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Abstract

In the mammalian brain, there is a large volume of white matter dedicated to long-range
wiring, separated from the neuron cell bodies and short-range wiring. In the avian brain, no
such dedicated volume exists. Assuming that evolution has maximised brain functionality,
what are the advantages of the mammalian arrangement from an engineering point of view?

To find possible answers to the question, this project considers the implications of chang-
ing the spatial arrangements of networks on a two-dimensional computer model. As a basis
for the research, we test results from previous analytical studies. We find that, when a net-
work has high local connectivity and sparse global connectivity, the mammalian arrange-
ment can potentially reduce the total length of wiring. We then draw on percolation theory
to consider the possibility that separating long-range fibers enables neuron cell bodies to be
more densely packed.
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Chapter 1

Introduction

1.1 Motivation

In vertebrates, the brain is formed of two types of tissue: grey matter and white matter.
The grey matter consists of local neuronal networks, with non-myelinated axons forming
the local connections. The white matter enables global communication across the brain by
providing myelinated, long range connections. In the mammalian cortex, there is a clear
segregation between the two types of tissue, with the grey matter circumferentially sur-
rounding the white matter. This can be contrasted with the avian brain, which has no such
large dedicated volume of white matter, and instead has white matter fascicles scattered
throughout the whole forebrain [31].

From an evolutionary point of view, what is the rationale behind the segregation of grey
and white matter? The exact reason is still unknown, but one study [24] reveals that a
segregated cortical architecture potentially minimises total wiring volume, suggesting that
the brain has had to adapt to the spatial constraints imposed by the cranium. Using the same
model of connectivity adopted by this study, Wen and Chklovskii [31] instead sought to
find whether minimisation of conduction delays - the time taken for a neuron to transmit
a signal to another - could provide another explanation. Indeed, under certain parameters,
segregating grey and white matter appears to lead to reductions in conduction delay.

The previous studies use an analytical approach, where equations for measures such as
volume and delay are defined formally. The advantage of this is that we can abstract the
extreme complexity of the brain and produce meaningful results that scale to any number
of neurons. However, this of course comes with the cost of abstraction. For example, the
volume taken up by wiring is not the same as the volume that is needed as an enclosure,
since wiring will not be packed infinitely close together.
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Therefore, it seems worthwhile to study the problem using a synthetic approach, where
much smaller scale, but concrete, computer models are used. The applicability of previous
studies could be tested on these models, while alternative explanations for grey and white
matter segregation could be discovered.

1.2 Project Aim

This project sets out to seek possible explanations for the grey and white matter segregation
that is observed in the brains of vertebrates, using a synthetic approach. Being a fundamen-
tally open-ended, research-based project, the main aim is to establish an area of interest that
could be used as a basis for further research.

1.3 Contributions

1. A concrete implementation of a visualised network model with predefined spatial
constraints.

2. Results which show that in this model implementation and under certain circum-
stances, a segregated architecture can lead to reduction of wiring length while main-
taining the same (and potentially higher) connectivity.

3. Results which shows how the density of network components affects the chances that
a connection can be spatially embedded.

4. The proposal that grey and white matter segregation is possibly caused by the drive to
increase neuron cell body density while maintaining very long-distance connections.

1.4 Report Structure

We begin the report by presenting the reader with a background in the human brain fol-
lowed by an overview of related work and discussion of key terminology (Chapter 2). We
then outline our methodology and provide details on the network model used in the project
(Chapter 3). Some initial observations and minimisation of conduction delays is then dis-
cussed (Chapter 4). We explore percolation theory (Chapter 5) and use it as a basis for
explaining some previous results (Chapter 6). The relevance of our findings to the brain
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is then considered, and the challenges of the project are evaluated (Chapter 7). We then
conclude the report, outlining some possible areas of further work (Chapter 8).



Chapter 2

Background

In this chapter, we first present the reader with a background of the human brain that they
should familiarise themselves with before progressing through the rest of the report. We
then examine previous studies which bear relevance to this project. Finally, we take a look
into network theory and the characteristics that are typical of high functioning networks,
and consider various models of networks that are used in the project.

2.1 The Human Brain

2.1.1 Neurons

Neurons are the basic data processing units of the brain, which connect with each other
to form neural networks. Each neuron receives electrical inputs from thousands of other
neurons (on average), and if the sum of impulses arriving simultaneously together is strong
enough, the neuron will generate an electrical signal (an ‘action potential’) which becomes
the input to other neurons in the network.

The structure of a typical neuron can be broken down into three distinct elements: A
neuronal cell body (soma), dendrites, and an axon. The neuronal cell body is responsible
for generating and processing electrical signals; the dendrites act to receive incoming signals
and propagate them to the cell body; and the axon acts to conduct signals away from the cell
body. Axons can be highly branched, meaning an action potential is received by many other
neurons. The axon of one neuron and the dendrite of another are not physically in direct
contact, but instead the electrical signal travels across a small gap known as a synapse.

Each connection between neurons therefore comprises of two parts. The dendrites are
restricted to small regions around the cell body, whereas axons can be much longer. Axons
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Fig. 2.1 White Matter fibers, HCP Dataset. Source: [23]

can be very short, but also very long, for example those that run outward to the body from the
brain. In order to keep the conduction delays across long range axons reasonable, axons can
be coated in a fatty substance known as myelin, which significantly increases the conduction
velocity.

2.1.2 Grey and White Matter

Within the central nervous system (CNS), it is possible to distinguish regions of different
shading with the naked eye on unstained cuts through the brain [25]. Grey matter, as the
name suggests, is grey in appearance and consists primarily of neuronal cell bodies, un-
myelinated axons, dendrites and glial cells. This region is where the neurons interact. The
white matter, on the other hand, can be thought of as a cable system [25] which enables
communication between different regions of grey matter. It contains axons and no other
neuronal structures, many of which are myelinated, giving the region a white colouring.

The Human Connectome Project is a project that aims to map the brain’s fibrous long
distance connections using diffusion MRI [14]. As shown in Fig. 2.1, white matter tracts
travel alongside each other in an orderly fashion, making long distance connections between
different regions of the brain.
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2.1.3 Axon Guidance

In neural development, the axons of neurons are found to reach target cells by following a
series of intermediate targets, consisting of glial cells or intermediate guidepost cells [6].
An axon owes its ability to follow these guidance cues to its growth cone, which sniffs out
the extracellular environment that instruct the axon which way to grow.

It is observed that developing axons prefer to grow along pre-existing axonal tracts [13].
Therefore, the first axons that grow in a largely axon free environment are termed pioneer
axons, establishing the scaffolding that lays down the path for future follower axons [6].

2.1.4 Complexity of the Brain

The human brain is an extremely complex organ, with one estimate placing the number of
neurons at 86 billion [3], and others with even larger numbers. The number of connections
is even less precise, but one article suggests there are 125 trillion synapses in the cerebral
cortex alone [12]. Furthermore, the brain is dynamic: many connections are established and
pruned every day [21]. As a result, the availability of data on human neural connectivity is
extremely limited.

2.2 Related Work

2.2.1 The Economy of Brain Network Organization

Ed Bullmore and Olaf Sporns [4] suggest that many aspects of the brain’s organisation can
be explained by a drive to minimise the high material and metabolic costs that it incurs.
One major source of this cost comes in the form of wiring: It consumes volume, comes at
metabolic expense, produces signal delay and attenuation and incurs a developmental over-
head. It follows that reducing wiring cost confers an evolutionary advantage, and leads to
a hypothesis referred to as the ‘wiring economy principle’, that claims wiring minimization
influences brain organisation [7].

However, wiring minimisation is not the only criteria. If it was, the network would
adopt a lattice-like topology where nodes would simply connect with their (spatially) nearest
neighbours. This does not favour global integration of information processing, and therefore
the efficiency is low. On the other hand, a random topology provides good integrative
processing, but comes at too high a wiring cost, due to the large number of long-distance
connections. Instead, the brain appears to adopt a middle ground, where there are clusters
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of highly intra-connected nodes, but also high cost components which act as short-cuts
between different brain regions.

Furthermore, a study by Marcus Kaiser and Claus C Hilgetag [18] demonstrates that
neuronal components (node arrangements) are also not optimally placed for wiring minimi-
sation. By searching for alternative node arrangements given existing datasets and spatial
coordinates of the nodes, the authors were able to decrease total wiring among 95 primate
cortical areas by 32% using a simulated annealing approach.

Overall, it appears that while wiring cost is an important consideration, the brain or-
ganisation involves an economic trade-off between minimising costs and enabling efficient
connectivity across the brain.

2.2.2 Volume Efficiency of Cortical Architectures

Ruppin et al.[2] produced a possible explanation for grey and white matter segregation in
terms of volume minimisation, by calculating the brain volume based on geometric charac-
teristics. They considered two kinds of possible wiring organisations: First, the Homoge-
neously Dispersed (HD) organisation, where neurons and local connections (grey matter)
are intermixed with long range connections (white matter); second, the Segregated (SG)
organisation, where white matter and grey matter are found in two spatially distinct areas.
The volume occupied by the two organisations are calculated as follows:

V (HD) = N[u+ns fsts(HD)+nl fltl(HD)]

V (SG) = N[u+ns fsts(SG)+nl fltl(SG)]

where N is the number of processors (neurons), u is the volume of a processor, (ns, nl)
are the average number of (short and long range, respectively) connections per processor,
( fs, fl) are average cross-sectional areas of connections, and (ts, tl) are average connection
lengths.

For a given volume, Ruppin et al. notes that a SG organisation will have a lower value
of ts, since neurons have to be more densely packed. Therefore, V (SG)<V (HD) if:

ns

nl
>

fl(tl(SG)− tl(HD))

fs(ts(HD)− ts(SG))

By modelling values for the average connectivity lengths in each type of organisation,
the authors establish the parameters in order for one organisation to be more volume-
efficient than the other.
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Fig. 2.2 Homogeneously Dispersed, Inner Core and External Sheet organisations.
Source: [24]

An interesting point to take away from the study is how the SG organisation itself can
be split into two categories, as shown in Fig. 2.2: The Inner Core (IC) organisation, where
white matter surrounds the grey matter, and the External Sheet (ES) organisation where grey
matter surrounds white matter. The latter is the organisation adopted in the mammalian
cortex, and the paper argues that the ES organisation is more economical given available
cortical data.

