
Imperial College London

Department of Computing

Accelerating Transfer Entropy
Computation

Author:
Shengjia Shao

Supervisors:
Prof. Wayne Luk

Prof. Stephen Weston

September 5, 2014

Submitted in part fulfilment of the requirements for the degree of MRes in
Advanced Computing of Imperial College London

Abstract

Transfer entropy is a measure of information transfer between two time se-
ries. It is an asymmetric measure based on entropy change which only takes
into account the statistical behaviour originating in the source series, by
excluding dependency on a common external factor. With this advantage,
transfer entropy is able to capture system dynamics that traditional mea-
sures cannot, and has been successfully applied to various areas such as
neuroscience, bioinformatics, data mining and finance.

When time series becomes longer and resolution becomes higher, comput-
ing transfer entropy is demanding for CPU. This project presents the first
reconfigurable computing solution to accelerate the transfer entropy com-
putation. The novel aspects of our approach include a new technique based
on Laplace’s Rule of Succession for probability estimation; a novel archi-
tecture with optimised memory allocation, bit-width narrowing and mixed-
precision optimisation; and its implementation targeting a Xilinx Virtex-6
SX475T FPGA. In our experiments, the proposed FPGA-based solution is
up to 111.47 times faster than one Xeon CPU core, and 18.69 times faster
than a 6-core Xeon CPU.

Acknowledgements

I would like to thank Prof. Wayne Luk for his continuous support during
my master academic year, and his insightful suggestions on the conference
paper for this project. I am also grateful to Prof. Stephen Weston for his
initial idea on transfer entropy. Last but not least, many thanks to Ce Guo
for his contributions to Chapter 3 and the helpful discussions we had on
technical details.

1

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Objectives . 8
1.3 Challenges . 8
1.4 Contributions . 9
1.5 Organisation of this dissertation 10

2 Background 11
2.1 Introduction to Transfer Entropy 11
2.2 Computing Transfer Entropy 12
2.3 Applications of Transfer Entropy 13
2.4 Accelerating Time Series Analysis 15
2.5 Reconfigurable Computing . 16
2.6 Maxeler Dataflow Computing System 21

2.6.1 System Architecture 21
2.6.2 Design Flow . 22

2.7 Optimising Dataflow Design 23
2.7.1 Algorithm Optimisation 23
2.7.2 Mixed-Precision Optimisation 24
2.7.3 Run-time Reconfiguration 25

2.8 Frequentist Probability . 25
2.9 Laplace’s Rule of Succession 26
2.10 Summary . 28

3 Probability Estimation 29
3.1 Frequentist Statistics . 29
3.2 Probability Estimation . 30
3.3 Summary . 33

4 Hardware Design 34
4.1 Optimised Memory Allocation 34
4.2 Bit-width Narrowing . 38
4.3 Mixed-Precision Optimisation 39

2

4.4 Customising the Kernel . 39
4.5 Performance Model . 42
4.6 Summary . 43

5 Experimental Evaluation 44
5.1 Platform Specification . 44
5.2 Accuracy versus Parallelism 45
5.3 Case Study - Random Numbers 46

5.3.1 Kernel Customisation 46
5.3.2 FPGA Resource Usage 47
5.3.3 Performance Test . 49

5.4 Case Study - Forex Data . 50
5.4.1 Kernel Customisation 50
5.4.2 FPGA Resource Usage 53
5.4.3 Performance Test . 54

5.5 Bottleneck . 55
5.6 Summary . 56

6 Conclusion and Future Work 57
6.1 Summary of Achievements . 57
6.2 Future Work . 58

A FPGA Resource Usage - Random Numbers 60

B FPGA Resource Usage - Forex Data 61

C Performance Data - Random Numbers 62

D Performance Data - Forex Data 63

3

List of Tables

4.1 Data Access Patterns . 35
4.2 Range of the Number of Occurrence Tables 40

5.1 Bit-width Narrowing for N(xn+1, xn) and N(yn+1, yn), using
109 Random Numbers as Test Time Series 48

5.2 Bit-width Narrowing for N(xn+1, xn, yn) and N(yn+1, xn, yn),
using 109 Random Numbers as Test Time Series 48

5.3 FPGA Resource Usage (Resolution = 1200), using 109 Ran-
dom Numbers as Test Time Series 49

5.4 Bit-Width Narrowing forN(xn+1, xn), using Forex Data, Res-
olution R = 1200 . 52

5.5 Bit-Width Narrowing for N(yn+1, yn), using Forex Data, Res-
olution R = 1200 . 52

5.6 FPGA Resource Usage (Resolution = 1200), using Forex Data
as Test Time Series, K = 24 53

A.1 FPGA Resource Usage for Resolution from 192 to 1200 . . . 60

B.1 FPGA Resource Usage for Resolution from 208 to 1200 . . . 61

C.1 Performance Data - Random Numbers 62

D.1 Performance Data - Forex Data 63

4

List of Figures

2.1 time series of the breath rate (upper) and instantaneous heart
rate (lower) of a sleeping human. The data is sampled at 2
Hz. Both traces have been normalised to zero mean and unit
variance [1]. 14

2.2 Transfer entropies Theart→breath (solid line), Tbreath→heart (dot-
ted line), and time delayed mutual information M(τ = 0.5s)
(directions indistinguishable, dashed line). r is granularity [1]. 14

2.3 General Architecture of FPGA [2] 18
2.4 Dataflow Computing Design Flow [3] 20
2.5 System Architecture of Maxeler MPC-C [4] 21
2.6 Dataflow Design with Maxeler [5] 22

4.1 System Architecture. Number of occurrence tablesN(xn+1, xn)
, N(yn+1, yn), N(xn) andN(yn) are mapped to FPGA’s BRAM
during initialisation. Other tables (N(xn+1, xn, yn), N(yn+1, xn, yn)
and N(xn, yn)) are streamed at run-time. Results TY→X and
TX→Y are sent back to CPU. 36

4.2 Kernel Architecture. This figure shows the datapath of the
kernel with control logic omitted. Here XXY, YXY and XY
stands for N(xn+1, xn, yn), N(yn+1, xn, yn) and N(xn, yn), re-
spectively. On each cycle, K elements from N(xn+1, xn, yn)
and N(yn+1, xn, yn) are sent from CPU to FPGA, feeding the
corresponding K pipes. A new value of N(xn, yn) is sent to
FPGA each middle loop (R/K cycles), and is shared by all
pipes. 37

5.1 Percentage Error (%) and Maximum Parallelism (K) vs. Num-
ber of Mantissa Bits in log2(). Test time series are 109 ran-
dom numbers. Resolution is fixed at 1000. Percentage error
is measured against CPU result. Parallelism is measured by
the number of computing pipes (K) for TX→Y and TY→X ,
e.g., if K = 24, then there are 48 pipes in total, 24 for TX→Y

and 24 for TY→X . 45

5

5.2 Performance vs. Resolution using random numbers. Test
time series are 109 random numbers. The Virtex-6 FPGA
has 48 computing pipes (K = 24) running at 80MHz. log2()
is implemented in 40-bit floating point with 8 exponent bits
and 32 mantissa bits. Accumulator is set to 64-bit fixed point
with 28 integer bits and 36 fractional bits. 50

5.3 Performance vs. Resolution using historical Forex data. The
Virtex-6 FPGA has 48 computing pipes (K = 24) running at
100MHz (R = 1200, 1104) or 32 computing pipes (K = 16)
running at 120MHz (R ≤ 1008). log2() is implemented in 40-
bit floating point with 8 exponent bits and 32 mantissa bits.
Accumulator is set to 64-bit fixed point with 32 integer bits
and 32 fractional bits. 54

6

Chapter 1

Introduction

In many research areas, one needs to detect causal directions between differ-
ent parts of the system in order to understand system dynamics and make
estimations on its actual physical structure. This often involves observ-
ing the system, recording system behaviour as a time series of signals, and
analysing the time series. The simplest statistical measure of dependency is
correlation, however, it does not necessarily imply causality. Information-
based measures are considered to be more advanced. Transfer entropy is one
such measure and is an asymmetric information theoretic measure designed
to capture directed information flow between variables [1].

The interesting properties of transfer entropy make it ideal for analysing
interactions between variables in a complex system. However, computing
transfer entropy is challenging, due to its computationally intensive nature.
In this project, we address the problem of computing transfer entropy effi-
ciently and accurately.

1.1 Motivation

The sub-prime mortgage crisis in 2008 resulted in a financial crisis with
remarkable global economic impact. One lesson learned there is that the
default of a major bank is capable of triggering a domino effect in the bank-
ing industry. Since then, the management of inter-bank contagion risk has
become very important for both financial institutions and regulators.

The prerequisite of managing interbank exposure is its quantitative mea-
surement, i.e. the interbank risk. Unfortunately, it is difficult to quantify
the risk accurately, since it often requires confidential business information.
As a result, we could only make estimates based on limited information
available.

7

Traditionally, maximum entropy estimation is used. In this method, ag-
gregated interbank assets and liabilities disclosed in balance sheets are the
input information, and the exposure matrix is then derived by maximising
its entropy. The major drawback of this method is that the matrix is based
on very limited disclosed data, so maximising its entropy will result in a dis-
torted view of risk. In a recent paper, transfer entropy is used to determine
the interbank exposure matrix of 16 banks in China, followed by simulation
to investigate risk contagion in Chinese banking industry [6].

In addition, transfer entropy has also been successfully applied to various
areas such as neuroscience [7], data mining [8], etc. The wide application of
transfer entropy creates great demand for its fast and accurate evaluation.
Consequently, many researchers in different fields could benefit from this
project.

1.2 Objectives

The main aim of this project is to offer a solution to the efficient and accurate
computation of transfer entropy, which would be useful for researchers in
various areas. In particular, we identify the following objectives:

• To deal with the common situations in which only limited samples of
time series data are available

• To explore the application of hardware acceleration techniques to trans-
fer entropy computation

• To evaluate the proposed solution in real cases

1.3 Challenges

We believe that the following challenges need to be addressed when devel-
oping the our solution to transfer entropy computation:

• Limited Time Series Data: To compute transfer entropy we will
need the probability distribution of the values in the time series. In
theory, to calculate this distribution we must have the entire time
series. However, in most cases there are only limited samples available,
and the straightforward way to compute transfer entropy may lead to
inaccurate results.

• High Resolution: Transfer entropy is computationally intensive for
real-world data series. The time complexity of transfer entropy compu-
tation is O(R3), with R stands for resolution. As resolution increases,

8

granularity decreases so that transfer entropy with improved accuracy
can be obtained. However, higher resolution means much more itera-
tions to be run, which could lead to long execution time.

• Hardware Limitation: Transfer entropy computation is parallelis-
able, so it has the potential to benefit from hardware acceleration
techniques, such as reconfigurable computing. However, the limited
CPU-FPGA bandwidth and limited FPGA logic resource create chal-
lenges for design and implementation.

In the next section we will clarify how these challenges are addressed in
this project.

1.4 Contributions

In this project, we develop a novel method to estimate the probability dis-
tributions used in transfer entropy computation, which improves accuracy
when the time series data available is limited. Also, we present a dataflow
architecture for computing transfer entropy and implement it on a commer-
cial FPGA, which greatly boosts performance.

In particular, the contributions of this project are as follows:

• A new method based on Laplace’s rule of succession to estimate prob-
abilities used for computing transfer entropy. This method targets
common cases in which the complete knowledge of time series is un-
available, addressing the first challenge. Our method eliminates the
problem of zero probability that previous methods suffered from.

• To address the second challenge, we develop a novel hardware archi-
tecture for computing transfer entropy. This benefits from the huge
parallelism achievable on FPGA, the resulting proposed system has
the potential to be magnitudes faster than many-core CPU. In addi-
tion, our architecture is flexible to make full use of hardware resources,
and is able to support ultra large resolution by using multiple FPGAs.

• We optimise memory allocation to effectively reduce I/O requirements.
In addition, bit-width narrowing is used to cut down BRAM usage, and
to further reduce I/O overhead. Mixed-precision optimisation is used
to gain double precision accuracy with a modest amount of hardware
resources. These optimisations effectively address the third challenge.

• Implementation on a Xilinx Virtex-6 FPGA and experimental evalua-
tion using random numbers and historical Forex data. The proposed
system is up to 111.47 times faster than a single Xeon CPU core, and
18.69 times faster than a 6-core Xeon CPU.

9

To the best of our knowledge, we are the first to apply reconfigurable
computing techniques to transfer entropy computation. As a summary of
our achievements, a paper “Accelerating Transfer Entropy Computation”, by
Shengjia Shao, Ce Guo, Wayne Luk and Stephen Weston has been submitted
to the 2014 International Conference on Field-Programmable Technology
(ICFPT 2014). The paper is currently under review.

1.5 Organisation of this dissertation

The rest of this dissertation is organised as follows:

• Chapter 2 covers basic background material for transfer entropy.

