal stream cipher should produce a keystream that is

indistinguishable from random noise, to imitate the information-theoretically secure one-time pad.)

The paper states that “In our experiments, the first 40 bytes of TLS application data after the

Finished message were recovered with a success rate of over 50% per byte, using 226 [TLS] sessions.

With 232 sessions, the per-byte success rate is more than 96% for the first 220 bytes (and is 100%

for all but 12 of these bytes).” For HTTPS, it was shown that—given enough ciphertexts—session

cookie data could be efficiently recovered from a session encrypted with RC4[17].

Therefore cipher suites containing RC4 are no longer considered to be secure against practical

attacks. This poses a serious problem, as RC4 has achieved significant adoption; its simplicity means

that it is computationally efficient so is favoured by system administrators, it has been supported

in all versions of SSL/TLS to date, and authors of previous vulnerabilities have recommended using

RC4 as a workaround to fix other issues.

NIST/Brainpool Named Elliptic Curves

As was mentioned in Section 2.3.3, most TLS implementations that support elliptic curve cryptog-

raphy support the NIST—and to a lesser extent—Brainpool named elliptic curves. There exists

significant scepticism regarding the methodology used to generate the parameters of these stan-

dardised curves, especially given the 2014 publication of details regarding the US National Security

Agency’s attempts to weaken cryptography through its BULLRUN programme[31].

Let Figure 2.7 define a methodology to generate standardised elliptic curves.

20

1. Alice encrypts message m1, “SEND$100”, under a stream cipher that generates the pseudo-

random keystream S(k). Ciphertext c is constructed bitwise, by combining the ith bit of the

message with the ith bit of the keystream using the exclusive-or operator: c = m ⊕ S(k).

Alice encrypts m1 and sends the corresponding ciphertext c1 to Bob.

‘S’ ‘E’ ‘N’ ‘D’ ‘$’ ‘1’ ‘0’ ‘0’

m1 01010011 01000101 01001110 01000100 00100100 00110001 00110000 00110000

S(k) 00001111 10000101 10100111 10100100 00001010 11001001 10111111 01000100

c1 01011100 11000000 11101001 11100000 00101110 11111000 10001111 01110100

..

Alice

.

Bob

. Mallory.

c1

.

c1

2. Mallory records c1 and, without knowing the entire contents of the plaintextm1 nor keystream

S, is able to construct a modified ciphertext c2 that corresponds to the plaintext “SEND$999”.

Mallory sends c2 to Bob.

‘9’ ‘9’ ‘9’

m2 00111001 00111001 00111001

m1 00110001 00110000 00110000

m2⊕m1 00001000 00001001 00001001

c1 01011100 11000000 11101001 11100000 00101110 11111000 10001111 01110100

c2 01011100 11000000 11101001 11100000 00101110 11110000 10000110 01111101

..

Alice

.

Bob

. Mallory.
c2

3. Bob receives c2, and decrypts it using the generated keystream S, successfully yielding valid

plaintext m2.

c2 01011100 11000000 11101001 11100000 00101110 11110000 10000110 01111101

S(k) 00001111 10000101 10100111 10100100 00001010 11001001 10111111 01000100

m2 01010011 01000101 01001110 01000100 00100100 00111001 00111001 00111001

‘S’ ‘E’ ‘N’ ‘D’ ‘$’ ‘9’ ‘9’ ‘9’

Figure 2.6: Anatomy of a stream cipher ‘bit-flipping’ attack
21

1. Take a prime p and elliptic curve parameterised by constant B, say, x3− 3x+B mod p.

2. Let B = H(s), where s is our ‘seed’ and H is a cryptographic hash function, say SHA-1.

3. Assign a random value to s and hence calculate B.

4. Assess the security of the elliptic curve against all known attacks. If it is known to be

weak, go back to step 3, else stop.

5. For various primes, publish p, H, s, x3 − 3x+ b mod p as a named curve standard.

Figure 2.7: A verifiably random methodology for generating standardised elliptic curves

The justification is that, assuming that H cannot be inverted, introducing a hidden vulnerability

into the elliptic curve by careful choice of s is so computationally intensive that it was considered

to be impossible. This approach is termed “verifiable randomness” in various standards and is the

methodology NIST used to generate their suite of named curves. However, it has attracted criticism

because there is no explanation of the choice of seeds and no way to verify that they were chosen

at random.

Critics[32] claim that an ECC and/or SHA-1 vulnerability known only the authors of the stan-

dard and access to a enough brute force computing power could mean that s values have been

chosen such that the curves have been intentionally weakened. To mitigate this, the Brainpool

standard uses “nothing up our sleeves” numbers, where seeds are deterministically generated.

Let Figure 2.8 define an alternative, more secure, methodology to generate standardised elliptic

curves.

1. Take a prime p and elliptic curve parameterised by constants A and B, say, y2 = x3 −
Ax+B mod p.

2. Let A = H(s), B = A, where s is our ‘seed’ and H is a cryptographic hash function, say

SHA-3 (512-bit).

3. Let s be composed of a counter c, say of length 32-bits, followed by the digits of a

transcendental number, say cos(1), taken as an integer and truncated

4. Let c = 0

5. Assess the security of the elliptic curve against all known attacks. If it is known to be

weak, increment c and repeat, else stop and publish the parameters as a standard.

Figure 2.8: A verifiably pseudorandom methodology for generating standardised elliptic curves

22

The idea is that cos(1)—or any transcendental number, for that matter—has no causal relation-

ship with the security of the resulting elliptic curve and now the adversary’s hidden vulnerability

must coincide with the first value of c that is secure against all known attacks, a much smaller

search space to work with. Being able to systematically and comprehensively explain seed values

achieves “verifiable pseudorandomness” and the Brainpool named curves specification fulfils this,

using a similar methodology to above and transcendental numbers π and e.

Critics are still sceptical of the Brainpool named curves given that new attacks against elliptic

curve cryptography have been discovered since their standardisation and the specification uses the

ageing (NIST-standardised) SHA-1, though these are not the largest concerns with Brainpool’s

approach.

In 2014, Bernstein et al. showed that “verifiable pseudorandomness” is not strict enough to

prevent an adversary from engineering a vulnerability into the resulting elliptic curve by producing

a suite of standard curves with the value 0xBADA55 engineered into their constants. Given the exact

methodology as defined in Figure 2.8 with p = 2224 − 296 + 1 (as in the NIST P-224 curve), we get

c = 184 meaning that:

s = 000000B8 8A51407D A8345C91 C2466D97 6871BD2A

A = 7144BA12 CE8A0C3B EFA053ED BADA555A

42391FC6 4F052376 E041C7D4 AF23195E

BD8D8362 5321D452 E8A0C3BB 0A048A26

115704E4 5DCEB346 A9F4BD97 41D14D49

This is analogous to showing that the resulting elliptic curve could be engineered to contain

a vulnerability known only to the creators. As a result, we cannot trust verifiably pseudorandom

named elliptic curves and therefore have exhausted the named curves specified in the ECC extension

to TLS. RFC 4492 does specify the option to use arbitrary explicit elliptic curves, but this does not

solve our problem of identifying a ‘secure’ elliptic curve. Out of a general sense of conservatism,

I am personally concerned about the increased usage of elliptic curve cryptography to secure TLS

connections.

2.4.3 SSL/TLS-Specific Vulnerabilities

Client-Initiated Renegotiation

In 2009, Marsh Ray published details of a man-in-the-middle attack that allows an adversary to

prefix application-level plaintext to the requests of a client[18]. It exploits the client-initiated

renegotiation feature of the SSL/TLS protocol and relies on the buffering of pending application-

level requests on the server.

23

TLS session renegotiation allows a client to perform standard handshakes to renew cryptographic

session parameters, over an existing encrypted session. A man-in-the-middle can exploit this as

follows:

1. The attacker establishes a connection with the server, and exchanges partial application-level

data that is intended to be prefixed to eventual requests made by the client. (For example,

this could modify an HTTPS GET to request a page of the attacker’s choice.)

2. The attacker waits until the client attempts to initiate a connection with the server. It

intercepts the handshake, and requests session re-negotiation for its existing connection with

the server.

3. The attacker then forwards messages such that the client’s handshake messages are used in

the session re-negotiation.

4. The client makes an application-level request that the server believes to be a continuation of

the partial request the attacker made previously.

5. The server returns the result of the attacker’s prefixed request to the client.

This vulnerability does not allow the attacker to view the response (nor modify it), only to

prefix data to requests. This attack is possible because no binding exists between the re-negotiation

request and the enclosing encrypted channel. An internet draft suggests protocol modifications to

fix this issue[19] and the workaround suggested until these changes are adopted is to fully disable

client-initiated renegotiation.

Browser Exploit Against SSL/TLS (BEAST)

BEAST is a proof of concept attack based on the weaknesses discovered in SSL v3 and TLS v1.0

that result from the predictable use of implicit IVs. Though the concept was introduced in 2006

by Gregory Bard in A Challenging but Feasible Blockwise-Adaptive Chosen-Plaintext Attack on

SSL[20], it was not until 2011 that this was turned into a practical attack on TLS by Rizzo and

Duong[21].

BEAST is a client-side attack where session cookies can be recovered from the ciphertext of

an HTTPS connection that has negotiated a block cipher in CBC mode. It requires the attacker

to have the ability to inject known plaintext into the requests made by the client to the server,

achieved using cross-origin HTTP requests in the BEAST proof-of-concept code.

If it is known that some value is located in a block mi, then an attacker will guess that this

is equal to value v. The attacker then chooses to inject the next plaintext block to be encrypted:

x⊕ ci−1⊕v (where x is the next IV to be used and ci−1 is the previous block of ciphertext). Before

encryption, this block has the IV applied, so that the encryption process actually takes place on

ci−1 ⊕ v, to produce ci+1. If the guess for v was correct then it can be observed that ci = ci−1.

24

Rizzo and Duong reduce the search space of this value v to that of one byte, by injecting other

data such that v is split into two blocks, where the first block contains only known data plus the

first byte of v. They perform an exhaustive search to find this first byte, then adjust the offset

accordingly and repeat, until the entire plaintext value of v has been recovered.

The vulnerability that permits this was fixed in TLS v1.1 by introducing random per-message

IVs[5]. As a workaround for TLS v1.0, forcing the use of RC4 mitigates this attack since it is

a stream cipher and therefore not susceptible. However, as mentioned in Section 2.4.2, RC4 is

now considered insecure, so there is currently no possible safe configuration for SSL/TLS versions

older than TLS v1.1. That said, this attack is not feasible unless an adversary can inject arbitrary

plaintext to be encrypted.

Compression Ratio Info-leak Made Easy (CRIME)

CRIME is another attack discovered by the authors of BEAST and presented at the Ekoparty

security conference in 2012[22]. It relies on TLS compression (DEFLATE) being enabled, the

ability to inject arbitrary plaintext data and can be used to efficiently recover session cookies for

HTTPS. It works as follows:

1. The attacker makes an HTTPS request from the client to some URL such that it is known

that the cookie named c will be sent in the request. The cookie name and a guessed first

value is appended to the request URL as a parameter, e.g., “GET /?c=a.”

2. The attacker notes the length of the encrypted packet sent.

3. The attacker makes subsequent HTTPS requests to the same URL with the appended variable

changed, e.g., “GET /?c=s”. If the size of the request does not increase, the value of the

variable is likely the prefix of the cookie.

4. The attacker repeats this process by appending to the variable until the value of the cookie

is known. e.g., “GET /?c=secret”, which refers to the encrypted HTTP header “Cookie:

c=secret.”

The workaround suggested is to fully disable TLS compression. However, this attack inspired a

subsequent attack, BREACH, which simply relies on HTTP compression enabled at the application-

level to achieve the same goal.

Lucky Thirteen

Published in 2013, Lucky Thirteen affected common implementations of all TLS versions, but

was limited to connections secured by block ciphers using CBC mode and the HMAC-SHA1

algorithm[23].

25

This attack was built upon the work of Vaudenay (Section 2.4.2) who discovered that knowing

whether padding was formatted correctly (through what is referred to as a padding ‘oracle’) allows

an attacker to infer plaintext values via statistical analysis. Lucky Thirteen shows that a man-

in-the-middle can induce a padding oracle by truncating ciphertexts and altering two bytes per

packet[23].

This is because Vaudenay’s previous side channel discovery caused implementers to force MAC

checking even for ciphertexts with known incorrect padding. By truncating packets, the authors

of Lucky Thirteen are able to distinguish timing differences between two types of messages: ones

where the end of the truncated plaintext looks like padding, and other messages that look like they

do not. If the client mistakenly removes what it thinks is padding, then the HMAC-SHA1 algorithm

takes fewer cycles to execute and an alert message is sent earlier than expected, inducing a side

channel for an adversary to exploit.

The authors claim that trying all combinations of two-byte alterations guarantees them the

ability to recover two bytes of plaintext. While this attack is impressive, it is unlikely that it has

practical application over a network environment such as the internet. In addition, every two-

byte alteration sent causes the client to disconnect and re-establish an SSL/TLS session, which is

noticeable and very time-consuming.

Furthermore, popular SSL/TLS implementations have been patched to prevent this timing

attack, and it is ineffective if a stream cipher or AEAD is used.

2.4.4 Side Channel Attacks

A side channel attack is generally defined to be an attack based upon information gained through

the weaknesses in the implementation of a cryptosystem as opposed to algorithmic vulnerabilities

or cryptanalysis. Side channels include execution timing, power usage and data remanence (e.g.,

cache contents).

Entropy Issues

Most cryptography relies on the availability of a source of unpredictable random numbers (with high

entropy) for security against attacks. Systems are unable to participate in secure communication

if too little entropy is available to generate secure random numbers, thus there are a number of

approaches taken to ‘feed’ the entropy pools of a system. These include:

• Hardware security modules (HSMs) or trusted platform modules (TPMs). These are able to

generate true random numbers through a hardware-based process.

• Hard drive seek timings[24]. In 1994, Davis et al. demonstrated that the air turbulence inside

a hard disk could be used to extract 100 independent random bits per minute.

• Mouse and keyboard interactions; measuring the time deltas between keystrokes.

26

• Uninitialised RAM. This approach was used as a seed for OpenSSL’s pseudo-random number

generator (PRNG).

In 2006, an update was made to Debian’s OpenSSL package that removed references to unini-

tialised memory addresses[25]. This unintentially removed part of the seeding process for the PRNG,

massively reducing the randomness of data used to generate cryptographic keypairs. The only data

used to seed the PRNG was the process ID, which has a maximum value of 32,767, and this severely

reduced the set of possible keypairs to such an extent that all possible weak keypairs have been

hashed and enumerated in the openssl-blacklist package. Potentially, certificates sent as part of an

SSL/TLS handshake could be checked against this blacklist.

In 1996, Netscape’s web browser utilised a similarly-insecure proprietary algorithm to seed their

PRNG for SSL connections. Two security researchers, Ian Goldberg and David Wagner, reverse-

engineered the browser binary to discover that, by design, the RNG was only seeded with the time

of day and parent/child process IDs[26]. These three values are predictable and not independent,

so had very low entropy, which undercut the security model of SSL.

Web Traffic Leaks

In Preventing Side-Channel Leaks in Web Traffic: A Formal Approach Backes et al. create a

mathematical model to show that the structures of websites can permit the fingerprinting of their

usage despite data being encrypted over SSL/TLS[27]. Side channels including request ordering,

packet sizes and delays all give away information that can be used classify the behaviour of users.

The attacks are practical and were demonstrated to predict values typed into an interactive

autocomplete field, as well as the pages visited on the Bavarian-language version of Wikipedia.

They further demonstrate a generalised model for quantifying the information leaked through side

channels and “techniques for the computation of security guarantees” for all possible execution

paths of a web application[27].

They claim that their model is able to test mitigations of attacks launched by realistic adver-

saries, as opposed to alternatives that draw conclusions about countermeasures from the viewpoint

of single-purpose classification algorithms[27].

The authors mention a number of useful possible countermeasures that can be applied below or

at the TLS layer, including:

• Padding: up to 255 bytes of padding can be added per TLS message.

• Dummy data: TCP retransmission could help mitigate aggregate size-based attacks.

• Split: TCP packets could be segmented to avoid size-based side channel attacks.

• Shuffle: requests could be buffered and their order changed before being sent.

27

2.4.5 Notable Implementation Bugs

OpenSSL Heartbleed (CVE-2014-0160)

In April 2014, a memory bounds checking bug was identified in the TLS heartbeat functionality of

the popular library OpenSSL. This bug allows attackers to retrieve up to 64KB of server memory

and it has been shown that this ability permits the practical theft of session data and private keys

related to X.509 certificates.

Data from Netcraft2 suggests that 500,000 TLS-enabled web servers were vulnerable to Heart-

bleed, which resulted in system administrators scrambling to apply patch sets and reissue certificates

before being exploited. Worryingly, further data from Errata Security3 showed that 300,000 systems

were still vulnerable to Heartbleed one month after the bug’s initial publication.