2.2.3 Wiring Efficiencies at different scales

Murre and Sturdy [22] also analysed grey and white matter segregation in terms of volume
minimisation, but instead using a scaling approach. Their calculations suggest that depend-
ing on the scale being considered, different designs are more efficient. Most relevant to this
project are their findings at the macro-structural level, where they suggest packing neurons
on the surface of the exterior (grey matter) and packing fibers interiorly is most efficient in
terms of volume.

In their model, it is assumed nodes are arranged neatly in a lattice, and they simplify the
branching model by proposing a ‘snaking’ connection strategy, where each neuron snakes
along all its target neurons, as shown in Fig. 2.3. They note that if neurons are not distributed
neatly in the lattice, then optimization strategies could be used to reduce the path length of
snaking along neurons. However, since this is the Travelling Salesmen Problem, which is
NP-Complete and hence impossible for neurons to solve, they do not consider potentially
suboptimal paths to be a problem for their results.
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Fig. 2.3 Branching can be reduced to a neuron ‘snaking’ along target neurons in a neatly
arranged lattice. Source: [22]

2.2.4 Segregated Design and Conduction Delay minimisation

A more recent article by Wen and Chklovskii [31] analyses the advantages of grey and white
matter segregation, not in terms of volume, but from the perspective of conduction delays.
Using the same connectivity model used by Ruppin et al [24] and Murre and Sturdy [22],
they determine parameters for which the segregated design has smaller conduction delays
than the homogeneous design. Of particular interest was their appreciation for the different
properties of local and global connections: The latter can generally be made to conduct
faster since its conduction velocity scales linearly with wire diameter whereas the former
can not. Some key points from the paper are:

1. Higher connectivity comes at the cost of longer conduction delays, since more wiring
means increased volume and increased distances between neurons. This means con-
nections are longer and hence conduction delays are higher.

2. Introducing global connections into local circuits causes swelling of the volume and
local connections become longer, increasing local conduction delay.

3. Introducing local circuits to global connections will also cause a swelling of the vol-
ume, and hence global connections are longer. However, this can be compensated for
by increasing wire diameter.

4. Therefore, from the perspective of reducing conduction delays, it can be advantageous
to reduce the impact of global connections on local conduction delay. This can be
achieved by separating it from the grey matter.
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Given the studies by Ruppin et. al, Murre and Sturdy and Wen and Chklovskii [22,
24, 31], it seems the brain can be seen as efficient from two perspectives: Volume and
conduction delay. However, the two have not yet been related to each other and a unified
framework is yet to be achieved.

2.3 Networks

2.3.1 Network Terminology

• A network G =< V,E > has a set V of nodes and a set E ⊆< V,V > of connections
between nodes. E may also be represented by a two-dimensional connectivity matrix
A, such that, for all i, j ∈V :

A(i, j) =

1 if ( j, i) ∈ E

0 otherwise.

• The degree ki of a node i is the number of edges it participates in.

• The path length between nodes i ∈V and j ∈V is the number of edges in the shortest
path between the two nodes.

2.3.2 Small-World Networks

A network G is said to be ‘small-world’ if the following properties hold:

1. Sparse: On average, each node is connected to only a very small fraction of the total
number of nodes.

2. High clustering: If A(x,y) = 1 and A(x,z) = 1, then there is a high probability that
A(y,z) = 1. The extent of clustering is characterised by the network’s clustering coef-
ficient, γg.

3. Low mean path length, λG: The path length averaged over every distinct pair of nodes
in V is small.

We can quantify how small-world a network is using the small-world index, σG:

σG =
σG/γrand

λG/λrand
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where γrand and λrand are a random network’s clustering coefficient and mean path length,
respectively.

In nature, high connectivity and short conduction delays are competing requirements [31],
but the small-world properties of the brain mean the brain can maintain high functionality
by having fast global communication despite the sparse connectivity. Small-world networks
are found to strike a good balance between local and global efficiency, as defined by Latora
and Marchiori [20], which characterises how efficiently information can be propagated on
a local and global scale.

2.3.3 Network Modularity

A modular network is one where its nodes can be partitioned into modules. Each module is
highly intra-connected, but modules themselves are sparsely inter-connected. The modular-
ity for a graph G with m edges can be measured using Q:

Q =
1

2m ∑
i, j
(A(i, j)−

kik j

2m
)δcic j

where δxy =

1 if x = y

0 otherwise.

In this formula, the sum of Ai, j
2m represents the actual fraction of intra-community edges

whereas the fraction kik j
2m is what we would expect in a comparable random network. ci

denotes the community node i belongs to. Therefore, the value of Q represents gives an idea
of how densely connected communities are compared to what we would expect given the
degrees of nodes. Note that the community structure is not necessarily known in advance,
in which case it is instead determined by the community structure that maximises Q.

2.3.4 Network Topologies

We outline a few network topologies which can be established using an established proce-
dure:

Fully Connected

In a fully connected network, each node v ∈ V is connected to every other node in the
network. Assuming the network is undirected, it will contain n(n− 1)/2 edges, and each
node will have degree n−1.
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Random

In a random network, every possible edge occurs independently with equal probability 0 <

p < 1. This is the model proposed by Edgar Gilbert [11].

Modular

Three of the previous studies mentioned [22, 24, 31] propose a ‘modular’ topology, where
each node connects with its k-nearest neighbours, and makes an arbitrary long-distance
connection to another local network in the brain. For the sake of simplicity, this long-
distance connection is made with a randomly picked node.

Distance-based

We can produce a spatially embedded network that has a high small world index and medium
to high modularity [27] based on the distances between different nodes with the following
algorithm:

1. Create a network with n nodes, and assign each node random coordinates in the range
0 to 0.5, to ensure the distance between any two nodes lies in the range 0 to

√
2

2 .

2. Consider every pair of distinct nodes and connect them with probability p:

p = e−hd

where h is a constant and d is the Euclidean distance between the two nodes. This results
in a connectivity pattern than favours mostly short connections while still producing some
longer range connections. When h = 0, the graph is random, while increasing h produces
relatively high local connectivity, as shown in Fig. 2.4.

2.3.5 Physical Models

The background papers present various physical ‘packing strategies’ of networks, which
defines the placement of nodes and local connections (grey matter) and long-distance fibers.
These abbreviations will be used in the rest of the report.
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Fig. 2.4 Effect of varying h in the distance-based spatially embedded topology.

HD and SD

First, we define two high level packing strategies. In a homogeneous design (HD), local and
global connections are uniformly and finely intermixed [31]. In a segregated design (SD),
local connections are separated from global connections.

Forms of SD

SD itself can be subdivided into a number of different designs, depending on how the grey
matter is positioned relative to the white matter:

• Horizontally Sheeted: We consider a laminar layer of grey matter, which exists at
the top of the area with global connections running in the region below.

• Inner Core (IC): As defined by Ruppin et al. [24], in IC the grey matter is found
surrounded by an outer layer of white matter.

• External Sheet (ES): ES is the mirror image of IC, where the grey matter is found on
the external surface of the area.



Chapter 3

Modelling the Problem

3.1 Project Focus

Being an open-ended project, the initial problem was to establish its focus. The logical
topology of a neural network is largely independent of its physical characteristics. There-
fore, the mystery behind grey and white matter segregation appeared to be a physical con-
cern. Two areas were considered: (a) The spatial efficiency of HD and SD, given certain
parameters. (b) The implications of segregating grey and white matter on the difficulty of
growth cone pathfinding. The latter proposition essentially asks: Does a more structured
layout of nodes and wiring reduce the difficulty of finding their destination?

Although (b) is an interesting question, little is known about how neurons decide their
target neurons, and whether or not the connections are even targetted, or based on chance
encounters. There is a suggestion that this depends on the type of neuron in question [5].
This project does not concern itself with the difficulties a growth cone may encounter as
it tries to establish connections, and simply distinguishes between connections which are
possible or impossible to establish. It is therefore focused on (a).

3.2 Methodology

In order to gain an insight into the spatial efficiencies of HD and SD, two general approaches
were considered. First, an analytical method that would represent the problem in the form of
general formulae, and use mathematical reasoning to make deductions. Second, a synthetic
method that would involve running computer simulations on concrete models to make in-
ferences. The related work presented in the background was analytical in nature, producing
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mathematically sound results at the cost of a high degree of abstraction.
The synthetic method was more attractive and thus chosen for the following reason: The

existence of studies concerning the effects of segregating matter on wiring lengths, brain
volume and conduction delays would provide a basis for testing the results on a concrete
computer model; at the same time computer simulation could potentially become a source
of inspiration for new theory by exposing complex behaviours otherwise lost through ab-
straction.

3.3 Establishing a Suitable Model

The first challenge was to establish a model that could be used to perform various experi-
ments that would distinguish the properties of a homogeneous neural network architecture,
where nodes and both local and global connections are intermixed, from a segregated archi-
tecture that sees global connections primarily be routed through a region separated from the
nodes and local connections.

Given the inherent scale and complexity of the brain, creating a model which closely re-
sembled its architecture was not only infeasible, but beyond the scope of a project that aims
to produce speculative theories as a basis for further study. Instead, a simplified model that
benefits from faster development and computational efficiency, while maintaining relevance
to the network of the brain, is used. The key features of the model that were ultimately
decided upon, and the reasoning behind them, are as follows:

Spatial Constraints

Since the research is concerned with the layout and spatial properties of the network, the
nodes and edges of the graph must have some notion of location and occupy a quantity of
finite space. In a brain, the space occupied by both neuron cell bodies and their connec-
tive components (axons, dendrites and synaptic clefts) is significant, so the model could not
completely ignore either. However, realistic values of size are substituted in favour of arti-
ficial values. The nodes, which represent neuron cell bodies, are all of the same size. The
edges of the graph represent all the connective components involved in a single connection,
and have variable size.
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2-dimensional Space

One major consideration was whether to work in a 2-dimensional space or a 3-dimensional
space. The latter is more biologically realistic, but poses a significantly more difficult chal-
lenge. The increase in dimension would increase the computational cost of operations rel-
evant to the project, such as collision detection and pathfinding, while visualisation of the
model would require more development time and the use of more sophisticated software.
By opting for a 2-dimensional model, these costs are greatly reduced, and findings remain
relevant to 3-dimensional models.