• Chapter 3 presents our novel method for probability estimation.

• Chapter 4 describes the proposed hardware architecture.

• Chapter 5 provides experimental evaluation and discussion.

• Chapter 6 presents conclusion and probabilities for future work.

10

Chapter 2

Background

In this chapter, we provide a brief introduction to transfer entropy, focussing
on the concept, computation and application. We also review existing work
on the hardware acceleration of time series analysis. Then we introduce
the essentials of dataflow computing and the Maxeler platform used in this
project. Finally, we present the basic background of frequentist probability
and Laplace’s rule of succession.

2.1 Introduction to Transfer Entropy

Transfer entropy is a measure of directed information transfer between two
time series. A time series, e.g., stock prices at different times, can be ex-
pressed as:

X = {x1, x2, · · · , xT } (2.1)

Here, T is the time series’ length, which is given by the number of ob-
servations. So x1 is the stock price at the first observation, x2 is the price
at the second observation, etc.

Given two time series X and Y , we define an entropy rate which is the
amount of additional information required to represent the value of the next
observation of X:

h1 = −
∑

xn+1,xn,yn

p(xn+1, xn, yn) log2 p(xn+1|xn, yn) (2.2)

Also, we define another entropy rate assuming that xn+1 is independent
of yn:

h2 = −
∑

xn+1,xn,yn

p(xn+1, xn, yn) log2 p(xn+1|xn) (2.3)

Then the Transfer Entropy from Y to X can be given by h2 − h1, which
corresponds to the information transferred from Y to X:

11

TY→X = h2 − h1

=
∑

xn+1,xn,yn

p(xn+1, xn, yn) log2

(
p(xn+1|xn, yn)

p(xn+1|xn)

)
(2.4)

Similarly, we can define the transfer entropy from X to Y :

TX→Y =
∑

yn+1,xn,yn

p(yn+1, xn, yn) log2

(
p(yn+1|xn, yn)

p(yn+1|yn)

)
(2.5)

2.2 Computing Transfer Entropy

Using the definition of conditional probabilities, (2.4) and (2.5) can be
rewritten as:

TY→X =
∑

xn+1,xn,yn

p(xn+1, xn, yn) log2

(
p(xn+1, xn, yn)p(xn)

p(xn, yn)p(xn+1, xn)

)
(2.6)

TX→Y =
∑

yn+1,xn,yn

p(yn+1, xn, yn) log2

(
p(yn+1, xn, yn)p(yn)

p(xn, yn)p(yn+1, yn)

)
(2.7)

Given T observations of the time series X and Y , preprocessing is needed
to calculate the (joint) probability distributions p(xn), p(yn), p(xn+1, xn),
p(yn+1, yn), p(xn, yn), p(xn+1, xn, yn) and p(yn+1, xn, yn). Then transfer en-
tropy can be calculated by (2.6) and (2.7).

In preprocessing, we first go through the time series, counting the number
of occurrence for each (joint) value of xn, yn, (xn+1, xn), (yn+1, yn), (xn, yn),
(xn+1, xn, yn) and (yn+1, xn, yn). Then the probability distribution can be
obtained by normalising - dividing the number of occurrence by the number
of data elements, which is T for xn, yn, (xn, yn) and T − 1 for (xn+1, xn),
(yn+1, yn), (xn+1, xn, yn), (yn+1, xn, yn).

When computing transfer entropy, quantisation must be taken into consid-
eration. When X has P values and Y has Q values, their joint probability
distribution p(xn+1, xn, yn) will have P × P ×Q elements. This can lead to
a table which is too big to fit into computer memory.

In practice, quantisation is used to trade off between accuracy and memory
resource usage. One can set a Resolution (R), which corresponds to the
number of values allowed. Then granularity (∆) is given by:

∆ =
MAX −MIN

R− 1
(2.8)

12

Here, MAX and MIN stand for the maximum and minimum values of the
time series, respectively. For example, if R = 100, time series X and Y are
quantised into 100 levels. Then the quantised X and Y are used in prepro-
cessing. As a result, the joint probability distribution p(xn+1, xn, yn) will
have 106 elements. Larger resolution will lead to more quantisation levels,
which will require more memory resources to achieve better accuracy.

Besides, the time complexity of transfer entropy computation is determined
by the resolution rather than by the length of time series. This is because the
computation is based on (joint) probability distributions, and the number
of iterations is the number of elements in the joint probability distributions
p(xn+1, xn, yn) and p(yn+1, xn, yn), as shown in (2.6) and (2.7). If R = 100,
there will be 106 elements to be accumulated to derive TX→Y . Therefore,
the time complexity of transfer entropy computation is O(R3). As time
complexity grows rapidly with R, computing transfer entropy is highly de-
manding for CPU.

2.3 Applications of Transfer Entropy

Transfer entropy is introduced by Thomas Schreiber in his paper “Measur-
ing Information Transfer” in 2000 [1]. In this paper there is an intuitive
example to illustrate its usage on detecting causal directions - trying to fig-
ure out whether heart beat results in breath or vice versa.

Figure 2.1 shows two time series, the breath rate and the heart rate of a sleep-
ing human. The data is sampled at 2Hz, and normalised to zero mean and
unit variance. Using the procedure above, the transfer entropy from heart to
breath (Theart→breath) and that in the opposite direction (Tbreath→heart) can
be calculated. Also, we could use other measures, such as mutual informa-
tion. In Figure 2.2, transfer entropy (solid line and dotted line) is compared
with time delayed mutual information (dashed line). Here, r stands for
granularity, so small r means high resolution. This figure shows the value
of transfer entropy and mutual information versus granularity.

As can be seen from the figure, Theart→breath is always larger or equal to
Tbreath→heart. Therefore, based on transfer entropy analysis, we could say
heart beat results in breath. In contrast, time delayed mutual information
failed to distinguish causality because the two dashed lines corresponding
to Mheart→breath and Mbreath→heart overlap in the figure. So we could see
that transfer entropy is indeed superior than traditional information-based
measures.

13

Figure 2.1: time series of the breath rate (upper) and instantaneous heart
rate (lower) of a sleeping human. The data is sampled at 2 Hz. Both traces
have been normalised to zero mean and unit variance [1].

Figure 2.2: Transfer entropies Theart→breath (solid line), Tbreath→heart (dot-
ted line), and time delayed mutual information M(τ = 0.5s) (directions
indistinguishable, dashed line). r is granularity [1].

14

Since its introduction in 2000, transfer entropy has been widely applied
to many research areas. Here we list three examples.

Honey et al. use transfer entropy to analyse the functional connectivity of
different areas in the cerebral cortex [7]. A transfer entropy matrix is built
with element (i, j) the transfer entropy from Areai to Areaj . This matrix is
then thresholded to derive a binary matrix for functional connectivity (TE
Network), which is the estimation of how cortex areas are connected based
on transfer entropy analysis. It is found that when using long data samples,
TE Network and the actual structural network show up to 80% overlap,
whereas the overlap between structural networks and functional networks
extracted with mutual information and wavelet-based tools is lower.

Ver Steeg and Calstyan use transfer entropy to measure the information
transfer in social media [8]. They calculate the transfer entropy from user
A to user B (TA→B) and that in the opposite direction (TB→A). If TA→B is
much larger than TB→A, then A is said to have influence on B, but not vice
versa. Real data sets from Twitter are analysed and result in a network of
influence. This allows us to identify ‘influential users’ and the most impor-
tant links in a big network, which is beneficial to Data Mining.

Li et al. use transfer entropy to analyse the interaction of banks in the
financial market [6]. The transfer entropies of several banks’ stock prices
are calculated, resulting in a matrix to estimate the interbank exposure.
The matrix is further refined with disclosed information and some other
adjustments. Finally the interbank exposure matrix is used in simulation
to analyse what will happen to other banks if a major bank defaults. This
helps financial institutions to manage risk, and provides useful information
for regulators to prevent financial catastrophes, such as the 2008 crisis, from
happening again.

2.4 Accelerating Time Series Analysis

Transfer entropy is a metric used in Time Series Analysis. Time series anal-
ysis methods analyse time series data so as to find patterns, make predictions
or calculate various statistical metrics. There are many types of time series
analysis methods, but only a few of them have hardware acceleration solu-
tions. In general, the hardware acceleration of time series analysis is still an
emerging area.

Gembris et al. use GPU to accelerate correlation analysis [9]. A GPU
version of correlation computation is developed using NVIDIA’s CUDA lan-
guage and implemented on GeForce 8800 GTX GPU. The proposed GPU

15

solution achieved up to 15 times speed-up against an Intel Pentium 4 CPU
running at 3GHz. They also evaluate FPGA performance for correlation
analysis. It is reported that a FPGA version implemented on Xilinx Virtex-
2 FPGA is up to 10 times faster than the 3GHz Pentium 4 CPU.

Castro-Pareja, Jagadeesh, and Shekhar present a FPGA implementation for
mutual information computation in 2004 [10]. Mutual information comput-
ing logic is implemented on Altera Stratix I FPGA using 32-bit fixed-point
numbers. The proposed FPGA system is up to 86 times faster than a soft-
ware version running on a 1GHz Intel Pentium III CPU. Lin and Medioni
compute mutual information using NVIDIA’s GPU [11]. The system is de-
veloped using CUDA and tested on GeForce 8800 GTX. In the experiments,
GPU achieved 170 times speed-up for computing mutual information and
400 times speed-up for its derivative, compared with a quad-core Intel Xeon
CPU running at 2.33GHz.

Guo and Luk design a FPGA accelerator for ordinal pattern encoding, a
statistical method for analysing the complexity of time series. They apply
it to the computation of permutation entropy [12]. The FPGA system is
implemented on a Xilinx Virtex-6 FPGA, and is integrated with a quad-
core Intel i7-870 CPU running at 2.93GHz. Experimental results show that
the CPU+FPGA hybrid system is up to 11 times faster than the CPU-only
solution.

These previous work demonstrates that time series analysis has the potential
to benefit from hardware acceleration. As for transfer entropy, as it is a new
statistical metric, we are not aware of any published work on its hardware
acceleration. Therefore, this work could be the first work on accelerating
transfer entropy computation using reconfigurable computing techniques.

2.5 Reconfigurable Computing

Traditionally, software programs are run on CPU. A program, written in
programming languages such as C/C++, is compiled into a series of in-
structions. When running the program, instructions are loaded into com-
puter memory, and read by CPU. CPU decodes and executes the instruction,
finally writing results back to memory. This instruction-based model is in-
herently sequential and the common bottleneck is memory access speed. To
address this problem, contemporary CPUs have sophisticated caches and
branch prediction logic. While CPU is efficient for everyday jobs, its perfor-
mance may not be good enough for media and scientific computing tasks,
which creates space for hardware acceleration solutions. These solutions de-
ploy non-CPU hardware, such as GPU or FPGA, to do the computation.

16

Compared with CPU, GPU and FPGA have totally different architectures
and computing paradigms. Therefore, they are naturally free from many
bottlenecks that hinder CPU performance. Consequently, hardware acceler-
ation could result in huge performance gain, which means being magnitudes
faster than the CPU-only solution.

Reconfigurable Computing, also known as Dataflow Computing, is a hard-
ware acceleration technique which is able to deliver high performance. It
has been an active research area for decades, and commercial solutions are
emerging in recent years. In dataflow computing, a Dataflow Graph (DFG)
is built based on the program to be run, which is a graphical representation
of the flow of data through the system. For the ease of understanding, the
DFG is similar to the flowchart of the program - the nodes in the DFG are
almost identical to the instructions in the software program. Then the DFG
is mapped onto hardware. The key difference between dataflow computing
and CPU computing is that when running the system, there is no need of
fetching and decoding instructions, because DFG has already defined what
to do. The dataflow computing system works like a production line with in-
put data streamed in and output results streamed out. This streaming model
enables the dataflow system to be highly pipelined to boost throughput. It is
not surprising that a dataflow computing system running at 100MHz could
outperform an 8-core CPU running at 3GHz.

Typically, a dataflow computing system is composed of host CPU(s) and
Reconfigurable Device(s). The reconfigurable device is often based on Field
Programmable Gate Array (FPGA), a digital integrated circuit designed to
be configured by a customer after manufacturing (field-programmable). Ba-
sically, a FPGA could be viewed as a set of basic building blocks which could
be used to build a digital circuit for a certain task. This means FPGA could
be configured similar to an Application-Specific Integrated Circuit (ASIC)
to deliver very high performance. The unique advantage of FPGA lies in
the fact that customising a FPGA comes with zero cost while building an
ASIC needs millions of money. FPGA enables the user to implement any
logic, provided that there are enough resources. In short, FPGA has the
potential to bring ASIC-like performance at very low cost, making dataflow
computing a very promising solution for high performance computing.