TLS heartbeat messages contain a variable length payload and a 16-bit integer explicitly speci-

fying the payload length. In response to a heartbeat request message where the payload is smaller

than the length specified, a vulnerable OpenSSL instance performs a buffer over-read and returns

the data that happens to exist in memory beyond the payload. The solution to this bug is very

simple: verify that heartbeat messages do not contain explicit lengths that exceed the size of the

payload or, given the marginal use of TLS heartbeat functionality, disable heartbeat messages

altogether.

See Section 3.3.1 for details of TLSFilter’s mitigation technique.

OpenSSL ChangeCipherSpec Injection (CVE-2014-0224)

In June 2014, another serious implementation bug was identified in OpenSSL as a direct result of

the increased scrutiny from the security community in the wake of Heartbleed. If both a client and

server were running a vulnerable version and a man-in-the-middle were to inject a TLS ChangeCi-

pherSpec message into a handshake prior to the shared master secret being populated with data,

the handshake would terminate early and the session would be encrypted under an empty key.

While this is a severe vulnerability, it relies on having a privileged network position between the

client and server meaning that, unlike Heartbleed, it cannot be exploited by everyone. The solution

to this bug is to verify that the TLS handshake state is such that a ChangeCipherSpec message

should be processed if received or otherwise ignored.

A TLSFilter plugin was written to mitigate this vulnerability prior to the public availability of

tools to test for it.

2http://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-

bug.html
3http://blog.erratasec.com/2014/05/300k-servers-vulnerable-to-heartbleed.html

28

2.5 Similar Existing Works

Despite a thorough search of IEEExplore, the ACM digital library, Citeseer, ScienceDirect and

Google Scholar, I was unable to identify any academic works regarding the use of firewalling/prox-

ies/middleware to improve the security of SSL or TLS. A class of tangentially similar products exist

and are known as intrusion detection systems (IDS), though these focus on the monitoring and

alert of attack attempts as opposed to prevention.

2.5.1 Bro

According to the Bro Project website4, “Bro provides a comprehensive platform for network traffic

analysis, with a particular focus on semantic security monitoring at scale. While often compared

to classic intrusion detection/prevention systems, Bro takes a quite different approach by provid-

ing users with a flexible framework that facilitates customized, in-depth monitoring far beyond the

capabilities of traditional systems. With initial versions in operational deployment during the mid

‘90s already, Bro finds itself grounded in more than 15 years of research.”

Bro is an entirely passive piece of software and therefore not well-suited to firewall applications

in which packets require active manipulation. Furthermore, it will opt to drop network packets from

its processing pipeline in preference to impacting network throughput when CPU consumption and

memory limits are reached, which is a restriction that wholly prevents its use as a firewall.

With regards to extensibility, Bro can be fully customised through its support of a proprietary

scripting language. In addition, a large corpus of user-authored scripts provide a large breadth and

depth of functionality at no cost.

2.5.2 Libnids

According the the Libnids website, “Libnids is an implementation of an E-component of [a] Network

Intrusion Detection System. It emulates the IP stack of Linux 2.0.x. Libnids offers IP defragmen-

tation, TCP stream assembly and TCP port scan detection.” It is specifically intended to be used

as the basis of network intrusion detection systems, so would also require substantial modification

before being used as a firewall.

Unlike Bro, Libnids focuses on a very narrow set of features; while there is a basic C API

for registering callback functions, it lacks the flexibility and ease of extension that Bro supports.

Additionally, Libnids has been abandoned since 2010 and is in need of bug fixes before being

functional with the current Linux kernel. Since this project is geared towards being an open source

library and not an entire appliance aimed at end users, it is less easy to compare to TLSFilter.

4http://www.bro.org/documentation/faq.html

29

2.5.3 Blue Coat SSL Visibility

Blue Coat Systems is a commercial provider of enterprise security appliances. Their “SSL Visibility”

product5 allows enterprises and law enforcement the ability to monitor the contents of encrypted

TLS traffic on their networks. It does this through a hardware network appliance that performs an

intentional man-in-the-middle attack on all network users, with a new certificate for each website

dynamically generated and signed under their “Secure Web Gateway Cert” certificate authority.

Security
Empowers
Business

S
O

L
U

T
IO

N
 B

R
IE

F

The SSL Visibility Appliance offers line-rate, high-performance
throughput, and allows for non-SSL flows to be sent directly to the
attached security appliances in less than 40 microseconds, minimizing
delay for applications such as voice over IP (VoIP). The appliance is
available in three performance-level models. The high-end system, the
SV3800, supports decryption of up to 4Gbps of SSL traffic in a WAN link
of up to 40Gbps (20 Gbps in each direction) for a variety of SSL versions
and cipher suites.

The SSL Visibility Appliance can support the simultaneous analysis of
up to 6,000,000 TCP flows for SSL content. It handles up to 400,000
concurrently active SSL sessions that are being inspected. The setup
and teardown rate of up to 11,500 SSL sessions per second is more
than 10 times higher than competitive solutions.

Deploying the SSL Visibility Appliance is transparent to end systems
and to intermediate network elements. It doesn’t require network
reconfiguration, IP addressing or topology changes, or modification to
client and web browser configurations. The appliance can be deployed
inline or through the use of SPAN/TAP or a mirror port to handle inbound
and outbound SSL traffic. Deployments that provide decrypted data
to active security appliances such as IPS and NGFW solutions enable
policy and enforcement actions on SSL traffic. Likewise, deployments
that feed passive security appliances such as IDS, malware analysis and
Security Information and Event Management (SIEM) solutions are better
suited for logging and reporting requirements.

The inspected content from the SSL Visibility Appliance is designed for
application preservation. Decrypted plaintext is delivered to security

appliances as a generated TCP stream that contains the packet headers
as they were received. This allows applications and appliances used for
IDS, IPS, NGFW, malware analysis, forensics, DLP, and other measures
to expand their scope to SSL-encrypted traffic.

The SSL Visibility Appliance also supports input aggregation and output
mirroring. Input aggregation allows aggregation of traffic from multiple
network taps onto a single passive-tap segment for inspection. Output
mirroring allows the appliance to feed traffic to one or two attached
passive security appliances in addition to the primary active security
appliance.

SSL Visibility Appliances are designed for high availability with
integrated fail-to-open hardware and configurable link state monitoring
and mirroring for guaranteed network availability and network security.

Lastly, the SSL Visibility Appliance allows organizations to establish,
enforce and manage policies for encrypted traffic throughout their
networked infrastructure. Using the Host Categorization subscription-
based service, the SSL Visibility Appliance can block, permit and
forward SSL encrypted traffic based on numerous, familiar policies,
such as whether the traffic contains personal banking or healthcare
data. This is accomplished in a similar manner as that used in the Blue
Coat ProxySG, PacketShaper and other proven solutions, utilizing the
comprehensive Global Intelligence Network for real-time threat updates
and response across the globe.

For those deployments where security certification is a requirement,
Blue Coat’s SSL Visibility Appliances are in the process of receiving
FIPS 140-2 Level 2 certification.

SSL Visibility ApplianceCorporate Assets

CN: Gmail
CA: Secure Web Gateway Cert

Security Solution
(IDS/IPS, NGFW, Malware,

Forensics, etc.)
Anti-Virus, Content Analysis, DLP, etc.

Encrypted Traffic

Secure Web Gateway Firewall

Decrypted Traffic

CERTIFICATE

CN: Gmail
CA: Secure Web Gateway Cert

CERTIFICATE

CN: Gmail
CA: Verisign

CERTIFICATE

Unlike TLSFilter, the purpose of this product is not to improve security but to enable surveil-

lance for use cases including corporate policy enforcement and network forensics. TLSFilter will

attempt to maintain the end-to-end encrypted nature of all TLS connections, so as to not to break

the security assumptions of its users. A drawback of Blue Coat’s approach is that each device must

have their custom CA certificate installed to the operating system’s trusted root certificate store.

5https://www.bluecoat.com/products/ssl-visibility-appliance; Diagram courtesy Blue Coat

30

Chapter 3

TLSFilter Feature Set

This chapter describes the features implemented in TLSFilter with example rule configurations

and analyses how they can be used to mitigate many of the TLS weaknesses previously described.

Section 3.3.3 contains a table summarising the software’s effectiveness against known TLS vulner-

abilities.

3.1 TLS Record Layer Features

The TLS record layer is the protocol that sits on top of TCP (or UDP, in the case of Datagram

TLS) and segments TLS data into variable-length versioned-and-typed records. This layer also

fragments and re-assembles data, much like the the lower level TCP, as well as maintaining the

guarantee of in-order records.

As of May 2014, the valid record types and their purposes are as follows:

• Handshake: indicates the record contains TLS handshake protocol messages and should be

further processed.

• Alert: indicates a (possibly fatal) problem with the TLS connection, details of which are

defined by the TLS alert protocol.

• Application: indicates that the record contains application-level data that the TLS imple-

mentation should skip processing. For example, for HTTPS these records would contain the

HTTP requests and responses, encrypted under the parameters negotiated by the handshake

protocol.

• ChangeCipherSpec: indicates that all following messages are to be encrypted and acts as

a precursor to the end of the TLS handshake process.

31

• Heartbeat: built as part of a TLS extension to ensure that long-term TCP connections are

maintained.

For the purposes of TLSFilter, alert records are excluded from processing as the underlying TLS

endpoints will reattempt or close connections after having received a record of this type. Similarly,

application records are excluded from the processing pipeline since the contents is encrypted and

highly-specific to the protocol wrapped by TLS.

While the core functionality allows for the blacklisting/whitelisting of TLS versions, to perform

this at the record layer is inappropriate. TLS actually performs version negotiation as part of the

handshake protocol, so we cannot assume that the protocol version in the record layer will be the

version used to secure communication.

Most—but not all—processing is performed on handshake records, so the bulk of the TLSFilter

implementation uses an architecture that abstracts away the record layer and operates purely on

the higher-level handshake protocol. In contrast, an example of lower-level logic at the TLS record

layer is exemplified in the heartbeat plugin in Section 3.3.1.

3.2 TLS Handshake Protocol Features

The TLS handshake protocol (documented in Section 2.1.4) allows the secure negotiation of TLS

parameters used to set up the channel before application data can be exchanged. Through the

parameter configuration keyword, TLSFilter allows users to allow and deny connections on the

basis of the parameters negotiated throughout the handshake process.

In general, the client—that is, the endpoint that initiates the connection—will inform the server

of its capabilities through a ClientHello handshake message and allow the server final say in the pa-

rameters used for communication, which are communicated back through a ServerHello handshake

message. To maintain maximum interoperability, TLSFilter takes a permissive approach and will

only issue a verdict on the basis of final communication parameters.

For example, an insecure client could initiate a TLS connection with NULL and/or insecure

cipher suites as its top preferences and this is permitted unless the server decides to select one

of these insecure preferences. The drawback of this approach is that connections where all client

capabilities are insecure are bound to fail, but suffer increased latency between the connection being

solicited and denied as this requires, at minimum, an extra round-trip from the server.

The principle of delaying a verdict until as late as possible has been repeated throughout the

architecture of TLSFilter.

3.2.1 Cipher Suite-Based Rules

Cipher suites determine the fixed sets of algorithms used for encryption, message authentication

and key exchange. Hence, TLS weaknesses caused by vulnerabilities in cryptographic algorithms

32

(or classes thereof) can be prevented by denying groups of cipher suites. TLSFilter supports the

denial of cipher suites on the basis of: suite name, symmetric cipher, key exchange algorithm, MAC

digest algorithm and cryptographic modes of operation, as well as supporting macros for “export

grade” suites and those supporting forward secrecy.

Suite Name

Cipher suites are allowed or denied on the basis of IANA-assigned names. For example, the following

configuration file excerpt prevents a TLS handshake from negotiating the NULL cipher suite (a suite

that should never be used in production):

parameter deny suite TLS_NULL_WITH_NULL_NULL

Symmetric Cipher

One may also define rule sets on the basis of the symmetric ciphers used. For example, to mitigate

the potential for keystream biases (Section 2.4.2) in the RC4 stream cipher from compromising

security, the following rule could be used:

parameter deny cipher RC4

which is equivalent to

parameter deny suite TLS_RSA_EXPORT_WITH_RC4_40_MD5

parameter deny suite TLS_RSA_WITH_RC4_128_MD5

parameter deny suite TLS_RSA_WITH_RC4_128_SHA

parameter deny suite TLS_DH_anon_EXPORT_WITH_RC4_40_MD5

parameter deny suite TLS_DH_anon_WITH_RC4_128_MD5

parameter deny suite TLS_KRB5_WITH_RC4_128_SHA

parameter deny suite TLS_KRB5_WITH_RC4_128_MD5

parameter deny suite TLS_KRB5_EXPORT_WITH_RC4_40_SHA

parameter deny suite TLS_KRB5_EXPORT_WITH_RC4_40_MD5

parameter deny suite TLS_PSK_WITH_RC4_128_SHA

parameter deny suite TLS_DHE_PSK_WITH_RC4_128_SHA

parameter deny suite TLS_RSA_PSK_WITH_RC4_128_SHA

parameter deny suite TLS_ECDH_ECDSA_WITH_RC4_128_SHA

parameter deny suite TLS_ECDHE_ECDSA_WITH_RC4_128_SHA

parameter deny suite TLS_ECDH_RSA_WITH_RC4_128_SHA

parameter deny suite TLS_ECDHE_RSA_WITH_RC4_128_SHA

parameter deny suite TLS_ECDH_anon_WITH_RC4_128_SHA

parameter deny suite TLS_ECDHE_PSK_WITH_RC4_128_SHA

33

Key Exchange & Authentication Algorithm

The key exchange and authentication algorithm is the functionality defined by the cipher suite to

ensure that the session keys to be used to encrypt the connection under a symmetric cipher are

exchanged securely. The algorithm selected by the server in the ServerHello handshake message

determines the existence and formats of subsequent ClientKeyExchange and ServerKeyExchange

handshake messages.

For example, to prevent a trivial man-in-the-middle attack, the unauthenticated Diffie-Hellman

key exchange algorithm can be disabled using:

parameter deny algorithm TLS_DH_anon

Digest Algorithm

The cryptographic hash function defined in the cipher suite has multiple uses and depends on

the TLS (or SSL) version negotiated. In TLS 1.2, the negotiated hash algorithm is used in the

pseudorandom function to generate the shared session secret, in message signatures via the HMAC

construct and for the Finished message payload that signals the end of the handshake protocol. (Of

course, this assumes the use of a non-AEAD cipher suite where authentication and encryption are

distinct processes.)

In versions earlier than 1.2, the pseudorandom function, handshake message signatures and the

Finished message payload use both SHA1 and MD5 regardless of the cipher suite negotiated. The

hash function specified in the cipher suite is relegated to the HMAC (or in the case of SSL 3.0,

HMAC-like algorithm) that ensures the integrity and authenticity of application data.

However, unlike näıve signatures, the HMAC construct is not vulnerable to collision attacks.

Even though MD5 is no longer considered cryptographically secure for signatures, RFC 6151 states

“The attacks on HMAC-MD5 do not seem to indicate a practical vulnerability when used as a

message authentication code”[33] but warns against continuing to support HMAC-MD5 in new

protocols. Hence this feature is largely to be used to protect against future hash function vulnera-

bilities.

To follow the advice set out in RFC 6151 use:

parameter deny algorithm TLS_MD5

Mode of Operation

The cipher mode of operation is the last parameter specified in the cipher suite. This can be used

to protect against the CBC padding attacks discovered by Vaudenay (Section 2.4.2) as follows:

parameter deny cipher-mode CBC

34

Macros

Two macro rules export-grade and forward-secrecy are defined to make it easier to deny (or

require) cipher suites encompassed by these properties. The relaxation of cryptographic export

laws—at least in the United States—means that using ‘export grade’ cipher suites is no longer

necessary. Regardless, the advancement of computer processors has ensured that these cipher

suites are insecure and thus should not be used under any technical use case.

parameter deny export-grade

The opposite is true of cipher suites that support forward secrecy through the use of ephemeral

key exchanges. The advancement in technology and recent key disclosure laws such as RIPA now

mean that it is practical for communications encrypted under TLS to be decrypted at a later date,

en masse. Therefore, forward secrecy has become a desirable property of cryptosystems in general

that seek to mitigate this attack vector.

parameter require forward-secrecy

3.2.2 Certificate-Based Rules

As we saw in Section 2.1.1, X.509 certificates are used to specify a public key and server identity

binding which is signed by a trusted certificate authority. We saw there were numerous real-world

weaknesses using this system for authentication, so TLSFilter offers several classes of rule based

entirely on the X.509 certificate chains exchanged in a TLS handshake.

Public Key Modulus Size

A trivial vulnerability exists when a sufficiently large public key modulus is not used; a well-

resourced adversary that commands enough processing power can factor RSA moduli and hence

reconstruct private keys, violating the security model TLS relies upon. In 2009, Thorsten Kleinjung

et al. successfully factored a 768-bit RSA modulus, although this took more than two years and

used hundreds of computers[38].