Grid-based layout

A grid-based layout simplifies useful operations such as node or edge indexing and the
higher degree of detail a real coordinate space would provide was deemed unnecessary for
this project.

Edges can cross

The edges must consume some quantity of the finite space available. If edges were allowed
to travel on top of one another, while some abstract quantity could still be assigned, the
notion of connections becoming obstacles to one another would be lost completely. On the
other extreme, if nodes are prohibited from crossing completely, a planar graph problem
emerges, severely restricting connection possibilities. This would also be biologically un-
realistic, so the middle ground is chosen, where nodes can cross but not overlap along the
same direction.

Edges are limited to orthogonal movement

Movement on a square grid is limited to either completely orthogonal movement, or move-
ment which permits diagonals. It was felt that limiting the model to orthogonal movement
would still produce useful results, while reducing search spaces and avoiding a very mi-
nor problem introduced by allowing diagonal movement: When two nodes are next to each
other diagonally, the gap between them is larger than the gap between two non-diagonally
adjacent nodes. Should edges be allowed to move through this larger gap?
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No branching connections

In biological neural networks, axons can branch, enabling each neuron to potentially estab-
lish connections with hundreds of other neurons. Initially, a branching design for the model
was considered. As each node occupies a single square cell on the grid and edges travel
orthogonally, each node can only have four terminals. Branching on outgoing edges is pos-
sible, but nodes cannot ‘accept’ more than four of these edges since it would have to involve
the overlapping of separate edges. This cap on the maximum node degree would severely
reduce the significance of branching, so such behaviour is not present in the model.

Undirected

The research is mostly concerned with the physical properties of the graph, as opposed to
the logical topology. The question of whether edges are directed is of no significance in this
regard, but the model assumes the graph is undirected when logical topology is considered.

3.4 Model Implementation

Initially, models were built using MATLAB which offers useful tools for network analysis,
matrix manipulations which are suited to common operations on networks, and built-in
visualization and graph plotting tools. While these models were useful for prototyping and
preliminary analysis, it quickly became difficult to manage the complexity of them, and
making low level changes was challenging. Furthermore, the network libraries were found
to be less relevant to the project as the project became more focused on the spatial and
physical characteristics of the network, as opposed to the logical characteristics.

The model that was eventually decided upon, as described in the previous section, is
written in Java. An Object-Oriented approach was suited to the composition of components
in the model, such as the grid, nodes and wiring. Visualization is done using Java Swing,
graph plotting is done using JFreeChart [17], while analysis of the logical topology of net-
works are generally left to third-party applications that can import network graph data in
standardised formats (e.g. CSV).

3.4.1 Low-Level Components

The three key low-level components of the model are as follows:
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Grid The grid is initialised as a fixed size two-dimensional array of object type Cell, that
represents the area available to the network. Each grid cell can contain objects of
type CellObject. Network components are successively added to the grid, provided
the operation does not violate any of the spatial constraints.

Node A Node is a CellObject which represents a neuron cell body. Each node in a network
has a unique identifier, and contains relevant information such as its position and
degree.

Edge When a logical connection is physically embedded onto the grid, it is composed of a
series of ‘edges’ on the grid. Each edge travels from one cell to an adjacent cell.

3.4.2 High-Level Components

The bulk of the implementation is concerned with the manipulation of the low level compo-
nents. The key components are as follows:

Network A Network object comprises of a set of nodes and edges. This is a logical network
and is not necessarily embedded on the grid.

Network Generators In order to create networks, a series of building operations are ap-
plied. We start with node placement, using a specific type of packing strategy, and
establish a connectivity matrix based on a chosen topology. Modifiers can be ap-
plied at the end, for example randomisation of certain connections in order to create
surrogate networks.

Routing The Routing package contains classes concerned with physically embedding wiring,
such as the A* pathfinder and AStarCell wrapper.

Simulators Implementations of the base class Simulator are high level controllers that ag-
gregate various network creating and embedding operations based on the parameters
set.

Utility Classes Network relevant operations, such as distance calculations, nearest neigh-
bour searches and sorting operations are considered utility classes.

At an even higher-level are classes involved in visualisation, executing scripts and ex-
porting network data to standard file formats.
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3.4.3 Wiring using the A* Algorithm

In our model, wiring placement is significant because there is only a finite space available.
If we are given a graph G with fixed vertex positions, and attempt to embed all the wiring,
it is possible that not all connections can be established due to the spatial constraints. One
possible optimization criteria would be to pack as many of these connections onto the em-
bedding as possible. This kind of optimisation is akin to circuit board routing optimisation,
for which almost all problems are NP-Hard [1]. Given that this makes it likely impossi-
ble for biological growth cones to consistently produce optimal wiring, sub-optimal wiring
placement is a reasonable feature to assume in our model.

However, the model assumes that connections always take the shortest path when being
embedded. This is achieved using the popular A* pathfinding algorithm [8], which is
optimal in terms of the wiring length for the new connection, but may not lead to optimal
wiring for the entire graph. The algorithm is superior to Dijkstra’s algorithm since it uses
an admissible heuristic to estimate the cost of the distance from a candidate node to the
target node, making the search more informed. Other shortest path algorithms, such as
the Floyd-Warshall algorithm, were also considered, but since the grid is modified after
each embedding and we only consider one source node, A* was deemed to be the most
applicable.

The A* algorithm works by considering three functions: f , g and h. At any given point,
the A* algorithm will compute the cost associated with an adjacent node x by computing f :

f (x) = g(x)+h(x)

where g(x) is the cost of reaching node x from starting node vstart and hx is the estimated
cost (using an admissible heuristic), of the path from node x to destination node vend .

Since we use a grid based network model where connections can only travel along the x
and y axis, the Manhattan distance is a suitable admissible heuristic.

A* Algorithm with Aesthetic Paths

When calculating the shortest path between two nodes using the A* algorithm, there are
often many different paths across the grid with equal cost. Many of these paths will appear
to zig-zag towards the target node (Fig. 3.1). These paths are not aesthetically pleasing, so a
modification to the A* algorithm was made to ensure the path with the fewest turns is taken.

This is achieved by checking whether the expanded node involved a change of direction,
and calculating the value for g as follows:
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Algorithm 1 A* Pathfinding Algorithm
1: function SHORTESTPATH(vstart ,vend)
2: OPENSET← vstart
3: while OPENSET ̸=∅ do
4: remove x ∈ OPENSET with lowest value of f (x)
5: if x == vend then
6: return path to x
7: end if
8: add x to CLOSEDSET
9: for all n ∈ neighbour(x) do

10: if n ∈ CLOSEDSET then
11: continue
12: end if
13: gnew← g(x)+1
14: if n ̸∈ OPENSET | | gnew < g(n) then
15: g(n)← gnew
16: f (n)← g(n)+h(n)
17: insert n into OPENSET
18: end if
19: end for
20: end while
21: return null
22: end function
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Fig. 3.1 Equal length shortest paths. Source: [16]

gnew =

g(current)+1+ ε if direction changed

g(current)+1 otherwise.

where ε is a value significantly smaller than the smallest weight, 1.
Although initially this choice was made primarily to aid visualisation, we later discov-

ered that this feature significantly affected the number of connections that we could embed.
This is discussed in chapter 5.

3.4.4 Summary

This chapter first looked at the thought process that went into how the problem would be
approached. We decided to use a synthetic methodology which involved experimentation on
a concrete 2D, spatially embedded model in order to make inferences. The rest of chapter
looked at the design of the model, the reasoning behind the model specification, and touched
on its implementation details.



Chapter 4

Minimising Conduction Delays

The first notable finding was the potential for SD to reduce conduction delays in our model.
This area of study was inspired by the study conducted by Wen and Chklovskii [31]. This
section describes the thought process and considers the parameters in which SD outperforms
HD.

4.1 First Observations

4.1.1 The Effect of Increasing Density

The first question asked was "Given an embedding of an arbitrary graph G using the model
presented, what are the effects of packing the same number of nodes into a smaller space?"
This question arises when considering the brain could either embed G in such a way that
neurons (nodes) are distributed across its entire volume, or instead place the same number
of neurons into only a fraction of the available space.

The average distance between nodes decreases

The nodes are now closer together, so on average, the distance between any two nodes is
reduced. On an NxN grid, the average distance grows linearly with the square of of N.

Long-range connectivity decreases but short-range connectivity remains high

Suppose we embed the nodes of G randomly, such that the probability of a node occupying
any one of the squares is n

A where n is the number of nodes in G and A is the number
of squares on the grid. We then take all possible node pairings of the graph, sorted by the
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(a) 200 Nodes, 16x16 grid (b) 200 Nodes, 24x24 grid

Fig. 4.1 Connectivity: Short connections (Left); Long connections (Right). For (b), dmin
is the Manhattan distance between the grid’s origin and midpoint. Note that the colour of
nodes is indicative of node degree.

distance between the pair of nodes, and embed edges in two different ways: (i) Embed edges
starting with the closest node pairs. (ii) Embed edges starting with the node pairs which are
furthest apart, and only embed edges if the distance between the two nodes is greater than
a threshold value dmin, which is scaled accordingly with the size of the grid. In order to
achieve this a double-ended priority queue is used, with each element being a pair of nodes,
ordered by the distances between two nodes in the pairs.