Contemporary FPGAs have massive resources of the following four types:

• Look-Up Table (LUT): LUT is used to implement digital logic.
Each LUT supports a small digital logic function, such as a 6-input
function. Typically there are hundreds of thousands of LUTs available
in one FPGA.

17

Figure 2.3: General Architecture of FPGA [2]

• Flip-Flop (FF): FF is a small memory cell which is used to tem-
porarily hold the value of an internal node. In a FPGA, FF usually
comes together with LUT to enable deep pipelining.

• Digital Signal Processor (DSP): DSP is a digital circuit designed
exclusively for some commonly-used arithmetics, such as floating-point
addition and multiplication. DSP blocks are embedded in FPGA for
the efficient implementation of these arithmetics.

• Block RAM (BRAM): BRAM provides on-chip storage for FPGA.
It is used to store a small amount of data (usually several MBs) which
are frequently used. Accessing BRAM is much faster than accessing
off-chip memories.

Figure 2.3 shows a general architecture of FPGA [2]. Logic blocks (LUT
and FF), memory (BRAM) and multiplier (usually DSP) are connected
via programmable switch matrices. To map an application to FPGA it is
essentially to configure all these programmable elements according to the
program. It is worth to pointing that not all things in the program are
suitable for FPGA. In fact, Software/Hardware Partition is used to divide

18

the program into software and hardware parts. The software part is the
code which is more suitable for CPU, such as control intensive sequential
code or random memory access. On the other hand, the parallelisable code
which can be efficiently mapped to FPGA will be represented by the DFG,
which will be synthesised to FPGA configuration and then loaded to FPGA.
When running the system, the host CPU executes the software part while
the FPGA executes the hardware part. In this manner, dafaflow computing
exploits both the advantages of CPU and those of the FPGA to achieve best
performance.

Traditionally, the dataflow design is specified using Hardware Description
Languages (HDLs), such as VDHL or Verilog. The developer describes the
system at Register Transfer Level (RTL), i.e. the dataflow of signals between
registers and the operations on these signals. RTL design is the typical prac-
tice in digital circuit design, and the synthesis process from HDL description
to FPGA configuration is well supported. FPGA vendors provide tools for
users to configure FPGA using HDL, such as Quartus for Altera FPGAs
and ISE for Xilinx FPGAs [13] [14].

The RTL design enables the developer to specify very low-level details of the
system. Consequently, the developer could do extensive low-level optimisa-
tions to improve performance. However, as the hardware system could be
rather complex, using HDL to specify a circuit is often very time-consuming
and error-prone. To address this problem, there have been decades of efforts
on High Level Synthesis, which means to transform a program written in a
high level language, such as C, to RTL descriptions. In recent years, the aca-
demic research on high level synthesis has resulted in commercial solutions.
Xilinx offers Vivado Design Suite which could compile C, C++ or System C
into RTL-level description, then traditional tools could be used to map RTL
code to FPGA [15]. Meanwhile, Altera now supports OpenCL. OpenCL is a
free and open programming model for programming heterogeneous systems
such as FPGA and GPU. OpenCL allows the use of a C-based programming
language for developing hardware accelerating solutions, which is much eas-
ier than using HDL.

Figure 2.4 shows the design flow of dataflow computing [3]. The developer
describes the system in a certain language, low-level or high-level, which is
the input file of the tool-chain. The system design is then synthesised into
a netlist for placement and routing. The placement and routing tool tries
to allocate the logic blocks, memories, DSPs and interconnections based on
the netlist. The placement and routing result is further simulated to check
whether it meets timing requirement set by the developer. If successful,
FPGA configuration will be generated.

19

Figure 2.4: Dataflow Computing Design Flow [3]

20

2.6 Maxeler Dataflow Computing System

In this project, we design a dataflow system for transfer entropy compu-
tation. The hardware platform used in our experiments are provided by
Maxeler Technologies. Here we make a brief introduction to the Maxeler
System and its design flow.

2.6.1 System Architecture

Maxeler offers several dafaflow computing systems ranging from desktop
workstation to rack nodes, targeting different applications. Figure 2.5 shows
the architecture of MPC-C System, which is used in this project [4].

In the MPC-C system there are four Dataflow Engines (DFEs) and two
6-core Intel Xeon CPUs. Each DFE is composed of one Xilinx Virtex-6
FPGA, 48GB DRAM and peripheral circuits. The four DFEs are connected
to CPU via PCI-Express 2.0 interface. Also, they are connected together via
a special circular bus called MaxRing. The communication between CPU
and DFE is via PCI-E, and that between DFEs is via MaxRing. The whole
system is packed in a standard 1U case.

Figure 2.5: System Architecture of Maxeler MPC-C [4]

As can be seen from the above figure, the DFE engines appear as ex-
pansions to a standard X86 computer via PCI-E interface. This feature
enables the dataflow computing system to be compatible with conventional
operating system and software, making them easier to use.

21

2.6.2 Design Flow

While it’s fine to specify a dataflow design targeting Maxeler platform using
standard HDL languages, Maxeler provides a powerful high level language,
MaxJ, to making things easier for developers. MaxJ is a high level metalan-
guage based on Java, which is designed specifically for dataflow computing.

Figure 2.6 shows the design flow with Maxeler. When programming with
MaxJ, the developer needs to describe the following three parts:

• Kernel: The core of the system where computation happens. It is
similar to the DFG of the program.

• Manager: The I/O interface between the kernel and the rest of the
system. It connects Kernel with CPU, BRAM, other DFEs, etc.

• CPU Application: The application is written in C code to inte-
grate the dataflow engine with the software part of the program. It is
executable in Linux environment.

Figure 2.6: Dataflow Design with Maxeler [5]

To compile MaxJ code into FPGA configuration, Maxeler offers Max-
Compiler [5]. MaxCompiler first synthesises MaxJ files into VHDL, and
then deploy FPGA-vendor tool-chain for the rest of the compiling process.

22

2.7 Optimising Dataflow Design

The power of dataflow computing mainly lies in its flexibility. In FPGA, ev-
erything is programmable. Therefore there exists opportunities to improve
performance by dedicated customisation. Developers could tailor both the
software and the hardware in order to fit them perfectly for the best perfor-
mance.

As mentioned earlier, reconfigurable devices, such as FPGA, has massive
amount of parallel resources (LUT, FF, DSP, BRAM). Therefore, efficiently
exploiting the parallel resources is essential for achieving high performance.
There exist many optimisation techniques for dataflow designs, we will
briefly review the most commonly used ones in this section.

2.7.1 Algorithm Optimisation

Sometimes a straightforward implementation of a program on dataflow hard-
ware may not lead to good performance. This is because the application
must be parallelisable in order to fit the parallel resource on FPGA. The
key prerequisite of being parallelisable is no data dependency - if each basic
step in the program depends on the previous one, the application must be
executed sequentially and it’s impossible to make use of the parallel resource.
As data dependency is very common among applications, one often needs
to modify the algorithm in the application to eliminate such dependency,
which can be seen as optimising the algorithm.

Even if there is no data dependency, algorithm optimisation is still use-
ful to improve performance. In many cases, the computationally intensive
part of an application is actually standard numerical computations, such as
matrix algebra or a numerical equation solver. Then algorithm optimisation
could be carried out by selecting a suitable parallel algorithm. Therefore,
replacing the original algorithm in the application by a parallel algorithm
for the same task often boosts performance significantly. Sometimes there
may be no parallel algorithm available for the target computation, so the de-
veloper may try to invent one himself, which is an important research area.
In addition, some algorithms, such as iterative algorithms, allow developers
to trade speed against accuracy. In such cases algorithm optimisation could
be achieved by choosing a good balancing point.

When optimising an algorithm, it is important to make sure the modifica-
tion does not affect output results, or the degradation of accuracy is within
an acceptable range, so that correctness is preserved.

23

2.7.2 Mixed-Precision Optimisation

In dataflow computing, as the datapath on FPGA is fully programmable
by the user, there exists a very powerful optimisation strategy called Mixed-
Precision Optimisation, which is the customisation of the types and bit-sizes
of the variables in the datapath.

The complexity of the digital logic for a certain task is closely related with
the data type used. In general, integer computation is the simplest, fixed-
point numbers need some more effort, and floating-point numbers require a
considerable amount of hardware resources. In addition, a less-complex de-
sign will usually lead to better performance because it could probably run at
a higher frequency. Some times the standard data types, such as int, float
or double may be overqualified for the computing task, and mixed-precision
optimisation allows the developer to create a custom data type, such as 20-
bit integer, to reduce logic complexity and to improve performance. Since
datapath is fixed in CPU or GPU hardware, mixed-precision optimisation
cannot be implemented in CPU or GPU, which makes it a unique advantage
of dataflow computing.

To implement mixed-precision optimisation, it is necessary to know the re-
quired precision of the output results. The goal of mixed-precision optimi-
sation is to use simplest data representation to achieve the required result
precision. The first step is to investigate the dynamic range of the variables
in the system. This could be done by simulating the system and checking
the upper bound and lower bound of the internal variable values. The input
data sets used in simulation must be representative. Once the dynamic range
of a variable is found, one could choose suitable data representation for it.
In the case of large dynamic range, floating point representation could be
used. For small dynamic range variables, fixed point representation should
be enough. Bit width and number of exponent bits and mantissa bits could
then be derived from the dynamic range. After changing data representa-
tion, simulation should be run again to ensure the requirement of output
result precision is still satisfied.

Mixed-precision optimisation could improve performance and reduce logic
usage at the same time, making it a very powerful optimisation technique.
Usually, one should always seek mixed-precision optimisation opportunities
when designing the dataflow system.

24

2.7.3 Run-time Reconfiguration

Traditionally, FPGA configuration is specified at compile-time and remains
unchanged when running the system. Run-time Reconfiguration is an emerg-
ing technique which reconfigures FPGA at run-time to further improve per-
formance. For example, removing idle functions is an effective way of run-
time reconfiguration. Usually, not all parts of the dataflow design are active
at every stage. Therefore, by removing the idle portions of a design and us-
ing that space to increase parallelism of the active functions, one can make
full use of the logic resources available on FPGA to boost performance.

Run-time reconfiguration could be applied with other optimisations at the
same time, and is currently an active research area. The challenges of run-
time reconfiguration include: (1) to identify reconfiguration opportunities;
(2) to generate run-time solutions which preserve functional correctness and
accuracy; (3) to reduce the overhead of applying FPGA reconfiguration at
run-time [16].

2.8 Frequentist Probability

Frequentist Probability is a commonly-used interpretation of probability. It
defines an event’s probability as the limit of its relative frequency in a large
number of trials, which is a straightforward interpretation:

p(X) = lim
N→∞

N(X)

N
(2.9)

Here, N is the number of trials, N(X) is the number of occurrence of an
event in the trials. If an infinite number of trials can be done, (2.9) will give
the probability.

In reality, one can only carry out a large, but finite number of trials, as
is the case for observing time series. Therefore, the probability calculated
in this manner is actually an estimation of frequentist probability:

p(X) ≈ N(X)

N
(2.10)

Natually, with N increasing, the estimated probability given by (2.10) will
become more and more accurate. Therefore, it will always be helpful to do
more experiments so as to record more data samples.

25

2.9 Laplace’s Rule of Succession

Laplace’s Rule of Succession, or the Rule of Succession, was introduced in the
18 century by the French mathematician Pierre-Simon Laplace. The formula
is used to estimate probabilities when there are only few observations, or for
events that haven’t been observed at all in a finite data sample.

Theorem 1. Suppose an experiment can be repeated an indefinitely large
number of times (trials), with one of two possible outcomes (success or fail-
ure). Assume the unknown probability of success is p. If the trials are inde-
pendent, and all possible values of p are equally likely, then given r successes
in n trials, the probability of success on the next trial is r+1

n+2 .

Proof. The experiments are Bernoulli trials with parameter p. We denote
the sequence of trials by Xi and results by bi. For the ease of notation, we
record ‘success’ by 1 and ‘failure’ by 0, so bi ∈ {0, 1}.