Assuming the growth in processing power continues the minimum size of an RSA modulus

considered ‘secure’ against the average adversary will continue to increase. Consequently, TLSFilter

supports setting the minimum modulus size (in bits) for RSA, DSA and elliptic curve key pairs,

for both server certificates and CA certificates. The following example requires RSA moduli to be

a minimum of 4096 bits and ECC key pairs a minimum of 384 bits:

certificate key-length-minimum KP_RSA 4096

certificate key-length-minimum KP_ECC 384

35

Public Key Weakness

TLSFilter supports a blacklist of RSA public key hashes with all data currently derived from the

openssl-blacklist database that was built in response to the Debian-OpenSSL PRNG debacle[25]. If

future incidents weaken key pair generation and the keys can be enumerated, they can be trivally

added to the blacklist in TLSFilter.

certificate deny-weak-rsa-keys

Pinning

As discussed in Section 2.4.1, certificate pinning can be used to mitigate man-in-the-middle attacks

but until now has relied upon software developers checking at the application level. It does so by

associating a hash of the entire X.509 certificate with the certificate common name. An ideal use

case for this is functionality is software update servers:

Ensure the Cyanogenmod Android ROM update server is not impersonated

certificate pin-sha1 download.cyanogenmod.org 5A:44:5B:2E:5B:D5:DA:98:3F:A1:FB:50:\

5C:6D:8A:53:49:02:D7:27

Without certificate pinning, an adversary could perform a man-in-the-middle attack with a

certificate chain rooted by any certificate authority in the client’s trust store. TLSFilter reduces

the scope of this attack to that of a hash collision or modulus factorisation, rather than of third

party coercion.

The realities of load-balancing often result in many valid certificate hashes for a single common

name, so TLSFilter supports pinning in a many-to-one relationship:

certificate pin-sha1 encrypted.google.com ad:1f:f2:1a:4f:d7:9a:3b:58:b1:e2:ab:f9:6e:f5:ab

certificate pin-sha1 encrypted.google.com 16:04:f9:58:e3:49:bc:4c:c1:cc:cb:e7:f3:73:aa:da

certificate pin-sha1 encrypted.google.com 43:b4:cf:9c:d3:fc:c4:66:b5:a0:b2:7e:d7:e9:18:1d

Blacklisting

Similarly, certificates of servers and CAs can be blacklisted on the basis of their hashes. The

following blacklists the DigiNotar CA certificates that were stolen and used to perform man-in-the-

middle attacks on Google users in The Islamic Republic of Iran:

Deny "DigiNotar Root CA"

certificate deny-sha1 C0:60:ED:44:CB:D8:81:BD:0E:F8:6C:0B:A2:87:DD:CF:81:67:47:8C

Deny "DigiNotar Root CA G2"

certificate deny-sha1 43:D9:BC:B5:68:E0:39:D0:73:A7:4A:71:D8:51:1F:74:76:08:9C:C3

Deny second "DigiNotar Root CA"

certificate deny-sha1 36:7D:4B:3B:4F:CB:BC:0B:76:7B:2E:C0:CD:B2:A3:6E:AB:71:A4:EB

36

Deny "DigiNotar Services 1024 CA"

certificate deny-sha1 F8:A5:4E:03:AA:DC:56:92:B8:50:49:6A:4C:46:30:FF:EA:A2:9D:83

Deny "DigiNotar PKIoverheid CA Overheid en Bedrijven"

certificate deny-sha1 40:AA:38:73:1B:D1:89:F9:CD:B5:B9:DC:35:E2:13:6F:38:77:7A:F4

Deny "DigiNotar PKIoverheid CA Organisatie - G2"

certificate deny-sha1 5D:E8:3E:E8:2A:C5:09:0A:EA:9D:6A:C4:E7:A6:E2:13:F9:46:E1:79

3.2.3 Key Exchange-Based Rules

While the key exchange algorithm is defined by the cipher suite chosen by the server, the specifics

of the key exchange are only known once the key exchange has been initiated. Specifically to ensure

that ephemeral Diffie-Hellman key exchanges are of a sufficient level, the minimum modulus size

can be set as follows:

keyexchange key-length-minimum dh 1024

It is important to note that a small modulus size entirely undercuts the benefit of using cipher

suites that support forward secrecy. Forward secrecy mitigates a very specific type of attack,

and without proper configuration of modulus minimums could lead to a situation where enforcing

forward secrecy actually weakens security.

3.2.4 ECC Named Curves

TLSFilter also supports the blocking of specified named elliptic curves used during key exchange.

Another nuance of forward secrecy is that the cipher suites that tend to be most popular use the

Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) key exchange algorithm, as ECC performance

is an order of magnitude faster than non-EEC. Given that NIST named curves are the only curves

widely supported by software implementations and that there is potential for these curves to contain

intentional vulnerabilities (see Section 2.3.3), use of forward secrecy could again weaken security.

To block NIST’s P-224 named curve, for example, use the following:

keyexchange deny named-elliptic-curve secp224k1

3.2.5 IP Subnet Profiles

Using the aforementioned rules, TLSFilter permits the creation of profiles that are applied on the

basis of IP networks. Profiles are defined using a list of IP addresses and/or IP subnets in CIDR

format, enclosed in square brackets:

[192.168.0.0/24, 127.0.0.1] # Rules below apply to 192.168.0.* and 127.0.0.1

...

In the source code and elsewhere in this document this may be referred to as a rule’s ‘scope’.

37

3.3 Application Programming Interface

Flexibility is a core property of TLSFilter, so to permit the case where a new TLS vulnerability

cannot be mitigated using a combination of rules, custom functionality can be written the against

the C plugin API. Plugins are dynamic objects that are loaded at runtime, so the extension of

functionality does not require TLSFilter to be recompiled from source. All of the aforementioned

rules have been implemented using the plugin interface, allowing the customisation of TLSFilter’s

functionality to any use case.

Plugins must fulfil the following requirements:

1. To have a function void setup(ip scope* s, uint8 t num commands, char* command[])

which is automatically executed when TLSFilter loads the plugin. It is supplied with a list

of strings equivalent to the configuration line pertaining to the plugin for a given—possibly

NULL—scope.

2. Assign callback functions against TLS records, particular handshake messages or X.509 cer-

tificate chains by passing function pointers to:

(a) void register record callback(ip scope* s, record type rt, uint8 t (*fp)(tls record*,

tlsflow*))

(b) void register hs callback(ip scope* s, handshake type ht, uint8 t (*fp)(tls handshake

message*, tlsflow*))

(c) void register cc callback(ip scope* s, uint8 t (*fp)(X509*[], uint8 t))

3.3.1 OpenSSL Heartbleed Mitigation

To evidence the extensibility inherent to TLSFilter’s architecture, plugins were created to mitigate

the OpenSSL Heartbleed (Section 2.4.5) and ChangeCipherSpec injection (Section 2.4.5) bugs once

details of these vulnerabilities were made public. The source code of the heartbeat plugin fits into

less than 50 lines of C:

#include "plugin.h"

#define DISABLE_TAG "DISABLE"

#define DENY_TAG "DENY"

#define HEARTBLEED_CLEARTEXT_TAG "HEARTBLEED-CLEARTEXT"

/* Wire format struct of a TLS handshake message (found within a TLS record) */

typedef struct __attribute__((__packed__)) tls_heartbeat_message {
uint8_t type; // 1 = request; 2 = response

uint16_t length; // Length of payload only

void * payload; // Followed by padding

38

} tls_heartbeat_message;

static uint8_t disable_heartbeat(tls_record* r, tlsflow* t){
return NF_DROP;

}

static uint8_t deny_heartbleed_cleartext(tls_record* r, tlsflow* t){
tls_heartbeat_message* hb = (tls_heartbeat_message*) &(r->payload);

if (!t->encrypted && ntohs(r->length) < ntohs(hb->length) + 3 + 16){
// We see a request where the TLS record length (after reassembly) is shorter

// than the heartbeat payload length + header + padding

return NF_DROP;

}
return NF_ACCEPT;

}

void setup(ip_scope* scope, uint8_t num_commands, char* command[]) {
uint32_t i;

for(i = 0; i < num_commands; i++){

// Parse token(s)

char* token[3];

token[0] = strtok(command[i], " ");

token[1] = strtok(NULL, " ");

if(token[0] == NULL){
fprintf(stderr, "Error: invalid heartbeat configuration");

exit(1);

}

if (STRING_EQUALS(token[0], DISABLE_TAG)){
register_record_callback(scope, HEARTBEAT, &disable_heartbeat);

} else if (token[1] != NULL

&& STRING_EQUALS(token[0], DENY_TAG)

&& STRING_EQUALS(token[1], HEARTBLEED_CLEARTEXT_TAG)){
register_record_callback(scope, HEARTBEAT, &deny_heartbleed_cleartext);

}
}

}

39

It is interesting to note that if a Heartbleed attack occurs after the TLS connection has tran-

sitioned to an encrypted state, it is not possible to ascertain whether the heartbeat request is

legitimate. A heavy-handed solution to this is to deny all heartbeat records (since the TLS record

layer header is never encrypted) at the expense of the few legitimate use cases where TLS heartbeat

functionality is used.

Consequently, there are two TLSFilter rules to load this plugin with differing levels of heavy-

handedness:

heartbeat deny heartbleed-cleartext

heartbeat disable

3.3.2 Configuration Context-Free Grammar

Appendix Figure A.1 details the context-free grammar that defines the syntax of TLSFilter con-

figuration files, where String refers to an ASCII sequence that does not contain spaces and EOL

refers to the ASCII line feed (LF) character.

3.3.3 Vulnerability Mitigation Table

Figure 3.1 provides a summary of TLSFilter’s ability to mitigate known attacks against TLS.

40

A
tt
ac
k
/
W
ea
k
n
es
s

T
L
S
F
il
te
r
R
u
le

C
av
ea
t(
s)

M
an

-i
n
-t
h
e-
M
id
d
le

c
e
r
t
i
f
i
c
a
t
e
p
i
n
-
s
h
a
1

M
u
st

k
n
ow

va
li
d

ce
rt
ifi
ca
te

h
as
h
es

in

ad
va
n
ce

K
n
ow

n
co
m
p
ro
m
is
ed

C
A

c
e
r
t
i
f
i
c
a
t
e
d
e
n
y
-
s
h
a
1

-

V
au

d
en
ay

C
B
C

p
a
d
d
in
g

p
a
r
a
m
e
t
e
r
d
e
n
y

c
i
p
h
e
r
-
m
o
d
e

C
B
C

Im
p
ac
ts

re
ac
h
ab

il
it
y

R
C
4
k
ey
st
re
a
m

b
ia
se
s

p
a
r
a
m
e
t
e
r
d
e
n
y

c
i
p
h
e
r

R
C
4

-

C
li
en
t-
in
it
ia
te
d
re
n
eg
ot
ia
ti
on

N
on

e
N
o
m
it
ig
at
io
n
d
u
e
to

en
cr
y
p
te
d
n
at
u
re

of
ch
an

n
el

B
E
A
S
T

p
a
r
a
m
e
t
e
r
d
e
n
y

c
i
p
h
e
r
-
m
o
d
e

C
B
C

Im
p
ac
ts

re
ac
h
ab

il
it
y

C
R
IM

E
c
o
m
p
r
e
s
s
i
o
n
d
i
s
a
b
l
e

-

L
u
ck
y
1
3
a

p
a
r
a
m
e
t
e
r
d
e
n
y

c
i
p
h
e
r
-
m
o
d
e

C
B
C

Im
p
ac
ts

re
ac
h
ab

il
it
y

D
eb
ia
n
w
ea
k
k
ey
sb

c
e
r
t
i
f
i
c
a
t
e
d
e
n
y
-
w
e
a
k
-
r
s
a
-
k
e
y
s

-

P
ri
va
te

k
ey

d
is
cl
os
u
re

c
p
a
r
a
m
e
t
e
r
r
e
q
u
i
r
e

f
o
r
w
a
r
d
-
s
e
c
r
e
c
y

Im
p
ac
ts

re
ac
h
ab

il
it
y
;
sh
ou

ld
b
e
u
se
d
in

co
n
ju
n
ct
io
n
w
it
h
k
e
y
e
x
c
h
a
n
g
e
ru
le
s

W
ea
k
ci
p
h
er

su
it
es

p
a
r
a
m
e
t
e
r
d
e
n
y

e
x
p
o
r
t
-
g
r
a
d
e
,
p
a
r
a
m
e
t
e
r

d
e
n
y
a
l
g
o
r
i
t
h
m

T
L
S
N
U
L
L

-

W
ea
k
p
ri
va
te

k
ey
sd

c
e
r
t
i
f
i
c
a
t
e
k
e
y
-
l
e
n
g
t
h
-
m
i
n
i
m
u
m

an
d

c
e
r
t
i
f
i
c
a
t
e
c
a
-
k
e
y
-
l
e
n
g
t
h
-
m
i
n
i
m
u
m

-

W
ea
k
D
H
/
D
H
E

p
ar
am

et
er
s

k
e
y
e
x
c
h
a
n
g
e
k
e
y
-
l
e
n
g
t
h
-
m
i
n
i
m
u
m

d
h

-

W
ea
k
E
C
C

n
am

ed
cu
rv
e

k
e
y
e
x
c
h
a
n
g
e
d
e
n
y

n
a
m
e
d
-
e
l
l
i
p
t
i
c
-
c
u
r
v
e

-

O
p
en
S
S
L
H
ea
rt
b
le
ed

h
e
a
r
t
b
e
a
t
d
i
s
a
b
l
e

o
r

h
e
a
r
t
b
e
a
t
d
e
n
y

h
e
a
r
t
b
l
e
e
d
-
c
l
e
a
r
t
e
x
t

S
ec
on

d
ru
le

ca
n
n
ot

b
lo
ck

en
cr
y
p
te
d
at
-

ta
ck
s
an

d
fi
rs
t
ru
le

m
ay

im
p
ac
t
ge
n
u
in
e

u
se

of
T
L
S
h
ea
rt
b
ea
t
p
ro
to
co
l

F
ig
u
re

3.
1:

S
u
m
m
ar
y
of

T
L
S
w
ea
k
n
es
se
s
an

d
ap

p
ro
p
ri
at
e
T
L
S
F
il
te
r
ru
le
s

a
Im

p
ra
ct
ic
a
l
a
tt
a
ck

b
R
S
A

p
u
b
li
c
k
ey

s
c
A
n
a
tt
a
ck

w
h
er
e
en

cr
y
p
te
d
tr
a
ffi
c
is

re
co

rd
ed

th
en

la
te
r
d
ec
ry
p
te
d
o
n
ce

p
ri
v
a
te

k
ey

m
a
te
ri
a
l
h
a
s
b
ee
n
o
b
ta
in
ed

d
R
S
A
,
D
S
A

a
n
d
E
C
C

k
ey

p
a
ir
s

41

Chapter 4

Design and Architecture

4.1 System Overview

Authoring TLSFilter required a breadth of technical knowledge in several areas: Linux networking,

Linux kernel module development, low level IP, TCP and TLS protocol comprehension and enough

of an understanding of the assumptions and weaknesses of the cryptography behind TLS to deter-

mine appropriate high-level rules. This chapter documents and justifies some of the higher-level

architectural choices made with respect to these areas.

4.1.1 Operating System Integration

A firewall must integrate at a low-level with its host operating system, so the choice to support

Linux was made out of a necessity to have well-documented, open access to the underlying OS

functionality. Netfilter is the subsystem of the Linux kernel that processes network packets and

provides hooks for kernel modules to interact with the network stack[28] and—along with the

userspace tool iptables—has been the de facto Linux standard for firewalling since kernel version

2.3.

nftables is slated to replace, and generalise, the userspace functionality offered by iptables

by providing a virtual machine interface upon which machine code can be run to perform packet

inspection and modification. While this sounds like it would be well suited for TLSFilter, it is a very

young project with limited support, so TLSFilter imitates the iptables model whereby a kernel

module tlsfilter.ko hooks into the Netfilter subsystem and a userspace application tlsfilter

is used for configuration and packet processing.

42

4.1.2 Fragmentation

Due to the realities of the Netfilter Linux kernel subsystem, TLSFilter receives IP datagrams and

must issue a verdict on the basis of each of these packets. The low-level nature of this means that

there are no guarantees with respect to packet ordering, defragmentation nor deduplication and

thus TLSFilter is responsible for simulating the entire network stack between the relatively low-

level IP layer and high-level TLS handshake protocol. Therefore great care was taken to prevent

the transmission of any IP packet sequences that would allow a client or server to reconstruct an

insecure TLS handshake protocol message or TLS record, or the entire security of the firewall would

be undermined.

Rather than implementing a TCP/IP stack from scratch, I stripped-down and modernised a

library (libnids) that uses TCP/IP reassembly code directly taken from version 2.0.36 of the Linux

kernel to handle this process for me. I could then (somewhat) abstract my thinking to the TCP

level, with a guaranteed stream of in-order, deduplicated and defragmented TCP segments, to which

I would only need to account for fragmentation at the TLS record layer.

This approach guarantees that TLSFilter is as immune to all fragmentation-based evasion tech-

niques as an, albeit dated, version of the Linux kernel. Ptacek and Newsham outline several

intrusion detection evasion techniques in their 1998 paper[34] and show that the four most popular

intrusion detection systems (IDS) are vulnerable to these techniques, stemming from the fact that

TCP streams were reconstructed in a manner different to the destination systems.