As demonstrated by Fig. 4.1, when nodes are connected with their closest nodes, many
connections are possible. For graphs with 200 nodes, each with a maximum degree of 4,
400 connections is the theoretical maximum as each connection contributes a total degree
increase of 2. When we instead try and make long range connections, connectivity is sub-
stantially reduced. Long range connections are less likely to find a free path to their target
node due to the presence of nodes, while adding wiring to the embedding further contributes
to the number of obstacles. A graph comparing the number of connections achieved as the
area of the grid is varied is shown in Fig. 4.2.

4.1.2 Introducing White Matter: Random Connections

We now outline a preliminary analysis on the effect of changing the structure of the embed-
ding by splitting it into two regions. Given an grid of length l and width w, we only permit
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Fig. 4.2 How the maximum number of connections attained between 200 randomly placed
nodes changes with total area, in terms of short and long range connections.

nodes to be added onto a bounded region of the grid, with length lgrey and width wgrey. This
is representative of grey matter, and edges can now only begin or terminate in this region.

First, we consider what happens when we attempt full (all-to-all) connectivity. The
number of possible node pair combinations is n(n− 1)/2, which would require extremely
large grid areas, and the maximum node degree of 4 makes this topology impossible for
n > 5. Since this is infeasible, and the fact that this kind of topology is rare in nature, we
instead consider random networks.

Random networks are created as follows. We consider all possible edges between nodes,
and independently, with some probability 0 < p < 1, add edges to the network. With this
sample of randomly generated edges, we attempt to embed them onto the grid. It is impor-
tant to note that in all cases, successfully embedding the entire sample of connections onto
the grid is not likely, as specific connections are unlikely to find a path to its target node
as the number of obstacles of the grid increases. Instead, we compare the different archi-
tectures by comparing the number of successful connections established, given a sample of
random connections.

Fig. 4.4 shows how many connections, given a random sample, were successfully em-
bedded onto a 100x100 grid with n = 500. Three architectures are considered: (i) A homo-
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(a) Homogenous Design (b) Segregated Design with grey matter centered

Fig. 4.3 Random Connectivity for 50x50 grid with 100 nodes

geneous design. (ii) A segregated design with a horizontal sheet of grey matter, with white
matter below (iii) A segregated design with a horizontal sheet of grey matter, but this time
placed in between two regions of white matter. Scaled down examples of (i) and (iii) are
shown in Fig. 4.3a and Fig. 4.3b respectively.

The results show that the more white matter we introduce, the connectivity for random
connections decreases. In all architectures, each successive connection made reduces the
chance that the next connection will be successfully embedded. This is evident from the
falling rate of change in the number of connections. In this regard, SD does not appear to
result in any advantages over HD, but we do notice that when the horizontal sheet of grey
matter is centered in the enclosure, connectivity is higher.

The Cherry Picking Problem

One problem with this experiment is that, as we increase the sample size of connections
to embed, the graph that gets embedded becomes less and less random. This is a result of
certain types of connection being ‘cherry picked’. For example, if the random sample size
is n(n− 1)/2, it is the same as trying to embed a graph with all-to-all connectivity. In this
scenario,

It is worth noting that as the number of connection attempts increases, the network that is
embedded becomes less random as a result of ‘cherry picking’ certain types of connection.
As Fig. 4.4 shows, the segregated designs slowly approach the curve of the homogeneous
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Fig. 4.4 Random connectivity performance between different architectures.
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design, but this is mainly a result of selectively choosing shorter connections which were
shown to be easier to connect. This growing bias is inherently difficult to solve, so we limit
the results shown to 0 < p≤ 0.1. Results for other values are included in Appendix A.

4.2 Minimising Conduction Delays

The previous section showed that random connectivity was significantly reduced when seg-
regating the grey and white matter. However, the background research showed that the
networks of mammalian brains do not have such a connectivity pattern, and instead it is the
case that the vast majority of connections a neuron makes is with its nearest neighbours.
This section looks to see if it is possible to generate embeddings with similar levels of con-
nectivity, while benefiting from reduced conduction delays, as discussed in the study by
Wen and Chklovskii [31].

4.2.1 Measuring Conduction Delays

In this model we assume the conduction delay across a connection increases with connection
length. However, one key consideration to make when assessing conduction delays in the
brain is to differentiate between myelinated and non-myelinated axons. In myelinated ax-
ons, conduction velocity scales linearly with the fiber’s diameter. Wen and Chklovskii’s [31]
study highlights the importance of minimising the conduction delays in short range, un-
myelinated axons, which do not share the same property. Fig. 4.5 shows the theoretical
relationship between the two types of axon.

In our model we do not capture the notion of connection diameter, but we still classify
connections can still distinguish between the two types of connection. We simplify the
problem by assuming the non-myelinated connections are the bottleneck, and aim to reduce
the short range conduction delays as much as possible. It is therefore important to bear in
mind that this simplification is taking place in the model.

A computer network analogy

While the model aims to discern possible implications of grey and white matter segregation
in the context of neural networks, the idea of distinguishing between different kinds of
connection is present in other real-world networks. One analogy that could be used is a
large scale computer network. Suppose we are trying to connect local computers using
cost-efficient Ethernet cables, but also have a smaller number of costly Fiber Optic cables
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Fig. 4.5 Theoretical relationship between conduction velocity and axon diameter for small
myelinated and non-myelinated axons. Source: [29]

available, which we assume can transport information fast enough, regardless of distance.
What spatial arrangement of computers and cabling would favour the minimisation of the
length of Ethernet cables?

4.2.2 Connection ordering

In order to minimise the conduction delays of these short range connections, the order in
which we embed connections on the graph becomes important. As the grid becomes more
congested, it is less likely that a connection will find a direct path to its target node, but
instead have to wriggle around the existing wiring and take a longer route. Therefore, it is
advantageous to begin by embedding the shortest connections first, given this optimization
criteria. This principle will be applied when we compare conduction delays in homogeneous
and segregated designs.

4.2.3 HD vs SD: Modular Connectivity Pattern

We consider how HD and SD compare in terms of conduction delay using the modular brain
connectivity model presented in the background. In this topology, each node connects with
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its k-nearest neighbours, and has a chance of making a long-range connection. Again, we
consider HD and the two forms of SD which are horizontally sheeted.

Finding the k-Nearest neighbours

In order to efficiently locate the k-nearest neighbours of any given node, we maintain a K-d
tree [28] in dimension 2, which organises nodes based on their grid coordinates. Building
the tree is an O(n log n) operation, while searching for a nearest node is on average an O(log
n) operation. The tree structure is ideal for organising the nodes in our model since each
node has its own 2-d coordinates and no two nodes can occupy the same co-ordinates.

Experiment: Varying the minimum distance between modules

In this experiment, we attempt to embed a modular network with 2300 nodes and 200 hub
nodes onto a grid of size 500x80, over HD and the two forms of horizontally sheeted design.
We do not consider a square 200x200 grid, for which SD produced unremarkable results.
Reasons for this are explained later. Hub nodes are nodes which are candidates for making
long-distance connections, and are spread randomly like any other node. The variable in
this experiment is the minimum distance between hub nodes we attempt to connect. The
procedure is as follows:

1. Embed 2300 nodes, randomly placed, onto the grey matter of the grid.

2. Embed 200 hub nodes, randomly placed, onto the grey matter of the grid.

3. Each node attempts to connect with its k-nearest nodes.

4. Consider each pair of hub nodes, and if the horizontal distance between them exceeds
a threshold value Gmin, attempt to embed a connection between them.

There are a couple of points to note. First, hub nodes are not physically connected to
the non-hub nodes. Initially, experiments were performed using a ‘rewiring’ strategy, where
each node would consider making a global connection with some probability p. However,
we are concerned with the physical constraints, and since each node only has 4 terminals, a
rewiring strategy would restrict the long range connection to exiting from just one terminal,
which is an unnecessary hurdle. Second, we only consider the horizontal distance between
the two hub nodes to keep the experiment fair, as through segregation we reduce the vertical
distance of grey matter, meaning otherwise the non-segregated layout would consider more
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hub node pairings. We run this experiment in each design 50 times for each value of Gmin,
which makes 50 unit increments.

The results are as follows:

• The average short-range connection length decreases by a factor of around 0.82 when
we go from HD to SD, which is slightly worse than the factor we would expect based
on the change in average Manhattan distance between any two nodes, 0.75. This is
likely due to relatively more congestion in the grey matter.

• Short range connectivity remains very similar between the different architectures.
HD, SD and SD with centered grey matter achieved an average of 4136, 4090 and
4111 local connections, respectively. This gives a local connectivity factor of ≈ 0.99.
The discrepancy between the figures for the two segregated designs is due to the
boundary effect, which is discussed later.

• In the segregated designs, global connections are seen to leave the grey matter and
travel along white matter, before re-entering the grey matter to reach their target node.
It must be the case that either the grey matter offers no direct path due to congestion,
or the path is not the shortest.

• When Gmin ≥ 150, both forms of SD achieve superior global connectivity over HD,
with the centered form producing the highest levels. These results are shown in
Fig. 4.6.

• The average global connection length is shorter in both forms of SD than HD when
Gmin≥ 250. This statistic is slightly more difficult to assess since the number of global
connections is variable between the three designs. However, grey matter becomes
more densely packed than white matter, and hence in HD projections are perturbed
further from the minimal-cost straight line path. This is the area exclusion factor,
analogous to volume exclusion found in a three-dimensional space [4]. The overhead
of exiting and reentering grey matter can, as a result, be outweighed by the cost of
avoiding obstacles within the grey matter.

4.2.4 White Matter Efficiency

When we change to SD and embed the local connections first, we guarantee reduced local
conduction delay, while maintaining almost the same local connectivity. However, the rela-
tive global connectivity appears to depend on the lengths of global connections. When we
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Fig. 4.6 Number of global connections embedded onto grid, given a minimum absolute
distance between connected hub nodes

only consider connecting hub nodes which are separated by Gmin = 150 units in the x-axis,
SD was capable of embedding more global connections. As the value of Gmin is further
increased, the global connectivity gap between HD and SD increased further.