We let Sn =
∑n

i=1Xi. We would like to find the following probability:

P (Xn+1 = 1|Sn = r)

The probability of success (p) is an unknown number. But its value must
lie in the range [0, 1], as required by the definition of ‘probability’. Let p be
a condition of the trials and apply the rule of conditional probabilities, we
have

P (Xn+1 = 1|Sn = r)

=

∫ 1

0
P (Xn+1 = 1|p, Sn = r)f(p|Sn = r)dp

=

∫ 1

0
P (Xn+1 = 1|p)f(p|Sn = r)dp

=

∫ 1

0
pf(p|Sn = r)dp (2.11)

Here, f(p|Sn = r) is the distribution of p given the fact that we succeeded
r times in n trials. It reflects the information we get about p by doing
experiments. Recall our experiments, we observed r successes in n trials, so
the probability of this particular result is

P (Sn = r|p) =
n!

r!(n− r)!
pr(1− p)n−r (2.12)

The Bayes’ Theorem states:

P (A|B) =
P (B|A)P (A)

P (B)
(2.13)

26

Apply Bayes’ Theorem to (2.12), we have

f(p|Sn = r) ∝ P (Sn = r|p)f(p) ∝ n!

r!(n− r)!
pr(1− p)n−r (2.14)

The probability distribution of p must normalises to 1. So we have:

f(p|Sn = r) =

n!
r!(n−r)!p

r(1− p)n−r∫ 1
0

n!
r!(n−r)!p

r(1− p)n−rdp

=
pr(1− p)n−r∫ 1

0 p
r(1− p)n−rdp

=
(n+ 1)!

r!(n− r)!
pr(1− p)n−r (2.15)

Finally, substitute (2.15) into (2.11) and calculate the integral:

P (Xn+1 = 1|Sn = r)

=

∫ 1

0
pf(p|Sn = r)dp

=

∫ 1

0
p

(n+ 1)!

r!(n− r)!
pr(1− p)n−rdp

=
(n+ 1)!

r!(n− r)!

∫ 1

0
pr+1(1− p)n−rdp

=
r + 1

n+ 2
(2.16)

Here we make a comparison between Laplace’s rule of succession and
frequentist probability. Let’s say we run n independent trials end up with r
successes. From the perspective of frequentist probability, we can estimate
the probability of success to be p = r

n . However, Laplace’s rule of succession
suggests an estimate p = r+1

n+2 could be more relevent.

Obviously, the two estimates are almost equal for large n. However, if there
are only a small number of trials, the latter is often more meaningful. Let’s
consider an extreme case: assume one tosses a coin for 3 times and gets
three heads. Then frequentist probability would suggest the chance of head
to be 100% and that of tail to be 0%, which is obviously problematic. In
contrast, Laplace’s formula shows the chance of head to be 80% and that
of tail to be 20%. Although still not so accurate, but they are far better
than frequentist probabilities in the sense that Laplace’s formula leaves door
open for tails while p = r

n does not.

27

2.10 Summary

In this chapter, we provides essential background for this project.

We began by introducing transfer entropy. Transfer entropy is a metric
based on information theory to measure the amount of information trans-
ferred between two time series. To calculate transfer entropy, first go through
the time series data to calculate (joint) probabilities required (preprocess-
ing) and then evaluate transfer entropy using the (joint) probabilities (com-
puting). Transfer entropy is superior than traditional information-based
measures such as time-delayed mutual information in the sense of detecting
causal relationships. Since its introduction in 2000, transfer entropy has
been successfully applied to various areas.

Then we discussed the hardware acceleration of time series analysis and the
dataflow computing technique. Time series analysis could be demanding for
CPU and has the potential to run faster on non-CPU hardware platforms.
There has been previous work on accelerating various time series metrics,
such as correlation and mutual information, using GPU or FPGA platforms.
We believe transfer entropy could also benefit from hardware acceleration,
although we are not aware of any published work on it. Therefore, this
project could be the first work on accelerating transfer entropy computa-
tion. We introduce the concept of dataflow computing and its key hardware
- FPGA. We deploy Maxeler MPC-C system in this project. This system is
composed of Intel Xeon CPU and Xilinx Virtex-6 FPGAs. Maxeler also pro-
vides MaxJ language and MaxCompiler tool chain for developing dataflow
designs. We then make a brief introduction on the optimisation techniques
on dataflow computing, such as algorithm optimisation, mixed-precision op-
timisation and run-time reconfiguration.

Finally, we present the background on frequentist probability and Laplace’s
rule of succession. Frequentist probability defines an event’s probability as
the limit of its relative frequency in a large number of trials. However, when
the number of trials is limited, the estimated probability given by frequentist
probability may be problematic. In this case, Laplace’s rule of succession
could be used to make a more accurate prediction.

28

Chapter 3

Probability Estimation

This chapter presents a new method, based on Laplace’s rule of succession,
for estimating probabilities used in transfer entropy computation. We will
first go through the traditional frequentist statistics method and point out
its problem, and then present our new method.

3.1 Frequentist Statistics

The transfer entropy defined in (2.6) and (2.7) depends on the (joint) prob-
abilities, such as p(xn+1, xn, yn). The exact values of these probabilities are
unknown, but it is possible to estimate them from the data observed, i.e.,
the time series sample. Assume that each of these probabilities follows a
multinomial distribution. From the perspective of frequentist statistics, a
reasonable set of estimates is

p̂(xn+1, xn, yn) =
N(xn+1, xn, yn)

T − 1
(3.1)

p̂(yn+1, xn, yn) =
N(yn+1, xn, yn)

T − 1
(3.2)

p̂(xn+1, xn) =
N(xn+1, xn)

T − 1
(3.3)

p̂(yn+1, yn) =
N(yn+1, yn)

T − 1
(3.4)

p̂(xn, yn) =
N(xn, yn)

T
(3.5)

p̂(xn) =
N(xn)

T
(3.6)

p̂(yn) =
N(yn)

T
(3.7)

where N(X) is the number of occurrence of pattern X in the data, and T

29

is the length of the time series.

When computing transfer entropy, one can calculate the transfer entropy
by replacing the probabilities in (2.6) and (2.7) with their corresponding
estimates. Here we recall (2.6) and (2.7) which are originally introduced in
Chapter 2.

TY→X =
∑

xn+1,xn,yn

p(xn+1, xn, yn) log2

(
p(xn+1, xn, yn)p(xn)

p(xn, yn)p(xn+1, xn)

)

TX→Y =
∑

yn+1,xn,yn

p(yn+1, xn, yn) log2

(
p(yn+1, xn, yn)p(yn)

p(xn, yn)p(yn+1, yn)

)

The biggest drawback of frequentist statistics method is the hidden assump-
tion when computing transfer entropy. Relook at (2.6) and (2.7), we could
find that all probabilities must be non-zero, or there will be divide-by-zero
error or log-zero error. Therefore, in each iteration the computing program
will check if any of the probabilities is zero in order to decide whether this
iteration will be skipped. Nevertheless, an estimate produced using fre-
quentist probability is zero if the corresponding pattern never appears in
the observations.

However, N(X) = 0 does not necessarily imply p(X) = 0, since it may
happen because our observations are incomplete. Unfortunately, this often
happens in practice, especially when the resolution is large. The number
of observations is usually limited by the experiment equipments, and the
problem of incomplete time series data may result in big deviation of the
transfer entropy obtained.

3.2 Probability Estimation

To solve the problem of zero probability, we use Laplace’s rule of succession
to estimate probabilities used in computing transfer entropy, instead of us-
ing traditional frequentist probability.

Recall Laplace’s rule of succession. The experiment has two possible out-
comes (success or failure), the unknown probability of success is p. Assume
we carry out n trials and get r successes, then we estimate the p by

p̂ =
r + 1

n+ 2
(3.8)

Meanwhile, if we use s to denote the number of failures and q to represent

30

the probability of failure, we could estimate q by

q̂ = 1− p̂ = 1− r + 1

n+ 2
=
n− r + 1

n+ 2
=
s+ 1

n+ 2
(3.9)

On the other hand, if we use frequentist probability, the results will be:

p̂′ =
r

n
(3.10)

q̂′ =
s

n
(3.11)

Compare p̂, q̂ with p̂′, q̂′, we can see 1 is added to the event’s number of
occurrence, while 2 is added to the number of trials. The key observation
here is as follows: we add an imaginary count ‘1’ to the observed number of
occurrence to make sure that an event’s probability will not be ruled out if
it does not happen in our limited trials. Also, we modify the denominator
accordingly to make sure the modified probability still sums to one.

With this in mind, we could generalise the above procedure from a Bernoulli
trial with two possible outcomes to a general case. We assume the experi-
ment has m possible outcomes:

{b1, b2, · · · , bm} (3.12)

Assume we carry out n trials, and event bi occurred ri times (i = 1, 2, · · · ,m).

Naturally, we have
m∑
i=1

ri = n (3.13)

We denote the probability of event bi by pi. Using Laplace’s rule of succes-
sion, we could estimate pi by

p̂i =
ri + 1

n+m
(3.14)

Here, 1 is added to the event’s number of occurrence ri as an imaginary
count, and m is added to the denominator accordingly to make sure the
modified probability, p̂i, still sums to one:

m∑
i=1

p̂i =

m∑
i=1

ri + 1

n+m
=

(
∑m

i=1 ri) +m

n+m
=
n+m

n+m
= 1 (3.15)

Now we are ready to use Laplace’s rule of succession to estimate (joint)

31

probabilities used for computing transfer entropy. After quantisation, each
of the time series X and Y has R possible different values. So the vector
(xn+1, xn, yn) has R3 possible different values, (xn, yn) has R2 possible dif-
ferent values, etc. Each of these values could be viewed as an event.

In prepossessing, we go through the time series data, counting the number
of occurrence of each pattern (xn+1, xn, yn), (xn, yn), etc. This is identical
to conducting trials. For example, in the case of (xn+1, xn, yn), we have

m = R3 (3.16)

n = T − 1 (3.17)

ri = N(xn+1, xn, yn) (3.18)

(3.16) is because (xn+1, xn, yn) has R3 possible different values; (3.17) is be-
cause there are T − 1 samples, i.e., (x1, x0, y0), ... , (xT , xT−1, yT−1); (3.18)
is by definition.

Substitute (3.16) - (3.18) to (3.14), we have:

p̂(xn+1, xn, yn) =
N(xn+1, xn, yn) + 1

T − 1 +R3
(3.19)

This is the estimation of joint probability p(xn+1, xn, yn) using Laplace’s
rule of succession. Similarly, we could estimate other (joint) probabilities in
the same manner:

p̂(yn+1, xn, yn) =
N(yn+1, xn, yn) + 1

T − 1 +R3
(3.20)

p̂(xn+1, xn) =
N(xn+1, xn) + 1

T − 1 +R2
(3.21)

p̂(yn+1, yn) =
N(yn+1, yn) + 1

T − 1 +R2
(3.22)

p̂(xn, yn) =
N(xn, yn) + 1

T +R2
(3.23)

p̂(xn) =
N(xn) + 1

T +R
(3.24)

p̂(yn) =
N(yn) + 1

T +R
(3.25)

As explained earlier, an intuitive interpretation of our treatment is that we
set a lower bound of probability (e.g., 1

T−1+R3) to each legitimate pattern
disregarding the pattern appears in the data. We need to do this because
when the time series data is limited, we cannot simply rule out the prob-
ability of a certain pattern even if it does not appear in our observations.

32

With Laplace’s rule of succession, the (joint) probabilities used for transfer
entropy computation will always be non-zero, which eliminates the divide-
by-zero or log-zero problem when using frequentist probabilities.

The lower bound we added decreases with more samples, and only has
marginal influence when T is very large. From the view of frequentist statis-
tics, our treatment is an application of Laplace’s rule of succession. From the
view of Bayesian statistics, the treatment corresponds to mixing likelihood
values with a Dirichlet prior with parameter one [17]. Similar treatments
have been applied to probability inference problems to eliminate side effects
of zero probabilities [18].

With (3.19) - (3.25), transfer entropy can be computed using the follow-
ing two equations:

TY→X ≈
∑

xn+1,xn,yn

p̂(xn+1, xn, yn) log2

(
p̂(xn+1, xn, yn)p̂(xn)

p̂(xn, yn)p̂(xn+1, xn)

)
(3.26)

TX→Y ≈
∑

yn+1,xn,yn

p̂(yn+1, xn, yn) log2

(
p̂(yn+1, xn, yn)p̂(yn)

p̂(xn, yn)p̂(yn+1, yn)

)
(3.27)

Note we do not need to calculate p̂ specifically. Since to add or to divide by
a constant can be implemented in the program (and in hardware) straight-
forwardly, we would use the observed numbers of occurrence (N) as inputs.

3.3 Summary

In this chapter, we presented our novel method based on Laplace’s rule of
succession to estimate probabilities used in computing transfer entropy.

Traditionally, we could use frequentist probability. However, when the sam-
ples available are limited, frequentist probability could be zero if a certain
pattern does not appear in the samples. This will lead to divide-by-zero or
log-zero error as well as introducing bias when computing transfer entropy.

To solve this problem, we derive our probability estimation based on Laplace’s
rule of succession. We add an imaginary count ‘1’ to the observed number
of occurrences to make sure that an event’s probability will not be ruled out
if it does not happen in our limited trials. Also, we modify the denominator
accordingly to make sure the modified probability still sums to one. Our
method successfully eliminates the zero-probability problem that frequen-
tist probability suffered from, and could be straightforwardly implemented
in software and hardware.

33

Chapter 4

Hardware Design

In this chapter, we present our FPGA system architecture for computing
transfer entropy. Our system is designed to reduce CPU-FPGA I/O over-
head and FPGA logic usage, which is achieved by optimised memory al-
location, bit-width narrowing and mixed-precision optimisation. We will
present the three features in details in Section 4.1 - 4.3. Then we explain
how to customise our kernel for different applications. Finally, we provide a
performance model for our system.