It is important to note that, in theory, an additional layer of fragmentation can take place

between the TLS handshake protocol layer and the TLS record layer. However, the SSL and

TLS RFCs do not mention handshake protocol fragmentation so many implementations, including

Microsoft’s TLS support in Windows versions prior to 7, assume that a TLS handshake message will

always be no bigger than a TLS record. The consequence of this is that most implementations do not

fragment at this level, presumably to maintain compatibility. Since support was not universal and

there is no practical use, I decided, like Microsoft, to omit this layer of handshake fragmentation;

the consequence of is that the contents of handshake messages beyond 64KB is ignored.

4.1.3 Fragmentation Alternative

To avoid TCP low-level fragmentation concerns, the alternative approach is to intercept packets

at a higher level in the Linux networking subsystem. Using the transparent proxying functionality

(TPROXY) in kernel 2.2 onwards I could force the kernel handle the mechanics of TCP reassembly

for me, drastically simplifying the scope of TLSFilter. However, there were several caveats to this

approach:

• TPROXY usage is parameterised by port number, so realistically I would have to limit the

scope of TLSFilter’s ability to intercept TLS traffic to that of traffic on common TLS ports

(HTTPS on 443, POPS on 995, etc.), which would naturally allow insecure TLS connections

43

via non-standard TCP ports;

• TPROXY cannot intercept traffic that originates from the same host, so this entirely prevents

the direct use of TLSFilter on client and server endpoints;

• and TPROXY actually rewrites the contents IP packet headers, which I would have to man-

ually reverse.

These were compromises that I did not feel could be justified, so I persevered with the lower-level

approach.

4.1.4 Processing Pipeline

Figure 4.1 illustrates a simplified, high-level view of the processes carried out by TLSFilter to reach

verdicts for IP datagrams. Verdicts can be one of three possible states: negative or positive, if a

final decision has been reached for all IP datagrams of a particular TLS connection, or deferred

(temporarily allowed).

The processing pipeline is currently single-threaded but it lends itself well to being extended to

exploit parallelism. The processing of callback functions registered by plugins could also be divided

among an arbitrary number of threads, for use cases where performance may be bottlenecked by a

single processor core.

4.1.5 Initialisation & Tear-Down

On running TLSFilter the following high-level processes occur:

1. The custom kernel module is loaded that redirects all IPv4 traffic to a Netfilter queue

2. All plugins (shared objects) referenced in the configuration file are loaded and initialised

3. The logging system (syslog) is initialised

4. TLSFilter attaches to the Netfilter queue, and issues a verdict after processing each IP data-

gram

The tear-down process occurs in reverse, but is only triggered in the event of an exceptional

failure with Netfilter; under normal circumstances TLSFilter will run indefinitely. In the event of

abrupt and/or unexpected termination—for example, if TLSFilter is sent a SIGKILL signal—the

kernel module will remain loaded and thus packets will be denied until TLSFilter is restarted and

resumes issuing verdicts. If TLSFilter is not restarted before the Netfilter queue becomes full,

network packets will be rejected, ensuring that no packet is ever mistakenly forwarded without first

passing through TLSFilter.

44

Is
 a

 n
ew

 IP
 p

ac
ke

t
av

ai
la

bl
e?

D
oe

s
th

e
pa

ck
et

 h
av

e
a

TC
P

 p
ay

lo
ad

?

Is
th

e
TC

P
 s

eg
m

en
t

ou
t o

f o
rd

er
 o

r
du

pl
ic

at
e?

D
et

er
m

in
e

th
e

TC
P

 "
flo

w
"

H
as

th
e

flo
w

be
en

 id
en

tif
ie

d
as

 T
LS

pr
ev

io
us

ly
?

W
ha

t v
er

di
ct

 is
st

or
ed

?

D
oe

s
th

e
TC

P
 s

eg
m

en
t c

on
ta

in
th

e
fir

st
 p

ay
lo

ad
 o

f
a

co
nn

ec
tio

n?

D
oe

s
th

e
pa

yl
oa

d
m

at
ch

a
TL

S
 h

an
ds

ha
ke

m
es

sa
ge

?

R
ec

or
d

as
 a

TL
S

 "
flo

w
"

R
ec

or
d

as
 a

no
n-

TL
S

 "
flo

w
"

S
TA

R
T

Y
es

N
o

P
O

S
IT

IV
E

V
E

R
D

IC
T

N
o

N
o

Y
es

Y
es

IG
N

O
R

E
D

Y
es

P
O

S
IT

IV
E

V
E

R
D

IC
T

N
o

N
o

Y
es

P
O

S
IT

IV
E

V
E

R
D

IC
T

Is
th

e
TL

S
 re

co
rd

fra
gm

en
te

d?

P
os

iti
ve

N
E

G
A

TI
V

E
V

E
R

D
IC

T

N
eg

at
iv

e

In
te

rp
re

t r
ec

or
d,

up
da

te
 T

LS
 s

ta
te

B
uf

fe
r f

ra
gm

en
t

P
re

pe
nd

an
y

bu
ffe

re
d

TL
S

fra
gm

en
ts

N
on

e/
D

ef
er

re
d

D
oe

s
th

e
cu

rr
en

t p
ac

ke
t a

llo
w

 th
e

de
fra

gm
en

ta
tio

n
of

 a
re

co
rd

?

Y
es

N
o

Is
 th

er
e

>=
1

w
ho

le
 h

an
ds

ha
ke

m
es

sa
ge

?

P
O

S
IT

IV
E

V
E

R
D

IC
T

N
o

Y
es

N
o

R
un

 a
ll

pl
ug

in
ca

llb
ac

ks
Y

es

D
oe

s
an

y
ca

llb
ac

k
is

su
e

a
ne

ga
tiv

e
ve

rd
ic

t?

S
et

 s
to

re
d

"f
lo

w
"

ve
rd

ic
t n

eg
at

iv
e

N
E

G
A

TI
V

E
V

E
R

D
IC

T

Y
es

B
uf

fe
r a

ny
re

m
ai

ni
ng

fra
gm

en
ts

N
o

Is
 th

e
TC

P
 s

eg
m

en
t

fra
gm

en
te

d?

N
o

B
uf

fe
r a

nd
de

fra
gm

en
t

Y
es

Y
es

N
o

F
ig
u
re

4.
1:

O
v
er
v
ie
w

of
T
L
S
F
il
te
r
IP

d
at
ag

ra
m

p
ro
ce
ss
in
g

45

(a) Delayed ‘soft’ failure, without spoofed TCP RST (b) Immediate ‘hard’ failure, with spoofed TCP RST

Figure 4.2: A comparison of application-layer behaviour as a result of the spoof-rst option

4.2 Usability Concerns

TLSFilter is designed to be executed as a background process that runs indefinitely, with user inter-

action performed exclusively through the tlsfilter.conf configuration file and log output. Rules are

designed to be human-readable and intuitive, and syslog is used as standard for logging events/er-

rors as well as the standard error output stream (if configured accordingly in the configuration

file). Additionally, the C plugin API (Section 3.3) is designed to be accessible to anyone with basic

proficiency in C.

4.2.1 Hard versus Soft Failure

An unexpected usability issue I experienced after extended use of TLSFilter was the ‘soft’ failure

of TLS connections. Initially, TLSFilter was configured to deny all IP packets corresponding to a

TCP stream once a negative verdict was issued for a TLS connection, but this caused applications

to fail slowly and ostensibly due to a TCP timeout. I made modifications to allow transmission of

forged TCP reset (RST) packets, which immediately end the TCP connection and from a usability

standpoint make it much clearer that a connection has failed.

From a technical standpoint, this also prevents the TCP/IP stacks on both ends of the connection

from attempting to request the retransmission of packets. Technically, forging TCP reset packets is

an abuse of the TCP specification, so I have made this feature a configuration option that defaults

to being disabled rather than hard-coding it into the source code. To enable this option add

tlsfilter spoof-rst to the TLSFilter configuration file.

Figure 4.2 illustrates the change in application-layer failure mode when a TLS connection to an

insecure server is attempted and the spoof-rst configuration option is enabled. The ‘soft’ failure

occurred after a minute or so delay whereas the ‘hard’ failure returned almost instantaneously.

46

Chapter 5

Implementation and Testing

5.1 Language Choice

At the start of the project my criteria for evaluating implementation languages for TLSFilter were

as follows:

• Easy to write low-level code

• Well supported for Linux kernel interaction

• Well supported for network programming

• General purpose and unrestricted

• Simple

• (Ideally performant)

I identified C, C++ and Go as potential candidates.

Given the the Linux kernel is written in C, I knew that choosing it represented the simplest

approach to interaction with the existing Netfilter and networking subsystem, but I was concerned

that my speed of development would suffer from the lack of inbuilt library functions and my general

lack of experience with lower-level languages.

C++ offered a viable alternative with useful abstractions, including object orientation, and I was

aware that the Boost libraries standardised a greater corpus of functionality than the equivalents

for C. However, C++ is arguably less well supported by my target environment of Linux, which

had (somewhat marginal) potential to discourage adoption and further development.

Go had always interested me as an alternative to C that offered more functionality, including

hash tables as a primitive type, as standard. I had concerns as to how simple interaction with

47

Netfilter would be and the unfamiliarity of the build process since this would require additional

compiler software to be installed by end users. I came to the conclusion that these risks did not

outweigh the benefits so decided to discount this option.

In summary, I made the conservative choice of C, reasoning that I could switch to C++ relatively

easily if circumstances required a greater level of abstraction.

5.1.1 Library Choices

From my background reading I had noticed the trend of complex specifications and software leading

to insecurity, so I wanted to focus on reducing unnecessary complexity in TLSFilter as much as

possible. To achieve this, I decided that I wanted my source code to be clean and simple and that

I could ensure this by being able to justify the execution of every function call. Hence, I took the

general approach to keep reliance on external libraries to a minimum.

libnetfilter queue

libnetfilter queue is a library that provides an API to Netfilter to allow user space programs to

process network packets. I realised quickly that writing and testing Linux kernel modules was very

restrictive and that my initial plan to write TLSFilter wholly in kernel space was unrealistic, so a

library like libnetfilter queue became a necessity.

When writing kernel modules, there is no access to shared objects nor the C standard library so

everything must be written from scratch or already exist somewhere within the kernel. During my

brief stint in kernel module development, I found strange behaviour and race conditions that would

cause kernel panics when I allocated memory too frequently. Moreover, debugging a loaded kernel

module was a nightmarishly complex process and I ended up resorting to using a virtual machine

for development.

libnetfilter queue allowed me to write the vast majority of TLSFilter in user space, at the perfor-

mance penalty of having to copy every network packet into user memory and back again. Informal

testing did not show a noticeable degradation in performance, so this was a minor compromise for

comparatively large gains in development environment sanity and source code simplicity.

Libnids

Libnids was introduced in Section 2.5.2 and its simplicity is well suited to performing a single

important purpose in TLSFilter: TCP stream reconstruction. After fixing compatibility bugs with

the current Linux kernel, I took the liberty of removing dependencies on other libraries and all

functionality not absolutely necessary, which resulted a very thin layer around the Linux TCP

stream reconstruction code.

Libnids is built as the static library libnids.a and then statically linked to TLSFilter as part

of the build process, to avoid the (rare) situation where a user has a version of Libnids lacking my

48

changes already installed as a shared object, which would cause TLSFilter to fail at runtime.

libssl & libcrypto

libssl and libcrypto are libraries provided by the OpenSSL project for the purposes of SSL/TLS

protocol parsing and performing cryptographic operations, respectively. To be clear, TLSFilter has

a TLS protocol implementation written from scratch and does not rely upon OpenSSL for any of

the SSL/TLS protocol specifics; libssl is used only to parse X.509 certificate binaries and libcrypto

is used only to extract public key properties and generate message digests.

GNOME GLib

I used the Gmodule functionality from Glib to support the dynamic loading of shared objects (i.e,

custom TLSFilter plugins) at runtime. This means that a user can write a C plugin, compile it to a

shared object and then simply reference it in the TLSFilter configuration file and it will be loaded

at runtime, with no requirement to recompile the core binary.

uthash.h

uthash provides a very light-weight, entirely macro-based library that implements hash tables that

can be indexed by arbitrary C data types. Lookups, insertions and deletions are all constant time

operations and there is very little memory overhead. I originally found this library when looking

for implementations that were usable in kernel space, but its simplicity convinced me to use it

throughout TLSFilter.

5.2 Code Portability

With regards to endianness, “network order” is defined to be big endian and the TLS specification

does not contradict this. This means that on little endian systems (such as x86 and AMD64) the

byte ordering of values extracted from the various data structures used as part of the TLS protocol

must be reversed before decisions are made on the basis of these values. To maintain portable code,

efforts have been made to use the network-to-host helper functions throughout TLSFilter: ntohl()

for 32-bit integers and ntohs() for 16-bit.

However, unaligned memory accesses are used throughout as a consequence of casting pointers

to TLS-specific structs. This has significant impact on the architectures that TLSFilter supports;

for example, ARM processors will create an exception interrupt, making use on this architecture

impossible. Unaligned accesses also have performance implications for other architectures including

x86, as values may need to be (transparently) copied to a word or byte boundary in memory before

being accessible.

49

A alternative approach to struct pointer casting is to write a parser procedure for each wire-

format data structure and populate an intermediate logical data structure that has the fields that

we are interested in. This approach was not taken because it was too much of a distraction from the

overall objectives the project, that is, multiple architecture support—while it is advantageous—does

not supersede having a concise and clear implementation.

Since TLSFilter is coupled very tightly to Netfilter, it is not possible to support operating

systems that are not based upon Linux.

5.3 Data Structures and Algorithms Choices

5.3.1 Wire-Format Structs

As previously mentioned, TLSFilter makes use of pointer casting to custom structs to parse TLS

payloads. One disadvantage of this approach is that C structs cannot contain variable length fields

in between fixed length ones, so one logical TLS message may require being split into multiple

TLSFilter structs. An example of the structs used to parse ServerHello messages is shown below:

typedef struct __attribute__((__packed__)) tls_hs_server_hello {
uint16_t server_version; // Highest SSL/TLS version supported

uint8_t server_random_time[4]; // UNIX time since Jan 1 1970 according to server

uint8_t server_random[28]; // 28 bytes of (pseudo)randomness from the server

uint8_t session_id_length; // Size of the session ID (maximum 32 bytes)

void * data; // The variable length session id, followed by everything else

} tls_hs_server_hello;

typedef struct __attribute__((__packed__)) tls_hs_server_hello_tail {
uint16_t cipher_suite; // Chosen cipher suite for communication

uint8_t compression_method; // Chosen compression method for communication

} tls_hs_server_hello_tail;

So to read the compression method field given a pointer to a TLS record, for example, the

following must take place:

1. Create a tls hs server hello pointer p1, by casting a given TLS record payload pointer

2. Create a tls hs server hello tail pointer p2 and assign it to point to &(p->data) +

p->session id length

3. Now read p2->compression method

One other detail to note is the use of the attribute ((packed)) compiler tag in the

declaration of the structs, which forces the compiler to ‘pack’ the contents rather than inserting

gaps in memory between the fields such that they are aligned to word/byte boundaries.

50

Unlike if the TLS records were parsed to an intermediate data structure, it should be clear to

see that the TLSFilter source code closely follows the wire-format specification from page 27 of the

official SSL RFC:

...

struct {

ProtocolVersion server_version;

Random random;

SessionID session_id;

CipherSuite cipher_suite;

CompressionMethod compression_method;

} ServerHello;

...

5.3.2 TLS Flows

A data structure that is used heavily throughout TLSFilter—and supplied to give context to plugin

callbacks—is the tlsflow struct. This struct is used to store TLS state information, TLS record

fragments and useful lower-level information such as source/destination IP address:port pairs. In

aggregation I refer to this information as a ‘TLS flow,’ similar to how state information for a single

TCP connection is sometimes referred to as a TCP flow.

Instances of tlsflow structs are stored in a global hash table, using a simple custom hash function

to convert the IP addresses and ports associated with a TCP connection to a 32-bit integer. As

this code is executed for every packet received, it needs to be highly performant, so I chose a hash

function that uses only the exclusive-or operator, two multiplications and a single 16-bit shift.

uint32_t tlsflow_hash (uint32_t addr1, uint32_t addr2, uint32_t src_port, uint32_t dst_port){

return ((addr2 * 59) ^ addr1 ^ (src_port << 16) ^ dst_port);

}

Since the port values will always be < 216, shifting src port losslessly distributes the data

across the 32-bit output. As IP addresses are 32-bits there cannot be a a lossless redistribution

when shifting, so by multiplying by the prime 59 instead, we redistribute the data in such a way

that addr3 ∗59 has a better chance of being unique than by multiplying by a non-prime. We

could remove this multiplication entirely, but it would mean that TCP connections between clients

and servers in the same IP subnet are more likely to result in a hash collision due to the loss of

asymmetry, since the first few octets are identical.

5.3.3 Constant-time Lookups

While I have been clear from the outset of the project that a focus has not been performance, I

should clarify that this is not a focus on absolute performance. Since TLSFilter inspects every

51

IP packet, it has potential to become a network bottleneck, so I have used constant-time lookups

through hash tables where possible.