Intuitively, this seemed to be the result of white matter being used more efficiently. A
global connection spends a certain fraction of its time leaving and re-entering grey matter,
which becomes an overhead since it is not moving directly towards its target node. The
relative impact of this overhead is reduced as the connection spends more time benefiting
from the obstacle-free path provided by white matter. We define a measurement for the
white matter efficiency of an embedding as follows:

W.M. Efficiency =
Total global connection length in W.M.

Total global connection length

To test this hypothesis, we carry out an experiment similar to the previous experiment,
but now place an upper bound, Gmax, on the horizontal distance between hub nodes that are
to be connected. By specifying the range of distances between the hub nodes we attempt
to connect, we can explicitly influence the amount of time a global connection will spend
in white matter, relative to grey matter. Fig. 4.8 shows how when we exclusively only
permit relatively short global connections (50-100), the white matter efficiency is low. This
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is especially the case for when the grey matter is not vertically offset (centered), as the
distance between a node and the boundary between grey and white matter is potentially
doubled, meaning proportionally more time being spent in grey matter.

Maximising White Matter Efficiency

Since white matter efficiency is dictated by the proportion of length a connection covers in
white matter, when there is a range of global connection lengths, the shorter global connec-
tions should be wired closest to the grey matter.

4.2.5 Varying White Matter Percentage

So far we have been concerned with varying the lengths of global connections, but have
only considered SD with a fixed amount of white matter - exactly half of the available area.
To examine the effects of varying the proportion of the area allocated to white matter, we
perform the same experiment as before but fix Gmin at 250. This means global connections
span at least half the horizontal distance of the grid. The variable in this experiment is
now the percentage of white matter, which we increase from 0% to 90%. Fig. 4.9 presents
three sets of results: (a) The number of local connections achieved. (b) The average length
of local connections. (c) The number of global connections achieved. Note that when the
white matter percentage is zero, the model is equivalent to HD.

Results

• The number of local connections is fairly constant, but begins to dip slightly beyond
50%.

• The mean local connection length falls as the nodes become more densely packed,
indicating shorter conduction delays. Beyond 50% white matter, the values vary sig-
nificantly between the two forms of horizontally sheeted SD.

• Increasing white matter also increases the number of global connections being em-
bedded, until a certain point.

The number of local connections embedded is slightly higher when the grey matter is
centered as there is white matter above and below, meaning fewer nodes are adjacent to the
external boundary which completely blocks wiring, unlike white matter.
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(a) HD achieves higher global connectivity when connected hub nodes are relatively
close together. The opposite occurs when connected hub nodes are relatively far apart.
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(b) When global connections are longer, the white matter efficiency is higher.

Fig. 4.8 Improved global connectivity is reflected by the white matter efficiency
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(a) Local connectivity
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(b) Average length of local connections
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(c) Global connectivity

Fig. 4.9 Effects of varying the white matter percentage

Fig. 4.10 At high densities, local connections can become indirect (shown in green).
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We also notice that the local connection length begins to momentarily plateau for the
case where grey matter is centered. This happens as the high density becomes an obstacle
for further connections, making local connections compensate by taking long routes via the
white matter, as shown in Fig. 4.10. The effect is less pronounced when the grey matter is
in contact with the boundary, as instead fewer connections are made.

The most interesting result is the change in the number of global connections. Consistent
with our first experiment where Gmin = 250, we can embed more global connections as we
gradually increase the amount of white matter. However, after 50% white matter coverage,
things begin to change. When grey matter is centered, the number of global connections
embedded continues to increase until 60% white matter, but in the other design there is a
sharp fall. The density in both designs is the same, yet having that white matter above as
well as below seems to yield remarkably better results. An explanation for this, in terms of
percolation theory, is discussed in section 6.2.2.

A possible explanation for increased global connectivity over HD

In SD, the connection lengths are generally shorter. We found this to be the case in both
local and global connections. Since wiring is taking up less space, more space is left over
for further global connections.

4.3 Summary

This chapter demonstrated cases in which, for our model, a segregated design had clear
advantages over a homogeneous one. We first observed that it is possible to densely pack
nodes while maintaining high levels of connectivity, provided that we only connect nodes
which are close together. We took this idea and applied it to a modular network, and found
that we could pack in just as many local connections into a smaller area and benefit from
shorter path lengths (and hence shorter conduction delays). The area left over from the
compression of nodes was white matter, and we found this could be exploited to embed the
global connections that would otherwise be impossible in the compressed grey matter. Fur-
ther, we found we could potentially embed more global connections than a homogeneous
design.

The segregated design required a few parameters for it to clearly outperform the homo-
geneous design. First, our optimization criteria was to minimize local conduction delay,
and hence the local connections were embedded first. If our optimization criteria was to
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minimize the global conduction delay, global connections would initially find shorter paths
through the grey matter, meaning local connectivity would be severely impacted. Second,
global connections needed to be sufficiently long to make the segregated design effective.
This was a result of the relative overhead of leaving and re-entering grey matter, which we
analysed in terms of white matter efficiency. The requirement of having sufficiently long
global connections was one of the reasons using a 500x80 grid, but in chapter 6 we discover
that a thin layer of grey matter is an essential feature for high global connectivity in SD.



Chapter 5

Percolation Theory

The previous chapter demonstrated a specific case where segregating nodes and local con-
nections from global connections led to reduced conduction delays and higher global con-
nectivity. The idea of white matter efficiency was introduced to better understand the con-
ditions in which segregation becomes effective. This chapter aims to provide more general
explanations for the differences between HD and SD, in terms of percolation theory, which
realises that the grid will become disconnected as it becomes more densely packed.

5.1 Motivation

In chapter 4 we mentioned one possible explanation for why SD could enable higher global
connectivity than HD under certain circumstances. The explanation was based on the idea
that since connections become shorter, given a fixed number of connections, more free space
would be left over under SD. While this is a significant factor, consider the following two
randomly selected embeddings for a graph of size 500x80, 2300 nodes, 200 hub nodes,
Gmin = 400:

Embedding 1 (HD) Embedding 2 (SD)

Number of local connections 4174 4170

Avg. local connection length 5.77 4.88

Number of global connections 21 37

Avg. global connection length 562.47. 509.91

Total connection length 35909 39212

The connections embedded in HD occupy a smaller total length, yet no further global
connections can be established. It appears that the placement of nodes and wiring is less
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efficient than SD for global connectivity.

5.2 Global Connectivity

5.2.1 Site percolation

The nodes and wiring that gets embedded onto the graph become potential obstacles when
trying to embed additional wiring. We start by abstracting away the details of our model
and consider how connectivity is affected as cells on a grid become ‘occupied’.

Percolation Trials

Our first experiment is as follows:

1. Take a grid of size NxN with all cells initialised to ‘empty‘.

2. Go through each cell in turn and with a probability 1− p, make the cell ‘occupied’.

3. If there exists a path comprising only of empty cells going from the top of the grid to
the bottom, count this trial as a ‘success’.

4. Repeat this process r times, and calculate the probability of there being a path from
top to bottom.

This problem is known as site percolation [9] and as a matter of convention we take
p to be the probability that a cell is ‘empty’. The results of this experiment are shown in
Fig. 5.2. Two things can be observed: First, there is a clear phase transition as we increase
p. Second, as we begin to consider larger lattices, the transition becomes more abrupt.
When N is infinite, the probability of success becomes a step function, in which there is
no connectivity if p is below a critical value, pc, and certain connectivity if p > pc. The
exact value of pc for a square lattice is unknown, but one numerical analysis puts it at
0.592746010 [15].

Checking for connectivity with Union-Find

In order to efficiently run percolation trials, we do not need to actually trace a path, but
instead only check whether a path exists. This is achieved using a disjoint-set data structure,
where the elements are the linear index of the cell position on the grid, and the union-find
algorithm [26] that keeps ‘connected’ cells (cells between which an open path exists) in the
same subset and allows for fast querying of whether two cells are connected.
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(a) p = 0.8 (b) p = 0.6

Fig. 5.1 Examples of successful percolation trials, N = 100
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Fig. 5.2 The probability a path exists from top to bottom given a NxN grid with each cell
being ‘empty’ with probability p (Nodes only).
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5.2.2 Percolation with Wiring

The experiments performed on our model thus far have all initially started with a sparsely
populated grid, with only nodes (neurons) occupying cells. Nodes were allocated randomly,
and the value of p can be calculated as n/A, where n is the number of nodes and A is the total
area of the grid. The sparse placement of nodes means n/A >> pc, so global connectivity
is almost certain. The more interesting question to ask is what happens as more and more
wiring gets added to the grid.

Like nodes, wiring constitute obstacles on the grid, so it is likely that the principles of
our first experiment will carry over. However, the properties of wiring is different from
nodes, since they can be crossed orthogonally. We carry out the percolation trials as before,
but now occupied cells can either contain a node or some wiring. To remain as true as
possible to our model, we make the probability that a cell contains a node relatively small.
Since wiring does not permit backtracking, all cells excluding those that contain a node will
only have up to two outgoing edges.

To make a direct comparison with the abstract percolation model, we continue to vary a
single variable, p, representing the probability a cell is empty. In the trials performed, we
set the probability an occupied cell contains a node to be 0.1 and the probability it contains
one or two edges as 0.6 and 0.3 respectively. The results are shown in Fig. 5.3.

The results in Fig. 5.3 show a similar phase transition, but this time a much greater
amount of objects on the grid are tolerated before global connectivity is lost. We can vary
the specific probabilities that a cell is occupied by a node/one edge/two edges, leading to
shifts in the curve.

5.2.3 Measuring Percolation using Growth Cones

As expected, the phase transition of global connectivity still appears when wiring is intro-
duced. However, wiring in these trials were added on a completely random basis, ignoring
the fact that the presence of edges in one cell will generally mean adjacent cells also contain
edges that follow on from these. The resultant embedding is hence unrealistic, as demon-
strated by Fig. 5.4a.