4.1 Optimised Memory Allocation

The inputs of the FPGA are the number of occurrence tables. Recall the
core computation of transfer entropy (equation (3.26) and (3.27)):

TY→X ≈
∑

xn+1,xn,yn

p̂(xn+1, xn, yn) log2

(
p̂(xn+1, xn, yn)p̂(xn)

p̂(xn, yn)p̂(xn+1, xn)

)

TX→Y ≈
∑

yn+1,xn,yn

p̂(yn+1, xn, yn) log2

(
p̂(yn+1, xn, yn)p̂(yn)

p̂(xn, yn)p̂(yn+1, yn)

)

From a computing perspective, they are 3-level nested loops, because there
are R × R × R elements in N(xn+1, xn, yn) and N(yn+1, xn, yn). Since we
are computing TY→X and TX→Y at the same time, we let the iteration of
xn+1 and yn+1 be the inner loop, xn the middle loop and yn the outer loop.

The first optimisation to consider is allocating the number of occurrence
tables. Note the CPU-FPGA bandwidth is limited, sending all tables from
CPU to FPGA at runtime is obviously very sub-optimal. On the other hand,
mapping all tables to on-board DRAM is also unwise because the data still
need to be sent from CPU to FPGA during initialisation, which results in a
huge initialisation delay.

34

Table 4.1: Data Access Patterns

Table Name Size Data Request Access Times Storage

N(xn+1, xn, yn) R3 K per inner loop Read Once host
N(yn+1, xn, yn) R3 K per inner loop Read Once host

N(xn+1, xn) R2 K per inner loop Read R times BRAM
N(yn+1, yn) R2 K per inner loop Read R times BRAM
N(xn, yn) R2 one per middle loop Read Once host

N(xn) R one per middle loop Read R times BRAM
N(yn) R one per outer loop Read Once BRAM

A compromise solution is to map some of the tables to on-chip BRAM
during initialisation while sending others at run-time. The data access pat-
terns of the number of occurrence tables are summarised in Table 4.1.

Here we briefly explain the elements in Table 4.1:

• Table Name is the number of occurrence table’s name.

• Size refers to the number of elements in the table. Here R is resolution.

• Data Request is how many items are accessed in each read. Here K
is the number of computing pipes. In the kernel we have K pipes for
transfer entropy TY→X and TX→Y , respectively.

• Access Times is how many times each element in the table is ac-
cessed. Here R is resolution.

• Storage is the place where the data table is stored. ‘host’ refers to
the DDR3 memory in the host computer; ‘BRAM’ refers to FPGA’s
on-chip BRAM.

For example, table N(xn+1, xn) has R2 elements. In each inner loop itera-
tion, kernel reads K elements from this table. The whole table will be read
R times during the computation, and is stored in FPGA’s on-chip BRAM.
As FPGA has small but fast on-chip BRAM, usually several MB (the Xilinx
Virtex-6 SX475T FPGA used in this project has 4.67MB), two kinds of
tables are suitable to be mapped to BRAM:

• small tables

• mid-sized tables which are accessed frequently

Consequently, we map N(xn) and N(yn) to BRAM because they are
small, and N(xn+1, xn), N(yn+1, yn) to BRAM because they are mid-sized
tables accessed R times. When resolution (R) is around 1000, the total

35

 FPGA

 Kernel
N(xn+1, xn)

N(yn+1, yn)

N(xn)

N(yn)

CPU

N(xn+1, xn, yn)

N(yn+1, xn, yn)

N(xn, yn)

TYX, TXY

Figure 4.1: System Architecture. Number of occurrence tables N(xn+1, xn)
, N(yn+1, yn), N(xn) and N(yn) are mapped to FPGA’s BRAM during
initialisation. Other tables (N(xn+1, xn, yn), N(yn+1, xn, yn) and N(xn, yn))
are streamed at run-time. Results TY→X and TX→Y are sent back to CPU.

size of the 4 tables are just several MB (2.87MB when R = 1000, using
uint12 for N(xn+1, xn) and N(yn+1, yn), uint32 for N(xn) and N(yn)),
which would fit in the on-chip BRAM (4.67MB in Xilinx Virtex-6 SX475T).
What’s more, as the CPU-FPGA bandwidth are magnitudes larger, the
overhead of sending MB of data during FPGA initialisation is negligible.

Meanwhile, as three dimensional tables N(xn+1, xn, yn) and N(yn+1, xn, yn)
are very large tables (109 elements in each table if R = 1000, so the two
tables are in GBs) only used once during the computation, we stream the
two tables to FPGA at run-time. Table N(xn, yn) is also streamed to FPGA
at run-time due to BRAM resource limitation. Note that in every middle
loop FPGA only reads one element from N(xn, yn), so streaming this ta-
ble to FPGA only has marginal influence on I/O bandwidth usage. As a
summary, Figure 4.1 shows the general system architecture with optimised
memory allocation.

Figure 4.2 shows the kernel’s internal architecture. Inside the kernel, we
build 2K computing pipes for calculating transfer entropy: K pipes for
TY→X and the other K pipes for TX→Y . K is a compile-time parameter. In
this way, the kernel is flexible to support an arbitrary number of pipes to
make full use of FPGA resources. The 2K pipes correspond to K iterations
in the inner loop, so the loop is strip-mined by K. Since the 2K pipes read
different parts of the table N(xn+1, xn) and N(yn+1, yn) with no overlap,
we separate each of the tables into K parts and distribute them among the
corresponding K pipes. The 2K pipes generate K partial sums of transfer
entropy TY→X and TX→Y , respectively. These partial sums are sent back
to CPU, summed and normalised to derive the final result.

36

TXY

 Pipe #1

XXY

K

TYX

 Pipe #1

N(xn+1,xn)

N(xn)
Part #1

∑

TYX[1]

∑

TYX[K]

TYX

 Pipe #K

N(xn+1,xn)

N(xn)
Part #K

……

YXY

K

∑ ∑

TXY

 Pipe #K

N(yn+1,yn)

N(yn)
Part #K

……

XY

N(yn+1,yn)

N(yn)
Part #1

TXY[K]TXY[1]…… ……

Figure 4.2: Kernel Architecture. This figure shows the datapath of the
kernel with control logic omitted. Here XXY, YXY and XY stands for
N(xn+1, xn, yn), N(yn+1, xn, yn) and N(xn, yn), respectively. On each cycle,
K elements from N(xn+1, xn, yn) and N(yn+1, xn, yn) are sent from CPU to
FPGA, feeding the corresponding K pipes. A new value of N(xn, yn) is sent
to FPGA each middle loop (R/K cycles), and is shared by all pipes.

37

4.2 Bit-width Narrowing

As mentioned above, we optimise memory allocation to reduce I/O overhead.
N(xn+1, xn, yn), N(yn+1, xn, yn) and N(xn, yn) are sent to FPGA at run-
time while other tables are mapped to BRAM during initialisation. While
this memory allocation is effective, it requires a large amount of BRAM.
Therefore, the resolution supported will be limited by the BRAM resource
available.

In this case, a technique known as bit-width narrowing is used to make
full use of the BRAM resource in FPGA. As resolution becomes larger, the
number of occurrence tables have more elements but each element in the
table is smaller. This is easy to understand since the total number of oc-
currence will be the number of samples, which is fixed. With is in mind, we
may use fewer bits for each table element when the resolution becomes larger.

In our bit-width narrowing scheme, we set the bit-width to the minimum
number that could represent the largest element in the table. By using cus-
tom unsigned integers ranging from 2-bit to 20-bit instead of the standard
32-bit int, we only use 6% - 62% of the original memory space, which en-
ables storing the data tables in FPGA BRAM. As for N(xn) and N(yn),
the largest number is in millions, so standard 32-bit int is used. Note that
there are only 2R elements in total in N(xn) and N(yn), so they only take
several KB of BRAM when R is around 1000.

Besides, bit-width narrowing is also used to reduce I/O overhead. Since
we stream N(xn+1, xn, yn) and N(yn+1, xn, yn) from CPU to FPGA at run-
time, using fewer bits to represent N(xn+1, xn, yn) and N(yn+1, xn, yn) will
effectively cut down bandwidth usage. Instead of always sending 32-bit int
to FPGA, we use unsigned integers with bit widths ranging from 1-bit to
32-bit, depending on the largest element in the table. As a result, up to
97% bandwidth resources are saved.

It is worth pointing out that bit-width narrowing depends on the input
data. When using the hardware system to compute the transfer entropy of
a particular kind of time series, it is useful to find the range of the elements
in the tables in order to determine the optimal bit-width.

38

4.3 Mixed-Precision Optimisation

In the C program for computing transfer entropy, log2() and the accumula-
tor are implemented using IEEE 754 double precision, which is the default
standard for scientific computing. However, in FPGA a floating point ac-
cumulator will result in excessive hardware resource usage, even in single
precision.

As the dynamic range of input data is small, we use fixed-point number
representation for the accumulator. In the kernel, there are R3 numbers to
be accumulated. Larger resolution will lead to a larger sum in the accumula-
tor so more integer bits are needed. The default setting for the accumulator
in our system is 64-bit fixed-point number with 28 integer bits and 36 frac-
tional bits.

Inside the kernel, the most resource consuming part is the logic for log2().
Unlike the accumulator, log2() uses much more resources when it is done
in fixed-point rather than in floating-point. Consequently, we use floating
point for log2() logic. The resource usage of log2() is closely related to the
number of mantissa bits. In our system, we adopt the format of log2() to be
40-bit floating point number with 8 exponent bits and 32 mantissa bits. We
explore the relationship between the number of mantissa bits and accuracy
as well as parallelism in Section 5.3.

4.4 Customising the Kernel

The power of dataflow computing lies in customisation. As mentioned in
previous sections, we optimise memory allocation and apply bit-width nar-
rowing as well as mixed-precision optimisation to boost performance. All of
these techniques employed are customisations.

Here we would make clear how the proposed architecture could be cus-
tomised for different applications.

• Step 1: Get Representative Sample Data
For any customisations, the prerequisite is getting hold of represen-
tative time series data. Here, ‘representative’ means: (1) these time
series should come from the same source as the actual time series to be
processed; (2) the length of these time series should be similar to that
of the actual time series. For example, if the system is built to process
daily GBP-USD Forex rates, then the historical daily GBP-USD rates
are considered to be representative.

39

Table 4.2: Range of the Number of Occurrence Tables

min{N(xn+1, xn, yn)} max{N(xn+1, xn, yn)}

min{N(yn+1, xn, yn)} max{N(yn+1, xn, yn)}

min{N(xn+1, xn)} max{N(xn+1, xn)}

min{N(yn+1, yn)} max{N(yn+1, yn)}

min{N(xn, yn)} max{N(xn, yn)}

min{N(xn)} max{N(xn)}

min{N(yn)} max{N(yn)}

• Step 2: Determine Resolution
The second step is to determine the resolution (R) for our kernel. In
this stage we need to know how large are the numbers in the table.
Once we have the representative sample time series, we could run
the prepossessing routine to figure out the range of the number of
occurrence tables, as shown in Table 4.2. It is worth pointing out that
these ranges not only depend on the time series, but also the resolution
used - larger resolution will lead to a larger table with smaller elements.
The constraint is the BRAM space available on FPGA, because table
N(xn+1, xn) and N(yn+1, yn) are distributed in the computing pipes
and stored in BRAM. One should try different resolution values to
figure out the feasible ones:

K∑
i=1

BRAM XXi +
K∑
i=1

BRAM Y Yi < BRAM (4.1)

SIZEi =
R2

K
×BitWidthi (4.2)

Here, (4.1) is the BRAM resource constraint, where BRAM XXi is
the size of the ith block of table N(xn+1, xn) and BRAM Y Yi the size
of the ith block of table N(yn+1, yn). (4.2) determines the size of each

block. As the tables are distributed among K pipes, each block has R2

K
elements. BitWidthi is the bit-width of block i, which is determined
by the largest number in the block.

Note that not all BRAM space is available for the two tables, as there
will be some BRAM used for computing. In our experiments, one Xil-
inx Virtex-6 SX475T FPGA has about 4.67MB BRAM, but the space
available for the data tables is around 3.5MB. Actually table N(xn)
and N(yn) are also stored in BRAM, but their sizes (several KB) are
negligible, so (4.1) does not take them into account.

40

• Step 3: Determine Bit-width for each Resolution
Given one resolution, we know the range of the tables’ elements in this
resolution. Therefore, we could determine the minimal bit-width for
the number of occurrence tables in this resolution. We use unsigned

integer for all tables.

This step is relatively straightforward. There are two considerations:
(1) range of the elements in the data tables varies with resolution, so
each resolution will lead to a specific bit-width setting; (2) it would
be helpful to reserve a reasonable amount of additional space when
determining the bit-width to allow for the differences between actual
time series and the sample data.