The tlsflow hash function from Section 5.3.2 used for connection tracking is an example of a

function that executes in constant time. A similarly frequently-executed section of code determines

the applicable rules for a particular IP address. During the initial configuration loading, TLSFilter

binds a set of configuration rules to an IP scope, which is consequently bound to callback functions

by the plugins in the configuration. When a TLS record is processed, the IP address is checked

against a hash table to determine if the particular plugin has any callbacks to be applied in this

instance.

Given that the IPv4 address space is large, memory consumption will be high if scopes contain

large IP subnets. However, this is at odds with the use cases of TLSFilter: users will want to

apply rules globally—meaning that no scope needs to be stored—or specifically to particular TLS

instances. It’s highly unlikely that a single configuration is applicable to a large enough number of

IP addresses such that memory consumption is an issue.

In the certificate plugin, I defined a constant-time lookup-table for the SHA-1 hashes corre-

sponding to weak Debian public keys, so that checking every X.509 certificate received against all

1,179,648 weak keys does not impact performance. The obvious drawback to this approach is also

memory consumption, but the scale of the memory consumed here is orders of magnitude lower

than the potential memory consumption of IP address to ruleset bindings.

5.3.4 Configuration

The header file config.h allows the user, or a script, to tweak memory consumption for their

particular use case before compilation. It also defines a number of constants that may require

changing as the TLS feature set evolves.

5.4 Low-Level Testing

5.4.1 Runtime Debugging

During general development I configured gcc to add debug symbols to the tlsfilter binary using

the -g parameter. This allowed me to use the gdb debugger to get extra context when my code

hit unexpected fatal exceptions; it also allowed me to step through the code and arbitrarily print

the state. Having little previous C experience, this was invaluable for understanding the nuances

of how gcc interpreted my code; through gdb I was able to efficiently find and fix issues caused by

struct packing (Section 5.3.1) and unaligned pointer arithmetic (Section 5.2).

Some memory management-based bugs would only occur after extensive use, so I also used

Valgrind—notable for being used mistakenly to weaken the PRNG in the Debian-Openssl debable—

to identify the causes of memory leaks and rare invalid accesses.

52

5.4.2 Diagnostic Logging

For debugging errors that were of a more high-level nature, particularly those relating to TLS

record fragmentation and the TLS heartbeat protocol, I littered the code with calls to the LOG DBG

macro (Section 5.6.2) that wraps a call to syslog. As debug messages were frequent and verbose,

I required a global configuration option to enable them and another to duplicate their printing to

the standard error output stream.

5.4.3 Kernel Module Debugging

Kernel module debugging was significantly more difficult than I had expected. To debug a module

with gdb, the kernel must have been compiled with debug symbols and the /proc/kcore virtual

file that represents the memory available to the computer must exist. (If not, one can obtain

the appropriate branch of the kernel source code and recompile with the CONFIG DEBUG INFO and

CONFIG PROC KCORE configuration flags.)

Once a kernel with the appropriate features is running, gdb must be attached to vmlinux

/proc/kcore (i.e., the kernel binary with the system memory as an argument) which will conse-

quently allow the reading of variable values but, as the kernel is currently orchestrating the operating

system running the debugger, not the low-level stepping through of instructions.

Calls to printk() directly in the source code will log information to syslog that is then usually

written to disk, which is useful if unfixed bugs cause kernel panics which halt the kernel and hence

the ability to fix bugs. Much to my annoyance, this happened frequently when I issued a large

numbers memory allocation calls, so I abandoned kernel development for the relative comfort of

gdb in user space.

5.5 High-Level Testing

5.5.1 Testing SSL/TLS Connections

Testing the effectiveness of the firewall required a suite of SSL/TLS instances with varied configu-

rations that imitate the possible servers clients would interact with as a matter of course. To create

such a suite of instances, I ran an HTTP server on a single local port and then used stunnel to

create SSL and TLS listeners that simply handled the encryption layer and forwarded application

data to the HTTP server.

stunnel’s website describes itself as “an SSL encryption wrapper between remote client and

local (inetd-startable) or remote server... Stunnel uses the OpenSSL library for cryptography, so it

supports whatever cryptographic algorithms are compiled into the library.” It makes it very easy to

define the precise configuration parameters of a TLS server and to a greater degree than many web

server implementations.

53

src/

kernel/

tlsfilter.cKernel module to queue IP packets via Netfilter

plugins/

*.c...Core rules as plugins

libnids/..Custom version of Libnids library

config.c..Compile-time configuration settings

handshake.c..TLS handshake protocol-specific code

ip util.cHelper functions for IP address calculations

logging.c......................................Syslog helper functions and debug logging

param *.h......................................Repositories of TLS constants and values

parameters.cMacro-based helpers for TLS constants

plugin.c..Plugin API and initialisation

setup.c ...Global initialisation code

tlsrecords.h ..Definition of wire-format structs

util.c...Generic helper functions

x509.c..X.509 certificate printing

Figure 5.1: Purposes of important source code files

I generated multiple types of public key (DSA, RSA, ECDSA) and then created certificates

using the openssl x509 functionality. Connections were then tested with the s client option

of the openssl binary, which will attempt a connection to a TLS instance and print diagnostic

information if successful.

5.6 Source Code

5.6.1 Overall Structure

Figure 5.1 defines the purposes of important source code files and illustrates the relatively flat

structure of the source code.

5.6.2 Use of Preprocessor Tricks

The C preprocessor performs modifications to source code before the compiler sees it, so “code to

generate code” can be written to create efficient code with as few runtime checks as possible. I used

the preprocessor throughout TLSFilter to make the code cleaner and to reduce duplication.

54

String Helper

String functions in C are notorious for their ability to allow programmers to introduce vulnera-

bilities and, as they are not a primitive type, they require—in my opinion—overly opaque and

verbose processing code. Since the TLSFilter configuration code required performing a lot of string

comparisons, I created the STRING EQUALS macro function to abstract away the underlying code

required to compare two strings. The alternative approach would be to create a standard C helper

function but that introduces more code and requires the compiler to recognise that the function

call can be inlined to achieve the same efficient binary.

Unaligned Pointer Arithmetic

I also frequently needed to perform pointer arithmetic that did not necessarily fall along word/byte

boundaries, so to get the compiler to do exactly what I wanted required a litany of ugly casting and

bracketing. Moving this to a macro function UNALIGNED POINTER ADD both reduced duplication

and gave some context to purpose of the code, which wasn’t immediately obvious otherwise.

Macro Enums

TLS requires the specification and enumeration of names and values for various parameters including

supported cipher suites, named elliptic curves and digest algorithms. Given that these get added

(e.g., TLS ECC cipher suites) and removed (e.g., 40-bit DES cipher suites) over time, I wanted it

to be very simple to update these in response to official changes by IANA.

Accordingly, rather than defining these as C enums, I defined an ENUM macro to which I instan-

tiated values in separate header files (see Figure 5.2) allowing these to be updated regardless of

C programming proficiency. I then could redefine the ENUM macro on the basis of my application,

using the the #include preprocessor directive in context (see Figure 5.3). This allowed me to

write efficient helper functions that were fully defined at compile time with no data duplication

whatsoever.

Vararg Logging Macros

Like C functions, preprocessor macro functions can also be defined to take a variable number

of arguments. I used this approach to define the various logging macros LOG FATAL, LOG ERROR,

LOG WARN, LOG DBG as the underlying syslog calls take a format string and an arbitrary number of

parameters.

5.7 Build

TLSFilter is compiled using the standard UNIX ./configure && make convention, where the con-

figure script checks that the shared object dependencies are installed and Make recursively builds

55

ENUM(SECT163K1, 1)

ENUM(SECT163R1, 2)

ENUM(SECT163R2, 3)

ENUM(SECT193R1, 4)

...

ENUM(BRAINPOOLP384R1, 27)

ENUM(BRAINPOOLP512R1, 28)

ENUM(ARBITRARY_EXPLICIT_PRIME_CURVES, 0xFF01)

ENUM(ARBITRARY_EXPLICIT_CHAR2_CURVES, 0xFF02)

Figure 5.2: Contents of param ec named curve.h

#undef ENUM

#define ENUM(ID, VAL) case VAL: return #ID;

char * curve_to_str(ec_named_curve c){

switch(c){

#include "param_ec_named_curve.h"

default: return "UNKNOWN";

}

}

#undef ENUM

#define ENUM(ID, VAL) if (STRING_EQUALS(s,#ID)) { return VAL; }

ec_named_curve str_to_curve(char * s) {

#include "param_ec_named_curve.h"

return UNKNOWN_EC_NAMED_CURVE;

}

Figure 5.3: Two string helpers from parameters.c that redefine the ENUM macro

56

the project. The configure script was built using the GNU Autoconf tool and the makefile located

in the root directory was written from scratch.

The makefile has several targets:

• kernel: recursively executes the Makefile in the src/kernel directory and copies the resulting

binary to the root

• libnids: builds the modified libnids library as static library libnids.a

• tlsfilter: builds the tlsfilter binary from its dependencies

• plugins: recursively builds the plugins as shared objects in the src/plugins subdirectory

If no target is explicitly specified as an argument to make, the makefile will build all targets in

the order specified above.

5.7.1 Compiler Flags

The makefile specifies several non-standard gcc flags that are used to improve runtime performance,

reduce code size and/or harden security.

• -O3: Optimises by reducing execution time, though may do so at the expense of binary size

• -D FORTIFY SOURCE=2: Replaces unlimited length buffers with fixed length ones, where pos-

sible, to improve security

• -fstack-protector: Forces the program to abort when a buffer overflow has occurred on

the stack

• -fPIE -pie: Creates a binary capable of being executed regardless of its absolute position

in memory—a “position-independent executable”—so that supported operating systems may

use ASLR1

• -Wformat -Wformat-security: Displays warnings whenever format strings are used in inse-

cure ways

In contrast to my development environment, the -g flag has been excluded as storing debug sym-

bols is no longer necessary. Although exclusion of this flag won’t result in any runtime performance

benefit when compiling with gcc, it will reduce the size of the resulting binary.

Along with the security benefits of using these compiler flags, compiling with gcc 4.8.2 on 64-bit

Ubuntu 14.04 with all aforementioned compiler flags enabled results in a binary size reduction of

33% (from 350 KB to 232 KB).

1Address space layout randomisation is a technique where an attacker is prevented from jumping to known

positions in memory as a result of buffer overflows

57

Chapter 6

Evaluation

6.1 Security Analysis

In this section I attempt to quantitatively analyse any security benefits gained by using TLSFilter,

relative to an attack model with three adversaries that have varied levels of skill, access to capabili-

ties and knowledge. Although I believe this represents a thorough analysis of likely attacks against

TLS, it would be dangerous to assume it complete.

6.1.1 Schneier Attack Tree

Figure 6.1 shows a Schneier attack tree[37], which describes the possible chains of attacks that can

be used to achieve the goal of reading the plaintext of an encrypted TLS connection. Nodes are

designated with “OR” and “AND” to show whether one or all of the child nodes are required for

the attack represented by the node to be satisfied.

In my attack tree, leaf nodes are assigned a probability based on the characteristics of the TLS

connection and the profile of the adversary, which is combined and propagated up to the root node.

The value at the root allows the comparison between combinations of targets, adversaries and TLS

configurations. For simplicity, it is assumed that the value of an “AND” node is the product of

all child node values and the value for an “OR” node is the maximum of all child values (i.e., it is

assumed the adversary will pick the optimal attack).

For clarity of attack, I have split some nodes into a chain, but this can be thought of as an

“AND” node with all chain members as leaf nodes. Any node with an asterisk is a repeated node

that is defined elsewhere in the tree.

This attack model has been modified through the removal of nodes to take into account TLS-

Filter’s feature set, with the resultant attack tree shown in Figure 6.2.

58

C
op

y
ne

tw
or

k
tra

ffi
c;

 d
ec

ry
pt

co
nt

en
ts

O
R

M
an

-in
-th

e-
M

id
dl

e
A
N
D

O
bt

ai
n

pr
iv

at
e

ke
y

O
R

O
bt

ai
n

sh
ar

ed
se

ss
io

n
se

cr
et

O
R

E
xp

lo
it

st
at

ef
ul

so
ftw

ar
e

bu
g O

bt
ai

n
ac

ce
pt

ed
X

.5
09

 c
er

tif
ic

at
e

O
R

C
re

at
e

'v
al

id
'

X
.5

09
 c

er
tif

ic
at

e
O
R

D
up

lic
at

e
or

ig
in

al
X

.5
09

 c
er

tif
ic

at
e

O
bt

ai
n

pr
iv

at
e

ke
y*

C
oe

rc
e

ce
rti

fic
at

e
au

th
or

ity

Im
pe

rs
on

at
e

ce
rti

fic
at

e
au

th
or

ity
O
R

Fi
nd

ce
rti

fic
at

e
ha

sh
 c

ol
lis

io
n

A
N
D

U
se

 a
lg

or
ith

m
ic

w
ea

kn
es

s
O
R

B
ru

te
 fo

rc
e

se
ar

ch

V
ia

 k
ey

di
sc

lo
su

re
 la

w
s

V
ia

th
ef

t
P

ub
lic

ly
-k

no
w

n
w

ea
k

ke
y

pa
ir

S
ym

m
et

ric
 c

ip
he

r
w

ea
kn

es
s
O
R

E
xp

lo
it

C
B

C
m

od
e

of
op

er
at

io
n
O
R

Lu
ck

y
13

B
E

A
S

T

C
R

IM
E

S
ym

m
et

ric
 c

ip
he

r
w

ea
kn

es
s*

K
no

w
n

P
R

N
G

in
pu

t

E
xp

lo
it

ke
y

ex
ch

an
ge

w
ea

kn
es

s
O
R

B
ru

te
 fo

rc
e

ke
y

sp
ac

e
se

ar
ch

E
xp

lo
it

lo
w

m
od

ul
us

 s
iz

e
U

se
 e

lli
pt

ic
 c

ur
ve

vu
ln

er
ab

ili
ty

U
se

 a
lg

or
ith

m
ic

w
ea

kn
es

s
O
R

G
ai

n
ac

ce
ss

 to
vi

ct
im

's
 s

ys
te

m
*

B
ru

te
fo

rc
e

se
ar

ch
 (2

)

W
eb

tra
ffi

c
le

ak
s

U
se

 u
nk

no
w

n
w

ea
kn

es
s

U
se

 p
ub

lic
ly

-
kn

ow
n

w
ea

kn
es

s

U
se

 le
ak

ed
 C

A
ce

rti
fic

at
e

O
bt

ai
n

(C
A

)
pr

iv
at

e
ke

y*

R
el

ay
 n

et
w

or
k

tra
ffi

c

R
ea

d
co

nt
en

ts
 o

f
en

cr
yp

te
d

TL
S

co
nn

ec
tio

n
O
R

E
xp

lo
it

st
at

el
es

s
so

ftw
ar

e
bu

g

G
ai

n
ac

ce
ss

 to
vi

ct
im

's
sy

st
em

E
xp

lo
it

st
at

ef
ul

so
ftw

ar
e

bu
g

(2
)

U
se

 u
nk

no
w

n
w

ea
kn

es
s

U
se

 p
ub

lic
ly

-
kn

ow
n

w
ea

kn
es

s

F
ig
u
re

6.
1:

S
ch
n
ei
er

at
ta
ck

tr
ee

w
it
h
th
e
go

al
to

re
ad

th
e
co
n
te
n
ts

of
an

en
cr
y
p
te
d
T
L
S
co
n
n
ec
ti
on

59

Copy network
traffic; decrypt
contents OR

Man-in-the-
Middle AND

Obtain private key
OR

Obtain shared
session secret

OR

Obtain accepted
X.509 certificate

OR

Create 'valid'
X.509 certificate

OR

Duplicate original
X.509 certificate

Obtain private
key*

Impersonate
certificate

authority AND

Find certificate
hash collision

AND

Use algorithmic
weakness OR

Brute force
search

Via key
disclosure laws Via theft

Symmetric cipher
weakness OR

Symmetric cipher
weakness*

Known PRNG
input

Brute force key
space search

Use algorithmic
weakness OR

Web traffic leaks

Use unknown
weakness

Obtain (CA)
private key*

Relay network
traffic

Read contents of
encrypted TLS
connection OR

Use unknown
weakness

Figure 6.2: Schneier attack tree with the goal to read the contents of an encrypted TLS connection,

under the protection of TLSFilter

60

6.1.2 Adversary Profiles

The following section describes the three types of adversary used in my security analysis of TLS-

Filter. I have assumed that the goal of these adversaries is to read the contents of an encrypted

TLS connection and that they have, at minimum, the capability to monitor network traffic. To

reduce dimensionality, I am restricting the scope of my attack modelling such that it is assumed

the victim’s computer is secure.

Nation State Criminal Gang Lone Cracker

Skill level High High Medium

Computational power High Medium Low

Access to zero-day software exploits1 High Medium None

Access to unknown cryptographic weaknesses High None None

Ability to forge network traffic High Low None

Risk appetite Low Medium Medium

Nation State

A large group of highly-skilled and well-resourced technical professionals. Assumed to have resources

including significant computing power and access to global network backbones. Likely to have

privileged knowledge of cryptographic weaknesses and numerous zero-day software implementation

exploits. Operates clandestinely and is largely risk averse.