Inspired by biological growth cones, which are at the head of an axon and responsible
for seeking target neurons, we can measure percolation for our model in a more realistic
way. Instead of using probabilities to determine node and wiring placement, we have each
node send out a growth cone, which seeks out other nodes. We are not concerned with
whether or not the growth cone makes a connection, but simply that it produces a realistic,
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Fig. 5.3 The probability a path exists from top to bottom given a NxN grid with each cell
being ‘empty’ with probability p (Nodes and Wiring).

contiguous piece of wiring.
In the following percolation trials that use growth cones, the variable is now coverage,

c, given by:

c =
Total Length of wiring

Grid Area

Coverage represents how much ‘growth’ has occurred between all the growth cones,
giving us a sense of density, while being based on embeddings which are more realistic than
those based purely on probabilities. On each iteration, each growth cone will attempt to
grow their connection by one unit by reaching an adjacent cell. Assuming there is no obsta-
cle ahead, they will preferentially continue travelling in the same direction with probability
s, otherwise changing direction. As soon as the target coverage is met, the percolation trial
is performed with the resulting embedding. The results of these trials for s = 0.55, s = 0.65
and nodes occupying 5% of cells are shown in Fig. 5.5.
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(a) p = 0.35 (b) c = 1.35,s = 0.55

Fig. 5.4 Unsuccessful percolation trials using two models: (a) Abstract wiring, (b) Growth
cone based wiring
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Fig. 5.5 Percolation Trials on Growth Cone based embeddings. s is a measure of how
straight connections grow.
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Discussion of results

Once again, a phase transition is observed. For both values of s, loss of connectivity is
only seen to occur when c > 1. This means there is certainly some crossing involved in the
embedding, as the total length of wiring exceeds the area of the grid.

A second observation is that as a growth cones follow more linear trajectories, global
connectivity is maintained at higher levels of coverage. It is possible that, the more ‘chaotic’
wiring in the grid becomes, it becomes more difficult to find a path from top to bottom as
there are more points at which we have to change direction, in order to obey the rule of
not being able to travel on top of another piece of wiring. When connections are more
ordered and found travelling in parallel straight lines, we guarantee that we can cross them
all without having to change direction. In Appendix B, we revisit this point and show how
the A* pathfinding algorithm achieves higher connectivity in embeddings when it travels in
straighter lines.

5.2.4 Clustering

The percolation trials have given us an idea of how connectivity is affected as more and
more wiring is embedded. Initially, the grid is sparsely populated and global connectivity
is almost certain. The addition of wiring will eventually lead to a stage where a connection
going from one side of the grid to the other is impossible. Another way of looking at this
problem is in terms of clustering: A cluster is group of cells on the grid, in which for any
one of its cells, a path exists to every other cell in the group. If we can reach one side of the
grid to the other, it means there is at least one cluster which spans the entire length of the
grid.

Fig. 5.6 shows examples of clustering on the abstract site percolation model we started
with. Recall that for this model, the critical value pc is 0.593 to 3.s.f. In (a) we see one
cluster span from top to bottom. In (b), (c) and (d), where p < pc, we are in the "subcritical"
phase, and the clusters become progressively smaller. In fact, Menshikov [2] showed that
in this phase, the probability that a specific point (for example, the origin) is contained in
an open cluster of size r decays to zero exponentially in r. Put another way, let Sx,d be the
event where an open path from a cell x to another cell whose distance from x is d. Then
let the probability that an event E holds when sites are ‘empty’ with probability p be P(E).
Menshikov’s theorem implies that for a given p < pc, there is a constant a such that:

P(Sx,d)≤ e−ad
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This is significant to our model because it suggests that as wiring is added and the
embedding transitions into its subcritical phase, the probability of being able to establish a
path between two nodes separated by a Manhattan distance d decays exponentially with d.

5.3 Summary

This chapter explored percolation theory, and its potential applications to our model. Site
percolation deals with the issue of connectivity on a much more abstract level, by consider-
ing whether a cell is either occupied or empty, based on probability. Our network model can-
not be reduced to a single probability value, since the embeddings are more complex, but we
carried out similar trials on more concrete models which involved wiring. We consequently
found that increasing the density of wiring in our model produced similar phenemona. In-
creasing the amount of wiring on the grid leads to the grid becoming disconnected, meaning
certain connections become impossible to embed.
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(a) p = 0.6 (b) p = 0.59

(c) p = 0.55 (d) p = 0.3

Fig. 5.6 Clustering on abstract embeddings with ‘occupied’ (shown in blue) and ‘empty’
cells.



Chapter 6

Applying Percolation Theory

At a fundamental level, SD guarantees, regions where nodes are completely absent. Results
from chapter 4 suggest that this is potentially advantageous for global connectivity. This
section provides additional explation for the results of the chapter in terms of of how clusters
form in the respective designs.

6.1 Achieving Global Connections in dense embeddings

The previous chapter explained how longer range connections become increasingly difficult
to establish as the coverage of the grid increases. We now look at how clusters form in
graph embeddings that we create, and suggest how global connectivity can be facilitated by
introducing white matter.

Consider an arbitrary graph embedding which is in its subcritical phase and therefore
has finitely sized clusters, like the random network shown in Fig. 6.1.

Suppose we wish to make a connection from a node in a cluster on one end to a node
in a cluster on the other end. This is not possible, since by the definition of clusters no
such open path exists. However, if we now surround the entire grid with a new layer of
completely empty cells, the connection is made possible: It first leaves its cluster of origin,
moves onto the new layer of cells, before entering the cluster of its target node.

Landlocked Clusters

We can distinguish between clusters that are completely surrounded by other clusters and
those which contain cells adjacent to the grid boundaries. We can call the former ‘land-
locked’ clusters, and even if we introduce a new layer of cells, it is impossible for these
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Fig. 6.1 A random network in the subcritical phase.

clusters to take advantage of them. Hence no direct connection can be made with other
clusters. Note that: (a) Connections are already present in the embedding, so nodes in sep-
arate clusters may already be connected, but additional connectivity is impossible. (b) We
are not considering logical connectivity, meaning indirect ‘paths’ that involve hops between
nodes.

6.1.1 Boundary Length

In HD, we can reduce the density of the grid by spreading out nodes and connections evenly.
However, if the grid was dense, the clusters will remain small and global connectivity will
remain impossible. Instead, if we artificially add a layer of empty, contiguous cells, we can
guarantee a connection between two non-landlocked cells.

There also exists a solution to landlocked clusters. In chapter 5 we only considered
nodes being arranged on a square grid, with nodes occupying any cell with even probabil-
ity. From Menshikov’s Theorem, we know the probability that there is an open path from a
cell to a boundary, given some density, is exponential in the distance between the cell and
boundary, d. If we reduce the maximum distance between any node and a boundary, land-



6.1 Achieving Global Connections in dense embeddings 49

Fig. 6.2 Reducing landlocked clusters by reducing lattice width

Fig. 6.3 Nodes closer to a boundary must expand their search radius to connect with k nodes.

locked clusters become far less common. Fig. 6.2 demonstrates this behaviour. Reducing
this maximum distance from the boundary involves increasing the total length of boundary
present in the embedding.

Cost of increasing boundary length

Modifying node arrangement to increase the total boundary length has its own side-effects.
The cost depends on the connectivity pattern that is adopted by the graph. For example, if
the graph has random connectivity, the average distance between any two nodes increases
as the diameter of the rectangle is larger.

For modular connectivity, which is more biologically realistic, the average path length
increases for a different reason. Each node tries to make a connection to the nearest k nodes,
and therefore we can imagine it has a search radius that is large enough to include k nodes.
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Since our model uses taxicab geometry, when no boundary exists (consider an infinite
grid) and each cell contains a node with probability p, the ‘circle’ of radius r is the diamond
given by:

|x|+ |y|= r

This search radius contains 4r cells. We therefore expect 4pr nodes to be found in
this search radius. However, nodes within distance r from the boundary are prone to the
boundary effect, as their search radius must be higher. This means the outgoing connections
from these nodes are, on average, longer. In our model, this also means potentially reduced
local connectivity. Fig. 6.3 demonstrates this effect.

6.1.2 Varying Grey Matter layout

So far we have been comparing HD and SD with a 500x80 rectangle for the external en-
closure. However, boundary length can be increased within any given space by laying out
the grey matter in different ways. The advantages of having fewer landlocked nodes is
potentially greater global connectivity, given the same density.

In order to compare different grey matter layouts on a two-dimensional grid, we perform
the following experiment, for each type of layout:

1. Create a 200x200 grid and embed 2300 nodes.

2. Randomly place 100 hub nodes in vacant cells in the grey matter.

3. Use the k-Nearest connectivity pattern on the non-hub nodes, attempting to connect
each node to its 4 closest neighbors.

4. Sort hub node pair combinations by the distance separating the two hub nodes, and
create a new list which only contains the second half of the sorted combinations.

5. In a random order, attempt to embed connections between hub nodes in this new list.

6. Repeat for different amounts of white matter.

This is very similar to the experiments carried out in chapter 4. We only consider hub
node pair distances which are in the longer half to ensure relatively long-range connections
are being made. We do not use an absolute threshold length since different layouts mean the
distances between hub nodes (which are situated in the grey matter) are skewed.
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We consider three different layouts: horizontally sheeted, as used in chapter 4 (not cen-
tered) but on a square grid, and two of the other layouts described in the background: inner
core (IC) and external sheet (ES). The results of this experiment are shown in Fig. 6.4.
Visual examples of the layouts, post connection embedding, are shown in Fig. 6.5.

Results

• The number of local connections is very similar across all three layouts, with IC
having the most and EC having the least.

• Local wiring becomes shorter as white matter is introduced and nodes are more
densely packed. Beyond 60%, local connectivity begins to fall, leading to a sharper
fall in the mean local connection length. (Discussed in previous chapter).

• ES demonstrates superior global connectivity to the other two layouts. Its perfor-
mance in this respect peaks when there is 36% white matter.

The difference in local connectivity between the layouts can be explained by the amount
of boundary. Nodes by the external boundary are less able to make the connections accord-
ing to the k-Nearest pattern, as they only have a maximum node degree of 3. ES has the
largest external boundary (800), while IC has the smallest (0). Furthermore, local connec-
tions are slightly longer in ES, due to the boundary effect, where nodes near the external
boundary and grey-white matter boundaries have to expand their search radius.