• Step 4: Determine the Precision for log2 and the Accumulator

As mentioned in Section 4.3, we use fixed-point numbers for the accu-
mulator. To determine the number of integer bits, we will need to run
the C program to calculate the transfer entropy of the sample time
series.

To save logic resource, we move the final normalisation step to CPU.
In the kernel the output of log2() is not multiplied by p̂(xn+1, xn, yn)
or p̂(yn+1, xn, yn), but by N(xn+1, xn, yn) + 1 or N(yn+1, xn, yn) + 1.
In this way the division logic could be saved, and we need to ap-
ply the final normalising on CPU, i.e., to divide the unnormalised
transfer entropy result by T − 1 + R3. Therefore, the accumulator in
FPGA needs to hold the numbers as large as TX→Y × (T − 1 + R3)
or TY→X × (T − 1 +R3). By running the C program, we could derive
the transfer entropy of the time series sample, and then we could tell
how large the accumulated sum could be and how many integer bits
are needed:

BITY X ≥
⌈
log2

[
TY→X × (T − 1 +R3)

]⌉
(4.3)

BITXY ≥
⌈
log2

[
TX→Y × (T − 1 +R3)

]⌉
(4.4)

It would be useful to reserve a reasonable amount of bit space to allow
for fluctuations in the real data.

For the number of fractional bits, it depends purely on the accuracy
we want. In our default setting there are 36 fractional bits, so the
precision is equal to log10(2

36) ≈ 10.83 decimal digits.

For the data representation of log2(), the precision should be compa-
rable to that of the accumulator. Our default setting is 40-bit floating

41

point number with 8 exponent bits and 32 mantissa bits. This pre-
cision is about log10(2

32) ≈ 9.63 decimal digits, slightly smaller than
that of the accumulator. It will be shown in Section 5.3 that this preci-
sion is accurate enough. However, it is possible to further increase the
number of the mantissa bits to 36 or even larger for better accuracy.

In summary, we use 4 steps to customise our kernel for an application:
(1) get representative data; (2) determine resolution for the kernel; (3) de-
termine the bit-width for the number of occurrence tables; (4) determine
the precision for log2() and the accumulator. In Chapter 5, we will tailor
our kernel for different applications in the case studies.

4.5 Performance Model

In this section, we provide a performance model for dataflow system. In
software, the for loop for computing transfer entropy has R3 iterations. In
our hardware kernel, as there are K pipes running concurrently, the kernel
only needs to run for R3/K cycles. In other words, the loop is strip-mined
by K.

The kernel computing time is given by:

TComp =
1

Freq
× R3

K
(4.5)

Here, Freq is FPGA frequency, R is resolution and K is the number of pipes.
Since the FPGA kernel needs data from CPU, we also need to consider the
I/O time, which is the data size over bandwidth:

TI/O =
DATA SIZE

BW
(4.6)

When running the system, the FPGA can read data and perform compu-
tation in a pipelined manner. So the total time is the maximum of the
computing time and I/O time.

TTotal = max{TComp, TI/O} (4.7)

When TComp > TI/O, the kernel is bounded by computing. In this case,
performance can be improved by increasing parallelism (K) or increasing
FPGA frequency. In contrast, when TI/O > TComp, the kernel is bounded
by I/O, so reducing I/O overhead is essential.

42

4.6 Summary

In this chapter, we provided details on our hardware architecture.

The challenges addressed are: (1) limited CPU-FPGA I/O bandwidth; (2)
limited logic resources on FPGA. To address the first challenge, we opti-
mised memory allocation and applied bit-width narrowing. The number of
occurrence tables which are: (1) small-sized; (2) mid-sized but frequently
accessed, are mapped to FPGA BRAM. In this way, a considerable I/O
amount is eliminated. Bit-width narrowing is used to reduce the size of
BRAM contents so as to allow for larger resolution. Also, it helps to reduce
I/O bandwith requirement of the tables to be streamed to FPGA at run-
time. To deal with the second challenge, we used mixed-precision optimisa-
tion. The accumulator is in fixed-point numbers while log2() is implemented
in floating-point numbers.

We then discussed how to customise the proposed kernel architecture for
different applications. First, we need to get representative time series sam-
ple. Then we run preprocessing to find the ranges of the number of occur-
rence tables, i.e. minimum or maximum numbers. The maximum number
in the tables varies with resolution. We could try different resolutions to
find the largest possible one, which is limited by BRAM resource. Once
we determined the resolution, we could figure out the optimal bit-width for
the data tables in this resolution and a worst case upper bound for log2()’s
input. Finally, we run the C program to calculate the transfer entropy of
the sample data to determine the format for the accumulator and log2().

We also illustrated the general kernel architecture. In the kernel there
are K pipes for transfer entropy TY→X and TX→Y , respectively. K is a
compile-time parameter to allow for parametric parallelism. The kernel also
supports ultra-large resolution by distributing computing pipes among mul-
tiple FPGAs. Last but not least, a performance model for the kernel is
presented.

43

Chapter 5

Experimental Evaluation

In this chapter, we present the experimental evaluation for the proposed
FPGA system for transfer entropy.

We will first introduce our test platform in Section 5.1. Section 5.2 ex-
plores the relation between accuracy and parallelism. Then Section 5.3 and
5.4 presents the performance tests in different scenarios. Finally, Section 5.5
discusses the performance bottleneck of the system.

5.1 Platform Specification

We use Maxeler MPC-C platform in our experiments. The dataflow design
is described in Maxeler’s MaxJ language and compiled to VHDL using Max-
eler MaxCompiler. The VHDL description is then synthesised and mapped
to FPGA with the Xilinx tool chain. The proposed dataflow design is built
on a Maxeler MAX3 FPGA card with one Xilinx Virtex-6 SX475T FPGA
running at 80-120MHz. The FPGA card is integrated with the host com-
puter via PCI-E Gen2 x8 interface. The host computer has Intel Xeon X5650
CPU (6-cores running at 2.66GHz) and 48GB DDR3 1600MHz memory.

To evaluate the performance and accuracy of the hardware solution, we build
a reference C program in double precision for transfer entropy. This refer-
ence program runs exclusively on the Intel Xeon CPU in the host computer.
The C program is optimised for memory efficiency. To make performance
comparison with 1 CPU core and 6 CPU cores, the C program has 1-thread
and 6-thread versions. Multi-threading is achieved using OpenMP library.
The FPGA host code and the reference C program are compiled using Intel
C Compiler with the highest compiler optimisation.

44

12 14 16 18 20 22 24 26 28 30 32
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of Mantissa Bits in log
2
()

P
e
rc

e
n
ta

g
e
 E

rr
o
r

(%
)

12 14 16 18 20 22 24 26 28 30 32
20

25

30

35

40

45

50

M
a
x
im

u
m

 P
a
ra

lle
lis

m
 (

K
)

Percentage Error (%)

Maximum Parallelism (K)

Figure 5.1: Percentage Error (%) and Maximum Parallelism (K) vs. Num-
ber of Mantissa Bits in log2(). Test time series are 109 random numbers.
Resolution is fixed at 1000. Percentage error is measured against CPU re-
sult. Parallelism is measured by the number of computing pipes (K) for
TX→Y and TY→X , e.g., if K = 24, then there are 48 pipes in total, 24 for
TX→Y and 24 for TY→X .

5.2 Accuracy versus Parallelism

Figure 5.1 shows the percentage error of transfer entropy and maximum
parallelism can be achieved on one Virtex-6 SX475T FPGA as a function
of number of the mantissa bits used in log2(). The percentage error is mea-
sured against the reference C program running on CPU.

Naturally, as the number of mantissa bits increases, hardware result becomes
more accurate while parallelism decreases due to more hardware resources
required by logarithm. As shown in the figure, 28 or 32 mantissa bits will
lead to the same parallelism, but the latter is more accurate. Therefore,
our default precision setting for log2() has 32 mantissa bits (40-bit floating
point number with 8 exponent bits and 32 mantissa bits). In this case, the
percentage error is about 0.000000001%, which is sufficiently accurate.

45

We also need to point out that the maximum parallelism will utilise al-
most all FPGA resources, creating a very demanding task for placing and
routing tools. In some cases, kernel frequency has to be reduced in order
to cut down flip-flop usage so that mapping, placing and routing could be
successfully done. In the following performance tests, we set K = 16 or
K = 24 although the maximum possible value is 28.

5.3 Case Study - Random Numbers

In this case study, we use 109 random numbers as test time series. Section
5.3.1 details kernel customisation; Section 5.3.2 reports hardware resource
usage; Section 5.3.3 presents performance evaluation.

5.3.1 Kernel Customisation

Step 1: Get Representative Sample Data

The test time series used in this case study are 109 random numbers gener-
ated by rand() function in the C program.

Step 2: Determine Resolution

We will first figure out the feasible resolution values for the time series.
Recall equation (4.1) and (4.2):

K∑
i=1

BRAM XXi +

K∑
i=1

BRAM Y Yi < BRAM

SIZEi =
R2

K
×BitWidthi

It is clear that the largest resolution supported is limited by BRAM space
in FPGA. In our test platform, there is about 3.5MB BRAM available for
the tables. To find out the largest resolution, we run the C program using
different resolution values. Table 5.1 shows the largest element in table
N(xn+1, xn) and N(yn+1, yn) in different resolutions, as well as the BRAM
space required. Since the time series is random, it is found that all patterns
occur equivalently likely. As a result, the largest numbers in all blocks are
quite close to each other. Therefore, we could use the same bit-width for all
BRAM blocks. As shown in the table, given the BRAM resource constraint,
the largest resolution supported is 1200. Consequently, we set the range of
resolution used in this case study to be 200 - 1200.

46

Step 3: Determine Bit-width for each Resolution

The bit-width of a number of occurrence table is the minimum number
of digits needed to represent the largest number in that table. In step
2, we have already figured out the largest number in the tables for each
resolution, so this step is rather straightforward. Table 5.1 and 5.2 shows
the optimised bit-widths for table N(xn+1, xn), N(yn+1, yn), N(xn+1, xn, yn)
and N(yn+1, xn, yn).

Step 4: Determine the Precision for log2 and the Accumulator

The transfer entropy result given by the reference C program shows that
the accumulated sum in the computing pipes could reach 1e8. Therefore,
we use the default precision setting for the accumulator (64-bit fixed-point
with 28 integer bits and 36 fractional bits), as 28 integer bits can represent
a number up to 2.68×108. Also, we use the default setting for log2() (40-bit
floating point with 8 exponent bits and 32 mantissa bits).

5.3.2 FPGA Resource Usage

The FPGA has 48 computing pipes (K = 24), 24 for TX→Y and 24 for
TY→X . The kernel frequency is 80MHz. Table 5.3 shows the hardware re-
source usage of Xilinx Virtex-6 SX475T FPGA when R = 1200. Detailed
resource usage of other resolutions are attached in Appendix A.

We deploy 48 transfer entropy computing pipes (K = 24). The LUT and
FF usages are generally determined by the number of computing pipes (K).
BRAM usage depends on resolution, because most of the BRAM is devoted
to the number of occurrence tables N(xn+1, xn) and N(yn+1, yn). As a re-
sult, the resolution supported is limited by BRAM resource available. In
the target platform, the largest resolution achievable in one Virtex-6 FPGA
is 1200, using 94.50% BRAM.

If resolution is larger than 1200, we can use more FPGAs and distribute
the pipes for TX→Y and TX→Y among them. As shown in Figure 4.2, the
BRAM forN(xn+1, xn) andN(yn+1, yn) is distributed among multiple pipes.
Consequently, by distributing the computing pipes, BRAM usage is also dis-
tributed. In this way, an arbitrary resolution can be supported, providing
that there are enough FPGAs.

47

Table 5.1: Bit-width Narrowing for N(xn+1, xn) and N(yn+1, yn), using 109

Random Numbers as Test Time Series

Resolution 200 300 400 500 600 700

Largest Element 26182 11959 7049 4331 3037 2286
Format uint16 uint16 uint16 uint16 uint12 uint12
Total Size (MB) 0.15 0.34 0.61 0.95 1.03 1.40

Resolution 800 900 1000 1100 1200

Largest Element 1768 1415 1161 971 837
Format uint12 uint12 uint12 uint10 uint10
Total Size (MB) 1.83 2.32 2.86 2.88 3.43

Table 5.2: Bit-width Narrowing for N(xn+1, xn, yn) and N(yn+1, xn, yn),
using 109 Random Numbers as Test Time Series

Resolution 200 300 400 500 600 700

Largest Element 194 80 46 28 22 17
Format uint8 uint8 uint6 uint5 uint5 uint5
Total Size (MB) 15.26 51.50 91.55 149.01 257.49 408.89

Resolution 800 900 1000 1100 1200

Largest Element 15 14 11 11 10
Format uint4 uint4 uint4 uint4 uint4
Total Size (MB) 488.28 695.22 953.67 1269 1648

48

Table 5.3: FPGA Resource Usage (Resolution = 1200), using 109 Random
Numbers as Test Time Series

LUT Primary FF Secondary FF DSP BRAM18

Available 297600 297600 297600 2016 2128

Used 201697 215724 42555 1014 2011

Usage (%) 67.77% 72.49% 14.30% 40.77% 94.50%

5.3.3 Performance Test

For performance comparison, we measure the execution time of transfer en-
tropy computation, which corresponds to the computing time of (3.26) and
(3.27). The performance of single Xeon CPU core, 6 Xeon CPU cores and
one Virtex-6 FPGA is shown in Figure 5.2.