Criminal Gang

A small group of people with a wide breadth of technical skills and similar goals. Likely to have

access to transient resources via botnets and may have knowledge of a small number of zero-day

software implementation exploits, but a large arsenal of tools to exploit public vulnerabilities.

Broadly well-connected to other criminal activity and motivated largely by profit.

Lone Cracker

A single person with strong, but perhaps narrow, technical knowledge. Has very little access to

computational power, no access to zero-day bugs, but good knowledge of public vulnerabilities

and a high propensity to exploit them using freely-available tools. More likely to be motivated by

ideology than profit.

6.1.3 Attack Tree Instances

The probabilities for the attacks in the tree depend on the nuances of the victim’s TLS configuration

as well as the attributes of the victim and the motivations of the adversary. This high dimensionality

61

means is beyond the scope of this project to perform analysis for the general case, so I have chosen

three representative targets that are valuable to all three adversaries:

1. ESET; secure.eset.co.uk:443; security vendor; creators of the NOD32 anti-virus software

2. Lavabit; lavabit.com:443; (defunct) privacy-preserving email provider

3. First Look Media; firstlook.org:443; news organisation specialising in investigative jour-

nalism

I have made probability estimates for the values of each attack tree leaf node, for each adversary.

By consequently applying the propagation methodology mentioned previously to the root, we obtain

the results in Table 6.1 (see appendix Tables B.1, B.2 and B.3 for full details). These results show

that—under the attack tree model defined earlier, for the three specific cases—TLSFilter always

increases the difficulty of an attack.

Furthermore, when TLSFilter is used the most likely remaining attacks are non-technical : pri-

vate key theft and use of key disclosure laws, both as a pre-requisite to performing man-in-the-

middle attacks. Mandatory use of cipher suites supporting forward secrecy mitigates the threat of

retroactive decryption of TLS connections, but would not prevent future man-in-the-middle attacks

if key material were not kept private. TLSFilter’s support for certificate pinning would do nothing

in this case, as there is no possible way to identify a man-in-the-middle attack if the certificate

indistinguishable to the original.

In general, I am of the opinion that the “without TLSFilter” results justify the creation and use

of TLSFilter. In particular, the unexpected use of weak ephemeral key exchanges, through small

moduli and—in my opinion—unjustifiably untrustworthy elliptic curve standards,

Though these results hinge upon my probability estimates, where possible I have attempted to

justify these values with external data from Qualys SSL Labs and the NCC ChangeCipherSpec

diagnostic tools. I am comfortable in drawing the conclusion that TLSFilter’s countermeasures

increase the security of TLS connections relative to publicly known threats. Of course, this does

not mean that a network protected by TLSFilter can consider its TLS connections to be ‘secure’,

only securer.

6.1.4 Limitations of Analysis

This analysis does not take into account any inadvertent vulnerabilities unwittingly introduced by

the use of TLSFilter. My knowledge of C was minimal at the start of this project and it is highly

unlikely that I have avoided introducing additional vulnerabilities. Given my background reading,

I would argue that the biggest threat to the security of TLS lies in its software implementations

rather than its cryptography and, consequently, would recommend against using TLSFilter until it

has been independently assessed.

62

T
a
rg
et

A
d
v
er
sa
ry

W
it
h
ou

t
T
L
S
F
il
te
r

W
it
h
T
L
S
F
il
te
r

R
ed

u
ct
io
n

S
co
re

A
tt
ac
k

S
co
re

A
tt
ac
k

E
S
E
T

N
at
io
n
st
at
e

1.
0

ex
p
or
t
ci
p
h
er

su
it
es

0.
2

p
ri
va
te

k
ey

th
ef
t

0.
8
/
8
0
%

C
ri
m
in
a
l
ga

n
g

1.
0

ex
p
or
t
ci
p
h
er

su
it
es

0.
1

p
ri
va
te

k
ey

th
ef
t

0.
9
/
9
0
%

L
on

e
cr
ac
ke
r

1.
0

ex
p
or
t
ci
p
h
er

su
it
es

0.
1

p
ri
va
te

k
ey

th
ef
t

0.
9
/
9
0
%

F
ir
st

L
o
ok

M
ed
ia

N
at
io
n
st
at
e

1.
0

C
h
an

ge
C
ip
h
er
S
p
ec

m
an

-i
n
-t
h
e-
m
id
d
le

0.
4

ke
y
d
is
cl
os
u
re

la
w

0.
6
/
6
0
%

C
ri
m
in
a
l
ga

n
g

0.
4

w
ea
k
10

24
-b
it
D
H
E

m
o
d
u
lu
s

0.
1

p
ri
va
te

k
ey

th
ef
t

0.
3
/
7
5
%

L
on

e
cr
ac
ke
r

0.
2

w
ea
k
10

24
-b
it
D
H
E

m
o
d
u
lu
s

0.
1

p
ri
va
te

k
ey

th
ef
t

0.
1
/
5
0
%

L
av
ab

it

N
at
io
n
st
at
e

1.
0

C
h
an

ge
C
ip
h
er
S
p
ec

m
an

-i
n
-t
h
e-
m
id
d
le

0.
8

ke
y
d
is
cl
os
u
re

la
w

0.
2
/
2
0
%

C
ri
m
in
a
l
ga

n
g

0.
4

w
ea
k
10

24
-b
it
R
S
A

an
d
D
H
E

m
o
d
u
li

0.
1

p
ri
va
te

k
ey

th
ef
t

0.
3
/
7
5
%

L
on

e
cr
ac
ke
r

0.
2

w
ea
k
10

24
-b
it
R
S
A

an
d
D
H
E

m
o
d
u
li

0.
1

p
ri
va
te

k
ey

th
ef
t

0.
1
/
5
0
%

A
ll
n
o
d
e
v
a
lu
es

fo
r
th

es
e
sc
en

a
ri
o
s
a
re

a
v
a
il
a
b
le

in
th

e
a
p
p
en

d
ic
es
.

T
ab

le
6.
1:

N
om

in
al

p
ro
b
ab

il
it
y
va
lu
es

fo
r
at
ta
ck

sc
en

ar
io
s

63

In addition, the reliability of my analysis and any conclusions drawn are bounded by the at-

tack tree model and its efficacy is bounded by public knowledge of attacks; in particular, TLSFilter

cannot protect against the entire class of unknown implementation bugs. Had my analysis been per-

formed before the publication of the OpenSSL ChangeCipherSpec injection attack (and before the

creation a corresponding TLSFilter plugin to mitigate this threat), then my conclusions regarding

real-world impact would have been unknowingly flawed.

With regards to my choice of modelling formalism, I modified the Schneier attack tree approach

because a basic attack tree would ignore the differing abilities and preferences of possible adversaries.

Moreover, given the ubiquity of TLS, there are multiple types of attackers and targets that must

be analysed, so using a basic Schenier attack tree would be an oversimplification.

An alternative was to use the Adversary View Security Evaluation (ADVISE) formalism[30],

which better quantifies differences in the knowledge, access, skills and goals of attackers. However,

for this approach to yield a reliable answer the probabilities for each property of attacker instance

must also be reliable, but my figures are necessarily speculative. My modified approach, where each

attack tree leaf node has an overall probability fixed in relation to the attacker and target, allows

the dimensionality of speculation to be minimised to single values in the hope that this yields a

more reliable result.

6.2 Impact on Reachability

The binary nature of TLSFilter’s logic—i.e., communication occurs securely or not at all—is, in my

opinion, its largest drawback. If every mitigation TLSFilter supported were enabled and applied

globally, the reachability issues network users would experience may in fact not justify its use.

So, naturally, the side effect of mitigating some types of attack is an increased occurrence of false

positives; frequently the TLS parameters that are mutually preferred between a client and server

are insecure and TLSFilter will simply block the connection. Unfortunately, this means there is an

unavoidable trade-off between TLS attack mitigation and network reachability.

Through my own usage of TLSFilter, I noticed that globally enabling all attack mitigation

techniques gave me significant reachability issues, to the extent that normal web browsing was no

longer practical. My usage shifted towards customising a few IP subnets with very high security

and then configuring a global security ‘baseline’ that universally improved security but not to the

extent that reachability was impacted too significantly.

To find out an optimal baseline configuration, suited specifically to web browsing, I decided

to perform some analysis on the TLS configurations of the Internet’s most trafficked websites. I

then used this data to evaluate the impact on reachability resulting from specific TLSFilter rules

and consequently derived a default configuration that I claim offers an acceptable balance between

security and reachability.

Two TLSFilter rules increase security without any impact on reachability: ChangeCipherSpec

64

injection prevention and, in the context of web browsing, the disabling of TLS heartbeats. Some

rules were also excluded from my analysis because they protect against highly impractical attacks

and significantly impact reachability, e.g., disabling CBC cipher suites to prevent Vaudenay padding

attacks (Section 2.4.2) and disabling TLS compression to prevent CRIME (Section 2.4.3).

6.2.1 Modelling HTTPS Traffic

In 2001, Adamic and Huberman published a paper about trends and relationships in web browser

traffic and concluded that “the distribution of visitors per site follows a universal power law, imply-

ing that a small number of sites command the traffic of a large segment of the Web population.”[35]

This means that any conclusions regarding the security gained by using TLSFilter for the most

popular websites should be representative of the average user’s overall security gain.

In a follow-up paper in 2002, Adamic and Huberman demonstrate that the frequency distribution

of unique website visits with respect to website rank can be approximated by a Zipfian distribution

with rank exponent of 1.0[36]. That is, the expected number of visitors to a website with rank r is

∝ r−1. Consequently, we should weight our reachability results to imitate this distribution rather

than considering the reachability of all popular websites with equal importance.

6.2.2 Results

Choice of Metrics

In Table 6.2, the “blocking score” for a TLSFilter rule r over N ranked websites is defined as

N∑
i=1

(
reachabler(i)× rank(i)−1

)
(6.1)

where

reachabler(i) =

{
1 if connection is denied under TLSFilter rule r

0 otherwise
(6.2)

It is also important to note that Zipf’s Law tends to hold on average rather than for every

data point, which tends to bias the true distribution of highly-ranked values that are deemed

progressively disproportionately more ‘important’ under Zipf’s Law. That is, it is unrealistic for

the highest ranked website google.com to be exactly twice as important as the second-ranked website

facebook.com, exactly three times as important as the third-ranked and so on.

To correct this bias, I have normalised the weights of the top 1000 ranked websites using global

web traffic estimates sourced from Alexa. Ideally, this metric should have been used to weight my

entire data set but unfortunately—due to the commercial nature of the data—this approach is cost

prohibitive.

65

The “blocking score” percentages should be taken as approximations to the proportion of con-

nections made to TLS endpoints that are blocked by TLSFilter. Table 6.2 shows this as both a

percentage of HTTPS/TLS connections and as a percentage of all web browsing traffic, to highlight

overall impact.

Analysis

In addition to a weighted score, Table 6.2 shows the absolute numbers and proportions of blocked

websites which provides a (May 2014) snapshot of the current state of publicly-available TLS

configurations.

It is interesting to note that the majority (50.6%) of TLS-supporting websites do not support

the latest version, TLS 1.2, which was standardised in 2008. This is closely followed by 49.5% of

TLS-supporting websites that support only TLS 1.0 and below. The weighted percentages are 27.6

and 26.1 respectively, demonstrating that the likelihood of an HTTPS connection supporting the

newer standards is higher, but still not enough to justify applying the version deny TLS 1 0 and

version deny TLS 1 1 rules globally.

Weak “export grade” encryption was selected by default on 6,419 of the websites tested, which

corresponds to approximately 1.1% of TLS connections. RC4 is unusually prevalent—given its

keystream bias weaknesses—and, surprisingly, disproportionately over-represented in the weighted

score: 8% of all websites versus 9.2% of all connections. (However, I would still deem this low

enough to justify considering denying RC4 in a global TLSFilter configuration.)

The results show very little support for Diffie-Hellman ephemeral key exchanges with moduli

greater than 1024 bits, which seems unnecessarily low. Furthermore, denying the use of NIST’s

P-256 named elliptic curve during elliptic curve ephemeral key exchanges has the greatest impact

on reachability of all rules tested. Unfortunately, this drastically limits the usefulness of TLSFilter’s

forward secrecy support: it’s not viable to require forward secrecy for every connection, nor enforce

a sensible 2048 bit modulus for ephemeral DH key exchanges, nor deny the suspicious NIST elliptic

curves.

I do not believe that this is a weakness of my approach, but rather a symptom of outdated

configurations and poor support for strong forward secrecy in software implementations. Ultimately,

we are stuck between a rock and a hard place, where no trusted solution exists without significantly

impacting usability or security.

6.2.3 Proposed Default Global Configuration

Consequently, the following TLSFilter configuration represents a ‘baseline’ level of security that I

would recommend to be applied globally:

version deny_SSL_3_0

parameter deny cipher null

66

B
lo
ck
ed

W
eb

si
te
s

B
lo
ck
in
g
S
co
re

T
L
S
F
il
te
r
R
u
le

F
re
q
u
en
cy

%
of

T
ot
al

%
of

T
L
S
T
ot
al

%
of

M
ax

.
%

of
T
L
S
M
a
x
.