The difference in global connectivity is also explained in terms of the boundary, but this
time in terms of the distance of nodes from the boundary. Initially, horizontally sheeted and
IC layouts establish connections within the grey matter (unless due to area exclusion, a path
utilising white matter is found to be shorter). However, as the grey matter becomes more
densely packed with wiring, they begin to take advantage of the white matter. From percola-
tion theory, as the distance of a node from its nearest boundary increases, the probability of
finding a cluster that is in contact with white matter decreases exponentially (technically, this
would not be an enclosed cluster since it is the same cluster as the white matter, but imagine
the white matter boundary as a barrier). Since proportionally more nodes are further away
from the nearest boundary in horizontal split and IC, fewer nodes can take advantage of it.
Fig. 6.6 shows points where nodes are furthest from the boundary in the respective layouts.
Note how in ES these points are at the corners, explaining why the corners appear to have
less global wiring in Fig. 6.5b
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Fig. 6.4 Results from experiments comparing horizontally sheeted, inner core (IC) and ex-
ternal sheet (ES) layouts
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(a) IC (b) ES

Fig. 6.5 Examples of horizontally sheeted, inner core (IC) and external sheet (ES) layouts
with 36% white matter

Fig. 6.6 Points where distance from nearest white matter boundary is maximal
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6.2 Clusters in Modular Connectivity Networks

6.2.1 HD vs SD

We are now in a position to provide an explanation for why SD achieved a higher number
of global connections than HD under certain circumstances in chapter 4. This is illustrated
using a visual walkthough shown in Fig. 6.7, which demonstrates how clusters form as
wiring is embedded.

We use the same experiment setup as before (500x80 grid, 2300 nodes and 200 hub
nodes) and set Gmin = 250, exactly half of the length of the grid. Initially, we embed all
the local connections in order to optimise short conduction delays. We find that in both HD
and SD, global connectivity remains, as indicated by the large red cluster (HD, 6.7a) and
large green cluster (SD, 6.7c). We can also spot much smaller clusters forming, indicating
regions where nodes have a limited range of connectivity.

After 25 connections have been established in this instance of HD, we detect a sudden
loss of global connectivity. The 25th global connection that was embedded has left the
graph with 2 large clusters, but not an infinitely large one. The situation is different in the
instance of SD, where we have produced more small clusters, but a cluster of infinite size
remains. Global connectivity is eventually lost in SD, albeit with more global connections
being successfully embedded.

6.2.2 SD vs SD with centered grey matter

In chapter 4, we made a peculiar observation when varying the white matter percentage:
When white matter covered 50% of the grid, both SD and SD with centered grey matter
had embedded a similar number of global connections; but at 60% white matter coverage, a
considerable gap had suddenly developed between the two (Fig. 4.9c).

A 10% increase in density of the grey matter causes a proportionally large decrease in
the average cluster size of grey matter (we are considering the stage at which the connections
have been embedded), of over 50%. This makes it significantly less likely a projection near
the external boundary above will be able to access the white matter, hence causing the abrupt
dip in the curve. When the grey matter is centered, on the other hand, the maximum distance
from the boundary is halved and far more connections end up being embedded (Fig. 6.8c).
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(a) HD, only local connections embedded

(b) HD, 25 global connections embedded

(c) SD, only local connections embedded

(d) SD, 25 global connections embedded

(e) SD, 37 global connections embedded

Fig. 6.7 Progressive cluster formation in HD and SD for modular connectivity
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(a) SD, 50% white matter

(b) SD, 40% white matter

(c) SD (centered), 40% white matter

Fig. 6.8 Resulting clusters after an embedding trial with Gmin = 250. Here the white matter
boundary is treated as a barrier, and isn’t included in any clusters.



6.3 Distance-Based Spatially Embedded Networks 57

SD

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

White Matter Pct

0

250

500

750

1,000

1,250

1,500

1,750

2,000

2,250

2,500

M
ea

n
 C

lu
st

er
 S

iz
e

Fig. 6.9 Mean Cluster Sizes (Cluster sizes of size 1 are excluded from the calculation)

Mean cluster size

We can see how the mean cluster size of the grey matter changes as we introduce more
white matter. We run the same experiment as we did in chapter 4: Create a 500x80 grid,
embed 2300 nodes and 200 nodes and establish local and global connections. After we have
exhausted the attempts to make global connections, we are left with our final embedding. At
this point, the mean cluster size is taken, and only the cells in the grey matter are considered.
The results of the experiment for different values of white matter percentage are shown in
Fig. 6.9. Note that: (a) When white matter is low, we have big clusters left over, but global
connectivity is lost (b) When nodes are closer together, a cluster of some size s is more
valuable than one of the same size in an embedding where nodes are further apart,

6.3 Distance-Based Spatially Embedded Networks

In chapter 4, it appeared SD resulted in a loss of connectivity in networks with random
connectivity, yet when the network had a modular topology, connectivity was potentially
higher than HD. The difference between the two boils down to the wiring length distribution;
the former involves embedding wiring of various lengths, whereas the latter predominantly



6.3 Distance-Based Spatially Embedded Networks 58

consists of very short wiring, with a handful of much longer connections.
In this section, we consider how HD and SD compare when we try to embed the distance-

based spatially embedded networks in the manner described in the background. In principle,
segregating grey and white matter should be suited to these, since it produces a large number
of short range connections and relatively fewer long range connections.

6.3.1 Challenges

Mismatch between method and model

Unlike the modular topology, the method used to create distance-based spatially embedded
networks presented a much bigger challenge. The problem is that the method generates far
more connections than can possibly be embedded, as the algorithm will consider every node
pair combination as a potential candidate. Consider the case where h = 0, i.e. the graph is
completely random, then the method will generate n(n−1)/2 connections (assuming undi-
rected connections) based off nodes on a grid, which is far beyond what can be embedded
in the remaining space. As h increases, this value falls, but it would still not be possible to
embed a large fraction of the connections, unless h is extremely high. This is not an issue if
wiring and the degree of nodes are not constrained, as is the case in many models, but these
spatial constraints are the very thing we are interested in.

Therefore, it was decided that we would place a limit on the number of node pairs
generated by the spatially embedded algorithm. This, together with the fact that no node
can exceed a degree of 4, potentially influence the modular characteristics of the network.
However, we are more concerned with the connected node pair distance distribution, which
would still be represented by the small sample of generated pairings.

Making a direct comparison

Since the spatially embedded algorithm generates a different connectivity matrix on every
run, and the networks generated are based off the spatial location of the nodes themselves,
it is a difficult challenge to compare HD and SD. If, for example, we were to compare a
spatially embedded HD grid with a spatially embedded SD (ES) design (where nodes are
placed around the surface of the exterior border), the logical topology would be too different
to make a valid comparison.

Instead, we tried the following: First generate a random spatially embedded network
(using the Manhattan Distance) from nodes which are dispersed across the entire grid area
(HD). Then, reposition nodes by compressing them into a smaller region of grey matter
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(ensuring relative positioning remains the same), leaving behind a region of white matter.
The connectivity matrix is still the same. A more direct comparison of how the two designs
are able to embed the same network is now possible.

6.3.2 The Experiment

1. Create a 500x80 grid and embed 2300 nodes randomly across the grid.

2. For each node, select another node at random and connect with probability p = e−hd .
Repeat this until each node is connected with another node.

3. Create a 500x80 grid and embed the same 2300 nodes in a (centered) grey matter
region of size 500x40, by compressing nodes in the vertical axis.

4. For both grids, attempt to embed the connectivity matrix generated, in a random order.

5. Repeat for different values of h.

Results

First, we note that in terms of the total number of connections embedded, SD doesn’t man-
age to attain the same number as HD, for all h. However, when we establish connections
ordered by connection length, shortest first, this performance gap is reduced. This indicates
that SD relies heavily on the long distance connections being routed through the white mat-
ter. HD, on the other hand, benefits relatively less from the order in which connections are
embedded.

The number of connections embedded is fairly constant amongst all values of h. How-
ever, it appears that as the composition of short connections increases, the mean connection
length becomes smaller than HD, provided they are embedded first. This is expected, as
the nodes are now closer together. When h is low, the mean connection length is higher
than SD, indicating that many connection lengths suffer from the overhead of exiting and
reentering grey matter in order to make a connection.

Discussion

Compared to the modular connectivity topology, the case for SD is less convincing in
distance-based spatially embedded graphs. When h is high and shortest connections are
embedded first, it still has a substantially lower total number of connections. However, once
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Fig. 6.10 Results comparing HD and SD when a distance-based topology is used. ‘Shortest
first’ indicates that the connections in the connectivity matrix were embedded in order of
length.
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(a) HD, h = 20

(b) SD, h = 20

Fig. 6.11 Resulting clusters after distance-based spatial embeddings in HD and SD. In SD,
nodes maintain the same relative positioning, but are squeezed together vertically

again, analysing how clusters form in the respective designs becomes useful as it clarifies
the underlying connective potential.

In SD, as we embed connections, the grey matter region becomes increasingly dense,
while white matter is relatively sparsely populated. As a result, the cluster size distribution
after the embedding is that of many small clusters, and a few very large clusters. In HD
on the other hand, clusters form uniformly, with many ‘medium’ sized clusters. Fig. 6.12
shows the cluster distribution that results from the instances shown in Fig. 6.11.

If we check the difference between the networks that were embedded, we find that SD
was embedding much longer connections than HD (Fig. 6.13).

The case for HD

Given the previous display of SD embedding longer-range connections, one might be led
to believe it has better very long-range connective potential altogether. However, when we
take the successfully embedded set of connections in SD, and attempt to embed it back in
a new HD grid in the same order, we find HD can absorb the same set of connections. In
other words, while SD was forced to embed the longer connections, HD simply became
saturated with ‘medium’ range connections, meaning by the time it attempted to embed the
long-range connections, the grid had no cluster big enough to accommodate them. This is
not the case in certain modular networks, where HD could not absorb the same network that
SD was able to embed.