FPGA demonstrates high performance for transfer entropy computation.
The maximum speed-up is achieved when R = 1000. In this case, the pro-
posed FPGA implementation is 111.47 times and 18.69 times faster than a
single CPU core and a 6-core CPU, respectively. This high performance is
achieved by the massive amount of parallelism in hardware. In CPU, 6 cores
are used for computing, so there are actually 3 pipes for TX→Y and TY→X ,
respectively. In comparison, our hardware solution could deploy 24 pipes for
TX→Y and 24 for TY→X , which can deliver higher performance than CPU.

In addition, FPGA has great energy efficiency compared with CPU. We
measured the run-time power of the host computer using a power meter,
and compared the energy consumption of CPU-only implementation and
that of FPGA implementation for computing transfer entropy. It is dis-
covered that on average, the FPGA implementation consumes 3.80% of the
energy consumed by the CPU-only implementation. In other words, the
FPGA is about 26.31 times energy efficient than the CPU when computing
transfer entropy.

49

200 300 400 500 600 700 800 900 1000 1100 1200
0

20

40

60

80

100

120

140

Resolution (R)

C
o
m

p
u
ti
n
g
 T

im
e
 (

s
)

1 Xeon X5650 Core

6 Xeon X5650 Cores

Virtex−6 SX475T FPGA

Figure 5.2: Performance vs. Resolution using random numbers. Test time
series are 109 random numbers. The Virtex-6 FPGA has 48 computing pipes
(K = 24) running at 80MHz. log2() is implemented in 40-bit floating point
with 8 exponent bits and 32 mantissa bits. Accumulator is set to 64-bit
fixed point with 28 integer bits and 36 fractional bits.

5.4 Case Study - Forex Data

In the second case study, we use historical Forex data as test inputs. The
time series are EUR-USD and JPY-USD tick data from 23 Mar 2014 to 28
Mar 2014. The tick data is synchronised and differenced, resulting in 797469
records in each of the time series.

5.4.1 Kernel Customisation

Step 1: Get Representative Sample Data

The test data used in this case study come from the real world. The time
series are historical EUR-USD and JPY-USD Forex rates from Chicago Mer-
cantile Exchange (CME). The time series are the Forex rate tick data from
23 Mar 2014 to 28 Mar 2014. After synchronisation and differencing, there
are 797469 records in each time series.

50

We must understand the characteristics of the time series when customising
the kernel. There is fundamental difference between real finance data and
random numbers. For random time series, xn and xn+1 are independent, so
xn+1 can be quite different from xn. In the Forex tick data, Forex rate is
sampled in a microsecond scale. The key difference is that Forex rate can
hardly change in 1µs, so xn+1 will be quite close to xn. After differencing,
most of the elements in the time series will become 0 or ±1.

This interesting property will lead to ill-balanced number of occurrence ta-
bles. Take N(xn+1, xn) as an example. As most of the elements in the time
series will become 0 or ±1, the occurrence count of (0, 0), (0,±1), (±1, 0)
will be very high. In contrast, the patterns such as (0, 10) rarely occurs,
resulting in a low count. As a result, only a small part of the table has
large numbers, which is very different from the tables in the previous case
study, where the large numbers tend to distribute evenly. To achieve high
performance in this case, we must deal with the sparse tables efficiently.

Step 2: Determine Resolution

In spite of the fact that most elements in the number of occurrence tables
are rather small (less than 10), the largest number of the table can reach
105. Therefore, using a fixed bit-width for all elements in a sparse table,
i.e. the bit-width to represent 105, will waste a lot of memory resource. It
would be desirable if we could use narrow bit-width for the small numbers,
and wide bit-width for the large ones.

Our kernel architecture has the ability to achieve this. As mentioned in
Section 4.1, the tables N(xn+1, xn) and N(yn+1, yn) are separated into K
blocks and distributed among the K computing pipes. Therefore, instead of
using the same bit-width for all blocks, we could customise the bit-width for
each block. Table 5.4 and 5.5 show the optimised bit-width settings for the
BRAM blocks storing table N(xn+1, xn) and N(yn+1, yn) when resolution
is 1200. Here, XX i and Y Y i stand for the ith block of N(xn+1, xn) and
N(yn+1, yn), respectively. As can be seen from Table 5.4 and 5.5, it is clear
that large bit-width is only needed in one or two blocks of the table, while
other blocks could use narrow bit-width settings.

With detailed customisation, we only use 1.65MB in total for N(xn+1, xn)
and N(yn+1, yn), which could fit in BRAM space in FPGA (3.5MB). In
contrast, without customisation for each block in table, we will need to use
uint20 for the two tables, resulting in 6.87MB BRAM space requirement.
Therefore, this customisation scheme is essential for the kernel to support
resolution 1200 or even larger in one FPGA. For the ease of comparison, we
also set the range of resolution to be 200-1200 in this case study.

51

Table 5.4: Bit-Width Narrowing for N(xn+1, xn), using Forex Data, Reso-
lution R = 1200

Block Name XX 1 XX 2 XX 3 XX 4 XX 5 XX 6
Largest Element 23 1 1 738618 1 1
Format uint6 uint2 uint2 uint20 uint2 uint2

Block Name XX 7 XX 8 XX 9 XX 10 XX 11 XX 12
Largest Element 39 16 5 5 13306 2
Format uint6 uint6 uint4 uint4 uint14 uint2

Block Name XX 13 XX 14 XX 15 XX 16 XX 17 XX 18
Largest Element 2 221 6 1 6 172
Format uint2 uint8 uint4 uint2 uint4 uint8

Block Name XX 19 XX 20 XX 21 XX 22 XX 23 XX 24
Largest Element 2 1 13289 5 3 11
Format uint2 uint2 uint14 uint4 uint2 uint4

Table 5.5: Bit-Width Narrowing for N(yn+1, yn), using Forex Data, Resolu-
tion R = 1200

Block Name YY 1 YY 2 YY 3 YY 4 YY 5 YY 6
Largest Element 1 22 0 0 52 5
Format uint2 uint6 uint2 uint2 uint6 uint4

Block Name YY 7 YY 8 YY 9 YY 10 YY 11 YY 12
Largest Element 0 2 766148 0 0 53
Format uint2 uint2 uint20 uint2 uint2 uint6

Block Name YY 13 YY 14 YY 15 YY 16 YY 17 YY 18
Largest Element 0 0 12 11 0 0
Format uint2 uint2 uint4 uint4 uint2 uint2

Block Name YY 19 YY 20 YY 21 YY 22 YY 23 YY 24
Largest Element 7281 0 0 7319 0 1
Format uint14 uint2 uint2 uint14 uint2 uint2

52

Table 5.6: FPGA Resource Usage (Resolution = 1200), using Forex Data as
Test Time Series, K = 24

LUT Primary FF Secondary FF DSP BRAM18

Available 297600 297600 297600 2016 2128

Used 243657 238565 62784 822 1289

Usage (%) 81.87% 80.16% 21.10% 40.77% 60.57%

Step 3: Determine Bit-width for each Resolution

We have already figured out the bit-width settings of table N(xn+1, xn) and
N(yn+1, yn) in the previous step. In this step, we apply bit-width narrowing
to the two big tables N(xn+1, xn, yn) and N(yn+1, xn, yn). It is found that
in the two big tables, most elements are also quite small. To make use of this
property, we use different bit-width settings for the two tables in different
iterations. For example, when resolution is 1200, there are 1200 iterations
in the outer loop. We use uint1 for iteration [1, 600] and [861, 1200], uint8
for iteration [601, 710] and [741, 860]; and uint32 for iteration [711, 740].

In this way, the standard 32-bit unsigned integer uint32 is only used in 30
iterations out of 1200. Compared with the original scheme of using uint32

at all times, our customisation saved 91% bandwidth, which is the key to
deal with CPU-FPGA bandwidth bottleneck.

Step 4: Determine the Precision for log2 and the Accumulator

For log2() computing in hardware, we still use our default precision setting
(40-bit floating point with 8 exponent bits and 32 mantissa bits). For the
accumulator, as the accumulated sum can reach 1e9, we use 64-bit fixed
point data format with 32 integer bits and 32 fractional bits, which could
represent numbers up to 4.29× 109.

5.4.2 FPGA Resource Usage

For resolution 1200 and 1104, we build 48 pipes in FPGA, 24 for TX→Y and
24 for TY→X (K = 24). The 48 pipes run at 100MHz. For resolution 208 -
1008, we build 32 pipes, 16 for TX→Y and 16 for TY→X (K = 16). The 32
pipes run at 120MHz. This setting is for the ease of compilation.

Table 5.6 shows FPGA resource usage when resolution = 1200 and K = 24.
It can be seen that with our bit-width narrowing strategy, the BRAM usage
is effectively controlled. The resource usage in other resolution is attached
in the Appendix B.

53

200 300 400 500 600 700 800 900 1000 1100 1200
0

20

40

60

80

100

120

140

Resolution (R)

C
o
m

p
u
ti
n
g
 T

im
e
 (

s
)

1 Xeon X5650 Core

6 Xeon X5650 Cores

Virtex−6 SX475T FPGA

Figure 5.3: Performance vs. Resolution using historical Forex data. The
Virtex-6 FPGA has 48 computing pipes (K = 24) running at 100MHz (R =
1200, 1104) or 32 computing pipes (K = 16) running at 120MHz (R ≤ 1008).
log2() is implemented in 40-bit floating point with 8 exponent bits and 32
mantissa bits. Accumulator is set to 64-bit fixed point with 32 integer bits
and 32 fractional bits.

5.4.3 Performance Test

We run the performance test to compare the performance of FPGA, one
CPU core and 6 CPU cores. The performance results are shown in Figure
5.3. The highest speed-up is achieved when resolution is 1104: the FPGA
is 103.93 times faster than one Xeon CPU core, and 17.89 times faster than
a 6-core Xeon CPU.

As seen from Figure 5.2 and Figure 5.3, FPGA demonstrates consistent
speed-up for both random numbers and historical Forex data. We can see
the proposed FPGA system is able to deliver high performance for real ap-
plications. Our case study shows FPGA has great potential for transfer
entropy analysis targeting financial data such as Forex rates, which makes
FPGA an ideal candidate for quantitative finance.

54

5.5 Bottleneck

Although FPGA has already shown impressive speed-up against many-core
CPU, it still has the potential to be even faster. We discover that the bot-
tleneck of our system is CPU-FPGA I/O bandwidth.

In our tests using random numbers, there are 48 computing pipes (K = 24)
in the system running at 80MHz. When resolution = 1200, the computing
time is 0.9s, according to (4.5). However, the actual measured time in the
experiments is 1.41s. Therefore, the kernel is clearly bounded by I/O speed.

When R = 1200, the elements in tables N(yn+1, xn, yn) and N(xn+1, xn, yn)
could be represented using 4-bit unsigned integer. So the total data size for
the two tables are 2× 12003 ∗ 4/8 ≈ 1.61GB. Using (4.8), we can estimate
the actual bandwidth to be about 1.14GB/s. This is the same with other
experiments using different resolutions, where the actual bandwidth is about
1.1-1.3GB/s.

Since there are 48 computing pipes, each cycle the FPGA kernel needs 24
bytes data from CPU. The kernel runs at 80MHz, so the I/O bandwidth
requirement is 1.92GB/s. In our hardware platform, the FPGA card is con-
nected to CPU via PCI-E Gen2 x8 interface with a theoretical speed of
4GB/s in each direction. However, as there are various overheads in the
PCI-E channel, the actual bandwidth of PCI-E Gen2 x8 is about 3GB/s.
Furthermore, due to the limitation of the PCI-E interface chip on the FPGA
card, the actual bandwidth in the experiments is about 1.3GB/s. As a re-
sult, the FPGA is actually waiting for data.

Here we offer a theoretical prediction. If the interface chip on FPGA board
could fully support PCI-E Gen2 x8 interface, we will have about 3GB/s
bandwidth available, so our system is no longer bounded by I/O bandwidth.
In this case, the FPGA could be about 1.92

1.3 ≈ 1.37 times faster than now,
which means 25.61 times faster than the 6-core Xeon CPU.