k
e
y
e
x
c
h
a
n
g
e

d
e
n
y

n
a
m
e
d
-
e
l
l
i
p
t
i
c
-
c
u
r
v
e

s
e
c
p
2
2
4
r
1

0
0.
0

0.
0

0.
0

0.
0

k
e
y
e
x
c
h
a
n
g
e

d
e
n
y

n
a
m
e
d
-
e
l
l
i
p
t
i
c
-
c
u
r
v
e

s
e
c
t
2
3
3
r
1

0
0.
0

0.
0

0.
0

0.
0

k
e
y
e
x
c
h
a
n
g
e

d
e
n
y

n
a
m
e
d
-
e
l
l
i
p
t
i
c
-
c
u
r
v
e

s
e
c
t
2
8
3
r
1

0
0.
0

0.
0

0.
0

0.
0

p
a
r
a
m
e
t
e
r

d
e
n
y

c
i
p
h
e
r

r
c
2

0
0.
0

0.
0

0.
0

0.
0

k
e
y
e
x
c
h
a
n
g
e

k
e
y
-
l
e
n
g
t
h
-
m
i
n
i
m
u
m

d
h

5
1
2

2
0.
0

0.
0

0.
0

0.
0

p
a
r
a
m
e
t
e
r

d
e
n
y

c
i
p
h
e
r

n
u
l
l
c
i
p
h
e
r

5
0.
0

0.
0

0.
0

0.
0

k
e
y
e
x
c
h
a
n
g
e

k
e
y
-
l
e
n
g
t
h
-
m
i
n
i
m
u
m

d
h

7
6
8

15
0.
0

0.
0

0.
0

0.
0

k
e
y
e
x
c
h
a
n
g
e

d
e
n
y

n
a
m
e
d
-
e
l
l
i
p
t
i
c
-
c
u
r
v
e

s
e
c
t
1
6
3
r
2

16
0.
0

0.
0

0.
0

0.
0

c
e
r
t
i
f
i
c
a
t
e

k
e
y
-
l
e
n
g
t
h
-
m
i
n
i
m
u
m

*
5
1
2

37
0.
0

0.
0

0.
0

0.
0

p
a
r
a
m
e
t
e
r

d
e
n
y

c
i
p
h
e
r

i
d
e
a

57
0.
0

0.
0

0.
0

0.
0

p
a
r
a
m
e
t
e
r

d
e
n
y

c
i
p
h
e
r

s
e
e
d

11
5

0.
0

0.
0

0.
0

0.
0

c
e
r
t
i
f
i
c
a
t
e

k
e
y
-
l
e
n
g
t
h
-
m
i
n
i
m
u
m

*
7
6
8

14
7

0.
0

0.
1

0.
0

0.
0

c
e
r
t
i
f
i
c
a
t
e

k
e
y
-
l
e
n
g
t
h
-
m
i
n
i
m
u
m

*
1
0
2
4

15
8

0.
0

0.
1

0.
0

0.
0

k
e
y
e
x
c
h
a
n
g
e

d
e
n
y

n
a
m
e
d
-
e
l
l
i
p
t
i
c
-
c
u
r
v
e

s
e
c
t
5
7
1
r
1

16
8

0.
0

0.
1

0.
0

0.
0

k
e
y
e
x
c
h
a
n
g
e

k
e
y
-
l
e
n
g
t
h
-
m
i
n
i
m
u
m

d
h

1
0
2
4

27
2

0.
1

0.
1

0.
0

0.
0

k
e
y
e
x
c
h
a
n
g
e

d
e
n
y

n
a
m
e
d
-
e
l
l
i
p
t
i
c
-
c
u
r
v
e

s
e
c
p
5
2
1
r
1

28
6

0.
1

0.
1

0.
0

0.
0

k
e
y
e
x
c
h
a
n
g
e

d
e
n
y

n
a
m
e
d
-
e
l
l
i
p
t
i
c
-
c
u
r
v
e

s
e
c
p
3
8
4
r
1

75
0.
0

0.
0

0.
2

0.
3

v
e
r
s
i
o
n

d
e
n
y

S
S
L
3
0

21
51

0.
5

0.
9

0.
6

0.
9

p
a
r
a
m
e
t
e
r

d
e
n
y

c
i
p
h
e
r

D
E
S

62
47

1.
3

2.
7

0.
7

1.
1

p
a
r
a
m
e
t
e
r

d
e
n
y

e
x
p
o
r
t
-
g
r
a
d
e

64
19

1.
4

2.
7

0.
7

1.
1

c
e
r
t
i
f
i
c
a
t
e

k
e
y
-
l
e
n
g
t
h
-
m
i
n
i
m
u
m

*
2
0
4
8

28
56

1
6.
2

12
.2

2.
2

3.
4

p
a
r
a
m
e
t
e
r

d
e
n
y

d
i
g
e
s
t

T
L
S
M
D
5

47
64

1.
0

2.
0

2.
4

3.
7

p
a
r
a
m
e
t
e
r

d
e
n
y

c
i
p
h
e
r

R
C
4

37
35

0
8.
0

16
.0

9.
2

14
.2

k
e
y
e
x
c
h
a
n
g
e

k
e
y
-
l
e
n
g
t
h
-
m
i
n
i
m
u
m

d
h

2
0
4
8

95
79

2
20

.6
40

.9
10

.1
15

.6

k
e
y
e
x
c
h
a
n
g
e

k
e
y
-
l
e
n
g
t
h
-
m
i
n
i
m
u
m

d
h

3
0
7
2

97
04

6
20

.9
41

.5
10

.2
15

.8

k
e
y
e
x
c
h
a
n
g
e

k
e
y
-
l
e
n
g
t
h
-
m
i
n
i
m
u
m

d
h

4
0
9
6

97
04

6
20

.9
41

.5
10

.2
15

.8

p
a
r
a
m
e
t
e
r

r
e
q
u
i
r
e

f
o
r
w
a
r
d
-
s
e
c
r
e
c
y

75
28

2
16

.2
32

.2
16

.2
25

.1

v
e
r
s
i
o
n

d
e
n
y

T
L
S
1
0

11
58

81
25

.0
49

.5
16

.9
26

.1

v
e
r
s
i
o
n

d
e
n
y

T
L
S
1
1

11
83

74
25

.5
50

.6
17

.8
27

.6

p
a
r
a
m
e
t
e
r

d
e
n
y

d
i
g
e
s
t

T
L
S
S
H
A

13
79

24
29

.7
58

.9
20

.8
32

.2

k
e
y
e
x
c
h
a
n
g
e

d
e
n
y

n
a
m
e
d
-
e
l
l
i
p
t
i
c
-
c
u
r
v
e

s
e
c
p
2
5
6
r
1

61
12

3
13

.2
26

.1
38

.0
58

.8

T
ab

le
6.
2:

R
ea
ch
a
b
il
it
y
re
su
lt
s
fo
r
T
L
S
F
il
te
r
ru
le
s
fo
r
th
e
m
os
t
p
op

u
la
r
46

4,
25

9
w
eb

si
te
s,
or
d
er
ed

b
y
as
ce
n
d
in
g
‘b
lo
ck
in
g
sc
o
re
’

67

parameter deny export-grade

parameter deny digest TLS_MD5

certificate key-length-minimum 2048

keyexchange key-length-minimum dh 1024

ccsmitm deny

heartbeat deny

The weighted blocking score as a percentage of total web browsing using this configuration

is 5.5% (or 11.8% with parameter deny cipher RC4 added). Additionally, the total number of

websites blocked using this configuration is 40,312; if there were no overlap among the rules we

would expect 42,172 to be blocked, suggesting that many insecure websites are insecure for multiple

reasons.

6.2.4 Limitations of Analysis

Ignores TLS Client Support

My methodology abstracts away the feature set support of TLS clients and always assumes that a

client will support the server’s most preferred configuration. Realistically, support for cipher suites,

TLS versions and ephemeral key exchange algorithms varies between web browsers, web browser

versions, operating systems, TLS libraries and TLS library versions. It is impractical to test for all

of these values nor is sufficient data available that breaks down the distribution of TLS clients for

each website.

Conversely, my methodology ignores the (flawed) approach that many browsers resort to upon

the failure of a TLS connection: re-attempting with alternative preferences. On the balance of

probability—and assuming a coherent TLSFilter configuration—connections are more likely to be

re-attempted with preferences that reduce security and will consequently blocked by another TLS-

Filter rule. Hence I feel justified that my blocking results are not overly inflated.

I also assume that the server is implemented to follow the best practice of prioritising its cipher

suite preferences over those of the client. While this is, by far, the most popular approach, if

a few highly-ranking websites ignore this practice then the impact on the results would not be

insignificant. My analysis should not therefore replace real-world reachability testing and iterative

refinement of a global TLSFilter configuration.

The ‘Average’ User

My methodology is also geared towards an ‘average’ web user that does not exist. The top 15

websites in my ranking data includes five Chinese-language websites and both US and Indian local

Google websites, which are highly unlikely to be visited the proportions suggested by the data

by a single user (or even geographical populations of users). An attempt was made to produce

68

statistics stratified by country, but no reliable source of traffic data could be found to correct the

bias introduced by the uniformity of Zipf’s Law, so this approach was abandoned.

Geographical Bias

The use of load-balancing (through Anycast IP routing) and content distribution networks means

that my results may be biased geographically to France and Moldova, as data was gathered via

servers hosted in Roubaix and Chis̨inǎu. Whether this has any impact on TLS configurations is

unknown.

Reliance on Estimated Data

My conclusions heavily rely on two sets of data which are both supplied by Alexa and hence

sampled from the same population of web users that have consented to install the Alexa toolbar

and have their usage monitored. Ideally, I would have integrated other third parties’ data, including

Quantcast, whose methodology tracks (server-side) traffic in a less biased manner, but I could not

justify the monetary cost. (Alexa charges per URL through Amazon Web Services, so obtaining

traffic data for the top 1000 websites was relatively inexpensive.)

6.3 Performance Testing

To benchmark the performance of TLSFilter, I set up the following on a lab machine:

• nweb web server2; a performance-optimised web server serving a blank index page and a

compressed 100MB file from a RAM-based file system

• stunnel to wrap TCP connections to the web server with an SSL/TLS layer, with the default

settings and a self-signed certificate

On my local laptop I set up TLSFilter with the following basic configuration:

Global configuration settings

tlsfilter spoof-rst

tlsfilter log-console

parameter deny export-grade

compression disable

certificate deny-weak-rsa-keys

heartbeat deny heartbleed-cleartext

heartbeat disable

2http://www.ibm.com/developerworks/systems/library/es-nweb/index.html

69

xi x̄ s

With TLSFilter
1.126 1.138 1.132 1.132 1.137

1.135 0.004
1.137 1.139 1.137 1.134 1.138

Without TLSFilter
1.123 1.124 1.124 1.124 1.140

1.127 0.0052
1.126 1.125 1.131 1.124 1.126

Table 6.3: Time in seconds taken to transfer a 100MB file over gigabit Ethernet

I connected my laptop to the DoC LAN through gigabit Ethernet, presumably on the same

switch as the lab machine. All tests were performed on a Saturday afternoon to reduce the likelihood

of other network traffic impacting the results.

6.3.1 Throughput

I used the following command to compare network throughput under the presence of TLSFilter:

time wget https://146.169.53.48:8888/100mb.bin -O /dev/null --no-check-certificate.

This command will record the time it takes for wget to download and immediately discard the

100MB file served by the lab machine. The results along with the sample mean and standard

deviation are shown in Table 6.3.

The results show an overall download speed of approximately 88.1 MB/s when TLSFilter is

running, as opposed to 88.8 MB/s without, which represents a 0.78% decrease in throughput.

Given that using time to gather data will capture the entire execution time of wget—not just

the time spent transferring data over the network—it is likely that these results are lower than

real-world values.

These values are also close to the maximum throughput of gigabit Ethernet and, since I am

unable to control other network traffic, it is possible that the actual performance TLSFilter is

bottlenecked by the network. Accordingly, I do not believe that use of TLSFilter results in any

meaningful degradation of network throughput of single connections over gigabit Ethernet.

6.3.2 Latency / Concurrency

As mentioned previously, TLSFilter lacks parallel processing so my intuition was that situations

involving multiple concurrent users were the most likely to adversely impact performance.

Throughput alone is not a very representative metric for performance, so I wanted to test

connection latency with an emphasis on concurrent connections, as this is a very likely real-world

use case. To test this, I ran nweb and stunnel locally so that external network conditions could not

affect my results; there are multiple round-trips in the TLS handshake that cannot be pipelined, so

network characteristics and utilisation are notorious for affecting TLS performance.

70

Connections Connection times (ms)

Total time (s) Successful Failed Per second Min Mean Median Max

With TLSFilter 31.17 20000 0 641.66 5 292 218 4622

Without TLSFilter 23.23 20000 0 860.87 4 231 197 3262

Table 6.4: Statistics for 200 concurrent connections

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000

Fr
e
q
u
e
n
cy

Response time (ms)

with TLSFilter
without TLSFilter

Figure 6.3: Frequency distribution comparison of TLS latency

I used the same configuration from the previous tests but now opting to download the 0B file as

opposed to the 100MB file. I also used Apache Bench, which is benchmarking software aimed at web

servers but fully supports TLS. My tests were performed with a liberal 200 concurrent connections

and 20000 total connections, using the command ab -n 20000 -c 200 https://127.0.0.1:8888/.

In addition, raw data was saved using the -g argument and later used to generate frequency charts

with GNUPlot.

The results are shown in Table 6.4. With regards to throughput, using TLSFilter reduces con-

current throughput by 25% from 199.25 KB/s to 148.51 KB/s, which is not insignificant. Plotting

the two sets of raw data produced by Apache Bench (see Figure 6.3) reveals a distribution with an

interesting and unexpected property: using TLSFilter resulted in a higher frequency of responses

within the 0-110ms range than the control trial (see Figure 6.4). Even more surprisingly, this

behaviour is consistent with repeated attempts.

My intuition was that the data obtained under the influence of TLSFilter would duplicate the

71

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400

Fr
e
q

u
e
n
cy

Response time (ms)

with TLSFilter
without TLSFilter

Figure 6.4: Frequency distribution comparison of TLS latency, between 0 and 400ms

distribution of my control trial but with a fixed translation in the positive x direction and, most

likely, with increased variance; I assumed that the updated frequency distribution would be bounded

by baseline performance. The data shows that this is not precisely what happens, which at first did

not make much sense. After a little experimentation, I reasoned that removing packets from the

normal Netfilter Linux Kernel pipeline via libNetfilter queue and independently issuing verdicts

on packets must been the cause of this unusual performance.

To confirm this hypothesis, I branched the TLSFilter code base and hard-coded a positive

verdict for every packet; running this would mean packets would be intercepted via Netfilter and

then immediately passed back to the network. I then ran another Apache Bench trial and then

plotted the raw data, which supports this hypothesis; moreover, this new distribution better matches

what I had expected of a ‘baseline’ distribution. It would be interesting to find out why it is the

case that redirecting IP traffic through libnetfilter queue results in a consistent reduction in

the median connection time compared to delegating responsibility to the kernel, but that is beyond

the scope of this project.

Table 6.5 now includes the data obtained under the ‘branched’ implementation and Figures 6.5

and 6.6 include plots of all three distributions.

In general, latency is (expectedly) worse under TLSFilter. However, this does not deviate hugely

from the control distribution and is in the imperceptible order of tens of milliseconds. My test

configuration is also rather synthetic in that, due to network latency and the number of round-trips

72

Connections Connection times (ms)

Total time (s) Successful Failed Per second Min Mean Median Max

Branched TLSFilter 25.41 20000 0 787.26 3 249 170 4993

With TLSFilter 31.17 20000 0 641.66 5 292 218 4622

Without TLSFilter 23.23 20000 0 860.87 4 231 197 3262

Table 6.5: Statistics for 200 concurrent connections with revised baseline methodology

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000

Fr
e
q
u
e
n
cy

Response time (ms)

with TLSFilter
without TLSFilter

with branched TLSFilter

Figure 6.5: Frequency distributions of TLS latency including ‘branched’ TLSFilter version

73

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400

Fr
e
q

u
e
n
cy

Response time (ms)

with TLSFilter
without TLSFilter

with branched TLSFilter

Figure 6.6: Frequency distributions of TLS latency including ‘branched’ TLSFilter version, between

0 and 400ms

required, a TLS connection over a WAN is highly unlikely to complete within 200ms.

TLSFilter operates serially—albeit giving the impression of concurrency as a result of the packet-

switched nature of IP networks—and I am in no doubt that this is the cause of the 25% reduction

in throughput. Given that TLSFilter is still able to handle 200 concurrent TLS connections, I do

not think this poses a problem to its usage and I believe these results validate my early decision to

prioritise the avoidance of complexity over the pursuit of performance.

6.3.3 Limitations of Analysis

Due to an oversight during testing, all measurements were made on an unoptimised version of

the TLSFilter binary. As the TLSFilter source code has not changed significantly since these

measurements were taken, I claim that these results indicate a minimum level of performance.

Given that the updated compiler flags are for both performance and security purposes, it is not

clear to me whether these changes will have a positive net effect on performance.

With greater foresight, I could have obtained some 10GbE networking equipment to verify

whether TLSFilter was bounded by the gigabit Ethernet hardware used during my testing. I also

frequently encountered Linux kernel resource limit errors when testing concurrent connections using

Apache Bench, even after ostensibly removing all soft limits. Though 200 connections was a fairly

reliable upper limit, it would be interesting to investigate kernel options that would allow me to

74

better ascertain TLSFilter’s true limits.

Ideally I would have written my own SSL/TLS capable server for testing to reduce my depen-

dence on third-party software; it is not clear whether the underlying performance profiles of stunnel

and nweb have introduced biases into my performance measurements, though their reputations for

high performance leads me to believe that any performance impact is minimal.

6.4 Summary of Strengths

With regards specifically to my approach, I think TLSFilter offers several advantages over similar

software:

• No longer is there sole reliance on application developers nor system administrators to ensure

TLS security

• Protects (legacy) embedded systems and network appliances that remain infrequently patched

• Performs deep packet inspection of every IP packet, rather than relying on port numbers or

heuristics to näıvely classify traffic

• Mitigates an entire class of fragmentation-based IDS attacks through the use of TCP reassem-

bly logic from the Linux kernel

• Easily extensible, evidenced by the reactive authoring of plugins to mitigate Heartbleed and

OpenSSL’s ChangeCipherSpec bugs

• Maintains the end-to-end encrypted nature of TLS connections, unlike Blue Coat’s SSL Vis-

ibility (Section 2.5.3)

• Negligible performance loss with respect to latency and single-threaded throughput

• Immediately deployable

• Simple source code

6.5 Summary of Weaknesses

However, TLSFilter also has a number of weaknesses and limitations:

• Binary decision-making removes the ‘negotiation’ element of the protocol and introduces a

security-reachability trade-off

• No ability for end users to overrule a decision, unlike traditional desktop firewall software and

web browser security warnings

75

• May require manual periodic re-configuration

• Incomplete support for SSL and TLS protocols:

– Does not attempt to be a full, RFC-compliant implementation:

∗ Still reliant on underlying client/server implementations for standard validity checks

(e.g., cryptographic operations, X.509 certificate validation, etc.)

∗ Will not proactively defend against implementation bugs in underlying TLS imple-

mentations

– No support for handshake message fragmentation

– No support for SSL v2

– No support for datagram TLS (TLS over UDP)

• May introduce TLSFilter implementation-specific vulnerabilities

76

Chapter 7

Conclusion

This thesis documents numerous state-of-the-art threats to TLS and consequently constructs an at-

tack model using a modified Schneier attack tree to quantify relative probabilities against disparate

targets and adversaries. This research was used to develop a software implementation, TLSFil-

ter, that provides technical mitigations to a variety of TLS architectural weaknesses. In addition,

TLSFilter provides an extensible, general-purpose TLS firewall engine upon which future attack

mitigation techniques can be built; the unexpected publication of Heartbleed and ChangeCipher-

Spec injection vulnerabilities provided opportunity to evidence the utility of this functionality.

This thesis analyses 460,000 of the most popular websites and proposes a default configuration

that globally improves security for a minimal 5.5% reduction in network reachability. Analysis

also shows that (an unoptimised instance of) TLSFilter has a negligible effect on single-connection

throughput on gigabit Ethernet, introduces latency in the order of tens of milliseconds and reduces

throughput at 200 concurrent connections by approximately 25%.

TLSFilter allows advances in TLS attack mitigation techniques, such as certificate pinning, to

be applied universally and irrespective of underlying software implementation, operating system

support or network device. It replaces the traditional attack mitigation alternative of waiting for

security updates from vendors or manually identifying, patching and recompiling all instances of

vulnerable TLS software.

However, TLSFilter is not a panacea as the threats to TLS are not able to be mitigated exclu-

sively through technical means. The corruption and resultant distrust of cryptographic standards

is anathema to the security of TLS. Specifically, the unjustified methodologies used in the stan-

dardisation of named elliptic curves poses a real problem to the unconditional recommendation of

forward secrecy. As we saw from analysis of popular websites, a worrying majority of services now

prefer to use this functionality and very few do so with key moduli considered strong.