Therefore, unlike the experiments carried out with the modular topology, where SD
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Fig. 6.12 Cluster size distribution after a distance-based spatial embeddings in HD and SD.
Note the four large clusters in SD.

Fig. 6.13 Red edges indicate connections that were embedded in HD ( 6.11a) but NOT
embedded in SD ( 6.11b). Blue edges indicate connections that were embedded in SD but
NOT in HD. Visualised using Gephi [10].
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performed outstandingly in terms of reduced conduction delays and increased global con-
nectivity over HD, in this one the results are mixed. The short-range connection lengths may
be reduced, but in terms of connectivity, HD is superior. While we tried to tweak various
parameters for the distance-based method, we could not achieve a situation where the dis-
crepancy between very short and very long connections was similar to that of the modular
connectivity pattern.

Wiring Diameter

In our model all wiring is of the same diameter. However, if we imagine the diameter of
wiring is doubled, then the maximum density that can be tolerated before long and thick
connections lose connectivity is potentially much lower. It is possible that this would make
SD relatively more effective than HD compared to the results in our model.

6.4 Summary

This chapter applied the concepts of clustering to our model, and used it to explain some
observations previously made. Essentially, clustering analysis is useful because it allows
derive a new graph based on the state of the cells on the grid, where an edge between any
two nodes (representing grid cells) exist if there an open path between them on the grid.
Clusters therefore represent disconnected components, giving us a sense of the connective
potential that exists on the grid. We then compared HD and SD using the distance-based
topology, where SD reduced the length of connections but had lower connective potential.



Chapter 7

Evaluation

This chapter first considers how the findings of the project bear relevance to the brains of
mammals. Afterwards, we discuss the key challenges of the project.

7.1 Comparison with the Mammalian Brain

In the last three chapters, we established certain conditions that appeared favourable for SD.
Here, we compare whether the brain’s characteristics are in accordance with these condi-
tions.

7.1.1 Width of Grey Matter

In chapter 6 we noted that given some density, the probability a neuron could find an open
path to the grey-white matter boundary would fall exponentially with its distance from the
boundary. Therefore, a thin layer of grey matter is most favourable for achieving long-
distance connections in SD.

The vertebrate brain appears to have this characteristic. Grey matter is a relatively uni-
form and thin structure (Fig. 7.1a), around 2 to 4mm thick in the Cerebral cortex [19]. In
order to pack in a vast number of neurons, cortical folding occurs, which explains the wrin-
kled appearance of the brain (Fig. 7.1b). This maximises the surface area between the grey
and white matter regions, which is similar to maximising the boundary length in our two-
dimensional model. It therefore could be that, in trying to densely pack neurons as closely
together as possible (perhaps in order to reduce local inter-neuronal distances), the thick-
ness of the cortex was minimised to maintain good global connectivity in light of dense grey
matter.
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(a) Thin layer of grey matter. Source: [32] (b) Cortical Folding. Source: [30]

Fig. 7.1

7.1.2 External Sheet Architecture

When we compared various ways of organising grey and white matter on a square grid, we
considered an Inner Core architecture (EC) and its mirror-image, the external sheet (ES)
architecture. We found that the reduced thickness of grey matter in ES enabled it to achieve
a greater global connectivity than IC. The brain also has the grey matter exterior to the white
matter (Fig. 7.1a).

7.1.3 Distribution of Wiring Lengths

SD was effective in embedding the modular topologies, provided the distance between con-
nected hub nodes was large enough to make efficient use of the white matter, and resulted in
higher global connectivity while reducing conduction delays. However, the distance-based
spatial embeddings saw a trade off between conduction delays and connectivity. It is worth
speculating that wiring length distribution in the mammalian brain does not closely resem-
ble the distribution of the distance-based topology, since regions of the brain are highly
connected with specific regions. Although no such data is available for large mammalian
brains, in the C. elegans the wiring length distribution of global connections that would suit
our SD model more than that created by the distance-based topology method (Fig. 7.2).

7.1.4 Favouring Linear Trajectories

In chapter 5 we saw that in our model, the fewer turns connections made, the more densely
packed wiring could be before global connectivity was lost. We speculated that by giving
wiring a more organised structure, future connections would be more likely to find large
contiguous parallel connections that they can cross, whilst when connections are less linear
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Fig. 7.2 Approximated global projection length distribution in C. elegans. Source: [31]

and more complex, these large crossable regions would disappear. The axons of pyramidal
axons are regular and follow linear trajectories [5], while white fibers travel in bundles. In
our model, this is advantageous for maximising connectivity.

7.1.5 Connection Ordering

The results in chapter 4 for modular networks were arrived at by establishing the shortest
connections first, the motivation being that these were the connections that needed to be
optimised for minimal length. Although this may not be the case in development of the
brain, this was simply one way of achieving the embedding we did, which is where the long
range connections make use of the white matter.

7.2 Main Challenges

One of the main challenges of the project was finding an area to focus on. Initially, a lot
of background research on the brain was carried out, and we considered novel approaches
to the problem such as the relative ease for growth cones to find targets. Unfortunately, the
results were rather inconclusive, so we went back to the background studies for inspiration.
By testing our model against some of the conclusions drawn by Wen and Chklovskii [31],
we were led to the idea of the possible application of percolation theory to the problem.

Another challenge was dealing with the stochastic nature of our model. Since almost
every aspect of the model is non-deterministic, making the discoveries was generally a trial
and error process, making small changes to the model and observing the differences to make
broader generalisations. A particular difficulty was reading behind the lines of experimen-
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tal results. For example, in terms of absolute connectivity in the distance-based topology
embedding, HD was found to be superior, but the results did not directly highlight the finer
intricacies like the composition of connections being made.

Making comparisons between HD and SD as ‘fair’ as possible was challenging. Fun-
damentally, changing the physical packing strategy of network components could directly
introduce a bias into our results. This was particularly the case when random and distance-
based spatially embedded network topologies were considered. In the case of distance-based
networks, changing the node placement and using the method to create the connectivity ma-
trix would inevitably result in networks with different logical topologies. Our strategy to
overcome this was to create the logical connectivity based off a HD layout and ‘compress’
nodes into a horizontally sheeted SD (maintaining relative distances). However, the same
method could not be applied to IC and ES variants of SD, since relative positioning cannot
be maintained.

Finally, although we have produced empirical results, we were not able to establish more
formal results that could are more generalised. Our results are based on specific parameters,
so there is still a void in understanding behaviours across a broader range of parameters. It
was hoped that existing research from percolation theory could be applied, but unfortunately
most of the research is concerned with finding critical values for different lattices, which is
not particularly relevant to our model, which is less abstract. It did, however, become a
source of inspiration that enabled us to speculate on the possibility that grey-white matter
segregation exists to permit a higher density of components in grey matter whilst retaining
longer distance connectivity.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this project we created a concrete model that could be used to model spatial constraints
on neural networks. Using this, we found that SD could potentially be a more spatially
efficient network packing structure than a HD, depending on the topology of the network.
This was the case in certain cases of modular networks and distance-based spatial embed-
dings. In modular networks, we also found that it could also potentially yield higher global
connectivity, given an embedding in which local connections were already present.

We also discussed some of the underlying routing issues in terms of percolation theory.
While the area taken up by wiring is important, the potential to successfully embed further
connections also depends on the spatial arrangement of network components. It is possible
that, in a relatively sparsely filled embedding, global connectivity is lost as over these long
ranges there is almost no probability of an axon percolating. However, an axon has a good
chance of making it through dense matter if the distance is short. Therefore,

There are therefore multiple factors in play, even in our simplified model. A segregated
design can reduce the total length of wiring (through closer node cell bodies (short-range
wiring) and reduced impact of area exclusion (long-range wiring)), provided the white mat-
ter is used efficiently. This can result in more free space being left over, which leaves more
vacant cells for future connections. Reducing the amount of long-range wiring present in
grey matter also means that it contributes less ‘coverage’ in the region, enabling the area
to be more densely packed with other components. Finally, long-distance connections are
capable of being embedded, despite the higher density within grey matter, due to the ability
to exploit white matter.
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8.2 Further Work

• Consider building an equivalent three-dimensional model of the system. Percolation
theory also applies to three-dimensional cubic lattices, which is an extension of our
grid based model in the third dimension.

• Build a more realistic model where distances are continuous and wiring is not limited
to orthogonal movement.

• Consider the impact of changing wire diameter. White matter fibers are generally
thicker [29] than unmyelinated ones, so the factor is significant.

• Consider dynamic networks where wiring is constantly changing. Although our grid
was constantly being grown, it did not consider the effects of a dynamic rewiring
process.

• Establish results which cover a broader range of scales and dimensions, by using
algorithms which scale better.

• An optimisation-based approach could be applied to our model, where all the com-
binations are tested against optimisation criteria (wiring length, global connectivity,
etc.) to arrive at a more quantitative conclusion.
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Appendix A

Cherry Picking when Embedding
Random Networks

In chapter 4, we noted that if we increase the sample size of random edges, the embedding
itself becomes less random as the model has the luxury of picking from a vast selection of
edges. Fig. A.1 shows how this effects the results: By the end of the experiment, the model
which had the highest failure rate of embedding connections had managed to embed the
most.
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Fig. A.1 Random Connectivity on a 100x100 grid with 500 nodes.



Appendix B

Higher Connectivity when Paths are
Straight

In Chapter 5 we performed percolation trials using growth cones. We noticed that the
straighter connections were, the greater the amount of wiring ‘coverage’ that could be tol-
erated before an infinite cluster would disappear. In our model, minimising the number of
turns made by connections produces higher levels of connectivity under all circumstances.
Fig. B.1 shows how the A* algorithm adopted by the model (which guarantees the straight-
est path) produces more connections given a random network (100x100 grid, 500 nodes).
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Fig. B.1 Comparing the two A* implementations on random networks

(a) s = 0.55 (Fail) (b) s = 0.65 (Success)

Fig. B.2 Example growth cone percolation trials, N = 200, coverage = 1.35. s is a measure
of how straight growth cones grow.
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