A better interface chip could be available in the future. Besides, for the cur-
rent hardware platform, one possibility would be exploring more advanced
data compression techniques than bit-width narrowing to further reduce
bandwidth requirement. In this case, the CPU could send compressed tables
N(yn+1, xn, yn) and N(xn+1, xn, yn) to FPGA in order to save bandwidth.
As shown in Table 5.3, there are still plenty of logic resources available, so
it is possible to build a decompressor on FPGA.

55

5.6 Summary

This chapter features the experimental evaluation for the proposed dataflow
design accelerating transfer entropy computation.

Our test platform is a Maxeler MPC-C system with Intel Xeon 6-core CPU
and Xilinx Virtex-6 FPGAs. We use random numbers and historical forex
data as test inputs. The proposed system supports resolution up to 1200 in
one Xilinx-6 SX475T FPGA. Our hardware solution achieves double preci-
sion accuracy as a moderate logic cost. The dataflow system further benefits
from great parallelism achievable in FPGA, as we build 16-24 pipes for TX→Y

and TY→X , respectively. The proposed hardware solution is up to 111.47
times faster than a single CPU core and 18.69 times faster than a 6-core
Xeon CPU. The FPGA solution has the potential to be even faster if an
interface chip fully compatible with PCI-E Gen2 x8 standard is available.

56

Chapter 6

Conclusion and Future Work

The aim of this chapter is to give a summary of our achievements in ac-
celerating transfer entropy computation and suggest probabilities for future
work. In section 6.1 we summarise the key contributions in this project. In
section 6.2, we discuss a list of potential future work.

6.1 Summary of Achievements

This project features the first reconfigurable computing solution to transfer
entropy computation.

Our first objective is to deal with the common situations in which only
limited samples of time series data are available. Limited data affect the
accuracy of transfer entropy by affecting the estimated (joint) probabilities
used during computation. Hence we introduce a novel probability estima-
tion technique based on Laplace’s rule of succession. This method is used to
estimate the (joint) probabilities for computing transfer entropy. Compared
with the traditional frequentist statistics approach, the proposed method
successfully eliminates the zero probability problem when a certain pattern
does not occur in the samples.

Apart from the novel theoretical contribution, we explore hardware acceler-
ation for computing transfer entropy. We identify the challenge to be limited
FPGA-CPU I/O bandwidth and limited FPGA logic resources. We deploy
an optimised memory allocation scheme to map small and frequently ac-
cessed data tables to FPGA BRAM, so I/O amount is effectively reduced.
In addition, bit-width narrowing is used to further reduce bandwidth re-
quirement and save BRAM resources. To cut down logic usage, we use
mixed-precision optimisation to find the best trade-off between accuracy and
hardware resource utilisation, achieving double precision only at a moderate
logic cost.

57

To evaluate the proposed solution, we implement our dataflow design on
a Maxeler MPC-C system. The FPGA kernel is run on a Xilinx Virtex-
6 SX475T FPGA. We do extensive experimental evaluation using random
numbers and historical Forex data. The proposed system achieves up to
111.47 times speed-up over a single Xeon CPU core and 18.69 times speed-
up over a 6-core Xeon CPU, showing exciting performance.

A conference paper, named “Accelerating Transfer Entropy Computation”,
by Shengjia Shao, Ce Guo, Wayne Luk and Stephen Weston has been sub-
mitted to the 2014 International Conference on Field-Programmable Tech-
nology (ICFPT 2014). This paper reflects the contributions of this project.
The paper is currently under review.

6.2 Future Work

The work shows the potential of dataflow computing for calculating transfer
entropy. Although we have met the original goals set out in Section 1.2,
we would like to highlight future work that could be done, which further
improves the quality of this project.

• Advanced Data Compression

As discussed in Section 5.6, the current system is bounded by CPU-
FPGA I/O bandwidth. Beyond the bit-width narrowing technique
used in this project, there are possibilities to deploy advanced data
compression techniques to further compress the data tables which are
streamed to FPGA at run-time. A compressor could be built in host C
program while decompressor could be build on FPGA using resources
remaining. This will help to further reduce I/O overhead and improve
performance.

• Automatic Customisation

In the experimental evaluation section, we test the proposed solution
using random numbers and historical forex data. There exist many
more fields where transfer entropy is used. It would be beneficial to
find customised versions of the dataflow design for different applica-
tions, as well as ways to automate these customisations.

58

• Run-time Reconfiguration

The current FPGA system is static. As run-time reconfiguration is
a powerful technique which is able to further boost the performance of
a FPGA design, an exciting possibility is to explore whether there are
parameters in the dataflow design that can be adaptively optimised at
run-time.

59

Appendix A

FPGA Resource Usage -
Random Numbers

This table is the detailed FPGA resource usage in the case study in Section
5.3. We use 109 random numbers as test time series. There are 48 comput-
ing pipes on a Xilinx Virtex-6 SX475T FPGA, running at 80MHz. Here,
‘Available’ is the resource available in one Xilinx Virtex-6 SX475T FPGA,
‘R’ is resolution.

Table A.1: FPGA Resource Usage for Resolution from 192 to 1200

LUT Primary FF Secondary FF DSP BRAM18

Available 297600 297600 297600 2016 2128

R=192 151591 170676 29400 680 414

R=288 152341 171746 28710 686 534

R=384 123026 135036 26247 544 596

R=480 121436 137488 23557 550 756

R=600 122383 135310 24750 544 820

R=696 122731 134891 25165 544 980

R=792 151976 170456 28108 680 1210

R=912 154454 168447 30363 686 1450

R=1008 155323 168630 30264 686 1770

R=1104 169493 183949 33310 846 1692

R=1200 201697 215724 42555 1014 2011

60

Appendix B

FPGA Resource Usage -
Forex Data

This table is the detailed FPGA resource usage in the case study in Section
5.4. We use historical Forex data as test time series. For resolution 1200 and
1104, we build 48 pipes in FPGA, 24 for TX→Y and 24 for TY→X (K = 24).
The 48 pipes run at 100MHz. For resolution 208 - 1008, we build 32 pipes,
16 for TX→Y and 16 for TY→X (K = 16). The 32 pipes run at 120MHz.
Here, ‘Available’ is the resource available in one Xilinx Virtex-6 SX475T
FPGA, ‘R’ is resolution.

Table B.1: FPGA Resource Usage for Resolution from 208 to 1200

LUT Primary FF Secondary FF DSP BRAM18

Available 297600 297600 297600 2016 2128

R=208 161685 170011 32776 544 351

R=304 161115 172668 30132 544 384

R=400 162055 170556 32348 544 435

R=496 161368 173216 29662 550 501

R=608 160735 175451 27473 544 574

R=704 161358 173509 29307 544 665

R=800 161885 175082 27919 544 772

R=896 161208 176229 26762 544 853

R=1008 162128 172889 30055 550 1125

R=1104 244890 242950 58915 816 1213

R=1200 243657 238565 62784 822 1289

61

Appendix C

Performance Data - Random
Numbers

This table is the detailed performance results in the case study in Section
5.3. Test time series are 109 random numbers. This table corresponds to
Figure 5.2. Here, ‘R’ is resolution; ‘CPU 1’ is the CPU computing time
using one core; ‘CPU 6’ is the CPU computing time using 6 cores; ‘FPGA’
is the FPGA computing time; ‘SpeedUp 1’ is the FPGA speed-up factor
against one CPU core; ‘SpeedUp 6’ is the FPGA speed-up factor against 6
CPU cores.

Table C.1: Performance Data - Random Numbers

R CPU 1 (µs) CPU 6 (µs) FPGA (µs) SpeedUp 1 SpeedUp 6

192 590082 101320 15126 39.01x 6.70x

288 1991579 372840 50503 39.43x 7.38x

384 4740705 823596 68553 69.15x 12.01x

480 9007084 1521974 83049 108.46x 18.32x

600 16628953 2801819 153077 108.63x 18.30x

696 25805482 4350634 247297 104.35x 17.59x

792 37993861 6383770 341359 111.30x 18.70x

912 54167182 9024529 483412 112.05x 18.67x

1008 73870908 12385822 662712 111.47x 18.69x

1104 98190384 16619120 1092233 89.89x 15.21x

1200 127799347 21555613 1414017 90.38x 15.24x

62

Appendix D

Performance Data - Forex
Data

This table is the detailed performance results in the case study in Section
5.3. Test time series are historical Forex rates. This table corresponds to
Figure 5.3. Here, ‘R’ is resolution; ‘CPU 1’ is the CPU computing time
using one core; ‘CPU 6’ is the CPU computing time using 6 cores; ‘FPGA’
is the FPGA computing time; ‘SpeedUp 1’ is the FPGA speed-up factor
against one CPU core; ‘SpeedUp 6’ is the FPGA speed-up factor against 6
CPU cores.

Table D.1: Performance Data - Forex Data

R CPU 1 (µs) CPU 6 (µs) FPGA (µs) SpeedUp 1 SpeedUp 6

208 651921 118006 9957 65.47x 11.85x

304 2034286 356006 23648 86.02x 15.05x

400 4632337 803670 55661 83.22x 14.43x

496 8832081 1529045 106025 83.30x 14.42x

608 16262400 2819432 172524 94.26x 16.34x

704 25248084 4380763 257196 98.16x 17.02x

800 37049445 6409638 435248 85.12x 14.72x

896 52056427 8996697 536010 97.12x 16.78x

1008 74166082 12814518 795641 93.21x 16.10x

1104 97517934 16793175 938244 103.93x 17.89x

1200 125284751 21568302 1264596 99.07x 17.05x

63

Bibliography

[1] T. Schreiber, “Measuring information transfer,” Phys. Rev. Lett.,
vol. 85, pp. 461–464, Jul 2000.

[2] I. Kuon, R. Tessier, and J. Rose, “FPGA architecture: Survey and
challenges,” Found. Trends Electron. Des. Autom., vol. 2, pp. 135–253,
Feb. 2008.

[3] Altera, “Introduction to Quartus II.” http://www.altera.co.uk/

literature/manual/archives/intro_to_quartus2.pdf.

[4] Maxeler Technologies, “Maxeler MPC-C.” http://www.maxeler.com/

products/mpc-cseries/.

[5] Maxeler Technologies, Multiscale Dataflow Computing. 2013.

[6] J. Li, C. Liang, X. Zhu, X. Sun, and D. Wu, “Risk contagion in chinese
banking industry: A transfer entropy-based analysis,” Entropy, vol. 15,
no. 12, pp. 5549–5564, 2013.

[7] C. J. Honey, R. Kötter, M. Breakspear, and O. Sporns, “Network struc-
ture of cerebral cortex shapes functional connectivity on multiple time
scales,” Proceedings of the National Academy of Sciences, vol. 104,
no. 24, pp. 10240–10245, 2007.

[8] G. Ver Steeg and A. Galstyan, “Information transfer in social media,” in
Proceedings of the 21st International Conference on World Wide Web,
WWW ’12, pp. 509–518, ACM, 2012.

[9] D. Gembris, M. Neeb, M. Gipp, A. Kugel, and R. Männer, “Correlation
analysis on GPU systems using NVIDIA’s CUDA,” J. Real-Time Image
Process., vol. 6, pp. 275–280, Dec. 2011.

[10] C. R. Castro-Pareja, J. M. Jagadeesh, and R. Shekhar, “FPGA-based
acceleration of mutual information calculation for real-time 3D image
registration,” in Electronic Imaging 2004, pp. 212–219, International
Society for Optics and Photonics, 2004.

64

[11] Y. Lin and G. Medioni, “Mutual information computation and max-
imization using GPU,” in Computer Vision and Pattern Recognition
Workshops, 2008. CVPRW ’08. IEEE Computer Society Conference
on, pp. 1–6, June 2008.

[12] C. Guo, W. Luk, and S. Weston, “Pipelined reconfigurable accelerator
for ordinal pattern encoding,” IEEE 25th International Conference on
Application-Specific Systems, Architectures and Processors, 2014.

[13] Altera, “Altera Quartus.” http://www.altera.co.uk/products/

software/quartus-ii/about/qts-performance-productivity.

html.

[14] Xilinx, “Xilinx ISE.” http://www.xilinx.com/products/

design-tools/ise-design-suite/.

[15] Xilinx, “Xilinx Vivado.” http://www.xilinx.com/products/

design-tools/vivado/.

[16] X. Niu, T. Chau, Q. Jin, W. Luk, and Q. Liu, “Automating elimination
of idle functions by run-time reconfiguration,” in Field-Programmable
Custom Computing Machines (FCCM), 2013 IEEE 21st Annual Inter-
national Symposium on, pp. 97–104, April 2013.

[17] K. P. Murphy, Machine learning: a probabilistic perspective. 2012.

[18] C. D. Manning and P. Raghavan, Introduction to information retrieval,
vol. 1. 2012.

65