Background research showed that known cryptographic vulnerabilities were rarely practical

to exploit, which is entirely contrary to the serious vulnerabilities repeatedly found in software

77

realisations. Additionally, it seems that optimising for performance through the introduction of

complexity rarely comes without a cost to security: TLS compression introduced CRIME and code

refactoring caused the Debian pseudo-random number generator weaknesses.

In conclusion, while I do not see application-level firewalling and network middleware as sustain-

able long-term solutions, I think TLSFilter is a pragmatic stopgap that will remain valuable until

trusted, strong and securely-implemented cryptography becomes ubiquitous. Moreover, I think this

project justifies the concept of decoupling the security of communication from application imple-

mentation instances and questioning the notion that application security should be enforced solely

at the application level.

7.1 Future Extensions

TLS Tunnelling

The security-usability tradeoff is large drawback of TLSFilter. It would be useful to be able to

securely multiplex and tunnel traffic between TLSFilter instances for connections that would oth-

erwise be considered insecure and thus blocked. If deployment of TLSFilter were to hit a critical

mass, a tightening of the default configuration to improve security would be possible with little

impact to reachability.

Full TLS Implementation

At present TLSFilter does not attempt to implement the entire TLS specification so requests that

contravene protocol standards to exploit underlying vulnerable implementations are not proactively

detected and blocked. If TLSFilter were to be extended to support and perfectly enforce all protocol

and state stipulations, this would reduce the extent to which bugs like Heartbleed can be exploited.

However, this is not a trivial undertaking.

Greater Protocol Support

Greater protocol support would improve TLSFilter’s ability to rapidly create plugins to mitigate

new vulnerabilities. In particular, support for TLS “extensions”, Datagram TLS (i.e., TLS over

UDP) and the identification of SSL v2 traffic.

Add Parallel Processing

The single-threaded nature of TLSFilter is the likely cause of the 25% reduction in concurrent

throughput (at 200 connections). In principle it should be possible to extend TLSFilter such that

the execution of plugins is distributed over CPU cores or perhaps even to perform clustering of

multiple TLSFilter instances.

78

Bibliography

[1] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R. and Polk, W. 2008. RFC 5280

- Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)

Profile. [online] Available at: https://tools.ietf.org/html/rfc5280 [Accessed: 31 Jan 2014].

[2] Rescorla, E. and Dierks, T. 2008. RFC 5246 - The Transport Layer Security (TLS) Protocol

Version 1.2. [online] Available at: https://tools.ietf.org/html/rfc5246 [Accessed: 31 Jan 2014].

[3] Crypto++. n.d. GCM Mode. [online] Available at: http://www.cryptopp.com/wiki/GCM Mode

[Accessed: 31 Jan 2014].

[4] Dworkin, M. 2007. The Galois/Counter Mode of Operation (GCM). [e-book] Gaithers-

burg: Available through: National Institute of Standards and Technology (NIST)

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf [Accessed: 31 Jan 2014].

[5] Rescorla, E. and Dierks, T. 2006. RFC 4346 - The Transport Layer Security (TLS) Protocol

Version 1.1. [online] Available at: https://tools.ietf.org/html/rfc4346 [Accessed: 31 Jan 2014].

[6] Rescorla, E. and Allen, C. 1999. RFC 2246 - The TLS Protocol Version 1.0. [online] Available

at: https://tools.ietf.org/html/rfc2246 [Accessed: 31 Jan 2014].

[7] Freier, A., Karlton, P. and Kocher, P. 1996. The SSL Protocol Version 3.0. [online] Available

at: https://tools.ietf.org/search/draft-ietf-tls-ssl-version3-00 [Accessed: 31 Jan 2014].

[8] Trustworthyinternet.org. 2014. Trustworthy Internet Movement - SSL Pulse. [online] Available

at: https://www.trustworthyinternet.org/ssl-pulse/ [Accessed: 31 Jan 2014].

[9] Blake-Wilson, S., Bolyard, N., Gupta, B., Hakw, C. and Moeller, B. 2006. RFC4492 - Elliptic

Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS). [online] Available

at: https://tools.ietf.org/html/rfc4492 [Accessed: 31 Jan 2014].

[10] Electronic Frontier Foundation. 2011. The EFF SSL Observatory. [online] Available at:

https://www.eff.org/observatory [Accessed: 31 Jan 2014].

79

[11] Adkins, H. 2014. An update on attempted man-in-the-middle attacks. Google

Online Security Blog, [blog] Monday, August 29, 2011 8:59 PM, Available at:

http://googleonlinesecurity.blogspot.co.uk/2011/08/update-on-attempted-man-in-middle.html

[Accessed: 31 Jan 2014].

[12] New Chromium security features, June 2011. 2011. The Chromium Blog, [blog] June

14, 2011, Available at: http://blog.chromium.org/2011/06/new-chromium-security-features-

june.html [Accessed: 31 Jan 2014].

[13] Marlinspike, M. and Perrin, T. 2013. Trust Assertions for Certificate Keys. [online] Available

at: https://tools.ietf.org/html/draft-perrin-tls-tack-02 [Accessed: 31 Jan 2014].

[14] Hoffman, P. and Schlyter, J. 2012. RFC6698 - The DNS-Based Authentication of Named Enti-

ties (DANE). [online] Available at: https://tools.ietf.org/html/rfc6698 [Accessed: 31 Jan 2014].

[15] Lamb, R. 2014. DNSSEC Surpasses 50%!. ICANN Blog, [blog] 22 January 2014, Available at:

http://blog.icann.org/2014/01/dnssec-surpasses-50/ [Accessed: 31 Jan 2014].

[16] Vaudenay, S. 2002. Security Flaws Induced by CBC PaddingApplications to SSL, IPSEC,

WTLS... pp. 534–545.

[17] Alfardan, N. J., Bernstein, D. J., Paterson, K. G., Poettering, B. and Schuldt, J. 2013. On the

security of RC4 in TLS and WPA.

[18] Ray, M. and Dispensa, S. 2009. Renegotiating TLS

[19] Rescorla, E., Ray, M., Dispensa, S. and Oskov, N. 2009. Transport Layer Security (TLS) Rene-

gotiation Indication Extension. [online] Available at: https://tools.ietf.org/html/draft-rescorla-

tls-renegotiation-00 [Accessed: 31 Jan 2014].

[20] Bard, G. V. 2006. A Challenging but Feasible Blockwise-Adaptive Chosen-Plaintext Attack on

SSL. pp. 99–109.

[21] BEAST. 2011. thai, [blog] 25 September 2011, Available at:

http://vnhacker.blogspot.co.uk/2011/09/beast.html [Accessed: 31 Jan 2014].

[22] CRIME Ekoparty presentation slides. 2012. [video online] Available

at: https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu -

lCa2GizeuOfaLU2HOU/edit [Accessed: 31 Jan 2014].

[23] Alfardan, N. J. and Paterson, K. G. 2013. Lucky thirteen: Breaking the TLS and DTLS record

protocols.

[24] Davis, D., Ihaka, R. and Fenstermacher, P. 1994. Cryptographic randomness from air turbu-

lence in disk drives. pp. 114–120.

80

[25] Debian.org. 2006. Debian – Security Information – DSA-1571-1 openssl. [online] Available at:

http://www.debian.org/security/2008/dsa-1571 [Accessed: 31 Jan 2014].

[26] Goldberg, I. and Wagner, D. 1996. Randomness and the netscape browser. Dr Dobb’s Journal-

Software Tools for the Professional Programmer, 21 (1), pp. 66–71.

[27] Backes, M., Doychev, G. and KÖpf, B. Preventing Side-Channel Leaks in Web Traffic: A

Formal Approach.

[28] Netfilter.org. n.d. Documentation about the Netfilter/iptables project. [online] Available at:

http://www.netfilter.org/documentation/ [Accessed: 31 Jan 2014].

[29] Mobius.illinois.edu. 2014. The Mobius Tool. [online] Available at:

https://www.mobius.illinois.edu/ [Accessed: 31 Jan 2014].

[30] Ford, M. D., Keefe, K., Lemay, E., S, Ers, W. H. and Muehrcke, C. Implementing the ADVISE

Security Modeling Formalism in Mobius.

[31] Revealed: how US and UK spy agencies defeat internet privacy and security. 2013. [on-

line] 6th September. Available at: http://www.theguardian.com/world/2013/sep/05/nsa-gchq-

encryption-codes-security [Accessed: 31 Jan 2014].

[32] Schneier on Security: The NSA Is Breaking Most Encryp-

tion on the Internet. 2013. [online] 5th September. Available at:

https://www.schneier.com/blog/archives/2013/09/the nsa is brea.html#c1675929 [Accessed:

28 May 2014].

[33] Chen, L. and Turner, S. 2011. RFC 6151 - Updated Security Considerations

for the MD5 Message-Digest and the HMAC-MD5 Algorithms. [online] Available at:

https://tools.ietf.org/html/rfc6151 [Accessed: 29 May 2014].

[34] Ptacek, T. and Newsham, T. (1998). Insertion, evasion, and denial of service: Eluding network

intrusion detection.

[35] Adamic, L. and Huberman, B. (2001). The Web’s hidden order. Communications of the ACM,

[online] 44(9), pp.55-60. Available at: http://dl.acm.org/citation.cfm?doid=383694.383707 [Ac-

cessed 5 Jun. 2014].

[36] Adamic, L. and Huberman, B. (2002). Zipfs law and the In-

ternet. Glottometrics, [online] 3(1), pp.143–150. Available at:

http://www.hpl.hp.com/research/idl/papers/ranking/adamicglottometrics.pdf [Accessed

11 Jun. 2014].

[37] Schneier, B. (1999). Attack trees. Dr. Dobbs journal, 24(12), pp.21–29.

81

[38] Kleinjung, T., Aoki, K., Franke, J., Lenstra, A., Thomé, E., Bos, J., Gaudry, P., Kruppa,

A., Montgomery, P., Osvik, D. and others, (2010). Factorization of a 768-bit RSA modulus.

Springer, pp.333–350.

82

Appendix A

TLSFilter Configuration

A.1 Context-Free Grammar

Con f i gu ra t i on → CommentedLine EOL Con f i gu ra t i on | ϵ

CommentedLine → Comment Line

Comment → # String

Line → G l o b a l S e t t i n g | P lug in Invoca t i on | NetworkScope | ϵ

G l o b a l S e t t i n g → tlsfilter String

P lug in Invoca t i on → PluginName Command

PluginName → String

Command → String Command | ϵ

NetworkScope → [Network , NetworkLis t]

NetworkLis t → Network , NetworkLis t | ϵ

Network → IPAddress /SubnetMask | IPAddress

IPAddress → Octet . Octe t . Octe t . Octe t

Octe t → 0 | 1 | 2 | . . . | 254 | 255

SubnetMask → 1 | 2 | . . . | 31 | 32

83

Appendix B

Attack Tree Calculations

B.1 Notation

To make the calculations more clear, we can name the nodes in the attack tree from Figure 6.1 as

shown in Figure B.1;

The value of the root is therefore = max(A,max(max(B,C,D),E,F×max(max(G,max(max(B,C,D),

(max(J ,K)×I),H)),L,max(B,C,D)),M ,max(N ,O,P),max(max(N ,O,P),max(Q,R),S),T)).

TLSFilter can be configured to prevent the attacks corresponding to A,C,E,G,H,K,L,O,Q,R,

T,U, V,W . So we can set these to zero in the previous form to produce: max(max(B,D),F×max(max

(B,D)×J × I,max(B,D)), M ,max(N ,P),max(max(N ,P), S)). Note that the parent of H has be-

come an “AND” node, to take into account that a SHA-1 collision could be used to circumvent

TLSFilter’s certificate pinning.

84

Copy network
traffic; decrypt
contents OR

Man-in-the-
Middle ANDX

Obtain shared
session secret

OR
E

Obtain accepted
X.509 certificate

OR

Create 'valid'
X.509 certificate

OR

Duplicate original
X.509 certificate

X*G
Impersonate

certificate
authority OR

Find certificate
hash collision

AND

Use algorithmic
weakness OR I

B DC

Y
Exploit CBC

mode of
operation OR

T U

W

Y* S

Exploit key
exchange

weakness OR

P

Exploit low
modulus size R

Use algorithmic
weakness OR V*

Q

M

J K

HX*

F

Read contents of
encrypted TLS
connection OR

A

V

L

N O

Figure B.1: Attack tree node key

85

B.2 Lavabit Estimated Probabilities

Scan data for lavabit.com:443 obtained on Jun 5 2014 at 22:22:22 UTC. See Table B.1 for asso-

ciated probabilities.

Node Nation State Criminal Gang Lone Cracker Comment

A 0.0 0.0 0.0 Not vulnerable to known bugs

(e.g., Heartbleed)

B 0.8 0.0 0.0 Assumed friendly towards lawful

intercept

C 0.8 0.4 0.2 Certificate chain contains a 1024-

bit RSA key

D 0.2 0.1 0.1

E 0.0 0.0 0.0 Not vulnerable to known bugs

F 1.0 0.2 0.0

G 0.8 0.0 0.0

H 0.2 0.2 0.0

I 0.8 0.4 0.2

J 0.2 0.0 0.0

K 0.0 0.0 0.0 SHA-1 deprecated but not yet

broken

L 1.0 1.0 1.0 Vulnerable to CCS MitM

M 0.0 0.0 0.0 No significant embedded content

N 0.2 0.0 0.0 3DES

O 0.0 0.0 0.0 No known practical attacks for

AES, 3DES

P 0.0 0.0 0.0 AES and 3DES have large key

spaces

Q 0.8 0.4 0.2 Weak 1024-bit DHE modulus

used

R 0.0 0.0 0.0 ECC not used for key exchange

S 0.2 0.0 0.0

T 0.0 0.0 0.0 Vulnerable, but impractical

U 0.0 0.0 0.0 Vulnerable, but impractical

V 0.0 0.0 0.0

W 0.0 0.0 0.0 Not vulnerable

Table B.1: Node probability estimates for Lavabit, for each adversary

86

B.3 First Look Media Estimated Probabilities

Scan data for firstlook.org:443 obtained on Jun 5 2014 at 15:50:48 UTC. See Table B.2 for

associated probabilities.

Node Nation State Criminal Gang Lone Cracker Comment

A 0.0 0.0 0.0 Not vulnerable to known bugs

(e.g., Heartbleed)

B 0.4 0.0 0.0

C 0.2 0.0 0.0 All certificates are 2048-bit RSA

or higher

D 0.2 0.1 0.1

E 0.0 0.0 0.0 Not vulnerable to known bugs

F 1.0 0.2 0.0

G 0.6 0.0 0.0

H 0.2 0.2 0.0

I 0.8 0.4 0.2

J 0.2 0.0 0.0

K 0.0 0.0 0.0 SHA-1 deprecated but not yet

broken

L 1.0 1.0 1.0 Vulnerable to CCS MitM

M 0.0 0.0 0.0 Content served over SSL and of

very similar sizes

N 0.2 0.0 0.0

O 0.4 0.2 0.0 RC4 keystream biases

P 0.0 0.0 0.0 AES and RC4 where RC4 is pre-

ferred by most web browsers (not

Internet Explorer)

Q 0.8 0.4 0.2 Weak 1024-bit DHE modulus

used

R 0.8 0.0 0.0

S 0.2 0.0 0.0

T 0.0 0.0 0.0 Vulnerable, but impractical

U 0.0 0.0 0.0 Vulnerable, but impractical

V 0.0 0.0 0.0

W 0.0 0.0 0.0 Not vulnerable

Table B.2: Node probability estimates for First Look Media, for each adversary

87

B.4 ESET Estimated Probabilities

Scan data for secure.eset.co.uk:443 obtained on Jun 5 2014 at 21:53:58 UTC. See Table B.3 for

associated probabilities.

Node Nation State Criminal Gang Lone Cracker Comment

A 0.0 0.0 0.0 Not vulnerable to known bugs

(e.g., Heartbleed)

B 0.0 0.0 0.0 Based in Slovakia

C 0.2 0.0 0.0 All certificates are 2048-bit RSA

or higher

D 0.2 0.1 0.1

E 0.0 0.0 0.0 Not vulnerable to known bugs

F 1.0 0.2 0.0

G 0.8 0.0 0.0

H 0.2 0.2 0.0

I 0.8 0.4 0.2

J 0.2 0.0 0.0

K 0.0 0.0 0.0 SHA-1 deprecated but not yet

broken

L 0.0 0.0 0.0 Not vulnerable to known bugs

M 0.0 0.0 0.0

N 0.6 0.0 0.0 In reference to RC4

O 1.0 1.0 1.0 DES, RC2 and RC4 all sup-

ported

P 1.0 0.8 0.6 Supports export grade 40-bit ci-

phers

Q 1.0 0.8 0.6 No forward secrecy; relies on

symmetric cipher strength

R 0.0 0.0 0.0 ECC not used for key exchange

S 0.2 0.0 0.0

T 0.0 0.0 0.0 Not vulnerable

U 0.0 0.0 0.0 Vulnerable, but impractical

V 0.0 0.0 0.0

W 0.0 0.0 0.0 Not vulnerable

Table B.3: Node probability estimates for ESET, for each adversary

88

